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CHAPTER 1 INTRODUCTION 

Advanced Driver Assistance Systems (ADAS) have been developed in recent years to 

significantly improve safety in driving and assist driver’s response in extreme situations in 

which quick decisions and maneuvers are required.  Common features of ADAS in modern 

vehicles include automatic emergency braking (AEB), lane keeping assistance (LKA), 

electric stability control (ESC), and adaptive cruise control (ACC). While these features 

are developed primarily based on sensor fusion, image processing and vehicle kinematics, 

the importance of vehicle dynamics must not be overlooked to ensure that the vehicle can 

follow the desired trajectory without inducing any instability. In many extreme situations 

such as object avoidance, fast maneuvering of vehicles with high center of gravity might 

result in rollover instability, an event with a high fatality rate. It is thus necessary to 

incorporate vehicle dynamics into ADAS to improve the robustness of the system in the 

path planning to avoid collision with other vehicles or objects and prevent vehicle 

instability. The objectives of this thesis are to examine the efficacy of a vehicle dynamics 

model in ADAS to simulate rollover and to develop an active controller using Model 

Predictive Control (MPC) to manipulate the front-wheel steering and four-wheel 

differential braking forces, which are related to active steering as well as dynamic stability 

control for collision avoidance. The controller is designed using the model predictive 

control approach. A four degree-of-freedom vehicle model is simulated and tested in 

various scenarios. According to simulation results, the vehicle controller by the MPC 

controller can track the predicted path within error tolerance. The trajectories used in 

different simulation scenarios are generated by the MPC controller.  
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1.1 Motivation 

Safety, comfort and economy are the three most important aspects when considering the 

design and manufacturing of a vehicle, especially safety. The safety of vehicles is affected 

by various factors including: 

Environment: Road friction, traffic conditions, etc. 

Driver: Distraction, response capability, driving skills, preference, etc. 

Vehicle: Type of vehicles (center of gravity, suspension, steering, etc.), control systems 

Usually, a human driver is in control when driving a car without any assistant systems. 

However, innumerable accidents happened because of drivers, who could be distracted and 

were not able to handle sudden or extreme situations. To address the above safety issues 

related to drivers, Advance Driver Assistance Systems (ADAS) have been proposed and 

become more and more popular when fully autonomous driving can hard be achieved 

immediately. ADAS means some automated features are introduced, such as automatic 

emergency braking (AEB), lane keeping assistance (LKA), electric stability control (ESC), 

adaptive cruise control (ACC), etc. ADAS features/functions have gradually become 

standard on different models of cars to attract customers [1]. It is a common sense that 

ADAS consist of pre-crash active systems, helping drivers to avoid collision. Image a case 

that the subject vehicle is following a preceding vehicle while suddenly the preceding 

vehicle changes to another lane without deceleration because the vehicle before the 

preceding vehicle stops. It will impede the ability of the ADAS systems to detect the 

obstacle so that it would be hard for the ego vehicle to stop safely. Thus, there must be a 

decision-making system to have the subject vehicle move to another direction. It’s better 
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to execute appropriate ADAS functions according to different situations. 

Rollover in extreme situations is an unsolved problem with a high fatality rate. Compared 

to common passenger vehicles, it is more necessary for trucks and buses have a higher 

center of gravity to be equipped with certain ADAS features because the long daily routine 

driving hours greatly impact the driving capability and attention of those drivers (such as 

truck drivers and long-distance tourist bus drivers). Moreover, the stability performance is 

equally important to collision avoidance, especially in fast maneuvers, while a severe 

problem related to stability is rollover. In this aspect, vehicles with a high center of gravity 

have a much greater risk of rollover than common passenger vehicles. There are over 500 

large truck rollover accidents that occur each year throughout the U.S. according to the 

National Highway Traffic Safety Administration [2]. Over 60 percent of these rollover 

accidents result in fatalities [2]. According to current literatures [3,4,30,31], real-time 

rollover prevention system has been researched as a popular topic. Rollover prevention can 

be grouped into two categories: rollover warning system by using prediction algorithms, 

and active roll control [3]. As shown in Figure 1, for active roll control, there are five main 

directions: four-wheel steering, differential braking, active roll-bar, in-wheel motor [4], 

and active suspension. The first two ways are used to prevent rollover by controlling yaw 

motion while the latter three ways are achieved by controlling roll motions. This thesis 

aims to develop an active controller to control front-wheel steering and differential braking 

forces of vehicles to prevent rollover as well as collision, which can be classified to active 

steering system (ASS) as well as dynamic stability control (DSC) used for collision 

avoidance. 
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Figure 1. Rollover Prevention Systems Architecture Diagram. 

1.2 Overview of ADAS System 

The entire ADAS system includes three fundamental aspects: perception, vehicle 

dynamics and control. Thus, the research activities on active rollover prevention control 

can be divided into three aspects, as summarized in Table 1. 

This thesis will not work on sensor fusion or any ADAS algorithm development. Rather, 

it will focus on the vehicle dynamics modeling and controller design as well as the 

combination of sensor inputs and controlling for rollover prevention.  
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Table 1. Three aspects of ADAS and their associated problems and directions 

Aspects Contents Function Tools 

ADAS 

algorithms 

development 

Computer vision algorithms 

Support Vector Machine 

(SVM), Histogram of 

Oriented Gradients (HOG) 

and Birds-Eye view 

Used for vehicle detection 

and lane detection 

Camera 

Kalman Filter, etc. 

Used to track the 

surrounding vehicles’ 

position and velocity with 

noisy lidar and radar 

measurements 

Lidar&/ 

radar 

Vehicle 

dynamics 

analysis 

Appropriate model 

Used to obtain differential 

equations subject to non-

rollover and other physical 

constraints 

N/A 

MPC 

controller 

design 

Prediction of future events 

and taking control actions 

accordingly [24] 

Used for keeping the subject 

vehicle on the planned path 

(track) by adjusting the 

steering angle and braking 

(throttle) 

MATLAB 

SIMULINK 
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1.3 Literature Review 

All types of vehicles can roll over to some extent. However, vehicles having a higher 

center of gravity such as SUVs, pickups, buses and trucks are more susceptible to roll over 

if involved in a single-vehicle crash. NHSTA data show that nearly 85% of all rollover-

related fatalities are the result of single-vehicle crashes [2]. The majority of rollover crashes 

and fatalities do not involve any other vehicle besides the one that rolled over and indicates 

that the driver behavior plays a significant role in rollover crashes [5]. Besides, rollover is 

one of the most common single accidents for heavy trucks, especially in the US, and for 

long-distance tourist buses mostly in developing countries. Thus, a reliable rollover 

prevention system is more than important to help drivers in decision making under extreme 

or emergent situations.  

The rollover problem is mainly related to lane change, turning on a curvy road, and 

emergency braking [5]. There are several studies that develop algorithms or design 

controllers to improve the safety when the driver intends to change lane but are not clearly 

aware of rollover risk. Mahdi et al. proposed an algorithm, which combines the camera, 

inertial navigation sensor, and GPS data with the vehicle dynamics to estimate the vehicle 

path and the lane departure time. The lane path and vehicle path are estimated by using 

Kalman filters [6]. But they took the simplest geometric model and ideal situation for 

estimation. A geometric model is also called a kinematic model. The model does not either 

consider the slip angle which cannot be neglected for a moving car [7]. Therefore, it is 

necessary to develop a vehicle dynamic model considering steering angle, wheel rotation, 

yaw angle, roll angle, slip angle, etc. After building a vehicle dynamic model, the ego 
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vehicle status can be obtained while the environment status is achieved through sensors. A 

robust controller should respond quickly to the emergent and extreme situations by 

generating a best trajectory and controlling the vehicle to the expected trajectory.  

Model predictive control (MPC), which is also called receding horizon control, is very 

popular and frequently used in the industry for optimal control of multivariable systems 

with constrains [8]. Receding horizon means updating predictions and making decisions 

by using the most recent target and measurement data. It has been proven to achieve 

improved performance compared to conventional techniques. MPC can be divided into 

linear MPC (LMPC) and nonlinear MPC (NMPC). There are no absolutely pros and cons 

to each which kind of MPC but depending on whether the system is linear or nonlinear, 

and whether it is able to or at least easily to be linearized. It is usually understood that an 

MPC controller takes the place of the driver to make decisions using the observed sensory 

information, which has been already fused together. An MPC controller can correct 

driver’s inputs to achieve the desired motions.  

Many researchers have paid attentions to the design of a controller for motion planning, 

but they mostly only consider a kinematic model [9]. Very limited research has been done 

on considering vehicle dynamics for rollover prevention and motion planning using MPC 

simultaneously since the system is rather complicated because not only lateral dynamics 

but also longitudinal dynamics and roll motion need to be considered. It is noted that the 

motion planning consists of path planning and path tracking / following. Both can be 

implemented by an appropriate MPC controller. Usually LMPC is utilized in the path 

planning stage for simplification and efficiency while both LMPC and NMPC can be 
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utilized in the path following stage. A sample based MPC proposed by Caldwell et al. for 

an autonomous underwater vehicle can do real-time motion planning that uses a nonlinear 

vehicle model [10]. It incorporates Rapidly-exploring Random Tree (RRTs), Probabilistic 

Road Maps (PRM), which was also researched by Liu et al [11].  

Actually, path planning is the first step ahead of path following. In other words, if we 

simulate a system by path following, the path is usually preset by humans, not generated 

by the system itself. We then compare and check how well the real path matches the 

planned one. Basically, designing a path planning controller is more difficult than that of 

path following. It is also a common way to verify a controller of tracking ability first before 

combining that with the path planning. Isaac Gwayi and Mohohlo S. Tsoeu discussed 

rollover prevention and path following of autonomous vehicle using nonlinear model 

predictive control [12]. The authors focused on the path following while the controller 

needs to have the planned trajectory first, then it controls the vehicle to follow the trajectory 

to the planned one. There are still many limitations as the MPC was used for cornering 

only, while many case scenarios, especially fast maneuvers, were not included. Moreover, 

the inputs to the controller are the driving torque and steering wheels without considering 

the braking situations.  

Thomas et al. claimed that the coordination of the active control action with the driver’s 

is a challenging Human-In-The-Loop (HIL) problem [13]. To allow us to focus on 

integrating vehicle dynamics into ADAS during extreme maneuvers, the driver’s response 

or input is not taken into consideration. In this thesis, the system designed still has features 

of ADAS, or autonomous driving. Another innovation of this thesis is that two variables, 
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steering and velocity, are controlled under extreme situations so that the vehicle can switch 

from one ADAS function to another function according to different conditions. For 

example, when the vehicle encounters an obstacle ahead during ACC mode, it can 

automatically change to AEB or Lane Change mode, in which case, it can avoid collisions. 

This thesis will mainly focus on the vehicle model building and controller design. Chapter 

2 will discuss typical scenarios encountered in extreme situations. Chapter 3 will develop 

a nonlinear model of vehicle dynamics. Chapter 4 will design a nonlinear model predictive 

control controller. The conclusion is then drawn in Chapter 5.  
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CHAPTER 2 SCENARIO ANALYSIS 

Reasons for rollover accidents can vary with different situations. A detailed analysis of 

the dynamics in a particular rollover situation is presented in [14]. In this thesis, only some 

basic and common scenarios are discussed, and they could be extended further if needed. 

PreScan is used for the entire environment construction and sensors implementation so that 

its outputs can be directly used, including the ego vehicle position from GPS, the relative 

velocity and relative distance between the ego vehicle and the preceding vehicle from 

Radar. Usually, there are two approaches to avoid collisions when a car encounters an 

obstacle on highway: one is by automatic emergency braking activation (AEB), which 

applies up to two thirds of the braking power of the vehicle without a driver’s intervention; 

the other is by changing to another lane along a safe trajectory. The condition for the 

vehicle to choose one method over the other is determined by difference between the 

relative distance and a calculated safe distance. As all of the scenarios are under unusual 

situations, meaning that radar and other sensors are impossible to detect the obstacle 

beforehand, and the AEB is relatively ineffective because there is not enough distance and 

time for the vehicle to stop safely without any collision. Hence, more in deepth research 

on rollover prevention is needed for sudden lane changing. 

Highway traffic and safety engineers have already developed general standards for 

vehicle stopping distance and time [32]. If a road surface is dry, a light truck can safely 

reduce its speed with reasonably good tires at a rate of 15 ft/s2. A good controller system 

can perform as well as a skilled driver who can significantly reduce the stopping distance 

and time, and the deceleration rate could exceed 20 ft/s2. The table below shows the braking 
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distances regarding to different initial velocities. 

Table 2. Braking / Stopping Distance 

MPH Ft./Sec. Braking Deceleration 

Distance 

Perception 

Reaction Distance 

Total Stopping 

Distance 

55 80.7 144 feet 43.9 m 8.1 feet 2.5 m 152.1 feet 46.4 m 

60 88 172 feet 52.5 m 8.8 feet 2.7 m 180.8 feet 55.1 m 

65 95.3 202 feet 61.6 m 9.6 feet 3.0 m 211.6 feet 64.5 m 

70 102.7 234 feet 71.3 m 10.3 feet 3.2 m 244.3 feet 74.5 m 

75 110 268 feet 81.7 m 11 feet 3.4 m 279 feet 85.1 m 

80 117.3 305 feet 93.0 m 11.8 feet 3.6 m 316.8 feet 96.6 m 

It is noted that trucks need more time and longer distance to stop fully than common cars. 

Described below are four common scenarios that we will consider in the simulation. The 

first three cases vary by increasing the number of lanes and number of vehicles occupying 

the lanes.  
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Case 1. Sudden stop of the leading vehicle in the original lane  

 

Figure 2. Case 1: Leading vehicle in the original lane stops suddenly 

There are two possible ways for the ego vehicle to avoid a rear crash in this case: either 

stop straightforward or change lane to avoid the preceding vehicle if the ego vehicle cannot 

stop safely. For example, if the distance that the sensor detects the preceding car is smaller 

than 64.5 meters when the speed is 104 kph and above, it is impossible for the ego vehicle 

to stop safely even using the AEB (see Table 2. Braking / Stopping Distance). Thus, the 

only choice is to change to another lane, supposing that there are no other unexpected 

vehicles.  

Case 2. Sudden stop of the Preceding vehicle in the initial lane plus vehicles in the 

adjacent lane. 

There are also two possible approaches for the ego vehicle to make a decision in this 

case: either stop straightforward or change lane to avoid the preceding vehicle if the ego 
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vehicle cannot stop safely. However, the difference from case 1 is that the system needs to 

plan a best path to avoid the collision with the vehicle in the adjacent lane. Thus, not only 

the relative distance and velocity between the ego car and the preceding car are important, 

but also the relative distance and velocity between the ego car and the car in adjacent lane. 

All these factors impact the path / trajectory planning. The challenge of case 2 is that it 

requires more powerful sensors and computation ability of systems.  

 

Figure 3. Case 2: Preceding vehicle in the initial lane stops suddenly plus vehicles in 

adjacent lane 

Case 3. More complicated scenario 
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Figure 4. Case 3: Multiple obstacles scenario 

Case 3 is the most complicated situation among the first three cases, because more inputs 

from the environment should be considered and detected, which requires a more robust 

algorithm and more powerful hardware that could handle varying parameters in the 

environment and assist the vehicle to make a proper decision. In Figure 4, there are three 

possible ways for the ego vehicle to avoid collision as well as rollover. The difficulty is 

that it may take more time for the system to process inputs and the situation is varying all 

the time. If the system is not robust enough, a wrong and dangerous decision can be made. 

There are other possible scenarios, for example, there is no possible path planning that 

could prevent rollover and collision at the same time. Under these situations, a trade-off 

between rollover and collision avoidance has to be made. Many researchers have focused 

on unavoidable collisions and worked on how to reduce the risk. However, it is still a major 

research. Thus, it will not be discussed in this thesis. All the cases discussed can be built 

in PreScan by adding trajectory, actuators, and sensors.  
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CHAPTER 3 MODELING OF VEHICLE DYNAMICS 

A vehicle model as a rigid body has six degree-of-freedom (DOF), i.e., motions in three 

translational directions and three rotational directions. The translational motions are 

longitudinal, lateral and vertical motions, and the rotational motions are roll, pitch and yaw 

motions. Each motion represents a DOF. However, the rigid body model is too simplistic 

and does not account for the modeling of suspension, tires and other lumped mass units of 

the vehicle. On the other hand, it is not cost-effective to model every single aspect of the 

vehicle. Modelling a comprehensive vehicle model could also lead to high nonlinearity. 

Thus, different degrees of freedom of vehicle dynamic models have been developed for 

different purposes. In the rollover prevention problem, the wheels should be treated 

separately different from the chassis body. The lumped mass of body is the “sprung mass”, 

and the wheels are denoted as “unsprung masses” [15]. Moreover, pitch and vertical 

motions can be neglected since they are less important in this research.  

Similar to typical passenger cars, most buses have two axles, while each axle has one or 

more pairs of wheels. However, some heavy trucks have several different numbers of axles, 

varying with two to six or more axles. Since the center of gravity of heavy trucks are usually 

higher than passenger vehicles, there is higher possibility that it will rollover. Therefore, 

height of center of gravity is a significant factor that leads a heavy truck to roll over. Higher 

center of gravity has greater significance in causing the vehicle to rollover than the number 

of axles. In this research, we will take a two-axle, four-tire, single-unit truck as the research 

subject, which can make the results more general. The model can be further extended and 

applied to SUVs and buses with high center of gravity. Moreover, there is no difference 
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between a two-axle truck and a passenger car in the overall analysis. In Figure 5, a two-

axle, four-tire, single-unit truck and its trailer is shown as, 

 

Figure 5. Two-axle, four-tire, single-unit truck and its trailer 

3.1 Vehicle Coordinate Systems 

To describe the motion of the vehicle, it is necessary to select an appropriate coordinate 

system for derivation of the equation of motion. A moving body can be treated as a 

reference frame that constantly provide reference coordinate for the observation of motion. 

Sprung mass and unsprung mass can be considered as coordinate system 1 and coordinate 

system 2, respectively. Coordinate system 1 is also called the body-fixed coordinate, as the 

starting point is fixed in the center of gravity of vehicle. It is noted that the mass of vehicle 

is concentrated in the sprung mass. The space-fixed coordinate X-Y-Z is used here as a 

reference frame. The space-fixed coordinate, X-Y-Z, is a rectangular Cartesian coordinate, 
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which follows right-hand rule, hence is usually defined as inertial coordinate system.  

 

Figure 6. The relationships of three coordinate systems  



18 

 

X-Y-Z: inertial coordinate system;  

x-y-z: body-fixed coordinate system (coordinate system 1); 

x’-y’-z’: unsprung mass coordinate system (coordinate system 2). 

 φ: roll angle; θ: pitch angle; Ψ: yaw angle. 𝑟𝑢 and 𝑟𝑠 stand for the position of unsprung 

mass with respect to the unsprung mass coordinate system, and the position of sprung mass 

with respect to the body-fixed coordinate system, respectively.  

The unsprung mass coordinate system is obtained by rotating the inertial coordinate 

system through the yaw angle Ψ. The body-fixed coordinate system is obtained by 1) 

rotating the inertial coordinate system through the yaw angle Ψ, then 2) rotating the pitch 

angle θ, and finally 3) rotating the roll angle φ. In other words, the body-fixed coordinate 

system is obtained by rotating the unsprung mass coordinate system through the pitch angle 

θ then the roll angle φ. 

3.2 Vehicle Chassis Model 

The vehicle chassis model contains the sprung mass and the unsprung mass, as 

mentioned before. The vehicle chassis model has lateral, longitudinal, yaw and roll motions 

after ignoring the pitch rotational motion and vertical translational motion. Therefore, we 

can consider the chassis as a four-degree-of-freedom model as presented below.  

Figure 7 shows a top view of the vehicle in the inertial frame, presenting the lateral, 

longitudinal, and yaw motions. 𝐹𝑦𝑟𝑙 , 𝐹𝑦𝑟𝑟 , 𝐹𝑦𝑓𝑙, 𝐹𝑦𝑓𝑟 denote the lateral forces of left rear 

wheel, right rear wheel, left front wheel and right front wheel, respectively. 

𝐹𝑥𝑟𝑙 , 𝐹𝑥𝑟𝑟 , 𝐹𝑥𝑓𝑙 , 𝐹𝑥𝑓𝑟 stand for the longitudinal forces of left rear wheel, right rear wheel, 

left front wheel and right front wheel, respectively. 
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Figure 7. Top view of the vehicle chassis model 

Since the coordinate system 2 is obtained by rotating inertial coordinate system through 

yaw angle, the angular velocities of unsprung mass and sprung mass with respect to the 

inertial coordinate system XYZ are, 

[𝜔𝑂𝑢
] = {

0
0
�̇�

} , [𝜔𝑂𝑠
] = {

�̇�
0
�̇�

} 3.1 

While the translational velocities of unsprung mass can be represented under the 

coordinate system 2 with vertical velocity along the z-axis neglected, 

[�̇�𝑢] = {
𝑣𝑥

𝑣𝑦

0

} 3.2 

Figure 8 shows a rear view of the vehicle, presenting the roll motion. 𝐹𝑧𝑙 , 𝐹𝑧𝑟 the vertical 

forces of left wheels and right wheels. δ denotes the steering angle of front wheels. Assume 

the steering angles of front wheels are same. Ψ̇ the yaw rate [rad/s], φ the roll angle [rad]. 
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𝑣𝑥 and 𝑣𝑦 are the longitudinal and lateral velocities of the unsprung mass with respect to 

coordinate system 2. The velocity of unsprung mass can easily be measured compared with 

sprung mass. RC the roll center along the centerline of the track at the ground level. CG 

the center of gravity. 𝑚𝑠 the sprung mass, the whole vehicle mass as well. 𝐻𝐶𝐺  the original 

height of center of gravity, h  the actual height of center of gravity; 𝐿𝑟 , 𝐿𝑓  denote the 

distances of rear and front wheels from center of gravity, 𝐿𝑤 is the vehicle width.  

 

Figure 8. Rear view of the vehicle chassis model 

The acceleration of the unsprung mass is, 

[�̈�𝑢] =
𝐷[�̇�𝑢]

𝐷𝑡
=

𝑑[�̇�𝑢]

𝑑𝑡
+ [𝜔𝑂𝑢

] × [�̇�𝑢] 3.3 
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The first term on the right side of Eq. 3.3 is the partial derivative of time respect to the 

unsprung coordinate system, 

𝑑[�̇�𝑢]

𝑑𝑡
= [�̇�𝑥 �̇�𝑦 0]𝑇 3.4 

The second term on the right side of Eq. 3.3 is the cross-product of the angular velocity 

and the longitudinal velocity, representing the rotation of the unsprung mass with respect 

to the space-fixed coordinate system, 

[𝜔𝑂𝑢
] × [�̇�𝑢] = |

𝑖 𝑗 𝑘

0 0 �̇�
𝑣𝑥 𝑣𝑦 0

|

𝑇

= [−𝑣𝑦�̇� 𝑣𝑥�̇� 0]𝑇 3.5 

Subtracting Eq. 3.4 and 3.5 into Eq. 3.3 leads to the following result, 

[�̈�𝑢] = [�̇�𝑥 − 𝑣𝑦�̇� �̇�𝑦 + 𝑣𝑥�̇� 0]𝑇 3.6 

After getting the position, velocity and acceleration of the unsprung mass, those of the 

sprung mass can be presented in coordinate system 2, 

[𝑟𝑠/𝑢] = {0 𝐻𝐶𝐺 sin φ 0}𝑇 3.7 

The velocity of the sprung mass is 

[�̇�𝑠/𝑢] =
𝐷[𝑟𝑠/𝑢]

𝐷𝑡
=

𝑑[𝑟𝑠/𝑢]

𝑑𝑡
+ [𝜔𝑂𝑢

] × [𝑟𝑠/𝑢] 3.8 

The first term on the right side of Eq. 3.8 is the partial derivative of time with respect to 

the unsprung coordinate system, 

𝑑[𝑟𝑠/𝑢]

𝑑𝑡
= [0 �̇�𝐻𝐶𝐺 cos 𝜑 0] 3.9 
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The second term on the right side of Eq. 3.8 is the cross-product of angular velocity and 

longitudinal velocity, representing the rotation of the sprung mass with respect to the 

unsprung coordinate system, 

[𝜔𝑂𝑢
] × [𝑟𝑠/𝑢] = |

𝑖 𝑗 𝑘

0 0 �̇�
0 𝐻𝐶𝐺𝑠𝑖𝑛𝜑 𝐻𝐶𝐺𝑐𝑜𝑠𝜑

|

𝑇

= [−𝐻𝐶𝐺 sin 𝜑 �̇� 0 0]𝑇 3.10 

Subtracting Eq. 3.9 and 3.10 into Eq. 3.8 leads to the following result, 

[�̇�𝑠/𝑢] = {−𝐻𝐶𝐺 sin 𝜑 �̇� �̇�𝐻𝐶𝐺 cos 𝜑 0}𝑇 3.11 

To further get the acceleration of sprung mass, 

[�̈�𝑠/𝑢] =
𝐷[�̇�𝑠/𝑢]

𝐷𝑡
=

𝑑[�̇�𝑠/𝑢]

𝑑𝑡
+ [𝜔𝑂𝑢

] × [�̇�𝑠/𝑢] 

3.1

2 

𝑑[�̇�𝑠/𝑢]

𝑑𝑡
= [−𝐻𝐶𝐺 sin 𝜑 �̈� − �̇�𝐻𝐶𝐺 cos 𝜑 �̇� �̈�𝐻𝐶𝐺 cos 𝜑 − �̇�2𝐻𝐶𝐺 sin 𝜑 0]𝑇 

3.1

3 

[𝜔𝑂𝑢
] × [�̇�𝑠/𝑢] = [−�̇�𝐻𝐶𝐺 cos 𝜑 �̇� −𝐻𝐶𝐺 sin 𝜑 �̇�2 0]𝑇 

3.1

4 

[�̈�𝑠/𝑢]

= [−𝐻𝐶𝐺 sin 𝜑 �̈� − 2�̇�𝐻𝐶𝐺 cos 𝜑 �̇� �̈�𝐻𝐶𝐺 cos 𝜑 − �̇�2𝐻𝐶𝐺 sin 𝜑 − 𝐻𝐶𝐺 sin 𝜑 �̇�2 0]𝑇 

3.1

5 

Thus, the expression of the acceleration of the sprung mass with respect to the body-fixed 

coordinate system is, 

[�̈�s] = [�̈�𝑢] + [�̈�s
u

] = 
3.1

6 
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[𝑣�̇� − (𝑣𝑦 + 2�̇�𝐻𝐶𝐺 cos 𝜑)�̇� − 𝐻𝐶𝐺 sin 𝜑 �̈� 𝑣�̇� + 𝑣𝑥�̇� + 𝐻𝐶𝐺(�̈� cos 𝜑 − �̇�2 sin 𝜑 − sin 𝜑 �̇�2) 0]𝑇 

Other than the translational force acting in the vehicle chassis, we can begin to consider 

rotational effects in our calculation, in other words, the angular acceleration. The angular 

moment of the sprung mass is 

[𝐻𝑠] = [𝐼𝑢][𝜔𝑂𝑠
] 3.17 

𝑀 = �̇�𝑠 =
𝑑[𝐼𝑢][𝜔𝑂𝑠

]

𝑑𝑡
+ [𝜔𝑂𝑢

] × [𝐼𝑢][𝜔𝑂𝑠
] 3.18 

We can consider the moment of inertial of the sprung mass as, 

[𝐼𝑠] = [
𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] 

𝐼𝑥𝑥: the roll inertial (kg m2) 

𝐼𝑦𝑦: the pitch inertial (kg m2) 

𝐼𝑧𝑧: the yaw inertial (kg m2) 

The body-fixed coordinate system is obtained from the rotating coordinate system 

through pitch angle and roll angle. The corresponding transformation matrices by a 

subscript that corresponds to the rotation axis is denoted as, 

[𝑅𝑥] = [
1 0 0
0 cos 𝜑 sin 𝜑
0 − sin 𝜑 cos 𝜑

] 

[𝑅𝑦] = [
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

] 
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[𝑅𝑧] = [
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

] 

Only the roll motion participates the transformation from coordinate system 2 to body-

fixed coordinate system. The formula of transformation of inertia can be obtained from 

fundamentals of vehicle dynamics [17]. Thus, the moment of inertia of unsprung mass is, 

[𝐼𝑠] = [𝑅𝑥][𝐼𝑢][𝑅𝑥]𝑇 

[𝐼𝑢] = [𝑅𝑥]−1[𝐼𝑠][[𝑅𝑥]𝑇]−1 

3.19 

[𝑅𝑥]−1 = [
1 0 0
0 cos 𝜑 − sin 𝜑
0 sin 𝜑 cos 𝜑

] = [𝑅𝑥]𝑇 

[[𝑅𝑥]𝑇]−1 = [
1 0 0
0 cos 𝜑 sin 𝜑
0 − sin 𝜑 cos 𝜑

] = 𝑅𝑥 

[𝐼𝑢] = [𝑅𝑥]𝑇[𝐼𝑠][𝑅𝑥] 3.20 

Subtracting Eq. 3.19 into Eq. 3.20 leads to the following result, 

[𝐼𝑢] = [

𝐼𝑥𝑥 0 0

0 cos2 𝜑 𝐼𝑦𝑦 + sin2 𝜑 𝐼𝑧𝑧 cos 𝜑 sin 𝜑 𝐼𝑦𝑦 − sin 𝜑 cos 𝜑 𝐼𝑧𝑧

0 cos 𝜑 sin 𝜑 𝐼𝑦𝑦 − sin 𝜑 cos 𝜑 𝐼𝑧𝑧 sin2 𝜑 𝐼𝑦𝑦 + cos2 𝜑 𝐼𝑧𝑧

] 

[𝐼𝑢][𝜔𝑂𝑠
] = [

�̇�𝐼𝑥𝑥

�̇�  cos 𝜑 sin 𝜑 (𝐼𝑦𝑦 − 𝐼𝑧𝑧)

�̇�(sin2 𝜑 𝐼𝑦𝑦 + cos2 𝜑 𝐼𝑧𝑧)

] 

Back to 3.18, the first term is, 
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𝑑[𝐼𝑢𝜔𝑂𝑠
]

𝑑𝑡
 

= [

�̈�𝐼𝑥𝑥

�̈� cos 𝜑 sin 𝜑 (𝐼𝑦𝑦 − 𝐼𝑧𝑧) + �̇� �̇�(𝐼𝑦𝑦 − 𝐼𝑧𝑧)(cos2 𝜑 − sin2 𝜑)

�̈�(sin2 𝜑 𝐼𝑦𝑦 + cos2 𝜑 𝐼𝑧𝑧) + 2�̇��̇�(cos 𝜑 𝐼𝑦𝑦 − sin 𝜑 𝐼𝑧𝑧)

] 

3.21 

The second term is, 

[𝜔𝑂𝑢
] × [I𝑢𝜔𝑂𝑠

]

= |

𝑖 𝑗 𝑘

0 0 �̇� 

�̇�𝐼𝑥𝑥 �̇� cos 𝜑 sin 𝜑  (𝐼𝑦𝑦 − 𝐼𝑧𝑧) �̇�(sin2 𝜑 𝐼𝑦𝑦 + cos2 𝜑 𝐼𝑧𝑧)

|

𝑇

= [
−�̇�2 cos 𝜑 sin 𝜑 (𝐼𝑦𝑦 − 𝐼𝑧𝑧)

�̇��̇�𝐼𝑥𝑥

0

] 

3.22 

Subtracting Eq. 3.21 and 3.22 into Eq. 3.18 leads to the following result, 

𝑀

= [

�̈�𝐼𝑥𝑥 − �̇�2 cos 𝜑 sin 𝜑 (𝐼𝑦𝑦 − 𝐼𝑧𝑧)

�̈� cos 𝜑 sin 𝜑 (𝐼𝑦𝑦 − 𝐼𝑧𝑧) + �̇��̇� ((cos2 𝜑 − sin2 𝜑)(𝐼𝑦𝑦 − 𝐼𝑧𝑧) + 𝐼𝑥𝑥)

�̈�(sin2 𝜑 𝐼𝑦𝑦 + cos2 𝜑 𝐼𝑧𝑧) + 2�̇��̇�(cos 𝜑 𝐼𝑦𝑦 − sin 𝜑 𝐼𝑧𝑧)

] 

3.23 

The equations discussed above are established in intrinsic coordinates. While not 

considering the external forces, the forces expressed in the equations are mainly generated 

in the contact surfaces between wheels and ground. Figure 7 has depicted the longitudinal 

and lateral forces of four tires. The total longitudinal and lateral forces are calculated as 

𝐹𝑥 = 𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟 − (𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟) sin 𝛿 + (𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟) cos 𝛿 3.24 

𝐹𝑦 = 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 + (𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟) cos 𝛿 + (𝐹𝑥𝑓𝑙 + +𝐹𝑥𝑓𝑟) sin 𝛿 3.25 



26 

 

The wheel load shifts because longitudinal acceleration and lateral acceleration vary. 

These forces distributed in each wheel can be calculated through the formula below, 

referring [18], 𝐹𝑧𝑓𝑙, 𝐹𝑧𝑓𝑟, 𝐹𝑧𝑟𝑙 , 𝐹𝑧𝑟𝑟 are normal forces acted on four wheels. 

𝐹𝑧𝑓𝑙 =
1

2
𝑚 (

𝐿𝑟

𝐿
𝑔 −

ℎ

𝐿
𝑎𝑥) − 𝑚 (

𝐿𝑟

𝐿
𝑔 −

ℎ

𝐿
𝑎𝑥)

ℎ

𝐿𝑤𝑔
𝑎𝑦 

𝐹𝑧𝑓𝑟 =
1

2
𝑚 (

𝐿𝑟

𝐿
𝑔 −

ℎ

𝐿
𝑎𝑥) + 𝑚 (

𝐿𝑟

𝐿
𝑔 −

ℎ

𝐿
𝑎𝑥)

ℎ

𝐿𝑤𝑔
𝑎𝑦 

𝐹𝑧𝑟𝑙 =
1

2
𝑚 (

𝐿𝑓

𝐿
𝑔 +

𝐻𝐶𝐺

𝐿
𝑎𝑥) − 𝑚 (

𝐿𝑓

𝐿
𝑔 +

𝐻𝐶𝐺

𝐿
𝑎𝑥)

𝐻𝐶𝐺

𝐿𝑤𝑔
𝑎𝑦 

𝐹𝑧𝑟𝑙 =
1

2
𝑚 (

𝐿𝑓

𝐿
𝑔 +

𝐻𝐶𝐺

𝐿
𝑎𝑥) + 𝑚 (

𝐿𝑓

𝐿
𝑔 +

𝐻𝐶𝐺

𝐿
𝑎𝑥)

𝐻𝐶𝐺

𝐿𝑤𝑔
𝑎𝑦 

3.26 

The rotational moments acting on the sprung mass in center of gravity over x-axis and z-

axis are calculated as follows, 

𝑀𝑥 =
(𝐹𝑧𝑓𝑙 + 𝐹𝑧𝑟𝑙)𝐿𝑤

2
−

(𝐹𝑧𝑓𝑟 + 𝐹𝑧𝑟𝑟)𝐿𝑤

2
+ 𝑚𝑔ℎ sin 𝜑 − 𝑀𝑠 3.27 

𝑀𝑧 = (𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟)𝐿𝑟 − [(𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟) cos 𝛿 + (𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟) sin 𝛿]𝐿𝑓

+ (𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑓𝑙 cos 𝛿 − 𝐹𝑦𝑓𝑙 sin 𝛿) (
𝐿𝑤

2
+ ℎ sin 𝜑)

+ (𝐹𝑦𝑟𝑟 sin 𝛿 − 𝐹𝑥𝑓𝑟 cos 𝛿 − 𝐹𝑥𝑟𝑟)(
𝐿𝑤

2
− ℎ sin 𝜑) 

3.28 

In Eq. 3.27, 𝑀𝑠 is the rotational moment generated by suspension, which will be mentioned 

in the suspension modeling section. 

The next step is to establish equivalences between internal and external forces and 

rational moments, respectively. They are combined between Eq. 3.16 and 3.24 and 3.25, 
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3.23 and 3.27 and 3.28, 

𝑚 [
�̇�𝑥 − (𝑣𝑦 − 2�̇�ℎ cos 𝜑)�̇� − ℎ sin 𝜑 �̈�

�̇�𝑦 + 𝑣𝑥�̇� + ℎ(�̈� cos 𝜑 − �̇�2 sin 𝜑 − sin 𝜑 �̇�2)

0

] = [
𝐹𝑥

𝐹𝑦

𝐹𝑧

] 3.29 

𝑀 = [
�̈�𝐼𝑥𝑥 − �̇�2 cos 𝜑 sin 𝜑 (𝐼𝑦𝑦 − 𝐼𝑧𝑧)

0
�̈�(sin2 𝜑 𝐼𝑦𝑦 + cos2 𝜑 𝐼𝑧𝑧) + 2�̇��̇�(cos 𝜑 𝐼𝑦𝑦 − sin 𝜑 𝐼𝑧𝑧)

]

= [
𝑀𝑥

𝑀𝑦

𝑀𝑧

] 

3.30 

Where 𝑀𝑦 is neglected because the pitch motion is not considered. 

Assume 𝐹𝑧𝑓𝑙 is equal to 𝐹𝑧𝑟𝑙 , and 𝐹𝑧𝑓𝑟 is equal to 𝐹𝑧𝑟𝑟. Torque balanced equation for the 

unsprung mass about x axis is as follows, 

𝐹𝑧𝑟𝐿𝑤

2
+ 𝑀𝑠 −

𝐹𝑧𝑙𝐿𝑤

2
= 0 3.31 

Besides, the sum of normal forces is equal to vehicle gravity, then the normal forces can 

be simplified as, 

𝐹𝑧𝑓𝑙 = 𝐹𝑧𝑟𝑙 =
𝑀𝑠

𝐿𝑤
+

𝑚𝑔

2
 

𝐹𝑧𝑓𝑟 = 𝐹𝑧𝑟𝑟 =
𝑚𝑔

2
−

𝑀𝑠

𝐿𝑤
 

3.32 

3.3 Suspension Model 

This vehicle model is modelled with a suspension. Compared with a rigid body vehicle 

model, it is more accurate to add a suspension model to the vehicle model when considering 

the roll motion of the vehicle. The roll motion can cause the movement of vehicle’s center 
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of gravity, which can change the anti-rollover ability of the car’s own weight. For a rigid 

model, the rollover threshold is given by, 

𝑎𝑦

𝑔
=

𝐿𝑤

2h
+ 𝛽 3.33 

𝛽 is the ramp angle.  

This equation explains why many curvy ramps have a degree of angle along with the x-

axis. However, it neglects suspension and tire elasticity. In normal vehicles, the value of 

rollover threshold is relatively high, which may cause safety issues. Typically, more 

accurate suspension model brings more accurate results. In this research, a one-dimensional 

suspension model is used for computational concerns.  

Each suspension system consists of a spring and a damper, which generates an anti-

rotational moment over the x axis, 

MS = 𝐾𝜑 + 𝑐�̇� 3.34 

In Eq. 3.34, 𝐾 denotes spring constant of suspension system, 𝑐 denotes damping constant 

of suspension system. 

3.4 Tire model 

Tire model is a very important part in vehicle dynamics modelling. Other than air 

resistance force, almost all external forces are generated in the contact surface between 

wheels and the ground. Researchers have developed various model for different purposes, 

such as the magic formula tire model, MF-SWIFT model, UnitTire model, FTire model 

family, and CDTire model family [19] The magic formula tire model is used as one of the 

most common tire models. Especially, the magic formula is widely used in the automotive 
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industry. The magic formula model contains various coefficients which must be acquired 

from the experimental data using curve fitting technique. In other words, these formulas 

are empirical formulas, which are relatively precise. The magic formula tire model is 

expressed as  

y = D sin[𝐶 arctan{𝐵𝑥 − 𝐸(𝐵𝑥 − 𝐸(𝐵𝑥 − arctan 𝐵𝑥)}] 3.35 

Where, B = stiffness factor, C = shape factor, D = peak factor, E = curvature factor 

In general, these four coefficients B, C, D, E are functions of the tire normal force Fz. 

Usually they are obtained through experiments, which vary under different road conditions. 

The formula is usually used to calculate the tire longitudinal force, lateral force and 

aligning moment. In Eq. 3.35, the input x is the slip ratio λ  or the slip angle α , 

corresponding to the output y - the tire longitudinal force Fx or lateral force Fy. Figure 9 

[20] shows the relationship between tire slip angle and steering angle, as well as the actual 

moving direction of contact plane. 



30 

 

 

Figure 9. Tire slip angle and steering angle 

The slip angles of front tires and rear tires are different, since the vehicle model is 

considered as front-wheel steering type. Vehicle kinemics is another reason. The 

longitudinal slip ratio λ and the slip angle αf  of front wheels and αr of rear wheels are 

defined as, 

λ = {

𝑅𝜔 − 𝑢

𝑅𝜔
      𝑅𝜔 > 𝑢 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑅𝜔 − 𝑢

𝑢
     𝑅𝜔 < 𝑢 𝑑𝑢𝑟𝑖𝑛𝑔 𝑏𝑟𝑎𝑘𝑖𝑛𝑔           

 3.36 

𝑢 denotes the axel longitudinal velocity, 𝑅 denotes the radius of the wheel, 𝜔 denotes the 

rotating speed. The sign of slip ratio decides the direction of longitudinal forces.  
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αf = 𝛿 −
𝑣𝑦 + 𝐿𝑓�̇�

𝑣𝑥
 3.37 

αr =
−𝑣𝑦 + 𝐿𝑟�̇�

𝑣𝑥
  3.38 

Due to ply steer, conicity and rolling resistance, the characteristics will be shifted in the 

horizontal and/or vertical directions [20]. Thus, some shifts should be included on the basis 

of general inputs,  

x = x + SH 

y = y + SV 

SH = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠ℎ𝑖𝑓𝑡  

SV = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠ℎ𝑖𝑓𝑡  

In this case, both longitudinal and lateral forces exist. In other words, it is a combined 

slip including sliding slip and longitudinal slip, which leads to a combined lateral-

longitudinal tire model. However, the magic formula contains too many coefficients which 

must be acquired from the experiments. Another way to get the tire forces is by establishing 

a mathematical model for tires. Dugoff’s tire model is another kind of versatile algorithms 

that are used to obtain tire forces [22]. Dugoff’s model could provide calculation of forces 

regardless of combined lateral-longitudinal force generation. It is an alternative to the 

elastic foundation analytical tire model developed by Fiala (1954) for lateral force 

generation and by Pacejka and Sharp (1991) for combined lateral longitudinal and lateral 

forces generation. Then the longitudinal tire force of tire is given by, 
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F𝑥 = 𝐶𝜆

𝜆

1 + 𝜆
𝑓(𝜅) 3.39 

The lateral tire force is given by, 

F𝑦 = 𝐶𝛼

tan 𝛼

1 + 𝛼
𝑓(𝜅) 3.40 

𝐶𝜆 denotes the longitudinal tire stiffness and 𝐶𝛼  denotes the lateral tire stiffness. 

Where 𝜅 is given by, 

𝜅 =
𝜇𝐹𝑧(1 + λ)

2{(𝐶𝜆𝜆)2 + (𝐶𝛼 tan 𝛼)2}
1
2

 3.41 

And 

𝑓(𝜅) = (2 − 𝜅)𝜅  𝑖𝑓 𝜅 < 1  

𝑓(𝜅) = 1   if κ ≥ 1 

3.42 

𝐹𝑧  denotes the vertical force on the tire. 𝜇 denotes the tire-road friction coefficient. 

From [21], it is clear that in the case where the longitudinal slip ratio and lateral slip angle 

are small, 𝜅 is always bigger than 1, then longitudinal and lateral forces are expressed as 

below, 

𝐹𝑥 = 𝐶𝜆

𝜆

1 + 𝜆
 3.43 

𝐹𝑦 = 𝐶𝛼

𝛼

1 + 𝛼
 3.44 

As mentioned in the chapter literature review, there are many roll-motion-control and 

yaw-motion-control based ways to prevent rollover. Most researches indicate that the 

rollover prevention feature can be included within stability control [22], basically focusing 
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on yaw motion. There are three typical types of stability control system that have been 

proposed and developed for yaw motion, 1) differential braking, 2) steer-by-wire, and 3) 

active torque distribution. Each proposed control system attracts attention from researchers 

in this order. Actually, the common feature of three systems is that they only have one 

manipulated variable/input, while the system I want to develop is able to control two 

variables simultaneously and the controller has fast response. Therefore, I combine 

differential braking and steer-by-wire together so that I can control steering angle and 

longitudinal velocity for better performance. 

Differential braking systems typically utilize solenoid based on hydraulic modulator to 

change the brake pressures at the four wheels [22]. Torque balanced equations at four 

wheels, a four-degree-of-freedom tire model, are shown as 

Jw�̇�𝑓𝑙 = 𝑇𝑑𝑓𝑙 − 𝑇𝑏𝑓𝑙 − 𝑅𝑒𝑓𝑓𝐹𝑥𝑓𝑙 

Jw�̇�𝑓𝑟 = 𝑇𝑑𝑓𝑟 − 𝑇𝑏𝑓𝑟 − 𝑅𝑒𝑓𝑓𝐹𝑥𝑓𝑟 

Jw�̇�𝑟𝑙 = 𝑇𝑑𝑟𝑙 − 𝑇𝑏𝑟𝑙 − 𝑅𝑒𝑓𝑓𝐹𝑥𝑟𝑙 

Jw�̇�𝑟𝑟 = 𝑇𝑑𝑟𝑟 − 𝑇𝑏𝑟𝑟 − 𝑅𝑒𝑓𝑓𝐹𝑥𝑟𝑟 

3.45 

 

𝑇𝑑𝑓𝑙 , 𝑇𝑑𝑓𝑟 , 𝑇𝑑𝑟𝑙 , 𝑇𝑑𝑟𝑟  denote traction torque at each wheel, 𝑇𝑏𝑓𝑙 , 𝑇𝑏𝑓𝑟 , 𝑇𝑏𝑟𝑙 , 𝑇𝑏𝑟𝑟  denote 

brake torque at each wheel. Braking force is defined to calculate brake torque, which is 

also the control variable applied at wheels, 

𝑇𝑏𝑓𝑙 = 𝐹𝑏𝑓𝑙𝑅𝑏 

𝑇𝑏𝑓𝑟 = 𝐹𝑏𝑓𝑟𝑅𝑏 

3.46 
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𝑇𝑏𝑟𝑙 = 𝐹𝑏𝑟𝑙𝑅𝑏 

𝑇𝑏𝑟𝑟 = 𝐹𝑏𝑟𝑟𝑅𝑏 

𝑅𝑏  denotes brake radius, 𝐹𝑏𝑓𝑙 , 𝐹𝑏𝑓𝑟 , 𝐹𝑏𝑟𝑙 , 𝐹𝑏𝑟𝑟  denote front left wheel brake force, front 

right wheel brake force, rear left wheel brake force and rear right wheel brake force. 

3.5 State Space Model 

Next step is to represent the state-space vehicle dynamics model for controller design. 

States from Eq. 3.29 and 3.30 contain longitudinal velocity, lateral velocity, yaw rate, roll 

angle, roll rate and angular velocity of four wheels. However, these parameters are not 

enough for some essential vehicle information such as locating a vehicle with position (X, 

Y) and yaw angle. They can be calculated through vehicle slip angle, longitudinal velocity, 

lateral velocity and yaw angle. Ideally the position at each sampling instant is calculated 

by the latter three variables without considering vehicle slip. However, the effect of slip 

could be significant for high-speed running vehicles because of the slip of tires. The vehicle 

slip angle is calculated as follows,  

β = tan−1
𝐿𝑓𝑡𝑎𝑛𝛿

𝐿𝑓 + 𝐿𝑟
 3.47 

Therefore, the differential position expression is, 

Ẋ = 𝑣𝑥 cos(𝛽 + 𝜓) 

Ẏ = 𝑣𝑥 sin(𝛽 + 𝜓) 

3.48 

The integral of Eq. 3.48 is the X and Y value with respect to the inertial coordinate system. 

Thus, the final expression of state vector is 𝑥 = [𝑣𝑥, 𝑣y, �̇�, φ, φ̇, X, Y, ωfl, ωfr, ωrl, ωrr].  
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It is noted that the dynamic model developed is nonlinear. Some researchers tend to 

linearize nonlinear model for simplification [31,32], while the model here is hard to be 

linearized. Moreover, forced linearization can lead to too many assumptions prior to 

defining the model, so that the finalized model in such process would be inaccurate. In 

order to reduce the degree of nonlinearity, we can simplify the model appropriately. 

Assume that roll angle is small, so that sin 𝜑 ≈ 𝜑, cos 𝜑 ≈ 1. Eq. 3.29 and 3.30 become, 

𝑚 [
�̇�𝑥 − (𝑣𝑦 + 2�̇�ℎ)�̇� − ℎ𝜑�̈�

�̇�𝑦 + 𝑣𝑥�̇� + ℎ(�̈� − �̇�2𝜑 − 𝜑�̇�2)

0

]

= [
𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑟𝑟 + (𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟) cos 𝛿 − (𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟) sin 𝛿

𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 + (𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟) cos 𝛿 + (𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟) sin 𝛿

0

] 

3.49 

𝑀 = [

�̈�𝐼𝑥𝑥 − �̇�2𝜑(𝐼𝑦𝑦 − 𝐼𝑧𝑧)

𝑁𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑

�̈�(𝜑2𝐼𝑦𝑦 + 𝐼𝑧𝑧) + 2�̇��̇�(𝐼𝑦𝑦 − 𝜑𝐼𝑧𝑧)

] = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] 3.50 

Momentum equations are claimed clearly here for concluding before equations, Eq. 3.27 

and 3.28 become, 

𝑀𝑥 = −
𝐹𝑧𝑙𝐿𝑤

2
+

𝐹𝑧𝑟𝐿𝑤

2
− 𝑚𝑔𝐻𝐶𝐺 + 𝑀𝑠 3.51 

𝑀𝑧 = (𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟)𝐿𝑟 − [(𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟) cos 𝛿 + (𝐹𝑥𝑓𝑙 + 𝐹𝑥𝑓𝑟) sin 𝛿]𝐿𝑓

+ (𝐹𝑥𝑟𝑙 + 𝐹𝑥𝑓𝑙 cos 𝛿 − 𝐹𝑦𝑓𝑙 sin 𝛿) (
𝐿𝑤

2
+ ℎ𝜑)

+ (𝐹𝑦𝑟𝑟 sin 𝛿 − 𝐹𝑥𝑓𝑟 cos 𝛿 − 𝐹𝑥𝑟𝑟) (
𝐿𝑤

2
− ℎ𝜑) 

3.52 
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Thus, the state space equation used for modeling the ego vehicle combines from Eq. 3.47 

to 3.52, 

�̇�𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) 3.53 

�̇�x = (𝑣𝑦 + 2�̇�𝐻𝐶𝐺)�̇� + ℎ𝜑�̈� +
𝐹𝑥

𝑚
 3.54 

�̇�y = −𝑣𝑥�̇� − 𝐻𝐶𝐺(�̈� − �̇�2𝜑 − 𝜑�̇�2) +
𝐹𝑦

𝑚
 3.55 

�̈� =
𝑀𝑧 − 2�̇��̇�(𝐼𝑦𝑦 − 𝜑𝐼𝑧𝑧)

(𝜑2𝐼𝑦𝑦 + 𝐼𝑧𝑧)
 3.56 

�̈� =
𝑀𝑥 + �̇�2𝜑(𝐼𝑦𝑦 − 𝐼𝑧𝑧)

𝐼𝑧𝑧
 3.57 

�̇� = 𝑣𝑥  cos (tan−1
𝐿𝑓 tan 𝛿

𝐿𝑓 + 𝐿𝑟
+ 𝜓) 3.58 

�̇� = 𝑣𝑦 sin(tan−1
𝐿𝑓 tan 𝛿

𝐿𝑓 + 𝐿𝑟
+ 𝜓)   3.59 

�̇� = �̇� 3.60 

�̇� = �̇� 3.61 

Equations below are extracted from tire model, which has four degrees of freedom, 

�̇�𝑓𝑙 = (𝑇𝑑𝑓𝑙 − 𝑅𝑏𝐹𝑏𝑓𝑙 − 𝑅𝐹𝑥𝑓𝑙)/𝐽𝑤 

�̇�𝑓𝑟 = (𝑇𝑑𝑓𝑟 − 𝑅𝑏𝐹𝑏𝑓𝑟 − 𝑅𝐹𝑥𝑓𝑟)/𝐽𝑤 

�̇�𝑟𝑙 = (𝑇𝑑𝑟𝑙 − 𝑅𝑏𝐹𝑏𝑟𝑙 − 𝑅𝐹𝑥𝑟𝑙)/𝐽𝑤 

�̇�𝑟𝑟 = (𝑇𝑑𝑟𝑟 − 𝑅𝑏𝐹𝑏𝑟𝑟 − 𝑅𝐹𝑥𝑟𝑟)/𝐽𝑤 

3.62 

In conclusion, the overall state equation is highly nonlinear and can be represented as 

follows, 
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�̇�(𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

3.63 

𝑢 denotes the inputs: steering angle and brake force at each wheel, that is, 𝑢 =

[𝛿, 𝐹𝑏𝑓𝑙 , 𝐹𝑏𝑓𝑟 , 𝐹𝑏𝑟𝑙 , 𝐹𝑏𝑟𝑟] . Index 𝑘  denotes current sampling instant since the controller 

designed in next chapter is discrete. 

The output vector is 𝑦 = [𝑋, 𝑌, 𝜓]𝑇, while 𝜓 is related to steering angle and slip angle, 

𝜓 = 𝛿 −
𝛼𝑓 + 𝛼𝑟

2
 3.64 
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CHAPTER 4 MOTION CONTROL 

Considering the rollover prevention problem, which is actually a decision-making 

process for vehicle equipped with ADAS features. Currently, ADAS system of most 

commercial vehicles on the market have limitations. For example, most ADAS features 

only take one parameter into consideration, such that Adaptive Cruise Control (ACC) 

system only controls vehicle velocity; Lane Keeping System (LKS) only controls the 

steering angle to keep the ego vehicle on the center of lane. However, with the increasing 

of demands as well as the improvement of sensors such as radars, LiDARs, cameras, 

GPS/INS units and odometry, one parameter controlled is not enough to further develop 

vehicle industry. Meanwhile, the increasing accuracy and computational power of ADAS 

processors can handle more complicated use cases.  

For the rollover prevention problem, the overall decision-making architecture of any 

ADAS features is defined in [22], which can be decomposed into four components: Route 

Planning, Behavioral Layer Decision Making, Motion Planning and Local Feedback 

Control. Route Planning is to find a minimum-cost path on a known map, which can be 

either from a combination of perception from sensors, as well as localization information 

from GPS or SLAM. Behavioral Layer is to decide patterns cruise-in-lane, change-lane, or 

turn-right, the ego vehicle should choose from perceived agents’ obstacles and signage. 

Motion Planning is to plan a path or trajectory considering soft and hard constraints in the 

environment. The planned path or trajectory will be executed by a feedback controller to 

carry out the motion and tracking errors. The final two steps can be summarized into one 

step called Motion Control.  
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Basically, Motion Control includes two sections: one is path planning, the other one is 

path tracking or following. Model Predictive Control (MPC) has been popular in industry 

for a long time [26]. The key feature of MPC is explicit use of a dynamical process model 

for controlled variable prediction at a future time horizon and calculation of a control 

actions to minimize a cost function [24]. It can be used for both application, path planning 

as a planner and path tracking as a controller. It optimizes a performance cost satisfying 

the physical constraints, which is initialized by the real measurements, to obtain a sequence 

of control moves or control laws [25]. Dynamics model developed in Chapter 3 is 

nonlinear, presenting nonlinear state-space equation, which requires a nonlinear model 

predictive control controller for path tracking. Current nonlinear MPC can handle high 

nonlinearity well, so there is no need to further linearize the nonlinear problem, which 

might have negative effect on the accuracy of the problem. Nonlinear model predictive 

control, or NMPC, is a variant of model predictive control (MPC) that is characterized by 

the nonlinear system models in the prediction [26]. NMPC executes the iterative solution 

of optimal control problems on a specific prediction horizon. Several optimal control 

methods are used to get the numerical solution of the NMPC, including single shooting and 

multiple shooting methods. These optimal control methods indicate the optimal control 

problem is transformed to nonlinear programming program. 

4.1 Optimization 

Model Predictive Control is strongly related to the optimal control since the control 

algorithms are based on solving an optimization problem numerically at each step for a 

discrete-time or continuous-time system. Optimization problem of MPC can be divided 



40 

 

into two categories, unconstrained and constrained. Typically, a Quadratic Programming 

or Linear Programming problem, respectively. Classical methods utilized to solve discrete-

time optimization are 1) Symbolic Differentiation and 2) Numerical Differentiation. 

However, both methods have difficulty in calculating higher derivatives, meaning that they 

can be slow when computing the derivatives of a function with multiple inputs. Especially, 

it is difficult for human programmers to get an explicit Jacobian Matrix for the state-space 

equation represented in Chapter 3. Thus, a more effective method called Automatic 

Differentiation (AD) is introduced as a technique to evaluate the derivative of a function, 

regardless of how complicated the algorithm is. Decomposition using chain rule is the 

fundamental of AD. For example, 

𝑦 = 𝑓(𝑥) = 𝑓(𝑤1) = 𝑤2 4.1 

then from chain rule we can get 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑤1

𝑑𝑤1

𝑑𝑥
 4.2 

Usually, there are two modes of AD: forward accumulation and reverse accumulation. 

The differences between these two modes is the calculation order: forward accumulation 

traverses it from inside to outside, while reverse accumulation does the contrary. Forward 

accumulation is easier to be implemented as the flow of derivative information along with 

the order compared with reverse accumulation, in which case, the derivative of multiple 

variables as a Jacobian matrix can be calculated by AD. Jacobian matrix is used to represent 

the relationship between the current state and current state derivative. Unlike linear models, 

the input and output cannot be expressed as follows, 
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𝑦 = 𝐴𝑥 + 𝐵𝑢 4.3 

In Eq. 4.3, A and B are numerical matrix. 

Currently, many open-source AD software tools have been developed, including 

ACADO Toolkit, DIRCOL, DyOS and MUSCOD-II [28], wherein, CasADi, provides 

efficient solutions of nonlinear optimization problems as well as dynamic optimization 

problem. The CasADi project was started by Joel Andersson and Joris Gillis of the KU 

Leuven under supervision of Moritz Diehl [28]. Compared with other tools, CasADi allows 

users to implement their own methods with multiple decision variables and multi-

dimensional vectors, rather than giving an unknown Optimal Control Problem (OCP) 

solver. Also, CasADi has several software interfaces and programming languages applied, 

such as C++, Python and MATLAB/SIMULINK. The core of CasADi is the unique self-

defined framework that users can build their own OCP by constructing symbolic 

expressions. More details of CasADi and its implementation will be discussed in Chapter 

5 Simulation.  

4.2 Solution for Nonlinear Model Predictive Control 

The MPC/NMPC mathematical formulation contains four relative parts, 

Table 3. MPC Mathematical Formulation 

Running (stage) Costs Characterize the control objective 

Cost Function Evaluation of the running costs along the 

whole prediction horizon 
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Optimal Control Problem To find a control sequence with respect to 

the minimizing cost 

Value Function Minimum of the cost function 

Table 3 shows that Running Costs is an equation of time because the prediction horizon 

is time based. At each sample time, Cost Function is a sequence or sum of Running Costs 

equations, which is to determine a sequence of control moves, in other words, manipulated 

input changes. Optimal Control Problem is to minimize the cost function, and value 

function is the minimum of the cost function. In general, the MPC calculations are based 

on current measurements and predictions of the future values of the outputs [29] regarding 

to optimal control problem with subjecting to state space equation and physical constraints 

and soft constraints. The physical constraints are usually defined as input constraints and 

soft constraints are defined as state constraints and output constraints. Physical constraints 

should be strictly obeyed while soft constraints can be violated if they are inconsistent with 

physical constraints. The overall picture of MPC is shown in Figure 10. Basic concept for 

model predictive control.  
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Figure 10. Basic concept for model predictive control 

In Figure 10, the target (final) point is given by GPS mapping and for actual situations 

as reference, 𝑘 denotes the current sampling instant, so input 𝑢(𝑘) and output 𝑦(𝑘) are 

measurements and known. Through the control horizon M, the MPC calculates the input 

{𝑢(𝑘 + 𝑖 − 1), 𝑖 = 1,2,3, … , 𝑀}  at each sample time until M, as well as the output 

{�̂�(𝑘 + 𝑖), 𝑖 = 1,2,3, … , 𝑃} at each sample time through the prediction horizon P regarding 

to the optimal control problem. The input is held constant as the previous move value until 

next move. As mentioned above, the key feature of MPC is the receding horizon, only the 

first move (𝑥(𝑘), 𝑦(𝑘)) is the current measurement and implemented, then a new sequence 

of input and output changes is calculated at next sample time when the object has arrived 

at the next point, which means the next move is the new measurement and it will be used 

as the first move in the next computation. This procedure is repeated at each sample time. 
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For this research, the output is the state parameters of the object vehicle. However, since 

the most important parameters of the vehicle are the position and yaw angle of vehicle or 

named posture of vehicle (X, Y, ψ). The posture is applied to cost function and recorded as 

changing variables. The input is a vector containing steering angle and brake pressures 

acted at four wheels. The corresponding equations for the four concepts in Table 3 are 

shown in Table 4, 

Table 4. Specific Problem using MPC Mathematical Formulation 

Running (stage) Costs ‖𝑦(𝑘) − 𝑦𝑟𝑒𝑓(𝑘)‖
𝑄

2
+ ‖∆𝑢(𝑘)‖𝑅

2  

Cost Function 

∑‖𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟𝑒𝑓(𝑘 + 𝑖|𝑘)‖
𝑄

2

𝑁𝑃

𝑖=1

+ ∑ ‖∆𝑢(𝑘𝑘 + 𝑖|𝑘)‖𝑅
2

𝑁𝑐−1

𝑖=1

 

Optimal Control Problem 

min
𝑋(.),𝑌(.),𝜓(.),𝑢(.)

(∑‖𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟𝑒𝑓(𝑘 + 𝑖|𝑘)‖
𝑄

2

𝑁𝑃

𝑖=1

+ ∑ ‖∆𝑢(𝑘 + 𝑖|𝑘)‖𝑅
2

𝑁𝑐−1

𝑖=1

) 

Value Function 

J(𝑥(. ), 𝑢(. )) = min
𝑋(.),𝑌(.),𝜓(.),𝑢(.)

(∑‖𝑦(𝑘 + 𝑖|𝑘)

𝑁𝑃

𝑖=1

− 𝑦𝑟𝑒𝑓(𝑘 + 𝑖|𝑘)‖
𝑄

2
+ ∑ ‖∆𝑢(𝑘 + 𝑖|𝑘)‖𝑅

2

𝑁𝑐−1

𝑖=1

) 

𝑁𝑝 denotes the prediction horizon, 𝑁𝑐 denotes the control horizon. 𝑄 and 𝑅 denote the 
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weighting matrices of states and control actions, respectively. These two weighting 

matrices can be tuned because the weight of each variables is roughly chosen as initial 

values and finally decided based on the simulation results. Index 𝑘 denotes the current 

sampling instant; 𝑖  denotes the next predicted sample time; ∆𝑢  denotes the difference 

between the control variables at current sample time and that at next sample time; 𝑥𝑟𝑒𝑓 

denotes the state reference. As mentioned above, an optimal control problem usually 

subjects to physical constraints for inputs constraints and soft constraints for state or output 

constraints. 

Thus, the MPC problem with respect to constraints can be represented in the following 

form, 

 

 

s.t. 

min
𝑋(.),𝑌(.),𝜓(.),𝑢(.)

(∑‖𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟𝑒𝑓(𝑘 + 𝑖|𝑘)‖
𝑄

2

𝑁𝑃

𝑖=1

+ ∑ ‖∆𝑢(𝑘 + 𝑖|𝑘)‖𝑅
2

𝑁𝑐−1

𝑖=1

) 

�̇�(𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 

𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑘) ≤ 𝑥𝑚𝑎𝑥  

𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥 

4.4 

This thesis focuses on Case 1 in Chapter 2. The specific problem in Case 1 is how to 

avoid collision as well as rollover. Therefore, the cost function is to minimize the error of 

position and heading angle (also yaw angle) with respect to the reference, plus the 

minimization of change in the steering angle from one-time step to the next. Because if the 
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steering wheel is turned sharply, the ride may become uncomfortable for the passengers 

and the possibility of rollover may increase as well. The control action vector is 𝑢 =

[δ, 𝐹𝑓𝑙 , 𝐹𝑓𝑟 , 𝐹𝑟𝑙 , 𝐹𝑟𝑟]
T

, state vector is 𝑥 = [𝑣𝑥, 𝑣y, �̇�, φ, �̇�, X, Y, ωfl, ωfr, ωrl, ωrr]
T

. Input 

constraints consist of maximum steering angle, minimum steering angle, maximum brake 

forces and minimum brake forces. Differential equation determines the MPC problem to 

be nonlinear because state space equation is nonlinear but need to be followed. State 

constraints consist of maximum longitudinal velocity, minimum velocity, maximum yaw 

rate, minimum yaw rate, maximum roll angle, minimum roll angle, maximum roll rate and 

minimum roll rate. Output constraints consist of minimum and maximum changes of 

longitudinal position, lateral position and yaw angle within one sampling instant, 

respectively.  

 

 

s.t. 

min
𝑋(.),𝑌(.),𝜓(.),𝑢(.)

(∑‖𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟𝑒𝑓(𝑘 + 𝑖|𝑘)‖
𝑄

2

𝑁𝑃

𝑖=1

+ ∑ ‖∆𝑢(𝑘 + 𝑖|𝑘)‖𝑅
2

𝑁𝑐−1

𝑖=1

) 

�̇�(𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

0 < 𝑣𝑥 ≤ 𝑣𝑚𝑎𝑥  

�̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�𝑚𝑎𝑥 

φmin ≤ φ ≤ φmax 

𝐹𝑏𝑚𝑖𝑛 ≤ 𝐹𝑏 ≤ 𝐹𝑏𝑚𝑎𝑥 

𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥 

4.5 
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∆𝑋𝑚𝑖𝑛 ≤ ∆𝑋 ≤ ∆𝑋𝑚𝑎𝑥  

 ∆𝑋𝑚𝑖𝑛 ≤ ∆𝑌 ≤ ∆𝑋𝑚𝑎𝑥 

 ∆𝜓𝑚𝑖𝑛 ≤ ∆𝜓 ≤ ∆𝜓𝑚𝑎𝑥 

−1 < 𝐿𝑇𝑅 < 1 

In Eq. 4.5, LTR stands for Load Transfer Ratio, which is an index to determine whether 

the vehicle will rollover or not. Usually, one side wheels lift-off will be considered as the 

index for high rollover possibility in industry. In other words, the vertical forces in one side 

will be zero once lift-off happens. It is calculated by using vertical forces acted at wheels 

using Eq. 3.26, 

𝐿𝑇𝑅 =
𝐹𝑧𝑓𝑟 + 𝐹𝑧𝑟𝑟 − 𝐹𝑧𝑓𝑙 − 𝐹𝑧𝑟𝑙

𝐹𝑧𝑓𝑙 + 𝐹𝑧𝑟𝑙 + 𝐹𝑧𝑓𝑟 + 𝐹𝑧𝑟𝑟
 4.6 

The value of LTR would be -1 or 1 when lift-off takes place. Eq. 4.6 can be further 

simplified as below, 

𝐿𝑇𝑅 =
2𝐻𝐶𝐺𝑎𝑦

𝐿𝑤𝑔
 4.7 

But note that the way in Eq. 3.26 does not consider the roll influence, thus, to take roll 

motion into consideration, a balanced torque equation of the unsprung mass over the roll 

axis is represented as, 

−
Fzl𝐿𝑤

2
+

𝐹𝑧𝑟𝐿𝑤

2
+ 𝐾𝜑 + 𝑐�̇� = 0 (4.8) 

𝐿𝑇𝑅 =
2

𝑚𝑔𝐿𝑤
(𝐾𝜑 + 𝑐�̇�) (4.9) 
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There are two approaches to demonstrate the capability of controller in tracking and 

respecting constraints, one is setting the initial point and goal point, then the NMPC 

controller will estimate intermediate states between the initial position and goal position. 

A trajectory is planned with respect to various constraints defined above; the other is to 

design a trajectory that is complicated and NMPC controller controls the vehicle follow 

the path. The test and verify will be demonstrated in next chapter. 
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CHAPTER 5 RESULTS & SIMULATION 

The simulation of vehicle rollover prevention problem will be conducted based on the 

vehicle dynamics model discussed in previous chapters. Before constructing a nonlinear 

programming problem, we should be aware of vehicle dynamics parameters [33]. 

Table 5. Vehicle Parameters 

Parameters Conception Value Unit 

𝐿𝑓 Length from center of gravity to front axle 1.34 m 

𝐿𝑟 Length from center of gravity to rear axle 1.50 m 

𝐿𝑤 Wheelbase 2.00 m  

𝑚 Vehicle mass 2500 kg 

𝑔 Gravity acceleration 9.8 kg/m2 

𝐻𝐶𝐺  Height of center of gravity 1.0 m 

𝐼𝑥𝑥 Moment of inertia about x axle 3911 kg.m2 

𝐼𝑦𝑦 Moment of inertia about y axle 3911 kg.m2 

𝐼𝑧𝑧 Moment of inertia about z axle 751 kg.m2 

𝐾 Spring constant of suspension system 79000 N/m 

𝑐 Damping constant of suspension system 8038 Ns/m 

𝑅𝑏 Brake radius 0.28 m  

𝐶𝛼 Longitudinal stiffness of tire 62192 N/rad 

𝐶𝜆 Lateral stiffness of tire 60000 N/rad 

𝐽𝑤 Tire moment of inertia 0.34 kg m2 
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The values in Table 5 are estimated according to actual light trucks. Constraints in Eq. 

4.5 are defined in Table 6 according to the specific situation (avoid collision as well as 

rollover) and empirical values,   
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Table 6. Hard and soft constraints values of optimization problem 

Parameters Conception Value Unit 

𝑣𝑚𝑎𝑥 Maximum longitudinal velocity 26 m/s 

�̇�𝑚𝑎𝑥 Maximum yaw rate 
𝜋

4
 rad/s 

𝜑𝑚𝑖𝑛 Minimum roll angle −
𝜋

6
 rad 

𝜑𝑚𝑎𝑥 Maximum roll angle 
𝜋

6
 rad 

𝐹𝑏𝑚𝑎𝑥 Maximum brake force 600 N 

𝐹𝑏𝑚𝑖𝑛 Minimum brake force −600  N 

𝛿𝑚𝑖𝑛 Minimum steering angle −
𝜋

4
 rad 

𝛿𝑚𝑎𝑥 Maximum steering angle 
𝜋

4
 rad 

∆𝑋𝑚𝑖𝑛 

Minimum change of longitudinal position at one sample 

time 

0 

m 

∆𝑋𝑚𝑎𝑥 

Maximum change of longitudinal position at one sample 

time 

1  
m 

∆𝑌𝑚𝑖𝑛 Minimum change of lateral position at one sample time −1 m 

∆𝑌𝑚𝑎𝑥 Maximum change of lateral position at one sample time 1  m 

∆𝜓𝑚𝑖𝑛 Minimum change of yaw angle at one sample time −
𝜋

6
 rad 

∆𝜓𝑚𝑎𝑥 Maximum change of yaw angle at one sample time 
𝜋

6
 rad 
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Minimum braking force is negative because the algorithm takes acceleration into 

consideration to keep the longitudinal velocity of vehicle larger than 10 m/s. During this 

process, a differential splits power between the left and right halves of a car’s driven axle(s) 

and allows either half of the axle to rotated at a different speed than the other. Low speed 

simultaneously brings issues of traffic jam or other collision issues. Thus, it could be 

necessary for maintaining traction in changing lane. 

The remaining variables of controller are defined here:  

Sample time T = 0.2, prediction horizon Np = 10, control horizon Nc = 10, weighting 

matrix Q = [0 1.0-1;0 1.0-3], R = [1.0-1 0 0 0 0; 0 1.0-3 0 0 0; 0 0 1.0-3 0 0; 0 0 0 1.0-3 0; 0 

0 0 0 1.0-3]. 

One of the goals of this simulation is to minimize position and yaw angle errors with 

respect to the reference value. The overall simulation environment in CasADi [27] is, 

 

Figure 11. Simulation Environment 

Differential equation, optimal control problem, dynamic system and real-time algorithm 
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for optimization have been declared in previous chapters. Reference trajectory is currently 

needed before path tracking. There are two methods to test and verify the trajectory 

tracking capability by setting two different types of reference value: providing initial 

posture and goal posture or providing entire path from initial point to final point. The 

former one is preferred in this thesis, since it can achieve motion planning by generating 

path and trajectory (containing speed profile) and tracking trajectory.  

There are several scenarios that can be built, but basically seven scenarios simulated for 

benchmark: 1) no obstacle, 2) the obstacle position is set as [10;0.0], goal position is set as 

[20;2.0], 3) the obstacle position is set as [10;0.0], goal position is set as [20;2.5], 4) the 

obstacle position is set as [10;0.0], goal position is set as [30;2.0], 5) the obstacle position 

is set as [10;0.0], goal position is set as [30;2.5], 6) same condition as 2) but the vehicle 

has higher center of gravity 1.2m, 7) same condition as 4) but the vehicle has higher center 

of gravity 1.2m. Scenario 1 shows that the algorithm is constructed correctly at the initial 

state. Scenarios 2 to 5 are used to research the stability of controller. Scenarios 6 and 7 are 

used to find the effect of high center of gravity. I have tried to build a scenario that goal 

position is set as [20;3], but the controller failed planning a path for the vehicle to follow, 

which means rollover is impossible to avoid in some specific scenarios. This would be the 

future work on trade-off between rollover and collision prevention. Figure 12 shows the 

vehicle rollover without any controller at 26 m/s speed. Upper image in Figure 12 is plotted 

using PreScan by given a trajectory. The results in scenario 1 show that the algorithm can 

give a best and reasonable solution without deceleration if there is no obstacle. The results 

in scenarios 2-5 show that the controller is relatively stable within acceptable tolerance by 
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moving the y position forward. The results in scenarios 2 and 6, 4 and 7 show that the 

controller is able to handle the high center of gravity. 

 

Figure 12. Rollover situation 

1. No obstacle 

𝐹𝑧𝑙 = 0 
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Figure 13. Scenario 1: No obstacle – posture of vehicle  

 

Figure 14. Scenario 1: No obstacle - control actions 
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Figure 15. Scenario 1: No obstacle – vehicle states 

2. Obstacle position is [10;0], goal position is [20;2.0] 

In Figure 16, the green box stands for the obstacle, which has same meaning in following 

figures. 
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Figure 16. Scenario 2: Posture of vehicle 

 

Figure 17. Scenario 2: Control variables 



58 

 

 

Figure 18. Scenario 2: Vehicle states 

3. Obstacle position is [10;0], goal position is [20;2.5] 
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Figure 19. Scenario 3: Posture of vehicle 

From scenario 2 and scenario 3, we can know that within certain velocity. 
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Figure 20. Scenario 3: Control variables 

 

Figure 21. Scenario 3: Vehicle states 
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4. Obstacle position is [10;0], goal position is [30;2] 

 

Figure 22. Scenario 4: Posture of vehicle 
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Figure 23. Scenario 4: Control variables 

 

Figure 24. Scenario 4: Vehicle states 
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5. Obstacle position is [10;0], goal position is [30;2.5] 

 

Figure 25. Scenario 5: Posture of vehicle 
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Figure 26. Scenario 5: Control variables 

 

Figure 27. Scenario 6: Vehicle states 
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6. Obstacle position is [10;0], goal position is [20;2.0] with higher center of gravity 

of 1.2m 

 

Figure 28. Scenario 6: Posture of vehicle 
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Figure 29. Scenario 6: Control variables 

 

Figure 30. Scenario 7: Vehicle states 
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7. Obstacle position is [10;0], goal position is [30;2.0] with higher center of gravity 

of 1.2m 

 

Figure 31. Scenario 7: Posture of vehicle 
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Figure 32. Scenario 7: Control variables 

 

Figure 33. Scenario 7: Vehicle states  
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

This thesis presents a rollover prevention method using model predictive control while 

taking sensor information into consideration. It is a challenge to combine complicated 

vehicle dynamics model and path planning and tracking together, in which case the 

controller needs to comply with various soft and hard constraints. The vehicle model used 

in this thesis contains both lateral dynamics and longitudinal dynamics, plus degree of 

freedom of roll motion. Moreover, nonlinear model brings more challenges on problem 

formulation and programming and more requirements on computing power. Since all the 

cases in consideration are in fast maneuver, a robust system is a must, or the varying 

environment will lead to wrong and dangerous decisions. 

To conclude, this thesis analyzes different scenarios where vehicles may involve making 

a decision. Then, a four-degree-of-freedom nonlinear vehicle dynamics model is 

developed, which provides state-space equations for the controller design. A nonlinear 

model predictive control is chosen in this thesis because its advantages in multiple inputs 

and multiple outputs system and nonlinear programming problem solving capability with 

respect to soft constraints. CasADi is used for simulation of path tracking because of its 

strong ability in solving optimal control problem (OCP) by multiple shooting technique to 

nonlinear programming problem (NLP) The results in Chapter 5 test and verify the 

powerful potential of the proposed method for tracking path in intensive computation when 

solving NLP.  

Path planning and path following can be implemented using one controller in this thesis. 

The controller is evaluated off-line and ensure robustness of the controller to some extent. 
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In the future work, instead of only considering the preceding vehicle and existing 

constraints, all-surrounding vehicle information can be captured in order to assist vehicles 

make an optimal decision for collision and rollover prevention at real time, which requires 

more robust algorithm and powerful hardware. 
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Advanced Driver Assistance Systems (ADAS) have been developed in recent years to 

significantly improve safety in driving and assist driver’s response in extreme situations in 

which quick decisions and maneuvers are required.  Common features of ADAS in modern 

vehicles include automatic emergency braking (AEB), lane keeping assistance (LKA), 

electric stability control (ESC), and adaptive cruise control (ACC).  While these features 

are developed primarily based on sensor fusion, image processing and vehicle kinematics, 

the importance of vehicle dynamics must not be overlooked to ensure that the vehicle can 

follow the desired trajectory without inducing any instability.  In many extreme situations 

such as object avoidance, fast maneuvering of vehicles with high center of gravity might 

result in rollover instability, an event with a high fatality rate.  It is thus necessary to 

incorporate vehicle dynamics into ADAS to improve the robustness of the system in the 

path planning to avoid collision with other vehicles or objects and prevent vehicle 
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instability.  The objectives of this thesis are to examine the efficacy of a vehicle dynamics 

model in ADAS to simulate rollover and to develop an active controller using Model 

Predictive Control (MPC) to manipulate the front-wheel steering and four-wheel 

differential braking forces, which are related to active steering as well as dynamic stability 

control for collision avoidance.  The controller is designed using the model predictive 

control approach.  A four degree-of-freedom vehicle model is simulated and tested in 

various scenarios.  According to simulation results, the vehicle controller by the MPC 

controller can track the predicted path within error tolerance. The trajectories used in 

different simulation scenarios are generated by the MPC controller. 
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