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Review

Hardly Vacuous: The Parasitophorous Vacuolar
Membrane of Malaria Parasites
Daniel E. Goldberg1,* and Joshua Zimmerberg2,*

When amalaria parasite invades a host erythrocyte it pushes itself in and invaginates a portion of

the host membrane, thereby sealing itself inside and establishing itself in the resulting vacuole.

The parasitophorous vacuolar membrane (PVM) that surrounds the parasite is modified by the

parasite, using its secretory organelles. To survive within this enveloping membrane, the organ-

ism must take in nutrients, secrete wastes, export proteins into the host cell, and eventually

egress. Here, we review current understanding of the unique solutions Plasmodium has evolved

to these challenges and discuss the remaining questions.

The PVM of Malaria Parasites

While it is not yet 100 years after the flurry of activity by the earliest electronmicroscopists that defined

the concepts and paradigms of cellular membrane topology, their hypotheses have moved well

beyond theories – they are generally established now as the law that governs protein and vesicle traf-

ficking within cells. And given how different the cytoplasm and extracellular fluid are, it stands to

reason that the separate surfaces that make up the membrane bilayer should also be very different;

indeed, the plasma membrane has an asymmetrical composition of inner and outer leaflets.

Measured by area, the membrane that surrounds the tachyzoite of the related parasite Toxoplasma

– as it pushes itself into a host cell prior to pinching off – is nearly completely derived from host cell

membrane [1]. Likewise, the lipids of the membrane enveloping the malaria parasite are derived, at

least partially, from the erythrocyte membrane [2]. Thus it is appealing to imagine that the malaria

parasite, Plasmodium also simply invaginates a portion of the host membrane, sealing itself inside

and establishing a parasitophorous vacuole (PV) that retains the inverted asymmetry of all endosomal

membranes (Figure 1). But however appealing, it cannot be this simple. For one thing, the parasito-

phorous vacuolar membrane (PVM) (see Glossary) that surrounds the malaria parasite is unique in its

paucity of host protein – most integral membrane proteins may be actively excluded, and lipids may

be added during its formation [3,4]. For another, PVM topology seems backwards: whereas most host

cellular vacuoles would be bound by a membrane transporting proteins (synthesized in the host

cellular cytoplasm) ‘into’ the vacuolar lumen, the PVM transports proteins (synthesized in the parasite

cytoplasm) ‘out’ of the vacuole and ‘into’ the host cell cytoplasm, a feature also seen in many intra-

cellular bacterial vacuoles [5,6]. But unlike bacterial vacuoles in nucleated cells, malaria parasites

do not have to face destruction by the host cell and instead focus on obtaining nutrients and evading

extracellular immunity. Structure and function have been adapted by Plasmodium to fit its particular

needs.

Biogenesis and Structure

During invasion, the parasite modifies the PVM by secreting components of the rhoptry organelles

[7,8]; once inside, discharge of dense granules contributes to the formation of the PVM as well [9–

11]. Undoubtedly, lipid alterations occur with invasion [7,12,13], but how and when these alterations

occur, whether the lipid changes are symmetric or asymmetric, and how lipid composition changes

throughout the life cycle of the parasite are unknown. In fact, there is not even consensus on the lipid

composition of the PVM. Clearly, the mechanisms of lipid homeostasis in this organism are poorly

understood.

The PVM/PPM Relationship

The PVM is closely apposed to the parasite plasma membrane (PPM), and recent evidence suggests

attachment points between the two [84]. Specifically, soluble proteins in the parasitophorous vacuole

are excluded from portions of the vacuolar space. Also, knockdown of the single-pass membrane
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Highlights
Recent work suggests that the PVM is

not a homogeneous membrane, but

rather has domains that are special-

ized for transport and for lipid ex-

change between membranes.

The PVM is tethered to the parasite

plasma membrane (PPM) at distinct

attachment points.

A translocon complex, called the

PTEX, exports protein effectors

into the host erythrocyte.

The structure of this complex has

been solved by cryogenic electron

microscopy (cryo-EM) and appears

to function by a threading/

compaction mechanism.

The translocon pore protein, EXP2,

has a separate function as a nutrient

channel across the PVM.

Egress from the host cell requires a

proteolytic cascade centered on

SUB1, which is required for

breaking down the PVM as well as

rupture of the red blood cell (RBC).
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protein EXP1 causes increased separation of PVM from the PPM [14]. The abundant single-pass early

transcribed membrane proteins (ETRAMPs) could participate in the formation of attachment points

between the two membranes as well [15]. Further, blockade of protein export across the PVM causes

blebbing of sections of PVM into the erythrocyte cytoplasm, away from the PPM but tethered at foci

where the two membranes remain together [16,17]. A similar phenotype has been observed in liver-

stage parasites [18].

Tubovesicular Network

By contrast to the blebbing described above, normal extensions of PVM into the erythrocytic space

do occur; these are called the tubovesicular network (TVN) [19]. It is speculated that this network pro-

vides membrane for the formation of Maurer’s clefts [20,21], a Golgi-like structure out in the host

erythrocyte that is responsible for trafficking exported parasite effector proteins to the erythrocyte

surface and perhaps vesicular destinations as well. The extra surface area provided by the TVN

may also allow the remarkable gross shape fluctuations in early-stage parasites that facilitate growth

and ameboid activity within the erythrocyte [22,23].

Domains

Careful observation of the PVM reveals a heterogeneous lateral distribution of PVM components,

alternatively described as beaded, patchy, or piebald ([22,24,84], with limited protein flow between

foci as assessed by photobleaching experiments [25]. The integral membrane protein EXP2 is, by

live fluorescence microscopy, proximal to a soluble parasitophorous vacuole marker (signal pep-

tide-tagged mRuby3), while the PPM lipid transporter PfNCR1 (Niemann-Pick type C-related protein

1) [26] anticorrelates and may correspond to attachment domains with lipid flow between PVM and

PPM [84].

Protein Targeting

While it has been established that a signal sequence is sufficient to get a reporter into the PV lumen

[25], PVM targeting may be less straightforward. A study on the gametocyte protein Pfs16 suggested

that its N terminal signal sequence, plus a C terminal motif containing a hydrophobic stretch, was

enough to target a GFP reporter to the PVM, and possesses a motif also found in other PVM proteins

such as EXP1 and EXP2 [27]. The protein PfAK2 was shown to contain an N terminal sequence suffi-

cient for targeting a GFP reporter to the PVM, likely anchored by myristate and palmitate moieties,

and this was presented as an alternative targeting sequence [28]. Still more work remains to be

done to understand PVM targeting.

Function

Any consideration of PVM function must start with an inevitable comparison with a related apicom-

plexan parasite Babesia, whose PVM disappears soon after formation [29,30]. The PVM is not an

obligate structure of every intracellular apicomplexan organism; fundamentally intracellular para-

sites can thrive without a continuous macromolecular barrier to the host cytosol [30,31]. But

unless the malaria parasite PVM is vestigial, that is, a remnant of the invasion process, its continuing

presence in all malaria species indicates a selective advantage in the cytoplasm of erythrocytes, and

its existence mandates that proteins evolve to modify the PVM in order to carry out essential

functions for the replication of viable daughter cells: the PVM must facilitate intake of nutrients,

excretion of wastes, and export of protein effectors for manipulation of the environment outside

the parasite (Figure 2, Key Figure). Ultimately, the PVM creates a physical barrier for the

daughter cells to overcome when it is time to leave. The parasite needs to destroy the PVM in order

to egress.

Nutrient Acquisition and Waste Excretion

The clearest problem with maintaining a continuous spheroidal bilayer as a retaining wall is that it is a

barrier to the flux of nutrients and waste materials. From the bloodstream the parasite requires panto-

thenate for CoA synthesis, glucose for glycolytic metabolism, isoleucine for protein synthesis (most

Glossary
Cytostome: a mouth-like struc-
ture that spans the PVM and PPM
and effects ingestion of hemo-
globin by the parasite.
Digestive vacuole: the lysosome-
like compartment where hemo-
globin is degraded and heme is
sequestered as hemozoin.
Egress: the process of parasite
escape from the host cell after
replication and packaging of
daughter cells (merozoites).
EXP2: a PVM protein that forms
the channel component in PTEX
for protein export and also forms a
channel for nutrient import.
Maurer’s clefts: a membranous
structure elaborated by the para-
site in the cytoplasm of the host
erythrocyte, involved in targeting
exported effectors to locations in
the host cell, including the eryth-
rocyte surface.
Parasite plasma membrane
(PPM): the membrane that
bounds the parasite.
Parasitophorous vacuolar mem-
brane (PVM): the membrane that
envelops the parasite as it enters
the host erythrocyte.
Plasmepsin X: an aspartic prote-
ase that processes and activates
SUB1; its blockade prevents
egress and positions it as an
attractive drug target.
PSAC: a channel, encoded by the
parasite, which forms at the host
cell surface; it facilitates nutrient
uptake.
PTEX: the translocon complex at
the PVM that facilitates effector
protein export.
Subtilisin-like protease 1 (SUB1):
a proteolytic enzyme central to
the process of egress.
Tubovesicular network (TVN): the
membrane network that extends
from the PVM and is thought to
provide membrane for the Maur-
er’s clefts.
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amino acids are obtained from hemoglobin but there is no isoleucine in human hemoglobin), a pu-

rine, and certain lipids [32–34]. Pathways of lipid acquisition in the infected red blood cell (RBC)

are poorly defined, but for most hydrophilic small molecules, entry into the infected erythrocyte is

via parasite-derived new permeation pathways [35], especially PSAC [36,37], a channel whose com-

ponents are exported by the parasite out to the erythrocyte membrane [38–40]. Glucose, in contrast,

appears to predominantly enter via the host glucose transporter Glut 1 [41]. These molecules must

then pass through the PVM to get to specific transporters at the PPM. At the PVM, there is a channel

established by the parasite protein EXP2 [16] that allows nutrients smaller than 1.4 kDa to pass

through [42,43]. Molecular assignment of the nutrient channel activity to EXP2 was based on obser-

vation of altered electrical gating properties in EXP2 mutants lacking a C terminal charged region

[16]. Knockdown of this channel protein is lethal to the parasite [16]. A similar channel exists in Toxo-

plasma gondii [44]. In addition to facilitating nutrient import, this channel is thought to allow export

of wastes, especially the glycolytic product lactate, as well as excess amino acids, ATP, and gluta-

thione (ATP and glutathione may be exported to maintain host cell homeostasis and oxidative bal-

ance) [45–47].

Hemoglobin Degradation

Hemoglobin consumption is also required for parasite maturation, as alluded to above, both to ac-

quire small molecules (such as amino acids and heme) and to maintain osmotic homeostasis

[46,48–50]. Hemoglobin is brought in by means of an endocytic apparatus called the cytostome

that spans the PVM and PPMmembranes [51], effecting delivery to the acidic digestive vacuolewhere

proteolysis, heme sequestration, and amino acid/peptide transport to the parasite cytoplasm take

place. Formation of the cytostome is poorly understood, but it could take place at the membrane do-

mains where the PVM and PPM are closely apposed and likely contiguous [84].

Effector Protein Export

The constraint of a PVM necessitates that the parasite translocates protein effectors across this mem-

brane into the erythrocyte. Exported proteins contribute to the aforementioned PSAC nutrient chan-

nel at the infected erythrocyte surface. Others form knob structures under the erythrocyte surface to

cluster variant surface antigens, called PfEMPs, that it sends out to mediate adherence to the vascular

endothelium (thereby avoiding the spleen). Still others form microvesicles, modify erythrocyte cyto-

skeleton rigidity, or manipulate vascular tone [52,53]. The translocon required for export (PTEX) was

first identified as a PVM complex with a putative pore protein (EXP2) and an AAA+ ATPase that could

potentially unfold translocon cargo (HSP101) [10,54]. HSP101 was recently shown to have unfoldase

1. Merozoite attaches, 
discharges rhoptries.

2. Merozoite pushes in, surrounds 
itself with RBC membrane, forming 

PVM.  Discharges dense granules.

Dense granules

Rhoptries

3. Parasite establishes itself 
inside RBC, surrounded by PVM.

Nucleus

RBC

PVM
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Figure 1. Formation of the Parasitophorous Vacuolar Membrane (PVM).

An infectious merozoite attaches to an erythrocyte, discharging rhoptries to facilitate invasion and add content to the recipient membrane. The merozoite

pushes its way in, surrounding itself with red blood cell (RBC) membrane and forming the PVM. It discharges dense granules to contribute to the PVM. The

parasite then establishes itself inside the erythrocyte, surrounded by the PVM.
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activity [55]. The core complex also contains an adaptor protein, PTEX150. Knockdown experiments

have demonstrated the essential roles of all three components in effector export [56,57]. Establish-

ment of the PSAC nutrient channel is impaired by translocon disruption [57]. Accessory translocon

components (PTEX88 and TRX2) are nonessential in cultured parasites but could play roles in the

export of particular effectors [58,59]. The translocon-associated protein RON3 has recently been

Key Figure

Functions of the Parasitophorous Vacuolar Membrane (PVM)

Trends in Parasitology

Figure 2. The PVM has a translocon complex called PTEX to export effector proteins into the host cell. There is a

nutrient channel formed by EXP2 to import nutrients. It likely excretes wastes as well. EXP2 is depicted in the two

separate macromolecular complexes, detailed in Figure 3. There is a forming cytostome that spans the PVM and

parasite plasma membrane (PPM) to ingest hemoglobin. There is a lipid transporter, PfNCR1, that contributes to

membrane lipid homeostasis, likely by keeping cholesterol out of the plasma membrane. Abbreviations: DV,

digestive vacuole; PV, parasitophorous vacuole; RBC, red blood cell.
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shown to be essential for glucose acquisition and protein export [60], and further work is required to

determine the mechanism of RON3 action and the nature of its interaction with PTEX. How the trans-

locon determines which proteins get exported, and which remain in the PV or its membrane, remains

unknown. There is information important for export at the N terminus of mature effector proteins, but

no clear motif or recognition mechanism has been identified.

The cryogenic electron microscopy (cryo-EM) structure of the malaria parasite translocon [61] shows a

twisted hexamer of HSP101 docked into the funnel-shaped EXP2 heptameric channel, attached via a

heptameric PTEX150 adapter (Figure 3). Two conformations of the translocon were seen, with a com-

pressed or extended HSP101 multimer interacting with offset, unraveled single chains of cargo pro-

tein inside the translocon, suggesting a processive threading or compaction mechanism of translo-

cation. It is interesting that Plasmodium EXP2 appears to have a dual role in nutrient uptake and in

protein export [84]. These appear to be different functions, perhaps involving different multimeric

complexes [16]. The T. gondii EXP2 ortholog Gra17 has only the nutrient channel function [44].

Both parasites possess HSP101s, but it seems that Plasmodium has evolved the adaptor protein

PTEX150 to recruit EXP2 and HSP101 to allow protein translocation. Recent work shows that the pro-

tein translocation function of the translocon can be competent when nutrient import channel activity

is insufficient [62].

Egress from the Host Cell

A final challenge for the PVM-enveloped malaria parasite is that, at the end of its growth and replica-

tion, it must get out of the PVM (and host erythrocyte) to invade new RBCs. To do so, about 10 min

before egress [63], the parasite initiates the cGMP/Ca2+-triggered secretion of subtilisin-like prote-

ase 1 (SUB1) into the PV [64–66] (Figure 4). There, SUB1 activates egress effectors called SERAs (a fam-

ily of cysteine proteases) and MSPs (a family of merozoite surface proteins involved in invasion as well

as egress) [66–69]. SUB1 knockout prevents PV swelling, rupture, and dissolution [66]. MSPs and

SERAs are thought to play later roles in exit from the host cell, so how SUB1mediates PVMdestruction

is unclear. Knockdown or chemical inhibition of the aspartic protease plasmepsin X prevents matu-

ration of SUB1 and phenocopies SUB1 knockout, placing this enzyme at the top of the proteolytic

cascade (Figure 4) [70,71]. Plasmepsin X inhibition is a promising avenue for antimalarial

chemotherapy.

RBC

PVM

EXP2 Nutrient 
channel

PTEX

PTEX150

HSP101

Nutrients
PV

EXP2

Protein
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Figure 3. Dual Functions of EXP2.

EXP2 forms a nutrient channel, and separately forms the PTEX translocation channel in association with Hsp101 and

PTEX 150. EXP2 is depicted as a homomultimer for the nutrient channel, though tertiary and quaternary structural

details are unknown and there may be other components of this complex that are undefined.

For PTEX, EXP2 is shown as a twisted, funnel-shapedmultimeric channel in association with other core components

PTEX150 and HSP101, based on the cryogenic electron microscopy (cryo-EM) structure [61]. Abbreviations: PV,

parasitophorous vacuole; PVM, parasitophorous vacuolar membrane; RBC, red blood cell.
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Unanswered Questions
PVM Replenishment

Although we are starting to learn about this important membrane surrounding the intraerythrocytic

malaria parasite, much remains unknown. The unanswered questions section begins with a paradox –

while PVM depletion is expected after invasion, due to the need for significant membrane area to

formMaurer’s clefts and to transit hemoglobin to the digestive vacuole, in fact the PVM grows during

the first day of intraerythrocytic development. Thus, we do not understand how this membrane is re-

plenished; there must be mechanisms of membrane recycling and rebuilding. Various lipid compo-

nents are synthesized, scavenged, or a combination of the two [72,73]. Details of lipid acquisition

for a number of lipid species is still sketchy. Lipid gradients between membranes are maintained

[74], so there must be homeostatic mechanisms that are largely undiscovered. PfNCR1 is a lipid trans-

porter that appears to contribute to membrane lipid maintenance [75] from its topologically bewil-

dering position in the PPM. Its substrate is most likely cholesterol, but this hypothesis has not

been formally demonstrated. The return journey for a lipid molecule from the digestive vacuole

back to the PVM, while seemingly essential, remains to be elucidated.

PVM Formation

The contributions of merozoite organelle secretion (rhoptries, dense granules) in the formation of the

PVM have been studied extensively in Toxoplasma [76], but the surface has barely been scratched in

Plasmodium, in part due to the smaller size of the host cell, the parasite, and its granules.

PVM Structure

We do not understand the structure of the domains of the PVM or how the attachment points to the

PPM are formed. The abundant ETRAMP proteins and the related protein EXP1 are likely to be struc-

turally important [77], but more work needs to be done.

Hemoglobin Ingestion

The ingestion of hemoglobin through a cytostome that spans the PVM and PPM is understood only at

a rudimentary morphological level [78]. Molecular components and mechanisms remain to be

discovered.

Specificity of Protein Export

As alluded to previously, the puzzle of the specificity of protein export across the PVM is yet to be

solved [79], as well as the roles for most translocated protein effectors. More generally, the presumed

plasmamembrane exocytosis of translocon substrates by fusion of Golgi-derived cargo vesicles is not

understood, nor are the mechanisms by which newly synthesized transmembrane proteins, which

should be retained by the PPM, get to a translocon that is in the wrong membrane – the PVM.

Trends in Parasitology

Figure 4. Proteolytic Egress Cascade.

Plasmepsin X (PMX) is the maturase for subtilisin-like protease 1 (SUB1), which activates cysteine proteases called

SERAs and merozoite surface proteins (MSPs), leading to parasitophorous vacuolar membrane (PVM), red blood

cell (RBC) membrane, and cytoskeleton breakdown. The specific roles of these later effectors in the egress

process are largely unknown. Abbreviation: PV, parasitophorous vacuole.
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Concluding Remarks

Given that Babesia escapes from its PVM, as discussed above, the mystery remains as to why intraer-

ythrocytic malaria parasites go to the trouble of maintaining a PVM, given the attendant challenges of

access to the host cell. In the related apicomplexan parasite T. gondii [80,81], and in liver-stage Plas-

modium [82], the PVM protects the parasite from the host cell, which is trying to kill it via GTPase-

mediated attack, apoptosis, and/or autophagy. Protein components of the PVM in these cases are

mostly different from those of intraerythrocytic Plasmodium [77]. The parasite does devote a signif-

icant portion of its genome to establishing the Maurer’s clefts [83] that allow protein sorting in the

host cell to get virulence determinants to the surface. Perhaps the PVM is needed mainly to extend

into the host cell and provide membrane for the formation of Maurer’s clefts, though the PVM is main-

tained even after this organelle has been formed. In certain respects, the maintenance of the PVM

creates a compartment, an organelle out of the parasite that looks like a cytoplasmic inclusion to

the host cell, and the parasite decorates its new house to its advantage. Alternatively, it could be

that the parasite is protecting itself from something in the erythrocyte, such as a protein, an RNA,

an osmotic force. There is much that remains to be elucidated about PVM structure and function

(see Outstanding Questions). We look forward to learning more about this fascinating outer covering

of the intraerythrocytic malaria parasite that is itself an inner liner to the host erythrocyte.
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the nascent PVM?
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How does hemoglobin ingestion

work?

How is protein export specified?

What do all these exported effec-

tors do?

Why does the parasite maintain a
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