Montana Tech Library

Digital Commons @ Montana Tech

TECHxpo 2015, 2016, 2020

Events

Spring 4-13-2020

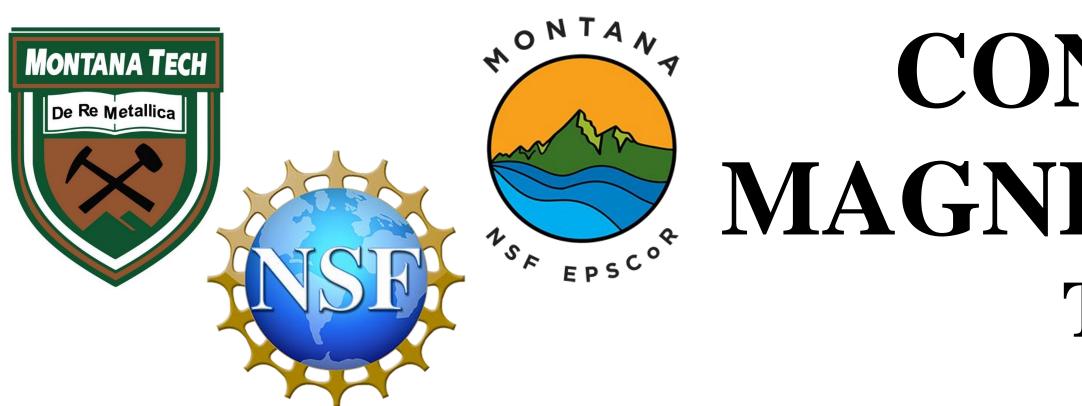
Continuous Flow Metal Recovery System Using Magnetic Nanocomposites for Contaminated Waters

Teagan Leitzke Montana Tech of the University of Montana, tleitzke@mtech.edu

Jerome Downey Montana Tech of the University of Montana, jdowney@mtech.edu

David Hutchins Montana Tech of the University of Montana, dhutchins@mtech.edu

Brian St. Clair Montana Tech of the University of Montana, bstclair@mtech.edu

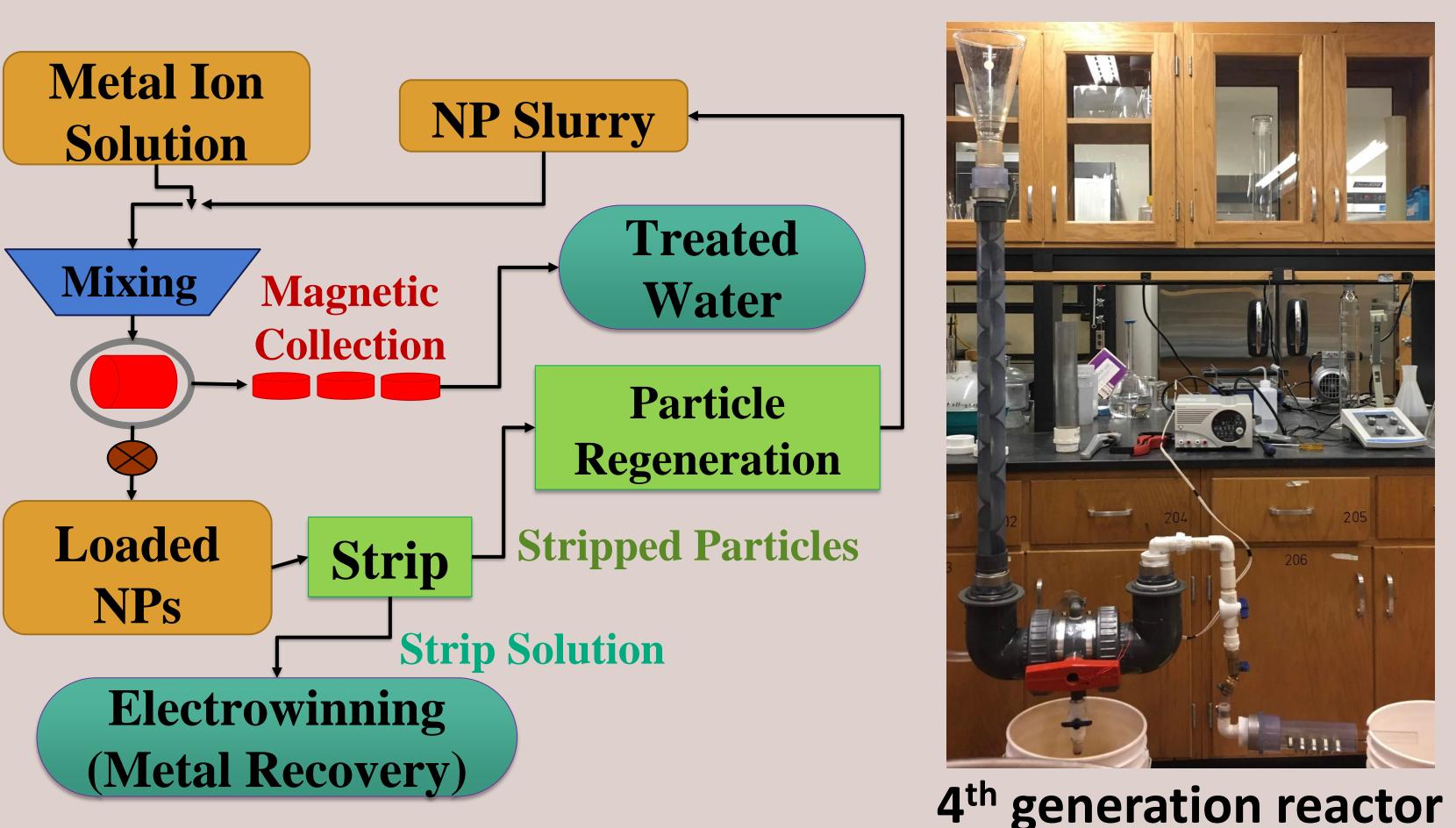

Follow this and additional works at: https://digitalcommons.mtech.edu/techxpo-event

Recommended Citation

Leitzke, Teagan; Downey, Jerome; Hutchins, David; and St. Clair, Brian, "Continuous Flow Metal Recovery System Using Magnetic Nanocomposites for Contaminated Waters" (2020). *TECHxpo 2015, 2016, 2020*. 13.

https://digitalcommons.mtech.edu/techxpo-event/13

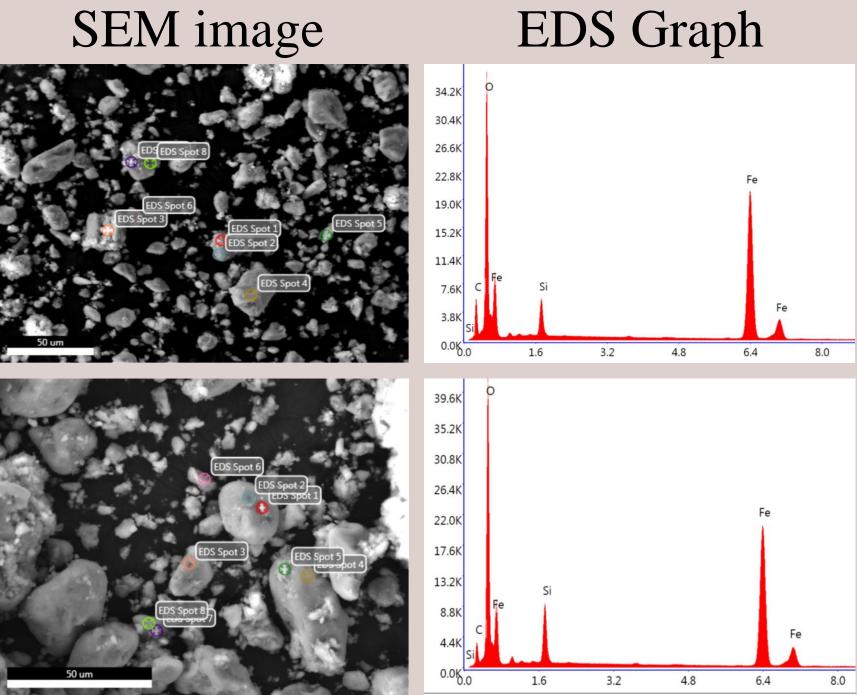
This Poster is brought to you for free and open access by the Events at Digital Commons @ Montana Tech. It has been accepted for inclusion in TECHxpo 2015, 2016, 2020 by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.


Abstract

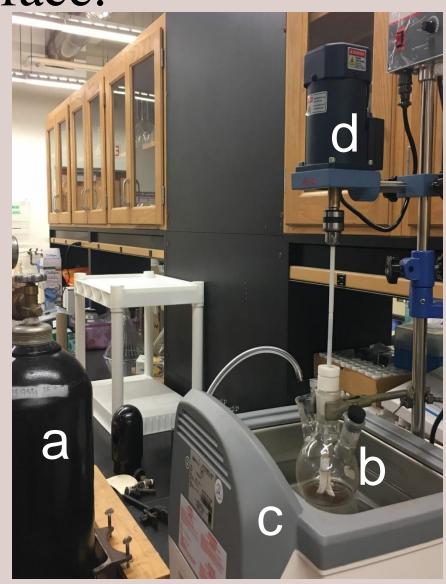
natural water sources and Many industrial wastewaters contain low concentrations of metals and other contaminants. Therefore, an effective and economical approach is needed for contaminant removal and recovery. The purpose of the research is to improve and modify a continuous flow metal recovery system, that was originally developed for acid mine drainage treatment, for expansion to a variety of non-industrial applications, including removal metal ions from the Upper Clark Fork River Watershed. The system employs an electromagnet collect magnetically susceptible to nanoscale particles, which in turn adsorb metal ions. Metal ion capture been examined using natural has magnetite nanoparticles (Fe_3O_4 NPs), silica-coated Fe_3O_4 NPs, and chitosancoated Fe_3O_4 NPs. Current research is focused on particle synthesis and maximizing contaminant capture efficiency. Preliminary results indicate silica-coated NPs are more that effective than magnetite and chitosancoated NPs for copper recovery from surrogate solutions at low copper concentrations.

This material is based upon work supported by the National Science Foundation under Grant Number OIA-1757351. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

CONTINUOUS FLOW METAL RECOVERY SYSTEM USING A MAGNETIC NANOCOMPOSITES FOR CONTAMINATED WATERS Teagan Leitzke, Dr. Jerome Downey, Dr. David Hutchins, Dr. Brian St. Clair


Continuous Flow Metal Recovery System

Magnetite Nanoparticle Synthesis


Silica-coating Procedure

The first step uses TEOS as the source of silica for the coating. Then two functionalization steps are done using MTMS, CPTMS, and PAA. Functionalization adds adsorption sites to the silica surface and encourages metal ions to adsorb to the surface.

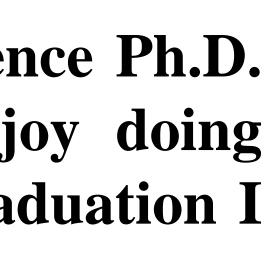
EDS graphs verify that silica was coated on the Fe_3O_4 NPs. Top Row: Tech Batch 1 Bottom Row: Tech Batch 3

Synthesis Setup: a. Nitrogen tank b. Glass chemical reactor c. Sonication bath d. Mixing arm

Acknowledgements

Results and Conclusions

The table shows the loading capacity of natural, silica-coated, and chitosan-coated NPs. At low concentrations of copper, the silica-coated NPs tend to have higher loading capacities.


Trial	Initial Concentration $ \begin{pmatrix} mg \ Cu \\ L \end{pmatrix} $	Fe ₃ O ₄ (g)	$ \begin{array}{c} \text{Loading} \\ \left(\frac{mmol\ Cu}{g\ Fe_3O_4}\right) \end{array} $
Natural Magnetite Nanoparticles			
1	122.47	0.5020	0.19
2	30.64	0.5005	0.05
3	15.58	0.5061	0.07
Silica-coated Magnetite Nanoparticles			
4	46.0154	0.5029	0.25
5	30.3376	0.5053	0.23
6	15.47	0.5055	0.12
Chitosan-coated Magnetite Nanoparticles			
7	205.9	0.5095	0.02
8	112.3	0.5039	0.04
9	31.7	0.5040	0.10

Future Work

- Optimization based on target contaminants
- □ Impact on loading capacities based on additional factors
 - □ pH, concentrations of NPs and metal
- □ Temperature effects on magnet with electric current and water flow
- Computer modelling and simulations
- Automated control system □ Valve control
 - Temperature and pH logging

Student Profile

I am a second year Materials Science Ph.D. student from Wausau, WI. I enjoy doing research and learning, so after graduation I hope to continue doing just that.

