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Abstract: The discipline of subterranean biology has provided us incredible information on the
diversity, ecology and evolution of species living in different typologies of subterranean habitats.
However, a general lack of information on the relationships between cave species still exists, leaving
uncertainty regarding the dynamics that hold together cave communities and the roles of specific
organisms (from the least to the most adapted species) for the community, as well as the entire
ecosystem. This Special Issue aims to stimulate and gather studies which are focusing on cave
communities belonging to all different typologies of subterranean habitats, with the overarching goal
to corroborate the key role of the subterranean biology in ecological and evolutionary studies.
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Introduction

The study of subterranean habitats (i.e., all natural and artificial subterranean voids and
groundwater suitable for human exploration; [1]) and their related fauna is a discipline that is
intriguing scientists from many points of view [2–5], and its broad interest is testified by the large
number of published researches, see [6–10]. Subterranean environments are of special importance for
diversity as they often host a highly specialized fauna, with unique, unusual and sometimes even
bizarre morphological, behavioural and ecological adaptations [11,12].

The peculiar ecological features characterising the subterranean habitats are probably one of the
most important causes of the astounding diversity occurring there [12,13]. One of the most evident
is the absence of light, as the solar radiation does not go beyond a few meters from the entrance
(i.e., the connection with the surface), preventing organisms dependant on light, such as plants, from
settling. [8,14]. Consequently, without the presence of these important primary producers, a general
paucity of organic matter occurs within subterranean habitats, and the resident species mostly depend
on allochthonous inputs [8]. Another consequence of the shelter from the sunlight and climatic
fluctuations, is an increase of the stability of the subterranean microclimate, especially in the deepest
parts [15,16].

Cave-dwelling species need to cope with the particular environmental conditions occurring in
subterranean habitats, and to do that, they show a specific set of behavioural, physiological and
morphological features [17–20]. Such features are generally considered as the result of species adaptation
to the peculiar local ecological conditions [21–23]; however, several researches are documenting that
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also other processes, such as neutral mutation or genetic drift, may represent alternative important
factors [24–26]. Cave species are generally classified based on both the presence of specific adaptations
to subterranean habitats and their ability to complete their life cycle there [12,27], although sometimes
such classification may be too strict [10,28]. The most adapted species are the troglobionts: they often
show evident adaptations (e.g., reduction of eyes and pigmentation, elongation of appendages) and
only reproduce in subterranean habitats. Troglophiles are a species that are able to reproduce in both
subterranean and surface habitats, and show some adaptations to cave life. Trogloxenes are occasional
visitors in caves and only reproduce in surface habitats. Although the wide contribution on the
knowledge of cave-adapted species, researchers often overlooked trogloxenes in their studies [29–31],
thus limiting the information on the potential effects that these transient species may have on cave
communities and the overall ecosystem [32–34]. Cave animals often occupy specific areas of the
subterranean habitats, the less adapted being closer to the connection with surface, and the most
adapted in the deepest parts [8,30,35,36]. Consequently, different cave communities can occur [16,37–39],
each one characterised by distinct diversity and dynamics, with species holding different ecological
roles [33,40–43], and often with blurred borders.

This Special Issue of Diversity aims to explore the relationships among cave-dwelling species,
considering not only troglobionts, but all the organisms occurring from the entrance to the deepest
sectors, a topic which is still poorly explored. Our goal is to stimulate and collect new research
focused on multiple cave species [37,44], or on the ecological role that single species have for
the local ecosystem [31,45]. For example, considering the ecological gradient occurring from the
cave entrance to the deepest areas (light, microclimatic variability and food availability vs. darkness,
microclimatic stability and food scarcity; [27]), species occupy areas according to their preference [46–49],
and consequently form different communities characterised by specific intrinsic dynamics [30,43,50,51].
Studying the relationships between species within cave communities will not only let us understand
how species interact (e.g., competition, mutualism, prey–predator interactions), but will also allow
us to determine their ecological importance for the entire subterranean ecosystem. Indeed, species
from the communities inhabiting the areas close to the cave entrance are likely to have a key role
in supporting the overall subterranean habitat, as they are able to transfer new organic matter from
surface habitats to the subterranean one [42,43,45,52,53]. Consequently, some of the species from
deep cave areas (if not entire communities) are strongly dependant on the operations of shallowest
communities [42,54].

From a geological point of view, several types of subterranean environments exist (e.g., natural
and artificial caves, shallow subterranean environments sensu [7], small fissures and interstices,
etc.) and each one can host a unique set of organisms, from bacteria and fungi to invertebrate and
vertebrate species, that are often geographically restricted and numerically rare [55–57]. Improving the
knowledge on subterranean communities will allow an increase in the effectiveness of conservation
plans towards single cave species as well as the entire ecosystem [56,58,59]. Indeed, conservation plans
towards key species will have a cascade of positive effects on the entire ecosystem [60,61]. Furthermore,
understanding the role of cave communities and the relationships occurring between species with
different levels of adaptation can allow us to predict the potential effects due to subterranean biodiversity
loss, as cave species (especially stenoendemic ones) are highly sensitive to multiple factors, such as
environmental changes, pathogen spread, invasion of alien species and even poaching [62–66].

Since its beginning, subterranean biology has been characterised by two main branches, one
related to taxonomic investigations of subterranean organisms [2,8], and the other considering caves as
a powerful natural laboratories to perform evolutionary, ecological and behavioural studies on selected
model species [27,67,68]. The study of subterranean diversity has the potential to lead the advances of
modern science and solve some of the current scientific challenges [27]. We hope that this Special Issue
could provide new insights of broad interest, and develop a new hypothesis to test and highlight the
role of the subterranean biology as one of the leading disciplines in ecology and evolution.
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