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In ecological systems, heterogeneous interactions between
pathogens take place simultaneously. This occurs, for instance,
when two pathogens cooperate, while at the same time,
multiple strains of these pathogens co-circulate and compete.
Notable examples include the cooperation of human
immunodeficiency virus with antibiotic-resistant and
susceptible strains of tuberculosis or some respiratory
infections with Streptococcus pneumoniae strains. Models
focusing on competition or cooperation separately fail to
describe how these concurrent interactions shape the
epidemiology of such diseases. We studied this problem
considering two cooperating pathogens, where one pathogen
is further structured in two strains. The spreading follows a
susceptible-infected-susceptible process and the strains differ
in transmissibility and extent of cooperation with the other
pathogen. We combined a mean-field stability analysis with
stochastic simulations on networks considering both well-
mixed and structured populations. We observed the
emergence of a complex phase diagram, where the conditions
for the less transmissible, but more cooperative strain to
dominate are non-trivial, e.g. non-monotonic boundaries and
bistability. Coupled with community structure, the presence of
the cooperative pathogen enables the coexistence between
strains by breaking the spatial symmetry and dynamically
creating different ecological niches. These results shed light on
ecological mechanisms that may impact the epidemiology of
diseases of public health concern.
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1. Introduction
Pathogens do not spread independently. Instead, they are embedded in a larger ecosystem that is
characterized by a complex web of interactions among constituent elements. Among ecological forces
shaping such ecosystems, pathogen–pathogen interactions have drawn increasing attention during
recent years owing to their population-level impact and public health consequences. Recent advances
in serological tests and genotyping techniques have improved our reconstruction of pathogen
populations where multiple strains co-circulate, often competing owing to cross-protection or mutual
exclusion. Examples include tuberculosis [1,2], Plasmodium falciparum [3], Streptococcus pneumoniae [4,5]
and Staphylococcus aureus [6,7]. Polymorphic strains can also interact in more complex ways, with both
competition and cooperation acting simultaneously, as observed in co-circulating dengue serotypes [8].
While interfering with each other, strains also interact with other pathogens co-circulating in the same
population. Tuberculosis [1], human papillomavirus (HPV) [9] and P. falciparum [10], for example,
appear to be facilitated by human immunodeficiency virus (HIV), whereas Str. pneumoniae benefits
from some bacterial infections, e.g. Moraxella catarrhalis, and is negatively associated with others such
as Sta. aureus [11,12]. Competition, cooperation and their co-occurrence may fundamentally alter
pathogen persistence and diversity, thus calling for a deep understanding of these forces and their
quantitative effects on spreading processes.

Mathematical models represent a powerful tool to assess the validity and impact of mechanistic
hypotheses about interactions between pathogens or pathogenic strains [13,14]. The literature on
competitive interactions is centred on pathogen dominance and coexistence. Several factors were found to
affect the ecological outcome of the competition, including co-infection mechanisms [15–18], host age
structure [19,20], contact network [21–32] and spatial organization [33–38]. At the same time, models
investigating cooperative interactions have driven many research efforts during recent years [39–45].
Cooperation has been found to trigger abrupt transitions between disease extinction and large scale
outbreaks along with hysteresis phenomena where the eradication threshold is lower than the epidemic
threshold [39,40,43]. These findings were related to the high burden of synergistic infections, e.g. the HIV
and tuberculosis co-circulation in many parts of the world. Despite considerable mathematical and
computationally heavy research on interacting pathogens, competition and cooperation have been studied
mostly separately. Nevertheless, current understandings about these mechanisms taken in isolation may
fail to describe the dynamics arising from their joint interplay, where heterogeneous interactions may
shape the phase diagram of coexistence/dominance outcome, along with the epidemic prevalence.

Here we studied the simplest possible epidemic situation where these heterogeneous effects are at
play. We introduced a three-player model where two pathogens cooperate, and one of the two is
structured in two mutually exclusive strains. This mimics a common situation, where e.g. resistant
and susceptible strains of Str. pneumoniae cooperate with other respiratory infections [11] and allows
us to address two important ecological questions:

— how does the interplay between two distinct epidemiological traits, i.e. the transmissibility and the
ability to exploit the synergistic pathogen, affect the spreading dynamics? and

— how does the presence of a synergistic infection alter the coexistence between competing strains?

We addressed these questions by providing a characterization of the phase space of dynamical regimes.
We tested different modelling frameworks (continuous and deterministic vs. discrete and stochastic) and
compared two assumptions regarding population mixing, i.e. homogeneous vs. community structure.

The paper is structured as follows: §2 introduces the main aspects of the three-player model. We
provide the results of the deterministic dynamical equations in §3.1, where we present the stability
analysis, together with the numerical integration of the equations, to characterize the phase space of
the dynamics. The structuring of the population in two communities is analysed in §3.2. In §3.3, we
describe the results obtained within a network framework comparing stochastic simulations in an
Erd}os–Rényi and a random modular network. We discuss the implications of our results in §4.

2. The model
A scheme of the model is depicted in figure 1a. We considered the case in which two pathogens, A and B,
follow susceptible-infected-susceptible (SIS) dynamics, and we made the simplification that they both
have the same recovery rate μ. A and B cooperate in a symmetric way through increased
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susceptibility, i.e. a primary infection by one of the two increases the susceptibility to a secondary
infection by the other pathogen. We assumed that the cooperative interaction does not affect
infectivity, thus doubly infected individuals, i.e. infected with both A and B, transmit both diseases at
their respective infection rates. B is structured in two strains, B1 and B2, that compete through mutual
exclusion (co-infection with B1 and B2 is impossible) and differ in epidemiological traits. Specifically,
we denoted the infection rates for pathogens A and Bi with α and βi (i = 1, 2), respectively. We
introduced the parameters ci > 1 to represent the increased susceptibility after a primary infection. In
summary, individuals can be in either one of six states: susceptible (S), singly infected (A, Bi) and
doubly infected with both A and Bi. The latter status is denoted by Di.

To simplify the analytical expressions, we rescaled time by the average infectious period μ−1, which
leads to non-dimensional equations. The basic reproductive ratios of each player, R(i)

0 ¼ bi=m and
R(A)
0 ¼ a=m, then become equal to the transmission rates βi and α, respectively. This implies that the

threshold condition βi, α > 1 has to be satisfied in order for the respective player to be able to
individually reach an endemic state. Assuming a homogeneously mixed population, the mean-field
equations describing the spreading dynamics are:

_S ¼ Aþ B1 þ B2 � aSXA � b1SX1 � b2SX2

_B1 ¼ D1 � B1 � c1aB1 XA þ b1SX1

_B2 ¼ D2 � B2 � c2aB2 XA þ b2SX2

_A ¼ D1 þD2 � Aþ aSXA � c1b1AX1 � c2b2AX2

_D1 ¼ �2D1 þ c1aB1 XA þ c1b1AX1

and _D2 ¼ �2D2 þ c2aB2 XA þ c2b2AX2,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2:1)

where the dot indicates a differentiation with respect to time rescaled by μ−1, and quantities S, A, Bi and
Di represent occupation numbers of the compartments divided by the population. The variables XA,
Xi, i ¼ 1, 2, indicate the total fractions of individuals carrying A and Bi, respectively, among the singly
and doubly infected individuals. They satisfy the equations:

_Xi ¼ Xibi(Sþ ci A)� Xi (2:2a)

homogeneous mixing

homogeneous mixing with
communities

networked population

D1

B1

D2

B2

A

S

e

b1 b2

c2b2c1b1
c1a c2a

a

(a) (b)

(c) (d)

Figure 1. Scheme of the model. (a) Compartmental model. Coloured arrows represent transitions occurring owing to infection
transmission. Dashed arrows refer to primary infections, while solid arrows refer to secondary ones; transmission parameters are
also reported close to each arrow. Black arrows represent recovery transitions. (b–d ) Schematic representation of the modelling
frameworks and population structures considered. (b) A homogeneously mixed population (§3.1). (c) Two homogeneous
populations with across-group mixing ruled by the parameter ε (§3.2); in (b),(c), colours indicate the infectious density for
each compartment. (d ) Erd}os–Rényi and random modular networks (§3.3). Colours indicate the nodes’ status.
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and

_XA ¼ XAa(Sþ c1B1 þ c2B2)� XA: (2:2b)

Without the loss of generality, we considered the case in which the strain B2 is more transmissible
than B1, i.e. δβ = β2− β1 > 0. Furthermore, we focused on the more interesting case of trade-off between
transmissibility and cooperation to limit the parameter exploration: the less transmissible strain, B1, is
more cooperative, δc = c1− c2 > 0. If B2 is more cooperative, we expect it to win the competition. To
summarize, our main assumptions are:

— δβ = β2− β1 > 0,
— δc = c1− c2 > 0,
— ci . 1 i ¼ 1, 2.

In §3, we will first describe the dynamics arising from the deterministic equation (2.1). We will then
consider the case in which the whole population is structured in two groups (figure 1c). Finally, we
will apply the proposed model to contact networks, where nodes represent individuals and
transmission occurs through links, and consider transmission and recovery as stochastic processes.
Two types of networks will be tested: Erd}os–Rényi and random modular networks (figure 1d ).

3. Results
3.1. Continuous well-mixed system
We carried out a stability analysis to classify the outcome of the interaction as a function of the difference
in strain epidemiological traits, δc and δβ. Specifically, we computed explicit analytical expressions for
states’ feasibility and stability conditions in several cases. Furthermore, we performed extensive
numerical simulations in cases where closed expressions were difficult to obtain. We present the
overall behaviour and the main analytical results in this section and we refer to the electronic
supplementary material for the detailed calculations. In the following, we will use square brackets to
indicate final state configurations in terms of persisting strains, thus [A&B1] indicates, for instance, the
equilibrium configuration where both A and B1 persist, while B2 becomes extinct.

Figure 2a,b shows the location of stable states with two combinations of α, β2 and c1. Results that are
obtained for other parameter values are reported in the electronic supplementary material, figure S1. No
coexistence was found between B1 and B2. In principle, equations (2.1) admit a coexistence equilibrium
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Figure 2. Phase diagram for the well-mixed system. (a,b) Stable equilibria as a function of δβ and δc for two parameter choices,
namely (a) α = 0.6, β2 = 1.5, c1 = 4 and (b) α = 0.8, β2 = 1.1, c1 = 7. The three states [B2], [A&B2] and [A&B1] are indicated
in light blue, dark blue and red, respectively. Hatched regions correspond to bistable and multi-stable regions. The yellow curves
show the analytical boundaries delimiting stability regions for [A&B1] and [A&B2] (equations (3.2) and (3.3)), while the white
one delimits the [B2]’s region (equation (3.1)). Note that for δc > 3, 6, for (a,b), respectively, c2 < 1 and the interaction between
B2 and A ceases to be cooperative. This naturally provides a range for the x-axis. In (b), β1 is below one for db . 0:1. (c)
Evolution of total prevalence for A (grey), B1 (red) and B2 (blue), considering singly and doubly infected combined. Parameters
correspond to the grey and black star markers in (a), i.e. db ¼ 0:03 and δc = 0.5, 1.5 in top and bottom panels, respectively.
Dynamical trajectories have been obtained by integrating equations (2.1) with initial conditions: Bi(t = 0) = 0.001, A(t = 0) = 0.01.
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[A&B1&B2]. However, this coexistence was always found to be unstable in the numerical simulations.
Persistence of A is only possible together with one of the B strains. The equilibrium solution [A] is
unfeasible for α < 1 and unstable for α > 1, unless both reproductive ratios, βi, are below the epidemic
threshold. Because of the assumption δβ > 0, B2 outcompetes B1 in absence of A, in agreement with the
principle of competitive exclusion. Therefore, the final state [B1] is always unstable, and persistence of
B1 is possible only in co-circulation with A. On the other hand, B2 can spread either alone or together
with A. Specifically, the [B2] configuration is feasible for β2 > 1. It is stable if and only if α < αc, with

ac ¼ b2

c2(b2 � 1)þ 1
: (3:1)

This provides a sufficient condition for the persistence of A. Equation (3.1) can be expressed in terms of δc,
namely δc > c1− (β2− α)/[α(β2− 1)], which is visualized as the white boundary in figure 2a,b.

The competition between B1 and B2 is governed by the trade-off between transmission and
cooperative advantage. This is described by the boundaries of the [A&Bi] regions that can be traced
by combining the feasibility and stability conditions. These boundaries are plotted in figure 2a,b as
dotted and dashed yellow curves for [A&B1] and [A&B2], respectively. For a solution to be feasible,
the densities of all states must be non-negative. For absolute parameter values as in figure 2a,b we
found that this yields the necessary condition abi . 4(ci � 1)=c2i , corresponding to the vertical and
horizontal segments. On the other hand, the stability boundary separating [A&Bi] from any state
containing Bj ( j≠ i) is given by

b j(S
� þ c jA�)� 1 , 0, (3:2)

where S� and A� are the equilibrium densities of S and A, respectively, evaluated in the configuration
[A&Bi]. The left-hand side of the equation represents the growth rate of the competitor Bj, appearing
in equation (2.2a), and evaluated in the [A&Bi] state. Thus, the relation (3.2) expresses the condition
for Bj extinction. Expressed in terms of δc and δβ, the conditions become:

[A&B1] :
b2(c1 � dc)
c1(b2 � db)

þ b2dc
c1 � 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4(c1 � 1)

c21(b2 � db)a

s !
¼ 1

and [A&B2] :
c1(b2 � db)
b2(c1 � dc)

� dc(b2 � db)
c1 � dc � 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4(c1 � dc � 1)

b2a(c1 � dc)
2

s !
¼ 1:

9>>>>>=
>>>>>;

(3:3)

The intersection among the stability boundaries described above produces a rich state space. For
all tested values of α, β2 and c1, we found a wide region of the (dc, db) space (red-hatched in
figure 2a,b) displaying bistability between the [A&B1] state and a B2-dominant state with either [B2] or
[A&B2]. In certain cases, bistability can also occur between the [B2] and [A&B2] states (blue-
hatched region in figure 2b). This has been studied in the past for two cooperating pathogens [43].
We found that the intersection between the latter region and the red-hatched region gives rise to a
multi-stable state.

Interestingly, for all tested parameters, we found that the boundary of the [A&B2] stability region is
not monotonic. As a consequence, for a fixed δβ, a first transition from the [A&B2] state to [A&B1] is found
for small δc values. An increase of δc leads to a second boundary with a bistable region, where the
dominance of B1 over B2 depends on initial conditions. The transition for small δc is expected: by
increasing B1’s advantage in cooperation, a point is reached beyond which B1’s disadvantage in
transmissibility is overcome. On the other hand, the second threshold appears to be counterintuitive.
We investigated it more in depth for the case depicted in figure 2a. We plotted the infectious
population curves as a function of time for each infectious compartment. We compared δc = 0.5, which
corresponds to the [A&B1] stable state (figure 2c top), and δc = 1.5, which leads to a bistable region
(figure 2c bottom), where all other parameters are as in figure 2a. Figure 2c shows that B1 loses the
competition at the beginning. However, when B2 is sufficiently cooperative with A (top), the rise of B2

leads to a rise in A that ultimately drives B1 to dominate. For higher δc, the strength of cooperation
between B2 and A is not sufficient. The indirect beneficial effect of B2 over B1 is not present (bottom),
and B1 can dominate only if initial conditions are favourable.

In the bistable and multi-stable regions, the outcome of the competition is determined by initial
conditions. While a mathematical analysis is complicated owing to the multi-dimensionality of the
problem, we gained insights into the basins of attraction by numerically integrating equation (2.1)
while exploring different combinations of Bi(t = 0) and A(t = 0). For the bistability between the regions
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of B1 and B2 dominance, we considered the parameter combination of figure 2a and shown in figure 3a
the states that are reached starting from Bi(t = 0) = 0.001 and A(t = 0) = 0.01. The bundle of curves with
different shades of red (from light to dark) indicates the boundary of the [A&B1] equilibrium when
B1(t = 0) and B2(t = 0) are equally increased. We found that an increase in B1’s initial infected densities
favours the [A&B1] state, as expected. Interestingly, however, an increase in B1(t = 0) results in the
[A&B1] region expanding even when B2’s density increases at the same level. Figure 3b shows that a
similar behaviour is found when parameters are as in figure 2b. In this case, the region [A&B2]
expands together with the [A&B1] one. Thus, increased initial frequencies promote co-circulation
between B and A. In the electronic supplementary material, figure S2, we present a deeper exploration
of initial conditions, considering the parameter combination of figure 2a as an example. We found that
an increase in the initial level of A also favours B1. However, the initial advantage (either in B1(0) or
A(0)) that is necessary for B1 to win against B2 increases as db increases.

The stability diagrams obtained with several parameter sets, explored in a latin-square fashion, is
reported in the electronic supplementary material, figure S1. This shows that increased transmissibility
and cooperativity levels enhance the cooperative interaction of Bi strains with A. This results in an
increase in the parameter region for which B1 together with A dominates over B2. For instance, the
comparison between figure 2d and f shows that, by increasing β2 from 1.1 to 1.5, the same difference
in strain epidemiological traits, δc and db, may lead to a switch in dominance from B2 to B1.

3.2. Continuous system with communities
We now consider a population that is divided into two communities (cf. figure 1c). For simplicity, we
assumed that they are of the same size. To differentiate transmission within and across communities,
we rescaled the force of infection produced by individuals of a different community by a factor ε, and
the force of infection of individuals of the same community by 1− ε. We assumed 0 , 1 � 1

2 in order
to consider the case in which individuals mix more within their community than outside – the limit
1 ¼ 1

2 corresponds to homogeneous mixing.
Given the high number of variables, a stability analysis is difficult in this case. Still, the dynamics can

be reconstructed through numerical integration of the equations. Figure 4 shows the final states with
fixed ε, β2, C1 and α. Other parameter values are analysed in the electronic supplementary material,
figure S3. Figure 4a–c compares different seeding configurations, while keeping the initial density of
each pathogen/strain to 0.01: (a) all strains are seeded in community 1 and community 2 is
completely susceptible; (b) B1 is seeded in community 1 while B2 and A are initially present in
community 2 only; and (c) B1 and A are seeded together in community 1, while B2 is seeded in
community 2. In all cases, we found a diagram with a shape similar to figure 3a. However, a new
region is now present (indicated in black) where all players coexist. This occurs when strains are
separated since the beginning—see the electronic supplementary material, figure S4 for additional
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Figure 3. Equilibrium configurations for the well-mixed system. Final outcome obtained by numerically integrating equations (2.1)
for Bi(t = 0) = 0.001, A(t = 0) = 0.01. (a) α = 0.6, β2 = 1.5, c1 = 4. Boundaries of the [A&B1] state for different initial conditions
are indicated by red-scale contours. (b) α = 0.8, β2 = 1.1, c1 = 7. Here, the boundaries of the [A&B2] are shown (in blue shades),
together with the ones of [A&B1].
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seeding configurations. Interestingly, however, this also happens for a tiny region of the parameter
space, when all strains are seeded together (figure 3a), provided that the other community is initially
disease-free.

Figure 5 sheds light on the dynamics leading to the outcomes of figure 4. In order to benefit from the
cooperative advantage, the B1 incidence must be above a certain threshold. Figure 5b,c show that the
incidence of A remains close to zero, until the incidence of B1 is sufficiently high. With B2 seeded on a
different community (community 2), the direct interaction between the two strains is delayed by the
time necessary for B2 to reach the community of B1. For high ε, the delay is short and B2 reaches
community 1 before A incidence starts to rise (figure 5a). On the other hand, for lower ε, B1 has
enough time to build up a cooperative protection before the arrival of B2. This makes it resistant to
the invader. At intermediate ε, B1 becomes able to overcome B2 in community 2. For small ε, strains
spread in their origin community independently from one another.

In summary, a decrease in ε increases the region of B1 persistence (figure 5d ). However, this may be
associated with either B1 dominance or coexistence. Reducing the values of ε, the region corresponding to
the [A&B1] state expands first and shrinks later, leaving the place to the coexistence region. This is shown
by the non-monotonous change of the [A&B1] region in figure 5e.

When all strains start in the same community, coexistence is enabled by a segregation mechanism
similar to the one described above. In this case, separation occurs during the early stage: B2 rapidly
spreads in the other community owing to its advantage in transmissibility and becomes dominant
there (cf. electronic supplementary material, figure S5). This enables coexistence in a parameter region
where B1 would otherwise dominate.

Results described so far were obtained with fixed values of β2, C1 and α. Additional parameter choices
are shown in the electronic supplementary material, figure S3. Increasing in αwas found to enlarge the B1

dominance region, as in the well-mixed case. In addition, coexistence becomes possible for α > 1 in a very
small region of the parameter space.

3.3. Spreading on networks
The continuous-deterministic framework analysed so far does not account for stochasticity and for the
discrete nature of individuals and their interactions. These aspects may alter the phase diagram and
shape the transitions across various regions. We cast our model on a discrete framework in which
individuals are represented by nodes in a static network. Possible individual states are still the same
as in the mean-field formulation, and infection can spread only between neighbouring nodes. We first
considered an Erd}os–Rényi graph, where the mixing is homogeneous across nodes. Denoting N the
number of nodes and �k the average degree, the network was built by connecting any two nodes with
probability �k=(N � 1). We run stochastic simulations of the dynamics. In order to see the effect of
multi-pathogen interactions, we minimized the chance of initial stochastic extinction by infecting a
relatively high number of nodes at the beginning: 100 infected for each infectious agent. We then
computed the fraction of stochastic simulations ending up in any final state, the average prevalence
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for each strain (X1, X2) in the final state and the average coexistence time. Additional details on the
network model and the simulations are reported in the electronic supplementary material.

The phase diagram of figure 6a is similar in many aspects to its continuous deterministic version
(figure 3a). Three final states are possible, i.e. [B2], [A&B1] and [A&B2] (figure 6a). Here, however, the
same initial conditions and parameter values can lead to different stochastic trajectories and stationary
states. For instance, the red region in the figure corresponds to the case in which the final state [A&B1]
is reached very frequently; however, the dynamic trajectories can also end up in the [A&B2] or in the
[B2] states. The transitions across the different regions of the diagrams can be very different, as
demonstrated by figure 6b–j. Figure 6b–d shows the effect of varying δc at a fixed δβ. The transition
between [A&B2] and [A&B1] on the left is sharp. Both the probability of one strain winning over the
other and the equilibrium prevalence change abruptly for a critical value of δc. Here, the spreading is
super-critical for all pathogens: β1, β2 > 1 and c1, c2 are sufficiently high to sustain the spread of A. The
transition is owing to the trade-off between B1 and B2 growth rates. Conversely, the probability of
ending up in the [B2] state rises slowly, driving the gradual transition from the red to the light blue
region on the right. This region appears in correspondence of the bistable region of the continuous/
deterministic diagram: figure 2. Here, A undergoes a transition from persistence to extinction, driven
by the drop in c2 (electronic supplementary material, figure S6). This critical regime is characterized
by enhanced stochastic fluctuations. When δc is fixed and δβ varies, we found a sharp transition
(figure 6e–g) and a hybrid transition, where the final state probability varies gradually and the
equilibrium prevalence (X1) varies abruptly (figure 6h–j).

We concluded by analysing the effect of community structure. Each node was assigned to one among
nC communities, which we assumed for simplicity to have equal size N/nC, and has a number of open
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connections drawn from a Poisson distribution with average �k. Links were formed by matching these
connections according to an extended configuration model, where a fraction ε of stubs connects nodes
of different communities. In this way, the model is the discrete version of the one in §3.2.

Mean-field results remain overall valid. The two plots in figure 7 mirror figure 4a,c and show a similar
behaviour. We find evidence of a coexistence region (in black in the figure), where no extinction is
observed during the simulation time frame—here set to 2 × 106 time steps, around two orders of
magnitude longer than the time needed to observe strain extinction in the Erd}os–Rényi case. Such a
region is larger when the two strains are seeded in separated communities (figure 7b), but it is still
visible when strains start all together (figure 7a). Coexistence occurs less frequently in the latter case
because it requires strains to reach the separation during the spreading dynamics.

Analogously to the continuous deterministic model, we found that the separation in communities
favours the more cooperative strain. The region where B1 wins is larger compared to the Erd}os–Rényi
case (as highlighted by the comparison between the dashed and the continuous curves). In addition,
the probability of winning is close to one for a large portion of the [A&B1] dominance region.

4. Discussion and conclusion
We presented here a theoretical analysis of a three-player system where both competition and
cooperation act simultaneously. We have considered two competing strains co-circulating in the
presence of another pathogen cooperating with both of them. Strains differ in epidemiological traits,
with one strain being more transmissible but less cooperative than its competitor. Through
mathematical analyses and computer simulations, we have reconstructed the possible dynamical
regimes, quantifying the conditions for dominance of one strain or coexistence. We found that the
interplay between competition and cooperation leads to a complex phase diagram whose properties
cannot be easily anticipated from previous works that considered competition and cooperation
separately.

We showed that it is possible for a more cooperative strain to dominate over a more transmissible one,
provided that the difference in transmissibility is not too high. This suggests that the presence of another
pathogen (A) might alter the spreading conditions, creating a favourable environment for a strain that
would be otherwise less fit. While dominance depends on the difference in epidemiological traits, we
found that variations in the absolute cooperation and transmissibility levels may change the hierarchy
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between strains—analogously to [15]—with a higher spreading potential of either Bi or A favouring the
more cooperative strain.

Interestingly, the cooperative strain can also dominate when A has a sub-critical reproductive ratio
(α < 1)—when spreading alone—and relies on the synergistic interaction with B strains to persist. The
dynamical mechanisms underlying this outcome are complex. We analysed a case with a small
difference in cooperativity, and we found that the more transmissible strain, by spreading initially
faster, creates the bulk of A infections that in turn favour its competitor. In other words, direct
competition for susceptible hosts is not the only force acting between strains: an indirect, beneficial
interaction is also at play, mediated by the other pathogen. The dominance outcome is thus the result
of the trade-off between these two forces. When the difference in cooperation is higher, two or more
stationary configurations are possible. In this scenario, the final outcome is also determined by the
initial frequency of each pathogen/strain. We found that, in certain situations, an initial advantage of
one strain is able to drive it to dominance. This is in contrast with simpler models of competition,
where the final outcome is determined solely by the epidemiological traits. The outcome, however, is
also governed by pathogen A that favours the more cooperative strain. Previous works have analysed
multistability in two-pathogen models with cooperation in relation to the hysteresis phenomenon,
where the eradication threshold is lower than the epidemic one [39,42,43]. A similar mechanism
could be at play here. However, the identification of hysteresis loops requires a better reconstruction
of the attraction basins. While the numerical work presented here provided some preliminary
understanding, a deeper mathematical analysis would be needed in this direction. Multistability is,
instead, not present in two-pathogen models with a complete mutual exclusion. This dynamical
feature emerges, however, in the more general case where strains are allowed to interact upon
co-infection [15].

While we did not find stable coexistence among strains in the well-mixed system, coexistence was
possible in presence of community structure. In this case, strains can minimize competition for hosts
through segregation. Importantly, spatial separation alone is not sufficient to enable coexistence
between two strains, when complete mutual exclusion is assumed. This was already known from
previous works which showed that community structure must be combined with some level of
heterogeneity across communities to enable coexistence, e.g. a strain-specific adaptation to a
population or environment to create an ecological niche [35,37,46–48]. Here, communities are
homogeneous and coexistence is the result of the interplay between community structure and
presence of the cooperative pathogen. When the two strains are seeded in different communities, their
interaction occurs after the time lag necessary for one strain to invade the other community. We
found that this interval may allow the resident strain to reach the bulk of infections necessary to fend
off the invasion. This mechanism is rooted again in the effect of pathogens’ frequencies on strain
selective advantage. The drivers of strains’ coexistence remain an important problem in disease
ecology with applications to both vaccination and emergence of anti-microbial resistance. Within-host
and population factors have been studied in the past by several modelling investigations. Notably,
while coexistence is not possible in models with complete mutual exclusion, this may be enabled in
co-infection models [15–18,49]. Other models have addressed environmental and host population
features, such as age structure, contact dynamics and spatial organization [19–21,36]. However, little
attention has been dedicated to the effect of an additional co-circulating pathogen. Cobey et al. studied
the interaction between Haemophilus influenzae and Str. pneumoniae co-circulating strains [50]. Despite
the numerous differences between our model and theirs, their work provides results consistent with
ours. Namely, the multi-strain dynamics can be affected by another pathogen.

We simulated the three-player dynamics on networks and we obtained phase diagrams that are
similar to the continuous-deterministic counterparts. The discrete/stochastic framework, however,
allows for observation of the nature of the phase transitions. Several works recently studied the nature
of the epidemic transition for two cooperating pathogens, highlighting differences with the single-
pathogen case. Cooperation was found to cause discontinuous transitions where the probability of an
outbreak and prevalence change abruptly around a critical value of the transmission rate [40,43], akin
to other complex contagion mechanisms such as the ones found in social contagion [51,52]. This
phenomenon, however, is sensitive to the network topology, with continuous, discontinuous and
hybrid, i.e. continuous in the outbreak probability and discontinuous in the prevalence, transitions
observed according to the topology of the network [39,40,42,43,53–55]. Here we found rich dynamics
as the impact of stochastic effects. These effects were less important when the difference between
strains’ epidemiological traits was small. Conversely, for a higher difference in cooperative factor,
different outcomes are equally probable. Results presented here are preliminary and limited to two
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network configurations. Future work should investigate additional network topologies, e.g. a power-law
degree distribution, and further values of the network parameters. In addition, more sophisticated
numerical analysis (e.g. scaling analysis) would be needed to better classify the nature of the
phase transitions.

Concurrence of inter-species cooperation and intra-species competition is present in many
epidemiological situations. Currently, around 90 distinct Str. pneumoniae serotypes are known to co-
circulate worldwide, despite indirect competition mediated by host immune response [4]. The
emergence of antibiotic-resistant strains and the development of vaccines able to target only a subset
of strains has motivated extensive research on the drivers of Str. pneumoniae ecology [4,5,20]. Strain
circulation is facilitated by respiratory infections, e.g. influenza [56,57] and some bacterial infections
[11,12]. Cooperative behaviour has also been observed between HIV and infections such as HPV,
tuberculosis and malaria [1,9,10,58,59]. This increases the burden of these pathogens and causes
public health concern. At the same time, there is evidence that different strains of tuberculosis [2,60],
malaria [3] and HPV [61–63] may compete. In particular, multidrug-resistant strains of tuberculosis
(MDR-TB) are widely spread, although the acquisition of resistance seems to be associated with a
fitness cost [59,64]. The synergistic interaction with HIV could play a role in this emergence and
surveillance data suggest a possible convergence between HIV and MDR-TB epidemics in several
countries [59]. Our theoretical work highlights ecological mechanisms potentially relevant to these
examples. In this regard, an essential aspect of our model is the trade-off between transmissibility and
cooperativity in determining strain advantage. Although differences in transmissibility across strains
have been documented, e.g. fitness cost of resistance [65], gathering information on strain-specific
cooperative advantage remains difficult. The theoretical results illustrated here show the importance of
quantifying this component for better describing pathogen ecosystems.

This study also represents the starting point of more complex models where multiple strains are
involved and competition and cooperation are acting simultaneously. Patterns of competitive and
cooperative interactions could be at play, for instance, among recently emerged pathogens such as Zika
virus [66]. Zika virus has emerged in regions where Dengue and Chikungunya viruses are endemic.
Observed patterns of sequential monodominance by one arbovirus at a time at a given location suggest
competition between these pathogens [67]. Also, considerable effort is currently devoted to
characterizing possible positive interactions between Zika virus and HIV [66]. In some cases, different
strains of the same pathogen can interact both competitively and cooperatively, as in the case of Dengue
[8,14]. Primary Dengue infections are characterized by mild symptoms and grant short-term cross-
protection against other serotypes. As cross-immunity wanes over time, however, secondary Dengue
infections not only becomepossible but are also associatedwith severe illness andwith increased virulence.

The examples above involve diseases with varying natural history and time scales and should be
modelled with different compartmental models—SIS, susceptible-infected-recovered (SIR), susceptible-
infected, susceptible-infected-recovered-susceptible [13]. We decided here to consider two SIS
pathogens and the results cannot be readily extended to other models, because the dynamics of
disease unfolding alters the outcome of strain interactions. It is important to note, however, that
several dynamical properties of competitive and cooperative interactions, such as dominance vs.
coexistence [27] and abrupt transitions [68–70], hold for both SIS and SIR.

The model studied here is based on certain simplifications. All pathogens are assumed to have the
same recovery rate; moreover, cooperation acts in both directions and the same factors ci quantify the
enhancement in susceptibility when A infection occurs before Bi infection and vice versa. These
assumptions may not hold for many synergistic pathogens, especially when cooperative benefits are
based on different biological mechanisms. For instance, while HIV increases susceptibility against
P. falciparum, the latter increases HIV’s viral load, thus increasing HIV’s virulence rather than host
susceptibility to HIV [10,58]. It is likely that, by relaxing these assumptions, our model could exhibit
even more complex phase diagrams. Eventually, other aspects of the disease-specific mechanisms and
multi-pathogen interactions could affect the results presented here and should be addressed in future
works. These include latent infections, which are characteristic, for instance, of tuberculosis [2], partial
mutual exclusion among strains [2,6,15,16] or interaction mechanisms other than the ones introduced
here (e.g. affecting the infectious period [24]).

In conclusion, we have provided a theoretical study of a dynamical system where both competition
and cooperation are at play. We found that a less transmissible and more cooperative strain may
dominate; however, the conditions on the parameters for this to happen are non-trivial (non-
monotonic) and the outcome critically depends on initial conditions and stochastic effects. When
coupled with population structure, the presence of a cooperative pathogen may create the conditions
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for multi-strain coexistence by dynamically breaking the spatial symmetry and creating ecological niches.
These results provide novel ecological insights and suggest mechanisms that may potentially affect the
dynamics of interacting epidemics that are of public health concern.
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