
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Toward an equation-oriented framework for diagnosis of complex
systems

Author(s) Feldman, Alexander; Provan, Gregory

Publication date 2013-04

Original citation Feldman, A. and Provan, G. (2013) 'Toward an equation-oriented
framework for diagnosis of complex systems', Proceedings of the 5th
International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools (EOOLT 2013), University of Nottingham, UK, 19
April, pp. 65-74. Available at:
https://www.ep.liu.se/ecp/084/ecp13084.pdf (Accessed: 5 May 2020)

Type of publication Conference item

Link to publisher's
version

https://www.ep.liu.se/ecp/084/ecp13084.pdf
Access to the full text of the published version may require a
subscription.

Rights © 2013, the Authors. The online availability of the document implies
permanent permission for anyone to read, to download, or to print
out single copies for his/her own use and to use it unchanged for
noncommercial research and educational purposes. All other uses of
the document are conditional upon the consent of the copyright
owner. According to intellectual property law, the author has the
right to be mentioned when his/her work is accessed as described
above and to be protected against infringement.

Item downloaded
from

http://hdl.handle.net/10468/9898

Downloaded on 2021-11-27T14:30:21Z

https://libguides.ucc.ie/openaccess/impact?suffix=9898&title=Toward an equation-oriented framework for diagnosis of complex systems
https://www.ep.liu.se/ecp/084/ecp13084.pdf
http://hdl.handle.net/10468/9898

Toward an Equation-Oriented Framework for
Diagnosis of Complex Systems

Alexander Feldman Gregory Provan
University College Cork, Ireland

a.feldman@ucc.ie, g.provan@cs.ucc.ie

Abstract
Diagnosis of complex systems is a critical area for most
real-world systems. Given the wide range of system types,
including physical systems, logic circuits, state-machines,
control systems, and software, there is no commonly-
accepted modeling language or inference algorithms for
model-Based Diagnosis (MBD) of such systems. Design-
ing a language that can be used for modeling such a wide
class of systems, while being able to efficiently solve the
model, is a formidable task. The computational efficiency
with which a given model can be solved, although often ne-
glected by designers of modeling languages, is a key to pa-
rameter identification and answering MBD challenges. We
address this freedom-of-modeling versus model-solving
efficiency trade-off challenge by evolving a language for
MBD of physical system, called LYDIA. In this paper we
report on the abilities of LYDIA to model a class of phys-
ical systems, the algorithms that we use for solving MBD
problems and the results that we have obtained for several
challenging systems.

Keywords model-based diagnosis, model-based testing,
automated reasoning, modeling language

1. Introduction
Diagnosing complex systems using a model-based diagno-
sis (MBD) approach has led to the development of several
languages, most of which are extensions of simulation lan-
guages. Examples include logic-based diagnosis languages
(which extend multi-valued logics), e.g., [20]; bond-graph
diagnosis languages (which extend bond-graphs), e.g.,
[21]; and MODELICA-based diagnosis languages (which
extend MODELICA), e.g., [2].

Each of these languages has strong and weak points.
The logic-based diagnosis languages have a well-defined
diagnosis semantics and cleverly-designed inference algo-

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

rithms, but are limited in the types of behaviours that they
can be described by logic-based constraints.

The bond-graph and MODELICA-based diagnosis lan-
guages can describe a wider class of systems, but do not
have a well-defined diagnosis semantics or efficient diag-
nostics inference algorithms. For example, MODELICA fo-
cuses on a single nominal mode of a system1, whereas a
diagnosis language must be able to specify behaviours for
all the pertinent nominal and faulty modes of the system.

In this article we propose a diagnosis framework that
aims to provide the expressive power of a MODELICA-
based diagnosis language together with a clear diagnosis
semantics and efficient diagnostics inference algorithms.
The language, LYDIA, is a component-based, hierarchi-
cal language that supports dynamical systems (based on
ODEs) as well as logical constraint-based representations.
In addition, the framework provides a range of simula-
tion and fault-isolation algorithms. Hence, LYDIA provides
many of the simulation-oriented capabilities of a Mod-
elica implementation together with the associated mode-
identification and fault-isolation algorithms. Further, LY-
DIA allows modes to be identified by their likelihood of
explaining the observed data, using a variety of likelihood
metrics.

Our contributions are as follows:

1. We describe a modeling language, LYDIA, that supports
the specification of mode-based behaviours for nominal
and faulty models;

2. We describe a framework that can simulate, identify
modes and isolate faults for models described in the
LYDIA language;

2. Related Work
This section compares our approach to that of some key
existing equation-oriented systems/languages, e.g., MOD-
ELICA (http://modelica.org/), bond graphs (http://
bondgraph.org/), and Rodelica [5].

2.1 Diagnostic Approaches
MODELICA is a mixed declarative/procedural language; see, e.g.,
[12]. The declarative aspect involves the dynamical systems equa-
tions; the procedural aspect involves the specification of code

1 Of course, it is possible to have multiple modes in MODELICA, however,
the price is often increased modeling and simulation complexity.

65

fragments within the model itself. It is noted in [12] that the se-
mantics of MODELICA is defined not just by the declarative as-
pects of the model, but also by the compilation of the model that
aims at optimizing simulation efficiency. In other words, seman-
tics is also provided by the process of translation of a hierarchical
model, which consists of a hierarchically-nested set of classes, in-
stances and connections, into a flat model, consisting of a set of
constants, variables and equations. In the flat model, an optimiza-
tion/compilation step performs several operations, including sort-
ing and conversion of equations to assignment statements. Next,
strongly-connected sets of equations are solved using symbolic
and/or numeric solvers.

In contrast to MODELICA, the LYDIA language is fully declar-
ative. For example, whereas MODELICA allows users to define
procedural entities (code fragments) within the model itself, LY-
DIA only allows declarative statements developed from syntacti-
cally correct language statements. Allowing in-model algorithm
specification is problematic for model-based reasoning, since this
interferes with the symbolic manipulation of equations that is cru-
cial to simulation and diagnostics inference.

Bond graphs are an equation-oriented language which bear a
close relation to MODELICA; in fact, a bond graph library exists
in MODELICA [7]. Bond graphs constrain MODELICA to repre-
sent systems in terms of energy and power flows, thus forming
a semantic framework for physical systems. Bond graphs model
physical systems in terms of four entities: effort e, flow f , general-
ized momentum p, and generalized displacement q. A graphG en-
ables the specification of energy flows among components, where
a node corresponds to a component and an edge to a bond (i.e.,
a flow/effort interaction) between the joined components. The se-
mantics of a bond graph G is specified through the assignment of
differential- algebraic equations to each of the nodes and edges of
the graph G, as based on mapping the graph structure (noting the
connection semantics of the two basic connection types, parallel
and series connection) into equations. These differential-algebraic
equations describe the behavior of the four variables p, q, e and
f , for each of the physical components in the system (i.e., the
nodes in the graph G).

Standard bond graphs have no notion of mode, or mode-based
inference. Extended models, e.g., [21], have been developed, but
the approach is quite different to that of LYDIA. For example,
LYDIA does not impose any flow/energy restrictions to semantics,
and its notion of mode is an inherent part of the language, rather
than an extension.

RODELICA is a diagnosis language based on MODELICA, and
used as the basis for the diagnostics system RODON [5, 4].
Rodelica is similar in structure to the LYDIA-NG language, in
that it specifies component modes along with their associated
behaviours. However, Rodelica is strictly more limited than the
LYDIA-NG language, in that it allows not full ODSs but point-
or interval-valued arithmetic constraints. In addition, a Rodelica
model is restricted to atemporal equations (and hence uses data
from one time instance), and cannot define the stochastic occur-
rence of faults in components. On top of this, the Rodon diagnos-
tics system is limited to a single inference engine, as opposed to
the ability of LYDIA-NG to use multiple inference engines and
residual generators.

MATLAB/SIMULINK models (http://mathworks.com/)
have a highly procedural semantics associated with simulation
of a block-oriented model. Procedural tools for execution of a
Simulink block during a given simulation step are governed by
a number of factors; these include, among others, whether or not
the block (or a subsystem containing the block) has a sample
time, or whether or not the block resides in a conditionally exe-

cuted subsystem. Block execution can also be disabled by condi-
tional input branch statements. Matlab/Simulink has no inherent
language framework for modes, nor well-established algorithms
for diagnosis. As mentioned earlier, the LYDIA language is fully
declarative and has associated algorithms for simulation and di-
agnostics inference.

2.2 LYDIA versus MODELICA

LYDIA is an equation-based language, i.e., a LYDIA model is
translated to a system of equations. These equations can be
Boolean, linear, or systems of ODEs. One of the major differ-
ences between LYDIA and MODELICA is the approach to solving
systems of equations. MODELICA can solve DAEs. LYDIA tries
to identify the type of the system of equations and invoke ap-
propriate solver (simulation engine). For example, if LYDIA-NG
detects a model that contains Boolean variables only, it will not
use an ODE solver but a SAT algorithm which is better optimized
for this class of systems. The idea is to use specialized solvers for
various tasks, for examples trigonometric systems, etc.

LYDIA is in the same category of equation/simulation-based
declarative languages but is targeted toward the diagnostic user-
group. These are the the major differences between the two lan-
guages:

Syntax: LYDIA evolved from several diagnostic projects. The
design of the language syntax was probably dictated by the
experience of the language designers. LYDIA has syntactical
resemblance to C, VERILOG, and ADA.

Type system: Both LYDIA and MODELICA are strongly typed
languages. LYDIA optimizes heavily the use of Boolean vari-
ables.

Object orientation: MODELICA is an object-oriented language,
while LYDIA is not. From all features of object-oriented lan-
guages [14], the most important one for equation-oriented ap-
proaches is inheritance which may lead to more compact mod-
els. LYDIA uses external pre-processors to achieve the same
goals, however, in future extensions of the language the au-
thors of LYDIA may bring inheritance into the language. Infor-
mation hiding is supported by MODELICA and not supported
by LYDIA. Information hiding may help modelers avoid mis-
takes.

Explicit procedures: LYDIA does not support MODELICA-type
algorithm sections. The reason for that is that while MOD-
ELICA models are typically used from simulation only, LY-
DIA models are used for multiple simultaneous simulations.
This imposes strict requirements on (1) the computational ef-
ficiency of the simulation and (2) the side-effects of the sim-
ulation. An example of a side-effect would be a MODELICA

algorithm using a file on disk. In LYDIA this would create a
problem as this file would be overwritten by the multiple si-
multaneous simulations for the various fault-modes. Further
it is very difficult to have automated performance analysis on
procedural code.

Units: LYDIA does not support directly units. Units can be speci-
fied as string attributes, but there is no unit algebra. Units may
be supported as first-class citizens in future versions of LY-
DIA.

Modes: The most important difference between LYDIA and
MODELICA is the use of modes in LYDIA. This is not strictly
a language difference but an issue of interpreting the mod-
els. LYDIA detects health and user-input variables and iden-
tifies components based on these variables. This can be eas-
ily achieved in MODELICA by using special variable types,

66

e.g., according to a naming convention. LYDIA also identifies
which equations belong to which component mode.

3. LYDIA Modeling Examples
This section describes the LYDIA language through examples,
rather than use a formal approach. Viewed simply, LYDIA enables
users to define models in terms of constraints, where constraints
may range from logic to differential equations. Further, LYDIA

supports component-based definitions of systems, such that for
each component we can associate a mode that represents the
distinct functional modes that drive the component’s behaviors.
When a system is composed, the system-level modes consist
of the cross-product of the component modes, and the system
equations consist of the union of the mode-based component
equations. We use standard methods for component composition,
e.g., [13].

A LYDIA model has four sections: prologue, domains, struc-
ture, and components. The prologue describes the main charac-
teristics of the model, i.e., the types of the constraints, fault-
modeling, etc. The structure displays the model hierarchy that is
essential for many of the MBD algorithms existing today. The
domain description specifies symbolic values for all the Finite
Domain Integer (FDI) variables (Booleans are treated as a spe-
cial case of many-valued logic). Finally, for each component a set
of constraints and transitions are specified. In particular, LYDIA
supports constraints ranging from logic to differential equations.

The models discussed in this section come from three differ-
ent domains. The first one is an analogue electrical circuit. The
example shown in section 3.1 is a logic circuit similar to the ones
that are used for benchmarking of Automated Test Patter Gener-
ation (ATPG) [3]. Finally, the third example illustrates the use of
Ordinary Differential Equations (ODEs) in LYDIA.

Another difference between LYDIA and simulation languages
like SIMULINK and MODELICA is that LYDIA splits the model in
two: system model and diagnostic scenario. The system model
is similar to what we have in other modeling languages. The
diagnostic scenario contains sensor data, initial values and other
information that is unknown at modeling time. This allows the use
of compilation methods—the system model does not change and
can be compiled (sometimes in the strict sense of the term [8]) to
facilitate reasoning. while the sensor data is supplied at run-time
and even includes noise.

3.1 An Analogue Electrical Circuit
Figure 1 shows a small electrical circuit. It consists of a single
voltage source (V1), two switches (SW1 and SW2), and a current
sensor (I1). If we disregard the switches and the sensor (take the
voltage source and resistors only) we can easily calculate all node
voltages and branch currents. This can be done with an electronic
calculator or with a simulation program like SPICE [16]. LYDIA-
NG implements SPICE simulation.
When modeling a system in LYDIA we start with each component
separately. With some luck, these are standard components and
are already modeled in a component library. Otherwise the com-
ponent models have to be created. We next show a resistor model
in LYDIA. This is already part of the electrical component library
electrical.lcl.

1 type ResistorHealth = enum { nominal, open, short };
2
3 system Resistor (float resistance , current , pn, nn)
4 {
5 ResistorHealth h;
6

+

-
V1 24

resistor

A
current
sensor

voltage sourceswitch

+

-
20

A

I1

SW1

SW2

N1

N2

N3

N4

R1

20

10

R2

20

Figure 1. A small power distribution network

7 attribute health (h) = (h == ResistorHealth .nominal);
8
9 switch (h) {

10 ResistorHealth .nominal −>
11 {
12 resistor (resistance , current , pn, nn);
13 }
14 ResistorHealth .open −>
15 {
16 // no constraint
17 }
18 ResistorHealth . short −>
19 {
20 resistor (0, current , pn, nn);
21 }
22 }
23 }

Listing 1. Resistor model

Line 1 defines a new discrete LYDIA type that will be used for
the health of the resistor. This type defines three modes for the
resistor: nominal, open-circuited, and short-circuited. The first
mode is a nominal and the other two are fault-modes. The health
variable itself is declared in line 5. We specify in the model which
mode is the nominal and which modes are the fault modes by
adding a variable attribute. This is done in line 7 of the resistor
model.

Component models in LYDIA typically follow the same struc-
ture. LYDIA simulates for a set of nominal/fault modes. The
choice which simulation goes for which fault mode is made in
line 9 of the resistor model. When diagnosing, disambiguating, or
otherwise reasoning, LYDIA-NG, will pick the relevant equations
(constraints) depending on the hypothesized (assumed) value of
the health variables (in the case of the resistor model above, the
health variable is h).

The actual resistor equations (constraints) are specified in lines
12, 16, and 20. Notice that in the case of an open-circuit, there
is no constraint, i.e., an open-circuited resistor is modeled with
an empty set of constraints. This is equivalent to specifying a
resistor with infinite resistance but eliminates the need of this
resistor to be pruned (LYDIA-NG supports infinite resistance and
conductance through symbolic preprocessing). For the nominal
mode we specify the built-in constraint resistor , parametrized
with its nominal resistance. LYDIA-NG will take this and fill-in
the proper values in a nodal equation matrix so it can compute
the unknown voltages and currents. In the case of a short-circuit

67

(line 20), we make the resistance parameter zero and LYDIA-NG
knows how to deal with this case during simulation.

When diagnosing, LYDIA-NG will choose constraints based
on hypothesized fault modes and construct a simulation model.
This simulation model will be simulated with a domain-specific
solver (in the above case with SPICE). This process will be
repeated multiple times until the proper fault mode is identified.

We next describe a component that cannot be fully-simulated
with SPICE . This is the current sensor. The current sensor con-
sists of a small-resistor (just like the majority of the electronic
current sensors do) and some equation that allows the reading of
the sensor to be “stuck-at” some value in the presence of a fault.
Of course, the last equation has nothing to do with SPICE and is
a very simple algebraic equation. This algebraic equation can be
solved by value propagation after the SPICE simulation finishes.
LYDIA-NG partitions the constraints (equations) and invokes the
appropriate solvers (up until now we have mentioned the SPICE
solver and a simple algebraic propagation-based solver) automat-
ically. Here is a model of a current sensor:

1 type SensorHealth = enum { nominal, failed };
2
3 system CurrentSensor(float pn, nn)
4 {
5 float r ;
6
7 attribute observable (r);
8 attribute name(r) = "current [A]";
9

10 float current ;
11
12 SensorHealth h;
13
14 attribute health (h) = (h == SensorHealth.nominal);
15
16 switch (h) {
17 SensorHealth .nominal −>
18 {
19 resistor (0.01, current , pn, nn);
20 r = current ;
21 }
22 SensorHealth . failed −>
23 {
24 resistor (0.01, current , pn, nn);
25 r != current ;
26 }
27 }
28 }

Listing 2. Current sensor model

Last, we show how to model a switch in LYDIA:

1 type SwitchHealth = enum { nominal, stuck };
2 type SwitchCommand = enum { open, closed };
3
4 system Switch(float current , pn, nn)
5 {
6 SwitchHealth h;
7 SwitchCommand cmd;
8
9 attribute health (h) = (h == SwitchHealth.nominal);

10 attribute control (cmd) =
11 (cmd == SwitchCommand.closed);
12
13 switch (cmd) {

14 SwitchCommand.open −>
15 {
16 switch (h) {
17 SwitchHealth.nominal −>
18 {
19 // no constraint
20 }
21 SwitchHealth. stuck −>
22 {
23 resistor (0, current , pn, nn);
24 }
25 }
26 }
27 SwitchCommand.closed −>
28 {
29 switch (h) {
30 SwitchHealth.nominal −>
31 {
32 resistor (0, current , pn, nn);
33 }
34 SwitchHealth. stuck −>
35 {
36 // no constraint
37 }
38 }
39 }
40 }
41 }

Listing 3. Single throw switch model

The new feature in the switch model is that we have a user-
command variable—the commanded position of the switch. So,
this is an example in which we have two parameters: the com-
manded position and the health. Remember that, when building
component models we have to simulate for a subset of the Carte-
sian product of each user-command/health variable. In the above
example we have two possible switch positions (open and close)
and two possible modes (nominal and stuck), hence there is a total
of four models for each combination of values of the parameters.
Remember that the user-commands have to be specified in the
outer switch statement and the health models in the inner switch
statements. It is also possible to specify each simulation with a
sequence of if-statements but using switches is more elegant.

Of course, there are also models of the voltage sensor and the
voltage source but we will not discuss those. Fortunately, there
are component libraries that come with LYDIA and the user is
not required to model standard components. We have shown the
three component models above only to explain some basic LYDIA

modeling and to provide information for users to design their own
component libraries for non-standard components.

Before we are ready to start simulation/diagnosis in LYDIA-
NG we have to connect together all components that are shown in
figure 1. This is done in the top-level (or main) LYDIA system:

1 #include "electrical.lcl"
2
3 attribute void reference ;
4
5 system main()
6 {
7 float ground;
8
9 attribute reference (ground);

10

68

11 float N1, N2, N3, N4;
12 float V1, R1, R2, SW1, SW2;
13
14 voltage_source (24.0, V1, N1, ground);
15
16 system CurrentSensor I1(N1, N2);
17 system SimpleSwitch SW1(SW1, N2, N3);
18 system SimpleSwitch SW2(SW2, N2, N4);
19 system Resistor R1(20.0, R1, N3, ground);
20 system Resistor R2(20.0, R2, N4, ground);
21 }

Listing 4. Top-level system in a model of a power distri-
bution network

The above top-level system starts with the include directive in line
1 so LYDIA can use the electrical component library. LYDIA-NG
uses a C-like preprocessor. The first three models in this section
were excerpts from the electrical component library.

Notice that the top-level system in a LYDIA model comes last
(i.e., first all component and subsystem models and the last system
is the top-level one). The rest of the systems and sub-systems do
not have to be in a particular order as far as the top-level system
is the last one.

The significant part of the top-level system instantiates and
connects components from the component library (see lines 16–
20). A system instantiation is done by specifying the keyword
system followed by the type of the system and then the name
of the instantiation. After the name of an instance follows (a
left parenthesis and) a list of variables. The number and type of
variables should match the system interface, otherwise the LYDIA

compiler is going to produce an error.

3.2 A System of Boolean Equations
It is straightforward to enter Boolean equations in a LYDIA model.
These systems of equations can be used for modeling of digital
integrated circuits, or other combinatorial computational devices.
Boolean functions are often represented graphically, by using the
same symbols as in a standard computer arithmetic schoolbook
[19]. An example Boolean function is shown in figure 2. This
function implements a full-adder, a device that computes the
sum (and the carry) of two Boolean numbers (and carry). By
composing multiple of these one can build, for example, a 32-bit
adder.

ci

i1

i2

co

Σ

rp

q

Figure 2. Boolean full adder

The full-adder shown in figure 2 has three types of components,
in this case logic-gates: OR-gate, AND-gate, and XOR-gate. This
is how a model of an AND-gate looks like:

1 system and2(bool o, i1 , i2)
2 {
3 bool h;
4

5 attribute health (h) = h;
6
7 h => (o = (i1 and i2));
8 !h => (o = !(i1 and i2));
9 }

Listing 5. Model of an AND-gate with two inputs

Let us have a closer look at the above AND-gate model. First, all
variables are Boolean. There are one output (o) and two input vari-
ables (i1 and i2). These three variables are declared as formals of
the system (line 1). The health variable h is declared in line 3. The
health attribute in line 5 tells LYDIA that when h equals true, the
component is healthy, and otherwise. LYDIA-NG needs this so
it can perform diagnosis. When diagnosing, LYDIA-NG performs
multiple simulation for different values of the health variables and
it needs to know which value means healthy (nominal) and which
values means fault.

There are two constraints in the model of the AND-gate: one
for when the gate is working nominally (line 7), and one for when
the gate is at-fault (line 8). Instead of a switch-predicate like in
the example in section 3.1, we use conditional expressions to
differentiate between the nominal and the fault mode.

We call the model of the AND-gate shown in listing 5, a
“stuck-at-opposite” model. This means that when the gate is
faulty, the output of the gate has the opposite value of what it
is supposed to be for the specified inputs. This is the same as
a weak-fault model [10] but allows simulation by simple value
propagation for any value of the health variable h.

A full-adder is composed of two half-adders as illustrated
in figure 2. Each of the two half-adders in figure 2 is enclosed
by a dashed rectangle. Modeling separately the half-adder and
composing the full-adder out of the two half-adders and the OR-
gate results in non-trivial hierarchy (i.e., a hierarchy where we do
not only have component models and a top-level system, but also
subsystems). The model of the half-adder simply combines and
AND-gate and an XOR-gate as shown next.

1 system halfadder2 (bool i1 , i2 , sum, carry)
2 {
3 system and2 A(carry , i1 , i2);
4 system xor2 X(sum, i1 , i2);
5 }

Listing 6. Model of a half-adder

Of course, a large number of Boolean gates, adders and various
logic circuits are already modeled in the std-logic-so.lcl
component library and can be used in any model that includes it.

To conclude the model of the full-adder, we have to compose
the two half-adders and an OR-gate into the final top-level design.
This is shown in the listing that comes next.

1 #include "std-logic-so.lcl"
2
3 attribute void input ;
4 attribute void output ;
5
6 system fulladder (bool ci , i1 , i2 , sum, carry)
7 {
8 attribute input (ci , i1 , i2);
9 attribute output (sum, carry);

10 attribute observable (ci , i1 , i2 , sum, carry);
11
12 bool f , p, q;
13
14 system halfadder2 HA1(i1, i2 , f , p);

69

15 system halfadder2 HA2(ci, f , sum, q);
16 system or2 O(carry , p, q);
17 }

Listing 7. Top-level system in a model of a Boolean adder

What is new in the top-level system above, is that in addition to
all the subsystems and variables we have two new attributes—
input (line 3) and output (line 4). We use these two attributes to
denote the primary inputs (ci , i1, and i2), and the primary outputs
(sum and carry). LYDIA-NG needs to know what is an input and
what is an output so it can simulate, i.e., propagate the values of
the Boolean inputs through the circuit to obtain the values of the
Boolean outputs.

3.3 Ordinary Differential Equations
One of the first devices for measuring time is a water-filled vessel
with a small orifice in it. Measuring time with such a device
requires solving a differential equation as the rate of change of the
observable quantity (the water height) depends on the amount of
water in the vessel. The so called clepsydra problem is a standard
problem in schoolbooks on ordinary differential equations [23,
p. 108] and can be solved analytically.

In this paper we solve a diagnostic version of the water clock
problem. We start with the clepsydra example in Ordinary Differ-
ential Equations: An Elementary Textbook for Students in Mathe-
matics, Engineering, and the Sciences [22, p. 183] and modify it
so it has two holes as illustrated in figure 3. Either of these two
holes (or both) can get instantaneously and fully blocked. The
goal is, given a measurement of the water height, to determine
which of the holes is open and which is stuck. This is how the
problem is formulated:

water level after 1 minwater level after 2 minwater level after 3 min

initial water level

Figure 3. Water clock with two holes that can get blocked

Problem 1. Water flows freely throgh two orificies of a water
vessel. It has been established that the rate of flow of water is
proportional to the area of the orifices and the square root of the
height of the water:

Adh = ka
√
hdt, (1)

where

A is the area of the water surface,

h is the height of the water,

r1 and r2 are the radii of the orifices.

It has been determined experimentally that k = −4.8. In this
problem, A = 12, r1 =

√
3/24, r2 = 1/24, and the initial level

of the water is h0 = 9.
In addition to all that, there is a discrete parameter m ∈

{0, 1, 2, 3} where m = 0 means that both holes are unblocked,
m = 1 means that the hole with radius r1 is blocked, m = 2
means that the hole with radius r2 is blocked, and m = 3 means
that both holes are stuck. Given a measurement of the water αt

at time t and (predicted) levels of the water h0, h1, h2, and h3

for m = 0,m = 1,m = 2, and m = 3, respectively, we can
compute the value of m from the formula:

m = arg min
i∈{0,1,2,3}

|αt − hi| (2)

Given ht = 6.5 at time t = 135, compute the value of the discrete
parameter m.

Let us model in LYDIA the clepsydra shown in figure 3.

1 type ClepsydraHealth = enum { nominal, s1 , s2 , sb };
2
3 system Clepsydra ()
4 {
5 float A = 12;
6 float r1 = (sqrt (3) / 2) / 12;
7 float r2 = (1 / 2) / 12;
8
9 float height ;

10
11 attribute observable (height);
12
13 ClepsydraHealth h;
14
15 attribute health (h) = (h == ClepsydraHealth .nominal);
16
17 switch (h) {
18 ClepsydraHealth .nominal −>
19 {
20 float area = pi ∗ r1 ^ 2 + pi ∗ r2 ^ 2;
21 height ’ = (−4.8 ∗ area ∗ sqrt (height)) / A;
22 }
23 ClepsydraHealth .s1 −>
24 {
25 float area = pi ∗ r2 ^ 2;
26 height ’ = (−4.8 ∗ area ∗ sqrt (height)) / A;
27 }
28 ClepsydraHealth .s2 −>
29 {
30 float area = pi ∗ r1 ^ 2;
31 height ’ = (−4.8 ∗ area ∗ sqrt (height)) / A;
32 }
33 ClepsydraHealth .sb −>
34 {
35 height ’ = 0;
36 }
37 }
38 }

Listing 8. Clepsydra model

The only new feature in the clepsydra model above is the use of
derivatives in lines 21, 26, 31, and 35. In this case the dependent
variable is height and the independent variable is (implicitly) t .

70

Notice that t (not used in the clepsydra model) is a keyword in
LYDIA.

What remains is to specify the initial value (water height) and
the measurement 10 min, after the beginning of the scenario. This
is done in a scenario file similar to the one that follows.

1 scenario start @ + 0 {}
2 initial values @ + 0 { height = 9; }
3 observation @ + 135 s { height = 6.5; }
4 scenario end @ + 10 min {}

Listing 9. Clepsydra scenario

There are four events in the scenario above. The first and last ones
in lines 1 and 4 mark the beginning and the end of the scenario
(timestamps are in milliseconds). The initial value for the ODE is
given in line 2. In line 3, the scenario supplies the measured water
level.

If we now invoke LYDIA-NG to diagnose the above system
with the above scenario, we should get that the clepsydra is most
likely in state m = 2, i.e., the hole with radius r2 is blocked.

4. LYDIA Concepts and Definitions
We represent a generic linear analogue system in terms of a
relation between effort ~x and flow ~z vectors of variables, using
T~x = ~z, where T is an n ×m matrix. For example, for circuits
~x ∈ Rn is an (unknown) nodal voltage vector, and ~z ∈ Rm is a
measurable current-source vector.

We will adopt a mode-based representation, i.e., we assume
that the system can operate in a set Ω of modes, which can consist
of nominal or faulty operating conditions. Given a system that
consists of a discrete set of components with a corresponding set
of health parameters COMPS, a mode ω ∈ Ω is an assignment
to all variables in COMPS.

Further, for each mode we assume that we can specify a
distinct set of equations. Hence, for each ω ∈ Ω we specify an
equation set SDω given by Tω ~xω = ~zω .

4.1 Models and Residuals
Definition 1 (Diagnostic Model). Given a system that consists of
a discrete set of components with a corresponding set of health
parameters COMPS, a diagnostic model M = 〈SD, COMPS〉 is
specified using a function SD =

⋃
ω∈Ω SDω .

In this article, we are typically given the flow vector ~z and must
compute the effort vector via ~xω = T−1

ω ~zω , a process we call
simulation of ~xω . Since SD is linear, we can simulate efficiently.

Given an observation ~α, we estimate the mode (i.e., solve
a diagnostic problem) by computing an optimal solution of a
parameter estimation problem where the parameters are discrete
and the problem is split in two parts: simulation and residual
analysis.

In real-world applications, straightforward simulation function
(from definition 1) is not sufficient to adequately solve the di-
agnostic problem. This is because models are imprecise, there is
sensor noise, health parameters are discrete, etc. Instead, we com-
pute a difference between ~α and a simulation ~̂z (using the residual
function of Definition 2), and then identify the mode that min-
imises this function.

Definition 2 (Residual Function). Given twom-dimensional real
vectors ~̂z, ~α ∈ Rm, a residual function R : {~̂z, ~α} 7→ R(~̂z, ~α)

maps ~̂z and ~α into the real interval [0;∞).

Definition 3 (Health Estimation Problem). Given a diagnostic
model SD and a residual function R, the health estimation prob-

lem is to compute an assignment ωmin to all variables in COMPS
such that:

ωmin = arg min
ω

R(SDω, ~α)

Solving the above health estimation problem, while maintain-
ing computational efficiency is the main goal of our framework.

4.2 Control
LYDIA-NG supports control specifications in a straightforward
manner. In particular, LYDIA-NG can specify mode-based con-
trols (e.g., as occurs in Finite State Automata [6] and Hybrid
Systems [15] models) using the notion of mode inherent in the
LYDIA-NG language. This is possible since LYDIA-NG asso-
ciates a set of dynamical equations with a mode (together with
constraints on mode transitions), just as in hybrid systems. As
such, a LYDIA-NG can specify a declarative control model and
use the simulation infrastructure to run closed-loop feedback-
control simulations.

Furthermore, the LYDIA-NG framework can support the diag-
nosis of hybrid systems, e.g., [1]. It is beyond the scope of this ar-
ticle to describe the control and diagnosis functionality of which
LYDIA-NG is capable. It is important to note that LYDIA-NG
currently has a simple temporal representation, and hence is lim-
ited to discrete-event models. In future work we intend to signif-
icantly extend the temporal modeling capabilities, and hence be
able to analyse a wider range of hybrid models, e.g., as done in
[18].

5. Framework for Model-Based Diagnosis
The basic idea of the LYDIA-NG diagnostic library (shown in
Fig. 4) is to perform multiple simulations for various hypothe-
sized health states of the plant. The output of these multiple sim-
ulations is then processed and combined into single diagnostic
output.

Figure 4. Overview of the LYDIA-NG diagnostic method

The LYDIA-NG diagnostic library consists of the following
building blocks:

Generator of Diagnostic Assumptions: A diagnostic assump-
tion is a set of hypothetical assignments for the health or fault
state of each component in the system. The “all nominal”

71

diagnostic assumption assigns healthy status to each compo-
nent. LYDIA-NG allows one nominal and one or more faulty
states per component.

Simulation Engine: Given a diagnostic assumption, LYDIA-NG
can construct a simulation model of the system. This simu-
lation model consists of equations. By solving this system of
equations LYDIA-NG computes values for one or more ob-
servable variables. The values of these observable variables is
also referred to as a prediction.

Residual Analysis Engine: A prediction is compared to the sen-
sor data by a residual analysis engine. This engine combines
the individual discrepancies in each sensor data/predicted
variable pair to produce a single real value that indicates how
close is the prediction of the simulation engine to the sensor
data obtained from the plant. A simulation that results in all
predicted values coincide with the measured ones will result
in the residual being zero. The data structure containing pre-
dictions, their corresponding sensor data and the computed
residual is called a diagnostic candidate or simply candidate.

Candidate Selection Algorithm: Not all candidates generated
by the residual analysis engine are used for computing the fi-
nal system health. The candidate selection algorithm discards
each candidate whose residual is larger than the residual of
the “all nominal” candidate.

System State Estimation Algorithm: LYDIA-NG uses the set
of candidates that is computed by the candidate selection al-
gorithm to compute an estimate for the health of each com-
ponent. This is done by the system state estimation algorithm.
Finally, LYDIA-NG computes RCoF by choosing the compo-
nents with highest probability of failure.

5.1 Search Algorithm
Algorithm 1 shows the top-level diagnostic process. The inputs
to algorithm 1 are a model and a scenario, and the result is a
diagnosis.

At the heart of algorithm 1 is the use of simulation. Algo-
rithm 1 supports a large variety of simulation methods that may
or may not use time as an independent variable. In the setup de-
scribed in this paper we have used SPICE in combination with a
constraint propagation solver. The latter we have used for sensor
values, complex components such as mixed analog-digital elec-
tronics and other parts of the model where it is difficult or inap-
propriate to model with SPICE. The only requirement toward the
simulation engine is to predict a number of variables whose types
can be mapped to LYDIA-NG and to be relatively fast (the com-
putational performance of LYDIA-NG will not be thoroughly dis-
cussed in this paper which emphasizes the application of LYDIA-
NG to a space model).

The basic idea of algorithm 1 is to simulate for various health
assignments and to compare the predictions with the observed
sensor data (i.e., telemetry). There are several important aspects
of this algorithms that ultimately affect the diagnostic accuracy as
measured by various performance metrics.

The first algorithmic property that determines many of the di-
agnostic performances is the order in which health-assignments
are generated. In algorithm 1 this is implemented by the func-
tion named NEXTHEALTHASSIGNMENT. The latter subroutine
also determines when to stop the search and should be properly
parametrized depending on the model and the user requirements.
In the standard LYDIA-NG diagnostic library we provide the fol-
lowing diagnostic search policies:

Algorithm 1 Diagnosis framework
1: function DIAGNOSE(SCN) returns a diagnosis

inputs: SCN, diagnostic scenario
local variables: h, FDI vector, health assignment

p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: while h← NEXTHEALTHASSIGNMENT() do
3: p← SIMULATE(M , γ,h)
4: r ← COMPUTERESIDUAL(p, α)
5: Ω← Ω ∪ 〈h, r〉
6: end while
7: DIAG← COMBINECANDIDATES(Ω)
8: return DIAG
9: end function

Breadth-First Search (BFS): This policy first generates the
nominal health assignment, then single-faults, double-faults,
etc.

Depth-First Search (DFS): This search policy starts with the
nominal health assignment, then adds a single-fault, contin-
ues with a double fault including the first, and so on, until
all components are failed. After the all-faulty assignment is
generated, the algorithm backtracks one step and generates a
sibling assignment and continues traversing down and back-
tracking in the same manner until no more backtracking is
possible.

Backwards Greedy Stochastic Search (BGSS): In this mode,
the search start from the all-faulty assignment. A random
health variable is then flipped and the flip is retained iff the
flip leads to a decrease in the residual. The order of health
variables is arbitrary. As the whole search process is stochas-
tic, it needs to be run multiple iterations in order to achieve
the desired completeness. A formal description of this method
for Boolean circuit models can be found in [11].

Each simulation produces what we call a candidate: a set of
predicted values for a given health-assignment. The second im-
portant property of algorithm 1 is the comparison and ordering of
the diagnostic candidates. This is done by mapping the predicted
and observed variables into a single real-number, called residual.
The residual computation is discussed in what follows.

5.2 Residual Generation
Our mode estimation task requires a method to identify the mode
ω whose simulation zω most closely matches the observation
vector α. We use a residual function R(zω, α) to measure this
difference. The specification of R(zω, α) is intentionally generic,
since we aim to enable users to specify domain-specific residual
generators that are best suited to their application domain.

The area of residual analysis has received significant attention
in the literature, and it is not possible to provide a comprehensive
set of residual methods within LYDIA-NG.

We currently have implemented a small set of residual gener-
ators, the size of which will increase over time.

We provide below examples of two straightforward residual
generation functions, together with their advantages and disad-
vantages. These two residual generation functions bear resem-
blance to loss functions in decision theory.

72

Squared Residuals:

Rsq(OBS, ~z, α) =
∑

v∈OBS

W (v) [~z(v)− α(v)]2 (3)

where W (v) is a weight-value associated with sensor v, ~z(v)
is the value of variable v in the prediction assignment ~z and
α(v) is the value of the observable variable v.

Absolute Residuals:

Rabs(OBS, ~z, α) =
∑

v∈OBS

W (v) |~z(v)− α(v)| (4)

where W (v), ~z(v) and α(v) are used in the same way as in
Eq. 3.

A disadvantage of the squared residuals function Rsq is that it
adds a lot weight to outliers. In decision theory, the absolute loss
function that corresponds to the Rabs function is discontinuous.
The latter, however, is not a problem for the algorithms described
in this paper and we prefer Rabs over Rsq.

The above two residual functions may lead to relatively bad
diagnostic results, especially in the presence of noise. One of
the properties of Rsq and Rabs is that they are memoryless. An
alternative would be to use some historical predictions and sensor
data. Of course, the use of history would increase the isolation
time, but has the potential to also increase the diagnostic accuracy.
Another approach for more advanced residual analysis function
would be to use methods from machine learning, for example
neural networks. Particle filters [9] or Bayesian networks [17] can
be also used for residual analysis.

5.3 Computation of Component Failure Probabilities
Consider the circuit shown in Fig. 1 and a scenario α = {I1 =
1.19}. This scenario corresponds to one of the resistors being
open-circuited or one of the switches being stuck-open. Table 1
shows applying Eq. 4 for the predictions simulated from the nom-
inal and all single-fault health assignments. The rows of Table 1
are sorted in order of an increasing residual value. In this table
(and below) we abbreviate a stuck switch as S and an open-circuit
resistor mode as OC.

V1 I1 SW1 SW2 R1 R2 faults Rabs

− − S − − − 1 0.0006
− − − S − − 1 0.0006
− − − − OC − 1 0.0006
− − − − − OC 1 0.0006
− − − − − − 0 1.1758
F − − − − − 1 1.1888
− F − − − − 1 1.1888
− − − − SC − 1 79.3402
− − − − − SC 1 79.3402

Table 1. Single-fault residuals for the circuit shown in
Fig. 1 and an observation simulated from a single open-
circuited resistor

The COMBINECANDIDATES subroutine from algorithm 1
uses a table similar to the one shown in Table 1. It retains only the
predictions with residuals smaller than the residual of the nominal
prediction. The reason for that is that the nominal prediction is the
only one that has a special meaning in LYDIA-NG and leads to a
“landmark” residual, i.e., LYDIA-NG does not attempt to differ-
entiate amongst the various fault-mode predictions. As a result,

in our running example, only the first four rows of Table 1 are
considered when calculating the final fault-probabilities.

The second step of COMBINECANDIDATES is to convertRabs

in the interval [0; 1] where Rnorm = 0 for the nominal prediction
and Rnorm = 1 for a fault prediction that gives Rabs = 0.
Applying this on Table 1 gives us Table 2.

SW1 SW2 R1 R2 Rnorm

S − − − 1
− S − − 1
− − OC − 1
− − − OC 1

Table 2. Normalized single-fault residuals from Table 1
that are smaller than the nominal residual

Finally, what remains to be done is to normalize the rightmost
column of Table 2 so it sums up to one and marginalize the
probability of failure in each column. For the small circuit we
are analyzing this results in {Pr(SW1 = S) = 0.25,Pr(SW2 =
S) = 0.25,Pr(R1 = OC) = 0.25,Pr(R2 = OC) = 0.25}.
The fact that all probabilities are 0.25 means that algorithm 1
cannot determine unambiguously which component is the faulty
one. In this case this is due to the fact that there is only one sensor,
i.e., the unambiguity is due to sensor placement and circuit design.

One way to reduce this ambiguity is to change the position of
SW1 and/or SW2. In the next section we devise an algorithmic
framework that works for any circuit or model that can be diag-
nosed in the LYDIA-NG framework.

6. Conclusion and Future Work
This article has described a model-based framework for modeling
and diagnostics of complex systems. The framework has several
important characteristics, of which we have focused on the mod-
eling language. This LYDIA language is a constraint-based system
that enables modelers to specify systems according to a discrete
set of system modes, such that each mode is associated with a be-
haviour. The language allows behaviour specifications based on a
wide range of constraints, of which two important constraint rep-
resentations are ODEs and first-order logic.

We have described several model types that can be developed
in LYDIA. In addition, we have proposed a model benchmark for
evaluating the capabilities of LYDIA and other MBD languages.
By comparing our approach to that of well-known frameworks,
such as MATLAB/SIMULINK and MODELICA, we have shown
properties of the LYDIA framework that are specific to MBD.

Future work includes extending the range of simulation and di-
agnosis solvers within our framework, and extending the residual
analysis engine.

Acknowledgments
The publishing of this article is supported by Enterprise Ireland
grant CC-2011-4005A.

References
[1] Shai A Arogeti, Danwei Wang, and Chang Boon Low. Mode

identification of hybrid systems in the presence of fault.
Industrial Electronics, IEEE Transactions on, 57(4):1452–
1467, 2010.

[2] Olof Bäck. Modelling for diagnosis in Modelica: implemen-
tation and analysis. PhD thesis, University of Linköping,
2008.

73

[3] Franc Brglez and Hideo Fujiwara. A neutral netlist of 10
combinational benchmark circuits and a target translator in
fortran. In Proc. ISCAS’85, pages 695–698, 1985.

[4] Peter Bunus, Olle Isaksson, Beate Frey, and Burkhard
Münker. Model-based diagnostics techniques for avionics
applications with rodon. In 2nd Workshop on Aviation
System Technology. Citeseer, 2009.

[5] Peter Bunus, Olle Isaksson, Beate Frey, and Burkhard
Münker. Rodon-a model-based diagnosis approach for the
dx diagnostic competition. Proc. DX’09, pages 423–430,
2009.

[6] Christos G Cassandras and Stephane Lafortune. Introduction
to discrete event systems, volume 11. Kluwer academic
publishers, 1999.

[7] François E Cellier and Àngela Nebot. The modelica bond
graph library. In 4th International Modelica Conference,
2005.

[8] Adnan Darwiche and Pierre Marquis. A knowlege com-
pilation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

[9] Nando de Freitas. Rao-blackwellised particle filtering for
fault diagnosis. In Proc. AEROCONF’02, volume 4, pages
1767–1772, 2002.

[10] Johan de Kleer, Alan Mackworth, and Raymond Reiter.
Characterizing diagnoses and systems. Artificial Intelli-
gence, 56(2-3):197–222, 1992.

[11] Alexander Feldman, Gregory Provan, and Arjan van
Gemund. Approximate model-based diagnosis using greedy
stochastic search. Journal of Artificial Intelligence Research,
38:371–413, 2010.

[12] Peter Fritzson and Vadim Engelson. Modelica—a unified
object-oriented language for system modeling and simula-
tion. ECOOP’98—Object-Oriented Programming, pages
67–90, 1998.

[13] Gregor Gössler and Joseph Sifakis. Composition for
component-based modeling. Science of Computer Pro-
gramming, 55(1):161–183, 2005.

[14] I. Graham, A. O’Callaghan, and A.C. Wills. Object-Oriented
Methods: Principles & Practice. Addison-Wesley Object
Technology Series. Addison-Wesley, 2000.

[15] Thomas A Henzinger. The theory of hybrid automata. In
Logic in Computer Science, 1996. LICS’96. Proceedings.,
Eleventh Annual IEEE Symposium on, pages 278–292.
IEEE, 1996.

[16] Ron M. Kielkowski. Inside SPICE. Electronic packaging
and interconnection series. McGraw-Hill, 1998.

[17] Uri Lerner, Ronald Parr, Daphne Koleer, and Gautam
Biswas. Bayesian fault detection and diagnosis in dynamic
systems. In Proc. AAAI’00, pages 531–537, 2000.

[18] Pieter J Mosterman and Gautam Biswas. A comprehensive
methodology for building hybrid models of physical
systems. Artificial Intelligence, 121(1):171–209, 2000.

[19] Behrooz Parhami. Computer Arithmetic: Algorithms and
Hardware Designs. Oxford University Press, Inc., New
York, NY, USA, 2nd edition, 2009.

[20] Raymond Reiter. A theory of diagnosis from first principles.
Artificial intelligence, 32(1):57–95, 1987.

[21] AK Samantaray, K. Medjaher, B. Ould Bouamama,
M. Staroswiecki, and G. Dauphin-Tanguy. Diagnostic bond
graphs for online fault detection and isolation. Simulation
Modelling Practice and Theory, 14(3):237–262, 2006.

[22] Morris Tenenbaum and Harry Pollard. Ordinary Differential
Equations: An Elementary Textbook for Students of Math-
ematics, Engineering, and the Sciences. Dover Books on
Mathematics. Dover Publications, 1963.

[23] D.G. Zill. Differential Equations With Computer Lab
Experiments. Brooks/Cole, 1998.

74

