
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title goDASH - GO accelerated HAS framework for rapid prototyping

Author(s) Raca, Darijo; Manifacier, Maëlle; Quinlan, Jason J.

Publication date 2020-05-26

Original citation Raca, D., Manifacier, M., Quinlan, J. J. (2020) 'goDASH - GO
accelerated HAS framework for rapid prototyping', QoMEX 2020:
International Conference on Quality of Multimedia Experience, Online
Conference [Athlone, Ireland], 26-28 May [To Appear]

Type of publication Conference item

Link to publisher's
version

http://qomex2020.ie/
Access to the full text of the published version may require a
subscription.

Rights © 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/9845

Downloaded on 2021-11-27T14:20:14Z

https://libguides.ucc.ie/openaccess/impact?suffix=9845&title=goDASH - GO accelerated HAS framework for rapid prototyping
http://qomex2020.ie/
http://hdl.handle.net/10468/9845

goDASH - GO accelerated HAS framework
for rapid prototyping

Darijo Raca
Faculty of Electrical Engineering

University of Sarajevo, Sarajevo, BiH
draca@etf.unsa.ba

Maëlle Manifacier
Université Clermont Auvergne

Aubière Cedex, France
maelle.manifacier@etu.uca.fr

Jason J. Quinlan
Department of Computer Science
University College Cork, Ireland

j.quinlan@cs.ucc.ie

Abstract—In this short paper, we present goDASH, an infras-
tructure for headless streaming of HTTP adaptive streaming
(HAS) video content, implemented in the language golang,
an open-source programming language supported by Google.
goDASH’s main functionality is the ability to stream HAS content
without decoding actual video (headless player). This results
in low memory requirements and the ability to run multiple
players in a large-scale-based evaluation setup. goDASH comes
complete with numerous state-of-the-art HAS algorithms, and
is fully written in the Google golang language, which simplifies
the implementation of new adaptation algorithms and functions.
goDASH supports two transportation protocols Transmission
Control Protocol (TCP) and Quick UDP Internet Connections
(QUIC). The QUIC protocol is a relatively new protocol with the
promise of performance improvement over the widely used TCP.

We believe that goDASH is the first emulation-based HAS
player that supports QUIC. The main limitation in using QUIC
protocol is the need for a security certificate setup on both ends
(client and server) as QUIC demands an encrypted connection.
This limitation is eased by providing our own testbed framework,
known as goDASHbed. This framework uses a virtual environ-
ment to serve video content locally (which allows setting security
certificates) through the Mininet virtual emulation tool. As part
of Mininet, goDASH can be used in conjunction with other traffic
generators.

Index Terms—Golang, HAS, HTTP Adaptive Streaming, QUIC

I. INTRODUCTION

Globally, video traffic dominates today’s Internet. Over
60% of traffic carried over the Internet belongs to video
streaming (Sandvine 2019). Service providers like Netflix,
Hulu, and Amazon offer subscription-based Video on Demand
(VoD) services. Adaptive video streaming is the streaming
technique at the centre of video content delivery. This method
permits streaming video content on the end-devices while
allowing seamlessly content quality adaptation to the network
conditions and device capabilities. This method complies with
the Internet’s best effort policy.

HAS splits video content into multiple fixed-duration
chunks (typically 2-10 seconds). Each chunk is encoded
into multiple qualities (e.g., 200, 500, and 1000kbps). At
the client side, the player maintains a playback buffer for
storing downloaded chunks for decoding. All the intelligence
is typically at the client side. The player estimates the available
network resources and adapts by requesting the maximum
chunk quality that minimises stalling events. The player can
also take device capabilities in to consideration when selecting

chunk quality. For example, if the device’s screen supports
only High Definition (HD) resolution, then the player can omit
all the qualities encoded in higher resolutions.

In the literature, many HAS adaptation algorithms have
been developed over the years [1]. Typically, these algo-
rithms can be grouped into three categories: rate-, buffer- and
hybrid-based. The rate-based algorithms solely rely on the
measurement of the available throughput for chunk quality
decision [2]. In a similar vein, buffer-based algorithms monitor
playback buffer levels and maps them to chunk quality [3].
Finally, most state-of-the-art algorithms use a hybrid approach,
taking both rate and buffer levels into the decision [4]–
[7]. Further classification can be made based on approaches
employed by the algorithm’s adaption logic, ranging from
optimisation [8], [9], game theory [1], control theory [6],
prediction [10], machine learning [11], improving bandwidth
estimation and other heuristics.

Several HAS players exist in the literature. The most
well-known players include dash.js [12], GPAC [13] and
ExoPlayer [14]. These players are most commonly used for
experimentation of new HAS algorithms. However, the main
drawback of these players is the inability to stream video
content without decoding, making them unsuitable for large-
scale evaluation. Alternatively, emulation-based players such
as TAPAS [15], AStream [16], and dashc [17] allow stream-
ing video content without decoding. However, compared to
goDASH, these players have limited functionalities in terms
of the number of implemented HAS algorithms, support for
different manifest files, support for the QUIC protocol, and
ease of implementing new functionalities.

In this short paper, we present goDASH, a video player
for headless streaming of HAS content, implemented in the
language golang [18], an open-source programming language
supported by Google. goDASH provides options for:

• adaptation algorithms such as - Hybrid: Arbiter+ [7] and
Elastic [6], Buffer Based: Logistic [3] and BBA [4],
and Rate Based: Conventional [19], Progressive, Average,
Geometric and Exponential.

• video codec: h264, h265, VP9 and AV1
• DASH profiles: full, main, live, full byte range and

main byte range
• config file input
• video stream debug option for printing information

• MPD url header information extracting for all segments
• defining the maximum stream buffer in seconds
• defining the initial number of segments to download

before stream starts (start up phase)
• defining a maximum height resolution to stream
• printing log output to file/terminal columns based on

selected print headers
• video streaming using the TCP/QUIC transport protocol
• defining a folder location to store the streamed DASH

files
• comes complete with its own testbed framework, known

as goDASHbed. This framework uses a virtual envi-
ronment to serve video content locally (which allows
setting security certificates) through the Mininet virtual
emulation tool, including set up of https certs

The remainder of the paper consists of: Section II, where
we introduce goDASH in more detail. Section III provides an
overview of the configuration setup for goDASH and provides
an example goDASH stream output log. Section IV presents
our future work in this area, and concludes the paper.

II. GODASH OVERVIEW

In this section, we introduce goDASH, a modular, dynamic
and easily configurable headless DASH player. goDASH is
written in golang, an open-source programming language
supported by Google. goDASH enables numerous researcher
options beyond the traditional comparison of multiple HAS al-
gorithms. goDASH supports two transportation protocols TCP
and QUIC. QUIC protocol is a relatively new protocol with a
promise of performance improvement over widely used TCP.
goDASH is the first tool that enables an exhaustive evaluation
of HAS with the QUIC protocol. For performance comparison,
goDASH calculates objective quality metrics (e.g., average
quality, stall and switching performance). Many algorithms
rely on information about future segment sizes. Typically,
in the research environment, this information is stored in
a separate file. However, in practice, this information may
not be readily available. goDASH overcomes this problem
by supporting two modes offline and online. Offline mode
reads segment sizes from the file, while online mode requests
segment sizes directly from the server (through sending HTTP
HEAD requests). This functionality makes goDASH unique
compared to other HAS players and moves it closer to a
realistic environment.

goDASH also comes equipped with it’s
own testbed framework, known as goDASHbed
(https://github.com/uccmisl/goDASHbed.git). This framework
utilises Mininet for network emulation and permits streaming
of multiple clients per session, each with their own debug/log
output files. VOIP background traffic is provided through
the Distributed Internet Traffic Generator (D-ITG) [20].
Variance in network throughput is provided through trace
based datasets containing cellular key performance indicators
(KPIs) - options for 3G, 4G and 5G exist.

We include one trace from two existing cellular trace
datasets (4G [21] and 5G [22]) in goDASHbed, for ease of
use. goDASHbed also includes options for DASH streaming

TABLE I: Notation used in the goDASH Trace Output logs

Type Description
Default Output:
Seg # Streamed segment number (full, main, live)

& segment range (full byte range, main byte range)
Arr Time Arrival time in milliseconds (ms)
Del Time Time taken to receive the segment (ms)
Stall Dur Stall duration (ms)
Rep Level Representation Quality (kbps)
Del Rate Delivery rate (kbps) Byte Size ∗ 8 bits

Del Time

Act Rate Actual rate (kbps) Byte Size ∗ 8 bits
Seg Dur in seconds

Byte Size Byte size of this segment
Buffer Level Buffer level (ms)
Optional Output:
Algorithm Adaptive Algorithm
Seg Dur Segment duration (ms)
Codec Video encoder
Width Representation width in pixels
Height Representation height in pixels
FPS Frame rate of the streamed video
Play Pos Current Playback position (ms)
RTT Packet level (ms) - determined using HTTP head request
Protocol HTTP protocol

using the TCP (HTTP/HTTPS) and QUIC (HTTPS) transport
protocols. Integration of goDASH with a Mininet emulation
environment opens new research areas and impact analysis of
HAS traffic on other traffic types (i.e., web and VoIP) and vice
versa. Little work has been done in this area [23]–[25].

goDASH has an easily modifiable configuration file (shown
in Listing 2). Table I illustrates the options for per segment
output to the client logs. The default headers are always output
to terminal, while the remainder of the “optional options”
can be displayed either “on” or “off” through settings in the
configuration file. Note: segmented DASH video content is
required for goDASHbed, and a script is provided to download
the content of your choice. We propose that you use either
of the following recently released DASH datasets (work with
goDASH and goDASHbed): the AVC and HEVC multi-profile
UHD dataset [26] which provides multiple profiles per UHD
clip, while the Multi-Codec Dataset [27] consists of content
in a range of video encoders (AVC, HEVC, VP9, and AV1)
and resolutions. Installation scripts for goDASH/goDASHbed
can be downloaded from: http://cs1dev.ucc.ie/misl/goDASH/

III. SYNOPSIS OF GODASH

Listing 1: Template to run a single goDASH client
1 # ./godash −−config ./config/configure.json

goDASH provides options for both parameter passing to
the executable and an easily modifiable json configuration file.
An example of the call to the configuration file is shown in
Listing 1, while an example of the parameter settings in the
configuration file is shown in Listing 2. As can be seen in
Listing 2, there are numerous options from which to configure
goDASH, such as adaptation algorithm, codec to use, initial
number of segments to buffer the player, maximum buffer in
seconds, max resolution height to restrict the player to, stream

TABLE II: Sample Default trace output from goDASH - conventional algorithm and 4-second segment duration

Seg # Arr time Del Time Stall Dur Rep Level Del Rate Act Rate Byte Size Buff Level

1 133 133 0 237 4955 164 82382 4000
2 2353 1371 0 4334 25074 8594 4297176 8000
3 4043 869 0 4334 23466 5098 2549074 10310
4 5581 617 0 4334 22227 3428 1714298 12773
5 7174 651 0 4334 22222 3616 1808357 15180

TABLE III: Sample Optional output from goDASH - conventional algorithm and 4-second segment duration

Seg # Algorithm Seg Dur Codec Width Height FPS Play Pos RTT Protocol

1 conventional 4000 h264 320 180 24 0 42.893 HTTP/1.1
2 conventional 4000 h264 1920 1080 24 4000 43.482 HTTP/1.1
3 conventional 4000 h264 1920 1080 24 8000 43.123 HTTP/1.1
4 conventional 4000 h264 1920 1080 24 12000 43.969 HTTP/1.1
5 conventional 4000 h264 1920 1080 24 16000 44.560 HTTP/1.1

duration in seconds, as well as options for debug and logging
output, and the MPD url to stream from.
{

” a d a p t ” : ” c o n v e n t i o n a l ” ,
” codec ” : ” h264 ” ,
” debug ” : ” on ” ,
” i n i t B u f f e r ” : 2 ,
” maxBuffer ” : 60 ,
” maxHeight ” : 3000 ,
” s t r e a m D u r a t i o n ” : 4 ,
” s t o r e D a s h ” : ”347985” ,
” l o g F i l e ” : ” l o g f i l e 2 ” ,
” g e t H e a d e r s ” : ” o f f ” ,
” t e r m i n a l P r i n t ” : ” on ” ,
” p r i n t H e a d e r ” :

”{\” Algo r i t hm \” :\” o f f \” ,\” Seg Dur \” :\” o f f \” ,
\” Codec \” :\” o f f \” ,\” Width \” :\” on\” ,
\” H e i gh t \” :\” on\” ,\” FPS\” :\” o f f \” ,
\” P lay Pos \” :\” o f f \” ,\”RTT\” :\” o f f \” ,
\” Seg Repl \” :\” o f f \” ,\” P r o t o c o l \” :\” on\”}” ,

” h l s ” : ” o f f ” ,
” e x p R a t i o ” : 0 . 2 ,
” q u i c ” : ” o f f ” ,
” u r l ” : ” [h t t p : / / c s1dev . ucc . i e / m i s l /

4 K n o n c o p y r i g h t d a t a s e t / 2 sec /
x264 / bbb / DASH Files / f u l l / bbb enc x264 dash . mpd] ” ,

” u s e T e s t b e d ” : ” o f f ”
}

Listing 2: Sample goDASH configuration file

To supplement the original configuration setup, we also add
an “evaluate” framework to goDASH, which offers a means
of running multiple goDASH clients during one streaming
session, using an easily configurable Python script. Through
this framework, each client utilises its own configure.json file,
and generating its own log and output files. An example of
the call to the Python script is shown in Listing 3.

Listing 3: Template to multiple goDASH clients
1 # python3 ./test goDASH.py −−numClients=10 \
2 −−terminalPrint=”off” −−debug=”off”

Currently, the Python script utilises a library file containing
a list of the possible MPD urls to choose from the five
profiles of the AVC and HEVC UHD DASH datasets [26].
Each client randomly chooses a different MPD, and downloads
the relevant number of segments depending on the stream

duration, and segment duration. –numClients - defines the
number of goDASH clients to stream, –terminalPrint - deter-
mines if the clients should output their logs to the terminal
screen and –debug - defines if the debug logs should be
created - note: even if ”debug” is set to ”off”, a log file,
”logDownload.txt”, containing the output features of each
downloaded segment will be created per client in the output
log folders. “test goDASH.py” has been tested with up to 100
goDASH clients with no loss to the content of the output logs.
Each client consumes up to 0.7% of CPU on average.

A. goDASH streaming log output

As presented in Table I, the output logs generated by
goDASH can be broken into two distinct outputs, namely
Default (an example of which is shown in Table II), and
Optional (shown in Table III) (These logs were generated by
the configuration settings shown in Listing 2) To view any of
the Optional outputs, the respective key in the “printHeaders”
dictionary of the configuration.json file, must also be set to
“on”. The steps to set the various output parameters in the
configuration setup are clearly defined in the README file
in goDASH (https://github.com/uccmisl/godash.git).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we present goDASH, a novel headless DASH
player, written in Google Go (golang). goDASH is a scalable
emulation video streaming player that supports TCP and QUIC
transport protocols and enables large-scale experiments and
background traffic from different application types. Future
work will consider adding the real-time generation of qual-
itative output for well-known Quality of Experience (QoE)
models, such as, but not limited to, P.1203 [28] and Claye [29].
Through continued modified to the player, we hope to offer
a validation framework which can be used in the creation of
new HAS algorithms and QoE models.

Acknowledgements: This publication has emanated from
research conducted with the financial support of Science
Foundation Ireland under Grant 13/IA/1892, acknowledges the
support of SFI Grant 13/RC/2077.

REFERENCES

[1] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
“A Survey on Bitrate Adaptation Schemes for Streaming Media Over
HTTP,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp.
562–585, Firstquarter 2019.

[2] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness, Efficiency,
and Stability in HTTP-Based Adaptive Video Streaming With Festive,”
IEEE/ACM Transactions on Networking, vol. 22, no. 1, pp. 326–340,
Feb 2014.

[3] Y. Sani, A. Mauthe, and C. Edwards, “Modelling Video Rate Evolution
in Adaptive Bitrate Selection,” in 2015 IEEE International Symposium
on Multimedia (ISM), Dec 2015, pp. 89–94.

[4] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A Buffer-based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service,” in Proceedings of the 2014 ACM Conference
on SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014,
pp. 187–198.

[5] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” in IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communica-
tions, April 2016, pp. 1–9.

[6] L. D. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC:
A Client-Side Controller for Dynamic Adaptive Streaming over HTTP
(DASH),” in 2013 20th International Packet Video Workshop. IEEE,
Dec 2013, pp. 1–8.

[7] A. H. Zahran, D. Raca, and C. Sreenan, “ARBITER+: Adaptive Rate-
Based InTElligent HTTP StReaming Algorithm for Mobile Networks,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2018.

[8] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over
HTTP,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, ser. SIGCOMM ’15. New
York, NY, USA: ACM, 2015, pp. 325–338. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787486

[9] A. H. Zahran, J. Quinlan, D. Raca, C. J. Sreenan, E. Halepovic, R. K.
Sinha, R. Jana, and V. Gopalakrishnan, “OSCAR: An Optimized Stall-
cautious Adaptive Bitrate Streaming Algorithm for Mobile Networks,”
in Proceedings of the 8th International Workshop on Mobile Video, ser.
MoVid ’16. New York, NY, USA: ACM, 2016, pp. 2:1–2:6. [Online].
Available: http://doi.acm.org/10.1145/2910018.2910655

[10] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana,
and V. Gopalakrishnan, “On Leveraging Machine and Deep Learning for
Throughput Prediction in Cellular Networks: Design, Performance, and
Challenges,” IEEE Communications Magazine, vol. 58, no. 3, pp. 11–17,
March 2020.

[11] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video
Streaming with Pensieve,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.

[12] “dash.js,” https://github.com/Dash-Industry-Forum/dash.js, accessed:
2020-03-29.

[13] “Gpac,” https://gpac.wp.imt.fr/, accessed: 2020-03-29.
[14] “Exoplayer,” https://github.com/google/ExoPlayer, accessed: 2020-03-

29.

[15] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “TAPAS:
A Tool for rApid Prototyping of Adaptive Streaming Algorithms,”
in Proceedings of the 2014 Workshop on Design, Quality and
Deployment of Adaptive Video Streaming, ser. VideoNext ’14.
New York, NY, USA: ACM, 2014, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2676652.2676654

[16] P. Juluri, V. Tamarapalli, and D. Medhi, “SARA: Segment aware rate
adaptation algorithm for dynamic adaptive streaming over HTTP,”
in 2015 IEEE International Conference on Communication Workshop
(ICCW), June 2015, pp. 1765–1770.

[17] A. Reviakin, A. H. Zahran, and C. J. Sreenan, “Dashc: A Highly Scalable
Client Emulator for DASH Video,” in Proceedings of the 9th ACM
Multimedia Systems Conference.

[18] “Goolge go - golang,” https://golang.org, accessed: 2020-03-29.
[19] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe

and Adapt: Rate Adaptation for HTTP Video Streaming At Scale,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719–
733, April 2014.

[20] A. Botta, A. Dainotti, and A. Pescapè, “A Tool for the Generation
of Realistic Network Workload for Emerging Networking Scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[21] Raca, Darijo and Quinlan, Jason J. and Zahran, Ahmed H. and Sreenan,
Cormac J., “Beyond Throughput: A 4G LTE Dataset with Channel and
Context Metrics,” in Proceedings of the 9th ACM Multimedia Systems
Conference. Association for Computing Machinery, 2018.

[22] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond Through-
put, The Next Generation: a 5G Dataset with Channel and Context
Metrics,” in 11th ACM Multimedia Systems Conference, ser. MMSys
’20, 2020.

[23] G. Hong, J. Martin, and J. M. Westall, “On fairness and application
performance of active queue management in broadband cable networks,”
Computer Networks, vol. 91, pp. 390 – 406, 2015.

[24] A. Mansy, B. Ver Steeg, and M. Ammar, “SABRE: A Client Based
Technique for Mitigating the Buffer Bloat Effect of Adaptive Video
Flows,” in Proceedings of the 4th ACM Multimedia Systems Conference,
ser. MMSys ’13. ACM, 2013, pp. 214–225.

[25] D. Raca, A. H. Zahran, and C. J. Sreenan, “Sizing network buffers: An
http adaptive streaming perspective,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW), Aug 2016, pp. 369–376.

[26] J. J. Quinlan and C. J. Sreenan, “Multi-profile Ultra High Definition
(UHD) AVC and HEVC 4K DASH Datasets,” in Proceedings of the 9th
ACM Multimedia Systems Conference.

[27] Zabrovskiy, Anatoliy and Feldmann, Christian and Timmerer, Christian,
“Multi-codec DASH Dataset,” in Proceedings of the 9th ACM Multime-
dia Systems Conference, 2018.

[28] A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten,
“A bitstream-based, scalable video-quality model for HTTP adaptive
streaming: ITU-T P.1203.1,” in Ninth International Conference on
Quality of Multimedia Experience (QoMEX), May 2017.

[29] Petrangeli, S. and Famaey, J. and Claeys, M. and Latré, S. and De
Turck, F., “QoE-Driven Rate Adaptation Heuristic for Fair Adaptive
Video Streaming,” ACM Trans. Multimedia Comput. Commun. Appl.,
Oct. 2015.

