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Abstract

Magnetic resonance imaging (MRI) is a well-established imaging modality which is used in all districts of the
musculoskeletal and peripheral nerve systems. More recently, initial studies have applied multiparametric MRI to
evaluate quantitatively different aspects of musculoskeletal and peripheral nerve diseases, thus providing not only
images but also numbers and clinical data. Besides 'H and *'P magnetic resonance spectroscopy, diffusion-
weighted imaging (DWI) and blood oxygenation level-dependent imaging, diffusion tensor imaging (DTI) is a
relatively new MRI-based technique relying on principles of DWI, which has traditionally been used mainly for
evaluating the central nervous system to track fibre course. In the musculoskeletal and peripheral nerve systems,
DTl has been mostly used in experimental settings, with still few indications in clinical practice. In this review, we
describe the potential use of DTl to evaluate different musculoskeletal and peripheral nerve conditions,
emphasising the translational aspects of this technique from the experimental to the clinical setting.
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Introduction

Magnetic resonance imaging (MRI) is a well consoli-
dated modality in all districts of the musculoskeletal sys-
tem. Until a few years ago, most musculoskeletal and
peripheral nerve disorders were qualitatively assessed
with MRI using standard morphological sequences [1].
More recently, initial studies have applied multipara-
metric MRI to quantitatively evaluate different aspects
of musculoskeletal and peripheral nerve diseases, thus
providing not only images but also numbers and clinical
data [2]. 'H and *'P magnetic resonance spectroscopy
have been used for soft-tissue lesion characterisation [3],
to measure muscular fat content [4] and to evaluate the
effect of physical exercise in muscles [5]. Diffusion-
weighted imaging (DWI) has been applied mainly to dif-
ferentiate benign from malignant lesions [6]. Blood oxy-
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genation level-dependent imaging has been used for
evaluating muscle structural and functional changes [7].

Diffusion tensor imaging (DTI) is a relatively new
MRI-based technique relying on principles of DWI,
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which has traditionally been used mainly for evaluating
the central nervous system to track fibre course [8]. In
the musculoskeletal and peripheral nerve systems, DTI
has been mostly used in experimental settings, with still
few indications for clinical practice.

In this review, we describe the potential use of DTI to
evaluate different musculoskeletal and peripheral nerve
conditions, emphasising the translational aspects of this
technique from the experimental to the clinical setting.

Technical considerations

The concept of anisotropy and water diffusion

The principle of water molecule diffusion evaluated
using MRI in the human body was firstly reported in
1985 [9] to assess microstructural changes in fibre archi-
tecture involved in pathologic conditions of the central
nervous system [10]. Molecular diffusion refers to the
random translational motion of molecules, also called
Brownian motion, as a result from the thermal energy
they carry [11]. Diffusion can be studied by using spin-
echo single-shot echo-planar imaging sequences [12]
with adequate fat suppression. DWI sequences have
technical parameters not different from those of conven-
tional sequences, such as time of echo (TE) and time of
repetition (TR), but also an additional parameter, i.e. the
b-value [11]. This parameter represents the degree of
diffusion weighting of the sequence, determined by the
application of specific magnetic field gradients, and is
measured in s/mm?” The amount of water molecule dif-
fusion is quantified by the apparent diffusion coefficient
(ADC)—obtained by interpolating the results given with
different applied b-values—which provides indirect in-
formation also about the arrangement of the surround-
ing structures.

Molecular mobility in human tissues is usually non-
isotropic, which means that diffusion does not occur
equally in all directions; protein fibres, cell membranes
and myelin sheath tend to hinder water diffusion [13].

The effect of diffusion anisotropy can be easily de-
tected by evaluating variations in the diffusion measure-
ments when the direction of gradient pulses is changed
[14]. Fractional anisotropy (FA) is a parameter used to
quantify the directional orientation of water molecules
within the tissue. FA values are in the range of 0-1.
When a tissue is intact, water is forced to move in a spe-
cific direction and the FA value is close to 1. When tis-
sues have micro- or macro-structural damages, the
water molecules are directed in multiple directions and
the FA value decreases toward 0 [15].

DTI is derived from the concept of water molecule dif-
fusion. In DTI, it is possible to calculate FA and evaluate
the preferred spatial movement of molecules. Hence,
since structural arrangement makes the water diffusion
prevalent along the major axis of fibrillary tissues, DTI
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can be used for fibre tractography. To calculate the dif-
fusion tensor, we need to acquire DWI with high b-
values along at least six non-collinear directions in
addition to a low b-value DWI or a T2-weighted se-
quence [16]. The higher the number of directions along
which the diffusion gradients are applied, the higher the
accuracy of anisotropy calculation. Clearly, increasing
the number of directions implies an increase in scan
times.

To optimise the study protocol, the spatial complexity
of the structure under investigation should be consid-
ered. Acquisition time is largely variable, as standardised
protocols are still lacking. As an example, six directions
may be enough for the median nerve, about 15-25 vec-
tor directions are needed for the brachial plexus, while
10-12 different vector directions are needed for muscu-
lar structures [13]. Regarding the b-values, there is no
unanimous agreement on what to use in musculoskeletal
imaging [17]. Higher b-values increase the power of the
gradients and diffusion weighting of the sequence, but
reduce the signal-to-noise ratio (SNR). Oudeman et al.
suggest optimising the SNR using voxel volumes in the
range of 20-30 mm?, short TE, b-values in the range
of 400-500 s/mm?® and at least ten gradient directions
[18]. Clearly, the higher the By magnetic field strength, the
higher the SNR [19]. However, Alexander et al. reported
that FA and ADC do not significantly change in correl-
ation with field strength [20].

Tractography

Tractography represents an application of DTT [21] that
allows the analysis of muscle architecture aspects such
as pennation angle, curvature of fibres, fibre length and
possible muscle fibrosis (Fig. 1) [22]. Generally, muscle
fibres are aligned parallel and do not diverge or curve as
myelin sheath tracts; for this reason, it is possible to use
less gradient directions than in the study of nervous
structures. Accurate FA maps are necessary to manually
or automatically draw a region of interest within the
muscle. The features of the analysed tract may depend
on some intrinsic muscles properties such as fatty
infiltration, muscle atrophy, fibres tracking algorithm
setting and the possible presence of partial volume arte-
facts [23].

Specific applications in the musculoskeletal
system

Experimental applications

First applications of DTI in the evaluation of muscle
architecture were validated on small animals [24].
Damon et al. evaluated the pennation angle of muscles
on animal models, finding a high correlation (r=0.89)
between angles measured with DTT and those measured by
direct anatomical inspection [25]. Zhou et al. monitored
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Fig. 1 a Axial fat-saturated proton-density image of the middle third of the leg of a 29-year-old male patient who sustained a grade 2c tear of
the medial gastrocnemius muscle (asterisks). T tibia, arrows normal tibialis anterior muscle. b Tractography of the tibialis anterior muscle, showing
normally oriented and arranged fibres. ¢ Regions of interest are placed on the torn muscle (1) and healthy muscle tissue (2). d Quantitative ana-
lysis shows different values in the torn muscle compared to healthy tissue, in particular a lower FA (0.17) compared to that of healthy fibres (0.27)

chick embryonic skeletal muscle development in ovo (dur-
ing incubation days 5—-18 under a 3 T scanner) and investi-
gated the correlation between FA and fibre length, finding
that the result of DTI-tracked fibres during incubation cor-
responds to the development of chick embryonic skeletal
muscle [26]. McMillan et al. [27] found increased axial and
radial diffusivity on ADC maps and decreased FA of muscle
in dystrophic wild-type mice vs. normal controls.

Normal muscle tissue

Feasibility of DTI in the evaluation of normal muscle tis-
sue has been widely demonstrated, with high reproduci-
bility [16]. In different studies, capability of DTI in
evaluating muscle cross-sectional area, fibre length and
pennation angle has been demonstrated. Some studies

demonstrated feasibility of DTI to assess changes of fibre
orientation according to positional variations of different
body segments [28]. DTI was also used to measure fibre
orientation, which has been reported to be a parameter
that potentially predicts the pattern of tearing after
muscle strain and evaluates the presence of a muscular
lesion. An example of DTI of normal muscle tissue is
reported in Fig. 1a and b.

Muscle contraction and muscle injury

After physical exercise, the contractile complex of
muscle, composed of actin and myosin, increases in size
and density. This hypertrophic response of muscular tis-
sue determines an increase in the thickness of endomy-
sium muscle wrap and sarcoplasmic reticulum [29].
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Okamoto et al. studied two volunteers using DTI imme-
diately, 24 h, 48 h, and one week after unilateral exer-
cises of repeated flexion and extension of the ankle with
loading. They reported a decrease of FA values in the
posterior muscle bellies of the gastrocnemius and soleus
muscles in comparison with FA values of the contralat-
eral calf muscles immediately after exercise [30]. Froel-
ing et al. studied the upper legs of five male amateur
long-distance runners one week before and two days
and three weeks after a marathon. They found that FA
and mean diffusivity (MD), an index that reflects the
average magnitude of molecular displacement by diffu-
sion, were significantly increased in the biceps femoris
muscle; also, MD was significantly increased in the semi-
tendinosus and gracilis muscles two days after the mara-
thon, while there were no changes on fat-suppressed T2-
weighted sequences [31]. Zaraiskaya et al. [32] studied
four patients with gastrocnemius and soleus muscles in-
juries comparing them to eight healthy controls. Authors
found significant differences in FA and ADC values in
injured skeletal muscle which presented very low values
(0.08 £0.02 vs. 023+0.02 in healthy controls). Since
diffusivity increases only in the muscles that are more
injured after running, these data imply that DTI parame-
ters might become a powerful diagnostic tool for prog-
nosis and response assessment to treatment of sports-
related muscle injuries (Fig. 1a, ¢, d). Further future ap-
plication of DTI might be the monitor of restitution ad
integrum of torn muscles in athletes.

Muscular dystrophy

Under the name of muscular dystrophy, a group of gen-
etic, progressive and degenerative muscular diseases is
included, whose primary symptom is muscle weakness
[33]. These pathologic conditions may occur at any age
with variable clinical features [34]. The early-onset muscu-
lar dystrophies may be associated with profound loss of
muscle function, affecting ambulation and posture, and
may lead to respiratory and cardiac impairment. Con-
versely, late-onset muscular dystrophies or myopathies
may be less symptomatic and associated with slight weak-
ness and inability to increase muscle mass [34].

Duchenne muscular dystrophy (DMD) is the most com-
mon form of inherited muscular dystrophy in children. It is
caused by mutations in the X-linked dystrophin gene and is
characterised by systemic muscle weakness due to the pro-
gressive destruction of skeletal muscle [35]. In this setting,
quantitative evaluation of muscle status may be very im-
portant, both to reliably aiding the diagnosis and to moni-
tor the effect of treatments [33]. Until a few years ago,
disease progression was only evaluated quantitatively on
MRI. Mercuri et al. developed a four-point grading system
based on fatty tissue infiltration to categorise disease sever-
ity [36]. Ponrartana et al. [35] focused their attention on
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possible quantitative MRI parameters to monitor the dis-
ease progression in the lower extremities of boys with
DMD and found a strong correlation between DTT values,
clinical test and qualitative evaluation using the Mercuri
scale [36]. Unexpectedly, they found patients with more se-
vere DMD Dpositively correlated with FA values and nega-
tively with ADC values, while muscle strength negatively
correlated with FA and positively with ADC values. One
possible explanation of these results is the artificial decrease
of ADC and artificial increase of FA values in participants
with more than 45% fat muscle infiltration [37]. Conversely,
tractography images showed the expected decrease in fibre
length, number and architecture, suggesting that fibre
tracking may provide further quantitative information
(Fig. 2). Li et al. [38] showed that damage to thigh muscles
in DMD patients can be evaluated by ADC and FA values
and can be applied to assess quantitatively disease severity.

Ligaments

Arthroscopic grafting for ligament tears is common in
active population [39] and MRI is routinely used to as-
sess graft integrity. Despite the high diagnostic
performance of conventional MRI [40], it cannot allow
advanced quantitative evaluation. Graft ligaments pro-
gress through four stages: avascular necrosis; revasculari-
sation; cellular proliferation; and remodelling [41], with
different signal intensities at conventional MRI. The po-
tential use of DTI was firstly reported by Yang et al
[42], who performed DTI sequences in 40 healthy volun-
teers and in 15 patients with anterior cruciate ligament
(ACL) reconstruction. He found that ACL grafts in dif-
ferent stages present different FA and ADC values, with
significantly higher FA value at ten years from surgery.
More recently, Van Dyck et al. [43] found lower FA and
higher MD values of ACL graft in comparison to the
study by Yang et al. [42]. Differences could be related to
a different reconstruction software and a shorter time
between surgery and MRI [43]. Indeed, after four
months, thick synovial tissue starts to envelop the graft
providing its vascular supply [44]. Future research may
be aimed to test feasibility and reliability of DTI to
quantitatively assess the fibrillar structure, especially in
case of a partially torn ligament (Fig. 3).

Peripheral neuropathies

Cervical spondylotic myelopathy (CSM) is the most
common spinal cord disorder in patients aged > 55 years
and it is seen in as many as 95% of men and 70% of
women aged 60-65 years [45]. It is due to a chronic pro-
gressive compression of the cervical spinal cord (CSC)
caused by degenerative disc disease, spondylosis or other
degenerative pathology [46]. Although diagnosis of CSM
is based primarily on clinical manifestations, MRI is
routinely used to evaluate CSC, the canal size or the
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Fig. 2 Magnetic resonance of the thigh performed on a 42-year-old male aptient with mild limb-girdle muscular dystrophy. a Morphological appearance on
axial T1-weighted image (arrows). F femur. b The corresponding tractography image shows fibres which are decreased in number, length and organisation
due to partial fatty replacement. This appearance can be particularly appreciated if compared to Fig. 1b, which shows a normal participant

Torg-Pavlov ratio and potential signal changes of the
compressed spinal tract [47]. However, all these findings
are not always seen in symptomatic patients and there
are often discrepancies between clinical and imaging
features [48]. DTI and tractography can detect micro-
architectural changes of CSC [29]. Studies reported an
increase in MD values and a decrease in FA values
around compressed CSC [49]. The diminished FA value
seems to be a more sensitive parameter of cord injury
than T2-weighted signal hyperintensity [50] and appears
to be strictly correlated to symptom severity [51]. Trac-
tography can detect abnormalities of the annulus fibro-
sus. The normal annulus has a consecutive and regular
ring configuration composed by multilayer fibres, while
the degenerative annulus shows irregular and disordered
aspect (Fig. 4), becoming thinner and disrupted [52].

Brachial plexus

Evaluation of brachial plexus abnormalities represents a
diagnostic challenge due to anatomical complexity and
to overlapping presentation of both benign and malignant

conditions. There is a wide range of disease which may
involve the brachial plexus, including tumours, radiation
fibrosis, trauma and inflammatory processes. MRI is the
imaging modality of choice for the evaluation of the
brachial plexus [53]. To date, DTI of the brachial plexus at
3.0 T has been reported as feasible and reproducible in a
series of healthy volunteers [54].

Cubital tunnel syndrome

Cubital tunnel syndrome is the second most common
peripheral compression neuropathy after carpal tunnel
syndrome (CTS) [55]. It is related to a combination
of compression and friction of the ulnar nerve in the
cubital tunnel [56]. Breitenseher et al. [57] showed
significant reduction of ulnar nerve FA values at the
cubital groove and when passing the deep flexor
fascia. At tractography, they showed complete or par-
tial discontinuity of the ulnar nerve in 65% of pa-
tients. However, they conclude that T2 neurography
is more sensitive than DTI in the detection of cubital
tunnel syndrome [57].

Fig. 3 Magnetic resonance of the knee performed on a 24-year-old male patient two months after soccer injury. a Sagittal T1-weighted image
shows that the anterior cruciate ligament is remarkably inhomogeneous due a partial tear (arrows). f femur, T tibia. b The corresponding tractography
image shows that fibres are partially interrupted and architecture is disrupted (arrows)
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Fig. 4 Magnetic resonance of the lumbar spine performed on a of 31-year-old man. a Sagittal T2-weighted image shows protrusion of a thinned
and dehydrated intervertebral disc (Pfirrmann IV, arrows) at L5-S1. b Tractograpy shows irregular, disordered and thin fibres

Carpal tunnel syndrome

CTS is the most common compressive peripheral neur-
opathy, affecting 3—4% of the general population [58]. It
is caused by an entrapment of the median nerve at the
level of the carpal tunnel of the wrist. The diagnosis of
CTS is usually established by clinical features, clinical
tests, electrophysiological tests, and high-resolution
ultrasonography [59]. However, electrophysiology is as-
sociated with pain and conspicuous rate of false-negative
and false-positive results [60].

Conventional MRI of CTS gives variable qualitative re-
sults [61]. DTI may potentially improve the diagnosis of
peripheral nerve disorders, optimise lesion localisation,
and determine the extent of neural dysfunction [62]. FA
tends to increase distally in healthy participants and to de-
crease in patients with CTS for the presence of intrafasci-
cular oedema. Kabakci et al. reported that FA values of
two patients (FA = 0.41 and 0.44) were significantly lower
than that of the control group (FA = 0.709 + 0.046). Diffu-
sion parameters are not influenced by the patients’ gender,
while changes in diffusion and FA similar to those ob-
served in CTS may appear with age, also without clinical
symptoms [63]. Indeed, FA measured at the carpal tunnel
inlet seems to have the highest accuracy for the diagnosis
of CTS (sensitivity of 62%, specificity of 82%, positive pre-
dictive value of 80%, negative predictive value of 75%) [64]
compared to other imaging modalities, and it showed the
highest correlation with sensory and motor amplitude
(r=0.54, p<0.001), even though it always needs to be
correlated with clinical symptoms.

Sciatic nerve and piriformis syndrome

Sciatic neuropathy is a common cause of lower extrem-
ity pain, which can be related to several causes affecting
any level of the nerve and resulting in different symp-
toms [65]. The diagnosis is made through the patient
history, clinical findings, and electrophysiological tests

[66]. Routine MRI has been widely used to study the
normal anatomy and pathology of the sciatic nerve and
the associated muscle oedema or denervation, especially
on T2-weighted sequences [67]. DTI may implement
conventional MRI examination, providing additional in-
formation regarding the myelinic structures [68]. DTI
does not show significant differences in either FA or
ADC values at any level between sciatic nerve in the
dominant or non-dominant lower limb. Wata et al. eval-
uated ten patients with sciatica symptoms, reporting
lower FA and higher ADC values in the affected sciatic
nerve compared with healthy controls [69].

Piriformis syndrome (PS) is a not easily recognisable
disorder, characterised by buttock and leg pain due to
compression of the sciatic nerve through or around the
piriformis muscle in patients with usually normal neuro-
logical examination [70]. Manoeuvres of flexion, adduc-
tion and internal rotation of the hip, and direct
palpation of the piriformis, cause severe pain. CT and
MRI may help to diagnose PS and to differentiate it from
other possible causes of lower lumbar pain; however, im-
aging diagnosis remains challenging [68].

Nerve tumours

Previous studies reported higher frequency of destruction or
massive fibre disorganisation in malignant peripheral nerve
tumours, whereas benign tumours are often associated with
dislocation or partial interruption of fibres. Chhabra et al.
reported that tractography may provide three-dimensional
visualisation of fibre dislocation or destruction. On the other
hand, FA and MD show low values that indicate malig-
nancy extension in neural structures [71].

Conclusion

DTI and tractography may provide useful additional in-
formation allowing a quantitative analysis of healthy and
pathological nerves, myelin sheaths, and muscles. To date,
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these tools are mainly applied in experimental settings
and are uncommonly translated to clinical practice.

Since application of DTT and tractography in the mus-
culoskeletal and peripheral nerve systems is different
from application in the central nervous system, some is-
sues still need to be addressed, such as: standardisation
of acquisition protocols with optimised parameters and
duration times; optimisation of post-processing software
for DTI to be used in the musculoskeletal system; inves-
tigation of the possibility of using DTI around metallic
implants, used in clinical practice more and more
frequently; and analysis of reproducibility of DTI quanti-
tative measurements (inter-study reproducibility; com-
parison among MR units from different vendors and
between 1.5 and 3 T magnets; comparison among differ-
ent DTI post-processing software).

At any rate, DTT and tractography seem to be promising
tools and are able to provide useful quantitative informa-
tion about muscular tissue and peripheral nerves as an ad-
junct to morphological MRI sequences. The definition of
the real clinical added value of this approach requires well
designed studies on large population samples, possibly with
clinical end-points potentially showing a benefit to the pa-
tients which is not limited to diagnostic performance.
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