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ARTICLE

Environmental remodeling of human gut microbiota
and antibiotic resistome in livestock farms
Jian Sun1,2,10, Xiao-Ping Liao 1,2,10, Alaric W. D’Souza 3,10, Manish Boolchandani 3,10, Sheng-Hui Li1,4,10,

Ke Cheng1,2, José Luis Martínez 5, Liang Li1,2, You-Jun Feng1,2, Liang-Xing Fang1,2, Ting Huang1,2, Jing Xia1,2,

Yang Yu1,2, Yu-Feng Zhou1,2, Yong-Xue Sun1,2,6, Xian-Bo Deng2, Zhen-Ling Zeng1,2,6, Hong-Xia Jiang1,2,6,

Bing-Hu Fang1,2,6, You-Zhi Tang1,2,6, Xin-Lei Lian1,2, Rong-Min Zhang1,2, Zhi-Wei Fang4, Qiu-Long Yan4,

Gautam Dantas 3,7,8,9✉ & Ya-Hong Liu 1,2,6✉

Anthropogenic environments have been implicated in enrichment and exchange of antibiotic

resistance genes and bacteria. Here we study the impact of confined and controlled swine

farm environments on temporal changes in the gut microbiome and resistome of veterinary

students with occupational exposure for 3 months. By analyzing 16S rRNA and whole

metagenome shotgun sequencing data in tandem with culture-based methods, we show that

farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially

pathogenic taxa and antimicrobial resistance genes. Comparison of students’ gut micro-

biomes and resistomes to farm workers’ and environmental samples revealed extensive

sharing of resistance genes and bacteria following exposure and after three months of their

visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student

samples and farm environmental samples. Dynamic Bayesian network modeling predicted

that the observed changes partially reverse over a 4-6 month period. Our results indicate that

acute changes in a human’s living environment can persistently shape their gut microbiota

and antibiotic resistome.
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The human gut microbiota is a dynamic ecosystem of
commensal microbes which collectively modulate host
health and physiology1,2. Previous studies have revealed

that the human gut microbiota composition is stable over time3–5

and to some extent resilient to short-term perturbations6,7. While
the host gut microbiota is generally predicted to recover to pre-
perturbation states8, the exact extent of reversion and stability of
different human microbiomes subjected to different types of
environmental perturbations remains underdetermined.

The human gut microbiota composition is generally influenced
by both host genetics and environment9–11; however, the effect of
environmental factors appears to outweigh host genetics in shaping
the microbiota12. Indeed, changes in diet13, geography14,15, and
chemotherapeutics16–18 (e.g., antibiotics) have been shown to
rapidly alter microbiota composition and affect colonization resis-
tance to pathogens19. A recent study demonstrated that environ-
ments harbor microbial communities which can serve as hot-spots
of resistance gene enrichment and exchange20. One such environ-
ment is swine farms where antibiotics are administered routinely for
growth promotion and disease prevention in major food producers
such as China21, providing ideal selection pressure for enrichment
of antibiotic-resistant bacteria and antibiotic resistance (AR) genes.
Indeed, mcr-1, a plasmid-borne resistance gene against colistin, a
drug of last-resort, was first reported in 2016 at a Chinese swine
farm22. Direct evidence has shown environmental transmission of
AR genes and their bacterial hosts among livestock and humans23.
In addition, these antibiotic-resistant bacteria and AR genes can
spread to humans via contaminated meat, pig-house dust and
manure, and wastewater discharge24–26. Interacting with swine
farm environments where antibiotic use is prevalent has been
considered a potential high-risk factor for infection with multidrug-
resistant bacteria27. The influence of antibiotic use on human health
is dependent on the connectivity between the farms and human-
associated microbiomes. This connectivity includes both the
transmissibility of antibiotic-resistant bacteria selected in animals to
human hosts, as well as the potential of lateral AR gene transfer
between animal-associated and human-associated bacteria. It is
critical not only to determine the extent of human microbiota
disruption in such environmental exposures, but also the distribu-
tion and enrichment of AR genes to evaluate the potential risks
of these environments in facilitating the global dissemination of
AR28–30.

Here, we report a longitudinal investigation of confined and
controlled swine farm environments impacts on temporal chan-
ges in the gut microbiome and resistome of 14 healthy students
who underwent occupational exposure during 3-month intern-
ships at swine farms. Compared to their pre-internship baseline
(T0), we found that the students’ gut microbiotas became more
similar in composition to full-time farm workers’ gut microbiotas
in correlation with swine farm environmental exposure, that
student and swine farm environmental microbiota and resistome
appear extensively interconnected following exposure, and that
changes in students’ gut microbiota community structure par-
tially reverted 6 months after they returned home. This study
presents insights on how, and to what extent, temporary changes
in living environments can shape the human gut microbiota and
resistome.

Results
Gut microbiota changes correlate with environmental expo-
sure. We performed 16S rRNA gene sequencing of 91 fecal samples
collected longitudinally from 14 male student volunteers (at time
points T0, T1–T3, and T4–T6; Fig. 1a), randomly assigned to dif-
ferent large-scale farms in China (Supplementary Fig. 1; Supple-
mentary Data 1), to characterize temporal patterns in gut microbial

community structure that occur with environmental changes.
Multivariate analysis of operational taxonomic unit (OTU) com-
position revealed a modest yet significant change (R2= 7.4%, per-
mutational multivariate analysis of variance [PERMANOVA] P <
0.001) in the gut microbial communities of the study participants
over the period from swine farm arrival (T0) to leaving the farm
environment (Fig. 1b). This change occurred within 1 month (T1)
of the students reaching the swine farms. Three months after
leaving the swine farms (T6), the students’ gut microbiota partially
reverted to their original microbial composition. Notably, the stu-
dents’ gut microbiota changed in a similar fashion at all three farms,
likely reflecting the commonalities of the farm ecological environ-
ment despite geographical separation (Supplementary Fig. 2). The
microbial diversity (alpha diversity) within the subjects’ gut
microbiota did not significantly differ (pairwise Student’s t-test with
Benjamini–Hochberg correction, q > 0.05; Fig. 1c) during their
swine farm residence. However, granular analysis of specific
microbial taxa showed marked deviation between students’ arrival
at the swine farm and their return to school. Specifically, we
observed a moderate decrease in Bacteroidetes (major symbionts in
the human gut that contribute to dietary carbohydrate metabolism
and vitamin biosynthesis31) and an increase in Proteobacteria
(especially Gammaproteobacteria, which includes many human
pathogens) (Supplementary Fig. 3a; Supplementary Data 2), as well
as significant changes in the relative abundance of several taxa from
the Faecalibacterium, Collinsella, and Blautia genera, and the Veil-
lonellaceae family (Supplementary Fig. 3b).

To further investigate the extent of alteration in students’ gut
microbiota, we performed whole-metagenome shotgun sequen-
cing (WGS) on 42 fecal samples of students at time points T0, T3,
and T6, and on fecal samples of three full-time workers from each
swine farm (representing 336.9 Gb of high-quality data; Supple-
mentary Data 3). Distance-based redundancy analysis (dbRDA)
of microbial taxa (Supplementary Fig. 4a, b) showed marked
deviation of students’ gut microbiota at T3 from the pre-exposure
time-point (T0), and similarity to the swine farm workers’
microbiota. These results demonstrate that working in the swine
farm environment is correlated with alterations in the visiting
students’ gut microbiota to more closely resemble the full-time
workers’ gut microbiota. These results were supported by
significant higher Bray–Curtis dissimilarity between the T0
and T3 collections compared to the T0 and T6 collections
(Supplementary Fig. 4c). To reduce the potential effect of time-
dependent confounding factors, we compared the gut micro-
biomes of our participants with a baseline healthy cohort of 196
urban Chinese subjects collected across all seasons from the
urban Chinese environment32. Our results further indicated that
the T3 collection was significantly more dissimilar from controls
than either the T0 or T6 times (Supplementary Fig. 4d). Since
many environmental factors, including diet13,33, antibiotics18,
and geography15, have been associated with changes to the
human gut microbiota, it is difficult to identify specific contri-
butions from separate factors from the farm environment34.
However, we observed the same trends of microbial community
shift in all the students despite individual host and geographical
location differences (Supplementary Fig. 4e), mirroring the
taxonomic trends from the 16S rRNA gene-based analysis. These
results suggest multiple conserved environmental factors on the
swine farms from divergent geographic locations can consistently
shape the gut microbiota.

Antibiotic resistome structure influenced by changing envir-
onment. To evaluate whether AR gene changes accompanied the
microbiota changes, we performed metagenomic analysis of the
students’ gut resistomes. We identified 1924 non-redundant AR
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genes in the WGS samples (Supplementary Data 4). These genes
encoded a range of AR enzymes, with beta-lactamases (44.4%),
aminoglycoside resistance proteins (17.5%), and chloramphenicol
acetyltransferases (15.2%) representing the most dominant types.

The abundance of AR genes in the students’ samples was
quantified using ShortBRED35 based on a custom AR gene database
that included unique protein markers created from Comprehensive
Antibiotic Resistance Database (CARD ver. 2.0.0)36 and AR genes
we identified using metagenomic assembly. Furthermore, altera-
tions in the visiting students’ gut resistomes was different from the
full-time workers’ gut resistomes. However, similar to the gut
microbiota composition changes, the students’ gut resistome
showed minor divergence between the samples taken at the three
swine farm-stay time points (PERMANOVA P= 0.63 among three
time points; Fig. 2a). Procrustes analysis confirmed that antibiotic
resistomes were significantly correlated with community composi-
tion (PROTEST P < 0.001; Fig. 2b). There was no significant change
in the number and abundance of AR genes detected in the samples
obtained during the swine farm residence period (Fig. 2c;
Supplementary Fig. 5a, b), despite an average 3.7% increase in
relative abundance (measured by normalized reads per kilobase per
million reads, RPKM). This increase was observed for several AR
mechanisms (Supplementary Fig. 5c, d) including in subclass B3

β-lactamase, aminoglycoside acetyltransferase, and tetracycline-
resistant ribosomal protection proteins. Interestingly, these resis-
tome changes occurred after only 3 months in the swine farm
environment.

Microbial transmission from the swine farm environment into
students’ gut. To assess whether changes in the students’ gut
microbiota and antibiotic resistome were correlated with their
swine farm environmental contact, we examined the microbial
landscape of the swine farm ecosystem via four representative
environments: ventilation system dust, swine feces, sewage, and
compost soil. Pooled environmental samples (each environment
contained 3–5 sampling sites) were collected from each swine
farm and analyzed using WGS (representing 133.2 Gb of data;
Supplementary Data 5). The presence of many non-redundant
genes in these habitats revealed the magnitude of diversity of the
swine farm ecosystem (Supplementary Fig. 6). Compared to the
human gut microbiome, the environmental samples exhibited
higher microbial taxonomic and AR gene diversity (Supplemen-
tary Fig. 7; Supplementary Notes).

Comparison of student microbiota samples before and during
swine farm residence revealed a high proportion of new genes
(average increase of 42%, range 18–61%) identified after they
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Fig. 1 Change in the human gut microbiota following environmental conversion. a Overview of the study design. Fourteen veterinary students’ fecal
samples were collected at seven time points: T0, 1–2 weeks before work on the swine farm; T1–T3, while living and working at the swine farm; T4–T6, after
returning to the university. b Distance-based redundancy analysis (dbRDA) revealed gut microbiota dysbiosis during the students’ swine farm stays, which
partially recovered after leaving the farm. dbRDA of Bray–Curtis distances between operational taxonomic units (OTUs, based on 16S sequences) in
samples at all-time points is shown at the first two constrained principal coordinates (CAP1 1.8% variance explained, CAP2 1.3% variance explained). Lines
connect samples from the same time point, and colored circles indicate the samples near the center of gravity for each time point. The results depicted
here are cumulative of the samples from three swine farms. c Change in the within-sample microbial diversity (observed number of OTUs and Shannon
diversity index) of samples at seven different time points. Boxes show the distribution of students’ samples (n= 14 biologically independent samples per
timepoint) (boxes show medians/quartiles; error bars extend to the most extreme values within 1.5 interquartile ranges). P > 0.05 by Student’s t-tests
(paired two-sided test between the students’ samples at time points 0, 3, and 6). P-values are multiple hypothesis test corrected using
Benjamini–Hochberg (FDR) correction. Underlying data are provided in the Source Data file.
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arrived at the swine farms. Nearly two-thirds of these genes were
also present in microbiomes derived from the environmental
samples (Fig. 3a; Supplementary Fig. 8). Since genes can transfer
via host bacterial transmission or lateral gene exchange, we
sought to correlate our gene exchange results with the OTU
composition change of the students during their swine farm stays.
Strong association between the OTU composition changes and
gene exchange would suggest extensive microbial transmission
between the environment and the human gut. The SourceTracker
algorithm37 was used to interrogate this question by integrating
the taxonomic assignments and the abundance levels of the newly
acquired genes. One hundred and forty-two species transmission
events were identified from various swine farm environments to
the students’ gut microbiota (Fig. 3b; Supplementary Fig. 9;
Supplementary Data 6), and swine feces and soil were the main
bacterial sources. These transmission events included diverse
groups of Firmicutes and Proteobacteria, some of which (e.g.,
Ruminococcus spp., Escherichia spp., and Pseudomonas putida)
include pathogenic strains responsible for zoonotic infections.
Transmission of these commonly pathogenic species indicates
that the soil and swine feces may be underappreciated occupa-
tional hazards of industrialized farming. To confirm that the
species and their genes were environmentally acquired, we
performed comparative genome analysis on these putatively
transmitted species identified from the student and the environ-
ment microbiomes. Draft genomes of 9 high-abundance species,
including the genome of Phascolarctobacterium succinatutens,
which is rarely observed in the human gut, were reconstructed
from the students’ gut microbiomes and from the corresponding
environmental samples (see the “Methods” section). These
genomes shared 99.9 ± 0.1% (minimum 99.7%) 16S rRNA gene
similarity and 99.5 ± 0.4% (minimum 98.9%) average nucleotide
identity (ANI) with their respective environmentally derived
genomes (Fig. 3c; Supplementary Data 7), suggesting that they
belong to the same bacterial clones shared by the students and
their surrounding environments.

To further study microbe transmission between students and
farm environment/workers, we cultured and characterized the
genetic relatedness of 82 E. coli strains isolated from students,

farm workers, and environment samples collected from one pig
farm. We found multiple events of clonal spread of E. coli strains
between students, farm workers, and farm environment (Supple-
mentary Fig. 10). Together, the results from culture-independent
analysis of fecal metagenomes and from culture-dependent
analysis of environmental bacterial clones revealed extensive
transmission events between the students’ gut microbiome and
farm environment occurred for diverse taxonomic groups,
including putatively pathogenic bacteria.

Gene content from the 142 putatively transmitted species was
further analyzed to identify genes with putative clinical relevance
(e.g., chromosome-encoded AR genes and virulence factors),
likely to transfer concomitantly with the microbes. Approxi-
mately 27% of predicted species transmission events between the
environment and human gut microbiota carried at least one AR
gene on their contigs (Supplementary Fig. 11a). S. marcescens
strains carried the largest number of AR genes (average 11 genes),
though this may reflect their high assembly completeness in our
dataset. Additionally, many genes encoding virulence factors
(observed in 30% of species transmission events), antibacterial
biocide resistance genes (18%), and heavy metal resistance genes
(18%) were also concomitantly transferred (Supplementary
Fig. 11b–d). These results agree with our prior Procrustes
analysis and demonstrate comprehensive accompanying transfer
of clinically relevant genes with environment-mediated microbial
transmission events. Altogether our results suggest an extensive
exchange of bacteria (including pathogens and antibiotic-resistant
bacteria) between humans and their surrounding environments.

Transfer of AR genes between the swine farm environment and
human gut. The environment represents an enormous reservoir
of antibiotic-resistant bacteria and AR genes38, and its trans-
missibility to humans is concerning20. In our dataset, we found an
extensive network of AR gene sharing between microbial com-
munities of humans and environments (Supplementary Fig. 12a,
a similar network is found in ref. 20), and further revealed that
25% (477/1924) of AR genes detected in the students’ microbiota
while on the farms co-localized with putative mobile genetic
elements (MGEs), which are often involved in AR transfer across
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environments. Using the SourceTracker algorithm, we identified
270 AR genes involved in transfer from swine farm environ-
mental samples to the students’ gut microbiotas (Supplementary
Fig. 12b; Supplementary Data 8). Swine feces and sewage were the
major antibiotic-resistant bacteria and AR gene sources; transfer
events from these sources included almost all types of AR genes,
whereas soil mainly contributed the transfer of AR genes
encoding aminoglycoside-inactivating enzymes. Of note, several
studies have confirmed that soil39, sewage40, and even air dust41

are likely significant reservoirs involved in spreading AR genes
persistently found in clinical pathogens.

To further link the emergence of AR genes conferring
resistance to medically important antimicrobials with their
acquisition from the pig farm environment, we identified 120
relevant AR genes. These genes included extended-spectrum β-
lactamases (including blaTEM and blaCTX-M), the plasmid-
mediated quinolone resistance genes qnrS, and the tigecycline
resistance gene tet(X). These AR genes were enriched in the
students’ gut resistome during or after swine farm stays (Fig. 4a;
Supplementary Fig. 13). To understand the exchange potential of
these AR genes, we examined the flanking genetic sequences in
assembled contigs. 41% (49/120) of genes encoded by both
human gut and environmental microbiota were found in
consistently similar genetic contexts in the two habitats, and
many of those were associated with MGEs (including several
extended-spectrum β-lactamases, tet(X), and qnrS; Fig. 4b shows

an example of blaCTX-M). This provides evidence for sharing of
important AR bacteria and AR genes between the human gut and
swine farm environment microbiota.

To further investigate the acquisition of AR genes and
phenotypic AR during the students’ stay on the farms, we isolated
1851 E. coli strains from all samples. Phenotypic resistance testing
showed that the resistance rates to nine antibiotics including
cefotaxime, ciprofloxacin, and fosfomycin, increased among E. coli
strains from students’ samples at time points T1, T2, and T3
compared to time point T0. Interestingly, these resistance rates
maintained high levels among E. coli strains from students’ samples
at post-return time points T4, T5, and T6 (Supplementary Fig. 14).
This is consistent with metagenomic analyses that the resistome at
T6 did not move towards the T0 state with the microbiota but
instead retained high AR gene abundance. Notably, relatively high
resistance rates to these drugs were found among E. coli strains
from farm samples including farm workers, pigs, and environ-
mental samples. Consistent with these phenotypic AR results,
the detection rate of transferable plasmid-mediated AR genes,
blaCTX-M (conferring resistance to third generation cephlosporins)
and fosA3 (conferring resistance to fosfomycin), also increased
among E. coli strains from students during T2–T4 compared to
T0. These rates declined during T4–T6 (Fig. 4c, d). We found
fosA3 genes co-localized with blaCTX−M−14 on an identical
genetic structure (blaCTX−M−14-△IS903-261bp-fosA3-orf1-orf2-
IS26) among 9 of 15 E. coli strains co-carrying blaCTX−M−14 and
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fosA3 from students (n= 4), pigs (n= 4), and compost soil (n=
1). These results indicate that the pig farm environment probably
contributes to AR increases in human commensal E. coli isolates
through the transmission of AR E. coli isolates or AR gene transfer.

Predicting the impact of environmentally induced changes on
the gut microbial community structure. To predict the duration
of the effect on the gut microbial community structure by
environmental changes, we developed a time series model of
relative taxonomic abundance based on the 16S sequencing data
obtained from the students’ fecal samples at seven time points
(see Online Methods). We modeled microbial interactions as a
dynamic Bayesian network (DBN) using extended local similarity
analysis, to capture local and potentially time-delayed co-occur-
rence and association patterns between microbial taxa (Supple-
mentary Fig. 15). Analysis of the extrapolated community
structure showed that the students’ gut microbiotas are likely to
revert to the original status within 4–6 months of returning to
their initial environment (Fig. 5). The change in taxonomic
community structure stalls and stabilizes in the 6–9-month range.
The time point at 9 months begins to have a wider distribution as
it is further removed from the last measured sample. As the gut
resistome and gut microbiota phylogenetic composition appeared
to be tightly linked, we also found resistome reversion after ter-
minating the exposure to the swine farm environment. However,
some clinically relevant AR genes were persistently isolated after a
3-month recovery period. To elucidate this phenomenon a more
extensive longitudinal study of environmental shaping of the
human gut microbiota and resistome along with subsequent
recovery is required.

Discussion
Environmental factors influence human health10. One mechanism
for this influence is interaction between environmental and
human-associated microbiotas12. In this study, we used both
endpoint and time series analyses to demonstrate that the human
gut microbiota and resistome undergoes taxonomic and functional
remodeling in correlation to exposure to the high-risk swine farm
environment. We found substantial interconnection of micro-
biomes and resistomes between the swine farm environment and
visiting veterinary students, and the diversity of source environ-
ments we observed in our finite sampling may still only represent a
fraction of the true bacterial reservoirs. The environment micro-
biome harbors a diversity of the microorganisms, and humans may
interact with these microbes via direct or indirect contact during
environmental microbial exposures12. This is especially important
if humans may acquire new commensal species or dangerous
pathogens from environment. Although the volunteer veterinary
student population is a small sample size and only involved in male
participants, our results provide direct evidence that the human gut
microbiota can change in response to environmental conversion.
These environmental conversions likely work in concert with other
factors, such as age, biological sex, personal hygiene, dietary habits,
antibiotic use, and stress to shape the microbiome. These acute
changes may considerably impact human health and could
represent underappreciated occupational hazards. Future studies
should seek to clarify the key roles of reservoirs, carriers, and
vectors on the transmission chain and to identify factors pro-
moting AR gene exchange between environmental microbiota and
human commensal bacteria. Thus, a quantitative model for
assessing resistance gene transmission risk to humans is urgently
needed.
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Methods
Ethics statement. The Institutional Review Board of South China Agricultural
University (SCAU-IRB) approved the protocols. All animals were sampled under
authorization from Animal Research Committees of South China Agricultural
University (SCAU-IACUC).

Study design. Fourteen senior class veterinary students (Student ID: H, I, J, K, L,
M, N, O, P, Q, W, X, Y, Z) provided their written informed consent and voluntarily
enrolled in the study during participation in an ~3-month-long practical training
course in veterinary science at SCAU from July to October 2015. The 14 students
were randomly divided into three groups of four to five persons, and each group
was assigned to one of three swine farms in three different Chinese provinces,
including (from north to south), Henan (Farm ID: H farm), Jiangxi (Farm ID:
D farm), and Guangdong (Farm ID: S farm) (Supplementary Fig. 1a). These are
typical large-scale swine farms, and all have been in operation for more than 5
years. Three farms implement self-breeding, and all use the closed-end manage-
ment model. Among them, H farm is the largest, with 15,000 sows, D farm
(7400 sows) is the next largest, and S farm (3800 sows) is the smallest. Due to
limitations in the volunteer veterinary student population, all subjects were male
and a parallel group of swine farm unexposed students was not possible. We have
taken several steps to mitigate these limitations, including comparisons to a healthy
cohort from urban Chinese individuals (BioProject accession number PRJEB13870
[https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13870]). To control for differ-
ences at individual level, the students’ fecal samples were collected longitudinally
and the fecal samples at the phase before arriving at the farm (T0) were considered
a blank control. In addition, four to five farm workers in each swine farm were
also recruited in this study. All the farm workers had engaged in pig farming for
4–18 years and stayed at the present farm at least for 1 year. The volunteers signed
an informed consent form and were asked to agree to fecal swabbing and to
complete a short questionnaire related to personal information, such as age and
gender, personal hygiene, dietary habits, antibiotic use, hospitalization, previous
visits to farms or factories, and other pertinent factors (Supplementary Table 1). In
addition to environmental exposure, other factors such as diet and work stress may
be the important factors influencing the human gut microbiota. Considering that
these factors may be caused by environmental changes, in this study, we consider
these related factors as environmental impacts.

Sample collection. The students’ fecal samples were collected at the following
intervals: (1) 1–2 weeks prior to their entry into the swine farm, (2) weekly for the 3
consecutive months of their stay at the swine farm; (3) monthly for another 3
consecutive months after their return to the university. At each swine farm, four to
five farm workers who had worked on the farm for at least one year were recruited,
and their fecal samples were collected monthly during students’ swine farm stays.
In addition, averages of 40 pig feces samples, 3 soil samples, 3 sewage samples, and
3 ventilation dust samples for each farm, were collected monthly for the 3 con-
secutive months of the students stay at the swine farm. Among them, 42 students’
fecal samples and 12 pooled samples consisting of 55 environmental samples
(around 3–5 samples for each item per farm) from the swine farms, including pig
feces, soil, sewage, and ventilation dust, were used in the metagenomic sequencing
(Supplementary Data 3 and 5). Samples were submitted using an assigned student
study ID and date. Samples were kept on dry ice during transport and were stored
at −80 °C prior to DNA extraction and chemical analysis.

DNA extraction. Genomic DNA was extracted from all samples using the HiPure
Stool DNA Kit (Magen, No. D3141) according to the manufacturer’s instructions.
Briefly, STL buffer (1 ml) was added to 50 mg of sample in a 2-ml screw-cap tube
(Axygen), and the mixture was incubated at 65 °C for 10 min. The samples were
then vortexed for 15 s and centrifuged at 13,000×g for 10 min, and 600 μl of the
supernatant was transferred to a fresh 2.0-ml tube. PS buffer (150 µl) and 150 µl of
absorber solution was then added. Following a second centrifugation (13,000×g,
5 min), the supernatants were placed in fresh 2.0-ml tubes, and 700 µl of GDP
buffer was added. A HiPure DNA Mini Column (Magen; No. D3141) was used to
absorb the products, which were then eluted with sterile water.

16S rRNA amplification, sequencing, and preprocessing. The V3 and V4
hypervariable regions of the 16S rRNA gene were sequenced and analyzed to define
the composition of the bacterial community in human fecal samples. The following
amplification primers were used: primer-F= 5′ TCGTCGGCAGCGTCA
GATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG; primer-R= 5′
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC TACHVGGG
TATCTAATCC. For amplicon library preparation, 20 ng of each genomic DNA,
1.25 U Taq DNA polymerase, 5 μl 10× Ex Taq buffer (Mg2+ plus), 10 mM dNTPs
(all reagents purchased from TaKaRa Biotechnology Co., Ltd), and 40 pmol of
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primer mix was used for each 50-μl amplification reaction. For each sample, the
16S rRNA gene was amplified under the following conditions: initial denaturation
at 94 °C for 3 min followed by 30 cycles of 94 °C for 45 s, 56 °C for 1 min, and 72 °C
for 1 min and a final extension at 72 °C for 10 min. The PCR products were
quantified by gel electrophoresis, pooled and purified for reactions. Pyrosequencing
was performed on an Illumina MiSeq sequencer with paired-end reads 300 base
pairs (bp) in length.

Based on the overlaps between the sequenced paired-end reads, the reads were
merged into long sequences using the FLASH algorithm (min-overlap= 30, max-
overlap= 150)42. Low-quality sequences were then trimmed and eliminated from
the analysis based on the following criteria: (a) shorter than 400 bp and (b) a
sequence producing more than 3 ‘N’ bases. Bioinformatic analysis was
implemented using the Quantitative Insights into Microbial Ecology QIIME2
platform (https://qiime2.org/)43. Briefly, raw Illumina amplicon sequence data was
quality control processed using the DADA2 algorithm44, removing the chimeric
sequences and truncating the sequences from 5 to 250 bases. Phylogenetic diversity
analyses were realized via the q2-phylogeny plugin, which used the mafft45

program to perform multiple sequence alignment on the representative sequences
(FeatureData in QIIME2) and the FastTree46 program to generate phylogenetic
tree from the alignments. The microbial community structure (i.e., species richness,
evenness, and between-sample diversity) of fecal samples was estimated by
biodiversity. The Shannon index was used to evaluate alpha diversity, and the
weighted and unweighted UniFrac distances were used to evaluate beta diversity.
All of these indices were calculated by the QIIME2 pipeline (q2-diversity plugin).

Metagenomic sequencing and data quality control. The Illumina HiSeq 3000
platform was used to sequence the samples. We constructed a 150-bp paired-end
library with an insert size of 350 bp for every sample. The raw sequencing reads for
each sample were independently processed for quality control using the FASTAX
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The quality control used the
following criteria: (1) reads were removed if they contained more than 3 ‘N’ bases
or more than 50 bases with low quality (<Q20); (2) no more than 10 bases with low
quality (<Q20) or assigned as N in the tails of reads were trimmed. The remaining
reads were then mapped to the human and swine genomes using SOAPalinger247

to remove host DNA contamination. Overall, an average of 0.9% of low-quality or
host genome reads was removed from the sequenced samples.

De novo assembly, gene calling, and gene catalog construction. To determine
the best assembling method for high-quality whole-metagenome-sequencing reads,
we compared the performance of two assemblers, SOAPdenovo v2 (previously used
in human gut microbiomes)25,48 and MEGAHIT (a de novo assembler for large
and complex metagenomic sequences)49. For SOAPdenovo, we tested the k-mer
length ranging from 23 to 123 bp by 20-bp steps for each sample and selected the
assembled contig set with the longest N50 length. For MEGAHIT parameters
“–mink 21 –maxk 119 –step 10 –pre_correction” were used. For most of the
samples, MEGAHIT obtained a better assembled contig set than SOAPdenovo; this
could be due to its improved assembly of bacterial genomes with highly uneven
sequencing depths in metagenomic samples. As a result, we obtained an average of
254.6 ± 72.4 and 754.4 ± 180.4 Mbp (mean ± SD) contig sets for human fecal
samples and environmental samples, respectively. The unassembled reads for each
ecosystem were pooled and reassembled for further analysis.

Genes were predicted by MetaGeneMark50 based on parameter exploration by
the MOCAT pipeline26. A non-redundant gene catalog was constructed using CD-
HIT51; from this catalog, genes with >90% overlap and >95% nucleic acid similarity
(no gap allowed) were removed as redundancies. The gene catalogs contained
3,338,109 and 11,374,480 non-redundant genes generated from the human
microbiome and the swine farm ecosystem, respectively.

Quantification of metagenomic genes. The abundance of genes in the non-
redundant gene catalogs was quantified as the relative abundance of reads. First,
the high-quality reads from each sample were aligned against the gene catalog
using SOAP 2.2147 using a threshold that allowed at most two mismatches in the
initial 32-bp seed sequence and 90% similarity over the whole read. Then, only two
types of alignments were accepted: (1) those in which the entirety of a paired-end
read could be mapped onto a gene with the correct insert size; (2) those in which
one end of the paired-end read could be mapped onto the end of a gene only if the
other end of the read mapped outside the genic region. The relative abundance of a
given gene in a sample was finally estimated by dividing the number of reads that
uniquely mapped to that gene by the length of the gene region and by the total
number of reads from the sample that uniquely mapped to any gene in the catalog.
The resulting set of gene relative abundances for all samples was termed a gene
profile. The average read mapping rates (or mean reads usage) were 71.5% and
43.8% for human gut microbiome and swine farm environmental samples,
respectively.

Quantification of taxa in metagenomic data. We performed the taxonomic
profiling (including phylum, class, order, family, genus, and species levels) of the
metagenomic samples using MetaPhlAn252, which relies on ~1 million clade-
specific marker genes derived from 17,000 microbial genomes (including bacterial,

archaeal, and viral species) to unambiguously classify metagenomic reads to
taxonomies and yield relative abundances of taxa identified in the sample.The
Shannon index, was used to represent the within-sample diversity (alpha diversity)
of the microbiota in the samples53.

Identification and quantification of AR genes. The AR genes from each meta-
genomic assemblies were identified by blasting protein sequences against CARD
(downloaded February 2018)36 database using stringent cutoff (>95%ID and >95
overlap with subject sequence). The remaining unannotated sequences were filtered
and subsequently annotated with Resfams core database. This approach resulted in
12,739 unique AR genes from 66 metagenomic assemblies. Together, these 12,739
genes with 2252 AR sequences from CARD database were used to create high-
precision sequence markers using ShortBRED35 (parameters: –clustid 0.95 and –ref
Uniref90.fasta).

The ShortBRED results included 20,514 markers for 5607 AR gene families. The
marker list was then manually curated to reduce the rate of false positives in our
surveys. Following criteria was used to filter out the false positives:

● genes that confer resistance via overexpression of resistant target alleles (e.g.
resistance to antifolate drugs via mutated DHPS and DHFR);

● global gene regulators, two-component system proteins, and signaling
mediators;

● efflux pumps that confer resistance to multiple antibiotics;
● genes modifying cell wall charge (e.g. those conferring resistance to polymixins

and defensins).

The final set consisted of 1924 AR gene families. The abundance of AR gene
families was measured using shortbred_quantify.py script and about 1018 AR
determinants were detected with RPKM > 0 in at least two samples.

Identification of virulence factor genes and antibacterial biocide and metal
resistance genes. We identified the virulence factors based on the Virulence
Factors of Pathogenic Bacteria Database (VFDB, downloaded February 2018)54 and
the antibacterial biocide and metal resistance genes based on the BacMet data-
base55. Amino acid sequences were aligned against the databases using BLASTP
(e-value ≤ 1e−5) and assigned to genes by the highest-scoring annotated hit with
>80% similarity that covered >70% of the length of the query protein.

Species transmission event identification and SourceTracker. We used a
modified SourceTracker algorithm37 to identify species transmission events from
the swine farm environment to human gut microbiota. Briefly, the new genes found
in each sample during swine farm residence were grouped into species-level
clusters by consistent taxonomic assignment and relative abundance (range:
average ±5%). The SourceTracker algorithm was then used to estimate the prob-
ability that the species in the fecal sample came from the source environment
(probability > 80%). The probable transferred species with <100 genes or <0.01%
relative abundance in the human gut microflora were further filtered.

To identify transfer events involving AR genes, SourceTracker was run with the
default settings using the environmental microbiota as the source.

Microbial genome reconstruction in metagenomes. We established an approach
to reconstruct the genomes of the high-abundance (typically, >3%) species in the
human gut metagenomes. Firstly, metagenomic reads were mapped to the closest
reference genomes using SOAP2.2147 (>95% identity). The mapped reads were
independently assembled using Velvet56, an algorithm for de novo short read
assembly for single microbial genomes. The software was run multiple times using
different k-mer parameters ranging from 39 to 131 to generate the best assembly
results. Then, the raw assembled genome was scaffolded by SSPACE57, and gaps
were closed by GapFiller58. The short scaffolds were filtered with a minimum
length threshold of 200 bp. A circle plot of the draft genomes was obtained using
BRIG software59. The average nucleotide identity (ANI) between genomes was
calculated using the ANIb algorithm, which uses BLAST as the underlying align-
ment method60.

Network visualization. The AR gene co-occurrence network was visualized by
Cytoscape 3.3.061 using an edge-weighted spring-embedded layout.

Mobile genetic elements. Putative MGE genes, including transposase, integrase,
recombinase, phage terminase and endopeptidase genes, and bacterial insertion (IS)
sequences were identified from the functional selection by Pfam (v29.0)62 and Kyoto
Encyclopedia of Genes and Genomes (KEGG, downloaded December 2017)63

annotation. AR genes were considered to co-localize with an MGE if they shared a
contig with an MGE gene in a nearby area (<10 kilobases).

Phylogenetic classification of contigs. AR contigs and metagenomic assembly
contigs were classified using BLASTN with parameters “-word_size 16 -evalue
1e−5 -max_target_seqs 5000” based on the NCBI reference microbial genomes
(downloaded December 2017). At least 70% alignment coverage of each contig
reads was required. Based on the parameter exploration of sequence similarity
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across phylogenetic ranks64, we used 90% identity as the threshold for species
assignment and 85% identity as the threshold for genus assignment.

Cultures and E. coli analyses. All samples were cultured on MacConkey agar
plates and incubated at 37 °C for 24 h. Five to six suspicious colonies with typical
E. coli morphology was selected from each sample for identification. We obtained
1851 E. coli isolates, including 954 isolates from students’ fecal samples, 182 isolates
from farm workers’ fecal samples, 657 isolates from pig feces, and 58 isolates from
other farm environmental samples (soil, sewage, and ventilation dust). After
identifying E. coli isolates by MALDI-TOF MS (Biomerieux, France), we char-
acterized 82 E. coli isolates to determine their genetic relatedness by pulsed-field gel
electrophoresis (PFGE)65. These 82 E. coli strains were randomly selected from one
pig farm and origin from students (n= 13), farm workers (n= 2), pigs (n= 51),
and farm environments (16). The DNA banding patterns were analyzed by Bio-
Numerics software (Applied Maths, Sint-Martens-Latem, Belgium) using the Dice
similarity coefficient and a cut-off value of 85% of the similarity values was chosen
to indicate identical Eric types. Salmonella enterica serotype Braenderup
H9812 standards served as size markers.

Phenotypic and genotypic resistance testing. All 1851 E. coli isolates were tested
for susceptibility to 11 antimicrobials for human medicine and food animals’
production, including colistin (CS), cefotaxime (CTX), gentamicin (GEN), ami-
kacin (AMK), tetracycline (TET), fosfomycin (FOS), ciprofloxacin (CIP), meth-
oxazole/trimethoprim (S/T), chloromycetin (CHL), meropenem (MEM), and
tigecycline (TIG). Antimicrobial susceptibilities of isolates were determined by the
agar dilution method and the results were interpreted according to the Clinical and
Laboratory Standards Institute (CLSI) (M100-S25)66. All isolates were further
screened for blaCTX-M and fosA3 genes (conferring resistance to CTX and FOS,
respectively) by PCR amplification using primers (Supplementary Table 2). As
fosA3 was frequently co-transferred with blaCTX-M mediated by a single plasmid24,
the genetic contexts of the fosA3 and blaCTX-M genes were explored by PCR
mapping (Supplementary Table 2) using the reference regions surrounding them
among 15 fosA3-blaCTX-M-co-harboring E. coli isolates, which were randomly
selected from one pig farm.

Creation of the DBN model. The DBN model was created based on genus
composition profiles of students’ fecal samples at all seven time points. Firstly, we
removed (1) two students (H and N) who lacked the sequencing data for at least
two time points, and (2) the genera with average relative abundance <0.5% in
students, remaining the gut microbial communities of 12 students on 39 high-
abundant genera for further analysis. These genera covered 86% of total relative
abundance of analyzed samples. Then, we calculated the genus–genus associations
based on the extended local similarity analysis (eLSA) algorithm67 (default para-
meters), using the students’ genus profiles at all seven time points. The eLSA tool
generated an association network from significant associations (permutated P <
0.01), including both time-independent (undirected) and time-dependent (direc-
ted) associations. For each genus, five most significant associations were remained
to simplify the network. Lastly, the partially directed DBN model was created based
on the genus–genus association network and the directed associations for each
genus from its previous time point to current time point (as shown in Supple-
mentary Fig. 15).

Prediction of the microbial composition based on the DBN model. In the DBN
model, the current relative abundance (tn) of every genus can be expressed as a
function of the relative abundances of its parent genera at the previous time point
(tn−1). The functions in the resulting DBN were derived using Eureqa v1.24.06

(default parameters). Eureqa is a freely downloadable software for deducing
equations and hidden mathematical relationships in numerical data sets without
prior knowledge of existing patterns. The operations, including constant, add,
subtract, multiply, divide, sine, cosine, and exponential, were permitted in solu-
tions. Eureqa was allowed to search for best-fitting equations for a maximum of
1 × 1010 formula evaluations, or until correlations >0.8 were observed. To evaluate
the accuracy of the DBN model, we trained a new model by using the microbial
compositions at time points T0–T5 and then predicted the microbial composition
at T6. This leave-one-out cross-validation strategy was also used to predict the
compositions of time points T1–T5. For all samples, their predicted microbial
compositions achieved high consistency by Bray–Curtis similarity (1-Bray–Curtis
distance). Finally, in our dataset, we predicted the relative abundance of all genera
at an extrapolated time point (T7) based on the formulas, using their abundances at
time point T6. Similarly, the microbial communities at time points T8 and T9 were
predicted based on T7 and T8.

Statistical analysis. Statistical analysis was implemented using the R platform.
Principal coordinate analysis (PCoA) was performed using the “ape” package68

based on the UniFrac distances between samples. dbRDA was performed using the
“vegan” package69 based on the Bray–Curtis distances on normalized taxa abun-
dance matrices and visualized using the “ggplot2” package. In analyses of PCoA
and dbRDA, the top two principal components of the samples were shown, and the
Mann–Whitney U-test was used to evaluate the significance of differences in

samples obtained at different time points. PERMANOVA70 was used to determine
the significance of time points on the subject’s gut microbiota as well as antibiotic
resistome. We implemented PERMANOVA using the adonis function based on the
Bray–Curtis dissimilarity and 999 permutations. This function calculates the
interpoint dissimilarities of each group and compares these values to the interpoint
dissimilarities of all points to generate a pseudo-F statistic. This pseudo-F statistic
is then compared to the distribution of pseudo-F statistics generated when the
function is run on the dissimilarity matrix with permuted labels. Procrustes ana-
lysis was performed using the “vegan” package, and the significance of the Pro-
crustes statistic (a correlation-like statistic derived from the symmetric Procrustes
sum of squares) was estimated by the protest function with 999 permutations.
Rarefaction analysis implemented by in-house Perl scripts was performed to assess
the gene richness of environmental samples. Statistical significance was set at P <
0.05 following Benjamini–Hochberg corrections.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study are available in the European
Nucleotide Archive under BioProject number PRJEB20626 (https://www.ebi.ac.uk/ena/
data/view/PRJEB20626). The source data underlying Figs. 1b, c, 2a–c, 3a, b, 4a, 4c, d, and
5 and Supplementary Figs. 2, 3a, b, 4a–e, 5a, b, 7a–d, 8, 9, 11a–d, 12a, b, 13, 14, and 15c
are provided as a Source Data file.
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