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Abstract  

Lactic acid bacteria (LAB) exert a strong antagonistic activity against many microorganisms 

including food spoilage organisms and may be used as an alternative to control biofilm 

formation of pathogens in food industries. The objective of this work was to investigate the 

ability of fifteen Salmonella strains isolated from poultry environment to form biofilms on 

different surfaces. In addition, the effect of Lactobacillus kefiri strains 8321 and 83113 and 

Lactobacillus plantarum 83114 and their surface proteins on biofilm development of 

Salmonella Enteritidis 115 was studied. The relationship between surface properties of bacteria 

(hydrophobicity, autoaggregation and coaggregation with lactobacilli) and biofilm formation 

was also investigated. Most of Salmonella strains were hydrophilic and five strains were 

moderately hydrophobic. In general, Salmonella strains showed high aggregation abilities (27–

54%). S. Enteritidis 106 and S. Typhimurium 102 and 108 showed the highest percentages of 

autoaggregation. All Salmonella strains tested showed aggregation abilities with the three 

lactobacilli studied, but the percentage of coaggregation proved to be strain-specific. When 

comparing stainless steel, glass and polystyrene surfaces, higher levels of biofilm formation 

occurred on polystyrene plate than on glass surfaces or stainless steel. S. Enteritidis 115 

exhibited the greatest attachment to polyestyrene surface. The preincubation or coincubation 

with the three lactobacilli strains significantly reduced (about 1 log CFU/ml of reduction) the 
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ability of S. Enteritidis 115 to form biofilm compared to the control without lactobacilli. These 

results were confirmed by confocal microscopy. In the same way, when surface proteins 

extracted from lactobacilli strains were preincubated or coincubated with S. Enteritidis 115, 

biofilm formation of this strain was significantly decreased compared to the control. The results 

obtained showed that these Lactobacillus strains and their surface proteins can be used as 

alternatives for control of biofilm formation by Salmonella in the poultry industry. 

 

Keywords: biofilm, biocontrol, aggregation, surface proteins 

 

 

1. Introduction 

Salmonella is a genus of rod-shaped (bacillus) gram-negative bacteria that represents an 

important global public health problem, causing substantial morbidity, and thus also has a 

significant economic impact (Sharma & Carlson, 2000). It consists of more than 2500 

serologically distinguishable variants (or serotypes) that are frequently named for the place of 

initial isolation. In poultry, the numerous motile and non-host-adapted Salmonella serotypes, 

referred as paratyphoid Salmonella, are found nearly ubiquitously in wild and domestic animals. 

This diverse group of serotypes is principally of concern as a cause of food-borne disease in 

humans (Gast, 2008). Salmonella is capable of adhering and forming biofilms on both biotic 

and abiotic surfaces in the food processing environment (Joseph et al., 2001; Chia et al., 2009; 

Marin et al., 2009). According to various definitions that exist, a biofilm is an assemblage of 

microbial cells, irreversibly attached (not removed by gentle rinsing) to a surface growing in 

community and enclosed in a self-synthesized matrix primarily consisted of polysaccharide 

material (Steenackers et al., 2012). Salmonella spp. can form biofilms on food contact surfaces, 

but also in processing areas of poultry farms such as walls, floors, pipes, drains and on contact 

surfaces, such as stainless steel, aluminum, nylon, rubber, plastic, polystyrene, and glass (Joseph 

et al., 2001; Schonewille et al., 2012; Wang et al., 2013). The adhesion and biofilm-forming 

ability of this pathogen depend on several factors including the growth medium, the growth 
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phase of the cells, the type and properties of the inert material, the contact time, the presence of 

organic material, as well as environmental parameters such as temperature and pH (Speranza et 

al., 2011).  

It is well known that elimination of Salmonella biofilm from poultry environment is challenging 

(Davies & Breslin, 2003; Gradel et al., 2005). In contrast to planktonic microorganisms, biofilm 

cells have distinctive characteristics such as antibiotic resistance, preservative tolerance and 

enhanced virulence, leading to chronic infections (Anderson & O’Toole, 2008; Brady et al., 

2008; Martinez-Medina et al. 2009; Hancock et al., 2010). Several chemical agents are 

commercially available for the elimination of Salmonella. However, different studies showed 

high prevalence of Salmonella in poultry environment samples after cleaning and disinfecting in 

broilers and laying hen houses, proving that disinfection was ineffective against the bacteria in a 

field situation (Davies & Breslin, 2003; Møretrø et al., 2012). 

The use of several alternatives to control Salmonella biofilm formation, such as enzymes, 

phagetherapy, extracts from aromatic plants, nanomaterials, quorum sensing inhibitors or 

bacteriocins have been successfully used (Coughlan et al., 2016; Merino et al., 2019).  Lactic 

acid bacteria (LAB) strains, owing to the production of several antimicrobial components, offer 

a natural alternative for prevention and control of foodborne pathogens (Marianelli et al., 2010; 

Sharma et al., 2017; Singh et al., 2018). Recent work has shown that certain LAB strains are 

able to reduce the formation of biofilms by Salmonella spp. (Das et al., 2013; Woo & Ahn, 

2013; Chapman et al., 2014; Gómez et al., 2016). This effect could be explained by its ability to 

coaggregate with potential pathogens and/or produce antimicrobial substances (such as 

hydrogen peroxide) and bio-surfactants that inhibit bacterial adhesion (Cadieux et al., 2009). 

Cell surface hydrophobicity, production of extracellular polymeric substances, presence of some 

structures like fimbriae and flagella and other proteins or polysaccharides, influence attachment 

to surfaces (Donlan, 2002). 

Lactobacillus strains may be used as an alternative to reduce the formation of biofilms by 

pathogens in the food industries and few studies have investigated the role of lactobacilli on the 

inhibition of Salmonella biofilm formation. The objectives of this work were: 1) to investigate 
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the ability of different Salmonella strains isolated from poultry environment to form biofilms on 

different surfaces, 2) to determine the relationship between Salmonella cell surface properties 

and biofilm formation, 3) to investigate the effect of three Lactobacillus strains and their surface 

proteins on Salmonella biofilm formation. 

 

2. Materials and methods 

2.1 Bacterial strains and growth conditions 

Fifteen Salmonella strains representing three serotypes commonly found in poultry and/or 

implicated in foodborne disease were selected for testing. Strains were isolated from chickens, 

poultry compos and eggs (Table 1) and were received from Faculty of Veterinary Sciences 

(Institute of Veterinary Genetics) and Experimental Agricultural Station (National Institute of 

Agricultural Technology). Detailed information about recovery method of Salmonella was 

described by others authors (Rodríguez et al., 2018) and the identification was performed by 

conventional biochemical test and serotyping employing somatic and flagellar antibodies. 

Bacteria were stored in stocks cultures at −80 ºC in 20% v/v glycerol. Working cultures were 

grown for 18 hours at 37°C in aerobic conditions in liquid Luria Bertani (LB; Biokar 

Diagnostic, Beauvais, France). The Lactobacillus strains used for aggregation and inhibition 

assays were grown in Man, Rogose and Sharpe Broth (MRS; Difco Laboratories, Detroit, MI, 

USA) at 30°C for 24 or 48 hours in aerobic conditions.  

2.2. Hydrophobicity assays for microbial adhesion to hydrocarbons 

The protocol was followed according to Golowczyc et al. (2007) with some modifications. 

Briefly, Salmonella cells were harvested in stationary phase by centrifugation for 4 min at 

10000 ×g and resuspended in phosphate buffered saline (PBS) (130 mM sodium chloride, 10 

mM sodium phosphate, pH 7.2). Optical density at 600 nm (OD600) of bacterial suspension was 

adjusted at 0.3 (OD600 = 0.3, equivalent to 8 log
 
CFU/ml) using a spectrophotometer (Metrolab 

330, Argentina). Two ml of bacterial suspension were mixed with 0.4 ml of xylene (apolar 

solvent) by vortexing for 120 s. Since this property is likely affected by the temperature, the 

measurements were carried out at a controlled temperature (20-22ºC). The phases were allowed 
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to separate by decantation (5-10 min), and the OD600 of aqueous phase was measured. The 

relative decrease in OD of the aqueous phase was taken as a measure of the cell surface 

hydrophobicity (%H), as calculated with the formula: 

 %H = (OD600o - OD600)/ OD600o × 100 (1) 

where OD600o and OD600 are the absorbance before and after extraction with xylene, 

respectively. 

2.3 Autoaggregation assays 

Salmonella strains were harvested at stationary phase, collected by centrifugation (10,000 × g 

for 10 min), washed twice, and resuspended in PBS buffer to OD600=0.3 (8 log CFU/ml). 

Optical density was measured in a spectrophotometer (Metrolab 330, Argentina) to determine 

the kinetics of sedimentation. The autoaggregation coefficient (AC) was calculated at 20 h 

according to Golowczyc et al. (2007) as:  

AC = (ODi – ODt)/ODi× 100 (2) 

where ODi is the initial optical density at 600 nm at time 0 of the microbial suspension and ODt 

is the optical density at time t. 

2.4 Coaggregation assays 

Salmonella cells were harvested in stationary phase by centrifugation for 4 min at 5,000 × g and 

resuspended in PBS buffer. Lactobacilli suspensions cells were obtained similarly from 

stationary phase culture in MRS. One millilitre of Lactobacillus suspension (2 × 10
8
 CFU/ml) 

and 1 ml of Salmonella suspension (2 × 10
8
 CFU/ml) were mixed in glass test tubes and 

incubated at 37 °C. Optical density was measured at zero time (ODi
S-L

) and after 20 hours 

without shaking the glass tube (ODt
S-L

). Coaggregation coefficient (CC) was calculated at time 

(t) according to Golowczyc, Mobili, Garrote, Abraham, & De Antoni (2007) as:  

CC = (ODi
S-L

 – ODt)
 S-L

/ODi
S-L

× 100  (3) 

where ODi
S-L

 is the initial optical density at 600 nm of the microbial suspension and ODt
S-L

 is 

the optical density at time t = 20 hours. Coaggregation coefficient (CC) was calculated as stated 

before but subtracting the corresponding aggregation coefficient (AC) of each strain obtained as 

explained in section 2.3. 
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2.5 Surface proteins extraction 

Lactobacillus surface protein extraction was performed with 5 M-LiCl according to Golowczyc 

et al. (2007). Lactobacillus cultures were centrifuged for 10 minutes at 10000 g in Sorvall 

centrifuge, washed twice with PBS and the pellet resuspended in 5 ml of 5M LiCl (J.T. Baker, 

Mallinckrodt Baker S.A., Mexico). The suspension was vortexed for 60 seconds at maximum 

speed and centrifuged at 5000 g for 10 minutes. Supernatant were dialysed (dialysis membrane 

of 14 KDa molecular weight cut-off, Sigma) exhaustively for 48 hours against PBS (pH 7.2) 

under gentle agitation. The PBS was renewed approximately every 12 hours. The protein 

profiles extracts was tested using sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) in 12% separating and 4% stacking gels using the discontinuous buffer system in 

a BioRad Mini-Protean II (BioRad Laboratories, Richmond, CA, USA) equipment. Protein 

concentration was determined by the Bradford method (Golowczyc et al., 2007). Protein 

suspensions extracted were lyophilized and stored at -20 °C 

2.6. Biofilm Assay 

Biofilm assays were performed in 24-well plates and biofilm formation was evaluated by 

colorimetric method using crystal violet staining, as described by Stepanović et al. (2000) and 

Bhowmick et al. (2011) with some modifications. Briefly, 1 ml of LB broth was placed in 24-

well plates and 10 µl (1%) of the working culture (stationary phase) of different Salmonella 

strains were inoculated in each well. After incubation for 48 hours at 28 °C, the medium was 

discarded and wells were washed twice with PBS to remove non adhered cells and air dried for 

one hour to allow fixation of the adhered cells. Then 500 μl of 0.2% crystal violet solution (in 

PBS) were added per well and incubated at room temperature for 30 minutes. Next, the dye was 

discarded followed by 3 washings with PBS to remove the excess of dye. The crystal violet 

from biofilm staining was extracted with 300 μl of 96 % ethanol for 30 minutes. Aliquots (150 

μl) of the supernatant was transferred to 96-well plate and the absorbance at 595 nm in a 

microplate reader (Biotek Synergy HT) was measured. When viable cells enumeration was 

required, supernatants were removed and biofilm were washed twice with PBS. Aliquots of 1 
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ml of PBS were added per well and cells were detached by scraping. Serial dilution (1/10) and 

plate count on LB agar of bacterial suspension was made.  

Biofilm assays were performed using three types of surfaces widely used in poultry processing 

environments: 1-Glass (13 mm diameter and 0.1 mm thickness); 2- Stainless steel sheet (type 

304, no. 4 finish, 13 mm diameter and 0.3mm thickness); 3- Polystyrene (16 mm diameter). The 

test was carried out in triplicate and three independent tests were performed. LB media without 

inoculations were used as a negative control.  

To classify the Salmonella strains according to their capacity to form biofilm, the criteria 

described by Stepanović et al. (2004) and Bhowmick et al. (2011) were used. The cut-off OD 

value (ODc) was defined as 3 standard deviations above the OD average of the negative control. 

Salmonella strains were classified as follows: O.D. ≤ O.D.c corresponded to non-biofilm 

producer, O.D.c < O.D. ≤ (2 x O.D.c) to weak biofilm producer, (2 x O.D.c) < O.D. ≤ (4 x 

O.D.c) represents moderate biofilm producer and (4 x O.D.c) < O.D. corresponded to strong 

biofilm producer. 

2.7. Effect of Lactobacillus and surface proteins on Salmonella biofilm 

Inhibitory effect of Lactobacillus strains and LiCl-extracted proteins on the Salmonella serovar 

Enteritidis 115 biofilm formation was determined in vitro using the commonly used micro-titre 

plate method (MTP) and the viable count of biofilm cells in LB agar as described above. Two 

different types of experiments were performed using bacteria or their protein extract: 1) 24-well 

polystyrene plates were first preincubated with lactobacilli (2 × 10
8
 CFU/ml) or surface 

proteins (0.5 µg/ml) suspension for 2 h and washed softly three times with PBS. Then, 1 ml of 

BHI medium and 10 µl of Salmonella suspension (2 × 10
8
 CFU/ml) was added to each well and 

incubated for 48 h at 28 ºC. 2) One ml of BHI medium was placed in 24-well polystyrene plates. 

Then, 10 µl of lactobacilli (2 × 10
8
 CFU/ml) or surface proteins (0.5 µg/ml) and 10 µl of 

Salmonella (2 × 10
8
 CFU/ml) suspension was added to each well and coincubated for 48 h at 

28 °C. As a negative control, PBS was placed in each well instead of lactobacilli or surface 

proteins. In both cases, Salmonella biofilm formation was studied as described above. None of 
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the three lactobacilli strains were able to grow in LB agar medium. Each treatment was 

performed in duplicate in two independent experiments. 

2.8. Confocal Microscopy  

Biofilms were established on Thermanox glass of 1 cm
2
 as described above (for 48 hours at 28 

°C) and were staining with the Baclight ™ bacterial viability kit from LIVE / DEAD®. After 

that, the samples were washed three times with 2 ml of distilled water and were stained with 

propidium iodide (PI) and SYTO 9 for 10 minutes, to differentiate between living and dead 

cells, according to manufacturer's instructions. 

2.7 Statistical Analysis 

Results were expressed as the mean and standard error of at least three independent replicates. 

Significant differences associated to treatment were analyzed using one-way analysis of 

variance and Tukey test. The statistical difference was indicated at p < 0.001. The Pearson 

correlation test was used to analyze the biofilm correlation level between hydrophobicity and 

biofilm formation. 

 

3. Results and discussion 

3.1 Surface properties 

The interaction between surface and bacterial surface is mediated by a complex array of 

chemical and physical interactions and there are multiple factors involved in cell attachment 

such as hydrophobicity, surface conditioning, surface charge, growth medium, etc. As a result, it 

is difficult to find a relationship between bacteria surface properties and the capacity to form 

biofilm (Palmer et al., 2007). Di Bonaventura et al. (2008) reported a connection between 

hydrophobicity of cell surface and Listeria strains attachment, colonization, and biofilm 

formation. However, other authors reported that there is no relationship between aggregation or 

hydrophobicity and inhibition of pathogen biofilm formation (Gómez et al., 2016; García-

Cayuela et al., 2014). Bacterial adhesion to hydrocarbons has been widely used for measuring 

cell surface hydrophobicity. In this study, cell surface hydrophobicity was measured by xylene 

extraction, an apolar solvent (Table 2). Most strains were hydrophilic, showing a percentage of 
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adhesion to xylene between 0 and 7 % indicating low hydrophobicity. Besides, SE 112, 113, 

114, 115 and 116 were moderately hydrophobic showing the highest affinities for this solvent 

(%H =22-38%). 

Aggregation abilities of Salmonella strains were studied by spectrophotometric assays after 20 

hours (Table 2). In general, Salmonella strains showed high aggregation abilities (27–54 %), 

except SG 110 that showed very low values (16 %). Given that most bacteria live in 

environments with fluctuating conditions (e.g. shear forces, physiological conditions, nutrient 

availability), the microorganisms within aggregated communities will survive and proliferate 

under conditions that reduce the prevalence of single non-aggregated cells (Rickard et al., 

2003). In addition, the aggregation abilities could be important factors that interfere with the 

capability of the pathogens to adhere to different surface through competitive exclusion 

(Collado et al., 2008). The results obtained indicated that strains SE 106 and ST 102 and 108 

could have an advantage to biofilm formation. 

 The coaggregation abilities between Salmonella strains and Lactobacillus plantarum 83114 

and L. kefiri 8321 and 83113 strains isolated from kefir grains were very variable (Table 2). 

Hereof, the highest co-aggregation values were exhibited by ST 108 and SG 110 (more than 72 

%). All Salmonella strains tested showed coaggregation abilities with the lactobacilli strains 

tested, but the percentage of co-aggregation was demonstrated to be strain-specific.  

Bacterial co-aggregation has a considerable significance in several ecological niches. It has been 

suggested that co-aggregation abilities of Lactobacillus strains might interfere with the ability of 

the pathogenic bacteria to infect the host and can prevent the colonization of foodborne 

pathogens (García-Cayuela et al., 2014). In addition, during co-aggregation, Lactobacillus 

strains could control a microenvironment around the pathogens (increasing the concentration of 

inhibitory substances) or could be involved in a competitive exclusion mechanism which 

contributes to the reduction of the pathogenic load during infections (Kaewnopparat et al., 

2013). Beganović et al. (2011) have reported that surface proteins of L. helveticus M92 are 

involved in the autoaggregation and coaggregation with S. Typhimurium.  

3.2 Biofilm formation 
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The results of biofilm formation by Salmonella enterica serotypes on different surfaces are 

shown in the Figure 1. Glass, steel and polystyrene were selected for the study of Salmonella 

biofilm formation because of their extensive use in the food processing industry. 

The results of the biofilm formation on glass surface indicated that 47 % of the strains (7 out of 

15) were biofilm formers. SG 110 and 109, ST 108, and SE 114, 116 and 105 were weak 

biofilm formers and only strain SE 112 exhibited a moderate biofilm formation. The rest of the 

strains were categorized as non-biofilm producers on glass surface. 

The results of the biofilm formation on stainless steel surface indicated that 27 % of the strains 

(4 out of 15) were biofilm formers. SG 109, ST 108, 114 and 105 were weak biofilm formers 

while the other strains were non-biofilm producers in stainless steel.  

More specifically, in the case of glass surface the attached and biofilm cell population of 

different enteropathogenic strains was found to be lower than on stainless steel surface (Gkana 

et al., 2017). Stepanović et al. (2004) investigated the capacity of Salmonella to produce biofilm 

on polystyrene, using 122 strains of Salmonella isolated from different sources and cultured in 

different media and reported that only 1.6 % of the strains produced a strong biofilm at 28 ºC in 

BHI broth. De Oliveira et al. (2014), under the same conditions, observed that 1.7 % of strains 

were able to form biofilms on stainless steel and glass, but were non-biofilm producers on 

polystyrene plates. In our study we found that on polystyrene surface, ST 103 and 102 and SE 

112 and 107 are weak biofilm formers (27 %). SG 109, SE 113 and 105 exhibited a moderate 

biofilm formation ability (20 %). Nevertheless, strain SE 115 showed a marked biofilm 

formation on this surface. Among all the strains studied, strain SE 115 was moderately 

hydrophobic and presented intermediate autoaggregation values (Table 2). It has often been 

challenging to demonstrate a clear relationship between the surface properties and biofilm 

formation in pathogenic bacterial strains because modification in incubation conditions 

influences the ability of microorganisms to form biofilms (Giovannacci et al., 2000). The 

relationship between surface hydrophobicity and the amount of biofilm of bacteria has been 

studied, and the correlations between them are sometimes, but not always evident. Di 

Bonaventura et al. (2008) observed a positive correlation between the hydrophobicity of Listeria 
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monocytogenes and biofilm formation on glass. Similarly, Wang et al. (2013) observed a 

positive correlation between cell surface hydrophobicity and the capacity of individual 

Salmonella strains to form biofilms. There was no correlation between bacterial hydrophobicity 

and biofilm formation in this study (Pearson's correlation coefficient R-square was 0.088, p > 

0.1). The polystyrene is a hydrophobic surface that favors bacterial adhesion, whereas 

microorganisms are less likely to adhere to hydrophilic surfaces, such as stainless steel and glass 

(Simões et al., 2008). Joseph et al. (2001) also observed high Salmonella biofilm production on 

plastic than on stainless steel. In this study, S. Enteritidis 115 showed higher biofilm formation 

on polystyrene (p < 0.001) than on glass or stainless steel surfaces.  

3.3 Effect of Lactobacillus strains and surface proteins on Salmonella biofilm 

The results presented in Figure 1 indicate that among the Salmonella strains, SE 115 exhibited 

the greatest capability to form biofilm on polystyrene surface. We therefore decided to use this 

strain to study the inhibition of biofilm formation by Lactobacillus strains. Figure 2 shows the 

inhibition of SE 115 biofilm formation by Lactobacillus kefiri strain 8321 and 83113 and L. 

plantarum 83114 isolated from kefir grain. When the three lactobacilli strains were 

preincubated in the plate (24 h at 37 °C) and after that Salmonella strain was added, the results 

showed that SE 115 biofilm formation was significantly decreased compared to with the control 

(p < 0.001) (Fig. 2A). Similarly, when the three lactobacilli strains were coincubated in the plate 

(48 h at 28 °C) with SE 115, biofilm formation of this strain was significantly decreased (p < 

0.001) compared to with the control (Fig. 2B). Inhibition of SE 115 biofilm formation by the L. 

kefiri strains studied was greater (approx. 1 logarithm of reduction) when strains were 

preincubated in the plate. However, only L. kefiri 83113 strain showed significantly greater 

inhibition of Salmonella biofilm formation after preincubation assay (p < 0.001). This result 

could indicate that the lactic bacteria adhere (or even form biofilm) on the plate and this could 

be the mechanism to inhibit the development of the biofilm by Salmonella.  

According to several authors, some lactic acid bacteria are able to reduce biofilms formation by 

Salmonella spp. (Chapman et al., 2014; Das et al., 2013; Gómez et al., 2016; Woo & Ahn, 

2013). Das et al. (2013) reported that Lactobacillus plantarum strain KSBT 56, isolated from a 
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traditional food product of India, effectively inhibited the growth, invasion and biofilm forming 

ability of Salmonella ser. Enteritidis. Gómez et al. (2016) demonstrated the use of potential 

probiotic LAB biofilms for the control of Listeria monocytogenes, S. Typhimurium and E. 

coli O157:H7 biofilm formation through exclusion mechanisms.  

Lactic acid bacteria are recognized to produce a wide range of antibacterial compounds 

including organic acids, ethanol, diacetyl, hydrogen peroxide (Arena et al., 2017; Camargo et 

al., 2018). These compounds drastically decrease the pH and are able to inhibit the growth (and 

even cause death of the cells) of Salmonella and affect the formation of biofilm by this 

pathogen. In addition, the coaggregation capacity with potential pathogens and/or production of 

antimicrobial substances (such as hydrogen peroxide) and bio-surfactants could inhibit bacterial 

adhesion (Cadieux et al., 2009). S. Enteritidis 115 showed a high percentage of coaggregation 

with L. kefiri 83113 (57 %) and a lower percentage with L. kefiri 8321 and L. plantarum 83114 

(Table 2). However, the three Lactobacillus strains were able to produce a significant reduction 

in Salmonella biofilm formation in both pre-incubation and co-incubation assays. These results 

indicate that there is no relationship between coaggregation and biofilm formation of 

Salmonella. It is important to highlight that the lactobacilli strains interfered with Salmonella 

biofilm formation in in vitro conditions (under optimal and static growth conditions for 

lactobacilli strains). In the food environment the low nutrient content and adverse temperature 

conditions could be decreased lactobacilli growth and this would be a limitation for the use of 

this strategy. 

Figure 3 illustrates the inhibition of SE 115 biofilm formation by surface proteins extracted 

from Lactobacillus kefiri strain 8321 and 83113 and L. plantarum 83114. When the surface 

proteins extracted from lactobacilli strains were preincubated in the plate (2 h at 37 °C) and 

after that Salmonella strain was added, the results showed that SE 115 biofilm formation was 

significantly decreased compared to with the control (p < 0.001) (Fig. 3A). Similarly, when 

surface proteins extracted from lactobacilli strains were coincubated in the plate (48 h at 28 °C) 

with SE 115, biofilm formation of this strain was significantly decreased (p < 0.001) compared 

with the control (Fig. 3B). The S-layer is a proteinaceous envelope constituted by subunits that 
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self-assemble to form a two-dimensional lattice that covers the surface of different species of 

Bacteria and Archaea, and it could be involved in cell recognition of microbes among other 

various functions (Sára & Sleytr, 2000). The presence of S-layers has been described in many 

bacterial species, including some of the genus Lactobacillus (Hynönen & Palva, 2013). 

Previously, it has been reported that L. kefiri isolates from kefir grains have an S-layer and the 

preincubation of Salmonella with this proteins leads to changes in the surface 

of Salmonella thus antagonizing invasion of cultured human enterocytes (Golowczyc et al., 

2007).  Similarly, these changes in the SE 115 surface in contact with S-layer proteins could 

cause inhibition of biofilm formation by L. kefiri strains. On the other hand, L. plantarum 83114 

does not have S-layers proteins and surface proteins extracted from this strain produced a 

significant inhibition, similar to that observed with the S-layer of L. kefiri. Other authors have 

published similar results with surface proteins of other lactobacilli. Petrova et al. (2016) 

reported that isolated lectin-like molecules from probiotic strain Lactobacillus rhamnosus GG 

possess a pronounced inhibitory activity against biofilm formation by various pathogens, 

including clinical Salmonella species.  

The use of confocal laser scanning microscopy may contribute to a complete understanding of 

the mechanism of inhibition of biofilm formation. Figure 4 shows the biofilm formed by SE 115 

on polystyrene and in coincubation experiments with L. kefiri strain 8321 and 83113 and L. 

plantarum 83114. The biofilm formed by SE 115 was homogenous with most of the living cells 

(green). However, when SE 115 was coincubated with the three lactobacilli strains, the biofilm 

was fully disrupted. These images confirmed the results found by other methodologies and it 

was observed that SE 115 in the presence of lactobacilli strains decreases its ability to form 

biofilm. These results indicate that LAB prevents the development of biofilm either through 

exclusion mechanisms or production of antibacterial compounds that interact with the pathogen 

or components of the biofilm matrix.  

 

4. Conclusions 
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There are few studies that have extensively investigated Lactobacillus interferences associated 

with Salmonella biofilms and even less their surface proteins. Lactobacillus strains isolated 

from kefir grains could be applied as protective bacteria able to shield different surfaces from 

the occurrence of Salmonella biofilms. Our results show that three Lactobacillus strains isolated 

from kefir grain can be excellent candidates to prevent Salmonella biofilm formation. Our 

results also showed that surface proteins contribute to the Salmonella biofilm inhibition. These 

strains and their surface proteins can be excellent candidates to use as a potential alternative to 

the application of disinfectants for surfaces and antibiotics in human and animal health as well 

as in industry worldwide. 
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Legend of the figures 

 

Figure 1. Biofilm formation by Salmonella enterica serotypes on different surfaces A. Glass B. 

Stainless steel C. Polystyrene. The strains were classified as strong, moderate, weak or no 

biofilm formers.  

Figure 2.  Biofilm formation by Salmonella Enteritidis 115 on polystyrene plates in presence of 

Lactobacillus kefiri strain 8321 or strain 83113 or Lactobacillus plantarum strain 83114 in (A) 

preincubations assays and (B) coincubation assays. Different letter implied significant 

difference (p < 0.001). 
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Figure 3. Biofilm formation by Salmonella Enteritidis 115 on polystyrene plates in presence of 

surface proteins extracted from Lactobacillus kefiri strain 8321 or 83113 or L. plantarum 83114 

in (A) preincubations assays and (B) coincubation assays. Different letter implied significant 

difference (p < 0.001). 

Figure 4. Confocal Laser Scanning Microscopy images of biofilm formation by Salmonella 

Enteritidis 115 on polystyrene plates. (A) S. Enteritidis strain 115 (control), (B) coincubated 

with L. kefiri 8321, (C) coincubated with L. kefiri 83113, (D) coincubated with L plantarum 

83114. Magnifications 63X. 
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Table 1. Salmonella strains used in this study and their source 

 

Salmonella serotype Strains Origin 

Enteritidis 
a
 SE 105 Chicken 

Enteritidis 
a
 SE 106 Chicken 

Enteritidis 
a
 SE 107 Chicken 

Enteritidis 
b
 SE 112 Chicken 

Enteritidis 
b
 SE 113 Chicken 
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Enteritidis 
b
 SE 114 Poultry compos 

Enteritidis 
b
 SE 115 Poultry compos 

Enteritidis 
b
 SE 116 Poultry compos 

Typhimurium 
a
 ST 102 Chicken 

Typhimurium 
a
 ST 103 Chicken 

Typhimurium 
b
 ST 108 egg 

Gallinarum 
a
 SG 104 Chicken 

Gallinarum 
a
 SG 109 Chicken 

Gallinarum 
a
 SG 110 Chicken 

Gallinarum 
a
 SG 111 Chicken 

 

a
 Strains received from Gerardo A. Leotta, Faculty of Veterinary Sciences -UNLP, IGEVET- 

Institute of Veterinary Genetics (UNLP-CONICET LA PLATA). 

b
 Strains received from EEA INTA: Experimental Agricultural Station, National Institute of 

Agricultural Technology. 

 

Table 2. Hydrophobicity (%) or H (%), Autoagreggation coefficient (%) or AC (%), 

Coagreggation coefficient (%) or CC (%) of Salmonella strains. 

 Salmonella strains H (%) AC (%) 

CC (%) with Lactobacillus strains 

8321 83113 83114 

SE 105 0.3 ± 1.3 30.5 ± 0.7 15.2 ± 0.4
a 

46 ± 18
b 

28.5 ± 0.5
a 

SE 106 1.9 ± 2.8 54.1 ± 0.7 24 ± 12
a 

69 ± 11
b 

43 ± 3
c 

SE 107 0.2 ± 3.1 29.3 ± 2.0 15 ± 2
a 

59 ± 13
b 

32 ± 5
c 

SE 112 27.9 ± 3.31 27.9 ± 3.3 11.9 ± 0.2
a 

71 ± 3
b 

34 ± 1
c 

SE 113 29.4 ± 3.5 27.7 ± 2.2 8 ± 6
a 

57 ± 2
b 

22 ± 1
c 

SE 114 26.9 ± 9.4 28.8 ± 0.3 8 ± 3
a 

63 ± 1
b 

28.1 ± 0.2
c 

SE 115 22.5 ± 4.1 34.3 ± 3.1 21 ± 5
a 

57 ± 3
b 

34 ± 0.5
a 
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SE 116 38.2 ± 7.1 32.5 ± 0.5 11 ± 3
a 

42 ± 12
b 

35.1 ± 0.8
b 

ST 102 0.6 ± 1.5 45.2 ± 4.3 25 ± 2
a 

66 ± 5
b 

37 ± 4
a 

ST 103 3.1 ± 4.6 33.9 ± 7.4 25 ± 4
a 

72 ± 6
b 

37 ± 1
a 

ST 108 0.3 ± 2.9 42.4 ± 3.6 42 ± 3
a 

90.4 ± 0.6
b 

51 ± 1
a 

SG 104 2.3 ± 2.0 28.1 ± 6.7 5.8 ± 0.4
a 

68 ± 15
b 

30.5 ± 0.4
c 

SG 109 7.2 ± 7.9 26.0 ± 1.3 10 ± 1
a 

55.5 ± 0.6
b 

27 ± 3
c 

SG 110 0.9 ± 6.1 16.2 ± 0.8 50 ± 3
a 

71.7 ± 0.8
b 

27.1 ± 0.9
c 

SG 111 3.2 ± 3.3 28.4 ± 6.3 38 ± 2
a 

73 ± 1
b 

28 ± 1
a 

a,b,c
: Different letters indicate significant differences between the CC (%) results with three 

Lactobacillus strains at alpha 0.05 by Tukey's multiple comparisons 

Graphical abstract 

Highlights 

 Biofilm formation of Salmonella isolated from poultry was investigated under different 

conditions. 

 Three Lactobacillus strains can be excellent candidates to prevent Salmonella biofilm 

formation.  

 Surface proteins extracted from lactobacilli strains contribute to the Salmonella biofilm 

inhibition.  
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