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Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS)

signals has gained significant momentum, and fNIRS joined the set of modalities

frequently used for active and passive Brain Computer Interfaces (BCI). A great

variety of methods for feature extraction and classification have been explored using

state-of-the-art Machine Learning methods. In contrast, signal preprocessing and

cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate

the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS

are established neuroimaging tools, evoked hemodynamic brain activity is typically

estimated across multiple trials using a General Linear Model (GLM). With the help

of the GLM, subject, channel, and task specific evoked hemodynamic responses are

estimated, and the evoked brain activity is more robustly separated from systemic

physiological interference using independent measures of nuisance regressors, such as

short-separation fNIRS measurements. When correctly applied in single trial analysis,

e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain

signal, improve feature separability and ultimately lead to better classification accuracy.

In this manuscript, we provide a brief introduction into the GLM and show how to

incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a

resting state fNIRS data set augmented with synthetic hemodynamic responses that

provide ground truth brain activity, we compare the quality of commonly used fNIRS

features for BCI that are extracted from (1) conventionally preprocessed signals, and (2)

signals preprocessed with the GLM and physiological nuisance regressors. We show

that the GLM-based approach can provide better single trial estimates of brain activity

as well as a new feature type, i.e., the weight of the individual and channel-specific

hemodynamic response function (HRF) regressor. The improved estimates yield features

with higher separability, that significantly enhance accuracy in a binary classification task

when compared to conventional preprocessing—on average+7.4% across subjects and

feature types. We propose to adapt this well-established approach from neuroscience

to the domain of single-trial analysis and preprocessing wherever the classification of

evoked brain activity is of concern, for instance in BCI.
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1. INTRODUCTION

Brain Computer Interface (BCI) research has gained momentum
in the past two decades, fueled by the emergence of increasingly
powerful Machine Learning based signal processing methods
(Blankertz et al., 2008; Müller et al., 2008; Lemm et al., 2011) and
advances in neuroimaging instrumentation. A BCI is an artificial
system that bypasses the body’s normal efferent pathways, which
are the neuromuscular output channels. These systems aim
to provide an active interface for communication and control
(Birbaumer et al., 1999; Wolpaw et al., 2002) or aim to passively
assess covert mental states (Müller et al., 2008; Blankertz et al.,
2010) and monitor the “brain at work,” as in the so-called
field of Neuroergonomics (Parasuraman, 2003; Parasuraman and
Wilson, 2008).

In noninvasive BCI, EEG is currently the primary modality
used for both active and passive domains (Birbaumer et al., 1999;
Blankertz et al., 2002, 2011; Wolpaw et al., 2002; Dornhege,
2007; Müller et al., 2008; Tomioka and Müller, 2010; Zander and
Kothe, 2011; Van Erp et al., 2012; Haufe et al., 2014). However,
more recently, an increasing number of studies have explored the
suitability of functional Near-Infrared Spectroscopy for BCI and
single trial classification of evoked brain activity (Matthews et al.,
2008; Hong et al., 2018). fNIRS is a non-invasive, non-hazardous
optical imaging technique that measures hemodynamic changes
associated with brain metabolism (Villringer and Chance, 1997;
Ferrari and Quaresima, 2012; Boas et al., 2014). It uses near-
infrared light to measure concentration changes in oxygenated
and deoxygenated hemoglobin (HbO and HbR, respectively) in
the cerebral cortex and its signals are spatially and temporally
comparable to blood oxygenation level dependent (BOLD)
signals measured by functional Magnetic Resonance Imaging
(fMRI) (Kleinschmidt et al., 1996; Huppert et al., 2005, 2006).
The technique has found widespread use both in the research
and clinical field despite its low penetration depth and spatial
resolution, as it provides good portability, safety, and ecological
validity at low-cost and is therefore well-suited for both
experimental and real-life settings (Boas et al., 2014; Yücel et al.,
2017). Similar to EEG, recent advances in fNIRS instrumentation
have led to an increasing number of wearable, light weight, and
fiberless systems (Scholkmann et al., 2014; von Lühmann et al.,
2015; Zhao and Cooper, 2017) and wearable hybrid EEG-fNIRS
systems (Safaie et al., 2013; von Lühmann et al., 2017; Kassab
et al., 2018) that help translate BCI research from laboratory
environments into real world applications.

Due to its dominance in the field, best practice preprocessing
recipes exist for EEG to optimize BCI performance (Parra
et al., 2005; Blankertz et al., 2008, 2011; Müller et al., 2008),
but so far not for fNIRS. Along with the growing number
of publications that have studied fNIRS-based BCI and single
trial analysis over the course of the last several years (see for
instance Naseer and Hong, 2015 for a review), a plethora of
methods for optimal feature extraction and classification have
been investigated (Matthews et al., 2008; Hong and Khan,
2017; Hong et al., 2018). Remarkably, however, well-established
methodology from conventional fMRI and fNIRS neuroscience

FIGURE 1 | Use of GLM in single trial classification of fNIRS signals (top 100

most cited papers in Web of Science excluding review papers. Keyword

search: fNIRS & BCI || fNIRS & Classification).

has so far rarely been adopted for fNIRS single trial signal
preprocessing i.e., for removing systemic and non-systemic
confounding factors from the signal (see Figure 1). One of these
preferred approaches is to use a General Linear Model (GLM)
(Friston et al., 1994; Cohen-Adad et al., 2007) which allows
simultaneous extraction of the evoked Hemodynamic Response
Functions (HRF) while filtering confounding signals with the
help of nuisance regressors, for instance short-separation fNIRS
measurements (Zhang et al., 2007; Saager and Berger, 2008;
Gagnon et al., 2011). By this means, the contrast to noise ratio
(CNR) of the evoked hemodynamic brain activity is increased,
or in other words the ratio of the brain activity signal to any
other physiological or non-physiological signal is increased, and
the risk of falsely classifying task-evoked systemic physiology
instead of brain activity is reduced. Adopting this approach
can therefore significantly enhance accuracy, sensitivity, and
specificity of fNIRS single trial classification.

In this manuscript, we first provide a brief overview of
the most commonly applied preprocessing steps in the fNIRS-
based BCI community, based on statistics obtained from a
literature search of the top 100 most-cited papers in Web of
Science within the field (search words: fNIRS & BCI or fNIRS
& Classification). Then, we introduce the current state-of-the-art
analysis in fNIRS neuroscience to fNIRS-based BCI researchers—
the General Linear Model with Short-Separation regression
(GLM with SS). Thirdly, we provide practical instructions on
how to incorporate this approach into any preprocessing pipeline
before feature extraction and how to use it within cross validation
schemes. This is especially crucial, since learning statistics from
the whole dataset by applying the GLM as a “preprocessing step”
outside of cross-validation is methodologically wrong and will
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lead to overfitting. Lastly, we perform a quantitative comparison
between the quality of commonly used features when these are
extracted from simulated ground truth fNIRS data that was
preprocessed either (1) with a pipeline typical for current BCI
studies or (2) with the GLM with SS. We show that the GLM-
based approach provides better single trial estimates of brain
activity, offers a new, more comprehensive feature type, and
can significantly improve the classification accuracy in binary
classification tasks.

2. PREPROCESSING IN fNIRS-BASED BCI:
AN OVERVIEW AND PERSPECTIVE

While there have been major advances in fNIRS signal analysis
methods since its first establishment, many of them have not
yet found widespread use in the wider fNIRS community
(Pfeifer et al., 2018). Specifically in single trial analysis and
BCI, any fNIRS signal not properly corrected for confounding
factors such as systemic interference or motion artifacts can be
misleading. A common problem is that machine learning based
classifiers exploit any type of task-related information in the
signals, including movement artifacts and systemic physiological
changes of non-neuronal origin. This can lead to improved
discriminability within the designed study but also to a greatly
reduced performance when applied outside of the exact same
experiment, and is a known pitfall in EEG-based BCI (Müller
et al., 2008; Blankertz et al., 2016).

fNIRS signals contain two types of noise that contaminate the
underlying cerebral hemodynamics: physiological noise and non-
physiological noise. Physiological noise involves the systemic
interference which is driven by changes in blood pressure due to
cardiac, respiration, Mayer waves, and low-frequency oscillations
(Elwell et al., 1999; Saager and Berger, 2008; Gregg et al., 2010) or
indirectly by head/body movements (von Lühmann et al., 2019),
while non-physiological noise involves motion artifacts due to
optode-scalp decoupling (Cooper et al., 2012; Brigadoi et al.,
2014) and instrumental noise (Figure 2). In order to recover
underlying brain activation pattern, one needs to carefully
remove these confounding factors from the fNIRS signal. Such
correction can either be applied prior to HRF estimation or,
ideally, simultaneously with the HRF estimation as in the case of
the General LinearModel (Friston et al., 1994; Cohen-Adad et al.,
2007), which we will thoroughly discuss in this paper.

The majority of fNIRS-based BCI work performed so far relies
on the first approach i.e., preprocessing steps such as channel
pruning, removal of physiological noise, de-trending and motion
artifact removal/correction are applied to the data prior to HRF
estimation. The remaining signal is then assumed to represent
the estimated hemodynamic brain response and features are
extracted/selected from this signal for classification (Matthews
et al., 2008; Hong et al., 2018). We summarize below the most
commonly used preprocessing steps currently used in the fNIRS-
based BCI field.

(1) Signal quality check and pruning is the first step in fNIRS
preprocessing and is applied to the fNIRS signal regardless
of whether the rest of the noise removal is performed prior

FIGURE 2 | fNIRS signal components. The fNIRS signal is generally a

composition of motion related changes, cardiac pulse, blood pressure related

changes, respiration, and hemodynamic changes in superficial layers.

to or during HRF estimation. In this step, the high frequency
components in the signal that are due to non-physiological
noise, such as instrumental noise, are typically filtered out
and the channels that still have low SNR are removed from
further analysis. Among the 100most cited fNIRS-based BCI
studies that we have investigated, ∼40% reported applying
SNR pruning to their data (see Supplementary Table 1).

(2) Motion artifact correction. The majority of fNIRS-
based BCI studies in our sample do not apply any
motion artifact correction to their signal (∼80%, see
Supplementary Table 1). The remaining studies apply
motion correction algorithms typically used in the fNIRS
field such as wavelet decomposition (Molavi and Dumont,
2012), spline interpolation (Scholkmann et al., 2010), tPCA
(Yücel et al., 2014), CBSI (Cui et al., 2010), or SMAR (Ayaz
et al., 2012).

(3) Detrending. Typically a linear detrending is applied to the
relatively long fNIRS signals via high pass filtering or linear
least squares fitting across long time windows.

(4) Removal of physiological noise from the signal. Bandpass
filtering is the most commonly used approach in fNIRS-
based BCI work to remove the physiological nuisance in
the fNIRS signal, particularly very low frequency oscillations
and cardiac. Thirty-six percent of the studies reported
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using only a low-pass filter, 1% reported using only a
high-pass filter and the majority reported using band-
pass filtering (47%) (see Supplementary Table 1). Certain
physiological oscillations such as respiration and Mayer
waves fall into the same frequency band as the evoked brain
activity in a typical fNIRS experiment, and can therefore
not be removed via bandpass filtering without the risk of
simultaneously removing signals of interest (Yücel et al.,
2016). Thus, additional methods are being employed such as
ICA (Independent Component Analysis), EMD (Empirical
Mode Decomposition), and CWT (Continuous Wavelet
Transform) which decompose the fNIRS signal into (latent)
components, with the aim of identifying and removing
those components that are due to systemic physiology.
In our representative fNIRS-based BCI study sample, the
most commonly applied methods for the removal of
physiological nuisance signals aside from band-pass filtering
(see Figure 3) are ICA (Comon, 1994), EMD (Huang
et al., 1998), Transfer Function (TF) models (Pfurtscheller
and Florian, 1997), Common Average Reference (CAR)
(Pfurtscheller et al., 2010), CWT (Mallat, 1999), and Moving
Average Convergence Divergence (MACD) (Appel, 2005).
See Matthews et al. (2008), Scholkmann et al. (2014), Hong
and Khan (2017), and Hong et al. (2018) for additional
methods not mentioned here. ICA is a blind source
separation method that assumes statistical independence
between non-Gaussian components. The method has the
risk of overcorrecting the signal by removing the frequency
bands of interest. Results highly depend on the suitability of
the applied ICA algorithm for fNIRS signals and methods
that exploit sample dependence and higher order statistics
are preferable (von Lühmann et al., 2019). EMD is an
adaptive method that decomposes the signal into a set of
nearly-orthogonal intrinsic mode functions in the time-
domain (Huang et al., 1998). The intrinsic mode functions
that correspond to the physiological noise in the signal
such as cardiac or respiration are then removed from
the original signal. Yin and colleagues not only reduce
physiological noise using EMD, but also used the intrinsic
mode functions as input features for their classifier (Yin
et al., 2015). Similarly, CWT decomposes the signal into its
components in the time-frequency domain, thus allowing
removal of the components that lie in the frequency
band of physiological noise. Abibullaev and An removed
physiological noise using CWT and used the remaining
“de-noised” wavelet coefficients as input features for their
classifier (Abibullaev and An, 2012).

The above-mentioned methods can serve their purpose well
when there is no additional information on physiological noise
available. Ideally, however, independent measures of systemic
physiology are acquired along with fNIRS recordings such
as respiration or blood pressure variations. The majority of
the physiological nuisance signals in fNIRS stems from the
superficial layers i.e., scalp and skull (Zhang et al., 2007).
Consequently, an independent measure of the hemodynamic
changes in superficial layers using a short-separation detector
measurement has been proposed (Saager and Berger, 2008).

FIGURE 3 | Methods applied for removal of physiological noise beyond

conventional bandpass filtering (top 100 most cited papers in Web of Science

excluding review papers. Keyword search: fNIRS & BCI || fNIRS

& Classification).

Using Monte Carlo simulations, Zhang and colleagues showed
the benefit of using short-separation measurements as reference
in an adaptive filter to remove the systemic interference in
the long-separation measurements (Zhang et al., 2007). The
short-separation measurements and other simultaneous and
independent measurements can also be used as regressors
to model systemic interference in a General Linear Model
framework. This allows simultaneous estimation of brain activity
and systemic interference and other nuisance terms in the signal
without the risk of removing the underlying brain signal, thus
providing a more accurate and robust unbiased estimate of the
hemodynamic changes (Diamond et al., 2006; Tachtsidis et al.,
2010). While the use of short-separation signals has been shown
to significantly improve the robustness of the estimation of
hemodynamic response emerging from brain (Gagnon et al.,
2011; Yücel et al., 2015), only 4% of the recent fNIRS-based BCI
studies used short-separation measurements in their work (see
Figure 3) and none applied it in a GLM framework which is the
standard approach in neuroscience research today. Some other
works, on the other hand, applied the GLM, albeit without short-
separation regression (such as Qureshi et al., 2017), and as a
preprocessing step on the full dataset.

In the following section we give a brief introduction to the
GLM and show how to correctly integrate it into a conventional
BCI preprocessing pipeline (Figure 4) to improve classification
performance while strictly avoiding overfitting pitfalls.

fNIRS BCI studies can benefit from the General Linear Model framework

which allows simultaneous estimation of brain activity and concurrent

physiological and non-physiological variations, providing amore accurate and

robust recovery of the hemodynamic response.
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FIGURE 4 | Typical BCI preprocessing pipeline for fNIRS: Linear detrending, pruning of channels with low SNR, artifact rejection, conversion to HbO/HbR with

modified Beer-Lambert Law (mBLL), low-pass (LP), or band-pass (BP) filtering. Sequence of blocks can deviate. (Down) established General Linear Model in fNIRS

and fMRI Neuroscience using the current best practice: short-separation regression (GLM with SS). We propose to include the GLM into BCI approaches for

enhanced performance by using better estimates of the hemodynamic response in fNIRS. Please note that drift removal (detrending) is part of the GLM when

polynomial regressors are provided.

3. GLM BASED fNIRS PREPROCESSING
(HRF REGRESSION)

In the following section, we provide a brief introduction to the
GLM for fNIRS and show how one can incorporate physiological
and non-physiological nuisance regressors into the GLM. This
model is discussed in detail in Gagnon et al. (2011) and von
Lühmann et al. (2020).

3.1. Introduction to the GLM
The General Linear Model represents measured data as a linear
mixture of M functionally distinct processes (components). We
express the GLM for fNIRS as

Y = G β + E (1)

where Y ∈ R
T×N is the observation matrix with acquired fNIRS

data from all time points T and recorded channels N. We will
denote observed data samples of Y at time point t and channel n
with scalars yn(t), the column vectors of the observation matrix
as yn ∈ R

T and its row vectors as y(t) ∈ R
N . G ∈ R

T×M

is the design matrix that incorporates a priori knowledge about
the expected shape of the evoked hemodynamic response, time
structure of the experiment and regressors for drifts and/or
physiological nuisance signals. β ∈ R

M×N represents the set of
weights for the regressors thatmodel functional brain activity and
physiological and non-physiological confounding components.
These weights are to be estimated. Components that are not
explained by the model are in the additional residual/noise term
E ∈ R

T× N .
Under the GLM assumption, the observed hemodynamic

signal yn(t) in each of the N channels is modeled by a

combination of functional, physiological, and drift components
plus the residual:

yn(t) = y
functional
n (t)+ y

physiology
n (t)+ driftn(t) + εn(t). (2)

Both in BCI classification scenarios and conventional
neuroscience, it is typically assumed that the evoked

hemodynamic signal y
functional
n is stationary across trials

(stimuli δk) of the same condition within an experiment and
subject. In the GLM, it is modeled either as a canonical HRF
using a gamma-variant function (Abdelnour and Huppert,
2009) or with a weighted set of temporal basis functions
bi(t) made from a linear combination of H normalized
Gaussian functions bi =

(
1t · h, σ

)
, with a standard

deviation σ and means separated by 1t, both typically in the
order of 0.5 s:

hrf (t) =
∑H

h=1
bi

(
t − 1t · h

)
β
h

(3)

and hrf (t) is repeated at each stimulus onset δk

y
functional
n (t) =

∑K

k=0
hrf (t − δk). (4)

The current state-of-the-art fNIRS GLM approach uses
polynomials to model driftn and short-separation (SS) fNIRS
measurements as regressors to model systemic physiology:

y
physiology
n (t) =

∑JSS
j βSS

n,jy
SS
j (t). All regressors are combined to

form the design Matrix G, which is visualized in Figure 5, and
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FIGURE 5 | Visualization of the GLM design matrix G. (1): HRF regressor

(Gaussian basis function) repeated at each stimulus. (2) Short-separation

regressor. (3) Drift regressor. (4) Example GLM solution with all M weighted

Gaussian bases forming the estimated HRF across trials hrf(t), see equation (3).

the GLM Equation (1) is solved for each regressor’s contribution,
the coefficients β̂ , in a linear least squares approximation:

β̂ =
(
G⊺G

)−1
G⊺ Y . (5)

The General Linear Model for fNIRS is an established supervised approach

in neuroscience that combines a priori knowledge of experimental design

and signal morphology. It provides the best linear unbiased estimate of the

hemodynamic response to a series of stimuli in the presence of physiological

nuisance signals.

3.2. How to Incorporate the GLM Into
Cross Validation Schemes
In its conventional application in neuroscience, the fNIRS
GLM is being applied as a supervised approach to recover
hemodynamic responses to different task conditions across all
available trials. Consequently, solving Equation (5) to obtain
the weights (β̂) for the HRF basis functions and nuisance
regressors yields a best estimate across the whole dataset, and the
estimate improves by increasing the number of trials provided.
Here, we describe our proposed way of incorporating the GLM
into a cross validation scheme, when fNIRS signals are to be
analyzed on a single-trial basis, specifically for the prediction and
classification in BCI scenarios. The proposed approach ensures
that preprocessing, training of the HRF shape and training and
testing of the classifier maintain the integrity and separation of
training and unseen testing data. The overall implementation is
schematically depicted in Figure 6.

3.2.1. Step 1: Learning the Individual and

Channel-Specific HRF Shape From Training Trials
In each fold of an N-fold cross validation, the GLM is solved for
each fNIRS channel n including all available training trials trA =[
tr1, . . . trk

]
to find (1) weights β̂ for the HRF basis functions

bi(t) for each experimental condition c and (2) weights β̂ for the
regressors that model the physiological systemic nuisance signals

ySStrA and the polynomial drift. The GLM solution minimizes the
sum of squared residuals between the linear sum of these model
terms and the continuous fNIRS time series of that channel yn,trA.
yn,trA is the original time series signal excluding all sample points
within the testing interval tst. The rows of the design matrix that
correspond to the testing interval tst are also set to zero. This
way the time structure of the data is kept intact while the GLM
solution is obtained without including any information from the
testing data. The result is the best linear unbiased estimate of the

individual and channel-specific HRF, denoted as y
fnct
n,c,tr , estimated

across training trials of an experimental condition c. It is the
sum of the individually weighted basis functions bi(t) and their
corresponding weights β̂HRF,i. This across-trial estimate is now
used as an individually learned HRF regressor to assess single trial
responses in step 2.

3.2.2. Step 2: Obtaining Single Trial Estimates From

Training and Testing Data

Using the learned HRF regressor y
fnct
n,c,tr for each condition, the

GLM is now set up and solved individually for each trial in
the training splits tr, j and testing split tst. In each trial, aside
from the individual and channel-specific HRF regressor obtained
as described in Step 1, the physiological nuisance regressors,
(linear) drift regressors and the measured fNIRS signals in the
trial’s interval are sole inputs to the model. Each individual
GLM solution yields an unbiased trial by trial estimate of how
pronounced the previously learned hemodynamic response to a
condition is in the presence of nuisance signals. The resulting
estimate is expressed by the HRF regressor weight β̂HRF,c for
each condition. In scenarios withmultiple conditions, the GLM is
solved c times for each trial using the c available HRF regressors.

3.2.3. Step 3: Feature Extraction, Training and Testing
Assuming stationarity, the estimated single trial HRF time
signal can now be used for conventional feature extraction.
If non-stationarities are to be taken into account for further
identification and processing, the GLM’s residual E can be
added to the estimate. As an alternative to the extraction of
conventional features from the estimated HRF time signal such
as average or slope, the scalar regressor weight β̂HRF,c itself can
be used as a feature. Training and testing of the classifier is
then performed conventionally using the single trial estimates
for training and test trials, and steps 1–3 are repeated for
each fold of the cross validation. Remarks: (1) Ideally, the
individual HRF shape is learned in a training session previous
to the actual BCI experiment. Step 1 can then be performed
initially outside of the cross validation loop, which, however,
requires more experimental data. (2) The described approach
can easily be integrated into common existing offline-single
trial analysis pipelines. To enable online single-trial analysis,
e.g., online BCI, the GLM can be implemented in a state-space
approach, for instance a Kalman filter, as was previously shown
by Diamond et al. (2006) and Abdelnour and Huppert (2009).
This approach will be briefly discussed in section Conclusion and
Future Directions.
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FIGURE 6 | GLM for single trial analysis embedded in a cross validation pipeline. Steps 1, 2, and 3 are described in detail in section 3.2.

To integrate the GLM into a conventional cross validation pipeline for single-

trial analysis requires:

(1) Learning the individual, channel and task specific HRF response across

a set of training trials.

(2) Obtaining the unbiased estimate of this HRF’s weight in each single trial

for both training and testing data. The estimated single trial HRF signal

can then be processed conventionally for feature extraction, training

and testing of a classifier.

3.3. Evaluation
Here we compare HRF recovery performance, feature quality
and classification performance for typical fNIRS-based BCI
pre-processing vs. GLM with SS. In order to do so, we
generate ground truth data and apply processing pipelines
as detailed below for each method for the estimation of
the evoked hemodynamic signal. We use functions from the
established HOMER2 fNIRS toolbox (Huppert et al., 2009)
for signal processing. In sections 4 and 5, we provide a
quantitative comparison between the performance of typical
fNIRS-based BCI preprocessing (will be denoted as “no-GLM”
from now on) and the proposed integration of the GLM
with SS.

3.3.1. Synthetic HRF on Resting State Data
We generated ground truth data by augmenting fNIRS resting
state data from 48 long-separation channels from 14 participants
(seeAppendix) with synthetic ground truth HRFs at randomized
stimulus intervals. We generated a synthetic HRF following
the GAM function in AFNI (Cox, 1996) which uses a gamma

function convolved with a square wave. The resultant HRF
has a time-to-peak of 6 s and a total duration of 15 s resulting
in an increase in HbO of 0.66 µMol and a decrease in HbR
of −0.23 µMol (Figure 7, right panel). The synthetic HRF is
convolved with an onset vector with random inter-stimulus
interval between 0 and 6 s and is then added onto a randomly
selected half of the 48 available channels for the “STIM”
condition. None of the channels were augmented with HRFs
during the “REST” conditions. Overall, this yielded between 15
and 20 trials per condition.

3.3.2. Comparative Signal Pre-processing and HRF

Estimation With and Without GLM

3.3.2.1. Common preprocessing for both methods
For both typical no-GLM (A) and GLM with SS (B), noisy
fNIRS channels were identified and pruned using the HOMER2
function hmrPruneChannels (dRange = 104-107 (corresponding
to 80 and 140 dB for a TechEn System) and SNRthresh = 5). All
fNIRS data is then converted into optical density and low pass
filtered at 0.5Hz with a zero-phase Butterworth filter of effective
order 6. Optical density is then converted into concentration
changes using the modified Beer-Lambert law with a partial
pathlength factor of 6 (Delpy et al., 1988; Boas et al., 2004).

3.3.2.2. Detrending
For training and testing splits of data, the signal was linearly
detrended (A) for no-GLM by subtracting the linear least squares
fit of each trial, and (B) by inserting a 1st order polynomial drift
regressor term into the GLM with SS.
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FIGURE 7 | (Left) Correlation and RMSE boxplots for extracted single trial HRFs with both methodological approaches. Red line: median. Bottom/top box edges:

25th/75th percentile. Whiskers extend to most extreme data points that are not outliers. Significance for paired t-test ***p << 10−3. (Right) Exemplary HRF recovered

with both approaches. HbO/HbR (coral/blue) estimated via GLM with SS (solid) and no-GLM (dashed). Table provides the RMSE and Corr values for GLM with SS and

no-GLM for the depicted HRFs.

3.3.2.3. HRF extraction
(A) The detrended concentration time course between the time
period of 2 s prior to stimulus onset to 15 s after stimulus is
used as the single trial HRF for no-GLM. (B) For the GLM
with SS approach the HRF is modeled using a consecutive
sequence of Gaussian functions with a standard deviation of
0.5 s and their means separated by 0.5 s (see section 3.1). The
hmrDeconvHRF_DriftSS function in HOMER is then used to
simultaneously estimate theHRF time signal together with the 1st
order polynomial drift regressor term and one short-separation
regressor term which corresponds to the signal at the fNIRS SS
channel that has the highest correlation with the long-separation
channel under investigation.

3.3.2.4. Baseline correction
The single trial HRF is then baseline corrected using the mean
of the signal from 2 s prior to the onset of the stimulus
to the onset of the stimulus for both no-GLM and GLM
with SS.

4. PERFORMANCE IN HRF RECOVERY
AND FEATURE EXTRACTION WITH AND
WITHOUT GLM

With the ground truth data, we compare no-GLM and GLM
with SS with respect to their recovery performance of fNIRS
hemodynamic responses and feature quality. In the following,
recovered/estimated HRF means the remaining fNIRS signal after
preprocessing using these two approaches as detailed in section

TABLE 1 | 1st and 2nd order statistics of HRF recovery metrics Corr and RMSE.

(Mean ± Std.) No-GLM GLM with SS

Corr HbO 0.73 ± 0.25 0.90 ± 0.15

HbR 0.75 ± 0.26 0.88 ± 0.17

RMSE (µMol) HbO 0.47 ± 0.47 0.27 ± 0.29

HbR 0.17 ± 0.21 0.10 ± 0.10

3.3.2. Single trial recovery performance across an observed trial
length T is evaluated in terms of:

(1) the Pearson’s correlation coefficient (Corr) between the
estimated and ground truth HRF, obtained by using the “corr”
function in MATLAB (MathWorks Inc., Natick, MA).

(2) the root mean squared error (RMSE) between the estimated
(ĤRF) and ground truth HRF (HRF) time series is calculated

as RMSE =

√
1
T

∑T
t=1 (HRF(t)− ĤRF(t))

2
.

Figure 7 shows the boxplots and Table 1 shows the 1st/2nd
order statistics for both metrics and chromophores for no-GLM
and GLM with SS. For both metrics and across all trials, subjects
and channels (a total of 3,960 recovered hemodynamic responses
per chromophore and method), the results of the GLM with SS
are significantly closer to ground truth than those yielded without
GLM (p ≪ 10−3, paired t-test).

Both preprocessing approaches can also be contrasted in
terms of the absolute errors between features extracted from
the preprocessed single trial HRFs and from the synthetic HRF
ground truth. For this comparison, we investigate the features
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FIGURE 8 | Chromophores and features typically used in fNIRS-based BCI literature. Percentages from top 100 most cited papers in Web of Science excluding

review papers. Keyword search: fNIRS & BCI || fNIRS & Classification.

most commonly used in BCI literature, also depicted in Figure 8.
These are:

• Min/Max (Peak): Min (or max) is the minimum (or
maximum) HbO (/HbR) amplitude within the estimated HRF
time window.

• Peak to peak is the difference between the maximum and
minimum HbO (/HbR) amplitude within the estimated HRF
time window.

• Average is defined as the mean of HbO (/HbR) within the
estimated HRF time window.

• Slope is the slope of a linear least squares fit to a pre-defined
time window of the estimated HRF (HbO/HbR), here (0–4 s).

Other features include connectivity metrics, time to peak, and
higher order statistics, such as skewness and kurtosis of the signal
within an epoch.

Figure 9 shows boxplots of the errors between ground truth
features and features extracted from the 3,960 estimated single
trial HRFs using (A) the conventional pipeline (no-GLM) and (B)
the GLM with SS. Across all trials, subjects and channels and for
all feature types and chromophores, the error for GLM with SS is
significantly smaller than for the no-GLM approach (p ≪ 10−3,
paired t-test).

The GLM with SS recovers the evoked hemodynamic brain signal by

simultaneously estimating the contributions of HRF, physiological nuisance,

and drift. This approach leads to a better estimate of the HRF time signal than

conventional single trial BCI preprocessing pipelines, and consequently also

improves the quality of features.

5. SINGLE TRIAL HRF DETECTION AND
CLASSIFICATION

Single trial analysis pipelines typically aim to detect evoked
brain responses to single events—and to discriminate between

events of different conditions. In BCI, where the recovered
brain signals are used to predict the condition (class) of an
event, a standard approach is to determine the signal’s statistical
properties with the help ofmachine learning to train classifiers for
the prediction. Most common among recent fNIRS BCI studies
are classifiers based on regularized Linear Discriminant Analysis
(rLDA, 39%) and Support Vector Machines (SVM, 26%) (see
Figure 10). While the performance of a classifier is strongly
dependent on model and feature selection, it ultimately depends
on the presence of discriminative characteristics that are to be
extracted from the signal. Clearly, a preprocessing pipeline that
increases the evoked signal’s contrast to noise ratio can play a
significant role in the achievable predictive performance. In this
section we briefly compare the impact of the two preprocessing
approaches (typical pipeline: no-GLM, and proposed approach:
GLM with SS) on the discriminability of the most commonly
used features in fNIRS-based BCI studies and the resulting
classification accuracy.

Figure 11 shows the pooled distributions of the two most
commonly applied feature types, average and slope, as well as
our newly proposed feature type, the HRF regressor weight “β,”
across all subjects, channels and trials. We express the effect

size of the distribution’s mean differences by Cohen
′
s d : =

(µ1 − µ2)/s with s being the pooled stadard deviation. The
effect size of the mean distance between the distributions
for stimulus vs. rest conditions is significantly larger for
features that were extracted after GLM with SS preprocessing,
indicating a better separability compared to preprocessing
without GLM.

A typical measure of separability of a feature is the point
biserial correlation coefficient (r2 value), which is defined as

r2
(
x, y

)
=

N1 · N2

(N1 + N2)
2

(µ1 − µ2)
2

var 〈xi〉
(6)
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FIGURE 9 | Boxplots of errors between ground truth features and features extracted from fNIRS signals after conventional preprocessing (no-GLM) and GLM with SS.

***p << 10−3.

FIGURE 10 | Commonly applied classifiers in fNIRS BCI research (top 100

most cited papers in Web of Science excluding reviews. Keyword search:

fNIRS & BCI || fNIRS & Classification).

with µi = mean 〈xi〉yi=1 being the class means and Nk =

|
{
i | yi = k

}
| being the number of samples of class k, xi the

sample and yi the class label of sample i.

For both preprocessing approaches, Table 2 summarizes
the across-subject average r2 for each feature type and
chromophore, each calculated across all augmented channels.
GLM with SS preprocessing yields significantly higher
biserial correlation coefficients for all compared features
and chromophores (p < 2× 10−3).

The enhanced separability of features from hemodynamic
responses that are recovered with the GLM with SS naturally
also improves classification performance. To exemplify this,
we performed a typical classification approach, discriminating
between resting vs. stimulation trials in a 10-fold cross
validation using regularized Linear Discriminant Analysis
with automatic shrinkage of the covariance matrices
(Ledoit and Wolf, 2004; Blankertz et al., 2011). Within
each fold, automatic feature selection was performed
by choosing the 25 features with the highest r2 value
among the training data. The pipeline was repeated for
each available single feature and common two-feature
combinations, and each preprocessing method. Figure 12

shows the resulting classification accuracies for each
subject, feature and method, as well as the across-subject
average performance.

Across all feature types and subjects, preprocessing the fNIRS
data with the GLM with SS improved classification accuracy on
average by 7.4% compared to the performance achieved with
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FIGURE 11 | Histograms and Gaussian fits of selected feature types for both conditions (stimulus and rest) extracted from fNIRS signals preprocessed with

conventional pipeline (no-GLM) and GLM with SS. Features are pooled across all subjects, channels and trials of the same condition. (Top): HbO, (bottom): HbR. d is

the effect size expressed through Cohen’s d.

TABLE 2 | Across subject average point biserial correlation coefficient per feature and preprocessing approach.

r2 Mean ± Std. HRF β Min. Max. Peak to peak Avg. Slope

No GLM HbO 0.076 ± 0.058 0.068 ± 0.048 0.057 ± 0.054 0.107 ± 0.067 0.102 ± 0.068

HbR 0.077 ± 0.072 0.081 ± 0.081 0.062 ± 0.070 0.110 ± 0.096 0.102 ± 0.081

GLM with SS HbO 0.165 ± 0.097 0.108 ± 0.068 0.106 ± 0.075 0.132 ± 0.089 0.163 ± 0.101 0.166 ± 0.101

HbR 0.166 ± 0.124 0.101 ± 0.071 0.112 ± 0.086 0.132 ± 0.112 0.166 ± 0.124 0.166 ± 0.124

Paired t-test (p-value) N/A <2 × 10−3 <10−3 <10−3 ≪10−3 ≪10−3

FIGURE 12 | Classification results for each feature type and preprocessing method. Single bars (colors) are individual subjects. Labels under each group are average

accuracies across subjects. Bottom numbers highlighted by gray bar are average differences between methods. Asterisks (*) indicate significant difference (paired

t-test, p < 5%).
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conventional preprocessing without GLM but otherwise identical
classification pipeline and processing parameters. The new
feature type, the HRF weight β, yielded the highest performance,
identical to that achieved with the slope feature. It is notable that
the HRF weight β inherently combines the characteristics of the
other features, as it represents the strength of the individually
trained whole HRF time course.

The improved Contrast to Noise Ratio of HRFs recovered with the GLM can

significantly reduce noise in the feature space of both chromophores, leading

to improved separability of features and better classification performance.

6. CONCLUSION AND FUTURE
DIRECTIONS

With the concurrent advances in wearable imaging systems
and active and passive Brain Computer Interfaces in the
last two decades, the exploration of signal processing for a
robust estimation of brain activity has become increasingly
vital. A successful BCI application requires robust feature
extraction from brain signals that accurately reflect the
intent/state of the BCI user (He et al., 2012) and not
physiological artifacts. In fNIRS-based BCIs, obtaining
such features heavily depends on the robust estimation of
the underlying cerebral hemodynamic changes associated
with the brain activity. fNIRS measurements, though,
can be heavily contaminated by signals of physiological
and/or non-physiological origin, especially when acquired
in environments with more ecological validity, recently
enabled by new wearable systems. Despite the availability of
dedicated preprocessing methods that can successfully filter
such confounding signals, the fNIRS BCI field is still in an
early stage in exploring and adapting these approaches from
conventional neuroscience. In this paper, we aimed to highlight
the importance of proper preprocessing of fNIRS signal, and
showed how using the state-of-the-art approach, i.e., the
General Linear Model with short-separation regression, can
improve the discriminative power of features and the resultant
classification accuracy.

6.1. GLM in Single Trial
Analysis—Considerations and Caveats
The General Linear Model allows simultaneous extraction of the
evoked HRF response and filtering out confounding signals with
the help of nuisance regressors. Independent measures of such
nuisance factors, such as short-separation fNIRS measurements,
have been shown to be quite effective in modeling the systemic
interference and allow a more robust estimation of brain activity
(Gagnon et al., 2011; Yücel et al., 2015). We have shown
that the single trial hemodynamic signals recovered with the
GLM are significantly closer to ground truth compared to the
ones obtained with conventional fNIRS-based BCI preprocessing
pipelines in terms of both the correlation and the root mean
squared error. We should note that our simulated data did

not involve any task-evoked systemic changes in the short and
long-separation measurements. In an actual scenario, the task
at hand can produce hemodynamic changes in the superficial
layers that are time-locked to the cerebral hemodynamic
changes but are not brain signal. In such cases, discriminative
systemic physiology can increase the classification accuracy,
as the classifiers use all the information at hand to obtain
highest discriminative power. However, they can dramatically
reduce the performance in real world settings where systemic
physiology is more susceptible to spontaneous changes outside
of the constrained paradigm. Examples are increases in motion
related artifacts in the signal while running, or changes in
scalp hemodynamics during different emotional states. This
issue further emphasizes the importance of proper cleaning
of physiological and non-physiological confounding factors in
the signal.

The improved HRF recovery performance of the proposed
approach also impacts the discriminative power of the resultant
features and classification accuracy. All commonly used features
in the fNIRS BCI field, namely peak, average, slope, and
peak-to-peak, extracted from HRFs obtained via GLM with
SS were significantly closer to the ground truth and more
discriminative between classes, as expressed by increased
Cohen’s d and biserial correlation coefficients. Expectably,
the increased discriminability also resulted in an increased
classification accuracy. Alongside with commonly used features
in the BCI field, we introduced a new feature type by
obtaining an individual and channel-specific hemodynamic
response function from the training data which essentially
incorporates the information of all commonly used features. The
estimation of the contribution of this individual and channel-
specific hemodynamic response function in each single trial,
as performed by the GLM, yields one single comprehensive
feature—the HRF weight β. Such an approach not only provides
the highest classification accuracy but also reduces the risk
of a biased or suboptimal choice of feature types among the
many available.

One caveat of using individual and channel-specific HRF
regressors is that the inclusion of channels that show no
activation differences across conditions (e.g., STIM/REST) can
result in a feature distribution that impairs classification
accuracy. While without a GLM approach the features
obtained from non-active channels during STIM and REST
condition have a random distribution, using an individually
learned HRF regressor in the GLM approach forces the
single trial HRF estimates in these channels to have a
fixed shape, varying only by amplitude between trials. An
HRF regressor learned from random signals in the STIM
condition applied to random signals in the REST condition
can consequently yield more similar features than would have
been obtained on a random signal without GLM. These “false
positives” can reduce discriminative power and classification
accuracy. A simple but important remedy is to perform
channel and/or feature selection: Common approaches are
(1) applying a statistical test on the training data and pick the
channels that show significant difference between conditions,
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thereby excluding inactive channels from the analysis. (2)
Performing feature selection based on their separability, e.g.,
by means of a point biserial correlation coefficient, as done in
this paper.

Accuracy and speed are two important performance measures
in BCI applications, typically expressed together as the
“information transfer rate” (ITR), in bits per minute or bits
per trial (Wolpaw et al., 1998). The ITR naturally depends on
the number of trials necessary (speed) for a robust estimation
of the brain signal (accuracy). While using more than one
trial improves the HRF estimation performance by better
conditioning the design matrix in a GLM approach, here
we showed that good performance and high classification
accuracy can be achieved at the single trial level as well.
By employing the GLM for single-trial analysis within cross
validation as we propose in this manuscript, accuracy is
increased by (1) obtaining the features from an individual
and channel-specific HRF that was obtained from the training
data which includes multiple trials and (2) properly removing
the physiological and non-physiological nuisance from the
test signal. Especially in passive BCI applications where speed
can be less relevant and multiple trials can be analyzed
simultaneously, it can be expected that the GLM approach
improves accuracy even more beyond that achieved with
conventional preprocessing.

6.2. Further Improved Nuisance
Regression—Using the GLM With tCCA
Regressors
We have recently shown that the presented state-of-the-art GLM
using short-separation measurements as nuisance regressors
can be further improved by incorporating temporally embedded
Canonical Correlation Analysis (tCCA) (von Lühmann et al.,
2020). tCCA enables the combination of any available auxiliary
signals, including short-separation signals, accelerometer,
respiration, blood pressure, and others, into more optimal
nuisance regressors. By temporally embedding the auxiliary
signals, a remedy to non-instantaneous and non-constant
coupling between auxiliary and fNIRS signals is provided
(von Lühmann et al., 2019). This makes the GLM solution
less susceptible to errors from varying time delays between
physiological nuisance signals in the measurement channels.
The new approach models the physiological component in

Equation (2) as y
physiology
n (t) =

∑JCCA
j βCCA

n,j ŝCCAj (t), where

ŝCCAj are the JCCA regressors found by optimizing the tCCA

objective function. The so found nuisance regressors improve
GLM performance significantly in terms of the recovered
HRF shape and Contrast to Noise Ratio as well as sensitivity
and specificity, especially when the number of available trials
are low (von Lühmann et al., 2020). tCCA regressors can
be determined as a common set of multiple regressors for
all fNIRS channels, or one individual tCCA regressor per
fNIRS channel. The GLM with tCCA approach can be easily
integrated into the proposed (cross validated) preprocessing
pipeline for single-trial analysis in this manuscript. Instead of

using JSS short-separation channels ySSj , one simply employs

the new JSS tCCA regressors ŝCCAj for physiological regression

in the GLM. There are two additional requirements: (1)
The experimental setup has to include the acquisition of
the additional auxiliary signals, with SS fNIRS channels
and accelerometer being the most valuable, and (2) a few
minutes of individual resting state data without evoked
hemodynamic responses are required to train the tCCA
projection filters. While the tCCA approach adds some
complexity, it provides solutions for the challenges arising
in real-world fNIRS application scenarios, such as BCI,
neuroimaging and Neuroergonomics out of the lab, where
physiological interference can otherwise be a major hindrance to
robust single trial analysis (von Lühmann et al., 2019).

6.3. Real Time Implementation of the
Proposed GLM Approach
In conventional fNIRS and fMRI neuroscience, the GLM is
usually applied to supervised offline analysis of multiple trials at
once. In this manuscript, we showed how to adapt it to single
trial analysis within a cross validation scheme. Several ways
exist to achieve real time capability of this approach. One way
is to use a Kalman filter based state-space modeling approach.
The Kalman filter method is a dynamic tracking scheme that
estimates the state xn of a process using a recursively updated
regularized linear inversion routine. It has been successfully
adapted for the fNIRS GLM by others and us in the past
to adaptively estimate the GLM coefficients β for each time
step (Diamond et al., 2006; Abdelnour and Huppert, 2009; Hu
et al., 2010; Gagnon et al., 2011). Building on these previous
adaptations allows the straight-forward integration of both the
SS regression and tCCA-based noise regressors to achieve a
robust real-time estimation of the GLM coefficients and evoked
hemodynamic responses.

BCI and more integrative human-machine interfaces (HMI)
that use both brain and body signals, have unprecedented
potential to improve healthcare, work environments, efficiency,
and security and can advance our understanding of brain
function and cognition in general and especially under
everyday life conditions. For the transition from well-controlled
laboratory environments into real life applications, the robust
separation of task-evoked brain activity from a wide range
of confounding physiological and non-physiological nuisance
factors is required. In fNIRS-based BCIs, a General Linear Model
approach with short-separation regression and an individual
and channel specific-HRF model obtained from a training data
set can increase performance. By simultaneously estimating
systemic physiology and evoked brain responses, it improves
features separability and classification accuracy even at a single
trial level.
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A. APPENDIX

A.1. fNIRS Resting State Data
Ten minutes of fNIRS resting state data were collected from

13 healthy subjects (age: 30 ± 17 years; 7 male/5 female/1 not
reported) who gave their signed written informed consent form

prior to the experiment. The study was approved by and carried

out in accordance with the regulations of the Institutional Review

Board of Boston University. Subjects had no neurological or

psychological disorders. A CW7 fNIRS system (TechEn Inc. MA,

USA) with 32 frequency-encoded lasers (half at 690 and half at
830 nm) and 32 avalanche photo-diode detectors was used for
data acquisition. The sample rate was 50 Hz.

Subjects were seated in a comfortable chair and an fNIRS
probe was placed on their head. The head probe was consisted
of an elastic cap (EasyCap, Herrsching, Germany) with 16
sources, 24 long-separation detectors (∼30 mm apart from
the source) and 8 short separation detectors (∼8 mm apart
from the source) providing, in total, 48 long-separation and 8
short-separation channels.
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