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San Luis, December 19, 2019

Associate Editor of Analytical Methods

Prof. Jailson de Andrade

Dear Professor Jailson de Andrade, 

On behalf of the other authors, I would like to submit our manuscript entitled “Multi-

response optimization of a green solid-phase extraction for the analysis of heterocyclic 

aromatic amines in environmental samples”, for its consideration and publication in 

Analytical Methods. Besides, we would like to inform you that this manuscript and all the 

included information is unpublished elsewhere.

Our manuscript describes a green extraction methodology based on the use of 

MWCNTs-SPE prior to liquid chromatography and tandem mass spectrometry for the 

quantitative analysis of heterocyclic aromatic amines of environmental concern in surface 

water samples. The methodology was optimized with the employment of experimental 

designs, which provided to greening the approach. 

The figures of merit demonstrated satisfactory results compatible with the 

concentration levels of the compounds in the samples and comparable, and even better, than 

other studies reported in the literature. 

To the best of our knowledge, this is the first time that a MWCNTs-SPE method is 

applied for sample clean up and quantitative extraction of HAAs in natural water samples. 

The extraction/separation and determination approach demonstrated advantages such as 

sensitivity, selectivity, precision, low cost, reduced solvent consumption –low toxicity-, 

simplicity and rapidity. Moreover, a comparative study was applied in order to assess the 

greenness of approaches for the determination of heterocyclic aromatic amines in surface 

water using the available metrics.

I appreciate so much for your consideration.

Best Regards,

            

          Dr. Soledad Cerutti
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2

24 Abstract 

25 A multi-response optimization of a green and efficient solid phase extraction (SPE) 

26 sample treatment using non-modified multi-walled carbon nanotubes combined with liquid 

27 chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the 

28 quantification of heterocyclic aromatic amines (HAAs) in river and reservoir surface water 

29 samples. The proposed methodology was evaluated with the employment of experimental 

30 designs, which provided to greening the approach. Ultra-trace amounts of HAAs were 

31 retained into the SPE cartridge. Then, these analytes were removed from the carbon 

32 nanotubes with 0.8 mL of a mixture of acetonitrile/water with 0.1 % of formic acid. Under 

33 the optimal conditions, linearity was achieved for concentration levels ranging from 0.20 µg 

34 L-1 to 500 µg L-1, with regression coefficients (R2) from 0.990 to 0.998. Limits of detection 

35 varying from 0.06 µg L-1 and 0.23 µg L-1 were attained, the relative standard deviations (n=3) 

36 varied from 1.7 to 6.4, and extraction recoveries ranged from 90.6 % to 106.0 % for all the 

37 analytes. Results of the presence of HAAs found in the river samples demonstrated levels 

38 from 0.16 µg L-1 to 0.53 µg L-1; meanwhile, in the reservoir, the levels were higher, from 

39 0.37 µg L-1 to 0.93 µg L-1. Finally, a comparative discussion was applied in order to assess 

40 the greenness of approaches for the determination of heterocyclic aromatic amines in surface 

41 water using the available metrics.

42

43 Keywords: Heterocyclic aromatic amines; Solid-phase extraction; Multi-walled carbon 

44 nanotubes; Green certificate.

45
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3

46 1. Introduction 

47 One of the principal exposure sources to heterocyclic aromatic amines (HAAs) to 

48 human health appears to come from the environment. 1,2 The International Agency for 

49 Research on Cancer (IARC) has reported the mutagenicity of some HAAs and recommends 

50 to decrease their exposure. 3

51 These compounds have been assorted as aminoimidazoazaarenes (AIAs), which are 

52 formed at about 150 °C; and amino-carbolines, which are generated at temperatures about 

53 300 °C.4 Such HAAs contain a distinctive aromatic nucleus conjugated with one or more 

54 nitrogen atoms and as well as an exocyclic amino group. 5

55 Since negative effects on health and occurrence in the environment, the detection of 

56 HAAs in matrices such as protein foods, cigarette smoke, and cigarette and forest fire ashes; 

57 among others, has been performed and reported. 2,6-7 In consequence, HAAs may be 

58 distributed into the environment from the airborne particles, which are capable to transfer 

59 into the atmosphere causing pollution in the different environmental compartments, 

60 including air, soil, sediment, and water indeed. 1 Some HAAs have been detected in diverse 

61 water samples including surface water, mostly from rivers and reservoirs. 8,9 Due to many 

62 countries drinking water is obtained from rivers or reservoirs, which might be affected by 

63 pollution of HAAs from wastewater, treatment-plant effluents, as well as several 

64 anthropogenic contaminants activities, serious human health issues might be promoted by 

65 HAAs contaminated water consumption.

66 Numerous harmful compounds including HAAs, currently are non-regulated in 

67 surface water, therefore they usually are non-considered or removed from water treatment. 

68 Neither, such analytes are included in the routine analysis of surface water destined for 

69 drinking water. In this sense, HAAs incidence in drinking water due to an inappropriate water 
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70 purification decrease significantly its quality. To assess HAAs contamination levels in 

71 surface water, suitable monitoring based on capable and affordable methodologies to detect 

72 the low levels of these analytes in drinking, river, and reservoir samples is necessary. 10

73 Nowadays, analytical methodologies pointed toward to fulfill contaminants ultra-

74 trace determination have been focused on the ability to isolate a wide variety of pollutants in 

75 water. 11-13 Particularly, due to an expected low level of concentrations of HAAs (~ng L−1) 

76 and the matrix complexity of surface water samples, adequate sample pretreatment 

77 procedures are required for the effective extraction of these compounds and diminishing the 

78 matrix effect from.

79 Owing to the feasibility of the solid-phase extraction (SPE) approaches, a 

80 methodology based on this focus includes conditioning of an appropriate sorbent material 

81 able to retain/release targeted analytes, washing away undesired components (commonly 

82 related to matrix effect), and eluting the desired analytes with an optimal extractive and 

83 compatible solvent with the detection system. 14,15 In this sense, SPE shows significant 

84 advantages over other conventional approaches such as suitable recoveries, concentration 

85 with higher enrichment factors, relatively rapid analyte isolation, and relatively fewer organic 

86 solvent consumption. 14,15

87 Although, currently there are available a broad range of sorbent materials and 

88 applications of themselves employed in SPE, carbon nanotubes (CNTs) have been considered 

89 an interesting material due to their physicochemical properties, especially their significant 

90 skills regarding retention/elution of several analytes might be contained in environmental 

91 samples, including surface water. 16,17 Furthermore, it has been reported that CNTs surface 

92 has demonstrated suitable strong interactions to extract/concentrate many organic pollutants 

93 in environmental water samples. 17 
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5

94 With the purpose to achieve the optimal conditions of the variables influencing the 

95 SPE extraction methodology, statistical and multi-variable approaches such as the design of 

96 experiments (DOE) have been currently applied to diminish laboratory supplies and time 

97 according to the green chemistry principles, reducing the amount of reagents during the 

98 optimization. The DOE approach allows understanding of the system’s performance and how 

99 the variables (factors), and their interactions, affect the response. 18,19

100 Similarly, green analytical chemistry (GAQ) has incorporated sustainable 

101 development values to the total analytical process.20 Currently, in order to develop greener 

102 sample treatments, metrics tools have been applied to estimate the greenness of analytical 

103 methodology. Thus, the Green Certificate proposed by Armenta and co-workers is a metric 

104 scale that comprises parameters such as reagents toxicity and amount, waste generated, and 

105 energy consumption in the extraction analytical procedure.21 This tool allows taking into 

106 account the analytical sustainability of the proposed methodology.

107 Thus, the present research proposes the development of a simple and green 

108 methodology based on SPE-packed cartridge containing multi-walled carbon nanotubes 

109 (MWCNTs) for the extraction and enrichment of HAAs, in river and reservoir water samples, 

110 previous to the analysis by liquid chromatography coupled to tandem mass spectrometry 

111 (LC-MS/MS). The critical parameters involved in retention-elution efficiency were fully 

112 evaluated by a multivariate strategy named Response Surface Methodology (RSM). 

113 Furthermore, the analytical performance was studied and validated, as well as, a comparative 

114 analysis was performed to assess the greenness of the approaches intended to HAAs 

115 determination in environmental samples.

116

117
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6

118 2. Material and methods

119 2.1. Chemicals and reagents

120 The AIAs analytical standards employed in this study were: IQ: 2-amino-3-

121 methylimidazo-[4,5-f]-quinoline, MeIQ: 2-amino-3,4-dimethylimidazo-[4,5-f]-quinoline, 

122 MeIQx: 2-Amino-3,8-dimethyl-imidazo-[4,5-f]-quinoxaline, 4,8-DiMeIQx: 2-amino-3,4,8-

123 trimethylimidazo-[4,5-f]-quinoxaline, whereas that, the amino-indole standards were: DMIP: 

124 2-amino-1,6-dimethyl-imidazo-[4,5-b]-pyridine, and PhIP: 2-amino-1-methyl-6-

125 phenylimidazo-[4,5-b]-pyridine. Likewise, the amino-carbolines analytical standards used 

126 were: Trp-P-1: 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]-indole; Trp-P-2: 3-amino-1-

127 methyl-5H-pyrido-[4,3-b]-indole; AαC: 2-amino-9H-pyrido-[2,3-b]-indole; and MeAαC: 2-

128 amino-3-methyl-9H-pyrido-[2,3-b]-indole. All of them were purchased from Toronto 

129 Research Chemicals Inc. (North York, ON, Canada).

130 Optima® LC-MS grade acetonitrile (ACN), ultra-pure water and HCOOH were 

131 obtained from Fisher Scientific (Fair Lawn, New Jersey, USA). Non-modified multi-walled 

132 carbon nanotubes (O.D. x I.D. x L: 10 nm ± 1 nm x 4.5 nm ± 0.5 nm x 3-~6 µm; number of 

133 walls: 6-8) were acquired from Sigma-Aldrich. Co., (St Louis, USA). Appropriate dilutions 

134 of a 5.0 mg L-1 in ACN/H2O (1:3) stock of the HAAs were prepared daily, and were stored 

135 in screw-capped amber glass tubes at 4 °C and kept in the dark. The quantification and further 

136 assays were carried out by the analyte´s additions on the real matrices.

137 2.2. Instrumentation

138 HAAs determination was performed on an Acquity™ Ultra High-Performance LC 

139 system (Waters, Milford, USA) equipped with a binary pump and an autosampler system 

Page 8 of 46Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Romina
Resaltar



7

140 (Waters, Milford, USA). The LC system was combined with a Quattro Premier™ XE 

141 Micromass MS Technologies triple quadrupole mass spectrometer, and a Z-Spray™ 

142 electrospray ionization source (Waters, Milford, USA). An ACQUITY UPLC® BEH Shield 

143 RP18 analytical column (100 × 2.1 mm i.d., 1.7 μm, Waters, Milford, USA) was utilized for 

144 the chromatographic separation. An electronic microbalance with a readability of 0.1 mg 

145 (Ohaus, Switzerland), and a Minipuls 3 peristaltic pump (Gilson, Villiers-Le-Bell, France) 

146 were also employed.

147 2.3. Sampling and sample preparation

148 Surface water samples were gathered from the Cosquin River (31°13′00″S, 

149 64°29′00″O) and the San Roque Reservoir (31°22′41″S, 64°28′10″O and 600 m a.s.l.), 

150 located in Cordoba Province, Argentina between December 2016 and January 2017 (summer 

151 season in the Southern Hemisphere). One of the main effluents of the San Roque Reservoir 

152 is the Cosquin River, which flows through the Punilla Valley (a tourist region). These bodies 

153 of water are the principal source of drinking water in the region and are frequently impacted 

154 promoting untreated sewage discharges. 22 The collected surface water samples were 

155 maintained in dark glass containers at 4 °C until analysis.

156 2.4. SPE packed cartridge preparation

157 The lab-made SPE-packed cartridge was developed using commercially available, 

158 non-modified MWCNTs. Thirty milligrams of MWCNTs bulk material was carefully 

159 introduced into a polypropylene pipette tip (50 mm length) and it was stuffed with glass wool 

160 at both ends to avoid material and fluid leaks during sample and eluents flow.
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161 2.5. MWCNTs-SPE procedure

162 Initially, the SPE-cartridge was conditioned with 5 mL of ACN followed by 5 mL of 

163 ultra-pure water. For the SPE procedure, an aliquot of 50 mL of ultra-pure water spiked at 5 

164 µg L-1 of a mixture of all HAAs standards was passed through the cartridge at an optimal 

165 loading flow rate (3 mL min-1) by a peristaltic pump. Then, the HAAs retained on the 

166 MWCNTs-SPE were eluted with a 0.8 mL mixture of ACN/H2O (80:20 (v/v)), with 15 mM 

167 of HCOOH, at an elution flow rate of 0.8 mL min-1. Finally, the HAAs-enriched eluate was 

168 collected into a glass vial for analysis. The schematic procedure is shown in Fig. 1.

169 2.6. MWCNTs-SPE: experimental designs and optimization

170 The principal factors affecting the MWCNTs-SPE procedure were evaluated. Thus, 

171 two full factorial designs (2k) currently. The analyzed factors were ACN/H2O elution 

172 mixture, organic solvent modifier concentration, elution flow rate, and elution volume. For 

173 the experimental runs, 50 mL of the spiked surface water sample (5 µg L-1 of each targeted 

174 HAA) was evaluated.

175 A fist factorial design was applied based on 19 total runs (k=4): 16 runs and 3 central 

176 points. The selected-variables were included in the optimization due to their pertinence in the 

177 MWCNTs-SPE procedure. Later, a second factorial design was employed considering only 

178 the significant variables, which lead to a total of 13 runs (k=3), including 8 runs and 5 central 

179 points. These experimental systems were used to assess and select significant factors and 

180 their experimental region. The extractive recovery percentage (ER (%)) of targeted HAAs, 

181 calculates as shown in Eq. 1, were used to evaluate the analytical performance and response 

182 in DOE-optimization.
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9

ER% =
Peak AreaSpiked water sample

Peak AreaStandard in pure solvent  
× 100 (1)

183 Moreover, significant experimental factors were employed to build a central 

184 composite design (CCD) to find out the optimal analytical conditions for all the responses. 

185 This experimental design was analyzed based on 13 runs, 2k+2k+Cp = 4+4+5, which were 

186 in agreement with the combinations of the selected independent variables. A single block 

187 rotatable design (α = 1.414), including five central points, was built. In each assay, the ER 

188 (%) values of the targeted analytes were examined. Additionally, the desirability function 

189 was used to select the optimal experimental conditions evaluated in the CCD according to 

190 the RSM. 19 All proposed DOEs were evaluated using Design Expert 8.0.0 (Stat-Ease, Inc., 

191 Minneapolis, USA).

192 2.7. UHPLC-MS/MS analysis

193 The analysis was performed using a binary mobile phase composed of a variable 

194 proportion of water (A) and acetonitrile (B), both with 0.1 % (v/v) of HCOOH, which was 

195 delivered at 0.25 mL min-1. A gradient elution started at 90 % A, which was held during 0.5 

196 min, afterward 3.5 min gradient to 25 % A, such composition was kept for 3.5 min. Finally, 

197 the system was returned to the initial in 0.2 min gradient, where it was held for 0.8 min. The 

198 column temperature was kept constant at 30 °C.

199 The source operational conditions were as follows: capillary voltage, 2.7 kV; 

200 extractor voltage, 1.0 kV; source temperature, 150 °C; desolvation temperature, 350 °C; cone 

201 gas flow rate, 50 L h-1; desolvation gas flow rate, 400 L h-1. Ultrapure nitrogen and argon 

202 were used in the ionization source and collision gases; respectively. For each HAA, the 

203 interface was operated in a positive mode and the data were acquired in a multiple reaction 
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10

204 monitoring mode (MRM). To select the fragmentation patterns, each analyte solution at a 

205 concentration level of 0.5 mg L-1 was injected via direct infusion (using a syringe pump) into 

206 the MS. The product ion scan mass spectra were recorded. The retention time (RT) and 

207 MS/MS settings for each compound are summarized in Table 1. Representative 

208 chromatograms for all HAAs under study are depicted in Fig. 2.

209 2.8. Parameters for the greenness assessment of the sample treatment

210 As stated above, the “Green Certificate” is based on the idea of an analytical eco-

211 scale to evaluate how much green a sample treatment is. Thereby, the green efficiency of the 

212 proposed MWCNTs-SPE sample treatment for HAAs was compared against currently 

213 reported methodologies for the analysis of HAAs in surface water.

214 The parameters included in the green assessment were defined as penalty points (PP) 

215 for reagent volume (PPRV), waste volume generated (PPW), and for energy consumption 

216 (PPE). Where V represents the reagent volume and W refers to the waste volume produced. 

217 The PP were calculated using Eqs. (2) and (3); respectively. 21

 𝑃𝑃𝑅𝑉 =  0.61 ± 0.05 𝑉 (0.31 ± 0.02) (2)

𝑃𝑃𝑤 =  0.50 ± 0.08 𝑊 (0.40 ± 0.02) (3)

218 While PPE was calculated considering the power-hour involved in the proposed SPE. 

219 Less or equal than 0.1 kWh per sample involves 1 PP, from 0,1 to 1.5 kWh per sample refers 

220 2 PP, and more than 1.5 kWh per sample, 3 PP.23 Moreover, PP were calculated per sample 

221 analysis, thus the total penalty points of the MWCNTs-SPE procedure were defined as PPS.

222
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223 3. Method validation 

224 The development of an analytical method involves a validation stage to ensure 

225 reliability, reproducibility, and accuracy. The figures of merit calculated in the present 

226 methodological development, including linearity, the limit of detection (LOD), the limit of 

227 quantification (LOQ), selectivity, and inter-day precision expressed as the relative standard 

228 deviations (RSD (%)), are summarized in Table 2.

229 The MWCNTs-SPE performance was assayed by extracting spiked surface water 

230 samples from river and reservoir water. Spiked samples at three concentration levels (3 

231 replicates at 0.5, 1, and 2 or 5 µg L−1) were studied to evaluate the analytical performance 

232 mentioned. The herein proposed method showed proper linearity, with regression 

233 coefficients (R2) in the range of 0.990 to 0.998. The linearity of the fitted model agreed with 

234 the F-test.

235 Furthermore, the LOD and LOQ were calculated following the International Union 

236 of Pure and Applied Chemistry (IUPAC) recommendations according to Eqs. 4 and 5. 24

LOD =
3.3Sy x

b

1
m +

1
n +

x2

∑n
i = 1(xi ― x)2 (4)

LOQ =
10Sy x

b

1
m +

1
n +

x2

∑n
i = 1(xi ― x)2 (5)

237 The LODs values ranged from 0.06 µg L-1 to 0.23 µg L-1 and the LOQs values from 

238 0.17 µg L-1 to 0.69 µg L-1. The RSDs (%) varied from 1.7 % to 6.4 % for all the HAAs under 

239 study. The enrichment factor (EF) values were calculated for all the analytes, which were in 

240 a range from 59 to 63 folds.
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241 The accuracy of the analytical method was assessed based on the Recovery (%) of the 

242 HAAs from the real samples treated according to Section 2.5. The Recovery (%) values for 

243 the studied HAAs varied from 91.6 % to 105.3 %, as shown in Table 2.

244 As known, ion suppression/enhancement occasioned by matrix effect continues being 

245 a foremost concern in LC-ESI-MS/MS analysis.25 Thus, matrix effect was examined by 

246 comparison of the calibration curves slopes (b), which were created with calibrants of all 

247 HAAs in pure solvent and spiked river and reservoir surface water samples. The percentage 

248 of the quotient of the slopes was applied to quantify the ion signal suppression/enhancement 

249 extension (SSE (%)) (Eq. 6).

SSE (%) = 100 ― ( bSpiked water sample

bStandard in pure solvent 
× 100) (6)

250 From the findings, after applying the MWCNTs-SPE method, a non-significant 

251 matrix effect was observed for the HAAs under study. This fact might be explained by the 

252 sample clean-up effect of the MWCNTs-SPE step due to a selective retention/elution of the 

253 targeted HAAs in both river and reservoir water samples. In concordance with the results 

254 mentioned above, precision, recoveries and detection limits of the developed analytical 

255 methodology were compatible with the HAAs trace levels present in aqueous samples. Since 

256 non-effect of the matrix on HAAs signal, Eq. 7 was employed for the calculation of Recovery 

257 (%) in the samples under study, at the same spiking level.

Recovery % =
Peak AreaSpiked water sample ― Peak AreaWater sample

𝑃𝑒𝑎𝑘 AreaStandard in pure solvent  
× 100 (7)

258

259
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260 4. Results and discussion

261 4.1. Extraction procedure. Preliminary studies

262 To evaluate the overall extraction efficiency based on the retention/elution of the 

263 HAAs using MWCNTs-SPE, previous experiments intended to assay the sample volume and 

264 the loading flow rate. As a result, the MWCNTs-SPE device prepared as mentioned in 

265 Section 2.4 was used to efficiently load a 50 mL volume of water at a 3 mL min-1 flow rate. 

266 Under these conditions, experimental designs were built for the extraction/clean-up strategy 

267 optimization.

268 4.2. MWCNTs-based SPE optimization

269 4.2.1. Selection of significant factors and experimental region

270 In a screening phase, two full factorial designs were built to determine the main 

271 variables (factors) with a significant influence on the MWCNTs-SPE procedure. In 

272 concordance with the experimental design, low, central, and high levels of the variables were 

273 designated as (-), (0), and (+), respectively. A two-level-four-factors (24) full factorial design 

274 consisting of 16 runs and 3 central points was performed in order to determinate the influence 

275 of the following four variables: (A): ACN percentage in elution mixture, (B): HCOOH 

276 concentration as organic modifier concentration, (C) elution flow rate, and (D): eluent 

277 volume. The experimental region for the selected variables at minimum, maximum, and 

278 central point levels were as follow: (A): 40, 60 and 50 % of ACN; (B): 0.004, 0.016 and 0.08 

279 mM of HCOOH; (C): 0.15, 0.50 and 0.33 mL min-1 as elution flow rate; and (D):500, 1000, 

280 and 750 µL as eluent volume. The ER (%) values of all targeted-HAA of spiking surface 
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281 water samples (5 μg L-1) were analyzed. In Table S1 (ESI), the experimental matrix and the 

282 obtained responses of the primary screening step are detailed.

283 The performance of the suggested model was evaluated by ANOVA assumptions of 

284 the mutagenic IQ (polar) and Trp-P-2 (less-polar) model analytes, and the results are outlined 

285 in Tables S2 and S3 (ESI). The influential factors were defined considering the Pareto charts. 

286 Fig. 3, 1A and 1B illustrate Pareto charts for IQ and Trp-P-2; respectively. The analysis of 

287 the variables on the ten responses allowed to conclude that the only factor with no significant 

288 influence on the MWCNTs-SPE methodology was the elution solvent volume (D).

289 Therefore, a second two-levels-three-factors (23) full factorial design of 8 runs and 5 

290 central points were needed. The following variables and ranges were considered: (A): 40, 80 

291 and 60 % of ACN; (B): 1.6, 15.9 and 8.7 mM of formic acid; and (C): 0.2, 0.8 and 0.5 mL 

292 min-1 as elution flow rate. The obtained responses are summarized in Tables S3 and S4 

293 (ESI).

294 The results for the analysis of variance were examined (ANOVA test results for IQ 

295 and Trp-P-2 are shown in Table S5, and S6 (ESI); respectively). Under the obtained Pareto 

296 chart for the second factorial design, only two out of three factors, A and B, were observed 

297 as statistically significant for the MWCNTs-SPE methodology (Fig. 3, 2A (IQ) and 2B (Trp-

298 P-2)). Besides, the lack of fit (not significant) and curvature (significant) suggested that the 

299 selected experimental region for the mentioned factors was optimal to assay the suitable 

300 conditions and to obtain the optimal responses using the proposed approach.

301

302 4.2.2. Multi-response optimization
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303 As mentioned previously, only two factors showed a significant effect on the 

304 MWCNTs-SPE procedure. Consequently, a second-order design was carried out. A multi-

305 response optimization was achieved with a CCD of 13 runs, (2k+2k+Cp = 4+4+5) based on 

306 combinations of the selected variables. The following variables (and ranges) in the CCD 

307 design were studied: (A): 26.4 - 93.6 % of ACN, and (B): 0.0 (no formic acid addition) - 21.0 

308 mM HCOOH. The alpha value used in the design was compatible with the rotatable 

309 distribution of the predictive variance. 19 The whole experimental combinations and their 

310 ERs (%) are listed in Table S7 (ESI).

311 The model coefficients of the CCD were computed by backward multiple regression 

312 and validated by ANOVA. Outliers and influential points were removed or evaluated using 

313 the Cook’s distance, differences between betas test (DFBETAS) and fitted test (DFFITS). As 

314 mentioned above, ANOVA assumptions, the coefficient of determination (R2) and the 

315 adjusted coefficient of determination (R2adj) were assessed as well. The values of R2 and R2 

316 adj indicated a suitable relationship between the experimental data and the fitted model (this 

317 information is listed in Table S8 (ESI). All responses were optimized using the desirability 

318 function, which implicates the modification of each expected response variable to a 

319 desirability value that varies from zero (undesirable response) to one (optimal/expected 

320 response). Once the function is defined for each experimental response, a general function is 

321 obtained and represents the integral desirability function. Such function usually is determined 

322 as the weighted geometric average of the individual desirability functions.26 Thereby, the 

323 desirability function for the targeted-HAAs response optimization along with its 

324 maximization (ER (%)), employing the proposed MWCNTs-SPE approach, were 

325 determined. As a result, the experimental conditions corresponding to a maximum of the 

326 desirability function (D=0.917) were as follow ACN/H2O (80:20 (v/v)) elution mixture 
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327 composition and HCOOH concentration (15 mM). Consequently, the desirability values 

328 under optimal conditions are detailed in Fig. 4, resulting in a combined desirability value of 

329 0.917. The obtained results were corroborated and compared with the theoretical ones.

330 4.2.3. Application to real samples

331 To evaluate the efficiency of the proposed MWCNTs-SPE, river and reservoir water 

332 samples were collected as described in Section 2.3. The findings of the analysis indicated 

333 that the levels of the HAAs and their distribution were different in both types of sample. 

334 Seven out of ten HAAs were detected in the Cosquin River, among them, the mutagenic 

335 MeIQ, MeIQx, 4,8-DiMeIQx, Trp-P-1, Trp-P-2, AαC, and MeAαC. Additionally to these 

336 compounds, IQ and PhIP, were quantified in San Roque Reservoir, while DMIP resulted to 

337 be below the detection limits. Concentration levels of all HAAs found at Cosquin River 

338 ranged from 0.21 µg L-1 (Trp-P-1) to 0.56 µg L-1 (MeIQ), meanwhile in the San Roque 

339 Reservoir varied from 0.37 µg L-1 (AαC) to 0.93 µg L-1 (Trp-P-1) as shown in Table 3. As 

340 described by other authors, the occurrence of these harmful compounds may be explained by 

341 shedding from sewage effluents and human waste into surface water. 27-32 As mentioned 

342 above, water surface from the Cosquin River and the San Roque Reservoir have been affected 

343 by untreated sewage effluents, which might be one of the main sources of the occurrence of 

344 HAAs in these surface waters. The slight higher concentration levels in the San Roque 

345 Reservoir is consistent with more stagnant water than the Cosquin River and, besides, with 

346 the presence of important tourist activity around this area, increasing sewage effluents 

347 shedding into the surface water.

348 The proposed methodology is comparable, and even better in its analytical 

349 performance, to other SPE approaches reported in the literature (Table 4). The use of a simple 
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350 clean-up strategy as the MWCNTs-SPE procedure allowed decreasing the matrix effect and 

351 analysis time. Thus, the proposed methodology included the fast and efficient analysis of ten 

352 harmful HAAs in surface water intended to human consumption. It is important to notice as 

353 shown in Table 4, that no literature reports have been found about the presence of HAAs in 

354 water surface samples, particularly for the mutagenic AIAs group, i.e. IQ, MeIQ, MeIQx, 

355 and 4,8-DiMeIQx. Thus, AIAs and polar HAAs, such as IQ, MeIQ, MeIQx, as well as the 

356 imidazo-pyridine compound DMIP, were retained and eluted from the MWCNTs sorbent-

357 based SPE as sample treatment for the analysis of surface water. In other words, the 

358 MWCNTs system provided an efficient extraction and concentration of the targeted analytes 

359 with different polarities. 

360 A recent study reported by Basheer, 32 describes an approach based on a µ-SPE device 

361 intended for the extraction of seven HAAs from water samples, associated with liquid 

362 chromatography with fluorescence detection (LC-FD). Although such µ-SPE device allowed 

363 an effective recovery of the targeted analytes, the total chromatographic run comprised 30 

364 min for seven HAAs. 32 On the other hand, LOD and LOQ values for the ten HAAs herein 

365 reported were compatible with concentration levels found in the analyzed water samples. In 

366 this sense, in order to compare the LOD and LOQ values informed for this methodology to 

367 others, it is required a harmonized criteria and to obtain comparable figures of merit. In this 

368 sense, the signal-to-noise (S/N) approach was employed by Basheer to calculate LOD and 

369 LOQ, while in the proposed study, the approach based on the IUPAC’s recommendations 

370 was employed.

371 4.2.4 Assessing the greenness of the methodology
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372 A green evaluation was performed for the proposed MWCNTs-SPE sample 

373 treatment. Thus, a comprehensive assessment was encompassed for the PPs calculation 

374 considering only the extraction or sample treatment step. Since this crucial stage in the 

375 analysis flow usually requires extractive reagents in an appropriate amount, their reduction 

376 might decrease the negative impact on the environment. As can be seen in Table 5, the Green 

377 Certificate (i.e. 83.70) for the proposed MWCNTs-SPE was stated as “B” (scale from A to 

378 G, being A the greenest one and G the less-green one), 21 and greener than other 

379 methodologies reported before. The main source of contribution for total of penalty points 

380 were the sample volume and MWCNTs sorbent (> 50 %) and 30 % of the penalty points were 

381 promoted by regents, i.e. ACN and HCOOH. Although the assessment of the penalty points 

382 for the MWCNTs sorbent into SPE packed cartridges was calculated per sample, the 

383 cartridges were reused until 10 fold (i.e including samples and calibrants solutions/spiked 

384 samples). Also, in order to ensure the yield of MWCNTs-SPE packed cartridges before 

385 disposing, both in terms of sample/analyte carryover and targeted analytes retention/elution 

386 from the sorbent, were evaluated. In this sense, the benefit in diminishing sorbent amount, 

387 might reduce waste production, a lower impact on the environment, and a low-cost analysis.

388 On the other hand, some selected reports intended to HAAs determination in water 

389 samples based on the use of SPE were listed in Table 5. Blue-rayon hanging method has 

390 been used as HAAs extraction procedure. However, in order to achieve the HAAs desorption 

391 from Blue-rayon, a relatively higher amount of several regents (harmful solvents) have been 

392 used. Likewise, SPE-based approaches (Strata-X® SPE cartridge), 31 greener methodologies 

393 with a higher value of Green Certificate, were obtained due to the lower amount of solvents 

394 used during extraction/elution of the analytes (Table 5). However, the inconvenience of a 
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395 large volume of sample employed (i.e. waste production) increased the penalty point value. 

396 Although, the µ-SPE device described by Basheer 32 (Table 5) for HAAs determination in 

397 water resulted to be sorted as “B class” (Green Certificate: 81.49), only informed amounts of 

398 reagents used in the sample treatment were considered for the calculation of the penalty 

399 points. However, during the preparation of the µ-SPE device, the authors described such a 

400 device was conditioned and stored employing unknown amounts of MeOH and further 

401 sonication step, increasing the reagent amount and energy consumption, thus a likely 

402 diminution of the greenness of the methodology.

403 5. Conclusions

404 A rapid and efficient MWCNTs-SPE methodology was successfully developed and 

405 applied for the analytical determination of targeted HAAs in river and reservoir waters. 

406 Through a multivariate strategy, optimization of the proposed methodology was achieved, 

407 attaining a rapid, simple, sensitive, and green sample treatment approach. Besides, MWCNTs 

408 application demonstrated a suitable retention capacity on the extraction of ten HAAs targeted 

409 analytes under study and the effective elimination of matrix effects. Besides, the analytical 

410 methodology complied with the main points of Green Chemistry, through the low 

411 consumption of organic solvents and simplicity, turned the whole procedure in an 

412 environmentally friendly tool for analysis. Also, it is remarkable bearing in mind whether the 

413 influence of the risk associated with amount and reagent during sample preparation is 

414 lessening or replaced for a less-toxic one, it might allow decreasing both waste production 

415 and diminishes the exposure to harmful compounds, such as HAAs during the analysis.
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416 Furthermore, this is the first report about the occurrence of both polar and less-polar 

417 HAAs in river and reservoir surface water samples. The findings provided information about 

418 water quality and will promote further studies to address HAAs health and environmental 

419 impacts. This work might add important information on the quality of Cosquin River and San 

420 Roque Reservoir and could also contribute to give a useful analytical methodology to 

421 determinate HAAs in real samples from different sources.
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484 Figure captions

485 Fig. 1. Scheme of the experimental MWCNTs-SPE procedure applied for sample clean-up, 

486 extraction and enrichment of the selected HAAs. A: ACN/H2O elution mixture; B: Organic 

487 modifier concentration; C: Elution solvent flow rate; D: Elution volume; SV: Sample 

488 volume; LF: Loading flow rate; P.P: Peristaltic Pump; I: loading sample step; II: eluting 

489 sample step.

490 Fig. 2. Chromatograms of the HAAs determined by UHPLC-(+)ESI-MS/MS: (A) DMIP 

491 (RT: 1.23 min); (B) IQ (RT: 1.62 min); (C) MeIQ (RT: 1.93 min); (D) MeIQx (RT: 2.13 

492 min); (E) 4,8-DiMeIQx (RT: 2.54 min); (F) PhIP (RT: 2.80 min); (G) Trp-P-1 (RT: 2.94 

493 min); (H) AαC (RT: 3.12 min); (I) Trp-P-2 (RT: 3.50 min); (J) MeAαC (RT: 3.59 min).

494 Fig 3. A 24 full factorial design (1): A: ACN/H2O elution mixture; B: HCOOH concentration; 

495 C: elution solvent flow rate. 1A): Pareto chart for IQ and 1B): Pareto chart for Trp-P-2. 

496 A 23 full factorial design (2): A: ACN/H2O elution mixture; B: HCOOH concentration. 2A): 

497 Pareto chart for IQ and 2B): Pareto chart for Trp-P-2.

498 Fig. 4. Values obtained from the desirability function for each compound considering the 

499 variables under study. Combined desirability of the ten selected analytes. A: ACN/H2O 

500 elution mixture; B: HCOOH concentration; R: response (R1-DMIP; R2-IQ; R3-MeIQ; R4-

501 MeIQx; R5-4.8-DiMeIQx; R6-PhIP; R7-AαC; R8-MeAαC; R9-Trp-P-1; R10-Trp-P-2).
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Highlights

 A MWCNTs-based SPE strategy followed by LC-MS/MS was developed. 

 Experimental extraction conditions were chemometrically optimized. 

 Trace levels of HAAs in surface waters were determined.

 Comparative analysis using green metrics tools was applied. 
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Table 1. Optimized chromatographic retention times and MRM experimental conditions for (+)ESI-MS/MS determination.

Quantification ConfirmationAnalyte
(MW)

RT
(min)

Precursor ion
(m/z)

Cone
(V) Product ion (m/z) Collision (V) Product ion (m/z) Collision (V)

DMIP
(162) 1.23 163 38 - 20 148 20

IQ
(198) 1.62 199 25 154 32 184 32

MeIQ
(212) 1.93 213 35 145 26 198 26

MeIQx
(213) 2.13 214 33 173 31 199 31

4,8DiMeIQx
(227) 2.54 228 44 187 26 213 26

PhIP
(224) 2.80 224 45 183 30 210 30

Trp-P-1
(211) 2.94 212 35 195 19 168 19

AαC
(183) 3.12 184 25 167 25 140 25

Trp-P-2
(197) 3.50 198 27 181 30 154* 30

MeAαC
(197) 3.59 198 25 181 25 154/129* 25

RT: retention time. *m/z 154 was used as confirmation ion for Trp-P-2 and MeAαC
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Table 2. Linearity (R2), lineal range (LR), detection (LOD) and quantification (LOQ) limits, percentage relative standard deviation (RSD 
(%)) and Recovery (%) of the MWCNTs-SPE following by UHPLC-MS/MS method.

EF: enrichment factor. Inter-day precision expressed as RSD (%). 

Compound R2 LR
(µg L-1)

LOD
(µg L-1)

LOQ
(µg L-1) EF RSD (%)

(n=3)
Recovery (%)

(n=3)
DMIP 0.998 0.25 - 3.00 0.08 0.25 64 5.5 101.5±3.8

IQ 0.997 0.65 - 2.00 0.21 0.65 60 2.9 98.0±2.6

MeIQ 0.994 0.70 - 2.00 0.23 0.69 61 6.4 94.0±2.4

MeIQx 0.995 0.25 - 2.00 0.06 0.19 60 3.6 97.1±1.4

4,8-DiMeIQx 0.990 0.30 - 5.00 0.09 0.28 59 3.8 96.6±2.3

PhIP 0.997 0.25 - 2.00 0.07 0.22 61 3.9 98.5±0.5

Trp-P-1 0.998 0.25 - 5.00 0.08 0.22 62 3.8 99.3±1.1

AαC 0.996 0.20 - 2.00 0.06 0.17 61 1.7 98.0±1.2

Trp-P-2 0.997 0.25 - 2.00 0.08 0.25 61 3.5 98.7±2.2

MeAαC 0.995 0.37 - 2.00 0.12 0.37 63 6.3 101.7±3.2
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Table 3. Occurrence concentration levels of HAAs in river and reservoir surface water samples.

ND: not detected; LOQ: limit of quantification

Cosquin River San Roque Reservoir

HAAs Concentration
(µg L-1)

Concentration
(µg L−1)

DMIP ND ND
IQ ND <LOQ

MeIQ 0.56 0.92
MeIQx 0.24 0.71

4,8-DiMeIQx <LOQ 0.62
PhIP ND 0.56

Trp-P-1 0.32 0.93
AαC 0.21 0.37

Trp-P-2 0.51 0.76
MeAαC <LOQ 0.56
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Table 4. Summary of reported studies for the analysis of HAAs in surface water

Sample Source Surface 
Water

Sampling method-
Sample Preparation Detection Method HAAs 

analyzed
Reported Concentration 

Values LOD Ref.

River water 
Yodo River - Japan

Blue-rayon hanging 
method

HPLC-Electrochemical detector 
(MeIQx) and FD 

(Trp-P-1, Trp-P-2 and PhIP)

MeIQx
PhIP

Trp-P-1
Trp-P-2

ND-365 ng g-1 BRE
ND-118 ng g-1 BRE
ND-530 ng g-1 BRE
ND-840 ng g-1 BRE

NM 27

River water 
Yodo River - Japan

Blue-rayon hanging 
method HPLC-UV and MS Trp-P-2 8-9 ng L-1 (trapped by blue-

rayon resin) NM 28

River water 
Danube River (Vienna) 

Austria

Blue-rayon hanging 
method; XAD-2 
hexane, acetone

GC-MS and GC-NPD
AαC
IQ

Trp-P-1

0.44±0.44 ng g-1 BRE
1.78±0.17 ng g-1 BRE
0.14±0.02 ng g-1 BRE

NM 29

River water 
North Kyusyu - Japan

Blue-rayon hanging 
method HPLC-Fluorescence Detection Trp-P-1

Trp-P-2
ND - 6 ng g-1 BRE
4 - 13 ng g-1 BRE NM 30

Tap water (Ciudad Real) and 
river water (Segovia) - Spain

SPE (Strata-X® 
cartridge)

HPLC-amperometric detection at glassy 
carbon electrode modified with 

multiwall carbon nanotubes

AαC
Harman
MeAαC

Nor-Harman
Trp-P-1
Trp-P-2

ND

4.0 µg L-1

8.0 µg L-1

7.0 µg L-1

4.0 µg L-1

6.0 µg L-1

3.0 µg L-1

31

Seawater
Treatment plant

Saudi Arabia

Portable pump coupled 
with μ-SPE (alumina) 
for on-site extraction 

method

HPLC-FD

AαC
Harman

Nor-Harman
PhIP

Trp-P-1
Trp-P-2

ND
0.07 µg L-1

ND
0.13 µg L-1

ND

0.014 µg L-1

0.019 µg L-1

0.021 µg L-1

0.026 µg L-1

0.007 µg L-1

0.004 µg L-1

32

Surface water samples
(Argentina) SPE (MWCNTs) UHPLC-MS/MS

IQ
MeIQ
MeIQx

4,8-DiMeIQx
DMIP
PhIP

Trp-P-1
Trp-P-2

AαC
MeAαC

ND-0.48 µg L-1

0.56-0.92 µg L-1

0.24-0.71 µg L-1

0.16-0.62 µg L-1

ND
ND-0.56 µg L-1

0.32-0.93 µg L-1

0.51-0.76 µg L-1

0.21-0.37 µg L-1

0.35-0.56 µg L-1

0.21 µg L-1

0.23
0.06
0.09
0.08
0.07
0.08
0.08
0.06
0.12

This work

BRE: Blue-Rayon extract Equivalent; ND: Not Detected; NA: Not Applied; NM: Not Mentioned.
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Table 5. Comparative Green Certificate for HAAs extraction methods from natural water samples.

* Subtotal PPR = PPRV x PP RH 
21 ** Green certificate= 100 - Total PPs 21

Extraction 
Technique

Sample volume 
(mL)

Reagent amount
(mL) PPRV Hazard-(PP RH) Subtotal

PPR* PPW PPE
Total 
PPs

Green 
Certificate** Ref.

1000 MeOH (156.8)
Ammonia (3.2)

3.49
0.97

6
4 24.86 34.86 3 62.72 37.28

“F” 27

- MeOH (98)
Ammonia (2)

2.99
0.83

6
4 21.30 6.59 1 28.89 71.11

“C” 28

25

n-Hexane (100)
Acetone (100)
MeOH (0.2)
DMF (0.01)

Ethylacetate (0.02)

3.01
3.01
0.38
1.14
0.18

6
4
6
6
4

34.06 16.56 2 52.62 47.38
“E” 29

Blue-rayon 
hanging method 

- MeOH (156.8)
Ammonia (3.2)

3.49
0.97

6
4 24.86 1.58 4 30.44 69.56

“C” 30

SPE (Strata-X® 
cartridge) 10 MeOH (6.7)

ACN (1.5)
1.24
0.75

6
4 10.44 4.15 3 17.59 82.41

“B” 31

µ-SPE 100 MeOH (0.4)
ACN (0.1)

0.48
0.31

6
4 4.17 11.34 3 18.51 81.49

“B” 32

MWCNTs-SPE 50 ACN (5.6)
HCOOH (0.05)

1.17
0.05

4
6 5.00 8.30 3 16.30 83.70

“B”
This 
study
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Fig. 1. Scheme of the experimental MWCNTs-SPE procedure applied for sample clean-up, extraction and 
enrichment of the selected HAAs. A: ACN/H2O elution mixture; B: Organic modifier concentration; C: Elution 

solvent flow rate; D: Elution volume; SV: Sample volume; LF: Loading flow rate; P.P: Peristaltic Pump; I: 
loading sample step; II: eluting sample step. 

338x190mm (300 x 300 DPI) 
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Fig. 2. Chromatograms of the HAAs determined by UHPLC-(+)ESI-MS/MS: (A) DMIP (RT: 1.23 min); (B) IQ 
(RT: 1.62 min); (C) MeIQ (RT: 1.93 min); (D) MeIQx (RT: 2.13 min); (E) 4,8-DiMeIQx (RT: 2.54 min); (F) 
PhIP (RT: 2.80 min); (G) Trp-P-1 (RT: 2.94 min); (H) AαC (RT: 3.12 min); (I) Trp-P-2 (RT: 3.50 min); (J) 

MeAαC (RT: 3.59 min). 

122x123mm (120 x 120 DPI) 
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Fig 3. A 24 full factorial design (1): A: ACN/H2O elution mixture; B: HCOOH concentration; C: elution 
solvent flow rate. 1A): Pareto chart for IQ and 1B): Pareto chart for Trp-P-2. 

A 23 full factorial design (2): A: ACN/H2O elution mixture; B: HCOOH concentration. 2A): Pareto chart for 
IQ and 2B): Pareto chart for Trp-P-2. 

450x450mm (300 x 300 DPI) 
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Fig. 4. Values obtained from the desirability function for each compound considering the variables under 
study. Combined desirability of the ten selected analytes. A: ACN/H2O elution mixture; B: HCOOH 

concentration; R: response (R1-DMIP; R2-IQ; R3-MeIQ; R4-MeIQx; R5-4.8-DiMeIQx; R6-PhIP; R7-AαC; R8-
MeAαC; R9-Trp-P-1; R10-Trp-P-2). 

338x190mm (300 x 300 DPI) 
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Table S1. Experiments and responses of the HAAs in the 24 full factorial design.

A B C D  ERs (%)
Run ACN

(%)
HCOOH 

(mM)
Elution flow rate

(mL min-1)
Elution volume

(µL) DMIP IQ MeIQ MeIQx 4,8-DiMeIQx PhIP Trp-P1 AαC MeAαC Trp-P2

1 50 0.008 0.33 750 73.1 75.9 78.3 73.7 76.6 82.4 72.3 85.9 78.9 73.1
2 60 0.016 0.15 500 93 90.8 92.5 88.04 88.4 87.9 82.7 87.5 89.9 82.5
3 60 0.004 0.15 1000 80.7 82.5 82.2 79 80.8 79.9 69.4 79.5 77.2 71.9
4 60 0.004 0.50 1000 88.9 90.8 91.3 82.3 86.9 74.7 77.9 69.9 74.2 70.1
5 40 0.016 0.50 1000 63.1 67.6 60.5 75.1 65.7 57.6 74.9 66.3 69.8 72.6
6 60 0.004 0.50 500 85.9 82.6 84.5 82.7 80.3 80.3 70.9 82.3 65.3 68.4
7 50 0.008 0.33 750 75.9 71.3 77.2 79.1 73.9 78.8 79.3 84.2 81.1 78.5
8 60 0.004 0.15 500 82.1 83.1 86.9 80.2 82.5 71 66.1 73.5 73.8 82.7
9 40 0.004 0.50 1000 58 55.7 56.8 62.5 53.8 58.6 70.7 60.1 71.2 53.5
10 40 0.004 0.50 500 56.1 53.9 42.7 54.3 56.2 50.1 59.1 56.4 47.5 69.2
11 40 0.016 0.15 500 56.9 54.9 59.2 53.8 51.8 47.1 52.8 41.7 54.8 51.8
12 60 0.016 0.50 1000 94.1 97.1 96.4 98.5 92.9 97.2 95.5 96.5 92.7 91.1
13 50 0.008 0.33 750 72.9 76.2 72.9 75.27 77.9 75.6 76.6 78.5 73.9 80.5
14 40 0.004 0.15 1000 38.1 42.9 37.8 44.02 52.7 61.4 38.2 50.4 50.5 41.9
15 40 0.016 0.15 1000 62.1 68.2 61.1 70.5 70.2 68.4 86.8 61.2 65.8 70.6
16 60 0.016 0.50 500 92 92.5 97.4 95.74 94.2 99.9 93.1 97.06 92.8 95
17 60 0.016 0.15 1000 82.1 86.5 85.9 84.4 84.1 75.1 76.1 80.8 87.9 83.7
18 40 0.016 0.50 500 60.1 63.4 59.7 58.7 66.3 69.5 81.9 72.6 70.5 72.1
19 40 0.04 0.15 500 30.2 41.1 36.7 38.4 34.1 38.5 30.5 36.7 35.58 40.7
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Table S2. ANOVA test results obtained from the first (24) full factorial design for IQ response (model analyte).

a Degrees of freedom; b Test for comparing model variance with residual (error) variance; c Probability of seeing the observed F value if the null hypothesis is 
true.

Source Sum of Squares dfa Mean Square F value
b P value

c Prob> F

Model 4834.67 3 1611.56 78.19 <0.0001 significant
A 4166.70 1 4166.70 202.1 <0.0001
B 488.41 1 488.41 23.70 <0.0002
C 179.56 1 179.56 8.71 <0.0105
Curvature 14.15 1 14.15 0.69 0.4212 not significant
Residual 288.55 14 20.61
Lack of Fit 273.47 12 22.79 3.02 0.2754 not significant
Pure error 15.09 2 7.54
Cor total 5137.38 18
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Table S3. ANOVA test results obtained from the first full (24) factorial design for Trp-P-2 response (model analyte).

a Degrees of freedom; b Test for comparing model variance with residual (error) variance; c Probability of seeing the observed F value if the null hypothesis is 
true.

Source Sum of Squares dfa Mean Square F value
b P value

c Prob> F

Model 3059.53 3 1019.84 17.52 <0.0001 significant
A 1870.56 1 1870.56 32.14 <0.0001
B 915.06 1 915.06 15.72 <0.0001
C 273.90 1 273.90 4.71 0.0478
Curvature 142.26 1 142.26 2.44 0.1403 not significant
Residual 814.86 14 58.20
Lack of Fit 785.55 12 65.46 4.47 0.1973 not significant
Pure error 29.31 2 14.65
Cor total 4016.65 18
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Table S4. Experiments and responses of the HAAs in the 23 full factorial design.

A B C ERs (%)
Run ACN

(%)
HCOOH

(mM)
Elution flow rate

(mL min-1) DMIP IQ MeIQ MeIQx 4,8-DiMeIQx PhIP Trp-P-1 AαC MeAαC Trp-P-2

1 80.00 0.06 0.80 99.337 95.38 92.29 98.04 96.79 100.21 90.32 97.25 96.1 93.5
2 60.00 0.03 0.50 80.167 83.02 80.04 89.38 86.95 91.06 80.18 88.09 86.8 81.74
3 80.00 0.00 0.80 85.558 80.75 82.89 93.32 85.87 95.65 81.8 88.09 82.21 84.53
4 40.00 0.06 0.20 72.6896 73.96 68.05 76.05 80.21 80.1 67.1 92.42 76.55 70.1
5 40.00 0.06 0.80 76.524 72.89 65.08 74.76 75.82 79.17 63.8 78.97 72.7 68.83
6 60.00 0.03 0.50 77.501 82.12 76.45 90.18 93.9 89.08 78.6 87.55 80.99 78.16
7 40.00 0.00 0.80 62.89 54.2 63.01 66.27 68.9 72.61 60.6 68.57 60.89 62.57
8 80.00 0.00 0.20 88.412 82.93 85.85 90.52 84.72 86.51 79.3 90.49 84.46 86.94
9 80.00 0.06 0.20 96.611 98.27 91.14 99.34 99.22 101.4 93.8 98.1 95.86 95.66
10 60.00 0.03 0.50 79.4029 90.58 84.48 93.87 85.2 93.57 86.6 89.08 89.8 85.1
11 60.00 0.03 0.50 76.912 76.55 84.92 91.58 94.13 92.16 87.1 87.89 78.96 86
12 40.00 0.00 0.20 63.1233 53.4 64.79 62.27 70.39 70.59 56.9 69.6 63.5 63.19
13 60.00 0.03 0.50 78.757 81.15 79.76 82.02 81.12 89.54 89.6 86.74 89.9 80.64
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Table S5. ANOVA test results for the IQ response obtained in the second (23) full factorial design.

a Degrees of freedom; b Test for comparing model variance with residual (error) variance; c Probability of seeing the observed F value if the null hypothesis is 
true.

Source Sum of Squares df a Mean Square F value
b P value

c Prob> F

Model 1921.96 2 960.98 71.50 <0.0001 significant
A 1323.04 1 1323.04 98.44 <0.0001
B 598.93 1 598.93 44.56 <0.0002
Curvature 118.72 1 118.72 8.83 0.0157 significant
Residual 120.97 9 13.44
Lack of Fit 18.21 5 3.64 0.14 0.2754 not significant
Pure error 102.76 4 25.69

Cor total 2161.65 12
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Table S6. ANOVA test results for Trp-P-2 response obtained of the second (23) full factorial design.

a Degrees of freedom; b Test for comparing model variance with residual (error) variance; c Probability of seeing the observed F value if the null 
hypothesis is true. 

Source Sum of Squares dfa Mean Square F value
b P value

c Prob> F

Model 1269.60 2 634.80 113.08 <0.0001 significant
A 1150.56 1 1150.56 204.95 <0.0001
B 119.04 1 119.04 21.21 <0.0002
Curvature 53.32 1 53.32 9.50 0.0131 significant
Residual 50.52 9 5.61
Lack of Fit 8.79 5 1.76 0.17 0.9613 not significant
Pure error 41.73 4 10.43

Cor total 1373.45 12
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Table S7. Experiments and responses of the HAAs in the DCC.

A B ERs (%)
ACN
(%)

HCOOH
(mM) DMIP IQ MeIQ MeIQx 4,8-DiMeIQx PhIP AαC MeAαC Trp-P-1 Trp-P-2

80.0 15.9 98.4 95.6 90.5 93.7 97.1 97.3 98.5 98.2 96.7 94.6

60.0 8.5 83.6 88.2 80.5 83.5 91.3 92.3 95.5 93.8 97.9 96.6

40.0 1.1 60.5 66.1 62.4 66.9 68.2 98.2 93.3 82.2 91.4 99.8

60.0 0.0 62.6 57.8 64.7 67.5 63.9 87.0 81.5 64.2 85.6 86.8

60.0 8.5 80.9 84.7 80.2 86.9 80.9 81.7 84.1 82.2 85.5 81.8

24.6 8.5 72.2 77.8 74.5 78.8 73.1 72.5 76.7 72.9 76.6 78.2

60.0 8.5 89.9 81.9 83.0 85.8 89.2 95.0 96.1 98.9 92.1 93.3

60.0 8.5 81.3 81.8 87.8 83.6 92.8 94.6 92.7 81.6 86.0 84.2

60.0 21.0 87.1 83.6 85.8 83.6 91.5 96.1 96.1 95.9 97.5 94.5

40.0 15.9 75.5 94.8 90.8 85.6 91.4 87.7 89.4 75.4 88.8 82.0

80.0 1.1 78.6 86.7 81.9 79.3 73.3 43.4 59.0 71.6 63.5 51.6

60.0 8.5 82.5 84.4 88.9 82.0 87.4 66.2 77.4 85.8 83.1 79.9
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Table S8. CCD fitting models for HAAs analysis in surface water samples.

ANOVA p-value a
Response Model R2 R2adj Transformation Significant terms (x)

Model Lack of fit

R1-DMIP Quadratic 0.9235 0.8980 None* A - B - B2 <0.0001 0.5854

R2-IQ * 0.8804 0.8207 * A -B - AB - B2 <0.0001 0.0650

R3-MeIQ * 0.9268 0.8902 * A -B - AB - B2 <0.0001 0.8091

R4-MeIQx * 0.9525 0.9367 * A - B - B2 <0.0001 0.4592

R5-4,8-DiMeIQx * 0.9030 0.8707 * A - B - B2 <0.0001 0.6998

R6-PhIP * 0.7670 0.6505 * A -B - AB - A2 <0.0120 0.7833

R7-AαC * 0.8553 0.7830 * A -B - AB - A2 <0.019 0.8326

R8- MeAαC * 0.7002 0.6002 * A -B - AB - A2 <0.0287 0.6070

R9-Trp-P-1 * 0.8852 0.8278 * A -B - AB - A2 <0.0001 0.7340

R10-Trp-P-2 * 0.8716 0.8074 * A -B - AB - A2 <0.0012 0.8282

A: ACN (%) in ACN/H2O mixture elution; B: HCOOH concentration; a p-values less than 0.050 indicate significance; * applied to each Response
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Table S9. Analytical yields of HAAs in surface water samples by MWCNTs-SPE as clean-up and preconcentration strategy. 

N.D.*: not detected; a <LOQ.

Surface water sample Cosquin River San Roque Reservoir

HAAs Sample
Concentration (µg L-1)

Added
(µg L−1)

Found
(µg L−1)

Recovery
(%)

RSD
(%) n=3

Sample
Concentration (µg L−1)

Added
(µg L−1)

Found
(µg L−1)

Recovery
(%)

RSD
(%) n=3

N.D.* 0.0 - - - * 0.0 - - -
0.5 0.51 102.0 2.6 0.5 0.53 106.0 3.7
1.0 1.05 105.0 3.8 1.0 0.98 98.0 3.1

DMIP

2.0 1.95 97.5 5.2 2.0 2.00 100.0 3.4
* 0.0 - - - 0.48a 0.0 0.48a - -

0.5 0.48a 96.0 6.7 0.5 0.49 98.9 8.3
1.0 0.97 97.0 8.9 1.0 1.40 94.6 4.3

IQ

2.0 2.02 101.0 6.0 2.0 2.47 99.6 6.2
0.56 0.0 0.56 - - 0.92 0.0 0.92 - -

0.5 1.03 97.2 5.1 0.5 1.43 100.7 2.9
1.0 1.46 93.6 5.8 1.0 1.92 100.0 6.4

MeIQ

2.0 1.85 92.5 1.8 2.0 1.97 98.5 4.2
0.24 0.0 0.24 - - 0.71 0.0 0.71 - -

0.5 0.71 95.9 6.9 0.5 1.19 98.3 3.0
1.0 1.20 96.8 2.5 1.0 1.70 99.4 6.1

MeIQx

2.0 1.97 98.5 5.6 2.0 1.99 99.5 5.0
0.16a 0.0 0.16 - - 0.62 0.0 0.62 - -

0.3 0.63 94.7 5.3 0.5 1.12 100.0 5.9
1.0 1.11 95.8 2.6 1.0 1.64 101.2 6.2

4,8-DiMeIQx

5.0 4.96 99.2 3.7 5.0 4.99 99.8 4.8
* 0.0 - - - 0.56 0.0 0.56 - -

0.5 0.49 98.0 2.82 0.5 0.96 90.6 6.3
1.0 0.99 99.0 7.20 1.0 1.45 92.9 5.1

PhIP

2.0 1.97 98.5 3.00 2.0 1.99 99.5 8.1
0.32 0.0 0.32 - - 0.93 0.0 0.93 - -

0.5 0.81 98.8 6.8 0.5 1.46 102.1 4.8
1.0 1.30 98.5 3.4 1.0 2.02 104.7 2.6

Trp-P-1

5.0 5.03 100.6 2.7 5.0 5.29 105.8 7.7
0.21 0.0 0.21 - - 0.37 0.0 0.37 - -

0.5 0.69 97.2 5.2 0.5 0.88 101.1 6.4
1.0 1.18 97.5 6.9 1.0 1.34 97.8 4.0

AαC

2.0 1.99 99.5 7.4 2.0 1.97 98.5 4.9
0.51 0.0 0.51 - - 0.76 0.0 0.76 - -

0.5 0.98 97.0 5.3 0.5 1.20 95.2 4.8
1.0 1.48 98.0 4.3 1.0 1.74 98.8 2.3

Trp-P-2

2.0 2.03 101.5 2.4 2.0 1.95 97.5 4.8
0.35a 0.0 0.35 - - 0.56 0.0 0.56 - -

0.5 0.86 101.2 5.9 0.5 1.04 98.1 4.7
1.0 1.42 105.2 4.8 1.0 1.59 101.9 6.3

MeAαC

2.0 1.98 99.0 3.7 2.0 1.98 99.0 2.9
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