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Abstract: Lipids are apolar small molecules known not only as components of cell membranes but also,
in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive
lipids that can influence the immune responses and inflammatory processes regulating vascular
hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory
lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on
their biochemical function, these lipids can be divided into different families, including eicosanoids,
specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids.
These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology
of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1
diabetes, and systemic lupus erythematosus.
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1. Introduction: Lipids and Inflammation

Inflammation is an immune response that occurs following infections, cellular insults, or tissue
insults and that can be spontaneously exhausted after the elimination of the damage. It includes
an extensive network of cellular and molecular processes, in which a multitude of preformed or newly
synthesized mediators are arranged to obtain specific responses. However, protracted and uncontrolled
immune responses can lead to chronic inflammation, irreparable tissue damages, and chronic diseases.
Uncontrolled immune responses also occur in many common autoimmune diseases, including type 1
diabetes, multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD), and Grave’s disease.

Endogenous bioactive lipids play a pivotal role in inflammatory processes and in triggering,
coordinating, and confining immunity by regulating hypervascular reactivity, pain, leukocyte trafficking,
and clearance [1–4]. Moreover, the accrual of inflammatory lipids can contribute to the transition from
acute to chronic inflammation (Figure 1) [1].

Bioactive lipids can be divided into different families depending on their structure or biochemical
function: eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids,
and endocannabinoids [3].
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Figure 1. Inflammatory lipids and their interconnections. The green points indicate lipids with 
anti-inflammatory properties, whereas the red points indicate lipids with pro-inflammatory 
properties [5–37]. FA: fatty acids and their derivatives; PUFA: polyunsaturated fatty acids containing 
both endocannabinoids and eicosanoids; AA: arachidonic acid; EPA: eicosapentaenoic acid; DHA: 
docosahexaenoic acid; GL: glycerophospholipids; LTs: leukotrienes; PGs: prostaglandins; TXs: 
thromboxanes; Rv: resolvins; AEA: anandamide; 2-AG: 2-arachidonoilglycerol; PEA: 
palmitoylethanolamide; OEA: O-arachidonoylethanolamine; LPA: lysophoshatidic acid; PA: 
phosphatidic acid; DAG: diacyglicerols; TAG: triacylglicerols; CDP-DAG: cytidine diphosphate 
diacylglycerol; CL: cardiolipins; PI: phosphatidyl inositols; LPI: lysophosphatidylinositols; PG: 
phosphatidyl glycerols; LPG: lysophosphatidylglycerols; PE: phosphatidylethanolamines; LPE: 
lysophosphatidylethanolamines; PC: phosphatidyl cholines; LPC: lysophosphatidylcholines; PS: 
phosphatidyl serines; LPS: lysophosphatidylserines; GlcCer: glucosylceramide; LacCer: 
lactosylceramide; S1P: sphingosine 1-phosphate; GalCer: galactosylceramide; SM: sphingomyelins; 
Cer-1P: ceramide 1-phosphate. 

  

Figure 1. Inflammatory lipids and their interconnections. The green points indicate lipids with anti-inflammatory
properties, whereas the red points indicate lipids with pro-inflammatory properties [5–37]. FA: fatty acids
and their derivatives; PUFA: polyunsaturated fatty acids containing both endocannabinoids and eicosanoids;
AA: arachidonic acid; EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; GL: glycerophospholipids;
LTs: leukotrienes; PGs: prostaglandins; TXs: thromboxanes; Rv: resolvins; AEA: anandamide; 2-AG:
2-arachidonoilglycerol; PEA: palmitoylethanolamide; OEA: O-arachidonoylethanolamine; LPA: lysophoshatidic
acid; PA: phosphatidic acid; DAG: diacyglicerols; TAG: triacylglicerols; CDP-DAG: cytidine diphosphate
diacylglycerol; CL: cardiolipins; PI: phosphatidyl inositols; LPI: lysophosphatidylinositols; PG: phosphatidyl
glycerols; LPG: lysophosphatidylglycerols; PE: phosphatidylethanolamines; LPE: lysophosphatidylethanolamines;
PC:phosphatidylcholines; LPC:lysophosphatidylcholines; PS:phosphatidylserines; LPS: lysophosphatidylserines;
GlcCer: glucosylceramide; LacCer: lactosylceramide; S1P: sphingosine 1-phosphate; GalCer: galactosylceramide;
SM: sphingomyelins; Cer-1P: ceramide 1-phosphate.
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2. Lipids Involved in Inflammatory Responses

2.1. Eicosanoids

This well-known family of bioactive lipids includes a wide range of derivatives of fatty acids with
a 20-carbon chain, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA). Eicosanoids are prevalently produced from AA, which can be released from membrane
phospholipids primarily by phospholipase A2 and secondarily by phospholipase C. Three different
enzymes drive the biosynthesis of eicosanoids: (1) cyclooxygenases 1 and 2 (COX-1/2) produce
the class of prostanoids that comprises prostaglandins (PGs), prostacyclins, and thromboxanes
(TXs); (2) lipoxygenases (5/12/15-LOX) generate leukotrienes (LTs), hydroxy-eicosatetraenoids,
and lipoxins; and (3) P450 epoxygenase generates hydroxy-eicosatetraenoic acids (HETEs)
and epoxy-eicosatrienoids [38,39]. Eicosanoids are divided into omega-6 and omega-3 families
depending on the position of unsaturations of their precursor. The pro-inflammatory omega-6 family
is derived from AA, whereas the anti-inflammatory omega-3 family is derived from EPA and DHA.

Eicosanoids are well-recognized for initiating inflammation and for controlling vascular tone,
platelet aggregation, pain perception, ovulation, and embryo implantation. In general, the omega-6
eicosanoids are pro-inflammatory, whereas the omega-3 eicosanoids do not promote the inflammatory
events and can also be anti-inflammatory and pro-resolving [40,41].

In particular, five mechanisms are related to inflammation induced by PGs: (1) boosting the release
of pro-inflammatory cytokines [41,42]; (2) enhancing the innate immunity [43]; (3) activating the T-helper
cells, TH1-related TH17 [44]; (4) contributing to leukocyte recruitment [41]; and (5) increasing
the expression of pro-inflammatory genes such as NF-κB [45].

The leading roles of LTs in acute inflammation are to induce edema and to maintain an ongoing
inflammatory status by acting as chemoattractants for neutrophils, macrophages, eosinophils, and TH17

lymphocytes. TXs and prostacyclins have prevalent functions of vasoconstriction and vasodilatation,
respectively [1,3,46]. Epoxyeicosatrienoic acids (EETs) are synthesized from AA by cytochrome P450
epoxygenases. They modulate vasorelaxation, anti-inflammation—by the suppression of NF-kB
activation—and fibrinolysis. They can be converted into the less active dihydroxyeicosatrienoic acids
(DHETs) by soluble epoxide hydrolase [47].

2.2. Sphingolipids

Sphingolipids are amino alcohols synthesized de novo from the condensation of serine
and acyl-CoA. They are involved in a multitude of pathophysiological functions [48], such as regulation
of apoptosis [49,50], proliferation [51], differentiation [52], autophagy [53,54], invasiveness [55,56],
modification of signaling cascade [57,58], and mediation of inflammatory responses by cytokines [59].
In particular, ceramide and sphingosine promote apoptosis via different pathways, which involves
the catalytic activity of Bcl-2, protein kinase C, protein phosphatases 1–2, and proteases. In contrast
with ceramide, which is predominantly pro-apoptotic [60], sphingosine-1-phosphate (S1P) is mainly
an anti-apoptotic messenger [61] that can modulate mitogenesis, cell migration, cytoskeletal
rearrangement, and angiogenesis [54,62]. The phosphate forms of sphingolipids are notably related
to inflammation, where S1P acts on either COX-2 or NF-kB and ceramide-1P acts on phospholipases
A2 [63,64].

2.3. Endocannabinoids

Endocannabinoids are a group of molecules that can bind and activate cannabinoid receptors
(CB1 and CB2) in the same way as the tetrahydrocannabinol (THC), the main psychoactive component of
Cannabis sativa. These lipid mediators share a cannabimimetic action but have different chemical structures,
which have chemical functionalities such as amides, esters, or ethers of long-chain polyunsaturated
fatty acids. The most studied molecules of this class are anandamide (AEA), 2-arachidonoilglycerol
(2-AG), 2-AG-ether, O-arachidonoylethanolamine, arachidonoyldopamine, and palmitoylethanolamide
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(PEA). These are known as potent immunoregulatory, endocrine, and inflammatory modulators [65,66].
In particular, AEA and PEA have anti-inflammatory properties [67,68], whereas 2-AG has both pro-
and anti-inflammatory properties [69–71]. Thus, some dysfunctions in tissue homeostasis and chronic
inflammatory status were related to changes in the concentrations, metabolism, and receptors of
endocannabinoids [72].

2.4. Lysoglycerophospholipids

These lipids are asymmetrically distributed in the plasma membrane. In particular,
phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol are mainly located in
the inner membrane leaflet, whereas phosphatidylcholine is located in the outer membrane leaflet.
Lysoglycerophospholipids contain glycerol backbones linked to two long fatty acid chains and a polar
head comprising a phosphate modified with ethanolamine, choline, inositol, or serine [73]. The most
active forms of lysoglycerophospholipids derive from the hydrolytic removal of one of the fatty acids
from the membrane phospholipids. This hydrolysis process affords lysophosphatidylcholines (LPC),
lysophosphatidylinositols (LPI), lysophosphatidylethanolamines (LPE), lysophosphatidylserines (LPS),
and lysophosphatidic acid (LPA). Lysophospholipids act as signal molecules in the inflammatory
cascade and in the essential processes of cellular and tissue life, such as plasma membrane shaping, cell
growth, and cell death [33]. LPC and LPA modulate the immune response by controlling the distribution,
trafficking, and activation of immune cells [33,74]. Therefore, they have been linked with different
inflammatory diseases such as diabetes, obesity [75], atherosclerosis, cancer [76], and rheumatoid
arthritis (RA) [77].

3. The Connection between Lipids and Some Related Inflammatory Diseases

Uncontrolled chronic inflammation occurs in autoimmune inflammatory diseases (AIDs)
and is induced by the overreaction of the immune system to the organs or tissues of the body.
The lipid-mediated inflammation and pathogenesis of AIDs have been investigated, and the results are
shown in Table 1 and summarized as follows.

3.1. Rheumatoid Arthritis

RA is a systemic AID of the joints that is characterized by excessive synovial and joint
inflammation, which contribute to the deterioration of bone and cartilage. Eicosanoids are implicated
in the development of synovitis and the disintegration of the joints in inflammatory arthritis.
The pathogenesis of rheumatoid and psoriatic arthritis was proposed to arise from an imbalanced
regulation of pro- and anti-inflammatory eicosanoids [5,78]. In particular, the anti-inflammatory
EPA-derived eicosanoids, including 11-HEPE, 12-HEPE, and 15-HEPE, were up-regulated. This increase
was suggested to occur to equalize the inflammation induced by AA-derived eicosanoids [5].
On the contrary, another study demonstrated a decrease in some pro-resolving lipid mediators
in the circulating plasma [28]. 15-(S)-HETE and 13-HODE stimulated the expression of placenta growth
factor, which plays an essential role in RA. The up-regulation of placenta growth factor was related to
COX-2 activity as well as PGE2 levels and membrane-bound receptors expression in eicosanoids (EP1,
EP2, EP3, and EP4) [17,79]. In a murine model affected by RA, the levels of the different molecules
(e.g., PGE2, PGD2, PGF2α, and TXB2) related to COX and LOX pathways [6,78] were significantly
higher than the control. In contrast, the levels of metabolites 5-HpETE and LTD4 were lower than
the control [6]. In addition, the early phase of RA was characterized by the synthesis of PGD2 within
the joint, with the peak of expression being reached in the later stages. Moreover, serum PGD2 levels
increased throughout the arthritic process, thus taking part in the anti-inflammation activity [80].
In RA, oxidative stress is accompanied by inflammation, and these were monitored by the increase in
the plasma levels of 8-iso-prostaglandin F2α and 15-keto-dihydro-PGF(2α) [81,82].

The pathophysiology of RA comprises synovial inflammation, hyperplasia, and cartilage
degradation; moreover, it could be linked to the endocannabinoid system. The activation of CB2 can
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alleviate the disease by inhibiting not only the development of autoantibodies, pro-inflammatory
cytokines, and matrix metalloproteinases but also bone degradation, T-cell-mediated immune response,
and fibroblast-like proliferation. Moreover, in the synovial fluid of patients with RA, the levels of AEA
and 2-AG were found to increase and that of PEA was found to decrease, suggesting the prominent
functional role of this pathway [32,66].

With reference to inflammatory lysophospholipids, the hydrolysis of circulating LPC contributed
to the accumulation of the local production of LPA, which in turn amplified inflammation in synergy
with TNF-α [33,34].

Ceramide and the activity of acid sphingomyelinase, which catalyzes the hydrolysis of
sphingomyelin to ceramide, have been implicated in inflammatory arthritis. The inhibition of the activity
of acid sphingomyelinase by genetic or pharmacological tools, such as amitriptyline, reduced the disease
manifestations and levels of pro-inflammatory cytokines in a murine model [83]. A characteristic feature
of RA is the disease fluctuation over the day, demonstrated by the changing symptoms and circulating
markers of the inflammatory process. This joint inflammation oscillation was surprisingly linked
to ceramide synthesis [84]. Furthermore, the sphingosine kinase-1 activity (SPHK1, which catalyzes
the phosphorylation of sphingosine into S1P) increased at the sites of acute inflammation in both
the murine model and patients. An increase in the production of S1P was hypothesized to cause
the persistence of T-helper cells in the inflammation sites, contributing to the abnormal immune
responses [35,36]. The expression of receptor 3 of S1P was associated with the development of
autoimmunity as well as the increased downstream signaling and the production of cytokine IL-6 [85].
In contrast, the down-regulation of receptor 1 of S1P contributed to the regression of RA [86]. Elsewhere,
it was postulated that acting on the mTOR pathway, S1P signaling could have a dual role: under
physiological conditions, it maintains continuous bone turnover but leads to the pathogenesis of bone
deformities during inflammation [87].

3.2. Type 1 Diabetes

Type 1 diabetes is characterized by the autoimmune-mediated destruction of pancreatic β-cells.
The plasma lipid profile of patients with type 1 diabetes and murine models was characterized by
the increase in the long-chain polyunsaturated triglycerides and the decreases in the long-chain
lysophospholipids and cholesterol esters [88]. The corroborated hypothesis was the increase in
the remodeling of both circulating lipoprotein and pro-inflammatory status in type 1 diabetes [88–92].
Notably, the levels of AA and AA-derived eicosanoids—such as thromboxane A2 (TXA2), leukotriene
B4 (LTB4), PGD2, PGE2, 11-HETE, 12-HETE, 15-HETE, and 12-oxo-ETE—also decreased in a non-obese
diabetic mouse, highlighting a reduced state of systemic inflammation [37].

The endocannabinoid system was shown to play a relevant role in the maintenance of effective
immune responses in the gut, which is perpetually exposed to pathogenic insults [93]. Mononuclear
phagocytes contributed to maintaining the equilibrium between inflammation and tolerance, which is
a consequential state of hyporesponsiveness. In addition, AEA might protect against the development of
autoimmune diabetes by modulating the immune-suppressive functions and the number of monocytes
and macrophages [93].

When focusing on sphingolipidomics, an elevation in the levels of S1P was revealed in a cohort of
patients with type 1 diabetes and in vivo models [7,8]. Other studies indicated that the pathogenesis of
type 1 diabetes might be related to S1P pathways because it was involved in the disorders of T-cells
migration and activation [94,95]. Moreover, in insulin-secreting cells, the low expression of endogenous
S1P lyase contributed to the vulnerability of the cells to the toxicity brought by pro-inflammatory
cytokines [96]. The role of S1P in inflammation and pathogenesis is not easy to understand.
Autoimmune diabetes and especially its complications were associated with a dysmetabolism
in the sphingolipids [7,9]. In particular, decreased plasma levels of very long-chain ceramide
were associated with a significantly lower frequency of developing diabetes-related nephropathy
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and macroalbuminuria. Moreover, the reduction of sphingolipids containing fatty acid C24:1 was
demonstrated and associated with a reduction in cardio- and neuro-protection [7,9].

3.3. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a disease of unknown etiology. SLE is more frequent
in women than in men, and its symptomatology includes non-erosive and non-deforming arthritis,
cutaneous rash, vasculitis, and other systemic manifestations [97,98]. Changes in the lipid composition
in patients with SLE might be attributable to oxidation damages, mTORC1-dependent mitochondrial
dysfunction [99], and cell death. In the pathophysiology of SLE, cell death concurred with the accrual
in the production of autoantigens and autoantibodies [100]. Some alterations such as variations in
the levels of plasmalogens and fatty acids could be associated with the changes in the lipid composition
of the membrane of lymphocytes and with the deregulation of the immune system, including
the abnormal recognition of autoantigens and enhanced production of antibodies. The uncontrolled
production of reactive oxygen species (ROS) by neutrophils appeared at the onset and in the progression
of SLE, thus causing increased oxidation in membrane lipids and the formation of other products
such as isoprostanes [101,102]. To exemplify, the reaction of ROS with membrane lipids could lead to
the formation of toxic lipidic hydroperoxides and their degradation products, which can further react
with proteins and modify their structure and function [102]. The overproduction of ROS and lipid
peroxidation products were related to the inflammatory status and therefore considered as a factor
that, indeed, characterizes the disease [103].

Another piece of evidence is the high levels of glycosphingolipids in T lymphocyte membranes [104].
The disease did not modify the total content of circulating sphingolipids. However, it demonstrated
an altered length of the FAs incorporated in SM and ceramide, with an increase of long-chain FAs
and a decrease of very long-chain FAs [15]. Moreover, the plasma and serum levels of ceramide
C24:1 increased owing to SLE renal complications. Therefore, ceramide C24:1 could be considered
as a potential biomarker of lupus nephritis [10]. In particular, the levels of circulating ceramides
and hexosylceramides were increased and sphingoid bases were decreased in SLE. These levels were
associated with disease activity, and accordingly, they were normalized after immunosuppressive
treatment [11]. Although the alteration in S1P expression was observed in different studies, its effects
need to be further elucidated [10,11,105–107]. Sphingolipids profile modification could also occur in
the vascular complication related to SLE, namely atherosclerosis [12].

Endocannabinoid modulation was demonstrated by higher 2-AG levels in patients with SLE
compared with healthy subjects. The 2-AG increment was associated with disease regression
and supported the hypothesis of its protective action against the pathogenesis of SLE [13]. However,
another cohort of patients did not exhibit this biochemical alteration; therefore, 2-AG levels could be
associated with the disease manifestation [108].

To conclude, SLE patients showed a notably altered lipid metabolism that is further demonstrated
by a specific increase in the plasma concentrations of some LPEs, including 20:4 and 22:6 FA [14],
and a decrease of LPC 18:2 [15].

3.4. Inflammatory Bowel Diseases

The term IBD is comprehensive of disabling, chronic inflammatory processes directed against
intestinal mucosae, such as ulcerative colitis and Crohn’s disease (CD). IBDs are characterized by mucosa
cell necrosis or the ulceration and infiltration of neutrophils into lesions. The disruption of epithelial
barrier function observed in patients with IBD has been traditionally attributed to cytokines, but some
studies have shed light on the role of PGE2 in paracellular regulation and mucosa impairment [16,109].
These showed that PGE2 binds receptors EP1–EP4 and then acts, via a Ca2+-mediated pathway,
on myosin light chain kinase. The activity of the kinase included changing the transmembrane
distribution of the tight junction proteins and the peri-junctional actin rings [16]. An increase in PGE2
mucosa levels was also demonstrated in Rodríguez-Lagunas et al.’s studies [16]. Moreover, the epithelial
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cells displayed the deregulation of the balance of the local levels of eicosanoids and endocannabinoids.
An increase in the levels of HxA3, a pro-inflammatory and neutrophil chemoattractant eicosanoid,
as well as a concomitant decrease in the anti-inflammatory endocannabinoids, were shown [18].
A common complication of CD is fibrosis, which includes the excessive deposition of extracellular
matrix and the obstruction of the gut lumen. This complication was related to a differential DNA
methylation that causes a decrease in the expression of mRNA encoding for prostacyclin synthase
and an increase in that for prostaglandin D2 [19]. Plasma levels in IBD in the murine model showed
impairment in the profile of eicosanoids, which promote inflammation and may induce carcinogenesis.
In particular, in a murine model (IL-10(−/−)), EETs and DHETs underwent a decrease compared with
the wild type [20].

In the gastrointestinal tract, endocannabinoids have been proposed to control the muscular
propulsion, but they can also control several pathological functions. Studies have shown [21,110,111]
that in animal models as well as in patients with ulcerative colitis, colon inflammation is accompanied
by an increment of anandamide but not 2-AG. These findings were registered in mouse colon and biopsy
samples from patients, confirming a possible role of the protective action of anandamide and its
possible therapeutic employment [21]. Another study revealed a change in the gene expression
in the macrophages and lymphocytes of non-classical endocannabinoid receptors including GPR55
and MGL. These components played an essential role in the regulation of the immune response toward
intestinal and systemic inflammation [110]. After inflammatory stimuli, cannabinoid receptors could
be modulated in their intestinal localization. In particular, CB2 increased in colonic epithelial cells,
and CB1 increased in enteric neurons and the endothelium [111].

3.5. Multiple Sclerosis

MS is an autoimmune disease of the central nervous system that causes progressive neurologic
disability. It is characterized by chronic inflammation that damages myelin axons and the myelin
sheath [25].

A targeted lipidomic study performed on the spinal cords of experimental autoimmune
encephalomyelitis (EAE) highlighted a metabolic switch, which determined an increase of the PGE2

pathway and a decrease of the PGD2, PGI2, and 5-LO pathways. Eicosanoid levels in the spleen
and plasma were also measured; however, significant fluctuations were not found. These changes,
coupled with an elevation in the expression of PGE2 receptors (EP1, EP2, and EP4), were correlated
with clinical symptoms [112,113]. Moreover, a decrease in the serum concentration of neuroprotective
lysophospholipids in patients with MS was shown. This decrease was attributed both to an impaired
spleen homing of T-cells and to the demoting remyelination. However, LPA might also trigger
pro-inflammatory cellular responses depending on the binding receptor and the source [22].
Nevertheless, whether LPA can be used as a biomarker of MS remains unclear. Two studies investigated
LPA levels in a cohort of patients (n = 20); although an elevation of LPA serum levels in the patients
compared with healthy controls was demonstrated, the possible role of LPA in the disease progression
was not elucidated [23,24].

The membrane lipid abnormalities in lymphocytes and monocytes were attributable to impaired
membrane fluidity along with the disease progression [114]. The results from this study showed
that the membrane lipids of patients with MS and control subjects have no significant differences.
However, a correlation was demonstrated between membrane fluidity—measured by lipid composition
(phospholipids, fatty acids, and cholesterol)—and disease progression, estimated by the functional
system score [114].

During MS, S1P levels were elevated in the central nervous system cell lineages. The S1P level
in the EAE mice model affected with autoimmune EAE spinal cord was approximately twice that in
the wild type, consistent with astrogliosis. Notably, the S1P levels decreased in S1P1 conditional null
mutants [26].
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3.6. Graves’ Disease

Graves’ disease is an autoimmune thyroid disease that represents one of the most common causes
of hyperthyroidism. In addition to the signs and symptoms of hyperthyroidism, Graves’ disease
is accompanied by a typical orbitopathy called Graves’ orbitopathy (GO). In particular, the orbital
tissue of patients with GO showed elevated levels of S1P compared with the control samples. S1P was
hypothesized to act as a chemoattractant for T-cells during disease progression [27]. The initial binding
of T-cells activated the orbital fibroblasts via CD40, which caused an augmentation of S1P levels [27].
In addition, the role of S1P on adipogenesis and fibrosis [29,30] and in pro-inflammatory responses has
been demonstrated. More specifically, IL-1β enhanced the expression of S1P receptors and sphingosine
kinase in GO orbital fibroblasts; this in turn increased the expression of other pro-inflammatory
mediators, including ICAM-1, COX-2, and IL-6 proteins [31].

4. Anti-Inflammatory Lipids and their Therapeutic Potential

Some recent works have focused on the functions of the precursors of eicosanoids: omega-3
polyunsaturated fatty acids (ω-3 PUFAs), EPA, and DHA. However, these precursors were proposed
as potential candidates for the prevention or even treatment of some AIDs, such as type 1
diabetes, RA, SLE, and MS. Many of the beneficial effects of ω-3 PUFAs could be assigned to their
anti-inflammatory properties coupled with the regulation of mTOR activity [115–117]. In particular,
the anti-inflammatory properties of marine-derivedω-3 PUFAs could be related to a change in the fatty
acid composition of the cell membranes [118] along with a decrease in the levels of eicosanoids,
cytokines, and adhesion molecules. Another evidence of the anti-inflammatory properties of ω-3
PUFAs was the increasing levels of pro-resolving mediators [118,119]. In clinical trials, pro-resolving
mediators both reduced inflammation—for example, decreased LTB4 [120]—and stabilized advanced
atherosclerotic plaques in patients with RA [121]. Moreover, some symptomatic benefits could be
obtained by combining paracetamol with fish oil (rich in PUFAs). This combination provided superior
suppression of inflammatory PGE2 synthesis [122]. Nevertheless, note that information onω-3 PUFAs
supplementation based on clinical trials might be difficult to interpret owing to the differences in dose,
duration, and drug interactions [119]. In a murine model of type 1 diabetes, dietary treatment withω-3
PUFAs reduced the incidence of autoimmunity in pancreatic islets, modulated the differentiation of Th-
and T-regulatory cells, and decreased the levels of pro-inflammatory mediators such as IFN-γ, IL-17,
IL-6, and TNF-α [123]. In a murine model of colitis, EPA and DHA supplementation caused a significant
increase in the levels of some anti-inflammatory eicosanoids. However, this change was not sufficient to
alleviate colitis [124]. A study suggested that micronized PEA may be considered in relapsing–remitting
MS to reduce the cutaneous adverse effects related to the subcutaneous administration of interferon
(IFN)-β1 [125]. Lipoxins, resolvins, and protectins co-administered with aspirin might be useful in
various rheumatological conditions [97]. To exemplify, the combination of ω-3 with non-steroidal
anti-inflammatory drugs generated bioactive lipids that could be used downstream by leukocytes
to counteract inflammation propagation [126]. Some results suggested that the administration of
PPAR ligands such as 15d-PGJ2 may be a novel therapeutic strategy for MS because PPAR ligands
efficiently reduced the severity of the inflammation by reducing both the secretion of encephalitogenic
T-cells and cytokines and the consequent demyelination [127]. Moreover, EETs could be considered as
a novel therapeutic agent for rheumatic disorders because they promoted tissue regeneration along
with the attenuation of bone loss and osteoclast activity [128].

The stabilized cyclic phosphatic acid 2-carba-cPA (obtained by replacing one of the cyclic
phosphate oxygen molecules with a methylene group at the sn-2 position) as well as its precursor,
cyclic phosphatic acid, protected the oligodendrocytes by reducing mitochondrial apoptosis.
This suggested that the modulation of LPA could be relevant for the treatment of demyelinating
conditions [129]. Endocannabinoids can also display anti-inflammatory effects in different AIDs;
however, their pharmacological potential is still debated. The exogenous supplementation of either
COX-2 inhibitors [130], cannabinoid receptor agonists [65,66], or endocannabinoid degradation
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inhibitors [65,130–132] increased the levels of anti-rheumatic N-acylethanolamines. In the same way,
in some diseases, the modulation of S1P pathway could be accomplished indirectly and not using
exogenous S1P. S1P seemed to have a central role in interfering with an uncontrolled immune system
by altering lymphocyte recruitment and the cellular adhesion processes. Moreover, blocking the S1P
receptor function demonstrated efficacy in the treatment of MS. Fingolimod, the first non-selective S1PR
agonist, and siponimod (BAF312), a selective S1PR1 agonist, have been approved to reduce inflammation
in the treatment of relapsing–remitting and secondary progressive MS. Other S1PR modulators such as
ponesimod (ACT128800), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303
have been promising to reduce inflammatory demyelination and are also under clinical trials for MS
treatment [133–142].

5. Concluding Remarks and Possible Roles of Biotechnology in the Prevention and Therapy
of Autoimmune Inflammatory Diseases (AIDs)

Numerous new studies have proved the role of different functional lipids in the treatment of several
AIDs, which are increasingly prevalent health problems among the global population. Nowadays,
the prevalence of diagnosed autoimmune conditions is 7%, 6%, and 5% in the U.S., E.U. (average of
a group of countries), and China, respectively [143]. Thus, further studies are urgently needed to shed
light on the mechanisms and therapies of these diseases so as to counteract them.

It has been recognized that ω-3 PUFAs have anti-inflammatory properties and their presence
in nutrition contributes to the prevention of many inflammatory diseases, independently from
the mechanism of action. Nevertheless, for the development of drugs based onω-3 PUFA derivatives
for the cure of a given inflammatory disease, in-depth knowledge of the mechanism of action of
the disease itself is required. Therefore, the administration or inclusion ofω-3 PUFAs in human diet
appears as the most natural way to reduce AIDs insurgence. In particular, the availability of ω-3
PUFAs in human diet could dramatically change their benefits.

Although out of the scope of this review, emphasizing that biotechnology, in particular metabolic
engineering, is increasingly adopted for the production ofω-3 PUFAs from different microbial strains
is important. Analogously, plants have also been genetically engineered to produce high amounts of
DHA and EPA. These achievements would undoubtedly allow a broader diffusion of these fatty acids,
thus helping to improve the general health conditions. Human health will particularly benefit if these
molecules are included as an essential part of diet [144–146].

An ideal tool to test the role of different types of functional lipids might be microfluidics
tools combined with biotechnological techniques [147,148]. Such tools have allowed human
cells and histological tissues to be cultivated and treated under strictly controlled conditions.
These approaches, even if they are only at the initial stages of development, have already been proven as
a strategic system to provide new insights into several areas of medicine, especially therapeutic devices
with the role of organoids. From a pharmacological point of view, biotechnology could positively
contribute to the production of the intermediates involved in the regulation of inflammatory diseases.
This review provides an overview of AIDs and aims to encourage scientists to develop engineered
microorganisms for the large-scale production of selected functional lipids or their derivatives.
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Table 1. Functional lipids and their corresponding role in autoimmune diseases.

Autoimmune
Diseases Lipids Roles Changes 1 References

Rheumatoid
arthritis

11-HEPE, 12-HEPE and 15-HEPE
(EPA-derived) anti-inflammatory up [5]

PGE2, 6,15-dk, dh, PGF1α, 12-HETE, 12LOX
derived eicosanoids (AA-derived) pro-inflammatory up [5]

Resolving D1 and 17-HDoHE (DHA derived) anti-inflammatory down [5]

molecules from COX and LOX pathways remodeling process of inflammation up [6,78]

5-HETE and LTD4 remodeling process of inflammation down [6]

PGE2 and 15-(S)-HETE inflammatory stimulators up [17,79]

PGD2 anti-inflammatory up [80]

8-iso-PGF(2α) and 15-keto-dihydro-PGF(2α) Oxidative stress and inflammation
biomarkers up [81,82]

Resolvin D3 resolution of inflammation down [28]

AEA and 2-AG neovascularization, cartilage,
and bone demolition up [32]

PEA anti-inflammatory down [32]

LPA pro-inflammatory up [33,34]

S1P abnormal immune responses up [35,36]

Type 1 diabetes

thromboxane A2 (TXA2), leukotriene B4
(LTB4), PGD2, PGE2, 11-,12- and 15-HETE,

and 12-oxo-ETE

impaired states of systemic
inflammation down [37]

S1P immunomodulation up [7,8]

omega-9 esterified sphingolipids cardio- and neuro-protection down [7,9]

Systemic lupus
erythematosus

Ceramide 24:1 biomarker of lupus nephritis up [10]

Ceramides, hexosylceramides associated with disease activity
and vascular complication up [11,12]

2-AG disease regression up [13]

Phospholipids (PE) increased oxidative stress down [14,15]

Inflammatory
bowel diseases

PGE2 paracellular regulation up [16]

HxA3 pro-inflammatory, activates migration up [18]

Endocannabinoid agonist on CB2 anti-inflammatory, inhibits migration down [18]

prostaglandin D2 and prostacyclin
excessive deposition of extracellular

matrix and obstruction of
the gut lumen

down [19]

epoxyeicosatrienoic acids (EET)
and dihydroxyeicosatrienoic acids (DHETs) anti-inflammatory activity down [20]

PGE2 and 5-HETE metabolites pro-inflammatory up [20]

Anandamide Protective action up [21]

Multiple sclerosis

Lysophospholipids demoting remyelination down [22]

Lysophosphatidic acid (LPA) Pro- and anti-inflammatory up [23,24]

PGE2 Pro-inflammatory up [25]

LTC4, LTB4, LTD4 anti-inflammatory down [25]

S1P astrogliosis up [26]

Grave’s disease S1P
chemoattractant for T cells,
pro-inflammatory, fibrosis

and adipogenesis
up [27,29–31]

1 This column reports if the lipids concentrations are incremented (up) or decremented (down) as a consequence of
the biological response to the effects of the disease.
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Abbreviations

AIDs autoimmune inflammatory diseases
COX cyclooxygenases
LOX lipoxygenases
AA arachidonic acid
EPA eicosapentaenoic acid
DHA docosahexaenoic acid
GL glycerophospholipids
LTs leukotrienes
PGs prostaglandins
TXs thromboxanes
Rv resolvins
AEA anandamide
2-AG 2-arachidonoilglycerol
PEA palmitoylethanolamide
OEA O-arachidonoylethanolamine
LPA lysophoshatidic acid
PA phosphatidic acid
DAG diacyglicerols
TAG triacylglicerols
CDP-DAG cytidine ciphosphate diacylglycerol
CL cardiolipins
PI phosphatidyl inositoles
LPI lysophosphatidyl inositoles
PG phosphatidyl glicerols
LPG lysophosphatidyl glicerols
PE phosphatidyl ethanolamines
LPE lysophosphatidyl ethanolamines
PC phosphatidyl cholines
LPC lysophosphatidyl cholines
PS phosphatidyl serines
LPS lysophosphatidyl serines
GlcCer glucosylceramide
LacCer lactosylceramide
S1P sphingosine 1-phosphate
GalCer galactosylceramide
SM sphingomyelins
Cer-1P ceramide 1-phsosphate
EETs Epoxyeicosatrienoic acids
DHETs dihydroxyeicosatrienoic acids
HETEs hydroxyeicosatetraenoic acids
CB cannabinoid receptor
RA rheumatoid arthritis
SLE systemic lupus erythematosus
ROS reactive oxygen species
IBD inflammatory bowel disease
CD
MS

Crohn’s disease
multiple sclerosis

GO called Graves’ orbitopathy
ω-3 PUFAs omega-3 polyunsaturated fatty acids
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