
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Spreading of infection on temporal networks: an edge-centered
perspective

Author(s) Koher, Andreas; Gleeson, James P.; Hövel, Philipp

Publication date 2019-10-30

Original citation Koher, A., Gleeson, J. P. and Hövel, P.  (2019) 'Spreading of infection
on temporal networks: an edge-centered perspective', in Holme, P. and
Saramäki, J. (eds), Temporal Network Theory, Cham: Springer, pp. 235-
252. doi: 10.1007/978-3-030-23495-9_13

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://link.springer.com/chapter/10.1007/978-3-030-23495-9_13
http://dx.doi.org/10.1007/978-3-030-23495-9_13
Access to the full text of the published version may require a
subscription.

Rights © Springer Nature Switzerland AG 2019. This is a post-peer-review,
pre-copyedit version of a book chapter published in Temporal
Network Theory. Computational Social Sciences. The final
authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-030-23495-9_13

Embargo information Access to this article is restricted until 12 months after publication by
request of the publisher.

Embargo lift date 2020-10-30

Item downloaded
from

http://hdl.handle.net/10468/9888

Downloaded on 2021-11-27T14:32:01Z

https://libguides.ucc.ie/openaccess/impact?suffix=9888&title=Spreading of infection on temporal networks: an edge-centered perspective
https://link.springer.com/chapter/10.1007/978-3-030-23495-9_13
http://dx.doi.org/10.1007/978-3-030-23495-9_13
http://hdl.handle.net/10468/9888


Spreading of infection on temporal networks:
an edge-centered perspective

Andreas Koher, James P. Gleeson, Philipp Hövel

Abstract We discuss a continuous-time extension of the contact-based (CB) model,
as proposed in [Koher et al. arXiv:1811.05809], for infections with permanent im-
munity on temporal networks. At the core of our methodology is a fundamental
change to an edge-centered perspective, which allows for an accurate model on
temporal networks, where the underlying time-aggregated graph has a tree struc-
ture. From the continuous-time CB model, we derive the infection propagator for
the low prevalence limit and propose a novel spectral criterion to estimate the epi-
demic threshold. In addition, we explore the relation between the continuous-time
CB model and the previously proposed edge-based compartmental model, as well
as the message-passing framework.

Key words: Epidemic spreading, temporal networks, epidemic threshold, infection
propagator, spectral radius, non-backtracking matrix

1 Introduction

The foundation of modern theoretical epidemiology was established at the begin-
ning of the 20th century, mainly by health physicians such as Ross, Hamer, McK-
endrick, and Kermack who introduced the compartment model [1, 2, 3]. This ap-
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proach separates individuals within a population into epidemic categories or com-
partments, depending on their health status such as susceptible, infected, and re-
covered. Since the early years, development in the field of mathematical epidemi-
ology has accelerated, not least due to the seminal works of Bailey [4], Anderson
& May [5] and Hethocote [6]. Modern models include stochasticity [7, 8, 9, 10],
non-Markovian dynamics [11, 12, 13, 14, 15], demographic structures, vaccina-
tions, disease vectors and quarantine (see references in [6] for details). Thus, the
field of research ranges from simple explanatory models that reveal hidden patterns
and reproduce fundamental observations to elaborate numerical models that provide
realistic predictions [16].

In recent years, we witnessed a second golden age [17] of epidemiological mod-
eling. The driving forces behind this development are increasing computing power
and an unprecedented amount of mobility data. The combination of both allows
scientists to simulate the behavior of entire populations at the level of single indi-
viduals [18, 19, 20, 21, 22, 23, 24] and thus to advise policy makers by means of
quantitative models.

One of the cornerstones of network-based disease models is the individual-based
(IB) approach. It is a drastic simplification of the exact description using a master
equation, because it assumes that the epidemiological states of neighboring nodes
are statistically independent. Under this approximation, one can define a set of dy-
namic equations for the marginal probability to find a node in a given disease state
[10, 25, 26, 27, 28, 29, 30, 31]. This method is widely employed, because it offers
an intuitive and analytically tractable approach to integrate the underlying contact
network. As a particularly important result, we mention that the largest eigenvalue
of the adjacency matrix, which represents the topology of the network, determines
the critical disease parameters that separate local and global outbreaks [28, 26].

Karrer & Newman substantially improved previous models of uni-directional dis-
eases, such as the generic susceptible-infected-recovered (SIR) model, using the
message-passing framework [13]. This approach dates back to the computer sci-
entist Pearl [32], who formulated an exact inference algorithm on trees. Karrer &
Newman proposed an integro-differential equation as a model for non-Markovian
disease dynamics and improved previous estimates of the critical disease parame-
ters on static networks [33]. A crucial conceptual difference to earlier works is that
edges instead of nodes appear as central elements of the model. This idea has influ-
enced considerably further research on network epidemiology [12, 34, 35, 36, 37].

The dynamic message-passing model [35] is a particularly application-oriented
variant for Markovian SIR dynamics and has been extended recently to networks
with time-varying topologies [37]. This novel approach for epidemics on temporal
networks, termed the contact-based (CB) model, focuses on edge-based quantities
that are updated in discrete time and thus allows for a seamless integration of tem-
poral networks that are sampled at a constant rate. Importantly, the authors in [37]
derive a critical condition that improves previous estimates of the epidemic thresh-
old [26], which is an valuable risk measure for public health institutions.

Another important research branch in theoretical epidemiology focuses not on a
single realization of a graph but on an ensemble of random networks. A particularly
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accurate and compact model of epidemic spreading on this class of random net-
works has been proposed in [34] and is termed edge-based compartmental (EBC)
model. The original work focused not only on the configuration model for static net-
works, but also on different classes of random graphs with time-varying topologies.
Since then, several extensions have been proposed, such as non-Markovian recov-
ery dynamics [12] and arbitrary initial conditions [38]. Moreover, studies in [39, 40]
investigated links to other existing models such as pair-approximations [41], the ef-
fective degree model [42] and message-passing [13].

In this chapter, we will derive a continuous-time formulation of the CB model for
temporal networks, analyze the low-prevalence limit and explore links to previously
proposed models. To this end, we will briefly summarize in Sec. 2 the discrete-time
version proposed in [37]. Then, we extend the dynamic equations to the continuous-
time case in Sec. 3 and determine in Sec. 4 the epidemic threshold from a stability
analysis of the disease-free fixed point. Moreover, we will link the continuous-time
results to existing models and in particular to the edge-based compartmental model
in Sec. 5 and the message-passing framework in Sec. 6.

2 Discrete-time description

The dynamic equations of the contact-based model appeared first in [35] and [37]
for static and temporal networks, respectively. In the following, we will briefly re-
derive the discrete-time model, which will then serve as the starting point for a
continuous-time formulation in the main part of this chapter.

We begin by introducing our notational convention and consider a network G(t),
whose topology can change at any time t ∈ [0,T ]. Next we sample Ts snapshots
of the graph with a constant interval ∆ t. The resulting sequence [G0,G1, ...,GTs−1]
is an approximation of the continuous-time network, which approaches the exact
representation in the limit ∆ t→ 0.

Let us denote with N and C ⊂ T ×N ×N the set of all nodes (|N | = N)
and time-resolved contacts, respectively, where T = {0,1, . . . ,Ts− 1} represents
the set of sampling times. To emphasize the difference between temporal and static
elements, we will refer to edges as static links (k, l) ∈ E ⊂N ×N of the time-
aggregated graph and denote the number of edges with E = |C |. In other words, an
edge exists if and only if at least one contact was recorded between the correspond-
ing nodes. We assume a directed network and hence represent a potential undirected
contact through two reciprocal elements. Finally, it is helpful to define an indicator
function that returns whether or not a contact from k to l exists at sampling time t:

ak→l(t) =

{
1, if (t,k, l) ∈ C

0, otherwise.
(1)

Here we use the notation k→ l to denote quantities defined on the set of edges E ,
thus preventing potential confusion with node-based elements.
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As a model for disease spreading, we consider the generic susceptible-infected-
recovered (SIR) dynamic as a paradigmatic model for infections that lead to per-
manent immunity. In this modeling framework, a susceptible node (S) contracts the
disease from an infected neighbor (I) with a constant and uniform rate β . The tran-
sition to the recovered state (R) follows with a likewise universal rate µ .

After this formal introduction we can now start with the actual modeling and to
this end, we begin with the marginal probability PS

l (t) that node l is susceptible at
time t. We observe that l is susceptible if it has been so already at the beginning t = 0
(with a corresponding probability of zl) and hence did not contract the infection from
any of its neighbors up to the observation time t. We denote the probability of the
latter event with Φl(t), which leads to the following relation:

PS
l (t) = zlΦl(t). (2)

In order to determine the central quantity Φl(t), we make the simplifying as-
sumption that the undirected, time-aggregated graph has a tree structure. In other
words, ignoring the directionality, the static backbone does not contain loops and
hence all branches emanating from the root node l can be considered independently
of each other.

In order to factorize the probability Φl(t), we also need to introduce a con-
cept that is sometimes referred to as test node [34], cut-vertex [43], or cavity state
[13, 35]. To understand why this concept is helpful, imagine the case that a disease
appears in one branch and hence may spread into another branch via the root node
l. As a consequence, the probability that l will be infected by either of the two in-
fected neighbors is clearly correlated and therefore cannot factorize. However, this
case requires l to be already infected and hence appears as an artefact. In order to
exclude this event we remove (virtually) all edges emanating from l, which prevents
a disease transmission from one branch to another. We refer to vertex l as being
in the cavity state or simply a cavity node. This intervention does not change the
dynamics of l, as the node can still be infected and once it is, it recovers regardless
of the network structure. Furthermore, we call this modification virtual because we
restore the topological modification as soon as we focus on the dynamics of another
node. This method ensures that Φl(t) factorizes and thus we arrive at

PS
l (t) = zl ∏

k∈Nl

θk→l(t). (3)

Here, the product iterates through all neighbors k ∈Nl of node l and with θk→l(t)
we denote the probability that cavity node l has not contracted the disease from k
up to the observation time.

The conceptual change from a node-based to an edge-based modeling approach
requires new auxiliary dynamic variables. Besides θk→l(t), we will introduce addi-
tional quantities that are defined on the set of edges E and following our convention,
we use the index notation source→ target. In order to avoid repetition, we also note
that in all cases the target node is considered to be in the cavity state.
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To set up a dynamic equation for θk→l(t), we observe that the value can only
decrease precisely when (i) a contact indicated by ak→l(t) exists and (ii) the source
node k is infected and has not yet transmitted the disease to l. We denote the corre-
sponding probability for event (ii) with Ik→l(t). Together with the probability β∆ t
to contract the disease within the time step ∆ t, we obtain our first, discrete-time
dynamic equation:

θk→l(t +∆ t) = θk→l(t)−β∆ tak→l(t)Ik→l(t). (4)

As the initial condition we choose θk→l(t) = 1 for all edges (k, l) ∈ E .
Next, we investigate Ik→l(t) and observe that the value can change due to three

independent events: (i) Node k recovers, with probability µ∆ t; (ii) Node l contracts
the disease from k upon a contact, with probability β∆ t, whereby both events, i.e.
(i) and (ii), can also occur simultaneously with probability β µ(∆ t)2; (iii) Source
node k is newly infected by one of its incident neighbors, excluding the cavity node
l with probability −∆Sk→l(t) = Sk→l(t +∆ t)− Sk→l(t). Here, Sk→l(t) denotes the
probability to find k in the susceptible state. Balancing all probabilities, we obtain
the following dynamic equation:

Ik→l(t +∆ t) = (1−µ∆ t)[1−β∆ tak→l(t)]Ik→l(t)−∆Sk→l(t). (5)

The initial condition is given by Ik→l(0) = 1− zk for all edges.
We determine the probability Sk→l(t) in the same manner as Eq. (2), i.e., we

find that k is susceptible if (i) it has been initially with probability zk and (ii) with
probability Φk→l no pathogens were transmitted from one of its neighbors j ∈Nk \
{l}, excluding the cavity node l. Hence, we find Sk→l(t) = zkΦk→l . Moreover, the
authors in [44] demonstrated that Φk→l factorizes under the assumption of a tree
topology and thus, similar to Eq. (3), we obtain:

Sk→l(t) = zk ∏
j∈Nk\{l}

θ j→k(t). (6)

We can now substitute Eq. (6) into Eq. (5) and together with Eq. (4) we thus
obtain a closed system of 2E dynamical equations that determine the disease pro-
gression.

Finally, we return to node-centric quantities. To this end, we follow [13] and note
first that Eq. (3) determines already the probability PS

l (t) that node l is susceptible
at the time t. Then, we obtain the corresponding probability PI(t) for the infected
state from the conservation condition, i.e., a node can assume only one of the three
possible states X ∈ {S, I,R}:

PI
l (t) = 1−PS

l (t)−PR
l (t). (7)

The remaining marginal probability PR(t) can only increase due to a transition from
the infected to the recovered state, which is given by µ∆ tPI(t). Hence, the third
node-centric equation reads
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PR
l (t +∆ t) = PR

l (t)+µ∆ tPI
l (t). (8)

After this brief review of the discrete-time case that has been first derived in [37],
we will elaborate on a continuous-time version next.

3 Continuous-time description

In the continuous-time limit ∆ t→ 0, Eq. (4) leads to

d
dt

θk→l(t) =−βak→l(t)Ik→l(t). (9)

We focus on Sk→l(t +∆ t) from Eq. (6) and using the definition of θ j→k(t +∆ t) (cf.
Eq. (4)), we obtain:

Sk→l(t +∆ t) = zk ∏
j∈Nk\{l}

θ j→k(t +∆ t) (10a)

= zk ∏
j∈Nk\{l}

[
θ j→k(t)−β∆ tak→l(t)I j→k(t)

]
. (10b)

For a sufficiently small sampling interval ∆ t, such that θ j→k(t)� β∆ tak→l(t)Ik→l(t),
we can linearize Eq. (10b) and thus arrive at:

Sk→l(t +∆ t) = zk ∏
j∈Nk\{l}

θ j→k(t) ·

[
1− ∑

j′∈Nk\{l}

β∆ tak→l(t)I j′→k(t)
θ j′→k(t)

]
(11a)

Sk→l(t +∆ t) = Sk→l(t)

[
1−β∆ t ∑

j′∈Nk\{l}
ak→l(t)

I j′→k(t)
θ j′→k(t)

]
(11b)

In Eq. (11b) we inserted the definition of Sk→l(t) from Eq. (6) and this leads directly
to our second continuous-time dynamic equation

d
dt

Sk→l(t) =−βSk→l(t) ∑
j∈Nk\{l}

ak→l(t)
I j→k(t)
θ j→k(t)

. (12)

The quotient I j→k(t)/θ j→k(t) can be interpreted as the conditional probability that
j is infected given that cavity node k has not yet contracted the disease from j. It is
worth noting that Eq. (12) is well defined because we start from the initial condition
θ j→k(t) = 1 for all edges k→ j and Eq. (9) asserts positivity for θ j→k(t) for all finite
observation times t. The remaining discrete-time Eq. (5) can be immediately written
down in terms of a difference quotient ∆X(t) = [X(t +∆ t)−X(t)]/∆ t:

∆ Ik→l(t)
∆ t

=[−µ−βak→l(t)+µβ∆ tak→l(t)] Ik→l(t)−
∆Sk→l(t)

∆ t
. (13)
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In the continuous-time limit, the higher order term µβ∆ tak→l(t) vanishes, leading
to

d
dt

Ik→l(t) = [−µ−βak→l(t)]Ik→l(t)−
d
dt

Sk→l(t). (14)

At last it is also instructive to formulate the dynamic equation for Rk→l(t), i.e.,
the probability that node k has recovered at time t without transmitting the disease
to cavity node l. The value of Rk→l(t) can only increase over time and the corre-
sponding in-flux at time t is given by (i) the probability Ik→l(t) that node k is in state
I and has not infected its neighbor l together with (ii) the probability µ∆ t to recover
within the time step ∆ t. With this, we obtain:

Rk→l(t +∆ t) = Rk→l(t)+µ∆ tIk→l(t). (15)

The corresponding continuous-time equation thus reads

d
dt

Rk→l(t) = µIk→l(t). (16)

Unlike the discrete-time model, it is now obvious that the dynamic Eqs. (9), (12),
(14), and (16) satisfy the conservation condition

θk→l(t) = Sk→l(t)+ Ik→l(t)+Rk→l(t) (17)

at every time t. Moreover, we can rescale time according to µt 7→ t and rewrite
the continuous-time contact-based model in terms of the dimensionless epidemic
parameter γ = β/µ:

d
dt

θk→l(t) =−γak→l(t)Ik→l(t) (18a)

d
dt

Sk→l(t) =−γSk→l(t) ∑
j∈Nk\{l}

a j→k(t)
I j→k(t)
θ j→k(t)

(18b)

d
dt

Ik→l(t) =−[1+ γak→l(t)]Ik→l(t)−
d
dt

Sk→l(t) (18c)

d
dt

Rk→l(t) = Ik→l(t). (18d)

We can further reduce the set of dynamic equations using the conservation condi-
tion in Eq. (17). To this end, we first substitute Sk→l(t) in Eq. (17) with the definition
from Eq. (6):

Ik→l(t) = θk→l(t)− zk ∏
j∈Nk\{l}

θ j→k(t)−Rk→l(t). (19)

With this, we replace Ik→l(t) in Eq. (18a) and Eq. (18d) and thus we obtain a
closed set of 2E dynamic equations that determine the disease progression of the
continuous-time CB model.
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Returning to node-centric quantities, i.e., the probability that a given node l is
susceptible, infected or recovered, the continuous-time equivalent formulation to
Eqs. (3), (7), and (8) reads

PS
l (t) = zl ∏

k∈Nl

θk→l(t) (20a)

PI
l (t) = 1−PS

l (t)−PR
l (t) (20b)

d
dt

PR
l (t) = PI

l (t). (20c)

4 Spectral properties of the continuous-time model

In this section, we evaluate the low prevalence limit of Eqs. (18) in order to derive
a spectral criterion that determines the epidemic threshold. To this end, we assume
θk→l(t) = 1− δk→l(t), where δk→l(t)� 1 as well as Ik→l � 1. With this, we lin-
earize Eq. (18b) and obtain

d
dt

Sk→l(t) =−γ

[
1− ∑

j∈Nk\{l}
δ j→k(t)

]
· ∑

j∈Nk\{l}
ak→l(t)

I j→k(t)
1−δk→l(t)

(21a)

=−γ ∑
j∈Nk\{l}

ak→l(t)I j→k(t). (21b)

In Eq. (21b), we keep only linear terms in δk→l(t) and I j→k(t). This allows us to
decouple the set of dynamic equations and express Eq. (18c) only in terms of Ik→l(t):

d
dt

Ik→l(t) = [−1− γak→l(t)]Ik→l(t)+ γ ∑
j∈Nk\{l}

ak→l(t)I j→k(t). (22)

Next, we vectorize Eq. (22) and to this end, we define the vectors III(t) and aaa(t) with
elements Ik→l(t) and ak→l(t), respectively. In order to rewrite ∑ j∈Nk\l a j→k(t)Ik→l(t)
from Eq. (22) in terms of a matrix that acts on the state vector III(t), we introduce the
time-dependent non-backtracking operator BBB(t) as in [37]:

Bk→l, j→k′(t) =

{
a j→k′(t), if k′ = k, and j 6= l
0, otherwise.

(23)

Expressed in words, we find Bk→l, j→k′(t) = 1 if the contact (t, j,k′) is incident on
the edge (k, l), implying k′ = k, and additionally j 6= l. The latter constraint pre-
vents a probability flow back to the initially infected node and constitutes the non-
backtracking property. In all other cases, we find Bk→l, j→k′(t) = 0. Unlike the static
definition in [45, 33], we have to differentiate between the first and second index of
the L×L dimensional matrix BBB: The first index, i.e. (k, l) ∈ E , corresponds to an
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edge in the aggregated graph, thus reflecting a potential path for future infections.
The second index (t, j,k′) ∈ C , however, is a (temporal) contact from node j to k′

at time t.
Moreover, we define the diagonal matrix diag(aaa(t)) with elements ak→l(t) for

all edges (k, l) ∈ E on the diagonal and, additionally, we denote with 1 the identity
matrix. Similar to the discrete-time derivation in [37], we thus obtain:

d
dt

III(t) = [−1− γ diag(aaa(t))+ γBBB(t)] III(t). (24)

The only structural difference to the discrete-time result in [37] is that the higher
order term βak→l µ does not appear, because the simultaneous event of infection
and recovery does not need to be accounted for in the continuous-time formulation.

Within the open interval [tn, tn+1) where the boundaries tn and tn+1, respectively,
mark subsequent change points of the network topology, we integrate Eq. (24) and
obtain

III(tn+1) = MMMn(γ)III(tn) (25a)

MMMn(γ) = exp
(∫ tn+1

tn
dτ[−1− γ diag(aaa(τ))+ γBBB(τ)]

)
. (25b)

Using the initial condition III(0), we can formally state the explicit solution as fol-
lows:

III(T ) =
NG−1

∏
n=0

MMMn(γ)III(0). (26)

Here, NG is the total number of discrete changing points of the network topology.
Following [46] we can state the propagator MMM(γ) = ∏

N−1
n=0 MMMn(γ) in a compact nota-

tion using Dyson’s time ordering operator TBBB(τ1)BBB(τ2) = BBB(τ1)BBB(τ2)Θ(τ1− τ2)+
BBB(τ2)BBB(τ1)Θ(τ2− τ1), where Θ(x) denotes the Heaviside function:

MMM(γ) = Texp
(∫ t

0
dτ [−1− γ diag(aaa(τ))+ γBBB(τ)]

)
. (27)

Any small initial perturbation will decrease exponentially if the largest eigenvalue
λ1, i.e., the spectral radius satisfies λ1[MMM(γ)] < 1. This result corresponds to [46]
where the epidemic propagator MMM(γ) has been derived within the IB framework and
reads

MMM(γ) = Texp
(∫ t

0
dτ [−1+ γAAA(τ)]

)
. (28)

In Eq. (28), we denote with AAA(τ) the time-dependent adjacency matrix and here, 1
is the N×N dimensional identity matrix.

In many cases, the temporal network is sampled with equidistant time steps ∆ t
and in this case, we can simplify the propagator Eq. (28) to
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MMM(γ) =
NG−1

∏
n=0

exp(∆ t [−1− γ diag(aaa(n))+ γBBB(tn)]). (29)

The CB result in Eq. (29) is akin to the IB formulation that was first derived in
[47]. In the quenched limit, when the disease evolves on a much faster time scale
than the temporal network, we can assume a static underlying topology and thus
identify diag(aaa(t))≡ 1 and BBB(t)≡ BBB(1)≡ BBB. Then, the linearized result in Eq. (24)
simplifies to

d
dt

III(t) = [−(1+ γ)1+ γBBB] III(t). (30)

Finally, Eq. (30) is asymptotically stable if the largest eigenvalue λ1 of the infection
operator MMM(γ) = (1+ γ)1+ γBBB is negative. Hence, we recover the continuous-time
threshold as previously derived within the more general message-passing framework
on static networks [13, 33]:

γ

γ +1
=

1
λ1(BBB)

. (31)

For non-Markovian infection and recovery processes the generalized criticality
condition reads T = 1/λ1(BBB) (see [13, 33]) , where the transmissibility T is given
by

T =
∫

∞

0
s(τ)

(∫
∞

τ

r(τ ′)dτ
′
)

dτ. (32)

Intuitively, T can be interpreted as the probability that a newly infected node trans-
mits the disease to a given neighbor prior to recovery [13, 48]. Within this general
formulation s(τ)dτ is the probability that an infected node passes the disease to
a neighbor within a time interval [τ,τ + dτ] after contracting the infection. Simi-
larly, we define the probability r(τ)dτ that a node recovers in the interval [τ,τ +dτ]
after it has been infected. For a constant infection and recovery rate, i.e., for the
Markovian dynamics that we assumed in this article, we find s(τ) = β exp(−βτ)
and s(τ) = µ exp(−µτ). This particularly simple and widely studied choice then
leads to T = γ/(γ +1) and thus to Eq. (31).

For temporal networks, we cannot separate in general the transmissibility T from
the network topology in order to find a similarly elegant results like Eq. (31). The
reason is that the probability to infect a given neighbor depends on the timing of
contacts and as a consequence the transmissibility T would have to be both edge-
and time-dependent even in the Markovian case.

5 Relation to the edge-based compartmental model

An important branch in theoretical epidemiology focuses on random graphs, i.e., an
ensemble of networks derived from a generating model, instead of a single realiza-
tion. In this context, the edge-based compartmental (EBC) model [34] is a particu-
larly compact and accurate approach to model infections with permanent immunity.
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In this section, we will explore the relation between the CB model presented in
Sec. 3 and the EBC framework for static random graphs.

To this end, we will focus on random networks with unweighted and undirected
edges that are derived from the configuration model [49, 50]. This widely used gen-
erative model allows to study the effect of the degree distribution on the spread of
infections [48]. For this, we have to create an ensemble of networks with the same
degree distribution that are otherwise maximally random. This can be done accord-
ing to the Bender-Canfield algorithm [49], which begins with a set of N vertices.
To each node we assign a number of k (undirected) stubs, i.e., edges with no tar-
get node that are drawn independently from the given degree distribution p(k). In
the next step, we connect two randomly chosen stubs which then form a proper edge
between the corresponding nodes. The step is repeated until no more stubs are avail-
able and if initially the number of stubs were found to be odd then the we would
replace one node repeatedly until the sum is even.

Before we proceed with the ensemble average, we restate for convenience the rel-
evant dynamic equations of the continuous-time model, i.e., Eq. (18a) and Eq. (18d),
for a network with a static topology. In this case, ak→l ≡ 1 for all edges (k, l) ∈ E
and thus we obtain

d
dt

θk→l(t) =−γIk→l(t) (33a)

d
dt

Rk→l(t) = Ik→l(t) (33b)

and close the set of equations with the conservation condition from Eq. (19):

Ik→l(t) = θk→l(t)− zk ∏
j∈Nk\{l}

θ j→k(t)−Rk→l(t). (34)

For static networks, we can further simplify the dynamic equations by substituting
Ik→l(t) in Eq. (33a) with Eq. (33b) and integrating the result:

d
dt

Rk→l(t) =−
1
γ

d
dt

θk→l(t) (35a)

Rk→l(t) =
1
γ
(1−θk→l(t)). (35b)

From Eq. (33a), Eq. (34), and Eq. (35b), we obtain a coupled set of E dynamic
equations that determine the progression of an SIR epidemic on a static graph:

d
dt

θk→l(t) = 1− (1+ γ)θk→l(t)+ γzk ∏
j∈Nk\{l}

θ j→k(t). (36)

The result in Eq. (36) constitutes a message-passing equation as derived in [13].
We will explore the connection to the more general message-passing framework for
epidemics with non-Markovian dynamics in Sec. 6. Here, we continue instead with
the ensemble average over random networks, thereby following closely the approach
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outlined in [13]. We start with the following crucial observation: The state of a given
edge k→ l in a single realization of a graph displays a characteristic trajectory in
state space, i.e., a time-dependent curve given by θk→l(t) from Eq. (36). As we
perform an average over the ensemble of graphs, our selected edge k→ l will assume
every position within a network. As a consequence the averaged state trajectory is
identical to the one that we would obtain if we had started with a different edge
initially and then performed the average. In other words, it is sufficient to determine
the ensemble averaged probabilities for one representative edge:

d
dt

θ(t)≡ d
dt
〈θk→l(t)〉 (37a)

= 1− (1+ γ)θ(t)+ γ

〈
zk ∏

j∈Nk\{l}
θ j→k(t)

〉
. (37b)

Next, we focus on the second term in Eq. (37b). A crucial property of large net-
works that are generated by the configuration model is that they are locally tree-like
in the sense that the average length of the smallest cycle diverges with increasing
network size. Hence, we can assume in the limit N → ∞ that different branches
emerging from k can be treated independently. The average over the product thus
equals the product over averages. Moreover, we remember that ensemble averaged
dynamic quantities are equal for all edges and in particular θ j→k(t) ≡ θ(t) for all
edges ( j,k) ∈ Nk \ {l}. With this the product in Eq. (37b) simplifies to [θ(t)]ke ,
where ke is the average number of next nearest neighbors, or equally, the excess de-
gree [13]. From a given degree distribution pn in the configuration model, we can
derive the excess degree distribution qn according to qn = (n+1)pn+1/k [50], where
k = 〈n〉 denotes the average degree. Finally, we make use of the corresponding gen-
erating function G1(x) = ∑n qnxn and thus the second term in Eq. (37b) simplifies
to 〈

zk ∏
j∈Nk\{l}

θ j→k(t)

〉
= z

N

∑
n=0

qn[θ(t)]n (38a)

= zG1(θ(t)). (38b)

Here, z = 〈zk〉 denotes the probability that a randomly chosen node is initially sus-
ceptible. With Eq. (37b) and Eq. (38b), we obtain the following ensemble averaged
dynamic equation for θ :

d
dt

θ(t) = 1− (1+ γ)θ(t)+ γzG1(θ(t)). (39)

This compact result captures the disease dynamic with high accuracy as demon-
strated in [13] within the message-passing framework and later in [34] as a special
case of the edge-based compartmental model. The authors in [34] also investigated
alternative random graph models with time-varying topologies.
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We close the section with a linear stability analysis of Eq. (39). Similar to the
derivation in Sec. 4, we start with a small initial perturbation: θ(t) = 1−δ (t) with
δ (t)� 1 and z = 1. We then expand the generating function G1(1−δ (t)) to the first
order in δ (t):

G1(1−δ (t)) = ∑
n

pn(1−δ (t))n (40a)

= 1+ 〈n〉q(1−δ (t))+O(δ (t)2). (40b)

Here, we used two properties of the generating function, namely G1(1) = ∑n qn = 1
and G′1(1) = ∑n nqn = 〈n〉q, where 〈n〉q = ke denotes the mean excess degree. With
this, the linearization of Eq. (39) around the disease-free stable fixed point reads:

d
dt

δ (t) =−(1+ γ− γ〈n〉q)δ (t). (41)

From Eq. (41) we can easily see that a transition occurs from local to global out-
breaks if 1+ γ − γ〈n〉q < 0. Commonly, 〈n〉q is expressed in terms of the first and
second moment of the degree distribution, i.e. 〈n〉 = ∑n npn and 〈n2〉 = ∑n n2 pn,
respectively. For that we take the definition 〈n〉q = ∑n nqn and substitute the relation
qn = (n+ 1)pn+1/〈n〉 (see [50] for details). With this, we recover the well-known
criticality condition from [48, 51]:

γ

γ +1
=

〈n〉
〈n2〉−〈n〉

. (42)

This result is related to the epidemic threshold in Eq. (31), where we studied a single
realization of a static graph and hence expressed the right hand side of Eq. (42)
through the spectral radius λ1(BBB) of the non-backtracking matrix BBB.

6 Relation to the message-passing framework

In the seminal work of Karrer & Newman [13], the authors proposed a general
model for SIR spreading processes on sparse networks with non-Markovian infec-
tion and recovery dynamics. The integro-differential formulation in [13] is a foun-
dation of our CB model and therefore we will discuss in this section the relation
to their message-passing approach. For that we first propose a generalization of the
CB model to non-Markovian dynamics and then, taking the static network limit, we
will arrive at the previously proposed result.

As a first step, we transform the dynamic equations in Eqs. (9), (12), (14), and
(16) that define the continuous-time CB model to an integro-differential equation.
To this end, we notice first that Eq. (14) is of the form

d
dt

Ik→l(t) =−λk→l(t)Ik→l(t)−
d
dt

Sk→l(t). (43)
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For notational convenience, we use the short-hand notation λk→l(τ) = µ+βak→l(τ)
and Λk→l(t, tk) = exp[−

∫ t
tk

λk→l(τ)dτ]. The former denotes the probability that node
k recovers or infects the cavity node l within the time interval [τ,τ +dt) after con-
tracting the disease and the latter corresponds to the probability that no such event
took place between the time of infection and the observation time tk and t, respec-
tively. Here, we denote the absolute and relative time after infection with t and τ ,
respectively. Together with the initial condition Ik→l(0) = 1− zk the solution to the
differential equation is given by

Ik→l(t) = (1− zk)Λk→l(t,0)+
∫ t

0

[
− d

dtk
Sk→l(tk)

]
Λk→l(t, tk)dtk. (44)

In words, Eq. (44) states that node k has contracted the disease but not infected
its neighbor l by absolute time t if (i) node k was infected initially but has neither
recovered nor passed the infection or (ii) it was susceptible initially, contracted the
disease at time tk and has then neither recovered nor infected its neighbor up to the
observation time t.

Next, we integrate Eq. (9) and using the initial condition θk→l(0) = 1 we get

1−θk→l(t) =
∫ t

0
βak→l(t ′)Ik→l(t ′)dt ′ (45a)

=(1− zk)
∫ t

0
dt ′ fk→l(t ′|0) (45b)

+
∫ t

0

∫ t ′

0
dt ′dtk

[
− d

dtk
Sk→l(tk)

]
fk→l(t ′|tk).

In Eq. (45b) we used Ik→l(t) from Eq. (44) and we also introduced the transmission
probability fk→l(t ′|tk) = βak→l(t ′)Λk→l(t ′, tk): Given that node k contracted the in-
fection at absolute time tk, fk→l(t ′|tk) gives the probability that the same node passes
the disease to its neighbor l at absolute time t ′. In the context of static networks the
quantity

∫
∞

tk
fk→l(t ′|tk)dt ′ is frequently referred to as transmissibility and plays a cru-

cial role in linking epidemic spreading to a percolation process [13, 48]. Note that
the transmissibility can be smaller than one as node k might recover before passing
on the infection and for temporal networks, unlike the static case, the value is edge-
and time-dependent as we discussed already at the end of Sec 4.

The message-passing framework in [13] assumes a non-Markovian infection and
recovery process. Similarly, our result in Eq. (45b) demonstrates how a general epi-
demic model on temporal networks can be formulated by redefining fk→l(t ′|tk) as
proposed in [13] (see also Eq. (32)).

In order to demonstrate the reduction to the message-passing formulation of [13],
we reformulate Eq. (45b) for a static underlying topology. With ak→l(t) ≡ 1 the
transmission probability fk→l(t|tk)→ f (τ) depends only on the relative time τ =
t− tk after infection and becomes an identical function for all edges k→ l. Using
this simplification we obtain
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1−θk→l(t) =(1− zk)
∫ t

0
dτ f (τ)

+
∫ t

0

∫
τ

0
dτdτi f (τ− τi)

[
− d

dτi
Sk→l(τi)

]
. (46)

Integrating the second term in Eq. (46) by parts, and using the fact that the double
integral can be reordered as∫ t

0
dτ

∫
τ

0
dτi =

∫ t

0
dτi

∫ t

τi

dτ, (47)

we arrive at the message-passing formulation equivalent to that in [13]:

θk→l(t) = 1−
∫ t

0
dτ f (t)(1−Sk→l(t− τ)). (48)

With this we have linked the continuous-time CB model with a previously intro-
duced message-passing framework for general non-Markovian epidemic models in
the case of a static underlying graph.

7 Summary

We have presented a continuous-time description of a contact-based model. The
discussed theoretical framework allows us to study the spreading of epidemics and
extends the dynamic message-passing approach to networks with a time-varying
topology. At the center of the contact-based model is a shift in perspective from
node- to edge-centric quantities. This allows to accurately model, e.g., susceptible-
infected-recovered outbreaks on time-varying trees, that is, temporal networks with
a loop-free underlying topology. We have shown that on arbitrary graphs, the pro-
posed contact-based (edge-centric) model incorporates potential structural and tem-
poral heterogeneities of the underlying contact network and improves analytic esti-
mations with respect to the individual-based (node-centric) approach at a low com-
putational and conceptual cost. Within this new framework, we have derived an
analytical expression for the epidemic threshold on temporal networks.

We have taken a decidedly theoretical and analytical approach to the proposed
framework. This will facilitate the application to both empirical data sets and generic
classes of networks.
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30. S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, Y. Moreno, Europhys. Lett. 89(3),
38009 (2010)

31. M. Youssef, C. Scoglio, J. Theor. Biol. 283(1), 136 (2011)
32. J. Pearl, in Proceedings of the Second AAAI Conference on Artificial Intelligence (AAAI Press,

1982), AAAI’82, pp. 133–136
33. B. Karrer, M.E.J. Newman, L. Zdeborová, Phys. Rev. Lett. 113, 208702 (2014)
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