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on sucrose renewal and contextual memory reconsolidation in rats” by Piva et al. for publication in 
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If accepted, it will not be published elsewhere in the same form, in English or in any other 
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Email: alessandro.piva@univr.it
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Responses to Reviewers' Comments

Reviewer #2

This revised manuscript addressed all of my queries. I have only a few further minor comments.

Reviewer #2 Point 1: In the Highlights, the authors should refrain from using Metaplastic as an 
adjective for ketamine. Better would be to say in the first one: Ketamine metaplastically inhibits… 
and for the second one to delete “Metaplastic” altogether as there was no effect in this condition, or 
else say, “has no metaplastic effect..”
Response: We thank the Reviewer for the comment. We revised the “Highlights” according to 
Reviewer’s suggestion.

Reviewer #2 Point 2: In a similar vein, in the second abstract sentence, I would recommend 
saying “metaplasticity dose regimen” or “metaplasticity-inducing dose regimen”, as the dose 
regimen is not itself metaplastic. See also first paragraph of the discussion.
Response: The correction has been done both in the abstract and in the discussion.

Reviewer #2 Point 3: Introduction, para 3, line 10, perhaps say “affecting” instead of “contrasting”
And on line 12, delete “however” as the sentence starts with Although.
Response: Done.

Reviewer #2 Point 4: Western blot images. The bands for beta-actin are wider than the bands for 
the glutamate receptors. Thus it would seem that they have come from different blots. This should 
be double-checked to ensure that the images all come from the same blot where they are 
compared in a figure.
Response: The bands, selected as representative, indeed come from the same blot. The 
difference between each β-actin band and the corresponding proteins should be due to technical 
innate feature of WB (i.e., polyacrylamide gel percentage and different molecular weight of the 
protein). However, in order to avoid this doubt, we made a different, hopefully better, selection of β-
actin bands of extra-synaptic fraction in figure 1 panel a and b.

Reviewer #3

The authors have modified the manuscript to address a number of considerations. I find that it will 
be a useful resource as a paper, which could be made more impactful by future potential 
experiments. However, in its present form I believe there are still some considerations to be 
addressed.
Reviewer #3 Point 1: The authors responded to the concerns regarding over interpretation of the 
relationship of the effects of an acute injection of ketamine on GlutR subunit expression to the 
behaviour in their letter and added some clarification at the end of the discussion. However this 
inference of correlation hasn’t been removed from the article ‘highlights’. Likewise, this is not 
addressed in the abstract which I find less clear now. The way in which the abstract is written infers 
that the molecular study was after behaviour. For clarity, ‘in naïve animals’ could be added when 
describing the effects, just so it is clear that the changes seen were not due to any behavioural 
testing. For example, now the final sentences following “The inhibition of renewal is correlated to 
hippocampal and accumbal decreased levels of GluA1” are misleading.
Response: We thank the Reviewer for comments and suggestions. We removed the inference of 
correlation from the “Highlights”, and the Abstract has been modified to avoid misunderstanding 
about the order of molecular and behavioural experiments. The final sentence of the abstract has 
been modified to avoid misleading interpretation.

Reviewer #3 Point 2: The authors have more clearly indicated the number of animals used in the 
different experiments. Two rats were excluded from the reconsolidation experiment as they did not 



meet a criteria for sucrose seeking renewal, I am a little confused as to whether by renewal they 
are referring to the Retrieval session?. However as this renewal is a measure of interest I have 
concerns as to whether these rats should be excluded on this basis? They may represent some 
natural variation in the levels of relapse to seeking that is seen in a control (vehicle here) group. 
Would the interpretation of the data change if these rats were included?
Response: First of all, for renewal we are referring to the Renewal experiment and not to the 
Reconsolidation experiment. 
We actually did not detail correctly the criteria for animal exclusion from the anaysis. The current 
sentence (“Two rats of the vehicle group in the renewal experiment were excluded from the 
analyses because they did not meet the criterion of relapse to sucrose-seeking (ALP performed 
during test were greater than ALP performed during the last extinction session) “ must be more 
correctly rephrased as, “Two rats of the vehicle group in the renewal experiment were excluded 
from the analysis because they did not meet the actual criterion of extinction of lever pressing for 
sucrose, in spite of showing a number of ALP lower than 50% of responding on the first extinction 
session. In fact, their responding on the last three days of extinction were similar to the ALP values 
during the last three self-administration sessions”. We now add this sentence in the new version of 
the manuscript. 

Reviewer #3 Point 3: I appreciate that the authors have reanalysed the data and stats. Still for the 
reconsolidation experiment, the Retrieval session (equivalent to Renewal session only shorter) 
shows enhanced lever presses relative to the last extinction session (ie. Renewal) in both groups. 
So in this experiment Ketamine does not prevent renewal, even with different statistical analysis 
this finding stands. Perhaps the data of responding during the first time bins during Ext 2 can 
speak to this (albeit there is a context change)? 
The authors include discussion of whether the ‘metaplastic’ effect could enhance extinction rather 
than alter destabilisation of the original memory in their response to Reviewer 2. These are worthy 
points of discussion, particularly as the authors mentioned that there was no difference in response 
rates of the time bins in the long renewal test (60mins) nor in the short renewal test (ie. Retrieval 
15mins), but perhaps comparing responses across these experiments might reveal why there is 
not an effect on renewal in Experiment 2.  
It does look like the vehicle rats conditioned slightly less strongly in experiment 2, perhaps it is 
worth looking at whether the strength of training has a relationship to the extent of renewal in the 
vehicle animals, because if so perhaps they had less renewal in experiment 2 due to training 
differences. This is speculative of course, but without due discussion the main conclusion of the 
paper is weakened and at present the discussion still talks more about the effects of an acute 
ketamine injection and less so about the behavioural results.
Response: The Retrieval session took place in the conditioning Context A, whereas the last 
extinction session took place in the Context B, thus the latter cannot be defined as Renewal. 
Similarly, responding during Ext 2 occurred in Context B, so that responding cannot be compared 
to responding in conditioning Context A. Nevertheless, we analysed the time-bin data from the 
Retrieval and the Reinstatement session (now called Test), but we did not find significant 
differences between the two groups.
We did not find a statistically significant difference in conditioning between the vehicle and the 
ketamine rats, so we could exclude a different training (i.e., memory) strength between the two 
treatment groups.
We appreciate the interest of Reviewer #3 to have more information and discussion about the 
behavioural data of the reconsolidation experiment. We agree that in the orginal version of the 
Discussion section there is only a limited space for behavioural data. We therefore expanded this 
part in the Discussion paragraph in this second revision version. 

Reviewer #3 Point 4: In reference to the name given to the second experiment ‘Test’ it still says 
reinstatement in the Figure and I wouldn’t necessarily agree that is how the term is used in 
literature. Reinstatement is traditionally considered the term for when the US is presented again 
after extinction, which is not the case here, so in effect it is a (second) test of renewal.
Response: We changed the nomenclature in the Figure 3 panel a) from reinstatement to simply 
“Test”. As far as concerns the nomenclature, there is an historical difference between the fear 



conditioning and the drug addiction literature (for a recent review about these differences see 
Goode & Maren, 2019), where the latter used to define ‘reinstatement’ as the induction of 
responding for previous reinforced lever by exposure to cues and/or context (i.e., conditioned 
stimuli and/or conditioning context), mild footshock (i.e., stress) or a single non-contingent drug 
administration (i.e., priming) before the start of the test session. For this reason we used the term 
‘reinstatement’.



 Ketamine metaplastically inhibits sucrose context-induced renewal

 Ketamine has no metaplastic effect on contextual memory reconsolidation

 Ketamine metaplastically induces glutamate receptors changes
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Abstract

Metaplastic effects of the NMDARs blocker ketamine at the neural and behavioural levels 

have been described as potential mechanisms underlying the beneficial effects in treatment-

resistant depression. However, ketamine effects on addictive behaviours are still unexplored. 

In the present study, we investigated the effects of ketamine given under a “metaplasticity-

inducing dose regimen” on sucrose-related renewal and contextual memory reconsolidation 

in rats.

After a molecular analysis of ketamine modulation of GluN2B, GluA1 and mGluR5 receptors 

levels in nucleus accumbens, hippocampus and amygdala, two behavioural models were 

used to investigate ketamine effects: i) context-induced renewal of sucrose-seeking, and ii) 

sucrose memory reconsolidation. Ketamine was administrated 24h before the renewal test or 

the retrieval.

At the molecular level, ketamine i) decreased GluN2B, GluA1 and mGluR5 receptors in 

hippocampus, ii) decreased GluA1 and mGluR5 but increased GluN2B in nucleus 

accumbens and iii) increased GluN2B and mGluR5 in amygdala. At the behavioural level, 

ketamine given prior to renewal significantly inhibited responding compared to vehicle, while 

no significant effects were observed on reconsolidation of contextual memory.

In conclusion, the molecular analysis of ketamine metaplastic effects in key brain areas 

suggest a possible involvement of glutamatergic receptors in the inhibition of sucrose 

renewal but not of contextual memory reconsolidation. The inhibition of renewal could be 

correlated to hippocampal and accumbal decreased levels of GluA1 and mGluR5, whereas, 

the lack of effect on contextual memory reconsolidation could be correlated to decreased 

GluN2B expression in hippocampus, landmark of destabilization-insensitive state.

Keywords
Renewal, memory reconsolidation; metaplasticity; ketamine 
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1. Introduction

Context may be an important determinant factor of relapse to natural and drug rewards [1] 

and for the definition of intervention strategies [2]. Preclinical research has extensively 

investigated the conditions under which drug-associated context affect drug seeking 

behaviour [3-5]. For instance, conditioned response is reinstated (renewal effect) when 

subjects are re-exposed to a conditioning context (A) after extinction of responding in a 

different context (B). These studies have also identified the brain areas and the molecular 

mechanisms involved in context effects on conditioned response for drugs of abuse and 

natural rewards [6-11].

Context is also important in the reconsolidation of appetitive memories. The reactivation of a 

consolidated memory through conditioned or unconditioned stimuli presentation during a 

retrieval session may induce the destabilization and labilization of the memory trace. In order 

to restabilize the original trace, a process of restabilization/reconsolidation is needed [12]. 

The memory reactivation and reconsolidation processes have been largely investigated and 

demonstrated for Pavlovian memories, and only recently they have been demonstrated also 

for instrumental learning [13-18]. 

Several studies have shown that drugs of abuse may induce permissive changes that 

subsequently affect synaptic plasticity events, through a mechanism that has been defined 

as ‘plasticity of synaptic plasticity’, also called metaplasticity [19,20]. Metaplasticity has been 

observed at different cellular and behavioural levels and can be induced by modification of 

synaptic plasticity or neural assembly and connectivity [21-23] or by the exposure to 

environmental enrichment, stress or drugs of abuse [22,24,25]. In drug addiction, 

metaplasticity has been characterized as a process that renders neural circuits more 

crystallized and less susceptible to remodelling [26]. On the other hand, little is known about 

metaplasticity as a phenomenon affecting relapse (e.g. acting against the effect of 

determinant factors of drug-seeking relapse), or by facilitating extinction. Although recent 

evidence indicates that metaplasticity may modulate extinction expression in conditioned fear 

experiments [27], no studies investigated whether metaplastic stimulations could affect the 

extinction of conditioned responses to appetitive reinforcers. Finnie and Nader [28] proposed 

that the molecular events able to affect memory reactivation and reconsolidation act as 

metaplastic mechanisms, changing “the types of behavioural experience” necessary to 

modulate memory. However, very limited reports are available on the role of metaplasticity 

on the reconsolidation of appetitive memories: for example, we showed that NMDA receptor 

antagonist MK-801–induced metaplasticity was able to inhibit the reconsolidation of 

instrumental memory for sucrose [29]. NMDA receptor antagonists such as MK-801 and 

ketamine have been shown to induce metaplasticity changes of long-term potentiation (LTP), 
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i.e. facilitating tetanus-induced LTP in ex-vivo hippocampal slices 24 hours after treatment  

([30,31]; for a review see [32]). Single ketamine dosing has been shown to induce a cascade 

of molecular events leading to enhanced synaptic activity in brain areas involved in mood, 

motivation and emotional memory (e.g., [33,34]). For instance, ketamine altered glutamate 

receptors expression and CaMKII autophosphorylation when given 24 hours earlier [35,36]. 

Nowadays ketamine and ketamine-like antidepressant effects are commonly defined in 

literature as metaplastic effects [31,37,38]. 

Based on these hypotheses, we aimed to explore whether ketamine was able to induce 

metaplastic changes affecting context-induced renewal or contextual memory reconsolidation 

in rats. After a molecular validation of the metaplastic effects of ketamine on different brain 

areas, we investigated the behavioural effects of ketamine on sucrose-seeking behaviour. 

For the molecular assay, rats were treated with i.v. ketamine 24 hours before assessment of 

relevant molecular markers such as the NMDA receptor subunit GluN2B [39,40], the AMPA 

receptor subunit GluA1 [41] and the metabotropic receptor mGluR5 [27,42,43], in 

hippocampus, nucleus accumbens and amygdala. The dose of ketamine used here was 

shown to facilitate LTP in ex-vivo hippocampal slices 24 hours after acute treatment [31]. For 

the behavioural assessment, ketamine was administered to rats 24 hours (-24h) before i) 

testing the sucrose-seeking behaviour in a renewal protocol or ii) contextual memory retrieval 

in a memory reconsolidation protocol. In the former, rats were initially trained to sucrose self-

administration (S/A) in a conditioning context, followed by instrumental extinction training in a 

different context; twenty-four hours after the last extinction session, rats were treated with i.v. 

ketamine and, 24 hours later, tested for sucrose-seeking behaviour in the conditioning 

context (renewal test). For the contextual memory reconsolidation experiment, after training, 

extinction and ketamine injection as in the renewal protocol, rats were briefly exposed to the 

conditioning context for instrumental memory retrieval [44] and, after a second extinction 

phase, tested for sucrose-seeking behaviour in the conditioning context (reconsolidation 

test).

2. Material and methods

2.1 Animals
Fifty male Sprague-Dawley rats (Charles River, Italy) were housed in pairs in temperature 

and humidity-controlled environment (19-23°C, 60 ± 20 %) on a 12-h light/dark cycle, with 

light ON at 7:30 pm. Rats were food restricted to maintain their body weight in the range of 

250 ± 10 g (daily checked) throughout the experiments, and food (two to three pellets, 10-15 

g/day) was made available after each experimental session. Water was available ad libitum, 
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except during experimental sessions. Animals were trained or tested once daily during the 

dark phase of the light/dark cycle, and all the experimental procedure were carried out in 

accordance with the U.K. Animals (Scientific Procedures) Act of 1986 and associated 

guidelines, and with EU Directive 2010/63/EU for animal experiments. All efforts were made 

to minimize animal suffering and to keep the lowest number of animals used.

2.2 Apparatus
Rats were trained and tested in operant chambers encased in sound-insulated cubicles 

equipped with ventilation fans (Med Associates Inc., Georgia Regional Industrial Park, 

Fairfax, VT, USA). Each chamber was equipped with two levers, an active (right) and an 

inactive (left) lever symmetrically oriented laterally to the food magazine, on the frontal panel. 

Levers were located 2 cm and food magazine 1 cm above the grid floor. A 2-W white house 

light was located 26 cm above the grid floor on the back panel of the operant chambers and 

provided ambient illumination during the entire session duration of all the experimental 

phases, except for time-out (TO) periods during training and extinction phases. During 

training, right lever presses produced the delivery of a 45-mg sucrose food pellet (Bilaney 

Consultants Ltd, UK) with a fixed-ratio 1 (FR1) schedule of reinforcement. During extinction, 

right lever presses did not correspond to pellet delivery. Left lever presses did not have 

programmed consequences during the entire experimental protocol. Lever presses and pellet 

deliveries were recorded, as well schedule parameters and data acquisition were controlled, 

by Med-PC IV software (Med Associates Inc., Georgia Regional Industrial Park, Fairfax, VT, 

USA).

2.3 Pharmacological effects and Western Blot Assays
To elucidate the metaplastic effects of ketamine on glutamate receptors level, two groups of 

rats (5 each group) were treated with ketamine 10 mg/kg/mL i.v. or vehicle 1 mL/kg i.v. and 

24h later were anesthetized with 350 mg/kg/2 mL i.p. chloral hydrate (Fluka, Italy) before 

sacrifice. Then, brains were removed and 1-mm fresh tissue slices containing nuclei 

accumbens (+1.70 mm), hippocampi and amygdalae (bregma -3.00 mm) were dissected by 

using a 1-mm Coronal Brain Matrix (SouthPointe Surgical Supply, Florida, USA).

After dissection of brain areas, proteins of post-synaptic density and extra-synaptic fraction 

were analyzed as previously described [45] with minor modifications. Briefly, nuclei 

accumbens, hippocampi and amygdalae were homogenized in a teflon-glass potter in cold 

0.32 M sucrose buffer pH 7.4 containing 1 mM HEPES, 1 mM MgCl2, 1 mM NaHCO3 and 0.1 

mM PMSF, in presence of commercial cocktails of protease (Roche, Monza, Italy) and 

phosphatase (Sigma-Aldrich, Milan, Italy). Each homogenate was centrifuged at 800 g for 5 

min; the obtained supernatant was then centrifuged at 13000 g for 15 min, obtaining a pellet. 
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This pellet was re-suspended in a buffer containing 75 mM KCl and 1% Triton X-100 and 

centrifuged at 100000 g for 1 h. The resulting supernatant, referred as Triton X-100 soluble 

fraction (TSF, extra-synaptic fraction), was stored at -20°C; the pellet, referred as PSD or 

Triton X-100 insoluble fraction (TIF, post-synaptic density), was homogenized in a glass–

glass potter in 20 mM HEPES, protease and phosphatase inhibitors and stored at -20°C in 

presence of glycerol 30%. Total proteins have been measured in the TIF and TSF fractions 

according to the Bradford Protein Assay procedure (Bio-Rad, Milan, Italy), using bovine 

serum albumin as calibration standard.

Equal amounts of proteins of the TIF fraction (8 µg) and of TSF fraction (15 µg) were run on 

a sodium dodecyl sulfate - 8% polyacrylamide gel under reducing conditions and then 

electrophoretically transferred onto nitrocellulose membranes (GE Healthcare, Milan, Italy). 

Blots were blocked 1 h at room temperature with 10% non-fat dry milk in TBS + 0,1% Tween-

20 buffer and then incubated with antibodies against the proteins of interest. The conditions 

of the primary antibodies were the following: anti-GluN2B (1:1000, Cell signalling technology, 

USA), anti-GluA1 (1:2000, Cell signalling technology, USA), anti-mGluR5 (1:1000, Millipore, 

Italy) and anti-β-Actin (1:10000, Sigma-Aldrich, Italy). Results were standardized using β-

actin as the control protein, which was detected by evaluating the band density at 43 kDa. 

Immunocomplexes were visualized by chemiluminescence using the Chemidoc MP Imaging 

System (Bio-Rad Laboratories).

2.4 General Procedure
Schematic diagrams of the behavioural protocols are shown in Figures 2a and 3a. Protocols 

were designed according to the procedure used in Fuchs’s lab to study contextual memory 

reconsolidation [46] and context-induced renewal [8]. Briefly, for the renewal protocol, 

following training to sucrose pellets S/A in the conditioning context and instrumental memory 

extinction in the extinction context, rats were injected with ketamine i.v. and, 24h later, 

sucrose-seeking behaviour was tested in the training context. For memory reconsolidation 

protocol, after training to sucrose pellets S/A, extinction and ketamine injection phases as in 

the renewal protocol, rats were exposed to a retrieval (Ret) session in the conditioning 

context and, after a second extinction phase in the extinction context, tested for sucrose-

seeking behaviour in the conditioning context. Contextual bias was controlled 

counterbalancing contexts A and B for the experiments, with half of the rats of each 

experimental group conditioned in context A and the other half conditioned in context B. 

Context B was a modified version of the operant chamber, with 5-cm blank striped sheets on 

all the walls and a 1cm-side grid on the floor [47].
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2.5 Lever press shaping and training to sucrose self-administration
Forty rats were initially trained to associate right lever presses with sucrose pellets as 

reinforcement in the conditioning context. The schedule was FR1: 45-mg sucrose food pellet, 

no TO, session duration up to 100 reinforcements or 120 min. Once the criterion of 100 

reinforcements/session was reached, rats started training in the conditioning context. During 

training, right lever presses corresponded to the delivery of sucrose reinforcement with the 

schedule: FR1:45-mg sucrose pellet, 60-s TO, session duration up to 12 reinforcements or 

60 min. During TO period, right lever presses had no programmed consequences. Light was 

on throughout shaping and training sessions, except for TO periods during which it switched 

off. Left lever presses were never associated with programmed consequences. Training 

lasted for 10 continuous days, and all lever presses during shaping and training were 

recorded.

2.6 Renewal experiment
Twenty-four hours after the last training session, 24 rats started extinction training, receiving 

1h daily session of instrumental extinction in the extinction context. Extinction session 

schedule was maintained identical to training schedule, except for a fixed duration (1h) and 

for the absence of any delivery of sucrose pellets. For the renewal protocol, extinction 

training lasted until rats performed, for three consecutive sessions, less than 50% of lever 

presses on sucrose-paired lever performed during the first extinction session [47,48]. 

Noteworthy, increased responding to the active lever on the first day of extinction has been 

often reported in drug and food S/A studies (e.g., [49]). Generally, extinction criterion was 

reached between the fourth and the seventh day of extinction training. Twenty-four hours 

after the last extinction session, 17 rats were treated with 1 mL/kg i.v. vehicle and 7 with 10 

mg/kg/mL i.v. ketamine [31]. Following injection, rats remained in the home cage for 24 hours 

before renewal test. Test session lasted for 60 minutes, with house light on throughout the 

session and no TO. Both levers were presented but not associated with programmed 

consequences. All lever presses were recorded during extinction training and sucrose-

seeking test.

2.7 Contextual memory reconsolidation experiment
Twenty-four hours after the last training session, 16 rats started extinction training, receiving 

1h daily session of instrumental extinction in the extinction context. Extinction session 

schedule was maintained identical to training schedule, except for a fixed duration (1h) and 

for the absence of any delivery of sucrose pellets. For the memory reconsolidation protocol, 

extinction training lasted for seven consecutive days, regardless of the number of active or 

inactive lever presses performed during the sessions. This criterion was applied following the 
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protocol described in Arguello et al. [44] to obtain a similar strengthening of the extinction 

memory in all rats before ketamine treatment and retrieval. In fact, memory age, which 

determine memory strength, has been listed as one of the boundary conditions that can 

regulate retrieval ability to reactivate and destabilize memory trace [16]. Twenty-four hours 

after the last extinction session, 8 rats were treated with 1 mL/kg i.v. vehicle and 8 rats with 

10 mg/kg/mL i.v. ketamine [31]. Following injection, rats remained in the home cage until, 

24h later, rats were exposed to a retrieval session. Retrieval session was performed in the 

conditioning context and lasted for 15 minutes, without any TO period. During retrieval, both 

levers were presented, but not associated with programmed consequences. Twenty-four 

hours after retrieval, a second extinction training phase in the extinction context was 

performed to re-extinguish instrumental response before the final test. Here, extinction 

training lasted until rats performed, for three consecutive sessions, less than 50% of lever 

presses on sucrose-paired lever performed during the first extinction session of the first 

extinction training. The day after the last extinction session, sucrose-seeking behaviour was 

tested in the conditioning context. Test session lasted for 60 minutes, with house light on 

throughout the session and no TO. Both levers were presented but not associated with 

programmed consequences. All lever presses were recorded during the extinction training 

phases, retrieval and the final sucrose-seeking test.

2.8 Data and Statistical Analysis
For the western blot assays, data were analysed by an unpaired two-tailed Student’s t-test.

For the renewal experiment, the number of active (ALPs) and inactive (ILPs) lever presses 

were separately analysed for possible pre-existing group differences with a repeated 

measures (RM) two-way analyses of variance (ANOVAs) followed by Sidak’s multiple 

comparisons post-hoc test with Session (mean of the last three S/A sessions, first extinction 

session, mean of the last three extinction sessions) as the within-subject factor and 

Treatment (vehicle, ketamine) as the between-subject factor. The number of ALPs and ILPs 

during the renewal test and previous last three extinction sessions were analysed with a RM 

two-way ANOVA followed by Sidak’s multiple comparisons post-hoc test with factors Session 

(mean of the last three extinction sessions, renewal) and Treatment (vehicle, ketamine) to 

assess the effect of -24h ketamine. 

For the contextual memory reconsolidation experiment, the ALPs and ILPs were separately 

analysed for possible pre-existing group differences with a RM two-way ANOVA followed by 

Sidak’s multiple comparisons post-hoc test with factors Session (mean of the last three S/A 

sessions, first extinction session, mean of the last three sessions of extinction-1) and 

Treatment (vehicle, ketamine). The number of ALPs and ILPs were separately analysed with 

a RM one-way ANOVA followed by Sidak’s multiple comparisons post-hoc test with factors 
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Session (mean of the last three sessions of extinction-1, retrieval, mean of the last three 

sessions of extinction-2) and Treatment (vehicle, ketamine) to assess the effects of 

conditioning context to induce retrieval of contextual memory. The number of ALPs and ILPs 

were separately analysed with a RM one-way ANOVA followed by Sidak’s multiple 

comparisons post-hoc test with factors Session (mean of the last three sessions of 

extinction-2, test) and Treatment (vehicle, ketamine) to assess the effect of -24h ketamine on 

lever pressing. Two rats of the vehicle group in the renewal experiment were excluded from 

the analysis because they did not meet the actual criterion of extinction of lever pressing for 

sucrose, in spite of showing a number of ALP lower than 50% of responding on the first 

extinction session. In fact, their responding on the last three days of extinction were similar to 

the ALP values during the last three self-administration sessions. All analyses were 

performed using the GraphPad software package (Prism, version 4; GraphPad, San Diego, 

California, USA). Alpha was set at 0.05.

3. Results

3.1 Western Blot Assays
Western blot assays revealed that the post-synaptic level of GluN2B in the nucleus 

accumbens, 24h after ketamine, was significantly increased (+20.22 % ± 6.49, t(8)=3.118, p < 

0.05), while the post-synaptic levels of GluA1 and the extra-synaptic level of mGluR5 were 

significantly decreased (respectively -15.43 % ± 5.31, t(8)=2.905; -21.80 % ± 8.30, t(8)=2.627; 

p < 0.05) compared to vehicle (Fig. 1a). In the hippocampus, GluN2B, GluA1 and mGluR5 

levels were significantly decreased compared to vehicle (respectively -12.05 % ± 5.19, 

t(8)=2.320; -21.54 % ± 8.51, t(8)=2.532; -26.77 % ± 8.30, t(8)=3.227; p < 0.05) (Fig. 1b). In the 

amygdala, the level of GluN2B and mGluR5 were significantly increased (respectively +13.07 

% ± 4.15, t(8)=3.149, p < 0.05; +45.53 % ± 13.32, t(8)=3.417, p < 0.01), while GluA1 level did 

not show any significant difference compared to vehicle (+11.64 % ± 10.39, t(8)=1.119, p = 

0.30) (Fig. 1c). The whole blot image is reported in the Supplementary material, section 1.

3.2 Renewal experiment
The protocol design of the renewal experiment is reported in Figure 2a. Prior to 

pharmacological treatment, experimental groups did not show statistical differences in lever 

responding. The ANOVA of ALPs during the last three S/A sessions, the first extinction 

session and the last three extinction sessions showed a significant main effect of Session 

[F(2,40) = 66.76; p < 0.0001] but no effects of Treatment [F(1,20) = 0.003; p = 0.96] nor of 

interaction Session x Treatment [F(2,40) = 0.38; p = 0.68]. The Sidak’s tests between 
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treatments (prospective vehicle vs. ketamine) showed no significant differences between the 

last three S/A sessions (91.47 ± 8.38 and 81.81 ± 7.21, p = 0.92), the first extinction session 

(144.50 ± 14.78 and 151.00 ± 19.15, p = 0.97) and last three extinction sessions (27.33 ± 

2.60 and 32.29 ± 4.39, p = 0.99). The Sidak’s tests of ALPs between sessions and the two-

way ANOVA with post-hoc test of ILPs is reported in the Supplementary material, section 2 .

The treatment with ketamine impaired the responding on the active lever during renewal test 

compared to vehicle. The ANOVA of ALPs during the last three extinction sessions and the 

renewal test showed a significant main effect of Session [F(1,20) = 10.81; p < 0.01] and of 

interaction Session x Treatment [F(1,20) = 6.19; p < 0.05], but not of Treatment [F(1,20) = 

1.16; p = 0.29]. The Sidak’s tests between treatments showed a significant decrease of ALPs 

at the renewal test for ketamine compared to vehicle (54.20 ± 6.16 and 36.00 ± 5.20; p < 

0.05), but no differences between the last three extinction sessions (27.33 ± 2.60 and 32.29 

± 4.39; p = 0.77). The Sidak’s tests between sessions showed a significant difference 

between the last three extinction sessions and the renewal test for vehicle (27.33 ± 2.60 and 

54.20 ± 6.16; p < 0.001) but not for ketamine group (32.29 ± 4.39 and 36.00 ± 5.20; p = 0.87) 

(Fig. 2b). The two-way ANOVA with post-hoc test of ILPs is reported in the Supplementary 

material, section 3. 

3.3 Contextual memory reconsolidation experiment
The protocol design of contextual memory reconsolidation experiment is reported in Figure 

3a. Prior to pharmacological treatment, experimental groups did not show statistical 

differences in lever responding. The ANOVA of ALPs during the last three S/A sessions, the 

first extinction session and the last three sessions of extinction-1 showed a significant main 

effect of Session [F(2,28) = 31.66; p < 0.0001] but no effect of Treatment F(1,14) = 1.73; p = 

0.21] nor of interaction Session x Treatment [F(2,28) = 1.70; p = 0.20].

The Sidak’s tests between treatments (prospective vehicle vs. ketamine) showed no 

significant differences between the last three S/A sessions (73.46 ± 9.54 and 91.13 ± 10.19, 

p = 0.93), the first extinction session (141.60 ± 29.24 and 214.80 ± 47.15, p = 0.10) and the 

last three sessions of extinction-1 (19.21 ± 4.85 and 23.04 ± 3.71, p > 0.99). The Sidak’s 

tests of ALPs between sessions and the two-way ANOVA with post-hoc test of ILPs is 

reported in the Supplementary material, section 4.

Re-exposure to conditioning context during the retrieval session significantly increased 

responding on the active lever compared to extinction-1 and extinction-2 for both 

experimental groups, with no differences between ketamine and vehicle group. The ANOVA 

of ALPs during the last three sessions of extinction-1, the retrieval session and the last three 

sessions of extinction-2 showed a significant main effect of Session [F(2,28) = 26.57; p < 
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0.0001] but no effects of Treatment F(1,14) = 0.34; p = 0.57] nor of interaction Session x 

Treatment [F(2,28) = 0.03; p = 0.98].

The Sidak’s tests between treatments showed no significant differences for last three 

sessions of extinction-1 (19.21 ± 4.85 and 23.04 ± 3.71, p = 0.95), for the retrieval sessions 

(40.88 ± 9.27 and 45.38 ± 5.85, p = 0.92) and for the last three sessions of extinction-2 

(11.96 ± 3.76 and 14.58 ± 4.46, p = 0.98). The Sidak’s tests of ALPs between sessions and 

the two-way ANOVA with post-hoc test of ILPs is reported in the Supplementary material, 

section 5.

The treatment with ketamine before retrieval session did not impair the responding on the 

active lever during test, compared to vehicle. The ANOVA of ALPs during the last three 

sessions of extinction-2 and the test showed a significant main effect of Session [F(1,14) = 

30.90; p < 0.0001] but no effects of Treatment F(1,14) = 2.04; p = 0.18] nor of interaction 

Session x Treatment [F(1,14) = 2.18; p = 0.16].

The Sidak’s tests between treatments showed no significant differences for the last three 

sessions of extinction-2 (11.96 ± 3.76 and 14.58 ± 4.46, p = 0.89) and for the test (25.25 ± 

4.09 and 37.50 ± 4.98, p = 0.11). The Sidak’s tests between sessions showed a significant 

difference between the last three sessions of extinction-2 and the test both for vehicle (11.96 

± 3.76 and 25.25 ± 4.09, p < 0.05) and for ketamine group (14.58 ± 4.46 and 37.50 ± 4.98, p 

< 0.001) (Fig. 3b). The two-way ANOVA with post-hoc test of ILPs is reported in the 

Supplementary material, section 6. 
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Fig. 1

Figure 1. Effect of vehicle or ketamine on GluN2B-containing NMDARs and GluA1-

containing AMPARs in the post-synaptic density and on mGluR5 in the extra-synaptic 

fraction of nucleus accumbens, hippocampus and amygdala. (Left) representative images of 

western blot bands with GluN2B (180 kDa, left) GluA1 (108 kDa, left) and mGluR5 (130 kDa, 

right) compared to β-actin (43 kDa) as control for nucleus accumbens (a), hippocampus (b) 

and amygdala (c). (Right) quantification of GluN2B-NMDARs and GluA1-AMPARs level in 

the post-synaptic density and of mGluR5 in the extra-synaptic fraction 24h after vehicle or 

ketamine treatment in nucleus accumbens (NAc, a), hippocampus (Hipp, b) and amygdala 

(Amy, c). Data are shown as the mean + SEM and are expressed as percentage of the 

vehicle. N=5 rats/group. *p < 0.05, **p < 0.01 vs vehicle; unpaired two-tailed Student’s t-test.
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Fig. 2

Figure 2. (a) Schematic diagram of the experimental protocol and groups. Boxes represent 

the different procedures used at the different phases of the study. Arrow represents time 

progression between consecutive phases. Cx A = sucrose self-administration (S/A) training 

(conditioning) context, Cx B = extinction context. (b) Rate of responding on active (solid 

circle/triangle) or inactive (open circle/triangle) lever per sessions during the different phases 

of the renewal protocol for rats treated with vehicle (Veh; circle) or ketamine (Ket; triangle). 

Rate of responding is indicated for the last 3 sessions of S/A (LAST 3 S/A), the first extinction 

session (1st EXT), the last 3 extinction sessions (LAST 3 EXT) and sucrose-seeking 

behaviour test (RENEWAL). “-24h KET” indicates the day of treatment, without behavioural 

session. On top, Cx A indicates the conditioning context, Cx B the extinction context and HC 

the home cage. Data are expressed as the mean ± SEM. N = 15 rats/vehicle group, N = 7 

rats/ketamine group. *p < 0.001 vehicle RENEWAL vs LAST 3 EXT, $p < 0.05 ketamine vs 



Piva et al., The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats

14

vehicle RENEWAL, repeated measures two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test.

Fig. 3

Figure 3. (a) Schematic diagram of the experimental protocol and groups. Boxes represent 

the different procedures used at the different phases of the study. Arrow represents time 

progression between consecutive phases. Cx A = sucrose S/A training (conditioning) 

context, Cx B = extinction context. (b) Rate of responding on active (solid circle/triangle) or 

inactive (open circle/triangle) lever per sessions during the different phases of the memory 

reconsolidation protocol for rats treated with vehicle (Veh; circle) or ketamine (Ket; triangle). 
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Rate of responding is indicated for the last 3 sessions of S/A (LAST 3 S/A), the first extinction 

training session (1st EXT), the last 3 extinction sessions of the first extinction phase (LAST 3 

EXT1), the retrieval session (RET), the last 3 extinction sessions of the second extinction 

phase (LAST 3 EXT2) and the sucrose-seeking behaviour test (TEST). 

“-24h KET” indicates the day of treatment, without behavioural session. On top, Cx A 

indicates the conditioning context, Cx B the extinction context and HC the home cage. Data 

are expressed as the mean ± SEM. N = 8 rats/vehicle group, N = 8 rats/ketamine group.

4. Discussion 

Ketamine given 24 hours prior to renewal of sucrose-seeking significantly inhibited 

conditioned responding on the previously sucrose-associated lever compared to vehicle. On 

the other hand, no significant effect was observed when given 24 hours prior to reactivation 

of contextual memory. Therefore, ketamine given to rats under a “metaplasticity-inducing 

dose regimen” was able to affect renewal but not sucrose memory reconsolidation. The 

behavioural effects of ketamine were observed at doses able to induce expression changes 

of glutamate receptors relevant for drug-seeking and appetitive memory reconsolidation in 

amygdala, hippocampus and nucleus accumbens. We therefore suggest that these 

molecular changes might be causally related to renewal inhibition and, on the other hand, to 

reconsolidation resistance to disruption.

The behavioural experiments described in this paper were based on protocol designs 

reported in literature for assessing the effects of context on drug-seeking and drug-memory 

reconsolidation: the renewal protocol is widely reported in literature (for a review see [3]), 

whereas the contextual memory reconsolidation protocol has been extensively validated by 

the Fuchs’s group [44,46], with some analogies to instrumental learning protocols developed 

by our and other groups [16-18,29]. The protocol included an extinction phase where lever 

pressing was extinguished in a context (CxB) different from the conditioning one (CxA). The 

re-exposure to CxA induced an increased responding (renewal) that is assumed to be solely 

due to the conditioning context CxA, since extinction of instrumental responding took place in 

a different context (CxB). Thus, we exclude the occurrence of an a-priori partial extinction of 

behaviour in CxA. The reduced responding in the ketamine group during the renewal 

session, could be due to a faster learning of extinction rather than an inhibition of the 

renewal. The analysis of responding pattern during session at 15min time bins did not show  

any difference over the renewal session time period between ketamine and vehicle groups. 

We therefore hypothesize that the ketamine effect was an impairment of renewal rather than 
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a potentiation of extinction – even though the latter explanation cannot be excluded. 

Similarly, we did not find significant differences between the two groups during the early time 

bin of the retrieval session in the reconsolidation experiments. Furthermore, we analysed the 

time-bin data from the retrieval and the test (reinstatement) session, but we did not find 

significant differences between the two groups.

Similar to MK-801 [29,30,32], ketamine induced metaplastic changes assessed on the day 

after its administration, such as facilitation of tetanus-induced LTP in ex-vivo hippocampal 

slices 24 hours after treatment [31]. Thus, we defined the ketamine dose regimen used in our 

studies as “metaplastic” in accordance to similar definition given for explaining ketamine 

effects assessed at time points longer than its half-life (intravenous ketamine half-life in rats 

is approximately 1 hour; [50]). Indeed, several reports on ketamine antidepressant effects 

defined the molecular and behavioural changes assessed 24 hours after treatment as 

“metaplasticity effects” [31,37]. In our study, ketamine induced significant expression 

changes of glutamate receptors in brain areas relevant for renewal and contextual memory 

reconsolidation. In fact, glutamate receptors GluN2B, GluA1 and mGluR5 have been 

reported to be involved in different forms of metaplasticity ([42,51,52]; for reviews see 

[19,43]). 

In hippocampus - an important brain area for processing of spatial context information, drug-

seeking [7,8,53] and memory deficits in ketamine users [54] - ketamine significantly 

decreased synaptic expression levels of GluN2B, GluA1, mGluR5 (Fig. 1, panel b). This 

general ‘hypo-glutamatergic’ effect might be the compensatory consequence of an increased 

glutamate release induced by high dose ketamine treatment given to rats 24 hours earlier 

[35]. Considering that increased GluN2B phosphorylation has been shown in drug-seeking 

[55-57], its reduction by ketamine in hippocampus may be associated with renewal inhibition. 

Caffino et al. [36] suggested that the decrease of AMPA receptors induced by ketamine in 

hippocampus may in turn reduce NMDA receptors activation. The concomitant effect of 

ketamine, and of its metabolite (2S,6S)-hydroxynorketamine acting as a GluA1 agonist 

[37,58,59], might have induced AMPA receptors endocytosis and decrease of GluA1 

receptors (event though in contrast to what described by Zanos et al. [37]). Interestingly, we 

showed that metabotropic mGluR5 receptor expression was decreased [36], as also reported 

by Esterlis et al. [60]. This receptor has been reported to play an important role in 

hippocampal plasticity [61], so that its down-regulation might explain the reduced effect of 

conditioning context re-exposure–induced renewal. It is paradoxical that ketamine effect 

would induce a mGluR5 reduction, which is actually a counter-plasticity expression change 

[19]. 
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In the nucleus accumbens, mGluR5 antagonism or deletion (removal) has also been shown 

to reduce relapse to drug-seeking behaviour [62]. Ketamine reduction of mGluR5 in nucleus 

accumbens could be a further mechanism underlying ketamine inhibitory effect on renewal. 

The decrease of mGluR5 in this brain area – which is associated with decrease of GluA1 – 

may be explained as an increased glutamatergic release induced by ketamine 24 hours 

earlier, lately resulting at renewal in a reduced glutamatergic control over accumbal 

activation. 

We hypothesize that the increased expression of GluN2B in nucleus accumbens and 

amygdala might be due to a compensatory increase of membrane translocation of these 

subunits as a consequence of ketamine GluN2B antagonism. It is however unclear which 

role GluN2B changes might have played in sucrose renewal: although in Pavlovian drug-

seeking GluN2B receptor expression was reduced [63,64], it is however not known its role in 

instrumental contextual learning [65]. It might be the case that increased expression of 

amygdalar GluN2B and mGluR5 are not relevant for the specific contextual renewal effect 

observed in our rats well-trained to sucrose S/A for which, on the other hand, hippocampal 

activity played a major role. 

In our study we were not able to observe any significant effect of ketamine on the 

reconsolidation of contextual sucrose memory. As reviewed in the Introduction section, the 

retrieval of a consolidated memory may induce destabilization and labilization of the memory 

trace, followed by a process of restabilization/reconsolidation involving specific brain 

circuitries, also demonstrated for instrumental learning [13,14,16-18].

Metaplasticity changes in hippocampus have been shown to shift LTD to LTP, which in turn 

promote memory reconsolidation [66]. Ketamine induced an overall decrease of GluN2B, 

GluA1 and mGluR5 in hippocampus, perhaps suggesting a general stabilization of the 

appetitive memory and leading to a condition of contextual memory resistant to retrieval 

[67,68] as also shown in other paradigms [69,70]. Noteworthy, Wells et al. [65] showed a lack 

of involvement for hippocampal GluN2B in cocaine-induced memory reconsolidation. 

In amygdala, ketamine induced expression changes of GluN2B similar to changes induced 

by MK-801 in our previous report [29]. GluN2B activation destabilizes memory, making the 

retrieved memory vulnerable to manipulation [39,71,72]. In Piva et al. [29], we have seen that 

this effect allowed for sucrose memory inhibition; here, otherwise, it appears that in 

amygdala it is not relevant at the behavioural level. Similarly, we cannot speculate how the 

increased level of mGluR5 in amygdala by ketamine is correlated to its lack of effects, 

considering the limited literature on Group I metabotropic glutamate receptors and memory 

reconsolidation [73,74].



Piva et al., The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats

18

In our previous report, the instrumental memory reconsolidation inhibition induced by MK-801 

was associated with a pattern of glutamatergic facilitation of memory destabilization in 

nucleus accumbens [29]. Here, 24 hours after ketamine, we observed a similar effect on 

GluN2B but opposite on GluA1 and mGluR5 expression. Considering that nucleus 

accumbens plays an important role for Pavlovian memories [63,64] but not for instrumental 

contextual memories, such ketamine–induced metaplasticity in nucleus accumbens could be 

irrelevant for our contextual memory reconsolidation (e.g., [75,76]).

The high “metaplastic dose regimen” herein used is an experimental tool that allowed us to 

understand how NMDARs blockade might induce late effects at the level of behavioural 

relapse – in this case induced by re-exposure to sucrose-conditioned context or reactivation 

of contextual sucrose memory. Ketamine effects described in the present study are different 

from those described in our previous report [29]. In that study, we used a different protocol of 

instrumental memory reconsolidation, where the conditioning context component effect was 

not controlled (see also [18]). The two NMDAR blockers should therefore be investigated and 

compared with similar protocols. 

In conclusion, our findings show that ketamine, given under a “metaplastic dose regimen”, 

inhibits sucrose-seeking renewal but not sucrose contextual memory reconsolidation. These 

metaplastic effects of ketamine suggest a possible involvement of glutamatergic receptors in 

the inhibition of sucrose renewal but not of contextual memory reconsolidation.  For renewal, 

the inhibition of instrumental responding could be explained as a consequence of 

hippocampal and accumbal decreased levels of GluA1 and mGluR5; for contextual memory 

reconsolidation, the lack of effect could be due to resistance of the memory trace to 

destabilization as a consequence of a general ‘hypoglutamatergia’ in hippocampus, in 

particular for GluN2B. The major limitation of our study is the lack of control conditions 

investigating the molecular ketamine effects in experimental subjects exposed to the entire 

behavioural protocol. Further studies are therefore needed to study the combined effects of 

the behavioural history (i.e., sucrose S/A and extinction) and the “metaplastic dose regimen” 

on glutamatergic receptors. 
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Abstract

Metaplastic effects of the NMDARs blocker ketamine at the neural and behavioural levels 

have been described as potential mechanisms underlying the beneficial effects in treatment-

resistant depression. However, ketamine effects on addictive behaviours are still unexplored. 

In the present study, we investigated the effects of ketamine given under a “metaplasticity-

inducing dose regimen” on sucrose-related renewal and contextual memory reconsolidation 

in rats.

After a molecular analysis of ketamine modulation of GluN2B, GluA1 and mGluR5 receptors 

levels in nucleus accumbens, hippocampus and amygdala, two behavioural models were 

used to investigate ketamine effects: i) context-induced renewal of sucrose-seeking, and ii) 

sucrose memory reconsolidation. Ketamine was administrated 24h before the renewal test or 

the retrieval.

At the molecular level, ketamine i) decreased GluN2B, GluA1 and mGluR5 receptors in 

hippocampus, ii) decreased GluA1 and mGluR5 but increased GluN2B in nucleus 

accumbens and iii) increased GluN2B and mGluR5 in amygdala. At the behavioural level, 

ketamine given prior to renewal significantly inhibited responding compared to vehicle, while 

no significant effects were observed on reconsolidation of contextual memory.

In conclusion, the molecular analysis of ketamine metaplastic effects in key brain areas 

suggest a possible involvement of glutamatergic receptors in the inhibition of sucrose 

renewal but not of contextual memory reconsolidation. The inhibition of renewal could be 

correlated to hippocampal and accumbal decreased levels of GluA1 and mGluR5, whereas, 

the lack of effect on contextual memory reconsolidation could be correlated to decreased 

GluN2B expression in hippocampus, landmark of destabilization-insensitive state.

Keywords
Renewal, memory reconsolidation; metaplasticity; ketamine 
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1. Introduction

Context may be an important determinant factor of relapse to natural and drug rewards [1] 

and for the definition of intervention strategies [2]. Preclinical research has extensively 

investigated the conditions under which drug-associated context affect drug seeking 

behaviour [3-5]. For instance, conditioned response is reinstated (renewal effect) when 

subjects are re-exposed to a conditioning context (A) after extinction of responding in a 

different context (B). These studies have also identified the brain areas and the molecular 

mechanisms involved in context effects on conditioned response for drugs of abuse and 

natural rewards [6-11].

Context is also important in the reconsolidation of appetitive memories. The reactivation of a 

consolidated memory through conditioned or unconditioned stimuli presentation during a 

retrieval session may induce the destabilization and labilization of the memory trace. In order 

to restabilize the original trace, a process of restabilization/reconsolidation is needed [12]. 

The memory reactivation and reconsolidation processes have been largely investigated and 

demonstrated for Pavlovian memories, and only recently they have been demonstrated also 

for instrumental learning [13-18]. 

Several studies have shown that drugs of abuse may induce permissive changes that 

subsequently affect synaptic plasticity events, through a mechanism that has been defined 

as ‘plasticity of synaptic plasticity’, also called metaplasticity [19,20]. Metaplasticity has been 

observed at different cellular and behavioural levels and can be induced by modification of 

synaptic plasticity or neural assembly and connectivity [21-23] or by the exposure to 

environmental enrichment, stress or drugs of abuse [22,24,25]. In drug addiction, 

metaplasticity has been characterized as a process that renders neural circuits more 

crystallized and less susceptible to remodelling [26]. On the other hand, little is known about 

metaplasticity as a phenomenon affecting relapse (e.g. acting against the effect of 

determinant factors of drug-seeking relapse), or by facilitating extinction. Although recent 

evidence indicates that metaplasticity may modulate extinction expression in conditioned fear 

experiments [27], no studies investigated whether metaplastic stimulations could affect the 

extinction of conditioned responses to appetitive reinforcers. Finnie and Nader [28] proposed 

that the molecular events able to affect memory reactivation and reconsolidation act as 

metaplastic mechanisms, changing “the types of behavioural experience” necessary to 

modulate memory. However, very limited reports are available on the role of metaplasticity 

on the reconsolidation of appetitive memories: for example, we showed that NMDA receptor 

antagonist MK-801–induced metaplasticity was able to inhibit the reconsolidation of 

instrumental memory for sucrose [29]. NMDA receptor antagonists such as MK-801 and 

ketamine have been shown to induce metaplasticity changes of long-term potentiation (LTP), 
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i.e. facilitating tetanus-induced LTP in ex-vivo hippocampal slices 24 hours after treatment  

([30,31]; for a review see [32]). Single ketamine dosing has been shown to induce a cascade 

of molecular events leading to enhanced synaptic activity in brain areas involved in mood, 

motivation and emotional memory (e.g., [33,34]). For instance, ketamine altered glutamate 

receptors expression and CaMKII autophosphorylation when given 24 hours earlier [35,36]. 

Nowadays ketamine and ketamine-like antidepressant effects are commonly defined in 

literature as metaplastic effects [31,37,38]. 

Based on these hypotheses, we aimed to explore whether ketamine was able to induce 

metaplastic changes affecting context-induced renewal or contextual memory reconsolidation 

in rats. After a molecular validation of the metaplastic effects of ketamine on different brain 

areas, we investigated the behavioural effects of ketamine on sucrose-seeking behaviour. 

For the molecular assay, rats were treated with i.v. ketamine 24 hours before assessment of 

relevant molecular markers such as the NMDA receptor subunit GluN2B [39,40], the AMPA 

receptor subunit GluA1 [41] and the metabotropic receptor mGluR5 [27,42,43], in 

hippocampus, nucleus accumbens and amygdala. The dose of ketamine used here was 

shown to facilitate LTP in ex-vivo hippocampal slices 24 hours after acute treatment [31]. For 

the behavioural assessment, ketamine was administered to rats 24 hours (-24h) before i) 

testing the sucrose-seeking behaviour in a renewal protocol or ii) contextual memory retrieval 

in a memory reconsolidation protocol. In the former, rats were initially trained to sucrose self-

administration (S/A) in a conditioning context, followed by instrumental extinction training in a 

different context; twenty-four hours after the last extinction session, rats were treated with i.v. 

ketamine and, 24 hours later, tested for sucrose-seeking behaviour in the conditioning 

context (renewal test). For the contextual memory reconsolidation experiment, after training, 

extinction and ketamine injection as in the renewal protocol, rats were briefly exposed to the 

conditioning context for instrumental memory retrieval [44] and, after a second extinction 

phase, tested for sucrose-seeking behaviour in the conditioning context (reconsolidation 

test).

2. Material and methods

2.1 Animals
Fifty male Sprague-Dawley rats (Charles River, Italy) were housed in pairs in temperature 

and humidity-controlled environment (19-23°C, 60 ± 20 %) on a 12-h light/dark cycle, with 

light ON at 7:30 pm. Rats were food restricted to maintain their body weight in the range of 

250 ± 10 g (daily checked) throughout the experiments, and food (two to three pellets, 10-15 

g/day) was made available after each experimental session. Water was available ad libitum, 
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except during experimental sessions. Animals were trained or tested once daily during the 

dark phase of the light/dark cycle, and all the experimental procedure were carried out in 

accordance with the U.K. Animals (Scientific Procedures) Act of 1986 and associated 

guidelines, and with EU Directive 2010/63/EU for animal experiments. All efforts were made 

to minimize animal suffering and to keep the lowest number of animals used.

2.2 Apparatus
Rats were trained and tested in operant chambers encased in sound-insulated cubicles 

equipped with ventilation fans (Med Associates Inc., Georgia Regional Industrial Park, 

Fairfax, VT, USA). Each chamber was equipped with two levers, an active (right) and an 

inactive (left) lever symmetrically oriented laterally to the food magazine, on the frontal panel. 

Levers were located 2 cm and food magazine 1 cm above the grid floor. A 2-W white house 

light was located 26 cm above the grid floor on the back panel of the operant chambers and 

provided ambient illumination during the entire session duration of all the experimental 

phases, except for time-out (TO) periods during training and extinction phases. During 

training, right lever presses produced the delivery of a 45-mg sucrose food pellet (Bilaney 

Consultants Ltd, UK) with a fixed-ratio 1 (FR1) schedule of reinforcement. During extinction, 

right lever presses did not correspond to pellet delivery. Left lever presses did not have 

programmed consequences during the entire experimental protocol. Lever presses and pellet 

deliveries were recorded, as well schedule parameters and data acquisition were controlled, 

by Med-PC IV software (Med Associates Inc., Georgia Regional Industrial Park, Fairfax, VT, 

USA).

2.3 Pharmacological effects and Western Blot Assays
To elucidate the metaplastic effects of ketamine on glutamate receptors level, two groups of 

rats (5 each group) were treated with ketamine 10 mg/kg/mL i.v. or vehicle 1 mL/kg i.v. and 

24h later were anesthetized with 350 mg/kg/2 mL i.p. chloral hydrate (Fluka, Italy) before 

sacrifice. Then, brains were removed and 1-mm fresh tissue slices containing nuclei 

accumbens (+1.70 mm), hippocampi and amygdalae (bregma -3.00 mm) were dissected by 

using a 1-mm Coronal Brain Matrix (SouthPointe Surgical Supply, Florida, USA).

After dissection of brain areas, proteins of post-synaptic density and extra-synaptic fraction 

were analyzed as previously described [45] with minor modifications. Briefly, nuclei 

accumbens, hippocampi and amygdalae were homogenized in a teflon-glass potter in cold 

0.32 M sucrose buffer pH 7.4 containing 1 mM HEPES, 1 mM MgCl2, 1 mM NaHCO3 and 0.1 

mM PMSF, in presence of commercial cocktails of protease (Roche, Monza, Italy) and 

phosphatase (Sigma-Aldrich, Milan, Italy). Each homogenate was centrifuged at 800 g for 5 

min; the obtained supernatant was then centrifuged at 13000 g for 15 min, obtaining a pellet. 
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This pellet was re-suspended in a buffer containing 75 mM KCl and 1% Triton X-100 and 

centrifuged at 100000 g for 1 h. The resulting supernatant, referred as Triton X-100 soluble 

fraction (TSF, extra-synaptic fraction), was stored at -20°C; the pellet, referred as PSD or 

Triton X-100 insoluble fraction (TIF, post-synaptic density), was homogenized in a glass–

glass potter in 20 mM HEPES, protease and phosphatase inhibitors and stored at -20°C in 

presence of glycerol 30%. Total proteins have been measured in the TIF and TSF fractions 

according to the Bradford Protein Assay procedure (Bio-Rad, Milan, Italy), using bovine 

serum albumin as calibration standard.

Equal amounts of proteins of the TIF fraction (8 µg) and of TSF fraction (15 µg) were run on 

a sodium dodecyl sulfate - 8% polyacrylamide gel under reducing conditions and then 

electrophoretically transferred onto nitrocellulose membranes (GE Healthcare, Milan, Italy). 

Blots were blocked 1 h at room temperature with 10% non-fat dry milk in TBS + 0,1% Tween-

20 buffer and then incubated with antibodies against the proteins of interest. The conditions 

of the primary antibodies were the following: anti-GluN2B (1:1000, Cell signalling technology, 

USA), anti-GluA1 (1:2000, Cell signalling technology, USA), anti-mGluR5 (1:1000, Millipore, 

Italy) and anti-β-Actin (1:10000, Sigma-Aldrich, Italy). Results were standardized using β-

actin as the control protein, which was detected by evaluating the band density at 43 kDa. 

Immunocomplexes were visualized by chemiluminescence using the Chemidoc MP Imaging 

System (Bio-Rad Laboratories).

2.4 General Procedure
Schematic diagrams of the behavioural protocols are shown in Figures 2a and 3a. Protocols 

were designed according to the procedure used in Fuchs’s lab to study contextual memory 

reconsolidation [46] and context-induced renewal [8]. Briefly, for the renewal protocol, 

following training to sucrose pellets S/A in the conditioning context and instrumental memory 

extinction in the extinction context, rats were injected with ketamine i.v. and, 24h later, 

sucrose-seeking behaviour was tested in the training context. For memory reconsolidation 

protocol, after training to sucrose pellets S/A, extinction and ketamine injection phases as in 

the renewal protocol, rats were exposed to a retrieval (Ret) session in the conditioning 

context and, after a second extinction phase in the extinction context, tested for sucrose-

seeking behaviour in the conditioning context. Contextual bias was controlled 

counterbalancing contexts A and B for the experiments, with half of the rats of each 

experimental group conditioned in context A and the other half conditioned in context B. 

Context B was a modified version of the operant chamber, with 5-cm blank striped sheets on 

all the walls and a 1cm-side grid on the floor [47].
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2.5 Lever press shaping and training to sucrose self-administration
Forty rats were initially trained to associate right lever presses with sucrose pellets as 

reinforcement in the conditioning context. The schedule was FR1: 45-mg sucrose food pellet, 

no TO, session duration up to 100 reinforcements or 120 min. Once the criterion of 100 

reinforcements/session was reached, rats started training in the conditioning context. During 

training, right lever presses corresponded to the delivery of sucrose reinforcement with the 

schedule: FR1:45-mg sucrose pellet, 60-s TO, session duration up to 12 reinforcements or 

60 min. During TO period, right lever presses had no programmed consequences. Light was 

on throughout shaping and training sessions, except for TO periods during which it switched 

off. Left lever presses were never associated with programmed consequences. Training 

lasted for 10 continuous days, and all lever presses during shaping and training were 

recorded.

2.6 Renewal experiment
Twenty-four hours after the last training session, 24 rats started extinction training, receiving 

1h daily session of instrumental extinction in the extinction context. Extinction session 

schedule was maintained identical to training schedule, except for a fixed duration (1h) and 

for the absence of any delivery of sucrose pellets. For the renewal protocol, extinction 

training lasted until rats performed, for three consecutive sessions, less than 50% of lever 

presses on sucrose-paired lever performed during the first extinction session [47,48]. 

Noteworthy, increased responding to the active lever on the first day of extinction has been 

often reported in drug and food S/A studies (e.g., [49]). Generally, extinction criterion was 

reached between the fourth and the seventh day of extinction training. Twenty-four hours 

after the last extinction session, 17 rats were treated with 1 mL/kg i.v. vehicle and 7 with 10 

mg/kg/mL i.v. ketamine [31]. Following injection, rats remained in the home cage for 24 hours 

before renewal test. Test session lasted for 60 minutes, with house light on throughout the 

session and no TO. Both levers were presented but not associated with programmed 

consequences. All lever presses were recorded during extinction training and sucrose-

seeking test.

2.7 Contextual memory reconsolidation experiment
Twenty-four hours after the last training session, 16 rats started extinction training, receiving 

1h daily session of instrumental extinction in the extinction context. Extinction session 

schedule was maintained identical to training schedule, except for a fixed duration (1h) and 

for the absence of any delivery of sucrose pellets. For the memory reconsolidation protocol, 

extinction training lasted for seven consecutive days, regardless of the number of active or 

inactive lever presses performed during the sessions. This criterion was applied following the 
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protocol described in Arguello et al. [44] to obtain a similar strengthening of the extinction 

memory in all rats before ketamine treatment and retrieval. In fact, memory age, which 

determine memory strength, has been listed as one of the boundary conditions that can 

regulate retrieval ability to reactivate and destabilize memory trace [16]. Twenty-four hours 

after the last extinction session, 8 rats were treated with 1 mL/kg i.v. vehicle and 8 rats with 

10 mg/kg/mL i.v. ketamine [31]. Following injection, rats remained in the home cage until, 

24h later, rats were exposed to a retrieval session. Retrieval session was performed in the 

conditioning context and lasted for 15 minutes, without any TO period. During retrieval, both 

levers were presented, but not associated with programmed consequences. Twenty-four 

hours after retrieval, a second extinction training phase in the extinction context was 

performed to re-extinguish instrumental response before the final test. Here, extinction 

training lasted until rats performed, for three consecutive sessions, less than 50% of lever 

presses on sucrose-paired lever performed during the first extinction session of the first 

extinction training. The day after the last extinction session, sucrose-seeking behaviour was 

tested in the conditioning context. Test session lasted for 60 minutes, with house light on 

throughout the session and no TO. Both levers were presented but not associated with 

programmed consequences. All lever presses were recorded during the extinction training 

phases, retrieval and the final sucrose-seeking test.

2.8 Data and Statistical Analysis
For the western blot assays, data were analysed by an unpaired two-tailed Student’s t-test.

For the renewal experiment, the number of active (ALPs) and inactive (ILPs) lever presses 

were separately analysed for possible pre-existing group differences with a repeated 

measures (RM) two-way analyses of variance (ANOVAs) followed by Sidak’s multiple 

comparisons post-hoc test with Session (mean of the last three S/A sessions, first extinction 

session, mean of the last three extinction sessions) as the within-subject factor and 

Treatment (vehicle, ketamine) as the between-subject factor. The number of ALPs and ILPs 

during the renewal test and previous last three extinction sessions were analysed with a RM 

two-way ANOVA followed by Sidak’s multiple comparisons post-hoc test with factors Session 

(mean of the last three extinction sessions, renewal) and Treatment (vehicle, ketamine) to 

assess the effect of -24h ketamine. 

For the contextual memory reconsolidation experiment, the ALPs and ILPs were separately 

analysed for possible pre-existing group differences with a RM two-way ANOVA followed by 

Sidak’s multiple comparisons post-hoc test with factors Session (mean of the last three S/A 

sessions, first extinction session, mean of the last three sessions of extinction-1) and 

Treatment (vehicle, ketamine). The number of ALPs and ILPs were separately analysed with 

a RM one-way ANOVA followed by Sidak’s multiple comparisons post-hoc test with factors 
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Session (mean of the last three sessions of extinction-1, retrieval, mean of the last three 

sessions of extinction-2) and Treatment (vehicle, ketamine) to assess the effects of 

conditioning context to induce retrieval of contextual memory. The number of ALPs and ILPs 

were separately analysed with a RM one-way ANOVA followed by Sidak’s multiple 

comparisons post-hoc test with factors Session (mean of the last three sessions of 

extinction-2, test) and Treatment (vehicle, ketamine) to assess the effect of -24h ketamine on 

lever pressing. Two rats of the vehicle group in the renewal experiment were excluded from 

the analysis because they did not meet the actual criterion of extinction of lever pressing for 

sucrose, in spite of showing a number of ALP lower than 50% of responding on the first 

extinction session. In fact, their responding on the last three days of extinction were similar to 

the ALP values during the last three self-administration sessions. All analyses were 

performed using the GraphPad software package (Prism, version 4; GraphPad, San Diego, 

California, USA). Alpha was set at 0.05.

3. Results

3.1 Western Blot Assays
Western blot assays revealed that the post-synaptic level of GluN2B in the nucleus 

accumbens, 24h after ketamine, was significantly increased (+20.22 % ± 6.49, t(8)=3.118, p < 

0.05), while the post-synaptic levels of GluA1 and the extra-synaptic level of mGluR5 were 

significantly decreased (respectively -15.43 % ± 5.31, t(8)=2.905; -21.80 % ± 8.30, t(8)=2.627; 

p < 0.05) compared to vehicle (Fig. 1a). In the hippocampus, GluN2B, GluA1 and mGluR5 

levels were significantly decreased compared to vehicle (respectively -12.05 % ± 5.19, 

t(8)=2.320; -21.54 % ± 8.51, t(8)=2.532; -26.77 % ± 8.30, t(8)=3.227; p < 0.05) (Fig. 1b). In the 

amygdala, the level of GluN2B and mGluR5 were significantly increased (respectively +13.07 

% ± 4.15, t(8)=3.149, p < 0.05; +45.53 % ± 13.32, t(8)=3.417, p < 0.01), while GluA1 level did 

not show any significant difference compared to vehicle (+11.64 % ± 10.39, t(8)=1.119, p = 

0.30) (Fig. 1c). The whole blot image is reported in the Supplementary material, section 1.

3.2 Renewal experiment
The protocol design of the renewal experiment is reported in Figure 2a. Prior to 

pharmacological treatment, experimental groups did not show statistical differences in lever 

responding. The ANOVA of ALPs during the last three S/A sessions, the first extinction 

session and the last three extinction sessions showed a significant main effect of Session 

[F(2,40) = 66.76; p < 0.0001] but no effects of Treatment [F(1,20) = 0.003; p = 0.96] nor of 

interaction Session x Treatment [F(2,40) = 0.38; p = 0.68]. The Sidak’s tests between 
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treatments (prospective vehicle vs. ketamine) showed no significant differences between the 

last three S/A sessions (91.47 ± 8.38 and 81.81 ± 7.21, p = 0.92), the first extinction session 

(144.50 ± 14.78 and 151.00 ± 19.15, p = 0.97) and last three extinction sessions (27.33 ± 

2.60 and 32.29 ± 4.39, p = 0.99). The Sidak’s tests of ALPs between sessions and the two-

way ANOVA with post-hoc test of ILPs is reported in the Supplementary material, section 2 .

The treatment with ketamine impaired the responding on the active lever during renewal test 

compared to vehicle. The ANOVA of ALPs during the last three extinction sessions and the 

renewal test showed a significant main effect of Session [F(1,20) = 10.81; p < 0.01] and of 

interaction Session x Treatment [F(1,20) = 6.19; p < 0.05], but not of Treatment [F(1,20) = 

1.16; p = 0.29]. The Sidak’s tests between treatments showed a significant decrease of ALPs 

at the renewal test for ketamine compared to vehicle (54.20 ± 6.16 and 36.00 ± 5.20; p < 

0.05), but no differences between the last three extinction sessions (27.33 ± 2.60 and 32.29 

± 4.39; p = 0.77). The Sidak’s tests between sessions showed a significant difference 

between the last three extinction sessions and the renewal test for vehicle (27.33 ± 2.60 and 

54.20 ± 6.16; p < 0.001) but not for ketamine group (32.29 ± 4.39 and 36.00 ± 5.20; p = 0.87) 

(Fig. 2b). The two-way ANOVA with post-hoc test of ILPs is reported in the Supplementary 

material, section 3. 

3.3 Contextual memory reconsolidation experiment
The protocol design of contextual memory reconsolidation experiment is reported in Figure 

3a. Prior to pharmacological treatment, experimental groups did not show statistical 

differences in lever responding. The ANOVA of ALPs during the last three S/A sessions, the 

first extinction session and the last three sessions of extinction-1 showed a significant main 

effect of Session [F(2,28) = 31.66; p < 0.0001] but no effect of Treatment F(1,14) = 1.73; p = 

0.21] nor of interaction Session x Treatment [F(2,28) = 1.70; p = 0.20].

The Sidak’s tests between treatments (prospective vehicle vs. ketamine) showed no 

significant differences between the last three S/A sessions (73.46 ± 9.54 and 91.13 ± 10.19, 

p = 0.93), the first extinction session (141.60 ± 29.24 and 214.80 ± 47.15, p = 0.10) and the 

last three sessions of extinction-1 (19.21 ± 4.85 and 23.04 ± 3.71, p > 0.99). The Sidak’s 

tests of ALPs between sessions and the two-way ANOVA with post-hoc test of ILPs is 

reported in the Supplementary material, section 4.

Re-exposure to conditioning context during the retrieval session significantly increased 

responding on the active lever compared to extinction-1 and extinction-2 for both 

experimental groups, with no differences between ketamine and vehicle group. The ANOVA 

of ALPs during the last three sessions of extinction-1, the retrieval session and the last three 

sessions of extinction-2 showed a significant main effect of Session [F(2,28) = 26.57; p < 
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0.0001] but no effects of Treatment F(1,14) = 0.34; p = 0.57] nor of interaction Session x 

Treatment [F(2,28) = 0.03; p = 0.98].

The Sidak’s tests between treatments showed no significant differences for last three 

sessions of extinction-1 (19.21 ± 4.85 and 23.04 ± 3.71, p = 0.95), for the retrieval sessions 

(40.88 ± 9.27 and 45.38 ± 5.85, p = 0.92) and for the last three sessions of extinction-2 

(11.96 ± 3.76 and 14.58 ± 4.46, p = 0.98). The Sidak’s tests of ALPs between sessions and 

the two-way ANOVA with post-hoc test of ILPs is reported in the Supplementary material, 

section 5.

The treatment with ketamine before retrieval session did not impair the responding on the 

active lever during test, compared to vehicle. The ANOVA of ALPs during the last three 

sessions of extinction-2 and the test showed a significant main effect of Session [F(1,14) = 

30.90; p < 0.0001] but no effects of Treatment F(1,14) = 2.04; p = 0.18] nor of interaction 

Session x Treatment [F(1,14) = 2.18; p = 0.16].

The Sidak’s tests between treatments showed no significant differences for the last three 

sessions of extinction-2 (11.96 ± 3.76 and 14.58 ± 4.46, p = 0.89) and for the test (25.25 ± 

4.09 and 37.50 ± 4.98, p = 0.11). The Sidak’s tests between sessions showed a significant 

difference between the last three sessions of extinction-2 and the test both for vehicle (11.96 

± 3.76 and 25.25 ± 4.09, p < 0.05) and for ketamine group (14.58 ± 4.46 and 37.50 ± 4.98, p 

< 0.001) (Fig. 3b). The two-way ANOVA with post-hoc test of ILPs is reported in the 

Supplementary material, section 6. 
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Fig. 1

Figure 1. Effect of vehicle or ketamine on GluN2B-containing NMDARs and GluA1-

containing AMPARs in the post-synaptic density and on mGluR5 in the extra-synaptic 

fraction of nucleus accumbens, hippocampus and amygdala. (Left) representative images of 

western blot bands with GluN2B (180 kDa, left) GluA1 (108 kDa, left) and mGluR5 (130 kDa, 

right) compared to β-actin (43 kDa) as control for nucleus accumbens (a), hippocampus (b) 

and amygdala (c). (Right) quantification of GluN2B-NMDARs and GluA1-AMPARs level in 

the post-synaptic density and of mGluR5 in the extra-synaptic fraction 24h after vehicle or 

ketamine treatment in nucleus accumbens (NAc, a), hippocampus (Hipp, b) and amygdala 

(Amy, c). Data are shown as the mean + SEM and are expressed as percentage of the 

vehicle. N=5 rats/group. *p < 0.05, **p < 0.01 vs vehicle; unpaired two-tailed Student’s t-test.
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Fig. 2

Figure 2. (a) Schematic diagram of the experimental protocol and groups. Boxes represent 

the different procedures used at the different phases of the study. Arrow represents time 

progression between consecutive phases. Cx A = sucrose self-administration (S/A) training 

(conditioning) context, Cx B = extinction context. (b) Rate of responding on active (solid 

circle/triangle) or inactive (open circle/triangle) lever per sessions during the different phases 

of the renewal protocol for rats treated with vehicle (Veh; circle) or ketamine (Ket; triangle). 

Rate of responding is indicated for the last 3 sessions of S/A (LAST 3 S/A), the first extinction 

session (1st EXT), the last 3 extinction sessions (LAST 3 EXT) and sucrose-seeking 

behaviour test (RENEWAL). “-24h KET” indicates the day of treatment, without behavioural 

session. On top, Cx A indicates the conditioning context, Cx B the extinction context and HC 

the home cage. Data are expressed as the mean ± SEM. N = 15 rats/vehicle group, N = 7 

rats/ketamine group. *p < 0.001 vehicle RENEWAL vs LAST 3 EXT, $p < 0.05 ketamine vs 
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vehicle RENEWAL, repeated measures two-way ANOVA with post-hoc Sidak’s multiple 

comparisons test.

Fig. 3

Figure 3. (a) Schematic diagram of the experimental protocol and groups. Boxes represent 

the different procedures used at the different phases of the study. Arrow represents time 

progression between consecutive phases. Cx A = sucrose S/A training (conditioning) 

context, Cx B = extinction context. (b) Rate of responding on active (solid circle/triangle) or 

inactive (open circle/triangle) lever per sessions during the different phases of the memory 

reconsolidation protocol for rats treated with vehicle (Veh; circle) or ketamine (Ket; triangle). 
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Rate of responding is indicated for the last 3 sessions of S/A (LAST 3 S/A), the first extinction 

training session (1st EXT), the last 3 extinction sessions of the first extinction phase (LAST 3 

EXT1), the retrieval session (RET), the last 3 extinction sessions of the second extinction 

phase (LAST 3 EXT2) and the sucrose-seeking behaviour test (TEST). 

“-24h KET” indicates the day of treatment, without behavioural session. On top, Cx A 

indicates the conditioning context, Cx B the extinction context and HC the home cage. Data 

are expressed as the mean ± SEM. N = 8 rats/vehicle group, N = 8 rats/ketamine group.

4. Discussion 

Ketamine given 24 hours prior to renewal of sucrose-seeking significantly inhibited 

conditioned responding on the previously sucrose-associated lever compared to vehicle. On 

the other hand, no significant effect was observed when given 24 hours prior to reactivation 

of contextual memory. Therefore, ketamine given to rats under a “metaplasticity-inducing 

dose regimen” was able to affect renewal but not sucrose memory reconsolidation. The 

behavioural effects of ketamine were observed at doses able to induce expression changes 

of glutamate receptors relevant for drug-seeking and appetitive memory reconsolidation in 

amygdala, hippocampus and nucleus accumbens. We therefore suggest that these 

molecular changes might be causally related to renewal inhibition and, on the other hand, to 

reconsolidation resistance to disruption.

The behavioural experiments described in this paper were based on protocol designs 

reported in literature for assessing the effects of context on drug-seeking and drug-memory 

reconsolidation: the renewal protocol is widely reported in literature (for a review see [3]), 

whereas the contextual memory reconsolidation protocol has been extensively validated by 

the Fuchs’s group [44,46], with some analogies to instrumental learning protocols developed 

by our and other groups [16-18,29]. The protocol included an extinction phase where lever 

pressing was extinguished in a context (CxB) different from the conditioning one (CxA). The 

re-exposure to CxA induced an increased responding (renewal) that is assumed to be solely 

due to the conditioning context CxA, since extinction of instrumental responding took place in 

a different context (CxB). Thus, we exclude the occurrence of an a-priori partial extinction of 

behaviour in CxA. The reduced responding in the ketamine group during the renewal 

session, could be due to a faster learning of extinction rather than an inhibition of the 

renewal. The analysis of responding pattern during session at 15min time bins did not show  

any difference over the renewal session time period between ketamine and vehicle groups. 

We therefore hypothesize that the ketamine effect was an impairment of renewal rather than 
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a potentiation of extinction – even though the latter explanation cannot be excluded. 

Similarly, we did not find significant differences between the two groups during the early time 

bin of the retrieval session in the reconsolidation experiments. Furthermore, we analysed the 

time-bin data from the retrieval and the test (reinstatement) session, but we did not find 

significant differences between the two groups.

Similar to MK-801 [29,30,32], ketamine induced metaplastic changes assessed on the day 

after its administration, such as facilitation of tetanus-induced LTP in ex-vivo hippocampal 

slices 24 hours after treatment [31]. Thus, we defined the ketamine dose regimen used in our 

studies as “metaplastic” in accordance to similar definition given for explaining ketamine 

effects assessed at time points longer than its half-life (intravenous ketamine half-life in rats 

is approximately 1 hour; [50]). Indeed, several reports on ketamine antidepressant effects 

defined the molecular and behavioural changes assessed 24 hours after treatment as 

“metaplasticity effects” [31,37]. In our study, ketamine induced significant expression 

changes of glutamate receptors in brain areas relevant for renewal and contextual memory 

reconsolidation. In fact, glutamate receptors GluN2B, GluA1 and mGluR5 have been 

reported to be involved in different forms of metaplasticity ([42,51,52]; for reviews see 

[19,43]). 

In hippocampus - an important brain area for processing of spatial context information, drug-

seeking [7,8,53] and memory deficits in ketamine users [54] - ketamine significantly 

decreased synaptic expression levels of GluN2B, GluA1, mGluR5 (Fig. 1, panel b). This 

general ‘hypo-glutamatergic’ effect might be the compensatory consequence of an increased 

glutamate release induced by high dose ketamine treatment given to rats 24 hours earlier 

[35]. Considering that increased GluN2B phosphorylation has been shown in drug-seeking 

[55-57], its reduction by ketamine in hippocampus may be associated with renewal inhibition. 

Caffino et al. [36] suggested that the decrease of AMPA receptors induced by ketamine in 

hippocampus may in turn reduce NMDA receptors activation. The concomitant effect of 

ketamine, and of its metabolite (2S,6S)-hydroxynorketamine acting as a GluA1 agonist 

[37,58,59], might have induced AMPA receptors endocytosis and decrease of GluA1 

receptors (event though in contrast to what described by Zanos et al. [37]). Interestingly, we 

showed that metabotropic mGluR5 receptor expression was decreased [36], as also reported 

by Esterlis et al. [60]. This receptor has been reported to play an important role in 

hippocampal plasticity [61], so that its down-regulation might explain the reduced effect of 

conditioning context re-exposure–induced renewal. It is paradoxical that ketamine effect 

would induce a mGluR5 reduction, which is actually a counter-plasticity expression change 

[19]. 
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In the nucleus accumbens, mGluR5 antagonism or deletion (removal) has also been shown 

to reduce relapse to drug-seeking behaviour [62]. Ketamine reduction of mGluR5 in nucleus 

accumbens could be a further mechanism underlying ketamine inhibitory effect on renewal. 

The decrease of mGluR5 in this brain area – which is associated with decrease of GluA1 – 

may be explained as an increased glutamatergic release induced by ketamine 24 hours 

earlier, lately resulting at renewal in a reduced glutamatergic control over accumbal 

activation. 

We hypothesize that the increased expression of GluN2B in nucleus accumbens and 

amygdala might be due to a compensatory increase of membrane translocation of these 

subunits as a consequence of ketamine GluN2B antagonism. It is however unclear which 

role GluN2B changes might have played in sucrose renewal: although in Pavlovian drug-

seeking GluN2B receptor expression was reduced [63,64], it is however not known its role in 

instrumental contextual learning [65]. It might be the case that increased expression of 

amygdalar GluN2B and mGluR5 are not relevant for the specific contextual renewal effect 

observed in our rats well-trained to sucrose S/A for which, on the other hand, hippocampal 

activity played a major role. 

In our study we were not able to observe any significant effect of ketamine on the 

reconsolidation of contextual sucrose memory. As reviewed in the Introduction section, the 

retrieval of a consolidated memory may induce destabilization and labilization of the memory 

trace, followed by a process of restabilization/reconsolidation involving specific brain 

circuitries, also demonstrated for instrumental learning [13,14,16-18].

Metaplasticity changes in hippocampus have been shown to shift LTD to LTP, which in turn 

promote memory reconsolidation [66]. Ketamine induced an overall decrease of GluN2B, 

GluA1 and mGluR5 in hippocampus, perhaps suggesting a general stabilization of the 

appetitive memory and leading to a condition of contextual memory resistant to retrieval 

[67,68] as also shown in other paradigms [69,70]. Noteworthy, Wells et al. [65] showed a lack 

of involvement for hippocampal GluN2B in cocaine-induced memory reconsolidation. 

In amygdala, ketamine induced expression changes of GluN2B similar to changes induced 

by MK-801 in our previous report [29]. GluN2B activation destabilizes memory, making the 

retrieved memory vulnerable to manipulation [39,71,72]. In Piva et al. [29], we have seen that 

this effect allowed for sucrose memory inhibition; here, otherwise, it appears that in 

amygdala it is not relevant at the behavioural level. Similarly, we cannot speculate how the 

increased level of mGluR5 in amygdala by ketamine is correlated to its lack of effects, 

considering the limited literature on Group I metabotropic glutamate receptors and memory 

reconsolidation [73,74].
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In our previous report, the instrumental memory reconsolidation inhibition induced by MK-801 

was associated with a pattern of glutamatergic facilitation of memory destabilization in 

nucleus accumbens [29]. Here, 24 hours after ketamine, we observed a similar effect on 

GluN2B but opposite on GluA1 and mGluR5 expression. Considering that nucleus 

accumbens plays an important role for Pavlovian memories [63,64] but not for instrumental 

contextual memories, such ketamine–induced metaplasticity in nucleus accumbens could be 

irrelevant for our contextual memory reconsolidation (e.g., [75,76]). 

The high “metaplastic dose regimen” herein used is an experimental tool that allowed us to 

understand how NMDARs blockade might induce late effects at the level of behavioural 

relapse – in this case induced by re-exposure to sucrose-conditioned context or reactivation 

of contextual sucrose memory. Ketamine effects described in the present study are different 

from those described in our previous report [29]. In that study, we used a different protocol of 

instrumental memory reconsolidation, where the conditioning context component effect was 

not controlled (see also [18]). The two NMDAR blockers should therefore be investigated and 

compared with similar protocols. 

In conclusion, our findings show that ketamine, given under a “metaplastic dose regimen”, 

inhibits sucrose-seeking renewal but not sucrose contextual memory reconsolidation. These 

metaplastic effects of ketamine suggest a possible involvement of glutamatergic receptors in 

the inhibition of sucrose renewal but not of contextual memory reconsolidation. For renewal, 

the inhibition of instrumental responding could be explained as a consequence of 

hippocampal and accumbal decreased levels of GluA1 and mGluR5; for contextual memory 

reconsolidation, the lack of effect could be due to resistance of the memory trace to 

destabilization as a consequence of a general ‘hypoglutamatergia’ in hippocampus, in 

particular for GluN2B. The major limitation of our study is the lack of control conditions 

investigating the molecular ketamine effects in experimental subjects exposed to the entire 

behavioural protocol. Further studies are therefore needed to study the combined effects of 

the behavioural history (i.e., sucrose S/A and extinction) and the “metaplastic dose regimen” 

on glutamatergic receptors. 
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Supplementary material 1

Uncropped immunoblot related to the western blot data presented in Fig. 1

Supplementary material 2

The Sidak’s tests of ALPs between sessions of prospective vehicle group showed significant 

differences between the last three S/A sessions and the first extinction session (91.47 ± 8.38 and 

144.50 ± 14.78, p < 0.001), the first extinction session and the last three extinction sessions 

(144.50 ± 14.78 and 27.33 ± 2.60, p < 0.0001) and the last 3 S/A and the last three extinction 

sessions (91.47 ± 8.38 and 27.33 ± 2.60, p < 0.0001). The Sidak’s tests of ALPs between sessions 

of prospective ketamine group showed significant differences between the last three S/A sessions 

and the first extinction session (81.81 ± 7.21 and 151.00 ± 19.15, p < 0.001), the first extinction 

session and the last three extinction sessions (151.00 ± 19.15 and 32.29 ± 4.39, p < 0.0001) and 

the last three S/A and the last three extinction sessions (81.81 ± 7.21 and 32.29 ± 4.39, p < 0.05). 

The ANOVA of ILPs during the last three S/A sessions, the first extinction session and the last 

three extinction sessions showed a significant main effect of Session [F(2,40) = 18.49; p < 0.0001] 

but no effects of Treatment [F(1,20) = 0.07; p = 0.80] nor of interaction Session x Treatment 



[F(2,40) = 0.03; p = 0.97]. The Sidak’s tests of ILPs between treatments (prospective vehicle vs. 

ketamine) showed no significant differences for the mean of the last three S/A sessions (10.87 ± 

1.95 and 9.48 ± 2.72, p = 0.99), for the first extinction session (25.80 ± 4.98 and 24.29 ± 6.98, p = 

0.99) and for the mean of the last three extinction sessions (6.56 ± 0.89 and 6.38 ± 1.24, p > 0.99). 

The Sidak’s tests of ILPs between sessions of prospective vehicle group showed significant 

differences between the last three S/A sessions and the first extinction session (10.87 ± 1.95 and 

25.80 ± 4.98, p < 0.001) and between the first extinction session and the last three extinction 

sessions (25.80 ± 4.98 and 6.56 ± 0.89, p < 0.0001) but not between the last three S/A sessions 

and the last three extinction sessions (10.87 ± 1.95 and 6.56 ± 0.89, p = 0.57). The Sidak’s tests of 

ILPs between sessions of prospective ketamine group showed significant differences between the 

last three S/A sessions and the first extinction session (9.48 ± 2.72 and 24.29, p < 0.05) and 

between the first extinction session and the last three extinction sessions (24.29 ± 6.98 and 6.38 ± 

1.24, p < 0.01) but not between the last three S/A sessions and the last three extinction sessions 

(9.48 ± 2.72 and 6.68 ± 1.24, p = 0.92).

Supplementary material 3

The ANOVA of ILPs during the last three extinction sessions and the renewal test showed no 

significant main effect of factor Session [F(1,20) = 0.01; p = 0.93], of factor Treatment [F(1,20) = 

1.12; p = 0.30] and of interaction Session x Treatment [F(1,20) = 2.39; p = 0.14]. The Sidak’s tests 

between treatments showed no significant differences neither for the renewal test (8.73 ± 2.05 and 

4.43 ± 1.43; p = 0.18) nor for last three extinction sessions (6.56 ± 0.89 and 6.38 ±1.24; p > 0.99). 

The Sidak’s tests between sessions showed no significant difference between the last three 

extinction sessions and the renewal test for vehicle (6.56 ± 0.89 and 8.73 ± 2.05; p = 0.30) nor for 

ketamine group (6.38 ±1.24 and 4.43 ± 1.43; p = 0.62).

Supplementary material 4

The Sidak’s tests of ALPs between sessions of prospective vehicle group showed no significant 

differences between the last three S/A sessions and the first extinction session (73.46 ± 9.54 and 

141.60 ± 29.24, p = 0.07) and the last three S/A sessions and the last three sessions of extinction-

1 (73.46 ± 9.54 and 19.21 ± 4.85, p = 0.18), and a significant difference between the first extinction 

session and the last three sessions of extinction-1 (141.60 ± 29.24 and 19.21 ± 4.85, p < 0.001). 

The Sidak’s tests of ALPs between sessions of prospective ketamine group showed significant 

differences between the mean of the last three S/A sessions and the first extinction session (91.13 



± 10.19 and 214.80 ± 47.15, p < 0.001) and the first extinction session and the last three sessions 

of extinction-1 (214.80 ± 47.15 and 23.04 ± 3.71, p < 0.0001), but no significant differences 

between the last three S/A sessions and the last three sessions of extinction-1 (91.13 ± 10.19 and 

23.04 ± 3.71, p = 0.07). 

The ANOVA of ILPs during the last three S/A sessions, the first extinction session and the last 

three sessions of extinction-1 showed a significant main effect of Session [F(2,28) = 13.62; p < 

0.0001], but no effects of Treatment [F(1,14) = 4.38; p = 0.06] nor of interaction Session x 

Treatment [F(2,28) = 2.76; p = 0.08]. The Sidak’s tests of ILPs between treatments showed no 

significant differences for the last three S/A sessions (10.38 ± 3.10 and 24.38 ± 4.94, p = 0.20) and 

for the last three sessions of extinction-1 (6.50 ± 1.85 and 5.63 ± 1.72, p > 0.99), but a significant 

difference between the first extinction session (20.13 ± 7.34 and 40.63 ± 8.87, p < 0.05). The 

Sidak’s tests of ILPs between sessions of prospective vehicle group showed no significant 

differences between the last three S/A sessions and the first extinction session (10.38 ± 3.10 and 

20.13 ± 7.34, p = 0.39), the last three S/A sessions and the last three sessions of extinction-1 

(10.38 ± 3.10 and 6.50 ± 1.85, p = 0.92), and the first extinction session and the last three sessions 

of extinction-1 (20.13 ± 7.34 and 6.50 ± 1.85, p = 0.14). The Sidak’s tests of ILPs between 

sessions of prospective ketamine group showed no significant difference between the last three 

S/A sessions and the first extinction session (24.38 ± 4.94 and 40.63 ± 8.87 , p = 0.06) but 

significant differences between the last three S/A sessions and the last three sessions of 

extinction-1 (24.38 ± 4.94 and 5.63 ± 1.72, p < 0.05), and the first extinction session and the last 

three sessions of extinction-1 (40.63 ± 8.87 and 5.63 ± 1.72, p < 0.0001).

Supplementary material 5

The Sidak’s tests of ALPs between sessions of vehicle group showed significant differences 

between the last three sessions of extinction-1 and the retrieval session (19.21 ± 4.85 and 40.88 ± 

9.27, p < 0.01) and between the retrieval and the last three sessions of extinction-2 (40.88 ± 9.27 

and 11.96 ± 3.76, p < 0.001) but not between the last three sessions of extinction-1 and last three 

sessions of extinction-2 (19.21 ± 4.85 and 11.96 ± 3.76, p = 0.56). The Sidak’s tests of ALPs 

between sessions of ketamine group showed significant differences between the last three 

sessions of extinction-1 and the retrieval session (23.04 ± 3.71 and 45.38 ± 5.85, p < 0.01) and 

between the retrieval and the last three sessions of extinction-2 (45.38 ± 5.85 and 14.58 ± 4.46, p 

< 0.0001) but not between the last three sessions of extinction-1 and the last three sessions of 

extinction-2 (23.04 ± 3.71 and 14.58 ± 4.46, p = 0.43). 

The ANOVA of ILPs during the last three sessions of extinction-1, the retrieval session and the last 

three sessions of extinction-2 showed a significant main effect of Session [F(2,28) = 3.46; p < 0.05] 



and of interaction Session x Treatment [F(2,28) = 4.10; p < 0.05], but not of factor Treatment 

F(1,14) = 0.26; p = 0.62]. The Sidak’s tests of ILPs between treatments showed no significant 

differences for the last three sessions of extinction-1 (6.50 ± 1.85 and 5.63 ± 1.72, p = 0.98), for 

the retrieval session (3.63 ± 1.43 and 8.75 ± 2.89, p = 0.13) and for the last three sessions of 

extinction-2 (3.88 ± 1.25 and 2.75 ± 0.69, p = 0.96). 

The Sidak’s tests of ILPs between sessions of prospective vehicle group showed no significant 

differences between the last three sessions of extinction-1 and the retrieval session (6.50 ± 1.85 

and 3.63 ± 1.43, p = 0.30), the last three sessions of extinction-1 and the last three sessions of 

extinction-2 (6.50 ± 1.85 and 3.88 ± 1.25, p = 0.37), and the retrieval session and the last three 

sessions of extinction-2 (3.63 ± 1.43 and 3.88 ± 1.25, p > 0.99). The Sidak’s tests of ILPs between 

sessions of prospective ketamine group showed no significant difference between the last three 

sessions of extinction-1 and retrieval session (5.63 ± 1.72 and 8.75 ± 2.89 , p = 0.23), the last 

three sessions of extinction-1 and the last three sessions of extinction-2 (5.63 ± 1.72 and 2.75 ± 

0.69, p = 0.30), but a significant difference between the retrieval session and the last three 

sessions of extinction-2 (8.75 ± 2.89 and 2.75 ± 0.69, p < 0.01).

Supplementary material 6

The treatment with ketamine before retrieval session did not impair the responding on the active 

lever during test compared to vehicle. The ANOVA of ILPs during the last three sessions of 

extinction-2 and the test showed no significant effect of factor Session [F(1,14) = 1.67; p = 0.22], 

nor of Treatment F(1,14) = 0.24; p = 0.63] and nor of interaction Session x Treatment [F(1,14) = 

2.70; p = 0.12]. The Sidak’s tests between treatments showed no significant differences for the last 

three sessions of extinction-2 (3.88 ± 1.25 and 2.75 ± 0.69, p = 0.76) and for the test (3.50 ± 0.80 

and 5.88 ± 1.70, p = 0.30). The Sidak’s tests between sessions showed no significant differences 

between the last three sessions of extinction-2 and the test for vehicle (3.88 ± 1.25 and 3.50 ± 

0.80; p = 0.96) nor for ketamine group (2.75 ± 0.69 and 5.88 ± 1.70; p = 0.11).


