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ARTICLE INFO ABSTRACT

Handling Editor: Lesa Aylward Background: Lead exposure predicts altered neurodevelopment and lower intelligence quotient (IQ) in children,
Keywords: but few studies have examined this association in children who have relatively low blood lead concentrations.
Blood lead concentrations Objectives: To test the associations between blood lead concentrations and cognitive function in Canadian
Sex differences preschoolers, with a possible moderation by sex.

Intelligence quotient Methods: The data were gathered from 609 mother-child pairs from the Maternal-Infant Research on
Canadian children Environmental Chemicals (MIREC) Study. Lead was measured in umbilical and maternal blood, and in children's

venous blood at age 3—4 years. Cognitive function was measured with the Wechsler Preschool and Primary Scale
of Intelligence (WPPSI-III) at 3—-4 years. We tested the relationship between WPPSI-III scores and blood lead
concentrations with multiple linear regression, adding child sex as a moderator.

Results: Median blood lead concentrations for the mother at 1st trimester and 3rd trimester of pregnancy, and for
cord and child blood were 0.60 pg/dL, 0.58 ug/dL, 0.79 ug/dL and 0.67 ug/dL, respectively. We found no as-
sociation between cord blood lead concentrations and WPPSI-III scores in multivariable analyses. However, cord
blood lead concentrations showed a negative association with Performance IQ in boys but not in girls (B = 3.44;
SE = 1.62; 95% CI: 0.82, 5.98). No associations were found between WPPSI-III scores and prenatal maternal
blood or concurrent child blood lead concentrations.

Conclusions: Prenatal blood lead concentrations below 5 ng/dL were still associated with a decline in cognitive
function in this Canadian cohort, but only for boys.

1. Introduction intellectual deficits, diminished academic performance, attention defi-
cits, and behavioral problems (NTP, 2012; Needleman and Gatsonis,

Prenatal and postnatal blood lead concentrations have been asso- 1990). Since 1970, the Canadian government has enforced rules aimed
ciated with many developmental problems such as low birth weight, at reducing lead exposure from its main sources, (e.g. leaded gasoline,
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water pipes, lead-based paints, solder in food cans; Health Canada,
2013a). These measures led to dramatic reductions in the average blood
lead levels in Canadians over three decades. The Canada Health Survey,
conducted in 1978 and 1979, showed a mean blood lead concentrations
of 4.79 ug/dL in people aged 6 to 79 years; by 2010, the mean blood
lead concentrations had dropped to 1.34 ug/dL (Bushnik et al., 2010).
Today, the main sources of exposure in childhood are lead-con-
taminated paint chips, house dust, and soil (Health Canada, 2013a).

Lead exposure reduction was a public health success, and yet a
number of epidemiological studies have raised the alarm regarding
developmental neurotoxicity at very low blood lead concentrations. A
lower intelligence quotient (IQ) score in the presence of increasing
blood lead levels has been observed even at low concentrations
of < 5pg/dL (Hong et al., 2015; Huang et al., 2012; Jian et al., 2014;
Jusko et al., 2008; Lanphear et al., 2000, 2005; Miranda et al., 2007;
Skerfing et al. 2015). Negative associations with children's IQ were
reported at concentrations of 2 pug/dL or lower in children younger than
11 years (Canfield et al., 2003; Chiodo et al., 2007, 2004; Hong et al.,
2015; Miranda et al., 2007), but not systematically (Surkan et al.,
2007). Most importantly, scientists and many public health authorities
recognize that no safe threshold for blood lead concentrations can be
determined at this point (ATSDR, 2007; CDC, 2012; NTP, 2012).

The toxicity of blood lead concentrations during childhood is
documented, although associations between prenatal blood lead con-
centrations and later neurodevelopmental domains, such as IQ, atten-
tion, and behavioral problems, are less well established. For example,
only a few epidemiological studies include data that document the as-
sociation of prenatal blood lead concentrations with any aspect of child
development. Furthermore, timing of blood sampling in pregnancy is
not consistent across studies: some measured maternal blood con-
centrations as an indicator of prenatal exposure (Hu et al., 2006; Kim
et al., 2013; Schnaas et al., 2006; Shah-Kulkarni et al., 2016; Taylor
et al., 2017; Zhou et al., 2017), whereas others relied on cord blood
(Boucher et al., 2014; Ethier et al., 2015; Jedrychowski et al., 2009b;
Jian et al., 2014). Moreover, most of the studies were prospective and
almost half bear on highly exposed groups, such as Inuit infants from
Nunavik in Northern Canada (Boucher et al., 2014; Ethier et al., 2015),
or children from Mexico City (Hu et al., 2006; Schnaas et al., 2006). It is
thus hard to extrapolate these studies' findings to children with lower
blood lead concentrations drawn from the general population of
southern Canada.

In addition, recent epidemiological studies indicate sex differences
in associations between neuropsychological development indicators
and lead exposure. In prenatal exposure studies, boys were significantly
more affected than girls for IQ, attention/concentration, and visuo-
constructional skills (Jedrychowski et al., 2009a; Ris et al., 2004), or
showed a similar trend (Taylor et al., 2017). Some childhood exposure
studies have shown a heightened association in boys compared to girls
in attention/concentration and in visual-motor performance (Ris et al.,
2004; Vermeir et al., 2005), whereas others observed the reverse as-
sociation, showing a more prominent IQ decline in girls (Baghurst et al.,
1992; Tong et al., 2000). Furthermore, many of the studies looking at
the potential effect of blood lead on childhood outcomes included sex as
a control variable rather than as a moderation term. Consequently, sex
differences in vulnerability remain largely unreported, even though
male fetuses have frequently been recognized as more vulnerable
(Dipietro and Voegtline, 2017).

Overall, the vulnerability of preschool children is clear, but the
specific impact of postnatal blood lead concentrations < 5pug/dL on
child's cognitive function is not, and evidence is particularly scarce
concerning the impact of prenatal exposures at concentrations found in
a typical Western population. Furthermore, the scarce and contra-
dictory evidence regarding sex differences in the association between
cognitive development and lead exposure needs further investigation in
preschool children exposed to the low levels experienced by the general
Canadian population.
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The aim of this paper was therefore to test the associations between
gestational and early childhood blood lead concentrations with in-
tellectual function in preschool Canadian children. We also tested for
the moderation of these associations by sex of the child.

2. Methods
2.1. Study design and population

The Maternal-Infant Research on Environmental Chemicals
(MIREC) Study, which follows longitudinally a pregnancy and birth
cohort, was designed to investigate the negative health consequences of
environmental contaminants on pregnancy and child health (Arbuckle
et al., 2013). A total of 2001 women were recruited between 2008 and
2011 during their first trimester of pregnancy at 10 study sites within
Canada. An inability to communicate and consent in either French or
English, having completed > 14 weeks of pregnancy, an age under 18,
illegal drug consumption, a diagnosis of a fetal anomaly or a history of
severe disease, or planning to deliver outside of the participating hos-
pitals were exclusion criteria at recruitment. The subsample that is part
of the present analyses was composed of the mothers who participated
in MIREC-CD Plus; this follow-up study (N = 610 children) was con-
ducted when the target child reached the age of 3 to 4years. Data
collection relied on one visit (at home or hospital at parents' con-
venience) aimed at obtaining direct assessment of growth and neuro-
behavioral development as well as child's blood and other biological
samples. The mother also filled a questionnaire assessing socio-
economic, educational, and lifestyle elements. Additional inclusion
criteria for the present analyses were a singleton birth after 28 weeks of
gestation or more, and the completion of the intellectual function tests.
We excluded children who were born before 28 weeks gestation to
minimize the confounding effect of extremely preterm birth (WHO,
2017), which can include neurodevelopmental delays.

Ethics approval for the study was obtained from Health Canada's
Research Ethics Board and from the ethics committees of the hospitals
and research centers involved in the study. All participants received
information about the aims of the study, and signed an informed con-
sent form.

2.2. Intellectual function

We administered the Wechsler Preschool and Primary Scale of
Intelligence-3rd Edition, short version (WPPSI-III; Wechsler, 2002)
designed for children aged between 2years, 6 months and 3years,
11 months. Completion of the five subtests (Block Design, Object As-
sembly, Receptive Vocabulary, Information, and Picture Naming) takes
about 35 min and assesses verbal comprehension as well as perceptual
organization abilities. A trained research assistant unaware of children's
exposure to environmental contaminants administered the test either in
English or in French. The age-standardized WPPSI-III Canadian norms
were used to calculate the Composite Verbal, Performance, General
Language and Full-Scale IQ scores.

2.3. Lead exposures

As the most appropriate prenatal blood lead measure to use in in-
vestigating associations with child neurodevelopment is not clear
(Baghurst et al., 1987; Hu et al., 2006; Schnaas et al., 2006), we ex-
amined both maternal and cord blood lead concentrations in our study
to document exposure during fetal development. Maternal blood lead
concentrations were measured at the 1st trimester (6-13 weeks) and
3rd trimester (32-34 weeks; see Supplemental material, Tables S1 and
S2. These tables are discussed in detail under Multivariable linear
analysis), and an umbilical cord blood sample was collected at birth.
Body burden at age 3-4years was analyzed from a venous blood
sample.
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All blood samples were analyzed using inductively coupled plasma
mass spectrometry (PerkinElmer ELAN ICP-MS DRC II) at the Centre de
Toxicologie, Institut National de Santé Publique du Québec; (Quebec
City, QC, Canada), which has an accreditation of the Standards Council
of Canada. The limit of detection (LOD) for both 1st and 3rd trimester
blood lead concentrations was 0.1 pg/dL. The proportion of samples
below the LOD for the 1st and for 3rd trimesters was 0% and 0.2%,
respectively. The LOD for both child and cord blood lead concentrations
using this method were 0.1pg/dL and 0.21 pug/dL, depending on
available blood volume. The proportion of samples < LOD were re-
spectively 1.6% and 0% for cord and child blood samples.
Concentrations < LOD were replaced by the value LOD/V2 (Hornung
and Reed, 1990).

2.4. Covariates and potential confounders

The mothers reported on her marital status, household income,
education, parity, and ethnicity during the first-trimester visit inter-
view. Current smoking and alcohol consumption were documented at
first and third trimester of pregnancy. Prenatal and postnatal total
mercury concentrations were considered as potential confounders
based on previous associations with neurotoxic effects in prospective
cohort in Northern Canada, Faroe Island and in the U.S. (Debes et al.,
2016; Jacobson et al., 2015; Oken et al., 2008). Mercury blood con-
centrations were analyzed using the same laboratory technique as lead
concentrations (LOD for cord blood mercury = 0.012 pg/dL; LODs for
child blood mercury = 0.05pg/dL or 0.06 pg/dL depending on vo-
lume). Birth weight, gestational age, pre-pregnancy BMI, and other
perinatal characteristics were extracted from medical records. During a
follow-up when the child was 6 months, breastfeeding and socio-
demographic status were assessed by way of a self-administered ques-
tionnaire to the mother. At the MIREC CD plus follow-up (3—4 years),
the mother answered the Center for Epidemiological Studies Depression
Scale (CES-D; Radloff, 1977), and the Parenting Stress Index (Short
Form; Abidin, 1995). The latter assesses the parent's expectations,
whether they are fulfilled as well as interactions with the child. The
same research assistant who administered the WPPSI-III completed the
Home Observation for Measurement of the Environment (HOME;
Caldwell and Bradley, 2001), which assesses the quality of stimulation
and support that the child enjoys at home.

We selected likely confounding factors according to their published
association with neurodevelopment and lead exposure in children. We
first retained covariates associated with either cord or child blood lead
concentrations and with Full-Scale IQ at p < 0.20 (see Supplemental
material, Table S3). Of these, all confounding factors considered outside
of the hypothetical causal pathway and associated with each other at
r < 0.30 were kept in the analyses. We included evaluation site as a
covariate to control for any site variance, such as administration of the
WPPSI-III by different examiners. Additionally, child sex and age at
time of testing were included in all models.

2.5. Statistical analysis

Descriptive statistics and patterns of missing data analyses were
done with IBM SPSS 23.0 for Windows (IBM, Chicago, IL, USA).
Regression models were tested with Mplus 6.1 (Muthén and Muthén,
1998-2011). Significance level was set at p < 0.05 (two-tailed).
Homoscedasticity and normality of residuals were investigated visually
while variance inflation factor tests were used to assess multi-
collinearity assumptions. Mahalanobis's distance was used to spot
multivariate outliers. All models were run with and without multi-
variate outliers, without any notable alteration of the results (data
available upon request). The multivariate outliers were thus retained in
all analyses.
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2.5.1. Missing data

We explored the data using SPSS Missing Values Analysis (MVA) to
assess potential patterns in missing values. The proportion of missing
data ranged from 0% to 34.8% (blood lead concentrations at 3—4 years).
Little's MCAR test (Little, 1988) showed that the values could not be
considered missing completely at random (MCAR; %2 = 734.98,
p = 0.002), but no suggestion of systematic bias emerged from the
examination of missing data patterns (from corrected t-tests obtained in
SPSS MVA that compared the missing vs available mean scores of each
measure with all other measures). Therefore, we treated the data as
missing at random (MAR). The proportion of missing data being rela-
tively important, we chose to test the regression models with a full-
information maximum likelihood (FIML) estimator. FIML, the default
estimator in Mplus, let us keep all the available data instead of re-
stricting the analyses to complete cases only (Graham, 2009), and re-
quires only an assumption of MAR data.

2.5.2. Univariate and bivariate analysis

We investigated the means, variances, and distribution of each
variable. All exposure variables were log,-transformed to reduce
skewness. We then assessed bivariate associations between all the
variables before their inclusion in the multivariable models, excluding
the potential confounders that did not meet our criteria in the process.

2.5.3. Multivariable regression models

First, we tested multiple linear regressions with an FIML estimator
to assess the associations between cord and child blood lead con-
centrations and each WPPSI-III score separately. We adjusted for the
corresponding confounders in each blood lead concentrations models
(Table 3). Models using 1st and 3rd trimester blood lead concentrations
included the same covariates as the one included in the cord blood lead
model. Second, a moderation term (child sex X blood lead concentra-
tions) was added to the corresponding model while controlling for the
same covariates. Unstandardized regression coefficients were reported
for both moderation tests and effect modifications by gender (Table 4).
All models with 1st and 3rd trimester blood lead concentrations can be
seen in Supplemental material, Tables S1 and S2.

3. Results
3.1. Child characteristics

We excluded one child who was born at gestational age < 28 weeks.
Venous blood samples were unavailable for 212 children. The char-
acteristics of the children and their mothers, and the sample size (N) for
each variable, are presented in Table 1. Our sample included pre-
dominantly white and non-smoking women and most (96.2%) were
married or living with a partner. On average, mothers were age 32 years
at delivery, and about 40% of the families reported an income at 1st
trimester of $100,000 CAD or more per year, over the Canadian median
of $84,080 (Statistics Canada, 2013). Cord and child blood lead con-
centrations were well below the 2013 Canadian threshold of action
(10 pg/dL), with a median ranging from 0.67 ug/dL to 0.79 pg/dL. The
mean of both cord and child blood lead concentrations did not differ
between boys and girls (Table 2), and neither did the maternal blood
lead concentrations at 1st or 3rd trimester (see Supplemental material,
Table S4). The WPPSI-III score means ranged from 103 to 109.5. A
significant difference was observed between boys' and girls' Full-Scale
IQ average (104.2 points vs. 109.5 points, respectively; see Supple-
mental material, Table S5).

3.2. Unadjusted associations between blood lead concentrations, IQ, and
covariates

We computed Pearson correlations to document associations be-
tween variables included in our analyses (results not shown). Full-Scale
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Table 1
Descriptive statistics.
Characteristics N Mean * SDorn Median Range IQR
(%)
Children
Age (years) 609 3.4 = 0.3 3.3 3.0-4.0 0.6
Sex (female) 609 312 (51.2)
Birth weight (kg) 609 3.5 * 0.5 3.5 1.4-5.1 0.6
Gestational age (weeks) 609 395 + 1.5 39.7 29.4-42.4 1.9
Breastfeeding status 551
No breastfeeding 47
Breastfeeding 56 (10.2)
< 3months
Breastfeeding 80 (14.5)
3-6 months
Breastfeeding 415 (75.3)
> 6 months
Family environment
Maternal age at delivery 609 32.6 = 4.6 32.0 18.0-46.0 6.0
(years)
Parity 609
0 265 (43.5)
1 252 (41.4)
=2 92 (15.1)
Marital status at follow- 609
up
Married/same partner 586 (96.2)
during previous year
Other 23 (3.8)
Maternal education at 607
follow-up
High school diploma or 54 (8.9)
less
College or trade school 147 (24.2)
University — 243 (40.0)
undergraduate
University — graduate 163 (26.9)
Income at follow-up 589
< $50,000 92 (15.6)
$50001-80,000 145 (24.6)
$80001-100,000 117 (19.9)
=$100,001 235 (39.9)
Ethnicity (White) 609 521 (85.6)
HOME total score 501 473 + 4.3 48.0 27.0-55.0 5.0
Parenting stress index at 593 16.3 = 4.6 15.0 12.0-47.0 5.0
follow-up
=23 66 (11.1)
Lead and mercury exposures [geometric mean (GSD)]
Lead (pg/dL)
1st trimester 598 0.62 + 1.6 0.60 0.16-4.14  0.40
3rd trimester 556 0.59 + 1.7 0.58 0.14-3.93  0.39
Cord blood 493 0.76 = 1.7 0.79 0.08-3.52 0.46
Child blood 397 0.70 = 1.7 0.67 0.14-5.49  0.51
Mercury (ug/dL)
Cord blood 492 0.78 = 2.4 0.77 0.09-8.83 1.16
Child blood 397 0.23 + 29 0.20 0.07-5.82  0.44
Other prenatal exposures
Tobacco smoke 1st 609 17 (2.8)
trimester (yes)
Alcohol 1st trimester 608 261 (42.9)
(yes)
WPPSI-IIT
Full-scale IQ 606 107.0 * 13.5 108.0 51.0-143.0 19.0
Verbal I1Q 603 109.5 = 13.2 111.0 58.0-144.0 19.0
Performance IQ 601 103.0 £ 14.8 103.0 55.0-144.0 18.0
General language 604 108.5 * 14.6 108.0 57.0-147.0 17.0

composite

Abbreviations: GSD, geometric standard deviation; IQR, Interquartile range;
HOME, Home Observation for Measurement of the Environment (Caldwell and
Bradley, 2001); Parenting Stress Index (Abidin, 1995); WPPSI-III, Wechsler
Preschool and Primary Scale of Intelligence — 3rd Edition (Wechsler, 2002).

IQ was not significantly associated with cord or child blood lead con-
centrations (r = —0.036, p = 0.422 and r = —0.081, p = 0.108, re-
spectively). As expected, the correlation between cord and concurrent
blood lead concentrations was significant, but weak (= 0.189,
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Table 2
Sex difference for blood lead concentrations.
Blood lead Boys Girls
measures

M SE M SE a t p Cohen's d
Cord 0.874 0.426 0.853 0.455 491 0.943 0.346 0.085
Child 0.853 0.593 0.801 0.499 395 1.013 0.312 0.102

Abbreviations: M, mean; SE, standard error; df, degree of freedom.

p = 0.001). Mothers' educational achievement as well as the HOME
score were positively associated with Full-Scale IQ. Children from
poorer families had higher blood lead concentrations during childhood
(see Supplemental material, Table S3). Concordantly with our con-
founders selection method, gestational age was positively correlated
with both the Full-Scale IQ and cord blood lead concentrations at
p < 0.20 (r=0.087, p=0.033 and r = 0.059, p = 0.193, respec-
tively) but was not included in the prenatal concentrations models since
it was in the causal pathway. Additionally, only 2.8% of the mothers
were smoking tobacco during their 1st trimester of pregnancy; maternal
smoking was therefore excluded as a covariate for lack of variance. Pre-
pregnancy BMI variable was associated with Full-Scale IQ, but not with
both cord and child blood lead concentrations, and therefore not re-
tained as a confounding factor. Overall, the bivariate associations ob-
served within our sample are comparable with those found in other
epidemiological studies conducted in a general population.

3.3. Multiple linear relationships between IQ and blood lead concentrations

We tested the associations between both cord and child blood lead
concentrations and WPPSI-III with confounder-adjusted multiple re-
gression models. We found no significant association between cord
blood or child blood lead concentrations and any of the WPPSI-III
scores (Table 3), nor between the 1st or 3rd trimester blood lead con-
centrations and the WPPSI-III scores (see Supplemental Material, Table
S1).

3.4. Effect modification by sex

To assess a potential difference by sex in the association between
both cord and child blood lead concentrations with IQ scores, we in-
cluded a moderation term (child sex X blood lead concentrations) in
the corresponding multiple regression models (Table 4). We observed a
significant moderation by sex of the association between cord blood
lead concentrations and Performance IQ score, indicating that a
stronger association in boys than in girls (unstandardized B coeffi-
cient = 3.44, SE = 1.62; 95% CIL: 0.82, 5.98; Fig. 1). A significantly
steeper negative slope was observed for boys (unstandardized B coef-
ficient = —3.28, SE = 1.26; 95% CI: -5.31, —1.18) while a non-sig-
nificant slope was observed for girls (unstandardized B coeffi-
cient = 0.16, SE = 1.16; 95% CI: -1.76, 2.06). A significantly negative
slope was observed for boys on the Full-Scale IQ, but the moderation by
sex did not reach significance in the full model (Table 4). Additionally,
a marginally significant moderation by sex was observed in the asso-
ciation between 1st trimester blood lead concentrations and General
Language Composite score (see Supplemental material, Table S2).
However, neither the slope for boys or girls were significant (95% CI:
-0.31, 3.68 and 95% CI: -3.14, 0.56, respectively), therefore not jus-
tifying the interpretation of this result. No other differential association
by sex was observed between either prenatal or concurrent blood lead
concentrations and the WPPSI-III scores or 1st or 3rd trimester blood
lead concentrations (see Supplemental material, Table S2). Therefore,
child sex only moderated the association between cord blood lead
concentrations and Performance IQ score, an association that was only
significant in boys.
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Standardized regression coefficients of cord or child blood lead concentrations predicting preschoolers' intellectual function.

Cord blood lead concentrations

Child blood lead concentrations

N B 95% CI P B 95% CI p
Full-scale I1Q 606 —-0.070 (—0.143, 0.003) 0.115 0.014 (-0.071, 0.098) 0.791
Verbal IQ 603 —0.048 (—0.119, 0.024) 0.272 0.021 (—0.066, 0.107) 0.695
Performance 1Q 601 —0.068 (—0.142, 0.005) 0.128 0.001 (—0.081, 0.084) 0.979
General language composite 604 -0.013 (—0.085, 0.060) 0.775 0.027 (-0.057, 0.111) 0.601

Abbreviations: 3, standardized regression coefficient; CI, confidence intervals. Cord blood model adjusted for child age, child sex, maternal education, evaluation site
and cord blood mercury (log-2 scale). Child blood model adjusted for child age, child sex, evaluation site, marital status, familial income, HOME total score,

Parenting Stress Index, and cord blood lead (log-2 scale).
R? [0.12-0.20].

4. Discussion

The main objective of this study was to test for associations between
prenatal and postnatal blood lead concentrations and intellectual
function in a Canadian cohort of 3- to 4-year-old children. We also
tested for effect modification by sex of these associations. We observed
no significant main effect of cord blood lead concentrations on in-
tellectual function measures. However, we observed a sex-linked effect
modification: cord blood lead concentrations were negatively and sig-
nificantly associated with Performance IQ only for boys. No such as-
sociations with any measure of cognitive functioning at 3—4 years were
found for lead concentrations in maternal blood during the 1st or 3rd
trimesters of pregnancy, or for concurrent child blood lead concentra-
tions.

4.1. Postnatal lead exposures and sex differences

Currently, no safe level of blood lead concentrations can be inferred
from study data regarding children's intellectual function or any other
aspect of their development (Santa Maria et al., 2018). Associations
between child blood lead concentrations as low as 1-2pg/dL and
poorer cognitive function were observed (Canfield et al., 2003; Chiodo
et al., 2007, 2004; Hong et al., 2015; Miranda et al., 2007). However,
uncertainty remains regarding associations observed at these levels
(Health Canada, 2013b). The geometric mean blood lead concentra-
tions in children aged 3 to 4years in this paper was 0.7 pg/dL, and
ranged from 0.14 to 5.49 ug/dL. When compared with France's 2.5 pug/

Table 4

104

103

Boys

102 === Girls

101

100

Performance 1Q

99

98

97

-1 SD +1 SD
Cord blood lead concentrations (ng/dL) log-2 scale

Mean

Fig. 1. Association of cord blood lead concentrations with Performance IQ
score moderated by child sex.

Abbreviations: SD, standard error. IQ test performance as determined by the
WPPSI-III is shown on the Y axis, while cord blood lead concentrations are
shown on the x axis, on a log-2 scale. The results for boys are shown by the solid
line, while those for girls are denoted by the dashed line. Model included the
following confounders: child age, child sex, maternal education at 1st trimester,
evaluation site, cord blood mercury (log-2 scale).

Effect modification between cord or child blood lead concentrations and child sex predicting preschoolers' intellectual function.

WPPSI-III scores Effect modification test

Effect modification by gender

N B SE 95% CI p B SE 95% CI p

Cord blood lead Full-Scale IQ 606 2.47 1.62 (—0.30, 4.84) 0.11 Boys —2.65 1.26 (—4.66, —0.48) 0.04
Girls —-0.18 0.87 (-1.63, 1.21) 0.83

Verbal I1Q 603 0.61 1.47 (—1.88, 2.84) 0.68 Boys -1.19 1.21 (-3.10, 0.90) 0.33

Girls —-0.57 0.86 (—2.10, 0.83) 0.51

Performance 1Q 601 3.44 1.62 (0.82, 5.98) 0.03 Boys —-3.28 1.26 (-5.31, —1.18) 0.01

Girls 0.16 1.16 (—-1.76, 2.06) 0.89

General language composite 604 1.95 1.51 (—-0.75, 4.19) 0.20 Boys -1.35 1.29 (—3.67,1.10) 0.30

Girls 0.60 0.90 (—0.94, 2.13) 0.51

Child blood lead Full-scale IQ 606 0.59 1.53 (—2.03, 3.06) 0.70 Boys —-0.07 1.28 (-2.10, 2.17) 0.96
Girls 0.52 1.08 (—-1.23, 2.40) 0.63

Verbal 1Q 603 0.77 1.67 (—2.56, 3.31) 0.67 Boys —0.00 1.33 (—2.02, 2.31) 0.99

Girls 0.71 1.18 (—-1.25, 2.67) 0.55

Performance 1Q 601 0.28 1.64 (—2.45, 2.99) 0.86 Boys -0.13 1.30 (—2.24,1.94) 0.92

Girls 0.15 1.23 (—1.84, 2.23) 0.90

General language composite 604 0.66 1.99 (—2.70, 3.97) 0.74 Boys 0.17 1.49 (—2.19, 2.90) 0.91

Girls 0.83 1.44 (—1.45, 3.27) 0.57

Abbreviations: B, unstandardized regression coefficient; SE, standard error; CI, confidence intervals. Cord blood model adjusted for child age, child sex, maternal
education, evaluation site and cord blood mercury (log-2 scale). Child blood model adjusted for child age, child sex, evaluation site, marital status, familial income,

HOME total score, Parenting Stress Index, and cord blood lead (log-2 scale).
R? [0.22-0.29]; Bootstrap = 1000.
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dL level of vigilance (HCSP, 2014), no more than 1.5% of children
showed concentrations above this threshold. Further comparison with
similar studies that reported significant associations with cognitive
development confirmed that our study's children experienced com-
paratively low lead exposure: the children's average blood lead con-
centrations in these other studies ranged from 2.48 ug/dL to 4.5 pug/dL
(Huang et al., 2012; Jian et al., 2014; Miranda et al., 2007), and life-
time average blood lead concentrations at age 3 and 5 were 7.2 ug/dL
and 7.7 ug/dL, respectively (Canfield et al., 2003; Jusko et al., 2008).
Associations between lead levels and children's cognitive function in
our sample might therefore have been subtler than we could detect.

In addition to studying children with higher blood lead concentra-
tions, previous studies have assessed cognitive function or academic
achievement later in childhood (Hong et al., 2015; Huang et al., 2012;
Jusko et al.,, 2008; Lanphear et al.,, 2000; Miranda et al., 2007;
Skerfving et al., 2015); only two reported significant associations with
cognitive function in children aged < 5years and blood lead con-
centrations below 5pg/dL (Canfield et al., 2003; Jian et al., 2014).
However, both of them reported blood lead concentrations over four
times higher than those in the MIREC cohort, and one of them had a
sample of low socioeconomic status and measured IQs lower than the
national average (Canfield et al., 2003). Higher concentrations of lead
in poorer neighborhoods make it harder to untangle the effects of each
on child cognitive development (Beckley et al., 2017). In the same way,
animal-model studies have shown that lead exposure effects are di-
minished or absent among rodents in an enriched and stimulating en-
vironment (Guilarte et al., 2003; Schneider et al., 2001). Knowing that
the MIREC cohort includes children from predominantly middle- to
upper middle-class families, the associations with lead exposure in our
study may have been attenuated by the high-quality stimulation at
home demonstrated by the high HOME scores reported (Table 1). These
divergences in sample characteristics could therefore explain the in-
consistencies in different studies' results.

Moreover, previous studies published inconsistent results regarding
sex effect modification of lead exposure. Some studies have shown
stronger associations with postnatal lead exposure in boys for atten-
tion/concentration and for visual-motor performance (Ris et al., 2004;
Vermeir et al., 2005), whereas others found a more marked IQ decline
in girls (Baghurst et al., 1992; Tong et al., 2000). In our study, the
association between concurrent blood lead concentrations and the
WPPSI-III scores did not vary as a function of the children's sex. Con-
tradictory results could be explained by several factors (Llop et al.,
2013), such as the timing of blood lead measures and child age at
testing, the heterogeneity in the neurodevelopmental domains eval-
uated (IQ, attention and concentration, executive function, and
memory), and publication biases against the publication of studies with
statistically non-significant results.

4.2. Prenatal lead exposures and sex differences

We initially observed no main effect of maternal or cord blood lead
concentrations on children's cognitive function. Three studies with
median blood lead concentrations comparable with ours - ranging from
0.93 to 3.41 pg/dL - and that had similar sample size found significant
associations between at least one measure of prenatal blood lead con-
centrations and children's IQ during infancy (Jedrychowski et al.,
2009b; Kim et al., 2013; Shah-Kulkarni et al., 2016) while one did not
(Taylor et al., 2017). However, Taylor et al. (2017) found a significant
effect modification by sex, showing evidence of a significant positive
association for IQ at age 8 years in girls and a negative trend in boys,
therefore not significant. Effect modification by sex was not in-
vestigated in the three others, or not reported.

In spite of the absence of main effect, a negative association be-
tween cord blood lead concentrations and Performance IQ score was
observed in boys, but not in girls, suggesting that boys could be more
vulnerable than girls. A similar sex modification was marginally
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significant for the Full-Scale IQ, which could be due to the inclusion of
Performance IQ in the Full-Scale IQ score. Our result are consistent with
earlier studies that have examined sex effect modification between
prenatal lead exposures and children's development, by showing an
increased negative association in boys (Jedrychowski et al., 2009a; Ris
et al., 2004) or a similar trend (Taylor et al., 2017). There is indeed
converging evidence that male fetuses are more vulnerable than female
ones (Dipietro and Voegtline, 2017). Stronger associations in males
were reported in animal studies between prenatal lead concentrations
and various abilities, such as observed impaired spatial learning (Yang
et al., 2003), emotional reactivity (de Souza Lisboa et al., 2005), and
reduced motor responses (Leasure et al., 2008). These sex-related dif-
ferences in susceptibility could arise from different developmental
trajectories, different timing of exposure over gestation, and different
hormonal milieu (Brummelte, 2017; Dipietro and Voegtline, 2017;
Vahter et al., 2007). One possible explanation involves the protective
effect of estrogen and its interaction with other neurotransmitters
(Vahter et al., 2007). The female fetus shows a larger distribution of
estrogen receptors; therefore, the smaller distribution and lower density
of estrogen receptors in male fetuses might result in a lessened pro-
tective effect (Jedrychowski et al., 2009a; Vahter et al., 2007).

Recently, Chau et al. (2017) have suggested differences in genetics
and epigenetics as possible explanation for these effects modification by
sex, but the underlying mechanisms remain largely unknown. More-
over, several previous studies have found associations with maternal
blood lead concentrations and not with cord blood concentrations, and
there is still no consensus about the best biomarker of prenatal ex-
posure; a specific association with cord rather than maternal blood lead
concentrations could reflect the negative influence of lead on the
transfer of essential elements such as calcium to the fetus (Lafond et al.,
2004). However, why male fetuses should be more affected remains
unclear. Further epidemiological studies considering sex as a modera-
tion factor instead of as a covariate are needed to untangle the results
presently observed in prenatal studies investigating blood lead con-
centrations and children's development (Brummelte, 2017; Dipietro and
Voegtline, 2017).

4.3. Limitations

One of the key limitations of our study is the short duration of
follow-up. Several studies observed significant lead association with
child development only later, at school age. A 3- or 4-year follow-up
might not be sufficient to show the adverse consequences of lead ex-
posure (Lanphear, 2015). Second, although we could account for many
confounders in our analyses, we were not able to control for maternal
1Q, which is a strong predictor of child IQ. Instead, we used maternal
education and familial income as surrogate measures. Overall, observed
discrepancies with other studies of concurrent blood lead concentra-
tions and child IQ are likely attributable to substantial differences in the
distribution of blood lead concentrations, as well as relatively privi-
leged participants in the MIREC cohort. Thus, our results may not be
generalizable to vulnerable groups.

4.4. Strengths

The main strengths of this paper are its longitudinal design that
allowed for the finding of an association between prenatal lead ex-
posure and cognitive function in preschool boys, its extensive data on
potential confounders, multiple lead exposure metrics, and its relatively
large sample size in comparison to other investigations. Data on mo-
thers and children were collected from the first trimester of pregnancy
throughout the child preschool years. Furthermore, the WPPSI-III is
considered as one of the best assessment of intellectual function avail-
able for children.
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5. Conclusion

Our study highlights that Canadian preschoolers from mainly
middle- to upper-middle class families are exposed to particularly low
levels of lead, and that their IQ was not associated with concurrent
blood lead concentrations. However, prenatal lead concentrations (as
measured in cord blood) were negatively associated with Performance
1Q, although this finding applied only to boys. To our knowledge, this is
the first study reporting that cord lead concentrations below < 5 ug/dL
is associated with IQ in middle-to upper-middle class family preschool
children. Further studies should aim to clarify sex-related differences.
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