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Changes in serum albumin and other
nutritional markers when using sucroferric
oxyhydroxide as phosphate binder among
hemodialysis patients: a historical cohort
study
Kamyar Kalantar-Zadeh1, Linda H. Ficociello2, Vidhya Parameswaran2, Nicolaos V. Athienites3, Claudy Mullon2,
Robert J. Kossmann2 and Daniel W. Coyne4*

Abstract

Background: Elevated serum phosphorus concentrations are common among maintenance hemodialysis patients.
Protein is a major source of dietary phosphate, but restriction of protein intake can result in hypoalbuminemia and
protein-energy wasting. We hypothesized that sucroferric oxyhydroxide (SO), a potent phosphate binder with a low
pill burden, may reduce serum phosphorus levels in hemodialysis patients with hypoalbuminemia without
adversely impacting albumin levels or dietary intake of protein.

Methods: We retrospectively examined de-identified data from 79 adult, in-center hemodialysis patients with
baseline hypoalbuminemia (≤ 3.5 g/dL) switched to SO as part of routine clinical care for at least 1 year. Temporal
changes (3-month intervals from baseline through Q4) in phosphate binder pill burden, serum phosphorous levels,
nutritional markers, and equilibrated Kt/V were analyzed. Data from a matched reference group of non-
hypoalbuminemic patients (N = 79) switched to SO were also examined.

Results: SO therapy was associated with a mean reduction of 45.7 and 45.1% in daily phosphate binder pill burden,
and a mean reduction of 0.4 mg/dL and 0.51mg/dL in serum phosphorus levels for the hypoalbuminemic and non-
hypoalbuminemic patients, respectively. Hypoalbuminemic patients demonstrated significant increases in mean serum
albumin levels from 3.50mg/dL at baseline to 3.69, 3.74, 3.70, and 3.69mg/dL during Q1 through Q4, respectively
(P < 0.0001), whereas serum albumin levels remained unchanged in the non-hypoalbuminemic group.

Conclusions: Both hypoalbuminemic and non-hypoalbuminemic patients switching to SO exhibited significant
reductions in serum phosphorus concentrations and daily phosphate binder pill burden. Among hypoalbuminemic
patients, the initiation of SO therapy was also associated with increases in serum albumin, suggesting therapy may
have allowed patients to increase their dietary intake of protein.
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Background
More than one-third of chronic kidney disease patients
undergoing hemodialysis (HD) have serum phosphorus
(sP) levels > 5.5 mg/dL [1]. The interplay among protein
intake, sP, and serum albumin (sAlb) levels raises a clin-
ical conundrum when managing patients’ sP. Hyperpho-
sphatemia and hypoalbuminemia are independent risk
factors for mortality among dialysis patients, thus clini-
cians may be wary of correcting one risk factor at the
“expense” of the other [2–5]. Reducing dietary protein
consumption, while limiting phosphate intake, can result
in reduced sAlb, decreased normalized protein catabolic
rate (nPCR), and protein-energy wasting (PEW). These
PEW parameters have been associated with increased
mortality and reduced quality of life among HD patients
[4–10]. For example, the reduction of both sP and sAlb
has been associated with a 26% increase in mortality (rela-
tive to increases in both parameters) [4]. The relationship
between sP and sAlb may be further confounded by the
gastrointestinal side effects of some phosphate binders
(PBs) [11], which may impair appetite and protein intake.
Additionally, use of less effective PB therapy may lead to
more dietary restrictions in an attempt to control sP, lead-
ing to lower dietary protein intake, higher likelihood of
PEW, and poor outcomes [12, 13].
Sucroferric oxyhydroxide (SO; VELPHORO® [Fresenius

Medical Care Renal Therapies Group, Waltham, MA,
USA]) is a potent PB indicated for the control of sP in
dialysis patients, with a starting dose of 3 tablets/day. SO
is a non-calcium, chewable, iron-based agent with high
phosphate-binding capacity and a starting dose of 3
tablets/day (1500mg daily) [14, 15]. Over the 1-year
follow-up period of a 24-week phase 3 trial and associated
28-week extension study, control of sP was achieved with
markedly reduced mean SO pill burden when compared
to sevelamer (3.3 vs 8.7 tablets per day) [16]. Retrospective
analyses of patients switched from another PB to SO have
also demonstrated reductions in pill burden of approxi-
mately 50% [14, 17, 18]. Given its high potency in binding
phosphate [15], SO use may enable a less restrictive pro-
tein diet, leading to correction of hypoalbuminemia and
PEW. The current analysis investigates temporal changes
in sP and nutritional parameters among hypoalbuminemic
(hypoAlb) HD patients prescribed SO as part of routine
clinical care. We hypothesized that SO would reduce sP
while allowing for improvement in albumin concentration
secondary to changes in dietary intake of protein and/or
changes in gastrointestinal symptoms.

Methods
Study design
This retrospective cohort study utilized de-identified data
extracted from the Fresenius Kidney Care clinical data ware-
house and a renal pharmacy service (FreseniusRx) database.

Adult, in-center HD patients prescribed SO monotherapy as
part of routine care and continued SO therapy for ≥12
months were included. Treatment periods were defined as
baseline (−Q2, −Q1; 3-month periods before SO) and SO
therapy (Q1 to Q4; 12months of SO). The hypoAlb cohort
included patients with sAlb ≤3.5 g/dL at baseline (−Q2 or−
Q1). All patients were required to have information on age,
sex, race, body mass index, and diabetes status. A reference
group of non-hypoalbuminemic (NhypoAlb; sAlb > 3.5 g/dL
at baseline) patients was selected with individuals matched
to the hypoAlb cohort in a 1:1 ratio on age (±5 years), sex,
self-reported race, body mass index (±2 kg/m2), and diabetes
status.

Clinical variables and statistical analysis
Clinical parameters of interest included PB pill burden, sP,
nutritional markers (sAlb, equilibrated nPCR, weight, and
serum creatinine), equilibrated Kt/V, intact parathyroid
hormone (iPTH) levels, and corrected serum calcium.
SAlb and nPCR were each divided by sP to calculate
phosphorus-attuned variables, allowing assessment of the
impact of lowering sP without restricting dietary protein
intake [18]. Laboratory tests repeated within a month were
averaged to overcome short-term measurement variability.
Changes in quarterly clinical markers before and after SO
switch were examined using linear mixed models to ac-
count for repeated measurements. Summary statistics
(monthly and quarterly) were presented as least-square
(LS) means and standard error (SE). P values compared
estimates across treatment quarters. Given the limited
number of hypoAlb patients in the database meeting elg-
ibility requirements, development of an NhypoAlb cohort
matched on additional, potentially confounding variables
(e.g., baseline PB) was deemed impractical. As such,
formal analyses comparing the hypoAlb and NhypoAlb
cohorts were not performed.

Results
Seventy-nine hypoAlb patients switched to SO were
identified in the database; most patients were receiving
calcium acetate- or sevelamer-based PBs at baseline.
Twelve (15%) of these patients had been undergoing
dialysis for fewer than 120 days. Clinical parameters at
baseline and across SO follow-up among patients with
baseline hypoAlb are presented in Table 2. Prior to SO
(−Q1), the mean sP concentration was 6.79 mg/dL and
the mean sAlb level was 3.50 g/dL. At -Q1, sP concen-
trations < 4.5 mg/dl and < 5.5 mg/dl were 2.5 and 24.1%
of patients, respectively. At all SO therapy follow-up
timepoints, patients in the hypoAlb group demonstrated
significant reductions from baseline in PB pill burden
and sP. At Q4, patients achieving sP concentrations <
4.5 mg/dl and < 5.5 mg/dl were 15.2 and 38.0%, respect-
ively. A mean sAlb increase of 0.18 g/dL was observed
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during SO treatment. Concurrent with SO therapy, sig-
nificant increases in pre- and post-dialysis weight were
observed for the hypoAlb cohort.
By design, the NhypoAlb reference group had similar

age, sex, race, body mass index, and diabetes status dis-
tribution as the hypoAlb cohort. Prior to SO (−Q1), sP
concentrations < 4.5 mg/dl and < 5.5 mg/dl were 1.3 and
13.9% of patients, respectively. As detailed in Table 1,
mean dialysis vintage was longer for the NhypoAlb pa-
tients than for the hypoAlb group (45.3 vs 34.7 months).
Significant reductions from baseline in PB pill burden
and sP were observed at all SO therapy timepoints
(Table 3). At Q4, patients achieving sP concentrations <
4.5 mg/dl and < 5.5 mg/dl were 15.2 and 30.4%, respect-
ively. In contrast to hypoAlb patients, sAlb levels
remained unchanged (approximately 4.0 g/dL) through-
out most of the SO follow-up period (at Q4, a small but

statistically significant reduction was observed). Addition-
ally, the NhypoAlb cohort failed to demonstrate signifi-
cant changes in serum creatinine or body weight (with the
exception of a small increase in pre-dialysis weight ob-
served at Q1). Given the differences in dialysis vintage of
patients in the 2 study populations, a sensitivity analysis
excluding 14 matched pairs where ≥1 patient had dialysis
vintage < 120 days was performed. It revealed mean sAlb
changes from baseline of + 0.12 g/dL and + 0.02 g/dL for
hypoAlb and NhypoAlb patients, respectively.
For each group, the monthly means of clinical parame-

ters are presented in Fig. 1 (sP, sAlb, and serum creatin-
ine), Fig. 2 (pre- and post-dialysis weight, nPCR, and HD
adequacy), and Fig. 3 (phosphorus-attuned albumin and
nPCR). The initiation of SO therapy in the hypoAlb co-
hort was associated with marked decreases in sP and pill
burden, yet sAlb continued to rise before plateauing
(Fig. 1, Table 2, baseline: 3.50 g/dL; SO follow-up: 3.69–
3.74 g/dL; P < 0.0001). Pre-dialysis and post-dialysis
weight increases were observed in the hypoAlb cohort
(Fig. 2, Table 3, pre-dialysis weight: baseline, 89.1 kg; SO
follow-up, 90.2–92.5 kg; P < 0.05 [Q1]; P < 0.0001 [Q2–
Q4]; post-dialysis weight: baseline, 86.3 kg; SO follow-
up, 87.3–89.5 kg; P < 0.05 [Q1]; P < 0.0001 [Q2–Q4]). In
addition, increases in phosphorus-attuned nPCR and al-
bumin were observed in both groups (Fig. 3).

Discussion
In this retrospective cohort study, we found that the ini-
tiation of SO resulted in significant reduction in sP con-
centrations and daily PB pill burden in patients with low
and normal sAlb levels at baseline. As observed in prior
studies [16, 19–21], and independent of baseline sAlb sta-
tus, SO effectively reduced sP, with a 55 to 56% decrease
in mean daily PB pill burden (Table 2 and Table 3). Des-
pite reduced sP levels following the initiation of SO, the
sAlb concentration continued to rise before plateauing in
patients who were hypoalbuminemic at baseline. This
observation may have important clinical implications
for lowering the risk of PEW and improving patient
outcomes.
Baseline data demonstrated that hypoAlb patients had

lower sP, PB pill burden, and nPCR than patients in the
reference group (Fig. 1, Fig. 2, and Table 1), suggesting
an increased reliance on protein restriction for phos-
phate control. Sharp increases in mean equilibrated
nPCR during months − 5 to − 3 (Fig. 2), increases in
mean serum creatinine during months − 5 to − 1 (Fig. 1),
and subsequent increases in sAlb in month − 1 (Fig. 1)
suggest that patients increased their protein intake at the
“expense” of elevated sP (Fig. 1), as also evidenced by
decreasing phosphorus-attuned albumin (Fig. 3).
There are no data or mechanistic hypotheses to sug-

gest that SO therapy directly impacts protein handling

Table 1 Demographic characteristics

Characteristic hypoAlb patients
(n = 79)

NhypoAlb patients
(n = 79)

Age, years 54.9 55.1

Dialysis vintage, months 34.7 45.3

Incident HD patients,a % 15.2% 3.8%

Male, % 53.2% 53.2%

Race, %

Black 35.4% 35.4%

White 62.0% 62.0%

Other 2.6% 2.6%

Hispanic/Latino, % 11.4% 26.6%

BMI, kg/m2 31.4 31.3

Baseline PB not recorded, % 34.2% 26.6%

Baseline PB recorded, %

Calcium acetate (CaAc) 26.6% 24.1%

Sevelamer (Sev) 36.7% 48.1%

Lanthanum carbonate 1.3% 1.3%

Switch between Sev/CaAc 1.3% 0.0%

Primary cause of ESRD, %

Diabetes 54.4% 40.5%

Hypertension 21.5% 34.2%

Glomerulonephritis 7.6% 8.9%

Polycystic kidney 0.0% 1.3%

Other/ unknown 16.4% 15.2%

Comorbid conditions, %

Diabetes 63.3% 63.3%

Congestive heart failure 21.5% 20.3%

Summary statistics are presented as mean or percentage
Abbreviations: BMI body mass index, ESRD end-stage renal disease, HD
hemodialysis, hypoAlb hypoalbuminemic, NhypoAlb non-hypoalbuminemic, PB
phosphate binder, SO sucroferric oxyhydroxide
aPatients with dialysis vintage < 120 days prior to SO initiation
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or appetite in patients. Instead, the improvements in
sAlb and progressive weight increases observed in the
hypoAlb cohort during SO therapy likely resulted from
continued increases in protein intake, as suggested by
small increases in phosphorus-attuned nPCR. Such
changes may be the result of dietary counseling (e.g., ac-
companying the initiation of SO and sP lowering). It is
also possible that the higher baseline PB pill burden im-
paired appetite and overall nutritional intake as a result
of gastrointestinal side effects [11], and the switch to SO
may have allowed for improved nutritional intake. In a
recent meta-analysis, sevelamer was associated with 32%
more gastrointestinal side effects than SO (P = 0.0001)
[22]. Furthermore, in 2 active-controlled, pivotal trials,
SO was associated with fewer reports of decreased appe-
tite than sevelamer (1.9% vs 4.3%) [23]. The reduced pill
burden and increased potency [11] associated with SO
and/or its non-resin-based formulation (52/79 hypoAlb
patients on baseline PB: 56% sevelamer, 40% calcium
acetate, 4% other) may not negatively impact appetite to
the extent observed with other PBs.

Increasing sAlb has been reported to improve patient
outcomes. For instance, it has been proposed that in-
creasing sAlb > 3.8 g/dL among US HD patients might
prevent ~ 10,000 deaths annually [24]. Temporal de-
creases in sP with concomitant increases in sAlb have
been associated with a survival benefit of 8 to 9% [4].
More recently, use of a PB that improves nutritional
markers such as sAlb and nPCR was associated with a
significant reduction in mortality [25]. There are also
data to suggest that allowing unrestricted dietary protein
intake by HD patients may improve survival [5].
The results of the present study highlight the challen-

ging nature of phosphate control among HD populations.
While the percentage of patients attaining sP < 5.5 mg/dl
and < 4.5mg/dl increased in our study, the therapeutic ap-
proach to managing and preventing hyperphosphatemia
should not be limited to PB pharmacotherapy. Appropri-
ate dietary counseling and HD adequacy should also be
employed [26].
The observational nature of this analysis provides valu-

able information from a real-world cohort of patients
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treated in HD practices across the United States, but the
results should be interpreted in the context of several
limitations. Although a reference group was included,
matching was performed only on the basis of 5 charac-
teristics and therefore prevented the establishment of an
appropriate control group. Differences in baseline PB
use and dietary status did not influence inclusion in the
reference group. A causal relationship between SO and
improved nutritional markers cannot be established,
given the observational nature of this analysis. Beyond
the initiation of therapy with SO, changes in nutritional

counseling or concomitant illness may have influenced
observed laboratory changes. Additionally, the analysis
did not account for factors capable of impacting sAlb,
such as acute-phase reactants or residual renal function
[7, 27]. Future prospective studies may consider the
addition of bioimpedance and dietary intake measures as
a follow-up to this retrospective database study. Body
composition data from bioimpedance measurements
may be helpful to investigate the nature of the body
weight increase observed in hypoalbuminemic patients
(e.g. lean tissue mass, adipose tissue mass, excess fluid),

Table 2 Changes in clinical parameters from baseline in hypoalbuminemic patients

Parameter Baseline SO therapy Mean change
from baseline

−Q2 −Q1 Q1 Q2 Q3 Q4

PB pills/d 7.9 [0.2]a 8.9 [0.2] 3.9 [0.2]a 4.0 [0.2]a 4.0 [0.2]a 4.1 [0.2]a −4.9 [0.5]a

sP (mg/dL) 5.93 [0.16]a 6.79 [0.15] 6.48 [0.15]c 6.41 [0.15]c 6.33 [0.15]b 6.25 [0.15]a −0.40 [0.11]c

sAlb (g/dL) 3.41 [0.03]a 3.50 [0.03] 3.69 [0.03]a 3.74 [0.03]a 3.70 [0.03]a 3.69 [0.03]a + 0.18 [0.03]a

nPCR (g/kg/d) 0.81 [0.03]a 0.90 [0.03] 0.93 [0.02]ns 0.93 [0.02]ns 0.91 [0.02]ns 0.91 [0.02]ns + 0.03 [0.02]ns

Phosphorus-attuned albumin (× 103) 0.62 [0.01]a 0.55 [0.01] 0.61 [0.01]a 0.62 [0.01]a 0.64 [0.01]a 0.65 [0.01]a + 0.08 [0.01]a

Phosphorus-attuned nPCR (× 103 dL/kg/d) 0.15 [0.02]ns 0.14 [0.02] 0.15 [0.02]c 0.15 [0.02]c 0.16 [0.02]b 0.16 [0.02]a + 0.02 [0.01]a

Pre-dialysis weight (kg) 89.2 [2.8]ns 89.1 [2.8] 90.2 [2.8]c 91.4 [2.8]a 91.8 [2.8]a 92.5 [2.8]a + 2.2 [2.2]a

Post-dialysis weight (kg) 86.5 [2.8]ns 86.3 [2.8] 87.3 [2.8]c 88.5 [2.8]a 88.9 [2.8]a 89.5 [2.8]a + 2.1 [1.7] a

Equilibrated Kt/V 1.41 [0.03]ns 1.45 [0.03] 1.49 [0.03]ns 1.45 [0.03]ns 1.47 [0.03]ns 1.43 [0.03]ns + 0.014 [0.02]ns

Serum creatinine (mg/dL) 8.7 [0.4]b 9.4 [0.4] 9.7 [0.4]ns 10.0 [0.4]b 10.0 [0.4]b 9.8 [0.4]c + 0.6 [0.6]b

iPTH (pg/mL) 528 [43]ns 568 [42] 569 [41]ns 552 [41]ns 579 [41]ns 536 [41]ns −17 [45]ns

Corrected calcium (mg/dL) 9.3 [0.1]ns 9.3 [0.1] 9.3 [0.1]ns 9.2 [0.1]c 9.2 [0.1]c 9.2 [0.1]c −0.08 [0.1]ns

Summary statistics are expressed as LS means [standard errors]
Abbreviations: iPTH intact parathyroid hormone, LS least-square, nPCR normalized protein catabolic rate, ns non-significant, PB phosphate binder, sAlb serum
albumin, SO sucroferric oxyhydroxide, sP serum phosphorus
All comparisons were carried out with −Q1 as the reference. aP < 0.0001, bP < 0.001, cP < 0.05, nsnon-significant

Table 3 Changes in clinical parameters from baseline in non-hypoalbuminemic patients

Parameter Baseline SO therapy Mean change
from baseline

−Q2 −Q1 Q1 Q2 Q3 Q4

PB pills/d 8.4 [0.2]c 8.9 [0.2] 3.7 [0.2]a 3.8 [0.2]a 3.8 [0.2]a 3.8 [0.2]a −5.0 [0.5]a

sP (mg/dL) 6.65 [0.16]ns 6.83 [0.16] 6.39 [0.16]a 6.41 [0.16]a 6.37 [0.16]a 6.43 [0.16]b −0.51 [0.12]a

sAlb (g/dL) 4.05 [0.02]ns 4.03 [0.02] 4.01 [0.02]ns 4.02 [0.02]ns 4.01 [0.02]ns 3.97 [0.02]c −0.02 [0.03]ns

nPCR (g/kg/d) 0.98 [0.02]ns 0.97 [0.02] 0.96 [0.02]ns 0.96 [0.02]ns 0.95 [0.02]ns 0.94 [0.02]ns −0.02 [0.02]ns

Phosphorus-attuned albumin (× 103) 0.65 [0.02]c 0.62 [0.02] 0.67 [0.02]a 0.67 [0.02]a 0.69 [0.02]a 0.68 [0.02]a + 0.06 [0.01]a

Phosphorus-attuned nPCR (× 103 dL/kg/d) 0.16 [0.01]ns 0.15 [0.01] 0.16 [0.01]c 0.16 [0.01]c 0.16 [0.01]b 0.16 [0.01]c + 0.01 [0.01]c

Pre-dialysis weight (kg) 91.1 [3.2]ns 90.9 [3.2] 91.4 [3.2]c 91.2 [3.2]ns 91.2 [3.2]ns 91.1 [3.2]ns + 0.5 [0.4]ns

Post-dialysis weight (kg) 88.2 [3.1]ns 88.1 [3.1] 88.4 [3.1]ns 88.3 [3.1]ns 88.2 [3.1]ns 88.2 [3.1]ns + 0.4 [0.4]ns

Equilibrated Kt/V 1.48 [0.02]ns 1.51 [0.02] 1.52 [0.02]ns 1.51 [0.02]ns 1.49 [0.02]ns 1.48 [0.02]ns −0.008 [0.02]ns

Serum creatinine (mg/dL) 9.7 [0.3]ns 9.8 [0.3] 9.9 [0.3]ns 10.0 [0.3]ns 9.8 [0.3]ns 9.8 [0.3]ns + 0.08 [0.1]ns

iPTH (pg/mL) 609 [64]ns 633 [64] 651 [63]ns 656 [63]ns 643 [63]ns 763 [63]b + 49 [44]ns

Corrected calcium (mg/dL) 9.1 [0.07]ns 9.2 [0.07] 9.2 [0.07]ns 9.1 [0.07]ns 9.1 [0.07]ns 9.1 [0.07]ns −0.04 [0.05]ns

Summary statistics are expressed as LS means [standard errors]
Abbreviations: iPTH intact parathyroid hormone, LS least-square, nPCR normalized protein catabolic rate, ns nonsignificant, PB phosphate binder, sAlb serum
albumin, SO sucroferric oxyhydroxide, sP serum phosphorus
All comparisons were carried out with −Q1 as the reference. aP < 0.0001, bP < 0.001, cP < 0.05, nsnon-significant
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and self-reported measures of dietary intake such as a
dietary diary may help to fully capture dietary changes,
and dietary intake of proteins.

Conclusion
SO was associated with significant reductions in sP
levels and PB pill burden in a real-world cohort of HD
patients. As evidenced by sustained improvements in nu-
tritional status, SO may be particularly helpful for the
control of sP in those HD patients exhibiting evidence of
protein malnutrition (i.e., reduced sAlb) by allowing
moderation of dietary protein restriction.

Abbreviations
BMI: Body mass index; ESRD: End-stage renal disease; HD: Hemodialysis;
hypoAlb: Hypoalbuminemic; iPTH: Intact parathyroid hormone; LS: Least-
square; NhypoAlb: Non-hypoalbuminemic; nPCR: Normalized protein
catabolic rate; ns: Non-significant; PB: Phosphate binder; PEW: Protein-energy
wasting; sAlb: Serum albumin; SE: Standard error; SO: Sucroferric
oxyhydroxide; sP: Serum phosphorus
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