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Decompositions of complete uniform multipartite hypergraphs

Patrick Ward

Abstract

In recent years, researchers have studied the existence of complete uniform hypergraphs into small-order
hypergraphs. In particular, results on small 3-uniform graphs including loose 3, 4, and 5 cycles have
been studied, as well as 4-uniform loose cycles of length 3. As part of these studies, decompositions of
multipartite hypergraphs were constructed. In this paper, we extend this work to higher uniformity and
order as well as expand the class of hypergraphs.

1 Introduction

A common problem in combinatorial designs is graph decompositions. Most results on graph decompositions
are for simple graphs. Results on hypergraph decompositions are limited to small hypergraphs of small
uniformity or to a limited class of hypergraphs. The author contributed this research in [2] and [3]. The
goal of this research is to extend the study of hypergraph decompositions to a wider range of graph classes
and for graphs of any size and uniformity.

1.1 Main Results

In our paper we present a new technique for decomposing complete multipartite graphs. This technique
applies to hypergraphs of any size and uniformity, and we present three graph classes to which the decom-
position technique applies. Finally, we introduce a property of hypergraphs which relates coloring of the
hypergraphs to decomposition of complete multipartite graphs and give some neccesary conditions for this
property.

1.2 Graph Decompositions

The study of combinatorial designs concerns the arrangements of finite sets into subsets so that certain
properties are met. A famous problem in combinatorial designs is the existence of a Steiner triple system.
A Steiner triple system is a set of points S and a set of three element subsets of S, T , such that every pair
of points in S occurs in exactly one triple in T . The order of the system is |S|. A Steiner triple system can
be rephrased as a graph decomposition. Suppose each triple in a Steiner triple system of order n is a graph
where the vertices are the points of the triple and the edges form a triangle between the vertices. Then the
Steiner triple system is equivalent to a decomposition of Kn into triangles.

Example 1.1. {{1, 2, 3, 4, 5, 6, 7}, {{1, 2, 4}, {2, 3, 5}, {3, 4, 7}, {4, 5, 1}, {5, 6, 2}, {6, 7, 3}, {7, 1, 4}}} is a Steiner
triple system of order 7. The corresponding graph decomposition is shown in Figure 1.

We now present an overview of graph decompositions. A decomposition of a graph K is a set ∆ =
{G1, G2, . . . , Gs} of pairwise edge-disjoint subgraphs of K such that E(G1) ∪E(G2) ∪ · · · ∪E(Gs) = E(K).
If each element of ∆ is isomorphic to a fixed graph G, then ∆ is called a G-decomposition of K. A G-
decomposition of Kv is also known as a G-design of order v. A Kk-design of order v is an S(2, k, v)-design
or a Steiner system. An S(2, k, v)-design is also known as a balanced incomplete block design of index 1 or
a (v, k, 1)-BIBD. The problem of determining all v for which there exists a G-design of order v is of special
interest (see [1] for a survey).

The notion of decompositions of graphs naturally extends to decompositions of uniform hypergraphs. A
hypergraph H consists of a finite nonempty set V of vertices and a set E = {e1, e2, . . . , em} of nonempty
subsets of V called hyperedges. If for each e ∈ E we have |e| = λ, then H is said to be λ-uniform. Thus
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Figure 1: A decomposition of K7 into triangles, or a Steiner triple system of order 7

graphs are 2-uniform hypergraphs. To indicate that a hypergraph H has uniformity λ, we write H(λ). The
complete λ-uniform hypergraph on the vertex set V has the set of all λ-element subsets of V as its edge set

and is denoted by K
(λ)
V . If v = |V |, then K

(λ)
v is called the complete λ-uniform hypergraph of order v and is

used to denote any hypergraph isomorphic to K
(λ)
V .

Example 1.2. The four-uniform complete graph of order five is

K
(4)
5 =

(
Z5,
{
{0, 1, 2, 3}, {1, 2, 3, 4}, {0, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 4}

})
.

A decomposition of a hypergraph K is a set ∆ = {H1, H2, . . . ,Hs} of pairwise edge-disjoint subgraphs
of K such that E(H1) ∪ E(H2) ∪ · · · ∪ E(Hs) = E(K). If each element Hi of ∆ is isomorphic to a fixed
hypergraph H, then Hi is called an H-block, and ∆ is called an H-decomposition of K. If there exists an
H-decomposition of K, then we may simply state that H decomposes K. A common problem in hypergraph
decompositions is to find the necessary and sufficient conditions on n for the existence of a decomposition of

K
(λ)
n into isomorphic copies of H. The authors of [4] found these conditions for each 3-uniform hypergraph

with at most 3 edges and at most 6 vertices. To that end, the authors found decompositions of complete
tripartite hypergraphs. Similar results for 3-uniform loose 5-cycles and 4-uniform loose 3-cycles were found
in [2] and [3]. Decompositions of λ-partite, λ-uniform hypergraphs into Hamiltonian cycles were studied in
[7] and [9].

1.3 Additional Notation and Terminology

If a and b are integers, we define [a, b] to be {r ∈ Z : a ≤ r ≤ b}. Let Zn denote the group of integers
modulo n. We next define some notation for certain types of hypergraphs.

Let V (H) denote the set of vertices for a hypergraph H and let E(H) denote the set of edges for a
hypergraph H.

In this paper we are interested in decompositions of complete uniform multipartite hypergraphs. Let

U1, U2, . . . Uλ be pairwise disjoint sets. The hypergraph with vertex set
λ⋃
i=1

Ui and edge set consisting of all

λ-element sets having exactly one vertex in each of U1, U2, . . . Uλ is denoted by K
(λ)
U1,U2,...Uλ

. If |Ui| = ui for

1 ≤ i ≤ λ, we may use K
(λ)
u1,u2,...uλ to denote any hypergraph that is isomorphic to K

(λ)
U1,U2,...Uλ

. A complete
multipartite hypergraph is balanced if each set has the same cardinality. We denote a complete λ-uniform,

λ-partite hypergraph where each set has n vertices by K
(λ)
λ×n.

Example 1.3. The three-uniform complete multipartite graph for three parts of size four is

K
(3)
3×4 = {{Z3 × Z3}, {{(i, 0), (j, 1), (k, 2)} : i, j, k ∈ Z4}}.

We also refer to multipartite-like hypergraphs. Let U1, U2, . . . Um be pairwise disjoint sets. The hyper-

graphs with vertex set
m⋃
i=1

Ui and edge set consisting of all λ-element sets having at least one vertex in each
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of U1, U2, . . . Um is denoted by L
(λ)
U1,U2,...Um

. If |Ui| = ui for 1 ≤ i ≤ m, we may use L
(λ)
u1,u2,...um to denoted a

hypergraph isomorphic to L
(λ)
U1,U2,...Um

.
In this paper we are interested in three particular classes of λ-uniform hypergraphs. They are

• The λ-uniform loose n cycle, denoted LC
(λ)
n which has vertex set {v1, v2, . . . , vn(λ−1)} and edge set

{{vi(λ−1)+1, vi(λ−1)+2, . . . , vi(λ−1)+λ} : 0 ≤ i ≤ n − 2} ∪ {v1, vn(λ−1), vn(λ−1)−1, . . . , vn(λ−1)−(λ−2)}.
Notice that d(v) = 2 for v ∈ {vi(λ−1)+1 : 0 ≤ n − 2}. Denote this set of vertices S2. Denote the

complement of S2 in V (LC
(λ)
n by S1 and note that each v ∈ S1 has d(v) = 1. An example is shown in

Figure 2.

• The λ-uniform loose n path, denoted LP
(λ)
n which has vertex set {v1, v2, . . . , vn(λ−1)+1} and edge set

{{vi(λ−1)+1, vi(λ−1)+2, . . . , vi(λ−1)+λ} : 0 ≤ i ≤ n− 1}. An example is shown in Figure 3.

• A star forest, where a λ-uniform star denoted S
(λ)
n is a hypergraph with vertex set {v1, . . . vn(λ−1)+1}

and edge set {{v1, vi(λ−1)+2, vi(λ−1)+3, . . . , vi(λ−1)+λ} : 0 ≤ i ≤ n−1} and a star forest is a hypergraph
in which the connected components are stars. In this paper we assume that all stars in a star forest
have the same uniformity. An example of a star is shown in Figure 4.

Figure 2: The 4-uniform loose 3-cycle, LC
(4)
3

Figure 3: The 3-uniform loose 4-path, LP
(3)
4

Figure 4: A 5-uniform 4-star

We define the degree of a vertex v to mean the number of edges which contain v. We denote the degree
of a vertex as d(v). Similarly, we define the degree of a set of vertices {v1, . . . , vk} to mean the number of
edges which contain the entire set of vertices.
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We define the order of the hypergraph H to mean the cardinality of the vertex set of H and the size of
the hypergraph H to mean the cardinality of the edge set of H.

2 A technique for decomposing K
(λ)
λ×n

The main result of our research is a technique for decomposing K
(λ)
λ×n which can be applied to hypergraphs

of any size and uniformity. The two uniform version of this problem is the existence of a decomposition is
studied in [5],[6], [8], [10] and [11]. These results are discussed more in Section 4. The study of decompositions

of K
(λ)
λ×n is also motivated by the spectrum problem for λ uniform hypergraphs. In [3] and [4], the authors

used the fact that a decomposition of K
(3)
mx is equivalent to a decomposition of xK

(3))
m ∪

(
x
2

)
L

(3)
m,m∪

(
x
3

)
K

(3)
m,m,m.

Similarly in [2] the authors used the fact that a decomposition of K
(4)
mx is equivalent to a decomposition of

xK
(4))
m ∪

(
x
2

)
L

(4)
m,m∪

(
x
3

)
L

(3)
m,m,m∪

(
x
4

)
K

(4)
m,m,m,m. This led the author to consider the decompositions of K

(λ)
λ×n.

The methods used in [3] and [4] involve labelling a set of copies of a hypergraph H. The cardinality of this
set increases as the size and uniformity of H increases. This led the authors of [2] to create a method which
only involves labelling one copy of H. Our technique is a generalization of this method for hypergraphs of
any size, uniformity and for a wide range of graph classes.

If it is possible to label the vertices H with λ colors such that no two vertices of an edge are the same
color, then we say the graph is λ-colorable. From this point, any reference to a coloring of H will mean a
coloring in which no two vertices of an edge are the same color. For any coloring C of H, define the color
class Cx to mean the set of all vertices of H colored x. Define the Cx,y-induced subgraph of H to be the
graph with vertex set Cx ∪ Cy and edges {u, v} ⊆ e for some e ∈ E(H) where u ∈ Cx and v ∈ Cy. A coloring
and a C0,1 induced subgraph are shown in Figure 5. For a λ-colorable hypergraph H, we often refer to the
edge set of H as a set of ordered pairs in Zλ × Zn. Then (vi,j , j) gives the coordinate of the vertex in the
jth column of the ith edge of H.

Theorem 1. Suppose H is a λ-uniform, λ-colorable hypergraph of size n. If for some coloring C of H with

λ colors, there exist two colors x and y such that the Cx,y-induced subgraph of H decomposes K
(2)
n,n then H

decomposes K
(λ)
λ×n.

Proof. Assume that for a coloring C of H with the colors {0, . . . , λ− 1} there exists a C0,1-induced subgraph

of H which decomposes K
(2)
n,n. Call this graph G and call ∆ a G-decomposition of K

(2)
n,n. Let V (K

(λ)
λ×n) =

Zλ × Zn. For each G ∈ ∆, let {{(g0,i, 0), (g1,i, 1)} : 1 ≤ i ≤ n} be an embedding of G in K
(2)
n,n. Let

{{(v0,i, 0), (v1,i, 1), . . . , (vλ−1,i, λ− 1)} : 1 ≤ i ≤ n} be an embedding of H in K
(λ)
λ×n. Let

HG,j2,j3...,jλ−1
=

n⋃
i=1

{(g0,i, 0), (g1,i, 1), (v2,i + j2, 2), (v3,i + j3, 3), . . . , (vλ−1,i + jλ+1, λ− 1)}.

We show that an H decomposition of K
(λ)
λ×n is Γ =

⋃
G∈∆

⋃
0≤j2,j3,...,jλ−1≤n−1

HG,j2,j3...,jλ−1
.

There are nλ edges in K
(λ)
λ×n. There are n copies of G ∈ ∆, so there are nλ−1 copies of H ∈ Γ. Therefore

the the number of edges in the copies of H ∈ Γ is nnλ−1 = nλ which is equal to the number of edges in

K
(λ)
λ×n.

Next we will show that for each e ∈ E(K
(λ)
λ×n), e ∈ E(H) for some H ∈ Γ. Consider the edge

{(w0, 0), (w1, 1), . . . , (wλ−1, λ − 1)} ∈ E(K
(λ)
λ×n). Since G decomposes K

(2)
n,n, there is a G∗ ∈ ∆ such that

{(w0, 0), (w1, 1)} ∈ E(G∗). Suppose this is the ith edge in G∗. For each for each k > 1, there exists a
j∗k ∈ Zn such that vk,i + j∗k = wk. Then {(w0, 0), (w1, 1), . . . , (wλ−1, λ− 1)} ∈ E(HG∗,j∗2 ,j

∗
3 ...,j

∗
λ−1

).

Since for each e ∈ E(K
(λ)
λ×n), e ∈ E(H) for some H ∈ Γ and there are exactly nλ−1 copies of H ∈ Γ, each

edge in E(K
(λ)
λ×n) is in E(H) for exactly one copy of H. Then Γ is an H-decomposition of K

(λ)
λ×n.
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3 Graph classes which decompose K
(λ)
λ×n

In this section, we present three corollaries to Theorem 1 which illustrate the decomposition technique. The

decomposition technique was inspired when the author was studying decompositions of K
(λ)
n into loose cycles.

In [2] the authors found a decomposition of K
(4)
3,3,3,3 into LC

(4)
3 and in [3] the authors found a decomposition

of K
(n)
5,5,5 into LC

(3)
5 . While studying a finding a decomposition of K

(4)
3,3,3,3 into LC

(4)
3 , the author was able

to generalize the technique to any loose cycle of any uniformity and to other graph classes.

Corollary 2. LC
(λ)
n decomposes K

(λ)
λ×n.

Proof. Consider LC
(λ)
n as defined in subsection 1.3. Let G be the graph with vertex set {v2, vn(λ−1)} ∪

{vi(λ−1)+1 : 1 ≤ i ≤ n − 1} and edge set {{v2, vλ}, {vn(λ−1), vn(λ−1)−(λ−2)}} ∪ {{vi(λ−1)+1, vi(λ−1)+λ} : 1 ≤
i ≤ n− 2}. Then G is a path formed by two vertex sets of different edges in E(LC

(λ)
n ). A path is bipartite

and is shown to decompose K
(2)
n,n in [11]. It follows from Theorem 1 that LC

(λ)
n decomposes K

(λ)
λ×n.

Corollary 3. LP
(λ)
n decomposes K

(λ)
λ×n.

Proof. Consider LP
(λ)
n as defined in subsection 1.3. LetG be the graph with vertex set {vi(λ−1)+1 : 0 ≤ i ≤ n}

and edge set {{vi(λ−1)+1, vi(λ−1)+λ} : 0 ≤ i ≤ n−1}. Then G is a path formed by two vertex sets of different

edges in E(LP
(λ)
n ). A path is bipartite and is shown to decompose K

(2)
n,n in [11]. It follows from Theorem 1

that LP
(λ)
n decomposes K

(λ)
λ×n.

Corollary 4. A λ-uniform star forest of size n decomposes K
(λ)
λ×n.

Proof. Let {S1, . . . , Sm} be a forest of λ uniform stars as defined in subsection 1.3 where Si has size si and∑
i = 1msi = n. Then let G be the graph with vertex set

m⋃
i=1

{v1} ∪ {vj(λ−1)+2 : 0 ≤ j ≤ si − 1} and edge

set
m⋃
i=1

{{v1, vj(λ−1)+2} : 0 ≤ j ≤ si− 1}. Then G is a star forest of size n which is shown to decompose K
(2)
n,n

in [5]. It follows from Theorem 1 that {S1, . . . , Sm} decomposes K
(λ)
λ×n.

4 Property P

To apply Theorem 1 for a hypergraph H, there must exist a simple 2-uniform graph formed by two vertex

sets of edges, and this graph must decompose K
(2)
n,n. The problem of decomposing K

(2)
n,n is well studied. It is

conjectured by Graham and Häggkvist that every tree of size n decomposes K
(2)
n,n (see [6]). The authors of

[8] prove the conjecture for some families of trees. Sotteau proved in [10] that cycles of length 2k decompose

K
(2)
2k,2k

We instead focus on the existence of a simple 2-uniform graph formed by two vertex sets of edges.

Definition 4.1. Let H be a λ-uniform hypergraph on n-vertices. We say H has property P if there exists a
coloring C with the colors {0, 1, . . . , λ− 1} such that no {u, v} ⊂ V (H) with d({u, v}) > 1 is an edge in the
C0,1-induced subgraph.

We now present a lemma which connects property P to Theorem 1.

Lemma 5. Assume H is a λ-uniform, λ-colorable hypergraph of size n. If for some λ-coloring C of H there

exist two colors x and y such that the Cx,y-induced subgraph of H decomposes K
(2)
n,n, then H has property P .

Proof. Assume that for a coloring of H with color set {0, . . . , λ − 1} there exists a C0,1-induced subgraph

of H which decomposes K
(2)
n,n. Call this graph G. Since G decomposes K

(2)
n,n, then it is a simple graph.

Therefore, d(u, v) = 1 if {u, v} ∈ E(G). It follows that H has property P .
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Figure 5: A hypergraph colored with the colors {0, 1, 2}. The C0,1-induced subgraph is highlighted in red

Lemma 5 implies that if a hypergraph has property P , then finding a decomposition of K
(2)
n,n into the

C0,1-induced subgraph is all that is required to find a decomposition of K
(λ)
λ×n. In other words, the problem of

finding a decomposition of a λ-uniform hypergraph is reduced to finding a decomposition of a simple graph.
In the final section of the paper, we focus on necessary conditions on a hypergraph to have property P . This
gives insight on hypergraphs for which we can apply Theorem 1.

5 Some necessary conditions for P

We now present some necessary conditions on a hypergraph so that the hypergraph has property P. In
particular, we present one necessary condition for general λ based on the chromatic number of a graph
formed by subsets of edges.

Definition 5.1. Let H be a λ-uniform hypergraph. Let H2 be the set graph with edge set, {{u, v} ⊂ V (H)
: d({u, v}) > 1}.

Definition 5.2. For a graph G, let the chromatic number, denoted χ(G), be the fewest colors needed to color
a graph such that no two adjacent vertices share a color.

Theorem 6. Let H be a λ-uniform, λ-colorable hypergraph. If χ(H2) = λ, then H does not have property
P .

Proof. Suppose H is a λ-uniform, λ-colorable hypergraph and χ(H2) = λ. For the sake of contradiction,
assume H has property P . Then there exists a coloring C with the colors {0, . . . , λ− 1} such that for every
v ∈ V (H2) ∩ C1 and u ∈ V (H2) ∩ C0, {u, v} /∈ E(H2). Then C∗ defined by C∗i = Ci for 2 ≤ i ≤ λ − 1 and
C∗1 = C1 ∪C0 is a coloring of H2 with λ− 1 colors so χ(H2) < λ which is a contradiction, so H does not have
property P .

5.1 Some necessary conditions for P when H is 3-uniform

We now present some necessary conditions for P when H is 3-uniform. In particular, we take advantage of
the fact that for any two vertices {u, v} with d({u, v}) > 1, either u or v is in C2 for some coloring C with
the colors {0, 1, 2}. This leads us to a subgraph we call the special path.

Definition 5.3. Let the Special Path, denoted SPn, for odd n > 1, be the 3-uniform hypergraph with
V (SPn) = {0, 1, . . . , (5n+ 1)/2} and E(SPn) = {{5i, 5i+ 1, 5i+ 3}, {5i, 5i+ 2, 5i+ 3}, {5i+ 3, 5i+ 4, 5i+ 5} :
0 ≤ i ≤ Z(n−3)/2}∪{{(5n+ 1)/2, (5n−1)/2, (5n−5)/2}, {(5n+ 1)/2, (5n−3)/2, (5n−5)/2}}. For n = 1 let

V (SP1) = Z4 and E(SP1) =
{
{0, 1, 3}, {0, 2, 3}

}
. Call vertex 0 and vertex (5n+ 1)/2 the ends of the special

path. A special path is shown in Figure 6.

Lemma 7. If H is a 3-uniform, 3-colorable hypergraph with property P which contains a special path, then
for some coloring of H with the colors {0, 1, 2} at least one of the ends of the special path must be colored 2.

6



Figure 6: A SP3

Proof. (Induction) Let H be a 3-uniform, 3-colorable hypergraph with property P which contains a special
path.

Base Case: Call the ends of SP1 a and b. Clearly in some coloring C which has the colors {0, 1, 2}, either
a or b must be in C2 or else d({a, b}) > 1 and {a, b} is in the C0,1-induced subgraph.

Inductive Step: Assume that for some coloring C with the colors {0, 1, 2}, one end of the SPn−2 must be
in C2. Notice that V (SPn) = V (SPn−2) ∪ {(5n + 1)/2, (5n − 1)/2, (5n − 3)/2, (5n − 5)/2, (5n − 7)/2} and
E(SPn) = E(SPn−2) ∪ {{(5n − 9)/2, (5n − 7)/2, (5n − 5)/2}, {(5n − 5)/2, (5n − 3)/2, (5n + 1)/2}, {(5n −
5)/2, (5n − 1)/2, (5n + 1)/2}}. From the induction hypothesis, vertex 0 or vertex (5n − 9)/2 is in C2. If
vertex 0 is in C2, then one end of SPn is in C2. Otherwise vertex (5n− 9)/2 is in C2. Since vertex (5n− 5)/2
is adjacent to vertex (5n− 9)/2, vertex (5n− 5)/2 is not in C2. Since d((5n− 5)/2, (5n+ 1)/2) > 1, vertex
(5n+ 1)/2 must be in C2. Therefore, the assumption that one end of the SPn−2 must be in C2 implies that
one end of SPn must be in C2. From this, one end of SPn must be in C2 for every odd n.

Corollary 8. Suppose H is a 3-uniform, 3-colorable hypergraph with property P that contains a special path,
let a and b be the ends of the special path and let c be adjacent to a and b. Then for any coloring C in which
a or b is in C2, c /∈ C2

Proof. Let H be a 3-uniform, 3-colorable hypergraph with property P that contains a special path with ends
a and b. From Lemma 7, either a or b is in C2 for some coloring C of H with the colors {0, 1, 2}. Since c is
adjacent to a and b, c /∈ C2.

It is well known that a 2-uniform graph is bipartite if and only if it does not contain an odd cycle. We
obtain a similar result for coloring loose odd cycles with {0, 1, 2}.

Lemma 9. Suppose H is a 3-uniform, 3-colorable hypergraph which contains a loose n cycle for some odd n.
Then for any coloring C of H with the colors {0, 1, 2}, there are between 1 and (n− 1)/2 vertices in S2 ∩ C2.

Proof. Let H be a 3-uniform, 3-colorable hypergraph which contains a loose n cycle for some odd n. If more
than (n − 1)/2 vertices are in S2 ∩ C2, then two of those vertices are adjacent by the pigeonhole principle.
Then there are at most (n−1)/2 vertices in S2∩C2. Similarly, there are at most (n−1)/2 vertices in S2∩C0
and at most (n− 1)/2 vertices in S2 ∩C1 so there are at most n− 1 vertices in S2 which are not in C2. From
this, there is at least one vertex in S2 ∩ C2.

Lemma 7, Corollary 8 and Lemma 9 give restrictions on which vertices can or cannot be in C2. We now
present three ways in which these restrictions intersect so that a hypergraph cannot have property P.

Theorem 10. If H is a 3-uniform, 3-colorable hypergraph and H contains a special path whose ends are
adjacent to both ends of other special paths, then H does not have property P .

Proof. Assume for the sake of contradiction that H is a 3-uniform, 3-colorable hypergraph and H contains a
special path whose ends are adjacent to both ends of another special path and H has property P . Consider
the special path whose ends are adjacent to both ends of other special paths. By Lemma 7, at least one end
of the special path is in C2 for some coloring C with the colors {0, 1, 2}. However since this vertex is adjacent

7



to both ends of a special path, it cannot be in C2 by Corollary 8, so a contradiction arises. From this, H
does not have property P .

Theorem 11. Suppose H is a 3-uniform, 3-colorable hypergraph which contains a loose n cycle for some
odd n. If each vertex in S1 or if each vertex in S2 is adjacent to both ends of some special path, then H does
not have property P .

Proof. Assume that H is a 3-uniform, 3-colorable hypergraph which contains a loose n cycle for some odd
n. Assume for the sake of contradiction that H has property P . We divide the proof into two cases.

Case 1: Assume that each vertex in S1 is adjacent to both ends of some special path. Then for some
coloring C with the colors {0, 1, 2}, each vertex in S1 is in C0 or C1 by Corollary 8. Then each of these
vertices is adjacent to a vertex in S2 which is also in C2. Since there are n vertices in S1, there must be at
least n/2 vertices in S2 which are in in C2. This is a contradiction to Lemma 9.

Case 2: Assume that each vertex in S2 is adjacent to both ends of some special path. Then each vertex
in S2 is in C0 or C1 for some coloring C of H with the colors {0, 1, 2} by Corollary 8. Then no vertex in S2 is
in C2, which contradicts Lemma 9.

In both cases, a contradiction arises so H does not have property P .

Theorem 12. Suppose H is a 3-uniform, 3-colorable hypergraph which contains n special paths for some
odd n. Let {a1, . . . , an} and {b1, . . . , bn} be the sets of ends of the specials paths. Let S2 and T2 be the sets of
vertices with degree 2 for two loose n cycles in contained in H. If {a1, . . . , an} = S2 and {b1, . . . , bn} = T2,
then H does not have property P .

Proof. Assume that H is a 3-uniform, 3-colorable hypergraph which contains n special path for some odd
n. Let {a1, . . . , an} and {b1, . . . , bn} be the sets of ends of the specials paths with {a1, . . . , an} = S2 and
{b1, . . . , bn} = T2. Assume for the sake of contradiction that H has property P . By Lemma 7 at least n of
the vertices in {a1, . . . , an, b1, . . . , bn} are in C2 for some coloring C of H with the colors {0, 1, 2}. However
since {a1, . . . , an} = S2 and {b1, . . . , bn} = T2, Lemma 9 implies that at most n−1 of {a1, . . . , an, b1, . . . , bn}
are in C2. This is a contradiction, so H does not have property P .

References

[1] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16
(2008), 373–410.

[2] R.C. Bunge, S.I. El-Zanati, P. Florido, C. Gaskins, W. Turner, P. Ward, On Loose 3-cycle Decomposi-
tions, Packings, and Coverings of λ-fold Complete 4-uniform Hypergraphs, in preparation.

[3] R.C. Bunge, S.I. El-Zanati, J. Jetton, M. Juarez, A. Netz, D. Roberts, P. Ward, On Loose 5-cycle
Decompositions, Packings, and Coverings of λ-fold Complete 3-uniform Hypergraphs, submitted.

[4] D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hyper-
graphs into small 3-uniform hypergraphs, Australas. J. Combin. 60 (2014), 227–254.

[5] S. I. El-Zanati, M. Kopp, M. Plantholt, S. Rice, On decomposing regular graphs into star forests,
International Journal of Mathematics and Computer Science 11 (2016), 249–256.
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