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Abbreviations: ptDNA, plastid genome; mtDNA, mitochondrial genome; PE, paired-end; 

MTPT, mitochondrial sequence of plastid origin; SSC, small single copy region; LSC, large 

single copy region; IR, inverted repeat; TE, transposable element; LR, large repeat; IntR, 

intermediate repeat; SR, short repeat; TR, tandem repeat; HGT, horizontal gene transfer. 

Abstract 

Short repeats (SR) play an important role in shaping seed plant mitochondrial 

genomes (mtDNAs). However, their origin, distribution, and relationships across the different 

plant lineages remain unresolved. We focus on the angiosperm family Solanaceae that shows 

a wide diversity in repeat content and extend the study to a wide diversity of seed plants. We 

determined the complete nucleotide sequences of the organellar genomes of the medicinal 

plant Physochlaina orientalis (Solanaceae), member of the tribe Hyoscyameae. To 

understand the evolution of the P. orientalis mtDNA we made comparisons with those of five 

other Solanaceae. P. orientalis mtDNA presents the largest mitogenome (~685 kb in size) 

among the Solanaceae and has an unprecedented 8-copy repeat family of ~8.2 kb in length 

and a great number of SR arranged in tandem-like structures. We found that the SR in the 

Solanaceae share a common origin, but these only expanded in members of the tribe 

Hyoscyameae. We discuss a mechanism that could explain SR formation and expansion in P. 

orientalis and Hyoscyamus niger. Finally, the great increase in plant mitochondrial data 

allowed us to systematically extend our repeat analysis to a total of 136 seed plants to 

characterize and analyze for the first time families of SR among seed plant mtDNAs.  
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1. Introduction 

Among eukaryotes, flowering plant (i.e. angiosperm) mitochondria exhibit unique 

genomes with intra- and inter-species contrasting features that makes them one of the most 

interesting genomes to study. They are the largest mitochondrial genomes reported so far and 

can vary from 66 kb (Skippington et al., 2015) to more than 11.3 Mb (Sloan et al., 2012a), 

with cases of multi-chromosomal mitogenomes (Alverson et al., 2011a, Sanchez-Puerta et al., 

2016; Sloan et al., 2012a). The increase in genome length is attributed to the incredible 

variation in non-coding content, which can include duplicated regions (Alverson et al., 2010; 

Dong et al., 2018), sequences from the nuclear or plastid genomes acquired through 

intracellular gene transfer, or foreign mitochondrial sequences acquired through horizontal 

gene transfer (HGT) (Bergthorsson et al., 2004; Rice et al., 2013; Sanchez-Puerta et al., 

2019). In addition, gene content can also fluctuate considerably between species as functional 

gene transfer to the nucleus is still an ongoing and frequent process (Adams et al., 2002; 

Covello and Gray, 1992). Angiosperm mitochondrial genomes (mtDNAs) are generally 

characterized by very low rates of sequence substitution and high rates of genome 

rearrangements (Cole et al., 2018; Palmer and Herbon, 1988; Sloan et al., 2012c). As a result, 

gene order is highly scrambled between mitogenomes of even closely related species 

(Alverson et al., 2010; Ogihara et al., 2005). Nonetheless, collinear gene blocks are 

maintained within lineages and a few persist since the endosymbiotic event that gave rise to 

mitochondria (Lelandais et al., 1996; Richardson et al., 2013; Sugiyama et al., 2005; 

Takemura et al., 1992). 

Seed plant mtDNAs frequently contain a large fraction of repeated sequences that can 

be classified as large (LR), intermediate (IntR), and short (SR) repeats (Maréchal and 

Brisson, 2010; Mower et al., 2012). Their distribution among seed plants is not uniform 

(Alverson et al., 2011b; Wynn and Christensen, 2019). For example, Cucurbita pepo and 

Nymphaea colorata present a great extent of their mtDNAs covered by SR (Alverson et al., 

2010; Dong et al., 2018), Brassica oleracea and Oryza sativa contain several LR (Chang et 

al., 2011; Notsu et al., 2002), and Viscum scurruloideum harbors a large amount of both kinds 

of repeats (Skippington et al., 2015). To date, we know that LR are present in most but not all 

angiosperms (Alverson et al., 2011b). They generally exhibit two or three copies in nearly 

equal stoichiometry, implying that they undergo frequent and reversible homologous 

recombination that is responsible for the typical multipartite structure of seed plant mtDNAs 

(Lonsdale et al., 1988; Oldenburg and Bendich, 1996; Sugiyama et al., 2005). In contrast, 

recombination across SR is infrequent and irreversible (Arrieta-Montiel et al., 2001; Small et 



  

 

 

al., 1987). Rare recombination across SR gives rise to DNA molecules in very low number, 

so-called sublimons, and different mitochondrial genotypes coexist within an organism  

(Arrieta-Montiel et al., 2001; Small et al., 1987). Comparative analyses of closely related 

genomes showed that the endpoints of large genome rearrangements are usually associated 

with SR (Allen et al., 2007; Fauron et al., 1990; Nishizawa et al., 2007). Short interspersed 

repeats are widespread among many plant species and  they certainly have an important role 

in shaping the mtDNA structure (André et al., 1992; Kanazawa et al., 1998; Small et al., 

1989; Woloszynska, 2010). However, little is known about their origin, expansion, and 

distribution across the different seed plant lineages. It has been suggested that reverse 

transcription of non-functional mitochondrial transcripts and subsequent insertion into the 

genome might be responsible for the generation of SR (André et al., 1992; Kanazawa et al., 

1998). Nonetheless, the origin and expansion of SR in plant mitochondria remain a mystery.  

The present study focuses on the mtDNAs of the family Solanaceae, where we 

identified great variation in repeat content. We provide the complete organelle sequences of 

Physochlaina orientalis, a Solanaceae of the tribe Hyoscyameae. Comparisons of the P. 

orientalis mtDNA with those available from five Solanaceae species revealed extensive 

diversity in repeat content. Our data suggest that SR share a common origin, although they 

only expanded in the tribe Hyoscyameae. We discuss a mechanism that could explain SR 

generation and expansion in P. orientalis. Finally, given the limited information on short 

repeated sequences in plant mitochondria, we take advantage of the rapid increase in publicly 

available mtDNAs to study for the first time the short repeat content and their relationships in 

136 seed plants providing valuable information of their origin, characteristics, and 

distribution.



  

 

 

2. Materials and Methods 

2.1. Plant material and mitochondrial DNA extraction 

Seeds of Physochlaina orientalis (NBG944750045) were obtained from the Nijmegen 

Botanical Garden (The Netherlands). Plants were cultivated in vitro and total DNA was 

extracted from young leaves using the DNeasy Plant Mini kit (Qiagen).  

 

2.2. Genome sequencing and assembly 

Whole-genome shotgun sequencing was performed using the Illumina HiSeq 2500 

platform at the Beijing Genomics Institute. A total of 15.88 Gb data containing 26.5 M clean 

2x125 bp paired-end (PE) reads with an average insert size of ~800 bp were generated. Clean 

sequence data are available from the NCBI Bioproject ID PRJNA542896. The plastid 

genome (ptDNA) assembly was performed de novo using NOVOplasty v.2.6.2 (Dierckxsens 

et al., 2017) with Hyoscyamus niger ptDNA as a reference (GenBank accession KF248009), 

followed by visualization and manual curation using Consed v.29.0 (Gordon et al., 1998).  

The mitochondrial genome (mtDNA) was assembled as described below (Figure S1): 

1. The PE Illumina reads were assembled de novo using Velvet v.1.2.03 (Zerbino and 

Birney, 2008) with multiple k-mer values. The assembly with the largest N50 was 

selected (N50=2,413 bp; 660 contigs larger than 1 kb; maximum contig length 86,061 

bp, k-mer 111).  

2. Given that several mtDNAs from the family Solanaceae (15 in total) and from other 

angiosperm families (>200) were available, we identified putative mitochondrial 

contigs through BLAST searches. A BLAST v.2.7.1+ (Camacho et al., 2009) search 

against a custom database containing angiosperm mitochondrial sequences available 

at GenBank identified a total of 131 putative mitochondrial contigs, with e-value < 

1x10
-4

.  

3. Following Silva et al. (2017), the 131 putative mitochondrial contigs were extended 

with SSAKE (Warren et al., 2007) to detect flanking repeats and connect contigs 

easily. Because of computational limitations, a subset of the Illumina reads was 

generated for the extension step using the programs BWA, SAMtools and seqtk 

(https://github.com/lh3/seqtk): 

a. The average read depth was calculated for each of the 660 contigs using the 

software BWA (Li and Durbin, 2010), SAMtools (Li et al., 2009) and 

BEDtools (Quinlan and Hall, 2010). Most of the putative mitochondrial 

contigs showed an average read depth that ranged between 74 and 652 reads. 



  

 

 

A total of 244 additional contigs fell into the estimated mitochondrial read-

depth but had no BLAST hits to the mitochondrial database.  

b. To generate a subset of reads for contig extension, the Illumina reads were 

mapped to the 131 putative mitochondrial contigs plus the 244 contigs within 

the putative mitochondrial range using BWA mem with the following presets: 

-B 5 -O 10 -E 15. The aligned reads were extracted from the original data set 

to produce a subset (6,9M PE reads).  

c. To avoid extensions of plastid sequences that can reside at contig ends, all 

plastid reads were subtracted from the subset producing a smaller subset of 

6M PE reads.  

d. Finally, each of the 131 putative mitochondrial contigs was extended 

individually using SSAKE v3.8.5 –i option. The extension process increased 

the total length of the putative mitochondrial contigs from 837,007 to 965,005 

bp.  

4. Visualization, manual curation, and genome finishing were achieved with Consed 

v.29.0 and GapFiller v.1.10 (Boetzer and Pirovano, 2012). Contigs with no links to 

the main mitochondrial assembly and with an aberrant read-depth were not 

considered. Most of those contigs had BLASTN hits to nuclear chromosomes or 

belonged to the plastid genome. Finally, the mitochondrial genome assembled into a 

single contig of 684,857 bp.  

 

The depth of sequencing of the ptDNA (average 1,453.6 reads) and mtDNA (average 

197.4 reads) are shown in Figure S2. The read depth was calculated using Bowtie2 

(Langmead and Salzberg, 2012) with the following presets: --end-to-end --very-fast --no-

discordant --no-mixed --no-contain --rdg 20,5 --rfg 20,5 --score-min C,-40,0. Read depth 

plots were generated using the ‘Sushi.R’ package (Phanstiel et al., 2014).  

 

2.3. Annotation of the Organelle Genomes  

The plastid and mitochondrial genomes of P. orientalis were annotated using 

Geneious R11 (Kearse et al., 2012). Annotations of the plastid genome were automatically 

transferred from the Solanum dulcamara plastome (GenBank accession KY863443) 

(Amiryousefi et al., 2018). For the mitogenome, annotations were transferred from the 

publicly available Solanaceae mitochondrial genomes. Each mitochondrial and plastidial 

annotation was manually curated (start and stop codons and exon/intron boundaries) by 



  

 

 

inspection of gene alignments. The tRNA genes were identified using tRNAscan-SE (Lowe 

and Eddy, 1996). Genome maps were drawn with OGDRAW (Lohse et al., 2007) and edited 

in Adobe Illustrator CC 2015. The annotated organelle genomes of P. orientalis were 

deposited in GenBank (accession numbers MK490961 and MK492324).  

Plastidial and mitochondrial intergenic regions were analyzed. For this, intergenic 

sequences were extracted and searched against the nt and nr Genbank databases using 

BLASTN and BLASTX. The total amount of regions with no BLAST hits were calculated.  

 

2.4. Analyses of Solanaceae mitochondrial genomes 

The P. orientalis mitochondrial genome was compared to five other mtDNAs from 

the family Solanaceae available in Genbank: Capsicum annuum (NC_024624), Hyoscyamus 

niger (NC_026515) (Sanchez-Puerta et al., 2015), Nicotiana tabacum (NC_006581) 

(Sugiyama et al., 2005), Solanum lycopersicum (MF034193), and Solanum pennellii 

(MF034194) (Kim and Lee, 2018). The proportion of the genome with similarity to other 

available complete angiosperm mitochondrial genomes at GenBank database was calculated 

using discontiguous megaBLAST. The amount of homologous regions in P. orientalis and 

different species or lineages (i.e. Angiosperms, Solanaceae, H. niger, N. tabacum, C. 

annuum, S. lycopersicum and S. pennellii) was calculated using BEDtools and BEDops 

(Neph et al., 2012). Plots were generated using the ‘Sushi.R’ package. In order to get an 

approximation of the origin of P. orientalis regions that do not match any sequenced 

Solanaceae mtDNA, we performed a discontiguous megaBLAST search of the ‘non-

Solanaceae’ regions against the NCBI nucleotide databases using the option -culling_limit 1. 

We then use the ETE 3 toolkit to get the NCBI taxonomic information for each hit (Huerta-

Cepas et al., 2016).   

RNA editing sites were predicted using PREP-mt (Mower, 2005) with a cutoff value 

of 0.2. To identify putative transposable elements (TEs), mitochondrial sequences were 

searched against the CENSOR database with default settings and ‘green plants’ as a reference 

source. All hits were considered to compute the total length of the genome covered by TEs. 

Mitochondrial sequences of plastid origin (MTPTs) were identified by searching each 

Solanaceae mtDNA against a custom plastid database, using NCBI- BLASTN v.2.7.1+ with 

default parameters. BLAST hits longer than 200 bp and with an e-value < 1x10
-4

 were 

considered, except for ancient plastid homologs that were excluded (Hao and Palmer, 2009; 

Sloan and Wu, 2014; Wang et al., 2007). Putative foreign MTPTs were identified by 

searching for those MTPTs with hits showing higher similarity to plastid sequences from a 



  

 

 

lineage unrelated to the one containing the MTPT. This search was achieved with a custom R 

script that makes use of the R package ‘taxonomizr’. To confirm the identity of the donor 

lineage, Maximum Likelihood analyses (1,000 rapid bootstrapping replicates) under a 

GTR+G substitution model were performed with RAxML v.8.0.0 (Stamatakis, 2014). 

Flanking regions to foreign MTPTs (5 kb to each side) were analyzed with NCBI-BLASTN 

v.2.7.1+ against the nucleotide collection database to identify their origin.  

To detect collinear gene blocks among the studied Solanaceae, whole mitochondrial 

genome alignments were conducted in MAUVE (Darling et al., 2004) using the progressive 

Mauve algorithm with default parameters.  

The fraction of the genome covered by genes, MTPTs, repeats, and transposable 

elements was calculated combining overlapping intervals using the BEDtools merge option 

so that overlapping features (e.g. repeats) were not over-represented.  

 

2.5 Repeat analyses across 136 seed plants 

Mitochondrial genomes from a wide diversity of seed plants were downloaded from 

NCBI.  Repetitive sequences were identified by searching each genome against itself using 

ungapped BLASTN with a word_size of 7. All BLAST hits with an e-value < 1x10
-4

 and a 

minimum sequence identity of 80% were considered. To analyze the similarity among 

repeats, cluster analysis of short (<100 bp) repeated sequences was done with VSEARCH 

(Rognes et al., 2016). To reduce the redundancy given by BLAST, repeats with the same start 

and end positions, which were part of different repeat pairs, were discarded. Sequences were 

first clustered with the option --cluster_fast and 100% of identity. Then, centroids from the 

first step were clustered with the option --cluster_size and 80% of identity. To elucidate 

relationships among clusters within and among species, all clusters with more than 50 

sequences were re-clustered with VSEARCH using the option --cluster_fast and 80% of 

identity. Tandem repeats were identified with Tandem Repeat Finder v.4.09 (Benson, 1999). 

Finally, repeat maps were generated using ClicO FS (Cheong et al., 2015) and edited in 

Adobe Illustrator CC 2015.  

 

The scripts used to extend contigs, to generate a subset of reads, and to analyze the 

repeat content can be found in https://github.com/cgandini/Physochlaina_orientalis. 



  

 

 

3. Results  

3.1. The Physochlaina orientalis plastid genome assembly and organization 

The P. orientalis plastid genome is 156,321 bp long and exhibits a typical 

quadripartite structure like most land plant plastomes. It is composed of a pair of inverted 

repeats (IRa and IRb) of 25,867 bp and a small and large single-copy region (SSC and LSC) 

of 17,989 and 86,598 bp respectively (Figure S3). The genome encodes 80 protein, 30 tRNA, 

and 4 rRNA coding genes, totaling 114 unique genes (Table S1). The global GC content is 

37.70% (LSC: 35.8%, SSC: 32.0%, and IR: 42.9%) comparable to that of other Solanaceae. 

Twelve protein-coding and 6 tRNA genes contain at least one intron; the genes clpP, rps12, 

and ycf3 have two introns (Table S1). Except for intron 1 in rps12 and the trnL-UAA intron 

that are trans-spliced, the rest are cis-spliced introns. Unusual start codons are present in 

ndhD (TTG), rps19 (GTG), ycf15 (GTG), and psbL (ACG). The latter is probably modified to 

AUG by RNA-editing as observed in several Solanaceae ptDNAs (Amiryousefi et al., 2018; 

Kahlau et al., 2006; Sasaki et al., 2003). Foreign sequences were not detected in the P. 

orientalis plastome by BLAST search analyses.  

3.2. Features of the mitochondrial genome of Physochlaina orientalis 

The P. orientalis mitochondrial genome assembled into a single molecule of 684,857 

bp in length with 44.8% of GC content (Figure 1). The mitogenome encodes 37 protein, 21 

tRNA, and 3 rRNA coding genes, totaling 61 unique genes (65 including repeats) (Table S2). 

The total number of cis-spliced introns is 18 (17 group II introns and the cox1 group I intron) 

while 6 are trans-spliced. As in other sequenced angiosperms, the tRNA set is incomplete, 

the genes rps2, rps7 and rps11 are missing, and the gene rps14 is present as a pseudogene 

(Mower et al., 2012). The gene content covers 9.94% of the genome. PREP-Mt predicted a 

total of 479 non-synonymous RNA editing sites in 35 protein-coding genes of P. orientalis 

(Table S2). Uncharacterized sequences with no match against the NCBI databases account 

for ~16% of the genome. Given that most of the putative nuclear-derived regions have 

BLAST hits to Solanum spp. nuclear genomes, recently known for harboring multiple copies 

of mitochondrial and plastidial DNA (Kim and Lee, 2018), accurate calculation of the nuclear 

contribution to the P. orientalis mtDNA was not feasible.  

A total of 29 sequences of plastid origin (MTPTs) ranging from 200 to 6,593 bp are 

found in the P. orientalis mtDNA (Table S3). The total amount of MTPTs is 25,992 bp 

representing 3.80% of the mitochondrial genome and 25% of the plastid genome. Out of the 

29 MTPTs, four show a foreign origin in the phylogenetic analyses (Figure S4). One MTPT 

grouped within members of the family Apocynaceae (Figure S4a), two within the 



  

 

 

Orobanchaceae (Figure S4b), and the last one with Cannabis and an MTPT of Hyoscyamus 

niger mtDNA (Figure S4c) (Gandini and Sanchez-Puerta, 2017). The presence of a similar 

MTPT in the mtDNA of P. orientalis and H. niger indicates that this foreign sequence was 

acquired by the ancestor of these two Solanaceae. BLAST searches of the flanking sequences 

(5 kb at each side) of each MTPT found mitochondrial fragments (615 to 6,287 bp in length) 

with high similarity (>97%) to members of the donor lineage in all four cases (Figure S4, ii). 

This supports the hypothesis that MTPTs were acquired inside foreign mitochondrial DNA 

via mitochondrion-to-mitochondrion horizontal gene transfer, rather from plastid-to-

mitochondria transfers (Gandini and Sanchez-Puerta, 2017).  

Analysis of repeated sequences in the P. orientalis mtDNA revealed that they cover 

219,427 bp, representing 32.04% of the mitogenome (Table S3). Large (LR, >1,000 bp), 

intermediate (IntR, 100-1,000 bp), short (SR, <100 bp), and tandem (TR) repeats account for 

22.17%, 5.28%, 16.35%, and 1.69% of the genome, respectively. The P. orientalis mtDNA 

presents 29 LR pairs ranging from 8.2 to 35.65 kb in length with more than 99.82% of 

pairwise identity among them (Table S3). Twenty-eight of these repeats form part of an 8-

copy repeat family that share an ~8.2 kb identical ‘central core’. Extensions of ~1 to 2.6 kb 

can be found flanking the central core of some repeats within the family. A BLAST search of 

the central core against the NCBI databases revealed that 75% of the 8.2 kb sequence has no 

BLAST hits, suggesting that it was gained and multiplied after the divergence of P. orientalis 

from the other Solanaceae. In addition, a great extent of the genome is covered by SR 

(16.35%), represented by 12,925 repeat pairs that are usually imperfect and appear 

overlapping larger repeated regions and themselves. For example, ~37% of LR are covered 

by SR. Moreover, the sum of the length of all the SR pairs is 1,035,932 bp, that is ~1.5 times 

the entire mitogenome and ~9 times the actual genome coverage of these repeats. These 

observations are the result of overlapping sequences appearing in multiple repeat pairs. 

CENSOR searches against the RepBase databases found only a small fraction (7.73%) of 

short and intermediate repeats with partial hits to transposable elements (Table S3).  

 

3.3. Comparison of the Physochlaina orientalis mtDNA with other five 

Solanaceae mitochondrial genomes  

 We compared the mtDNA of P. orientalis with five other Solanaceae mtDNAs 

(Figure 2, Table S3). The mitochondrial size varies from 423,596 bp in Solanum pennellii to 

684,857 bp in P. orientalis (Figure 2a). As expected due to its phylogenetic affinity, P. 

orientalis shares more sequences with Hyoscyamus niger (55.81%) than with the other 



  

 

 

Solanaceae (Nicotiana tabacum – 42.90%, Capsicum annuum – 36.88%, Solanum pennellii – 

38.46% and Solanum lycopersicum – 38.13%) (Figure 2b).  In total, all the sequenced 

Solanaceae cover 70.93% of P. orientalis mitogenome and from this, 17.07% is only shared 

with H. niger (Figure 2b). Overall, 83.90% of the genome presents detectable homology with 

angiosperm mitochondrial sequences available at Genbank. Not considering the regions with 

homology to Solanaceae, the P. orientalis mtDNA shares 8,886 bp, 7,862 bp, and 5,951 bp 

with the angiosperm families Apocynaceae, Cannabaceae, and Orobanchaceae, respectively. 

Interestingly, these are the same lineages identified as donors of the foreign MTPTs in P. 

orientalis. 

The GC and protein-coding gene content are similar in all species (GC: 44.8 – 45.2% 

and 37 protein genes), except for C. annuum that shows the lowest GC content (42.7%) and 

the pseudogenization of the genes mttB, rpl16, and rps1 (Table S3 and Table S4). The 

exclusion of a large fraction of MTPTs (10.66% of the genome) from the C. annuum mtDNA 

results in a GC content of 45.1%, indicating that the MTPTs are responsible for the low GC 

content calculated for the whole mtDNA. The cox1 group I intron is only present in P. 

orientalis and H. niger, as previously reported (Sanchez-Puerta et al., 2011). The proportion 

of the genome covered by transposable elements (TE) is similar in all Solanaceae, ranging 

from 5.07 to 6.60% of the mtDNAs. The majority of the TE are LTR-retrotransposons copia 

and gypsy-like (Figure 2, Table S3). 

We examined the presence of conserved gene clusters in the family Solanaceae, 

defined as two or more adjacent genes shared by all the studied Solanaceae species. The 

analysis revealed 16 shared blocks, representing ~62% of all P. orientalis genes: atp8-cox3-

sdh4, ccmB-trnK, ccmC-trnL, nad1.x4-matR, nad3-rps12, nad4L-atp4, nad5.x1.x2-trnC-

trnN(cp)-trnY-nad2.x3.x4.x5,  rpl2-rpl10, rpl5-rps14, rps13-nad1.x2.x3, rps19-rps3-rpl16-

cox2, rrnS-rrn5, sdh3-nad2.x1.x2, trnD-trnS, trnP(cp)-trnW(cp), and trnS-trnF-trnP (Table 

S5). In addition, the clusters rps4-nad6 and rps10-cox1 were present in all Solanaceae but in 

C. annuum and the cluster trnG-trnQ was found in all but in H. niger (Table S5). All gene 

clusters except one (ccmB-trnK) included genes encoded on the same strand.  

 

3.4. Repeat content across the Solanaceae mitochondrial genomes  

The repeat content is probably the most variable feature across the Solanaceae 

mtDNAs. The P. orientalis mtDNA shows more repeated DNA in both number of repeat 

pairs and the extent of the genome covered by all repeat categories (LR, IntR, SR, and TR) 

(Figure 3 and Table S3). In addition, H. niger also exceeds the average amount of imperfect 



  

 

 

and partially overlapping SR and TR across the Solanaceae (Figure 3). While P. orientalis 

and H. niger present 12,925 and 7,402 SR pairs respectively, the other Solanaceae mtDNAs 

range from 286 in N. tabacum to 555 in S. pennellii. SR in P. orientalis and H. niger 

mtDNAs are mainly found as multiple copy arrays or tandem-like structures distributed 

mostly over intergenic regions. Exceptionally, SR arranged in tandem are found within the 

nad1.x2.x3 intron of both species and within the cox2, nad4, rpl2, and rps3 introns of H. 

niger, giving origin to expansions of ~100-300 bp in those genes. Despite differences in the 

number of repeat pairs, all species present similar distributions of short repeats in terms of 

length and sequence identity (Figure S5). Most short repeat pairs are 20-39 bp in length and 

have 95-100% pairwise identity.  

Given the great disparity of SR across the Solanaceae, we tested whether or not these 

sequences were similar to each other within and among species by clustering the SR (Table 

1). A cluster is defined by a centroid, that is a representative sequence for which all other 

sequences in the cluster must have an identity above 80%. In general, a large fraction of SR 

in P. orientalis and H. niger mtDNAs form part of clusters. For example, clusters of 10 or 

more SR sequences account for 88.97% of the total number of SR in H. niger, 85.09% in P. 

orientalis, 51.49% in S. pennellii, 33.02% in S. lycopersicum, 30.51% C. annuum, and 

24.59% in N. tabacum. However, clusters in H. niger are fewer and larger than those in P. 

orientalis. While H. niger formed 27 groups of 10 or more sequences, P. orientalis formed 

117 groups. Furthermore, 40.54% and 11.05% of the SR in H. niger and P. orientalis group 

in a single cluster, respectively (Table 1). These results could be indicating that repeats in H. 

niger are more conserved than those in P. orientalis or that repeats in P. orientalis have 

diverse origins.  

A drawback in the clustering analysis is that a given repeated sequence may match 

two different centroids with the same identity and in that case, sequence assignment into the 

‘best cluster’ is arbitrary. To overcome this weakness and to elucidate relationships among 

species, we re-clustered all sequences contained in clusters with 20 or more sequences. As 

expected, we found that some clusters within a species were related to each other (Figure S6). 

Moreover, clusters found in different species show connections between all the analyzed 

Solanaceae. 

A detailed analysis of the nad1.x2.x3 intron in the six Solanaceae revealed the 

presence of a 39 bp insertion in all except N. tabacum (shaded sequence in Figure 4). This 

insertion, which likely took place after the divergence of N. tabacum, resulted in the 

duplication of an 11 bp sequence present immediately upstream the insertion site creating a 



  

 

 

pair of direct repeats. An in-depth analysis of the inserted sequence within the nad1.x2.x3 

intron revealed that it is present in the largest SR clusters of all Solanaceae, including N. 

tabacum. In addition, this sequence is located in the upstream region of the gene rrnL, as 

previously reported for N. tabacum and other angiosperms (reviewed in Andre et al., 1992). 

Additionally, several short tandem duplications occurred at the 5’ end of the inserted 

sequence producing intron expansions of 281 and 303 bp in P. orientalis and H. niger, 

respectively (Figure 4). Some of the duplicated motifs in H. niger and P. orientalis are 

similar to the 39 bp initial insertion. However, the remaining tandem duplications differ 

between the two species suggesting that these elements have expanded independently in P. 

orientalis and H. niger.  

 

3.5. Short repeats across seed plant mitochondrial genomes 

We wish to understand the evolution and dynamics of perfect and imperfect repeats in 

plant mitochondria, with emphasis on short repeats. A recent study on plant mitochondrial 

repeats focused on non-tandem larger repeats with high similarity (Wynn and Christensen, 

2019). Here, the repeat content in the plant mtDNAs was analyzed by using a more sensitive 

BLAST search strategy that can detect repeats as short as 20 bp. To understand the 

contribution of repeated sequences to mtDNA size variation and whether the SR were related 

across plant lineages, we expanded our repeat content analyses to screen 130 additional 

publicly available seed plants mtDNAs (Table S6).  

Of the 136 plants compared, Nymphaea colorata ranked first with almost half of the 

genome covered by SR (46.59%), followed by Silene conica (35.63%), Cucumis melo 

(33.32%), Cucumis sativus (28.20%), Cucurbita pepo (24.62%), Cycas taitungensis 

(22.71%), Pinus taeda (18.64%), Stratiotes aloides (17.12%), Corchorus capsularis 

(16.52%) and P. orientalis (16.34%).  The median fraction of the genome covered by SR 

(3.94%) is extremely low among plants, suggesting that the proliferation of these elements is 

not a universal feature of seed plant mitogenomes (Table S6). Moreover, the expansion of 

short repeated sequences is not conserved within plant orders. While some angiosperm orders 

(e.g. Poales, Fabales, Rosales, Brassicales, Lamiales) present a similar extent of the genome 

covered by SR, others exhibit great diversity (e.g. Cucurbitales, Malvales, Caryophyllales, 

Solanales). In agreement with our observations in the family Solanaceae, SR pairs in other 

plant mitochondria range mainly between 20-39 bp and, in general, present a high sequence 

identity (95-100%) (Figure 5 and Table S6). This high level of identity between repeats is 

probably due to the typical low mutation rates of seed plant mitogenomes. For example, 



  

 

 

species with high mutation rates as Silene noctiflora (Sloan et al., 2012b) present the lowest 

proportion of SR within the 95-100% category (21.12%) (Table S6). 

We wish to evaluate the origin of the SR that proliferated in different land plant 

lineages and assess whether they were related within and among species. The clustering 

analysis showed that, in general, species with a high proportion of the genome covered by SR 

have a great amount of those sequences grouped in clusters (Figure 5, Figure S7 and Table 

S6). However, these repeats were not necessarily grouped in a single cluster. For example, 

Nymphaea colorata has 99.24% of the SR in clusters of 50 or more sequences, while the 

largest cluster comprises only 28.35% of its SR. On the other hand, Ginkgo biloba has 

79.90% in clusters of 50 or more sequences and 72% belong to the largest cluster, indicating 

that these sequences are highly conserved and probably have a common origin. Other species 

with large amount of SR clustered in one group include: Nepenthes ventricosa x Nepenthes 

alata (69.90%), C. taitungensis (60.39%), Amborella trichopoda (41.28%), H. niger 

(40.54%), Betula pendula (35.77%), Viscum scurruloideum (32.92%), Lagerstroemia indica 

(30.44%), Spinacia oleracea (29.26%) and Citrullus lanatus (28.59%). The median of the 

fraction of SR found in the largest cluster in the 136 species is 7.93% (Table S6). 

Interestingly, re-clustering the clusters containing 50 or more sequences of all the species 

show that connections between SR are more common among related species; e.g. within 

Poales, Cucurbitales, Brassicales, or Solanales (Figures 5 and S7). However, relationships 

between clusters of distant species were also detected. A few of these could be explained by 

HGT events (violet lines in Figure 5). For example, clustered sequences were related between 

P. orientalis and Cannabis sativa, for which HGT events were described (this study) and 

between the holoparasite Lophophytum mirabile and members of its host lineage, the 

mimosoid species Acacia ligulata and Leucaena trichandra, also known for having a 

parasitic interaction and extensive HGT (Sanchez-Puerta et al., 2019).  
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4. Discussion 

4.1. Assembly, a challenging task 

We successfully sequenced and assembled the organellar genomes of Physochlaina 

orientalis using Illumina technology. The high degree of conservation, the relatively small 

size, and the high read depth of plastid genomes allow de novo assembly algorithms to use 

known plastid genomes (or even short sequences or genes) as seeds from which extension by 

overlapping reads can easily form a circular genome (Dierckxsens et al., 2017). On the 

contrary, plant mitochondrial genomes usually exhibit repetitive sequences that make the 

assembly of short-reads a challenging task. The iterative individual extension of each contig 

of the initial assembly followed in this work and others (Silva et al., 2017) helped us: (i) to 

detect repeated sequences with multiple copies as they appeared flanking contigs during the 

extension phase and (ii) to connect contigs easily, avoiding misassemblies due to the high 

frequency of repeats. We failed to assemble the mtDNA into a master circle and obtained a 

linear assembly that lacked paired-end connections to other parts of the genome at one end, 

suggesting that some sequences may be missing from our assembly. Notwithstanding, the 

master circle configuration may not exist in vivo at all. Instead, a mix of branched and linear 

molecules permutable by recombination to circular structures are thought to coexist within 

angiosperm tissues (Oldenburg and Bendich, 1996; Sloan, 2013).  

 

4.2. The Physochlaina orientalis mitogenome is rich in foreign and repeated 

sequences 

The P. orientalis mitochondrial genome ranked 28
th
 in size among 136 seed plant 

mitochondrial genomes studied here, which had a median mtDNA size of 497,367 bp (Table 

S6). Flowering plant mtDNA expansions and contractions are the result of a number of 

processes. While some genomes increased in size through the proliferation of repetitive 

sequences or the incorporation of plastid DNA, as in Cucurbita (Alverson et al., 2010), others 

expanded by the acquisition of foreign sequences. The horizontal incorporation of 

mitochondrial sequences has been widely described among angiosperms (Bergthorsson et al., 

2004; Mower et al., 2012), including the transfer of entire mitogenomes (Rice et al., 2013; 

Sanchez-Puerta et al., 2019; 2017). The P. orientalis mtDNA exhibits several foreign regions 

as a result of independent HGT events: (1) the presence of foreign MTPTs surrounded by 

extensive mitochondrial sequences from the putative donor lineages (e.g. Apocynaceae, 

Cannabaceae); and (2) the acquisition of the cox1 intron (Sanchez-Puerta et al., 2011; 2008). 
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The size of the P. orientalis mtDNA is likely the result of horizontally-transferred sequences 

and the proliferation of both large and small repeats. 

With rare exceptions, large repeated sequences are common among angiosperm 

mitochondrial genomes (Alverson et al., 2011b). They are mainly found in 2-3 copies and 

they frequently undergo homologous recombination contributing to the typical multipartite 

structure of angiosperm mitochondrial genomes (Cole et al., 2018; Palmer and Herbon, 1988; 

Sloan et al., 2012a). In general recombination across LR is frequent and reciprocal generating 

isomeric subgenomic molecules (Maréchal and Brisson, 2010; Mower et al., 2012). In a 

much lesser extent, SR were also found to recombine resulting in great impact to the 

mitogenome structure (André et al., 1992; Kanazawa et al., 1998; Small et al., 1989; 

Woloszynska, 2010). The P. orientalis mtDNA presents an elevated number of both types of 

repeats. In fact, P. orientalis ranked 18
th
 and 10

th
 in terms of the extent of the genome 

covered by LR and SR, respectively, among 136 seed plant mitochondria. Probably the most 

distinctive feature of P. orientalis is the presence of a rare 8-copy repeat family of large 

repeats (>8.2 kb). Similar results were only described in Silene latifolia in which a 6-copy 

repeat family of ~1.3 kb was found to be in recombinational equilibrium (Sloan et al., 2010). 

The large number of possible recombination events through large and short repeats in P. 

orientalis suggests that the genome structure shown here represents only one of thousands of 

alternatives that could arise via intramolecular recombination.  

 

4.3. Similar and distinct evolutionary features across the Solanaceae mtDNAs 

The mitochondrial genome of six species of the family Solanaceae are now available 

for comparison to assess their evolution along >24 million years since their divergence (Tu et 

al., 2010). The Solanaceae mtDNAs present 37 protein-coding genes, except for C. annuum 

in which three genes became pseudogenes. Of those three genes, the ribosomal protein-

coding genes rpl16 and rps1 had been frequently lost from the mtDNA during angiosperm 

evolution (Adams et al., 2002; Covello and Gray, 1992). Less common is the loss of the 

translocase gene mttB, although it is a pseudogene in Viscum spp. and it is missing in Vitis 

vinifera, Malus x domestica, and Boea hygrometrica (Petersen et al., 2016). We found 16 

collinear gene blocks shared among the studied Solanaceae, and three more shared by all but 

one of them. That is, ~70% of the entire P. orientalis gene set is found in conserved gene 

clusters. Two clusters date back to the original bacterial ancestor of mitochondria (Takemura 

et al., 1992), seven were unique to angiosperms, and six were unique to eudicots (Richardson 

et al., 2013). Interestingly, 9 and 13 gene clusters were shared by the Solanaceae and 
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Liriodendron tulipifera (Richardson et al., 2013) or Nelumbo nucifera (Gui et al., 2016), 

respectively. As previously suggested, gene blocks could be potential co-transcription units 

(Lelandais et al., 1996; Sugiyama et al., 2005) and gene cluster fragmentation could affect 

mitochondrial functions, explaining why almost all of the clusters contain genes encoded on 

the same strand (Richardson et al., 2013).  

The repeat content is the most contrasting feature across the Solanaceae. Repeat pairs 

vary ~40-fold between N. tabacum and P. orientalis. LR covered similar proportions in all 

genomes, but the overlapping arrangement of LR is unique to P. orientalis. In addition, LR 

are not homologous among species, except for the genus Solanum in which entire LR were 

shared between S. pennellii and S. lycopersicum (Kim and Lee, 2018). A comparative study 

of Brassica species showed that LR can remain static for long periods but rapidly diverge 

through genome recombination (Wynn and Christensen, 2019). In contrast to the other 

studied Solanaceae species, both Hyoscyameae species shared an explosion of short repeats 

mainly disposed in a tandem structure with imperfect repeat units. Clustering analysis 

showed that groups of repeats were connected within and between Solanaceae species. This 

observation suggests a common origin for at least some of the Solanaceae SR followed by 

independent expansion in both Hyoscyameae species. Independent multiplication of a repeat 

family was previously reported for putatively mobile elements, so-called Bpu sequences, in 

C. taitungensis and G. biloba mitogenomes (Chaw et al., 2008; Guo et al., 2016). The P. 

orientalis and H. niger SR share several features with the Bpu elements: they are short, many 

are flanked by direct repeats, and most are found as multiple copy arrays. However, the SR 

identified in the Hyoscyameae are more variable and are not found associated with 

retrotransposon-like sequences.  

 

4.4. The enigmatic expansion of short repeats 

Despite the impact of SR in the size and structure of plant mitogenomes (André et al., 

1992; Kanazawa et al., 1998; Small et al., 1989; Woloszynska, 2010), little is known about 

the molecular mechanism leading to their formation. It has been proposed that short repeats 

can arise from ‘nonfunctional’ regions of mitochondrial transcripts relocated into the genome 

through reverse transcription (André et al., 1992; Gualberto et al., 1988; Kanazawa et al., 

1998). Even though there is sparse direct evidence of reverse transcription in plant 

mitochondria (Moenne et al., 1996; Schuster and Brennicke, 1989), indirect evidence has 

accumulated from the loss of introns and editing sites through the retro-transcription of 

mature transcripts (Edera et al., 2018; Sloan et al., 2010). Therefore, it is not difficult to 
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imagine that the mechanism of SR generation proposed by André et al. (1992) could play a 

role in plant genome evolution.  

A sequence repeated several times and flanked by direct repeats of 7-10 bp was found 

upstream of the gene rrnL of the mitochondrial genomes of Zea, Oryza, Oenothera, Petunia, 

and Nicotiana (reviewed in André et al., 1992). We have identified the former sequence not 

only in the 5’ end of the gene rrnL in all Solanaceae species but repeated several times across 

these mitogenomes. Interestingly, one of the many insertions was found in the nad1.x2.x3 

intron of all Solanaceae but N. tabacum allowing us to compare an expansion event along the 

evolution of this lineage. While the first insertion event in the nad1.x2.x3 intron seems to 

have taken place in the ancestor of all but N. tabacum, subsequent tandem duplications were 

restricted to the tribe Hyoscyameae and seem to have evolved independently in P. orientalis 

and H. niger. Even though the origin of these short repeats could be through reverse 

transcription of non-processed mitochondrial transcripts, their subsequent tandem duplication 

appears to be the result of an entirely different process.  

Slipped-strand mispairing (SSM), also known as replication slippage, can account for 

the formation, expansion, and contraction of short contiguous repeats. In this model, simple 

tandem repeats originated by chance are expanded or contracted by a process that involves 

the mispairing of complementary bases at the site of an existing short repeat during DNA 

repair or replication (Levinson and Gutman, 1987; Levinson et al., 1985). In a similar 

manner, SSM at noncontiguous short repeats could generate longer tandem duplications 

flanked by one unit of the original noncontiguous repeat (Levinson and Gutman, 1987; 

Taylor and Breden, 2000). We propose that a combination of both processes, 

retrotranscription and SSM at noncontiguous repeats, could be playing a role in the expansion 

of short repeats in the Hyoscyameae. This would explain the presence of duplicated motifs 

flanked by direct repeats. The presence of the initial structure (i.e. a motif flanked by 

noncontiguous direct repeats) in all the Solanaceae and the arousal of tandem-like structures 

only in P. orientalis and H. niger mtDNAs suggest that differences in the replication, 

transcription, or recombination machinery impact the SR content of the mtDNAs across the 

Solanaceae. 

 

4.5. Short repeat clusters are shared by closely related species 

The origin, distribution, and expansion of SR across seed plants has not been 

previously investigated. We present here a detailed analysis comparing families of short 

repeats among seed plant mitogenomes in terms of SR amount, genome coverage, size, and, 
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similarity. All the studied seed plant species exhibit SR, although the expansion of these 

elements is highly variable. Indeed, SR expansion seems to be restricted to some lineages or 

even, to individual species. The clustering analysis grouped the known Bpu elements of C. 

taitungensis and G. biloba (Chaw et al., 2008; Guo et al., 2016) in a well-conserved single 

cluster per species. These elements were not identified in other plants, not even in the 

gymnosperm Welwitschia mirabilis (Guo et al., 2016). Consistently, the SR of C. taitungensis 

were only shared with those of G. biloba in the re-clustering analysis. Even though it is 

highly probable that relationships of SR across species were underrepresented as we only 

compared clusters with 50 or more sequences, several connections among SR from different 

species were detected. We observed that the expansion of SR appears to have taken place in 

ancestral repeats as connections between clusters of the same taxonomic group were quite 

frequent. This is clearly exemplified in the orders Poales, Brassicales, and Solanales. In some 

cases, repeats were connected between species in which HGT events had been reported (this 

study and Sanchez-Puerta et al., 2019; 2017). Whether all the shared sequences were 

transferred as a result of the HGT event or were expanded after the HGT event we do not 

know. Finally, highly clustered repeats were also common between species without an 

obvious biological or physical association, e.g. Nelumbo and Sorghum. However, connections 

between SR families from distant species does not necessary imply a common origin; instead, 

they could be the result of convergent evolution. That is, it is possible that mitochondrial 

insertions of retro-transcribed, highly expressed transcripts have taken place independently in 

distant lineages. This may explain why P. orientalis shares highly repetitive sequences with 

clusters of several distant species, such as those of the order Poales. Subsequent spreading by 

SSM at noncontiguous repeats could account for tandem-like structures and therefore high 

repeat clustering in species, such as N. colorata (Dong et al., 2018), C. taitungensis (Chaw et 

al., 2008) and G. biloba (Guo et al., 2016). The availability of more plant mitogenomes will 

likely help to elucidate the expansion of SR during plant evolution. 
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6. Tables 

Table 1. Clustering analysis of short repeats (SR) across Solanaceae mitochondrial genomes using 

VSEARCH.  

  Capsicum 

annuum 
Hyoscyamus 

niger 
Nicotiana 

tabacum 
Physochlaina 

orientalis 
Solanum 

lycopersicum 
Solanum 

pennellii 
 

Proportion of SR in the single 
largest cluster  8.61% 40.54% 16.12% 11.05% 21.74% 28.13%  

Proportion of SR in clusters with ≥ 
50 sequences (# of clusters) 8.61% (1) 82.19% (8) 16.12% (1) 68.00% (40) 30.57% (2) 28.13% (1)  

Proportion of SR in clusters with ≥ 

100 sequences (# of clusters) 0.00% (0) 81.09% (6) 0.00% (0) 47.97% (15) 21.74% (1) 28.13% (1)  

Proportion of SR in clusters with ≥ 

500 sequences (# of clusters) 0.00% (0) 71.78% (3) 0.00% (0) 18.85% (2) 0.00% (0) 0.00% (0)  

Proportion of SR in clusters with ≥ 

1000 sequences (# of clusters) 0.00% (0) 62.24% (2) 0.00% (0) 0.00% (0) 0.00% (0) 0.00% (0)  
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7. Figure Legends 

 Figure 1: Map of the mitochondrial genome of Physochlaina orientalis.  Full-

length genes, repeats greater than 1 kb in length, and plastid-derived regions greater than 200 

bp in length are shown. Large repeat pairs are connected with light gray lines. 

Figure 2: Genomic comparisons among Solanaceae mitochondria. (a) Genome 

size and content of Physochlaina orientalis and five other Solanaceae mitogenomes.  The 

genome size and the fraction of each genome covered by genes, sequences of plastid origin 

(MTPTs), tandem repeats (TR), other repeat sequences, and transposable elements (TE) are 

shown. Also, the overlap between the repeat fraction and TE or MTPTs is indicated. A 

schematic tree on the left shows the phylogenetic relationships among the species; (b) 

Similarity between Physochlaina orientalis mtDNA and other angiosperm mitochondria. 

Each line depicts the BLAST hits of the P. orientalis mitogenome against a custom 

mitochondrial database. The fraction of the P. orientalis mtDNA with similarity to each 

species or lineage is detailed on the right.  

Figure 3: Distribution of repetitive DNA in the mitochondrial genomes of six 

Solanaceae. Short and intermediate repeat pairs are connected with light gray lines within 

each circular mitochondrial map. Large repeat pairs are connected with dark gray lines. Black 

lines on the outer circle indicate tandem repeats. The number of repeat pairs and the fraction 

of the genome covered by all (R), large (LR), intermediate (IntR), short (SR), and tandem 

(TR) repeats are shown inside each circle. 

Figure 4: Alignment of a region of the nad1.x2.x3 intron.  Physochlaina orientalis 

is the reference sequence. Dots and dashes indicate equal bases and gaps, respectively. Direct 

repeats (DR) are underlined. Tandem repeat expansions in P. orientalis and H. niger are 

shown as rectangles and are similar to the shaded sequence in P. orientalis. Colors depict 

sequence similarity between tandem repeats. The total length of the expanded region is 

shown on the right. 

Figure 5: Distribution of short repeated sequences among land plants. Plant 

species are arranged in phylogenetic order. On the right, the fraction of the mtDNA covered 

by short repeats (SR) is depicted. Within each bar, the proportion of SR of 20-39 bp (green), 

40-59 bp (dark blue), 60-79 bp (dark red), and 80-99 bp (pink) in length are shown. For each 

species, the proportion of SR clustered in groups of 50 or more sequences is painted with 

white lines. On the left, inter-species connections between SR found in clusters of 50 or more 

sequences are depicted in different colors. Those linking species of the same angiosperm 

order are shown with dark blue lines, between species of different orders with gray lines, and 
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those that connect species involved in known horizontal transfer events with violet lines. 

Species in normal and boldface indicate that they lack or contain SR in clusters of 50 or more 

sequences. Connections between two species are shown only once. 
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................. ...C....A.......GAA.................
................. AACC....A.......GAA.................
................G ------------------------------TC....

P. orientalis
H. niger

281 bp
303 bp

DRDR
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Highlights 

 

 

 The mitochondrial genome (mtDNA) of Physochlaina orientalis is the largest among the sequenced 

Solanaceae 

 

 The mtDNA of P. orientalis presents a rare 8-copy repeat family of 8.2 kb in length and a great number 

of short repeats (SR) arranged in tandem-like structures 

 

 SR share a common origin in the Solanaceae, but only expanded in the tribe Hyoscyameae 

 

 We propose a mechanism that could explain SR generation and expansion in P. orientalis and 

Hyoscyamus niger mtDNAs. 

 

 We study for the first time the short repeat content and their relationships in 136 seed plants 

 

 


