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To evaluate the performance of propensity score approaches for differential item 

functioning analysis, this simulation study was conducted to assess bias, mean square error, 

Type I error, and power under different levels of effect size and a variety of model 

misspecification conditions, including different types and missing patterns of covariates. 
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Introduction 

The major advantage of randomized experimental study designs over quasi-

experimental or observational designs is that random assignment tends to make 

treatment groups comparable, i.e., balanced over both observed and unobserved 

covariates. However, randomized experiments are not always feasible or ethical in 

many fields, and so quasi-experimental or observational designs are widely used 

instead. In order to approximate causal inferences, propensity score matching has 

been recommended and applied in medical, epidemiological and economic research, 

and these methods have lately been extended to social, psychological and 

educational research (e.g., Austin, 2008; Guo & Fraser, 2010; Hong & Raudenbush, 

2005; Thoemmes & Kim, 2011). 

https://dx.doi.org/10.22237/jmasm/1556669280
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mailto:bruno.zumbo@ubc.ca


LIU ET AL 

3 

The popularity of propensity score methods has given rise to the application 

of propensity score in differential item functioning (DIF) analysis. There are a few 

studies that have recommended and demonstrated the application of the propensity 

score approach in DIF analysis (Joldersma & Bowen, 2010; Bowen, 2011; Lee & 

Geisinger, 2014; Liu, et al., 2016). However, none of these studies have 

systematically investigated under what conditions and to what degree propensity 

score DIF methods perform better than conventional DIF methods. This paper aims 

to address this current gap in the literature. 

The purpose of this study is to compare the performance of DIF analysis 

methods based on propensity score approaches with that of conventional logistic 

regression DIF analysis under different levels of effect size and in the presence of 

different selections of covariates and a variety of model misspecification conditions. 

In addition, logistic regression DIF analysis with covariance adjustment is also 

included for comparison as it is an alternative method to matching. Covariance 

adjustment regression analysis allows one to include confounders and, hence, to 

adjust for the confounding effects in DIF analysis. However, this method may not 

be able to give a reliable adjustment for the differences in the observed covariates 

when there are substantial differences in the distribution of the covariates between 

the two groups (Cochran, 1957; Rubin, 2001). A detailed description can be found 

in Liu et al. (2016). The paper is organized as follows: (i) a review of propensity 

score matching and two important issues related to its application, (ii) a review of 

previous studies on the application of propensity score in DIF analysis, (iii) a brief 

description of logistic regression DIF analysis, (iv) a description of a Monte Carlo 

simulation study comparing propensity score DIF analysis methods with the 

conventional logistic regression DIF analysis, and (v) conclusion and discussion. 

Review on Propensity Score and Two Important Issues 

Propensity Score 

Propensity score matching was first proposed by Rosenbaum and Rubin (1983). 

The propensity score is defined as the conditional probability of assigning an 

individual to the treatment condition given a set of observed covariates. 

Symbolically, this is 

 

 ( ) ( )e P 1|i i iZ= =X X ,  
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where Xi is a vector of scores on the observed covariates, e(Xi) denotes the 

propensity score for each individual i; Zi is an indicator for grouping 

variable/treatment conditions, and Zi = 1 refers to participants belonging to the 

treatment group or the focal group in the DIF context, whereas Zi = 0 refers to 

participants belonging to the control group or the reference group in the DIF context 

(Rosenbaum & Rubin, 1983). The propensity scores are usually estimated via 

logistic regression 
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where β0 is an intercept, β is a vector of coefficients on the covariates, and X is a 

vector of scores on the observed covariates (e.g., Rosenbaum, 2010, p. 167; 

Rosenbaum & Rubin, 1983). 

Propensity score matching is used to approximate a randomized experimental 

study by reducing the pre-existing group differences in the data collected from 

quasi-experimental or observational studies. Propensity score methods can help to 

balance the characteristics of non-equivalent groups, so that two subgroups with 

the same propensity score values have the same distribution on observed covariates 

(e.g., Rosenbaum, 1995, 2002, 2010; Rosenbaum & Rubin, 1983, 1985; Rubin, 

2001; Schafer & Kang, 2008). In order to solve the sparseness problem raised by 

exact matching methods, the propensity score method creates a single composite 

score from all observed covariates and hence observations from two groups can be 

matched on one single score alone. 

A variety of propensity score methods have been developed. In the present 

study, optimal pair and full matching as well as stratification methods were chosen 

for the DIF analyses since they are commonly used in practice and are readily 

available for implementation in R packages, such as MatchIt (Ho et al., 2011). More 

detailed information about these methods can be found in the books by Guo and 

Fraser (2014) and Pan and Bai (2015), as well as the paper by Liu et al. (2016). 

Two Important Issues 

Strong Ignorability of Treatment Assignment. Propensity score matching is a 

widely used matching method, possibly even “the most developed and popular 

strategy for causal analysis in observational studies” (Pearl, 2010, p. 114). However, 

propensity score approaches have a crucial assumption, strong ignorability of 

treatment assignment, which is hardly, if ever, fully met in practice. This 
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assumption states that the treatment assignment and observed outcome(s) are 

conditionally independent after controlling for the effects of a collection of 

observed covariates that determine the assignment mechanism (Rosenbaum & 

Rubin, 1983). 

In order to make a causal claim, the strong ignorability of treatment 

assignment assumption has to be met. This can only be achieved when the treatment 

assignment mechanism is fully explained by the observed covariates; under this 

condition, selection bias can be completely removed. In practice, researchers rarely 

know whether the observed covariates satisfy this assumption. Hence, model 

misspecification is always a potential issue for propensity score methods, 

understood as either when some covariates are missing from the analysis, or when 

the functional form describing the relationship of the covariates to the treatment 

assignment is misspecified. 

 

Covariate Selection. The selection of covariates is a crucial step in any 

observational design as the selection has a major impact on how well propensity 

scores uncover the unknown mechanism of self-selection into groups. In practice, 

however, it is rare that researchers know the selection process exactly; more often 

they are confronted with decisions regarding which covariates to include from a 

huge pool of candidates (e.g., Steiner et al., 2010). One recommendation is to 

simply include every available covariate for the propensity score estimation (e.g., 

D’Agostino, 1998; Zigler & Dominici, 2014). It is not known if these variables are 

really unrelated to the treatment assignment. The redundant or irrelevant covariates 

may cause some modeling problems, such as multicollinearity which can result in 

an inflation of standard errors of regression coefficients. However, the biased 

standard errors do not affect propensity score estimation, so the inclusion of 

redundant or irrelevant covariates should not be a matter of concern (e.g., 

Blackstone, 2002), and including all available covariates in the model is better than 

omitting some covariates. 

Some researchers, however, have started to challenge this recommendation 

and have shown that including all available covariates into a model may create 

problems for propensity score estimation and bias the final conclusions (e.g., 

Brookhart et al., 2006; Cuong, 2013; Zhao, 2008; Zigler & Dominici, 2014). For 

example, based on their simulation studies Brookhart et al. (2006) suggested that 

the inclusion of variables in the propensity score estimation, which are related to 

the exposure but not to the outcome, will increase the variance of the estimated 

exposure effect. Zhao (2008) found that over-parameterization can bias the 

parameter estimates in the final analysis. Cuong (2013) showed that the inclusion 
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of all covariates that were related to outcome or both outcome and grouping 

(assignment) variables improved the efficiency of the parameter estimate of 

grouping variable, but the inclusion of covariates that were only related to a 

grouping variable tended to increase the mean square error of that parameter 

estimate. Currently, exactly what kind of covariates should be included in the 

propensity score estimation phase is still a controversial issue. 

Application of Propensity Score Methods in DIF 

Whether a test is fair to all test takers in the target population is an essential issue 

in achievement, licensure, and credentialing examinations. For example, when 

developing or adapting a test to another language or cultural group, it is important 

to make sure that a comparison of test scores is meaningful. Various DIF methods 

have been developed to address this issue (e.g., Angoff, 1972, 1993; Holland & 

Thayer, 1988; Shepard, 1982; Swaminathan & Rogers, 1990; Zumbo, 1999, 2007). 

An item displays DIF when individuals from different groups do not have the same 

probability of getting the item right after matching on their ability or attribute of 

interest. After an item is identified as DIF, test developers or researchers need to 

decide whether the items should be removed from the test; this would be the case 

if the item indeed put one group at a disadvantage due to certain extraneous 

characteristics other than the test taker's ability or attribute (e.g., Ellis, 1989; 

Hambleton & Patsula, 1998; Wu & Ercikan, 2009). 

The problem with conventional DIF analyses is that they can only detect DIF 

but cannot disentangle the sources of DIF since many confounders may covary with 

the outcome variable. Unlike randomized experimental studies, DIF studies are 

based on observational data and typically do not have equivalent groups before 

testing. For instance, researchers would not know if the DIF of an item were due to 

translation problems or other factors, such as students’ learning motivation, self-

confidence, parents’ education, and social economic status. This is very common 

in educational or psychological settings because a lot of confounders covary with 

outcome variables. Hence, a typical DIF analysis cannot help test developers decide 

whether they should throw away an item flagged as DIF due to, for instance, 

problems in language translation. 

Dorans and Holland (1993) suggested that propensity score matching might 

be a good solution instead of matching directly on multiple observed covariates. 

Joldersma and Bowen (2010) applied the propensity score approach to examine 

translation effects (English vs. Spanish) using Mantel-Haenszel DIF analysis. 

Bowen (2011) conducted a simulation study to compare the conventional Mantel-
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Haenszel to Mantel-Haenszel DIF analyses based on the propensity score matched 

data and found that propensity score DIF analyses exhibited lower Type I error rates, 

but higher Type II error rates. However, this simulation study contained only one 

replication, manipulated only one matching factor (i.e., ability distribution 

differences), and matched only on one covariate (i.e., total test scores). 

Lee and Geisinger (2014) compared the conventional DIF analyses with the 

propensity score approach for examining gender DIF using an empirical data set. 

Their study showed that the Mantel-Haenszel and logistic regression methods based 

on propensity scores detected a fewer number of gender DIF items than did the 

conventional Mantel-Haenszel and logistic regression methods. Liu et al. (2016) 

demonstrated the application of propensity score optimal matching and 

stratification in logistic regression DIF analyses using data from the Trends in 

International Mathematics and Science Study (TIMSS), and suggested that 

propensity score matching is a promising approach for studying causal DIF if the 

key covariates are collected and pre-test differences between groups can be 

balanced to a condition akin to a random assignment. However, most previous 

studies focus on either applications or demonstrations. Only one of them conducted 

a simulation study (Bowen, 2011). However, this study only simulated one 

replication per experimental condition and included only one matching variable. 

None of these studies systematically investigated under what conditions propensity 

scores DIF methods would perform better than conventional DIF methods in terms 

of both uniform and non-uniform DIF. 

Logistic Regression DIF Analysis 

Logistic regression as a test of DIF was proposed by Swaminathan and Rogers 

(1990) and has been highly recommended due to its flexibility as it can test both 

uniform and non-uniform DIF (Zumbo, 1999, 2007). Of course, other analytical 

methods can also be used for detecting DIF, but they are not generally as flexible 

as logistic regression DIF analysis. For example, alternatives to logistic regression 

such as item response theory and multiple indicators and multiple causes (MIMIC) 

model based on structural equation model framework usually require larger sample 

sizes; furthermore, the Mantel-Haenszel method is designed to detect uniform DIF. 

The more general logistic regression approach is adopted in this DIF simulation 

study. 

In a conventional logistic regression DIF analysis, group, ability, and an 

interaction between group and ability are used to predict the probability of a correct 
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answer to an item (or endorsing that item) on a given sample. The model is specified 

as follows: 

 

 
( )

( )
( )0 1 2 3

p 1| tot,
ln tot tot

1 p 1| tot,

Y G
b b b G b G

Y G

=
= + + + 

− =
,  (2) 

 

where p is the estimated probability for a participant to answer a particular item 

correctly or endorse that item; tot indicates the total test score for each participant, 

which is used as a proxy for ability; G is the dummy coded grouping variable 

(0 = reference group, 1 = focal group); and tot*G indicates the interaction between 

these two. The coefficient b1 indicates the relation between a person's total test 

score and the score on the item; b2 captures the mean score difference between the 

two groups on the item; and b3 displays the interaction between the person’s total 

test score and group membership. If b2 is statistically significant, it suggests that 

the probability of answering the item correctly is different between these two 

groups after controlling for the ability (uniform DIF). If b3 is significant, it suggests 

that there is an interaction effect between group membership and total test scores 

(non-uniform DIF). 

In the following Monte Carlo simulation study, conditional logistic regression 

was used for analyzing the matched data obtained from optimal pair and full 

matching methods. Conditional logistic regression differs from the conventional 

logistic regression in that the parameters of the conditional logistic regression are 

estimated using paired or clustered samples. The conditional logistic regression is 

used to take care of data dependency due to pairs or clusters and is widely used for 

matched case-control studies. The detailed description of conditional logistic 

regression can be found in Hosmer et al. (2013, pp. 227-267), and Breslow and Day 

(1980). The description of conditional logistic regression in a DIF analysis context 

can be found in Liu et al. (2016). 

Monte Carlo Simulations 

As indicated in the literature, covariate selection is essential in the application of 

propensity score methods, as it can dramatically affect the conclusions made from 

propensity score analysis. Hence, the types of covariates and different missing 

patterns of covariates were investigated in the context of propensity score DIF 

analysis in the present study. Here, covariate selection refers to the types of 

relationship between covariates and the outcome/grouping variable, or simply the 
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types of covariates (i.e., covariates related to the outcome only, related to the 

grouping variable only, or related to both the outcome and grouping variables). 

Monte Carlo simulations were utilized to investigate how propensity score 

DIF methods perform in the presence of a variety of model misspecification 

conditions and under different levels of effect size. The magnitude of bias, mean 

square error (MSE), Type I error, and power were examined. In addition, model 

performance is examined. 

Consider three propensity score methods: optimal pair matching, optimal full 

matching, and stratification. For propensity score DIF methods, the simulated data 

were matched first and then analyzed by conditional logistic regression, or first 

stratified and then analyzed by the regular logistic regression. The R package 

MatchIt (Ho et al., 2011) was used for optimal pair and full matching. The R 

package Epi was used for the conditional logistic regression DIF analyses 

(Carstensen et al., 2016). The DIF results obtained from propensity score methods 

were compared with those obtained from the conventional logistic regression as 

well as covariance adjustment logistic regression. For information in the 

implementation of logistic regression DIF analysis based on propensity score 

approach, see the step-by-step demonstration as well as R code in Liu et al. (2016). 

Simulation Design 

A detailed description of simulation models, testing models, and hypotheses is 

provided as follows. Equation (2) can be used for a basic understanding of DIF 

concepts: b2 is the regression coefficient for the grouping variable (G) and b3 is the 

coefficient of the interaction of grouping variable and total scores (tot*G). 

 

Simulation Models. In the simulation models, a variety of conditions were 

simulated by systematically varying two factors, effect size and the types of 

covariates. Each condition had 1000 replications. These conditions are: 

 

a) Three levels of effect size of regression coefficients, i.e., no effect, 

moderate effect, and strong effect (0, 1, 2), for both grouping variable (G) 

and the interaction (tot*G) in three DIF scenarios 

• No-DIF [b2 = b3 = 0 in equation (2)]; 

• Uniform DIF [b2 = 1 or 2, but b3 = 0 in equation (2)]; 

• Non-uniform DIF [b3 = 1 or 2, regardless b2 = 0, 1 or 2 in equation 

(2)]; and 

b) Three types of covariates 
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• Only related to the outcome (Y) with three levels of regression 

coefficients, i.e., weak, medium, and strong (0.5, 1, 2); 

• Only related to the grouping variable (G) at a medium level; 

• Related to both the outcome (Y) and the grouping variable (G). 

 

In order to focus on the two factors of interest, other factors often manipulated 

for examining DIF methods were fixed. The sample size was fixed to be 1000 and 

the ratio of sample sizes is 3:7 (focal vs. reference groups); that is, around 30% of 

the sample was from the focal group (treatment group). Multicollinearity concerns 

was minimized by setting the correlations to zero among covariates and fixing the 

correlations between covariates and total scores as well as the correlation between 

the grouping variable and total scores to zero. The covariates were generated using 

the mnormt R package (Azzalini & Genz, 2016). 

The simulations included three sets of separate models: propensity score 

estimation [equation (3)], outcome variable generation [equation (4)], and corrected 

true value generation [equation (6)]. The details of the corrected true value 

generation model are provided in the description of “Collapsibility & Corrected 

True Values”. The propensity score simulation model is defined as follows: 

 

 ( )
( )

( )
2 3 5 7

2 3 5 7

exp 1
p 1|

1 exp 1
i

X X X X
G

X X X X

− + + + −
= =

+ − + + + −
W ,  (3) 

 

where pi(G = 1 | W) refers to the estimated propensity scores, G denotes the 

grouping variable, and W represents a vector of covariates (X1, X3, X5, X7) used in 

the simulation model for propensity score estimation. The outcome variable 

simulation model is defined as 

 

 

( )

( )

1 2 3 4 5 6 2 3

p 1| , tot, , tot
ln

1 p 1| , tot, , tot

0.5 0.5 0.5 2 2 2 tot tot

Y G G

Y G G

X X X X X X b G b G

= 

− = 

= − − − − − − − + + + 

X

X   (4) 

 

where X on the left side of the equation represents a vector of covariates 

(X1, X2, X3, X4, X5, X6), tot denotes total test scores, G denotes the grouping variable, 

and tot*G denotes the interaction between the grouping variable and total scores. 

All regression coefficients of covariates and total test scores in equation (4) were 

fixed except the regression coefficients for G and tot*G, which are manipulated to 

vary at three levels (0, 1, and 2). 
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Table 1. Testing models for model misspecifications and different types of covariates 
 

  Related to G 

  No Yes 

Related to Y No -- X7 (Model #6) 

    

 Yes X2 (Model #1) X1 + X5 (Model #3); 

  X2 + X6 (Model #2) X1 + X5 + X7 (Model #4); 

   X1 + X2 + X5 + X6 (Model #5); 

     X1 + X2 + X5 + X6 + X7 (Model #7) 
 

Note: Y denotes the outcome variable; G denotes the grouping variable in DIF analysis; X1 and X5 are 
related to both outcome and grouping variables; X7 is only related to grouping variable; X2 and X6 are 
only related to outcome variable 

 
 

To simulate three types of covariates, three covariates (X1, X3, X5) were 

included, which are related to the outcome and grouping variables, three covariates 

(X2, X4, X6), which are only related to the outcome, and one covariate (X7), which 

is only related to the grouping variable. Three other variables were also included in 

the outcome variable simulation model, i.e., total scores, the grouping variable, and 

the interaction between them. These three variables should not be construed as 

covariates because they are variables of interest in the final DIF analyses. 

 

Testing Models. The main purpose of the present study is to test how 

propensity score DIF methods perform in the presence of different scenarios of 

covariate selection and a variety of model misspecification conditions. Seven 

models were tested (see Table 1). In this contingency table, the rows represent the 

status of the associations between covariates and the outcome variable (Y), i.e., not 

related or related, and similarly the columns display the associations between 

covariates and the grouping variable (G). 

 

Hypotheses of the Present Study. In the literature, some studies showed that 

covariates related to the outcome variable or related to both outcome and grouping 

variables increased the precision of estimates, but covariates only related to 

grouping variable introduced bias into the results. Based on previous studies, it was 

hypothesized propensity score DIF methods performed better than the conventional 

logistic regression DIF method (referred to as the conventional method hereafter), 

but the covariance adjustment logistic regression DIF method (referred to as the 

covariance adjustment method hereafter), might exhibit similar performance as 

propensity score DIF methods. In addition, there are three hypotheses for the 

comparisons of the seven testing models: 
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• Models #3, #4, #5, and #7 should perform better than Models #1, #2, and 

#6 because they included covariates that are related moderately and/or 

strongly to both the group variable and the outcome; 

• Model #6 would show the poorest performance because the model 

included only one covariate that was related only to the grouping variable; 

• Model #3 may perform better than model #4, and model #5 better than 

model #7 because the inclusion of X7, the covariate only related to the 

grouping variable, may introduce some errors in the parameter estimates. 

Collapsibility & Corrected True Values 

The collapsibility issue has been discussed and presented in different terms in the 

literature. (e.g., Yule, 1903; Cohen & Nagel, 1934; Greenland et al., 1999; 

Greenland & Pearl, 2011). In a linear regression context, the same relation between 

Y and G (grouping variable) is seen whether confounding by X is dealt with by 

regression adjustment, or by creating covariate balance (either physically by 

randomization or via propensity score methods). That is, collapsability means that 

dealing with X by regression adjustment or dealing with X by comparing balanced 

groups leads to the same thing. However, a binary logistic regression is known to 

suffer from non-collapsibility because of a non-linear link function. In a causal 

inference context, the relation of the outcome and the treatment condition remains 

the same when covariates are included or omitted under randomization 

experimental designs. Thus, in a binary logistic regression model for DIF analysis, 

the model is collapsible over all covariates only if all covariates are not statistically 

significant under the randomization experiment setting. However, most DIF 

analyses are based on observational studies so that regression coefficients 

1 2 3, , and b b b    in equation (6) are not equal to b1, b2, and b3 in equation (5). 

Equations (5) and (6) are defined as follows: 

 

 
( )

( )
( )0 1 2 3

p 1| , tot, , tot
ln tot tot

1 p 1| , tot, , tot

Y G G
b b b G b G

Y G G

= 
= + + +  +

− = 

X
Xβ

X
,  (5) 

 

where X is a vector of covariates and β is a vector of regression coefficients of X, 

b1 is the regression coefficient of tot, and all other notations are the same as equation 

(4); 
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( )

( )
( )0 1 2 3

p 1| , tot, , tot
ln tot tot

1 p 1| , tot, , tot

Y G G
b b b G b G

Y G G

   
= 

= + + + 
− = 

X

X
,  (6) 

 

where 0b  denotes the intercept 1 2 3, , and b b b    denote the regression coefficients for 

tot, G, and G*tot, respectively. 

Equation (6) represents the ideal situation if the data were obtained from a 

randomized experimental study. Using the propensity score DIF approach, the 

attempt is made to approximate the random assignment mechanism and reduce the 

pre-existing group differences in the observational data. In the conventional DIF 

analysis [equation (2)], this non-collapsibility issue is simply ignored. Thus, the 

DIF simulations mimicked the non-collapsibility scenarios in which the 

relationship between G and Y is partly dependent on X. Correspondingly, b1, b2, 

and b3 in equation (5) were not the true values obtained from a randomized 

experiment. Therefore, define 1 2 3, , and b b b    in equation (6) as the corrected true 

values, and these were used for examining bias, MSE, model performance, but not 

for type I error and power. The corrected true values of 2 3and b b   are provided in 

each graph in the results section. 

Outcome Variables of the Simulation Study 

We compared DIF results obtained from three propensity score methods, optimal 

pair matching, optimal full matching and stratification, to those obtained from 

conventional and covariance adjustment methods in terms of five indices: bias, 

MSE, type I error rate, power, as well as model performance. These five indices are 

the outcome variables of this simulation study and they were assessed via 

regression coefficient estimates of both G and G*tot in three scenarios: no DIF, 

uniform DIF, and non-uniform DIF. 

In the present study, bias is used to examine the magnitude of inflation or 

deflation of the estimates of regression coefficients, defined as ( )ˆE  − , where θ 

denotes the population parameters, ̂  denotes an estimate of the regression 

coefficient based on one simulated data set, and ( )ˆE  −  is the average value of 

regression coefficient estimates computed from the 1000 replications in the 

simulation. MSE incorporates the information about the variance of the estimator 

in addition to bias, defined as ( )
2

ˆMSE E   = −
  

. 
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Type I error is the incorrect rejection of a true null hypothesis, H0: θ = 0. In 

the DIF context, when the Type I error rate is high there is greater risk of concluding 

the existence of DIF when it actually does not exist. Power was used to examine 

how often DIF results were correctly identified. 

The model performance of propensity score methods was also examined for 

each simulation condition and in each testing model. Model performance used in 

the present study refers to the situation 
0

ˆH : =  where θ denotes the population 

parameters and ̂  denotes the average value of 1000 regression coefficient 

estimates from the simulations. Theoretically, model performance is actually Type 

I error for testing a null hypothesis that is defined at a particular nonzero value. For 

example, 0 2H : 0.7b =  instead of 0 2H : 0b =  in order to assess the model 

performance in the uniform DIF scenario. Hence, model performance was used to 

distinguish it from the conventional Type I error. 
 
 

 
 
Figure 1. Comparisons of conventional and covariance adjustment logistic regression 
DIF methods and propensity score DIF methods (optimal full matching and stratification) 
for no-DIF scenario (b2 = 0 and b3 = 0); Note the performance of bias, MSE, type I error, 
and model performance was demonstrated in this figure; the seven models are listed as 
follows: Model #1 (X2); Model #2 (X2 + X6); Model #3 (X1 + X5); Model #4 (X1 + X5 + X7); 
Model #5 (X1 + X2 + X5 + X6); Model #6 (X7); Model #7 (X1 + X2 + X5 + X6 + X7) 
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Simulation Results 

The simulation results are reported in the following three scenarios: no DIF, 

uniform DIF, and non-uniform DIF. Results from optimal pair matching were not 

used, because they were similar to those obtained from optimal full matching. 

 

No-DIF Scenario. In Figure 1, the solid reference lines represent the corrected 

true values ( )2 30.0004 and 0.0022b b = − = , collapsed over the covariates, while 

the dashed reference lines represent the original values used in outcome simulation 

model (b2 = 0 and b3 = 0), ignoring the collapsibility issue. 

Bias. The dots in the graph showed the magnitude of bias for each testing 

model and for each DIF analysis method. Downward biases were found for the G 

( )2b  across all testing models and methods. The first black dot shows the average 

bias for the conventional method, −0.544 for 2b  and 0.07 for 3b . Aligned with 

these hypotheses, propensity score DIF methods and covariance adjustment DIF 

methods performed better than the conventional method when the models included 

covariates correlated to both Y and G. The magnitude of bias of 2b , i.e., the distance 

between a dot and the solid reference line, for models #3, #4, #5 and #7 (i.e., the 

models with covariates related to both Y and G) was much smaller than that of 

models #1, #2, and #6 (i.e., the models omitting some important covariates). 

However, contrary to the hypothesis, models #3 and #5 did not perform better than 

models #4 and #7, a result which was found across all three DIF scenarios. The 

magnitude of bias for 3b  was very small across all DIF methods in the no-DIF 

scenario. 

MSE. Across all figures, bars for 95% confidence intervals of the parameter 

estimates were plotted together with the point estimates, but they are invisible 

because variances are too small relative to the magnitude of bias. In the no-DIF 

scenario, MSE values were driven by the bias term, and thus the findings only 

recapture the bias results discussed above. 

Model Performance. Model performance is the Type I error attached to the 

null hypothesis that the population parameter is actually the corrected true value. 

Again, the results of model performance echoed the findings for bias. 

Type I error. The findings were almost identical to those obtained from model 

performance. This is unsurprising, as the corrected true values ( 2 0.0004b = −  and 

)3 0.0022b =  are very close to zero, and thus the results for model performance and 

Type I error should be similar. 
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Figure 2. Comparisons of conventional and covariance adjustment logistic regression 
DIF methods and propensity score DIF methods (optimal full matching and stratification) 
for uniform DIF scenario b2 = 1 and b3 = 0; Note the performance of bias, MSE, type I 
error, and model performance was demonstrated in this figure; the seven models are 
listed as follows: Model #1 (X2); Model #2 (X2 + X6); Model #3 (X1 + X5); Model #4 
(X1 + X5 + X7); Model #5 (X1 + X2 + X5 + X6); Model #6 (X7); Model #7 
(X1 + X2 + X5 + X6 + X7) 
 

 

Uniform DIF Scenarios. Figures 2 and 3 showed the results obtained from 

uniform scenarios. The solid reference lines represent the corrected true values, 

2 0.7b =  and 3 0.022b = − , in Figure 2 and 2 1.385b =  and 3 0.00008b = −  in Figure 

3; the dashed reference lines indicate the original values used in outcome simulation 

models (b2 = 1 and b3 = 0) in Figure 2 and (b2 = 2 and b3 = 0) in Figure 3. 

Bias. Aligned with these hypotheses, covariance adjustment and propensity 

score methods performed better than the conventional method when the models 

included covariates correlated to both Y and G. With the exception of models #5 

and #7 for the covariance adjustment method, the magnitude of bias for 2b  was 

smaller for models #3, #4, #5 and #7, ranging from −0.11 to 0.02 ( )2 0.7b =  and 

from −0.005 to 0.145 ( )2 1.385b = , than that of models #1, #2 and #6, ranging from 

−0.7 to −0.49 ( )2 0.7b =  and from −0.515 to −0.335 ( )2 1.385b = . However, 
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models #5 and #7 in the covariance adjustment method tended to recover the 

original values (b2 = 1 or 2) used in the outcome simulation model and had an even 

larger magnitude of bias (around 0.5) when the effect size was increased to 2. 

Similar to the no-DIF scenario, the bias for 3b  was small across all models and all 

methods. 

MSE. Similar to the results of the no-DIF scenario, the findings echoed those 

obtained for bias because variances of estimates were small. However, the 

variances of estimates were relatively large for 3b , so that MSE values for 3b  

became larger than those for 2b  in general. 

Model Performance. The results for 2b  are similar to those obtained from bias. 

For 3b , all values of model performance were small, falling in an acceptable range, 

less than 0.065. 
 
 

 
 
Figure 3. Comparisons of conventional and covariance adjustment logistic regression 
DIF methods and propensity score DIF methods (optimal full matching and stratification) 
for uniform DIF scenario b2 = 2 and b3 = 0; Note the performance of bias, MSE, type I 
error, and model performance was demonstrated in this figure; the seven models are 
listed as follows: Model #1 (X2); Model #2 (X2 + X6); Model #3 (X1 + X5); Model #4 
(X1 + X5 + X7); Model #5 (X1 + X2 + X5 + X6); Model #6 (X7); Model #7 
(X1 + X2 + X5 + X6 + X7) 
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Figure 4. Comparisons of conventional and covariance adjustment logistic regression 
DIF methods and propensity score DIF methods (optimal full matching and stratification) 
for non-uniform DIF scenario b2 = 1 and b3 = 1; Note the performance of bias, MSE, type 
I error, and model performance was demonstrated in this figure; the seven models are 
listed as follows: Model #1 (X2); Model #2 (X2 + X6); Model #3 (X1 + X5); Model #4 
(X1 + X5 + X7); Model #5 (X1 + X2 + X5 + X6); Model #6 (X7); Model #7 
(X1 + X2 + X5 + X6 + X7) 
 

 

Type I error. The Type I error rates for 3b  were small in both Figures 2 and 

3, falling in an acceptable range, less than .065.  

Power. The conventional method had a low power (0.21) when 2 0.7b = , but 

increased to a power of one when 2 1.385b = . Again, aligned with these hypotheses, 

the covariance adjustment and propensity score methods performed better than the 

conventional method when 2 0.7b = : models #3, #4, #5 and #7 (0.896-0.982) 

outperformed models #1, #2, and #6 (0.133 0.252). However, power was increased 

to almost one across all methods when 2 1.385b = . 

 

Non-Uniform DIF Scenarios. Figures 4 and 5 showed the non-uniform 

scenarios. Again, the solid reference lines represent the corrected true values 

( )2 30.692 and 0.692b b = =  in Figure 4 and ( )2 31.396 and 1.443b b = =  in Figure 

5; the dashed reference lines represent the original values used in outcome 
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simulation models (b2 = 1 and b3 = 1) in Figure 4 and (b2 = 2 and b3 = 2) in Figure 

5. 

For the non-uniform DIF scenario, the results for 2b  were not reported, 

because they were similar to those obtained from the uniform DIF scenario and also 

because the interpretation of G becomes less important when the interaction is 

found to be statistically significant. Hence, focus on the results for the interaction 

term ( )3b  for this scenario. Most of the findings on the interaction term did not 

align with these hypotheses. 

Bias. Contrary to these hypotheses, the magnitude of bias for the conventional 

method (0.05 when 3 0.692b = ; 0.04 when 3 1.443b = ) was smaller than that of 

most other models across all other methods. In addition, models #1 and #6 display 

small bias compared to other models. Although the conventional method 

outperformed other methods under most conditions, the overall magnitude of bias 
 
 

 
 
Figure 5. Comparisons of conventional and covariance adjustment logistic regression 
DIF methods and propensity score DIF methods (optimal full matching and stratification) 
for non-uniform DIF scenario b2 = 2 and b3 = 2; Note the performance of bias, MSE, type 
I error, and model performance was demonstrated in this figure; the seven models are 
listed as follows: Model #1 (X2); Model #2 (X2 + X6); Model #3 (X1 + X5); Model #4 
(X1 + X5 + X7); Model #5 (X1 + X2 + X5 + X6); Model #6 (X7); Model #7 
(X1 + X2 + X5 + X6 + X7) 
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under these other methods was not large, ranging from 0.007 to 0.26, much smaller 

than the bias magnitude for G in the no-DIF and uniform DIF scenarios. Again, 

models #5 and #7 under covariance adjustment tended to recover the original values 

used in the outcome simulation models and had the largest magnitude of bias (0.318 

when b3 = 1; 0.567 when b3 = 2) using the corrected true value as reference. 

MSE. The conventional method and models #1 and #6 based on covariance 

adjustment and stratification methods had smaller MSE values (0.19-0.2 when 

b3 = 1; 0.24-0.26 when b3 = 2) than others. The stratification method performed 

better than optimal full matching and covariance adjustment in general in the non-

uniform DIF scenario. 

Model Performance. The conventional method and all propensity score 

methods showed acceptable model performance (0.035-0.075) whereas the 

covariance adjustment method had a larger magnitude of model performance 

(indicating poorer performance). Again, models #5 and #7 under covariance 

adjustment method tended to recover the original values used in the outcome 

simulation model (0.091-0.089 when b3 = 1; 0.16; 0.163 when b3 = 2).  

Power. The magnitude of power for b3 = 1 was found to be low across all 

methods, ranging from 0.27 to 0.498. When b3 was increased from 1 to 2, power 

increased substantially across all methods: the conventional method had an average 

power of 0.895; the covariance adjustment method had the highest power (0.891-

0.965); the optimal full matching method had relatively low power (0.708-0.76); 

and the stratification method was slightly better than optimal full matching (0.744-

0.86). Contrary to these hypotheses, the conventional and covariance adjustment 

methods seemed to generate greater power than propensity score methods. 

Conclusion and Discussion 

Aligned with these hypotheses, models with covariates moderately or strongly 

related to both G and Y exhibited substantially lower bias, lower MSE, better model 

performance, and smaller type I error than did models with covariates related to Y 

only or to G only in the no-DIF and uniform DIF scenarios. These models also 

produced higher power in the uniform DIF scenario. However, models #3 and #5 

were found to perform no better than models #4 and #7, which suggests that the 

inclusion of a covariate correlated only to the grouping variable did not affect the 

conclusions about DIF if the model already included covariates at least moderately 

correlated with both Y and G. 

Contrary to these hypotheses, the results showed different patterns in the non-

uniform DIF scenario. The conventional method in fact induced less bias and larger 
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power for the interaction term (tot*G) than most models based on propensity score 

approaches. However, the magnitude of bias for all methods was small in the non-

uniform DIF scenario compared to the no-DIF and uniform DIF scenarios. 

It is also interesting to note that the levels of effect size of regression 

coefficient estimates greatly affected both the power of G in the uniform scenario 

and that of tot*G in the non-uniform DIF scenario. Power was dramatically 

increased across all models and methods when the effect size was raised from one 

to two. This finding indicates that the magnitude of population effect sizes plays an 

important role in identifying DIF, a result that is consistent with the established 

theory of statistical power. 

Our findings suggest that propensity score methods work better than the 

conventional method in the no-DIF and uniform DIF scenarios when including 

covariates moderately or strongly correlated to both outcome and grouping 

variables, but that these methods do not perform well when including covariates 

solely correlated to either the outcome or grouping variable. However, the results 

obtained from the non-uniform DIF scenarios were more complex than the no-DIF 

and uniform DIF scenarios. These results suggest that propensity score methods do 

not perform better – and sometimes perform even worse – than the conventional 

method when aiming to identify non-uniform DIF. 

Because the results from optimal pair matching were similar to those from 

optimal full matching, only the results obtained from optimal full matching were 

included. There were some interesting differences between these two optimal 

matching methods. The optimal pair matching always produced larger variances 

than other methods, which might have been caused by the smaller sample size after 

matching (dropping from 1000 to around 600). Correspondingly, the optimal pair 

matching method exhibited larger MSE and less power than other methods. 

Aligned with these hypotheses, the covariance adjustment method performed 

similarly to propensity score methods under many conditions, but there were some 

notable differences between them. The results revealed that propensity score 

methods in general produced better model performance in uniform and non-

uniform DIF scenarios than the covariance adjustment method, but that the 

covariance adjustment method had higher power than propensity score methods for 

tot*G in the non-uniform DIF scenario. More specifically, propensity score 

methods tended to approximate the randomization mechanism, whereas the 

covariance adjustment method tended to recover the original values used in the 

outcome simulation model. This finding suggests that the differences in the 

algorithms used to fit the covariance adjustment and propensity score models may 

lead to different conclusions under some conditions. 
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Another issue is the collapsibility issue when using propensity score methods. 

The ultimate goal of using matching methods is to balance the pre-group 

differences and to approximate the random assignment mechanism. Hence, in 

simulations, researchers need to consider the use of the corrected true values, which 

mimic randomization, instead of using the original values adopted in the outcome 

simulation models. This is an important issue as the conclusions from a simulation 

study would be different if one used a different reference. 

The important messages to practitioners and psychometricians are: (a) it is 

crucial to include key covariates that are moderately or strongly related to both G 

and Y in propensity estimation models; (b) the conventional method produces high 

type I error rates and correspondingly flags more DIF items incorrectly, while 

propensity score DIF methods can provide more accurate results on identifying DIF 

items for the no-DIF and uniform DIF scenarios; and (c) propensity score methods 

have relatively higher Type II error rates than the conventional method in the 

presence of non-uniform DIF. In addition, researchers must be careful when using 

the covariance adjustment method for DIF analysis. It may produce misleading 

results under certain conditions when researchers use it as an alternative to 

matching methods and aim to approximate the random assignment mechanism in 

their data analyses. A thorough description of the problem of using covariance 

adjustment as an alternative to matching can be found in Liu et al. (2016). 

The conclusions can be affected by the signs of covariates in the simulation 

models. This issue has not been discussed in the propensity score simulation 

literature. A simple scenario was chosen and adopted the same signs for all 

regression coefficients of covariates in the outcome variable simulation model 

[equation (4)]. The DIF results may change if these signs are mixed due to 

cancelation effects. There is a need for more studies to investigate this issue. 

More studies are needed to investigate the use of propensity score methods 

for examining non-uniform DIF. In addition, the present study did not consider the 

effects of correlated covariates (multicollinearity) and non-linear functional forms 

of covariates; thus, it may be interesting for future studies to consider these factors. 
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