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Abstract

We propose a new spatio–temporal model with time–varying spatial weighting matrices. We allow

for a general parameterization of the spatial matrix, such as: (i) a function of the inverse distances

among pairs of units in space to the power of an unknown time–varying distance decay parameter, and

(ii) a negative exponential function of the time–varying parameter as in (i). The filtering procedure

of the time–varying unknown parameters is performed using the information contained in the score

of the conditional distribution of the observables. We provide conditions for the stationarity and

ergodicity of the filtered sequence of the spatial matrices as well as for the consistency and asymptotic

normality of the maximum likelihood estimator (MLE). An extensive Monte Carlo simulation study

to investigate the finite sample properties of the maximum likelihood estimator is reported. In the

empirical part of the paper we analyze the association between eight European countries’ perceived

risk. Our findings suggest that the economically strong countries have their perceived risk increased

due to their spatial connection with the economically weaker countries. A second empirical analysis

investigates the evolution of the spatial connection between the house prices in different areas of the

UK. In this case we identify periods when the usually adopted sparse weighting matrix is not sufficient

to describe the underlying spatial process.
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1. Introduction

Estimation theory and inference for models which deal with spatially–distributed data differ

substantially from the usual techniques used in standard statistics/econometrics, see for example

Besag (1974). Within the spatial statistics literature, the spatio–temporal covariance and cross-

covariance functions among spatial units are estimated by typically assuming an isotropic spatial

process (Porcu et al., 2016). Most of these model specifications are useful in geostatistical sciences

where the surface of the random field is continuous. With discrete random fields, i.e. where the

spatial statistical units are referred to regular/irregular areal data, the weighting matrix is a way to

connect these units by using different well-known criteria (i.e. contiguity criteria, k–nearest neighbors,

distances, etc.), see for example Besag (1972). However, in most of the cases the weighting matrix is

assumed to be exogenous, typically based on distances between geographical locations.

In the spatial econometrics literature, model estimation methods with time–varying Wt matrices

within spatial dynamic panel data models have recently been introduced by Lee and Yu (2012), Wang

and Yu (2015), and Han and Lee (2016). For contributions that also account for serial correlation,

spatial dependence (also known as weak dependence), and common factors (also known as strong

dependence), the reader is referred to e.g. Pesaran and Tosetti (2011) and Shi and Lee (2017a).

Nowadays, part of the relevant literature is posing the question of how to correctly specify spatial

weighting matrices in parametric spatial models to avoid possible estimation and inference problems,

which has led to an interesting debate and to several “schools of thought” that span from using spatial

semiparametric approaches to graphical/network theory and endogenous weighting matrices, see e.g.

Qu and Lee (2015). An ideal or “optimal” spatial weight matrix for analyzing all spatial phenomena

is surely an unrealistic goal (Bavaud, 1998). Typically, exogenous W matrices are specified so that

researchers have at least some prior knowledge of the underlying spatial structure.

Estimating the W matrices poses at least two problems. The first is that, by treating W as a

parameter, the spatial autoregressive coefficient, ρ, is generally not identified. The second is that, in

the case of cross–sectional or panel data with T << N , the estimation of N×(N−1)/2 parameters is

intractable. A possible solution has been proposed by LeSage and Pace (2007), who rely on a different

spatial econometric model called matrix exponential spatial specification (MESS) which allows us to

estimate the N × (N − 1)/2 parameters of W. However, the estimation is feasible only as long as the

spatial dimension N is relatively small. In this regard, a two-step residual regression estimator based
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on spectral decomposition of the error variance-covariance matrix in the first stage has recently been

proposed by Bhattacharjee and Jensen-Butler (2013).

Alternatively, spatial effects can be based on the specification of distance decay and gravity

functions rather than by considering simple first-order contiguity matrices as done in Getis and

Aldstadt (2010). By defining weighting matrices as distance decay functions, e.g. negative exponential

or inverse distance functions, all the spatial units are connected each other but spatial units located

at higher distances are less related. However, as stressed by Halleck Vega and Elhorst (2015), even

if there are theoretical reasons indicating that spatial interaction effects are related to distance, it is

often not clear from the theory the degree at which the spatial dependence between units diminishes

as distance increases. With weighting matrices defined as inverse distance functions to the power of

an unknown parameter, say γ, we can interpret γ as a distance decay parameter and determine the

radius–effect in space through which the interaction effects tend to rapidly diminish. Alternatively,

one can use negative exponential functions or any continuous monotonically decreasing function that

ensures decreasing weights as distances increase. In both cases we generally consider the possibility

that interactions may continue even over a first or second–order neighborhood, but we do not know

the radius at which we cut off the spatial series because of the unknown power that scales the relative

importance of the geographic distances.

In this paper, we propose to estimate the evolution of the distance decay parameter γt of a dynamic

symmetric W (γt,d) matrix parameterized in terms of a generic distance function, by exploiting the

recent advancements in Score Driven (SD) models. The SD framework of Creal et al. (2013) and

Harvey (2013) allows us to update a set of time–varying unobserved parameters using the information

contained in the scaled score of the conditional distribution of the observables. Score driven models

can be seen as filters for the unobserved component models of Harvey (1989). Furthermore, the use

of the score to track the conditional distribution of a random variable over time has been proved

to be optimal in a realized Kullback–Leibler sense, see e.g. Blasques et al. (2015). In this way, our

paper provides a new promising method for analyzing and forecasting spatial correlation structures

and could be used in a wide range of empirical spatio–temporal applications. Moreover, our model

specification is feasible even with large N .1

In this paper, we also provide two empirical examples showing how the proposed model can be

1Note that, our theoretical framework is derived for fixed N .
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applied. In the first application we study the spatial association between the European perceived risk

proxied by the credit default swap spreads of eight European countries. We show that the examined

European countries are heterogeneous with respect to their optimal level of connection with other

countries. Furthermore, our findings also suggest that economically strong countries like Germany,

the Netherlands, and France have their perceived risk increased due to their spatial connection with

economically weaker countries like Ireland, Portugal, and Spain. Our second empirical application

aims at providing general advice for common spatial econometrics analysis based on a pre–specified

distance matrix. The aim is to highlight, through the evolution of γt, the periods of time in which a

static dense W matrix is a more appropriate choice to correctly model the spillover effects. We identify

two periods in which all the series appear to be highly inter–connected, i.e. the evolution of house

prices in the regions of nationwide UK reveals a common behavior over a first–order neighborhood.

The evolution of γt reveals in those periods that a sparse matrix is not appropriate to correctly

describe the spillover effects and to avoid potential model misspecification due to a wrongly assumed

weighting matrix in static spatial econometric models.

The rest of the paper is structured in the following way. Section 2 proposes the Dynamic Spatial

Weighting Matrix (DSWM) model and describes the filtering procedure for the time–varying distance

decay parameter. Section 3 shows different possible parametrization of the time–varying weighting

matrix and explains the role of the time–varying distance decay parameter. Section 4 reports the

statistical properties of the proposed model. Section 5 investigates the finite sample properties of the

ML estimator and reports a simulation experiment illustrating the filtering ability of the proposed

model. Section 6 analyzes two different empirical applications. Finally, Section 7 concludes.

2. The Dynamic Spatial Weighting Matrix Model

In this section we extend a (first-order) spatial autoregressive model with heteroskedastic

innovations, i.e. SAR(1), by allowing for a time–varying spatial weighting matrix of unknown order

of proximity. Let yt be an N–dimensional stochastic vector of spatial variables located on a possibly

unevenly spaced lattice Z ⊆ <N at time t. We assume that yt is generated according to a SAR(1)

model, see e.g. Bao and Ullah (2007). The Dynamic Spatial Weighting Matrix (DSWM) model is

then defined as

yt = ρW (γt,d) yt + Xtβ + εt, εt
iid∼ D (0,Σ, ψ) , (1)
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where Xt = (xj,t; j = 1, . . . ,K) is an N × K matrix of exogenous covariates with the associated

vector of coefficients β = (βj ; j = 1, . . . ,K)′, εt is an N–valued stochastic vector of spatially located

innovations at time t with continuous distribution D(0,Σ, ψ) with shape parameter ψ, such that

E(εt) = 0 and E(εtε
′
t) = Σ with Σ = diag

(
σ2
i ; i = 1, . . . , N

)′
.2 In Subsection 2.1 we extend model

(1) to the case with (time) heteroscedastic innovations, i.e. Σt.

In this paper, we consider two different distributions D(·): (i) the multivariate Normal distribution

εt
iid∼ N (0,Σ) and, (ii) the multivariate Student’s t distribution with ψ = ν > 2 degrees of freedom

εt
iid∼ T (0,Σ, ν).3 The Normal distribution is the usual choice in the spatial econometrics literature.

However, when the data exhibits features that are against the Normal assumption, such as outliers

or tail dependence among the spatial units, the assumption of conditional Normality becomes too

restrictive. The multivariate Student’s t distribution can be used in the above cases. Furthermore,

the choice of D(·) has important implications for our model as we will discuss later.

In Equation (1), W (γt,d) is a spatial weighting matrix at time t with the associated static spatial

autoregressive coefficient ρ. The dynamic spatial weighting matrix W (γt,d) is an N–dimensional

symmetric square matrix whose elements are defined as follows

Definition 2.1. W (γt,d) = Wt = {ωij,t}Ni,j=1:4

(a) ωij,t = ωji,t, ωij,t > 0, ωii,t = 0 ∀i, j = 1, . . . , N ,

(b) d = (dij ; i, j = 1, . . . , N), dii = 0, ∀i = 1, . . . , N and dij = dji, dij > 0 for all i, j =

1, . . . , N, i 6= j,

(c) γt > 0.

Definition 2.1(a) ensures that all the elements of Wt are real positive entries with zeros on the main

diagonal, whereas Definition 2.1(b) states that the element d is an N2 vector of strictly exogenous

non–stochastic variables representing a metric among the spatial units. The zero elements in the

2Note that we allow for cross–sectional heteroscedasticity if σ2
i 6= σ2

j for at least one i 6= j, i, j = 1, . . . , N and cross–

sectional homoscedasticity if σ2
i = σ2

j , ∀i, j. Spatial units are often heterogeneous in important characteristics, e.g. the

size, and for that reason it is important to consider a model that allows for the innovations to be heteroscedastic.
3The condition ν > 2 follows from the parametrization we use for the multivariate Student’s t distribution which is

in terms of the covariance matrix Σ.
4In this paper we do not allow for non–symmetric weighting matrices before normalization, and we concentrate our

analysis on distance decay functions to define the weights. The reader is referred, for example, to LeSage and Pace

(2009) and Getis and Aldstadt (2010) for detailed discussions on spatial weighting matrices.
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main diagonal mean that each spatial unit is not viewed as its own neighbor. The element γt is the

time–varying decay parameter measuring the relative importance of the higher–order neighborhoods

in the spatial process at each point in time t. In Subsection 3.2 we will discuss the role of γt and its

parameter space in detail. According to Kelejian and Prucha (1998) and Lee (2003), the following

assumptions must hold:

Assumption 1. The rows and the columns of Wt, ∀t are uniformly bounded as N goes to infinity.

Assumption 1 ensures that the correlation between two spatial units should converge to zero as

the distance separating them increases to infinity. This assumption is commonly related to the infinite

series expansion of the spatial process, so that pairs of closer spatial units are more correlated than

distant ones.

Now let Ft = σ (yt−s,Xt−s+1, s ≥ 0) be the information set up to time t. We can consider several

parameterizations of Wt as a function of distances. For this purpose, we define the elements of Wt in

the following way:

Definition 2.2. ωij,t = f (γt, dij), where f : <+ → <+ is an Ft–measurable differentiable distance

decay function among the spatial units i and j:

(a) f (γt, dij) > 0 for i 6= j,

(b) f (γt, dij) = 0 for i = j,

(c)f (γt, dij) < f (γt, dhk) ⇐⇒ dij > dhk,

(d) limdij→∞ f (γt, dij) = 0, limdij→0 f (γt, dij) = 1, limγt→∞ f (γt, dij) = 0, limγt→0 f (γt, dij) = 1.

The choice of f (·, ·) implies a particular parametrization of Wt, and usually depends on the

particular problem that applied econometricians face. The function f (·, ·) can be defined as any

monotonically decreasing function that ensures lower weights as distances among spatial units

increase. However, it is worth noting that, misspecification of f (·, ·) might result in biased estimates

of the spatial autocorrelation coefficient, ρ, see for example Billé and Leorato (2017). Details on this

parametrization are referred to Section 3.

In the common static (or simply cross–sectional) spatial autoregressive model, the inclusion of

spatially-lagged dependent variables typically causes an endogeneity problem, see Kelejian and Prucha

(1998), Lee (2003). This problem is referred to the bi–directionality nature of spatial dependence

in which each site, say i, is a second-order neighbor of itself, implying that spatial spillover effects
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have the important meaning of feedback/indirect effects also on the site where the shock may have

had its origin. Due to the simultaneous nature of spatial autoregressive processes, spatial models are

typically specified in reduced forms. According to Kelejian and Prucha (2010),5 in order to guarantee

stable spatial processes and the existence of the reduced form of the spatial model in (1), we require

that:

Lemma 2.1. Let λ (Wt) denote the spectral radius of the square N–dimensional Wt matrix at time

t:

λ (Wt) = max{|e1t|, ..., |eNt|},

where e1t, ..., eNt are the eigenvalues of Wt at time t. Then, (IN − ρWt)
−1 is non–singular for all the

values of ρ in the interval (−1/λ (Wt) , 1/λ (Wt)) at each time t.

Assumption 2. ρ ∈
(
− 1
λ(Wt)

, 1
λ(Wt)

)
\{0}

, ∀t, where λ (Wt) is defined by Lemma 2.1.

Assumption 2 ensures that the model in (1) can be uniquely defined by Lemma 2.1. Note that we

explicitly exclude the case of ρ = 0 to model identifiability. Unfortunately, as will be discussed later,

the ρ coefficient affects the evolution of γt, which prevents us from defining a priori the parameter

space
(
− 1
λ(Wt)

, 1
λ(Wt)

)
\{0}

, ∀t. As is usually done in the spatial econometric literature to circumvent

this problem, we consequently establish proper normalization rules of the symmetric N–dimensional

weighting matrix Wt exploiting the following definition:

Definition 2.3. g (Wt) = W∗t , where g(·) is a Ft–measurable differentiable normalizing function such

that λ (W∗t ) = 1, ∀t.

The g(·) function normalizes Wt through transformations of its elements ωij,t, i, j = 1, . . . , N .6

Model (1) is then written as:

yt = ρ∗W∗tyt + Xtβ + εt, εt
iid∼ D (0,Σ, ψ) , (2)

where now ρ∗ ∈ (−1, 1)\{0}, since λ(W∗t ) = 1 holds by construction at each t. We should note that ρ∗

is always a function of the original ρ in model (1) apart from the normalizing factor/factors used to

define the model in Equation 2. Under specific choices of g (·), model (1) can always be represented by

5See also Elhorst (2012) for stationarity conditions of linear spatio–temporal model specifications.
6We require that the same conditions for ωij,t, such as their ordering with respect to dij and their limit behavior

with respect to γt and dij , also hold for ω∗ij,t under every choice of g (·).
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considering a proper equivalent model with normalized weights. In a different context, the functional

form of g(·) does not imply the equivalence between models (2) and (1). We detail these two scenarios

and explain their consequences in Subsection 3.1.

Proper normalization rules, such as the ones mentioned above, ensure that the inverse matrix

(IN − ρ∗W∗t )
−1 exists for all values of ρ∗ in the interval (−1, 1). Therefore, model (2) can be expressed

through its reduced form

yt = A−1
t Xtβ + A−1

t εt, εt
iid∼ D (0,Σ, ψ) (3)

with At = IN − ρ∗W∗t , where IN is the N–dimensional identity matrix. The infinite series expansion

is then

A−1
t = (IN − ρ∗W∗t )

−1 = IN + ρ∗W∗t + ρ∗2W∗t
2 + ρ∗3W∗t

3 + . . . . (4)

explaining how the direct/indirect spatial impacts play a role for each order of proximity. According

to (3), the conditional distribution of yt is

yt|Ft−1 ∼ D
(
yt; µ̃t, Σ̃t, ψ

)
, (5)

where µ̃t = A−1
t Xtβ and Σ̃t = A−1

t ΣA−1
t
′
.

It follows that the log likelihood contribution at time t of the observation yt is proportional to

log p (yt|γt,η,Xt) ∝ −
1

2
log |Σ|+ log |At| − (1/2) z′tzt, (6)

with η =
(
ρ∗, diag (Σ)′ ,β′

)′
for the Normal case, and

log p (yt|γt,η,Xt) ∝ log Γ

(
ν + n

2

)
− log Γ

(ν
2

)
− n

2
log(ν − 2)

+ log |At| −
1

2
log |Σ|+ ν + n

2
log

(
1 +

z′tzt
ν − 2

)
, (7)

with η =
(
ρ∗, diag (Σ)′ ,β′, ν

)′
for the Student’s t case. Finally, the quantity z′tzt is defined as

z′tzt = (Atyt −Xtβ)′Σ−1 (Atyt −Xtβ) . (8)

Note that we are specifying a DSWM model without the inclusion of spatially lagged regressors (i.e.

WXt) or autocorrelated shocks (i.e. Wεt) since our purpose is to focus the attention on time–varying

spatial weighting matrices specified for the dependent variables yt. This modeling framework allows us

to capture nonlinear dynamics of the spatial dependence/interactions of the variables of interest over
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time. It is worth noting that the case in which the model (2) includes WXt, leading to a time–varying

spatial Durbin specification of the model, or Wεt, leading to a time–varying spatial autoregressive

model with autoregressive (and eventually heteroscedastic) disturbances, can be addressed starting

from our specification at the cost of additional calculation.

2.1. Filtering procedure for time–varying parameters

We let the time–varying distance decay parameter γt be updated through a filter based on the

scaled score of the conditional density (5), exploiting the recent advantages of the fast growing

literature on Score Driven models, see Creal et al. (2013) and Harvey (2013). Specifically, let

γ̃t = ln (γt), which excludes what Halleck Vega and Elhorst (2015) called the “perfect solution

problem” (i.e. γt = 0), and let

γ̃t+1 = (1− ξ)κ+ αs̃t + ξγ̃t, (9)

where κ, α and ξ are constants coefficients to be estimated, and

s̃t = Ĩt (γ̃t,η,Xt)
−1/2 ∇̃t (yt, γ̃t,η,Xt) , (10)

with

∇̃t (yt, γ̃t,η,Xt) =
∂ log p (yt; γ̃,η,Xt)

∂γ̃

∣∣∣
γ̃=γ̃t

(11)

Ĩt (γ̃t,η,Xt) = Et−1

[
∇̃t (yt, γ̃t,η,Xt)

2
]
, (12)

where Et−1 represents the expectation with respect to the conditional distribution of the spatial units

at time t−1. The quantities ∇̃t (yt, γ̃t,η,Xt) and Ĩt (γ̃t,η,Xt) represent the score and the information

quantity of the reparametrized spatial decay parameter γ̃t with respect to the conditional distribution

of yt defined in Equation (5), respectively. These two quantities can be easily recovered starting

from their analogous version evaluated with respect to the original decay parameter γt indicated as

∇t (yt, γt,Xt) and It (γt,Xt). Indeed, the following relations hold:

∇̃t (yt, γt,η,Xt) =
∂γ̃t
∂γt
∇t (yt, γt,η,Xt) (13)

Ĩt (γ̃t,η,Xt) =

(
∂γ̃t
∂γt

)2

It (γt,η,Xt) . (14)

The quantities ∇t (yt, γt,η,Xt) and It (γt,η,Xt) are defined in Appendix A for both the Normal

and the Student’s t cases.
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Given a spatial sample of observations of length T , the model parameters can be easily estimated

through Maximum Likelihood (ML), i.e.

θ̂ = arg max
θ∈Θ

T∑
t=1

log p (yt|θ,Xt) , (15)

where θ = (η′, κ, α, ξ)′, and log p (yt|θ,Xt) is the log likelihood contribution of observation yt defined

in Equations (6) and (7) for the Normal and Student’s t cases, respectively. In (15), Θ represents a

compact set where the model parameters take values, see Harvey (2013) and Blasques et al. (2014)

for ML estimation of Score Driven models.

3. Different parametrizations of Wt

Recently, one issue has been increasingly discussed in econometrics literature: are estimates

and inferences sensitive to a particular weighting matrix selection?. LeSage and Pace (2014) have

recently pointed out that, perhaps, this debate has had its origin in existing applied works, showing

that if the spatial model is correctly interpreted in terms of partial derivatives, then there are no

sensible differences in the estimates when using different weighting matrices. On the other hand,

McMillen (2012) and Corrado and Fingleton (2012), among others, provide detailed discussions

on the consequences of incorrectly assumed W matrices, the former suggesting the usefulness of

smoothing and semiparametric approaches in space, whereas the latter suggesting to put more

economic information into the specification of this weighting matrix. However, we emphasize that

economic systems are essentially dynamic by nature, leading to potentially wrong conclusions even

with economic W matrices in a static spatial model. Halleck Vega and Elhorst (2015) have recently

highlighted the usefulness of parametrizing the weighting matrix as a function of a finite and limited

number of parameters.

In this paper, and in line with Halleck Vega and Elhorst (2015), we parametrize the weighting

matrix with a generic distance decay function, i.e. f (γt, dij), in order to allow for its time–varying

version with a limited number of parameters to be filtered, i.e. γt. We consider two alternatives,

namely: (i) inverse distance, (ii) negative exponential. In the first case we have

f (γt, dij) =
1

dγtij
, (16)

which implies that the intensity of the relationships among pairs of units in space is inversely

proportional to the unknown time–varying γt–power of their distances. Similarly, the negative

10
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exponential function is given by

f (γt, dij) = exp (−γtdij) , (17)

where, again, the higher the estimate of the time–varying parameter γt, the lower the role played by

the spatial units at greater distances (i.e. higher-order neighborhoods). It follows that, in both cases,

γt can be interpreted as a time–varying distance decay parameter, and, for small estimated values,

this is an indication that higher–order neighbors have to be recognized for better describing spatial

dependencies.

3.1. Equivalent and non–equivalent spatial models

In this section we explain two different choices of the function g(·) starting from definition 2.3,

namely: (i) spectral normalization, (ii) row–normalization. The spectral–normalisation rule proposed

by Kelejian and Prucha (2010) for a static spatial autoregressive model with autoregressive and

heteroscedastic disturbances, i.e. SARAR(1,1), is such that W∗ = W/λ (W) and ρ∗ = ρ×λ (W), with

λ (·) defined by Lemma 2.1. Under this parameterization, the function g (Wt) takes the form

g (Wt) =
1

λ (Wt)
Wt, (18)

which ensures that λ (W∗t ) = 1, ∀t. It follows that model (1) has the representation given in (2).7

However, the spatial interaction coefficient ρ∗, which corresponds to the spectral–normalized weights

matrix, will in general depend on the spatial dimension due to the fact that the normalizing factor

depends on the spatial dimension as well.

Alternatively, but with a different interpretation of the spatial weighting matrix, one can consider

the well-known row-normalization of Wt. The row–normalization rule is such that ρ∗ ∈ (−1, 1),

but the resulting model is no more equivalent to the original one. Under this parameterization, the

function g (·) takes the form g (Wt) = W∗t = {ω∗ij,t}Ni,j=1, where

ω∗ij,t =
ωij,t∑
j ωij,t

, ∀t, (19)

which ensures an upper bound of the parameter space for ρ∗ equal to 1 and suggests a useful

interpretation of the interactions between spatial units as a weighted average of their neighbors.

7Note, however, that the parameter γ, and its dynamic version γt, depends on the measurement unit used for

geographical distances when row-normalization of the weighting matrix is not allowed for.

11

 Electronic copy available at: https://ssrn.com/abstract=3241470 



It is worth noting that, when considering distance decay or gravity functions rather than first-

order contiguity matrices,8 the interpretation of the absolute role of the distance metric is usually

lost, see e.g. Baltagi et al. (2008) for a relevant application, due to the strong restrictions imposed on

the spatial process (i.e. each row is normalized in different ways since each spatial unit has a different

number of neighbors in its first–order neighborhood, even when we consider highly irregular lattice

data sets). Kelejian and Prucha (2010) showed that for a generic scalar normalization factor, it is

always possible to represent model (1) with an equivalent spatial stationary model. However, this

is not true when we use the common row–normalization rule, for which the sum of each row equals

one. As Kelejian and Prucha (2010) stressed, “in row–normalizing a matrix one does not use a single

normalization factor, but rather a different factor for the elements of each row. Therefore, in general,

there exists no corresponding re–scaling factor for the autoregressive parameter that would lead to a

specification that is equivalent to that corresponding to the unnormalized weight matrix. Consequently,

unless theoretical issues suggest a row–normalized weight matrix, this approach will in general lead

to a misspecified model”.9 In this paper we therefore consider the spectral–normalization rule for Wt

as in Equation (18). The same result can be obtained by using the row–normalization rule in (19)

of the spatial weighting matrix. However, the advantage of not using row–normalization is such that

we can estimate a model that is equivalent to the original one, and, in our case, we can preserve the

interpretation of the distance decay functions in absolute rather than in relative terms.

3.2. The role of γt

In a purely spatial parametric framework, i.e. with γt = γ and no time information, a nonlinear

procedure to estimate this parameter has been proposed by Fischer et al. (2009). Rather than

estimate the parameter γ, Kostov (2010) specified a “plausible” range of values of γ ∈ [0.4, 4] with

increments of 0.1, leading to a large discrete number of possible candidate weighting matrices to be

evaluated through a grid search procedure, for which the Bayesian model choice method of Hepple

(2004) can be used. In the so-called spatially lagged–X (SLX) model, if the estimate γ̂ is reasonably

8Row-normalization of first–order contiguity weighting matrices has had the appealing role of interpreting the spatial

lag function as a weighted average of the first–order neighbors for each site in space, see Anselin (1988).
9The row–normalization rule can only ensure the equivalence between the two model specifications in (1) and (2)

with pre–specified spatial weighting matrices if a k–nearest neighbors (i.e. k–nn) approach is used to define the order

of proximity of each spatial unit.
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small, then this can be interpreted as an indication that interactions may continue even over a first

or second–order neighborhood, suggesting that a first–order contiguity matrix or a k–nn approach10

may be not an appropriate way to represent the true spatial dependence in that case (Halleck Vega

and Elhorst, 2015). Estimating a static γ is then useful to select an appropriate weighting scheme, i.e.

between sparse and dense W matrices, to avoid as much as possible model misspecifications implied

by wrongly assumed spatial processes to the extent possbile.

The reason why estimation of a distance decay parameter γ is useful is that we are generally

interested in knowing the degree at which the spatial dependence between units diminishes as distance

increases without imposing a priori spatial structures. In this context the goal should be to estimate

the optimal level at which the correlation among spatial (cross–sectional) units rapidly decreases

over time. When adding time information, a time–varying γt furthermore provides information on

spatial degree variation over time, showing the evolution of the “unknown spatial radius” over which

interactions become smaller. The meaning of dynamic spatial autocorrelation structures is that,

generally speaking, interactions among spatial units in the realm of economics (e.g. economic agents,

country–specific variables) but also in environmental and geophysical sciences (e.g. air pollution

data), may change simultaneously over space and time. However, the radius within which we have to

consider higher–order neighborhoods, especially if we consider regional data, or the significant part

of the spatial correlation structure is generally unknown to the researcher.

Understanding the evolution of γt is also useful to check spatial model misspecification problems

over time, due to the typically necessary condition of pre–specifying weighting schemes. This aim can

be addressed simply by observing that in periods with reasonably low γt (i.e. γt → 0), the commonly

used first–order spatial weighting matrices do not adequately capture the intensity of the true spatial

autoregressive process, with the result that spatial spillover effects may go further. In other words,

periods with reasonably low values of γt favor the use of dense spatial weighting matrices, and vice

versa, as a more appropriate weighting scheme to represent spatial autocorrelation processes for such

periods.

10Note that a k–nn approach can produce a weighting matrix similar to a first–order contiguity matrix as long as

k << N , such that the resulting spatial weighting matrix is reasonably sparse as a first–order neighbourhood criterion.

The only difference is the constant number k of neighbors for each spatial unit in this case.
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3.3. Dynamic indicators of spatial association

As explained in Section 3.2, the role of γt is to highlight the degree of importance of the spatial

connections through the spatial weighting matrices in different periods of time. However, γt itself does

not provide an immediately applicable index of connections between spatial units since its domain

is unbounded. Here we show a simple index defined in the range (0, 1) starting from the sequence

of filtered correlation matrices {Rt, t > 0}, where Rt = Rt(γt) is a function of γt. Specifically, we

consider the highest eigenvalue of the filtered correlation matrix at time t as a function of γt, λ(Rt(γt)),

and compare it with the case of no spatial association λ(Rt(∞)). Thus we can define our measure of

association as:

$t = 1− λ(Rt(∞))

λ(Rt(γt))
(20)

such that $t ∈ (0, 1). Clearly, when γt diverges, the spatial units become uncorrelated and

λ(Rt(∞)) = 1. As detailed in Subsection 3.2, smaller values of γt indicates stronger connections

among the spatial units, and thus higher values of $t. When $t → 1, a dense weighting matrix

is more appropriate to model the spatial association of the data, whereas when $t → 0, a sparse

weighting matrix is sufficient to properly account for the spatial spillover effects. This can be shown

in different periods of time.

3.4. Including time varying shock volatilities

The way γt enters the conditional variance of yt|Ft−1 implies that spatial units exhibit

heteroscedasticity over time. However, the implied form of heteroscedasticity can be quite limited

and does not reflect the characteristics of the data. An even more problematic issue is that if the

true data generating process incorporates heteroscedasticity in the individual shocks, εt, the resulting

filtered values of γt will be affected by this form of model misspecification leading to wrong conclusions

about the dependence structure of the spatial units. To prevent this scenario, if there is evidence of

time–varying shock volatility effects, the model presented in Section 2 can be extended as follows:

εt|Ft−1 ∼ D(0,Σt, ψ), (21)

where Σt = diag
(
σ2
i,t; i = 1, . . . , n

)
. Time–variation in the σ2

i,t is introduced relying on the score

driven methodology as for γt and employing an exponential link function

σ2
i,t = exp(fi,t) (22)

fi,t = (1− ξf )κσ,i + ασui,t−1 + ξσfi,t−1, (23)

14

 Electronic copy available at: https://ssrn.com/abstract=3241470 



where ui,t is the scaled score of the conditional distribution yt|Ft−1 evaluated with respect to fi,t.

Formulas to compute ui,t for the Gaussian and Student’s t cases are reported in Appendix A. This

solution only requires estimation of two additional parameters: ασ and ξσ. A similar approach has

been followed by Blasques et al. (2016b) and Catania and Billé (2017).

4. Statistical properties of the model

For notational simplicity, let us define the derivative of the score as

ŝ′t(γ̃) :=
∂Ĩt (γ̃,η,Xt)

−1/2

∂γ̃
× ∂∇̃t (yt, γ̃,η,Xt)

∂γ̃
,

and the initial value for the filtered score as

ŝ1(γ̃) := Ĩ1 (γ̃,η,X1)−1/2 ∇̃1 (y1, γ̃,η,X1) ,

for some fixed initial value γ̃ ∈ R of the filter, where

∇̃1 (y1, γ̃,η,X1) =
∂ log p (y1; γ̃,η,X1)

∂γ̃
and Ĩ1 (γ̃,η,X1) = E0

[
∇̃t (y1, γ̃,η,X1)2

]
.

Additionally, let us define the derivatives of the data generating score process as

s̃ε′t (γ̃) :=
∂Ĩt (γ̃,η,Xt)

−1/2

∂γ̃
× ∂∇̃εt (εt, γ̃,η,Xt)

∂γ̃
,

and

s̃ε1 (γ̃) := Ĩ1 (γ̃,η,X1)−1/2 ∇̃ε1 (ε1, γ̃,η,X1) ,

respectively, where

∇̃εt (εt, γ̃,η,Xt) := ∇̃t
(
A−1
t Xtβ + A−1

t εt, γ̃,η,Xt

)
.

The following proposition establishes the strict stationarity, ergodicity and bounded moments of

the data sequence {yt}t∈Z generated by the dynamic spatial model in Equation (1). Additionally, it

highlights that the sequence of time–varying spatial weight matrices {Wt}t∈Z is also strictly stationary

and ergodic (SE). The proof is obtained mainly as an application of Theorem 3.1 in Bougerol (1993)

and the cn–inequality in Dufour (2013).

Proposition 1. (Stationarity, Ergodicity and Moments) Suppose that

(i) The time–varying parameter is initialized with a logarithmic moment E log+ |s̃ε1 | <∞ for some

fixed γ̃;

15

 Electronic copy available at: https://ssrn.com/abstract=3241470 



(ii) The recursion of the time-varying parameter is contracting: E log supγ̃ |αs̃ε′t + ξ| < 1;

(iii) The spatial weights wij,t are defined as wij,t = f(γt, dij) where f is a measurable function

satisfying 0 ≤ f(γ, d) ≤ 1 ∀ (γ, d).

(iv) The sequence of vectors of exogenous regressors {Xt}t∈Z is strictly stationary and ergodic with

n bounded moments E|Xt|n <∞;11

(v) The sequence of vectors of innovations {εt}t∈Z is iid with n bounded moments E|εt|n <∞.

Then the sequence of spatial weighting matrices {Wt}t∈Z is strictly stationary and ergodic, and it

satisfies E|wij,t|m < ∞ ∀ m > 0. Furthermore, the data sequence {yt}t∈Z generated according the

dynamic spatial model in Equation (1) is strictly stationary and ergodic, and it satisfies E‖yt‖n <∞.

Let {γ̂t}t∈N be the filtered sequence initialized at some fixed γ̃ ∈ R, at time t = 1, and satisfying the

recurrence equation,

γ̂t+1 = (1− ξ) + αŝt(γ̂t) + ξγ̂t , for every t ∈ N.

Furthermore, let Ŵt be the resulting spatial weights matrix, whose elements are ŵij,t = f(γ̂t, dij).

Below, we show that Ŵt converges to a unique strictly stationary and ergodic limit sequence with

moments of arbitrary order. The proof of invertibility follows steps that are similar to those of

Proposition 1 in Blasques et al. (2016b) and Proposition 3.1 in Blasques et al. (2018), but it is

written for a multivariate model with a univariate time–varying parameter, and it features added

conditions to accommodate for exogenous variables.

Proposition 2. (Filter Invertibility) Suppose that

1. The filter is initialized with a logarithmic moment E log+ supθ∈Θ |s̃1| <∞ for some fixed γ̃;

2. The spatial weights wij,t are defined as wij,t = f(γt, dij), where f is a measurable function

satisfying sup(γ,d)
∂f(γ,d)
∂γ <∞ and 0 ≤ f(γ, d) ≤ 1 ∀ (γ, d).

3. The filter is contracting: E log supγ̃ supθ∈Θ |αs̃
′
t + ξ| < 1;

4. The sequence of vectors {(yt,Xt)}t∈Z is strictly stationary and ergodic with n bounded moments

E|Xt|n <∞ and E|yt|n <∞.

11For a random vector Zt we let the bounded moment condition E|Zt|n < ∞ hold for all univariate elements of Zt.

Additionally, the exogeneity condition means that the sequence of regressors {Xt}t∈Z is independent of the sequence of

innovations {εt}t∈Z.
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Then the sequence of the filtered spatial weights {ŵij,t}t∈N converge e.a.s. to a unique strictly

stationary and ergodic sequence {wij,t}t∈Z uniformly over the parameter space Θ and spatial units

(i, j),

ιt sup
θ∈Θ

sup
ij
|ŵij,t − wij,t|

as→ 0 as t→∞ for some ι > 1,

where the limit sequence of the spatial weights satisfies supθ∈Θ |wij,t| < ∞ ∀ (i, j). This implies

naturally that

sup
θ∈Θ

‖Ŵt −Wt‖
eas→ 0 as t→∞ and E sup

θ∈Θ

‖Wt‖n <∞ ∀ n > 0.

The invertibility result ensures that any error in the initialization of the filter is asymptotically

negligible. This is a crucial element for the filter to be meaningful and reliable. Additionally, this

proposition is useful in deriving asymptotic properties for the MLE as it helps us establish the

asymptotic stationarity and bounded moments for the log likelihood function, which ultimately allow

us to use laws of large numbers and central limit theorems.

4.1. Asymptotic Properties of the MLE

Below we establish the consistency and asymptotic normality of the MLE for the parameters of

our dynamic spatial model. The MLE is defined as

θ̂T = arg max
θ∈Θ

1

T

T∑
t=2

log p(yt|θ,Xt, Ŵt) ,

where Ŵt denotes the filtered spatial weights matrix whose elements are ŵijt = f(γ̂t, dij) with γ̂t

initialized at a fixed γ̂1 ∈ R. The consistency results are provided for both Gaussian and Student’s

t innovations εt. The conditions for consistency differ in the number of bounded moments that are

required for the data. The proof builds on the M–estimation theory (Theorem 3.4 in White (1994),

or Theorem 3.3 in Gallant and White (1988)), and closely follows the results in Blasques et al. (2014).

Again, the results differ from those in Blasques et al. (2014) and Blasques et al. (2018) as they apply

to multivariate models with exogenous variables. They differ from those of the spatial model in

Andree et al. (2017) as here we must deal with a filtered time-varying parameter. Furthermore, in

contrast to Blasques et al. (2016b), our results apply to a model with a time-varying spatial weights

matrix Ŵt. Additionally, while Blasques et al. (2016b) omit any proof for their generalistic Theorem

1, here we provide more explicit conditions and offer proofs of stationarity for the DGP, invertibility
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for the filter and consistency and asymptotic normality for the MLE. In the theorem below, we say

that a parameter vector θ is identified if it defines a probability measure that is different from any

other parameter in Θ.

Proposition 3. (MLE Consistency: Gaussian Model) Let the parameter space Θ be compact and

such that the conditions of Proposition 1 and 2 hold with n = 2, ∀ θ ∈ Θ, Σ is positive definite

∀ θ ∈ Θ, and suppose that the true parameter vector θ0 ∈ Θ is identified. Then θ̂T
as→ θ0 as T →∞.

Proposition 4. (MLE Consistency: Student’s t Model) Let the parameter space Θ be compact and

such that the conditions of Proposition 1 and 2 hold with n > 0 uniformly for θ ∈ Θ, both ν > 2 and

Σ is positive definite ∀ θ ∈ Θ, and suppose that the true parameter vector θ0 ∈ Θ is identified. Then

θ̂T
as→ θ0 as T →∞.

Below, we let the first and second derivatives of the filtered spatial weights matrix Ŵt be denoted

by
̂̇Wt := ∂Ŵt/∂θ and

̂̈Wt := ∂2Ŵt/∂θ∂θ
′. Additionally, we let {Wt}t∈Z and {Ẅt}t∈Z be the limit

SE sequences. Finally, we let `t
(
θ) := log p(yt|θ,Xt,Wt), and denote its first a second derivative

w.r.t. θ by `′t
(
θ) and `′′t

(
θ), respectively. For the criterion depending on the filtered spatial weights

we use the notation ˆ̀
t

(
θ) := log p(yt|θ,Xt, Ŵt), and similarly, for the derivatives ˆ̀′

t

(
θ) and ˆ̀′′

t

(
θ).

Please note also that ˆ̀′
t

(
θ) is a function of (Ŵt,

̂̇Wt) and ˆ̀′′
t

(
θ) is a function of (Ŵt,

̂̇Wt,
̂̈Wt).

Theorem 4.1. (MLE Asymptotic Normality) Let the conditions of either Proposition 3 or 4 hold.

Furthermore, let the parameter space Θ be such that (a) θ0 ∈ int(Θ); (b) the score `′t(θ0) has two

bounded moments; (c) the Hessian `′t(θ0) has two bounded moments; and (d) the filter derivatives of

the spatial weights matrix satisfy

‖ ̂̇Wt(θ0)− Ẇt(θ0)‖ eas→ 0 and sup
θ∈Θ

‖ ̂̈Wt − Ẅt‖
eas→ 0 as t→∞.

Finally, assume that the limit Hessian E`′′t (θ) is non-singular. Then,
√
T (θ̂ − θ0)

d→ N (0,V) as

T →∞.

5. Simulation study

In this section we report two simulation studies to investigate the finite sample properties of the

maximum likelihood estimator (MLE) for the Dynamic Spatial Weighting Matrix (DSWM) model as

well as the filtering ability of the proposed score updating mechanism for the spatial decay parameter

γt. For all cases we employ the negative exponential scheme reported in (17).
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5.1. Finite sample properties of the MLE

In order to investigate the finite sample properties of the MLE for the DSWM model we simulate

B = 500 series of pseudo observations from the true model defined in Equations (5) and (9). We

assume different values of the sample size T and the dependence parameter ρ in model (2), and

subsequently we estimate the DSWM model on the simulated data. The number of spatial units is

equal to N = 50 and N = 100, and the distance vector d is simulated in a way to ensure a plausible

spatial interpretation. The considered sample sizes are T = 500, T = 1000, T = 2000. The coefficients

for the γt recursion are fixed to α = 0.02, β = 0.97, κ = log 2 ≈ 0.6931. The homoscedastic variance

is fixed to Σ = σIN with σ = 1.0, whereas we consider four different positive and negative values for

ρ. Specifically, we consider the cases with strong and moderate negative (SN and MN, respectively)

dependence (ρ = −0.7, ρ = −0.3) as well as the cases of strong and moderate positive (SP and

MP, respectively) dependence (ρ = 0.7, ρ = 0.3). Figure 1 displays the empirical densities of the

five model parameters for the case ρ = 0.7 and N = 50. We note that the empirical distribution is

converging to its asymptotic limit as the sample size grows. Specifically, the dispersion across the

true parameter value decreases when the sample size increases. Tables 1 and 2 report the results for

the four different parameterizations we consider for the cases N = 50 and N = 100, respectively.

We find that the MLE in finite samples reports good results, even when the sample size is relatively

small. Furthermore, the estimated coefficients are unbiased with decreasing standard deviations (SD)

and mean squared error (MSE) with respect to the true value when the sample size increases. It is

worth remarking that these results hold for different spatial (N) and temporal (T ) sample sizes, as

well as for different levels of spatial dependence.

5.2. Filtering properties of the model

We now investigate the flexibility of the score updating mechanism assumed for the γt recursion.

Similar to the experiment reported by Engle (2002) in a different context, we assume several artificial

deterministic and stochastic patterns for the distance decay parameter γt, and we study the ability

of the proposed model to recover the true values. Specifically we assume six different patterns:

• Constant: γt = 2

• Sine: γt = 3 + 2 sin (2πt/800)

• Fast Sine: γt = 3 + 2 sin (2πt/200)
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Figure 1: Gaussian kernel density for the maximum likelihood estimated coefficient for the DSWM model of Equation

1 using B = 500 replicates. The cross section dimension is fixed to N = 50. Vertical red dashed lines represent the true

parameter values.
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N = 50 T DGP1 DGP2

ρ =-0.7 α =0.02 β =0.97 κ =0.6931 σ =1 ρ =-0.3 α =0.02 β =0.97 κ =0.6931 σ =1

Median

500 -0.6997 0.0196 0.9631 0.6878 1.0000 -0.3007 0.0176 0.9566 0.6936 0.9999

1000 -0.7003 0.0197 0.9666 0.6958 0.9999 -0.2996 0.0207 0.9621 0.6942 1.0000

2000 -0.6999 0.0200 0.9678 0.6999 0.9999 -0.3000 0.0201 0.9666 0.6961 1.0000

SD

500 0.0045 0.0023 0.0163 0.1052 0.0057 0.0095 0.0212 0.2211 0.0863 0.0063

1000 0.0034 0.0016 0.0093 0.0760 0.0039 0.0063 0.0122 0.1158 0.0604 0.0040

2000 0.0024 0.0011 0.0066 0.0593 0.0021 0.0047 0.0090 0.0562 0.0425 0.0025

MSE

500 2.0E-05 5.6E-06 0.0003 0.0111 3.3E-05 9.1E-05 0.0004 0.0568 0.0074 3.9E-05

1000 1.1E-05 2.7E-06 0.0001 0.0057 1.5E-05 4.0E-05 0.0001 0.0148 0.0036 1.6E-05

2000 6.0E-06 1.3E-06 5.0E-05 0.0035 4.6E-06 2.2E-05 8.2E-05 0.0033 0.0018 6.7E-06

DGP3 DGP4

ρ =0.3 α =0.02 β =0.97 κ =0.6931 σ =1 ρ =0.7 α =0.02 β =0.97 κ =0.6931 σ =1

Median

500 0.3004 0.0192 0.9530 0.6905 1.0000 0.6999 0.0198 0.9647 0.6962 0.9999

1000 0.3000 0.0204 0.9619 0.6952 1.0000 0.6998 0.0196 0.9674 0.6948 0.9999

2000 0.2997 0.0198 0.9659 0.6944 0.9999 0.6998 0.0199 0.9683 0.6953 1.0000

SD

500 0.0086 0.0197 0.1824 0.0967 0.0058 0.0043 0.0024 0.0174 0.1087 0.0057

1000 0.0061 0.0131 0.1171 0.0543 0.0040 0.0030 0.0016 0.0100 0.0777 0.0039

2000 0.0043 0.0088 0.0537 0.0406 0.0026 0.0021 0.0012 0.0062 0.0576 0.0026

MSE

500 7.5E-05 0.0003 0.0393 0.0093 3.4E-05 1.9E-05 5.8E-06 0.0003 0.0118 3.2E-05

1000 3.7E-05 0.0001 0.0151 0.0029 1.6E-05 9.5E-06 2.9E-06 0.0001 0.0060 1.5E-05

2000 1.8E-05 7.9E-05 0.0030 0.0016 6.8E-06 4.7E-06 1.5E-06 4.5E-05 0.0033 7.2E-06

Table 1: Median, Standard Deviation (SD), and Mean Square Error (MSE) of the estimated parameters and the true

values for different sample sizes T and model specifications. The true value of the κ parameter (κ = 0.6931) has been

chosen such that exp(κ) = 2 for all the considered specifications.
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N = 100 T DGP1 DGP2

ρ =-0.7 α =0.02 β =0.97 κ =0.6931 σ =1 ρ =-0.3 α =0.02 β =0.97 κ =0.6931 σ =1

Median

500 -0.6998 0.0201 0.9671 0.7024 1.0000 -0.2998 0.0193 0.9567 0.7008 0.9999

1000 -0.7000 0.0200 0.9672 0.7113 1.0000 -0.3003 0.0203 0.9652 0.6913 1.0000

2000 -0.6999 0.0200 0.9686 0.7013 0.9999 -0.2997 0.0200 0.9676 0.6948 1.0000

SD

500 0.0028 0.0011 0.0129 0.1241 0.0049 0.0059 0.0095 0.0809 0.0905 0.0040

1000 0.0019 0.0008 0.0090 0.1040 0.0033 0.0039 0.0058 0.0496 0.0649 0.0031

2000 0.0014 0.0005 0.0058 0.0825 0.0021 0.0034 0.0047 0.0368 0.0772 0.0023

MSE

500 8.0E-06 1.2E-06 0.0001 0.0154 2.4E-05 3.4E-05 9.0E-05 0.0076 0.0082 1.6E-05

1000 3.8E-06 6.4E-07 9.8E-05 0.0110 1.1E-05 1.5E-05 3.4E-05 0.0028 0.0042 9.7E-06

2000 2.1E-06 3.0E-07 3.7E-05 0.0068 4.4E-06 1.1E-05 2.2E-05 0.0014 0.0060 5.5E-06

DGP3 DGP4

ρ =0.3 α =0.02 β =0.97 κ =0.6931 σ =1 ρ =0.7 α =0.02 β =0.97 κ =0.6931 σ =1

Median

500 0.3004 0.0194 0.9561 0.6879 1.0000 0.6999 0.0199 0.9667 0.7011 0.9999

1000 0.3002 0.0202 0.9638 0.7000 0.9999 0.6999 0.0199 0.9680 0.7016 1.0000

2000 0.3000 0.0199 0.9663 0.6960 1.0000 0.6999 0.0200 0.9689 0.6952 1.0000

SD

500 0.0056 0.0081 0.0953 0.0863 0.0044 0.0026 0.0011 0.0136 0.1200 0.0043

1000 0.0040 0.0065 0.0455 0.0745 0.0032 0.0020 0.0008 0.0089 0.1021 0.0030

2000 0.0029 0.0044 0.0456 0.0551 0.0021 0.0014 0.0005 0.0062 0.0826 0.0019

MSE

500 3.2E-05 6.6E-05 0.0105 0.0074 2.0E-05 7.2E-06 1.3E-06 0.0002 0.0144 1.8E-05

1000 1.6E-05 4.2E-05 0.0024 0.0056 1.0E-05 4.3E-06 6.5E-07 9.0E-05 0.0104 9.5E-06

2000 8.8E-06 2.0E-05 0.0022 0.0030 4.5E-06 2.1E-06 3.2E-07 4.4E-05 0.0068 3.7E-06

Table 2: Median, Standard Deviation (SD), and Mean Square Error (MSE) of the estimated parameters and the true

values for different sample sizes T and model specifications. The true value of the κ parameter (κ = 0.6931) has been

chosen such that exp(κ) = 2 for all the considered specifications.
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Figure 2: Filtering properties of the DSWM model of Equation 1 for six artificial patterns of γt. Black dashed lines

represent the true value of γt, purple solid lines represent the median value of γt computed over B = 1000 estimates.

Gray bands indicate the (10%− 90%) quantiles evaluated at each point in time using the 1000 estimates.

• Step: γt = 4− 3 (t > 500)

• Ramp: γt = mod (t/400)/100 + 1

• AR: γt = exp (γ̃t), where γ̃t = 0.015 + 0.98γ̃t−1 + 0.1ηt, ηt ∼ N (0, 1).

The considered artificial patterns for γt allow for breaks as well as for a slow and fast evolution of the

process. To assess the flexibility of the DSWM model, for each of the considered artificial dynamics,

we simulate B = 500 series of length T = 1000 using a spatial dimension of N = 25. The other

parameters of the model are fixed to σ = 1 and ρ = 0.7 and are not estimated for this experiment.

Figure 2 reports the median across the B estimates at each point in time t = 1, . . . , T for the six
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artificial γt processes along with the empirical (5% − 95%) confidence bands. We can observe that

our DSWM model displays very good filtering ability for all the considered artificial dynamics.

6. Empirical applications

In this section we report two different empirical applications. The first one is related to the

evolution in the European perceived sovereign credit risk from 28 July 2008 until 2 July 2018, whereas

the second application is related to the analysis of the spatio–temporal dynamics of real house prices

within the UK economy during the period 1974–2016. The two applications are described in greater

detail in Subsections 6.2 and 6.3, respectively.

6.1. Nested model specifications

We now briefly list the possible nested models that can be defined after setting a series of

constraints on both the distance decay parameter γt and the heteroscedastic disturbances, and the

way in which the W (γt,d) matrix is parameterized and normalized. These models will be used in

the following empirical analysis.

Let us first consider the DSWM model of Equation (1) with the extension of time–varying

shock volatilities detailed in Section 2.1 and labelled as “(γt,Σt)”. We can now obtain a class of

dynamic/static spatial–nested models according to the type of constraints that we set:

1. DSWM model of Equation (1) labelled as “(γt,Σ)”: if Σt = Σ for all t = 1, . . . , T , which is

achieved by setting ασ = ξσ = 0 in Equation (22).

2. Static–γ model of Halleck Vega and Elhorst (2015) labelled as “(γ,Σ)”: if γt = γ and Σt = Σ

for all t = 1, . . . , T , which is achieved by setting α = ξ = 0 and ασ = ξσ = 0 in Equations (1)

and (22), respectively.

The above models can be further differentiated if we consider the two ways of parametrization of W (γt)

as in Section 3, the type of normalization rule as in Section 3.1, and the type of error distribution,

i.e. Gaussian and Student’s t. In the following two empirical applications we found that the models

with the negative exponential parametrization and the spectral–normalization are to be preferred. By

combining the three specifications (γt,Σt), (γt,Σ), and (γ,Σ) with the two distributional assumptions

we obtain a total of six model specifications. In the following, we report our results based on this

configuration.
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A further degree of flexibility is given by the specification of the variance of the cross–sectional

innovations. Catania and Billé (2017) discuss the different modeling approaches in terms of time

and cross homo/heterosccedasticity in details. In our context, the model specification detailed in

(1) exhibits time homoscedasticity since the variances of the innovations are constant, and cross

heteroscedasticity since the elements in the diagonal matrix Σ in Equation (1) are different among

them. The model extension detailed in Section 2.1 allows for both time and cross heteroscedasticity.

In the following we report comparing results between time homo/heteroscedastic specifications

only and not in terms of cross homo/heteroscedasticity to save space. Our analysis has indicated the

cross homoscedasticity is more suitable for our data sets and thus results are reported for this case.

Cross homoscedasticity implies that Σ = σI for the model specification reported in Equation (1) and

κσ,i = κσ,j = κσ for all i, j for the model extension reported in Section 2.1.12

6.2. Association between European countries’ perceived risk

In this section we evaluate the evolution of perceived sovereign credit risk over a period that

includes the Eurozone sovereign debt crisis. Sovereign credit spreads in Europe have been recently

analyzed by important contributions in a spatial context, see e.g. Eder and Keiler (2015) and Blasques

et al. (2016b). Eder and Keiler (2015) model the contagion risk amongst financial institutions by

using credit default swap (CDS) spreads, which reflect the probability of default of the underlying

reference entity. Their aim is to address, through a static spatial econometric model, the question of

how the CDS spread of a financial institution i depends on the CDS spreads of all other institutions

within the financial system. An extension of the static spatial model to time–varying spillover effects

is given in Blasques et al. (2016b). Their time–varying spatial coefficient provides a measure of

changes in systemic risk and the market’s perception of contagion within the euro area over time.

In our analysis we study the weekly logarithmic changes in percentage of the CDS of eight

European countries. A similar data set is used by Blasques et al. (2016b) for a different period

of time. Differently from Blasques et al. (2016b), our measure of distance is based on the spearman

correlation coefficient among the series of debt to GDP ratio of the European countries downloaded

from OECD (2018) as in Catania and Billé (2017). Specifically, we define dij =

√
2
(

1− ρsij
)

as the

12Note that, cross homoscedasticity for the model extension reported in Section 2.1 implies that the long run level of

the volatility of the innovations is the same, but it does not imply that the conditional volatilities are equal at particular

points in time.
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metric among pairs of spatial units, where ρsij is the spearman correlation coefficient among country

i and j.

6.2.1. Data

Data are obtained from Datastream and are related to the credit default swap (CDS) spreads

from 28 July 2008 until 2 July 2018 (519 weekly observations) for the eight European countries:

Belgium, France, Germany, Ireland, Italy, the Netherlands, Portugal, and Spain. Figure 3 shows the

logarithmic changes in percentage of the credit default swap (CDS) spreads for the above mentioned

European countries, whereas in Table 3 we find the summary statistics of the series. The time series

reveal common patters such as volatility clustering and the presence of extreme values. Overall, Italy,

Spain, and Portugal seems to be more volatile. As stressed by Blasques et al. (2016b), the evolution

of the Ireland credit spread is roughly in line with that of the other countries before mid 2010 and

after mid 2012, but departing during the height of the European sovereign debt crisis. This motivates

Blasques et al. (2016b) to account for time–varying spillover effects among CDS spreads, whereas in

our paper we aim at identifying the degree of these spatial associations over time. We consider the

explanatory variables as in Blasques et al. (2016b), obtained from Datastream.

Min 1st Qu. Median Mean 3rd Qu. Max. St. Dev. Ex. Kurt. Skew.

Spain -36.46 -5.52 -0.04 0.04 5.56 32.85 9.94 1.42 0.21

France -42.42 -4.46 0.00 0.09 3.58 91.63 9.81 16.00 1.81

Germany -43.18 -3.89 0.00 0.05 2.97 98.64 9.50 23.95 2.32

Ireland -29.01 -3.52 -0.29 -0.05 2.39 67.88 8.63 10.16 1.50

Italy -39.13 -4.91 -0.29 0.23 4.80 48.58 10.04 2.87 0.53

The Netherlands -48.34 -3.43 0.00 -0.02 2.60 95.45 9.13 25.04 2.24

Portugal -29.52 -5.41 -0.01 0.13 5.28 43.00 9.68 1.94 0.52

Belgium -49.53 -3.36 -0.06 -0.05 2.60 57.78 9.03 6.63 0.59

Table 3: Summary statistics of the logarithmic changes of the credit default swap (CDS) spreads for eight European

countries. Statistics are computed using weekly observations spanning the period from 28 July 2008 to 2 July 2018.

Columns “1st Qu.” and “3st Qu.” report the first and the third quartile of the empirical distribution of the data,

respectively. The three columns report the standard deviation (St.Dev), excess of kurtosis (Ex.Kurt.), and the skewness

(Skew.) coefficients, respectively.
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Figure 3: Weekly percentage logarithmic changes of the credit default swap (CDS) spread in yields for eight European

countries. The series span from 28 July 2008 to 2 July 2018 for a total of 519 observations. Data are obtained from

Datastream. The blue shaded bars indicate periods of European recession according to the OECD based Recession

Indicators for Euro Area from the Period following the Peak through the Trough (EURORECD), see Federal Reserve

Bank of St. Louis (2018a).

In particular, we use a constant, the lagged values of the CDS changes, and the change in the

volatility index (VStoxx). In addition, we use the country–specific price equity indices listed in Table

1 of their paper, which are the result of (log) returns of the main stock index and the absolute changes

in the interest rate spreads between government bonds with one year and ten years maturities. As

they stressed, “local stock market returns are a measure of the well–being of the local economy and in

this way an indirect measure of the ability of governments to pay off debt in the long run through tax
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collection”. All the variables are included with a lag of one period.

6.2.2. Main results

We estimate all the models detailed in Section 6.1, and Table 4 reports the estimated coefficients.

We note that, all the estimated coefficients are statistically significant and most of them at 1%.

The static spatial autocorrelation coefficient ρ∗ is positive and about 0.7 for all the considered

static/dynamic model specifications, which means that the spillover effects play a crucial role in

European CDS spreads. The coefficients associated with the explanatory variables are statistically

and economically significant. Furthermore, they are robust with respect to the different model

specifications we consider. The coefficient associated with the implied volatility of the stocks (β2) is

negative and significantly different from zero at the usual confidence levels, suggesting that when the

stocks’ volatility increases, the CDS spreads decrease. As stressed by Blasques et al. (2016b) this is

consistent with the phenomenon of “flight to quality” from stocks to bonds when the price of risk

increases in stock markets. In the same way, the coefficient associated with the countries’ equity index

(β3) is negative and statistically different from zero, suggesting that local stock market upturns have

a dampening effect on sovereign credit spreads. Notably, β3 is much higher (in absolute value) than

β2, indicating that rather than looking at the stock market implied volatility, investors are pricing

the ability of country’s specific firms to generate positive future cash flows that translate into higher

GDP levels and thus lower Debt-to-GPD ratios. Looking at the coefficients associated with γt, we

see that the results change between the Gaussian and Student’s t specifications. This result is not

surprising since, as detailed in Section 2, the distributional assumption has important implications for

the filter. Indeed, while the intercept (κ) and the autoregressive coefficient (ξ) are somehow similar

across all the specifications, the score coefficient α is between 0.09 and 0.06 in the Gaussian case and

0.43 in the Student’s t case. Since the score innovation is a unit variance martingale difference in

both cases, this result suggests that the signal delivered by the Student’s t model is more informative

than that delivered using a Gaussian distribution. Notably, when we look at those specifications with

time heteroscedastic errors (γt, Σt), the estimates associated with the Student’s t model are more

reasonable than those delivered by the Gaussian model. This result is not surprising since, as in usual

volatility score driven models, the filter implied by the Gaussian assumption is not robust to extreme

observations, which leads to unsatisfactory filtered conditional volatilities.

Table 5 reports the Akaike (AIC) and Bayesian (BIC) information criteria for all the model
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Gaussian Student’s t

(γ Σ) (γt Σ) (γt Σt) (γ Σ) (γt Σ) (γt Σt)

ρ∗ 0.70
(0.0004)

0.70
(0.0004)

0.70
(0.0004)

0.68
(0.0005)

0.68
(0.0005)

0.68
(0.0005)

β1 −0.02
(0.0036)

−0.02
(0.0033)

−0.05
(0.0034)

−0.09
(0.0028)

−0.09
(0.0029)

−0.09
(0.0027)

β2 × 100 −0.34
(0.0037)

−0.34
(0.0037)

−0.16
(0.0035)

−0.02
(0.0031)

−0.02
(0.0024)

−0.03
(0.0016)

β3 −0.47
(0.0015)

−0.47
(0.0016)

−0.44
(0.0015)

−0.36
(0.0014)

−0.36
(0.0014)

−0.36
(0.0012)

β4 × 100 −0.01
(0.0040)

−1.60
(0.0041)

−0.01
(0.0047)

0.71
(0.0038)

0.71
(0.0038)

0.62
(0.0037)

κ −0.37
(0.0058)

−0.42
(0.0085)

−0.12
(0.0049)

−0.47
(0.0076)

−0.62
(0.0158)

−0.47
(0.0143)

α 0.09
(0.0010)

0.06
(0.0017)

0.43
(0.0222)

0.43
(0.0093)

ξ 0.90
(0.0031)

0.83
(0.0037)

0.89
(0.0053)

0.91
(0.0013)

κσ 3.34
(0.0011)

3.35
(0.0011)

3.29
(0.0023)

3.72
(0.0062)

3.72
(0.0062)

3.72
(0.0065)

ασ 5.00
(0.0004)

0.16
(0.0275)

ξσ 0.99
(0.0001)

0.92
(0.0206)

ν 3.05
(0.0105)

3.05
(0.0108)

3.05
(0.0113)

Table 4: Estimated coefficients for European credit default swap (CDS) spreads for different model specifications.

Standard deviations based on the assumed asymptotic Gaussian distribution are reported in parentheses. The coefficient

β1 is associated to the intercept, β2 to the change in the volatility index (VStoxx), β3 to country–specific price equity

indices, and β4 to the lagged values of the CDS changes.

specifications. We find that models with Student’s t distributed errors are generally preferred

according to both information criteria. Looking at the different dynamic specifications, we find that

the models with time–varying spatial dependence and homoscedastic disturbances, (γt, Σ), report

lower AIC and BIC, suggesting that the flexibility induced by the dynamic specification is justified

from a likelihood perspective. The model with heteroscedastic disturbances, (γt, Σt), is not selected

in the Student’s t case, while it is preferred in the Gaussian case. Overall, the model selected by AIC

and BIC is the (γt, Σ) specification with Student’s t distributed errors. The following results are

reported according to this specification.
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Gaussian Student’s t

AIC BIC NP AIC BIC NP

(γ Σ) 26340.91 26400.44 14 25498.21 25561.98 15

(γt Σ) 26335.04 26403.07 16 25487.34 25559.63 17

(γt Σt) 26096.41 26172.95 18 25497.60 25578.38 19

Table 5: This table reports the AIC and BIC evaluated using the likelihood computed at its maximum value for different

models using CDS data. The last column labelled “NP” reports the number of estimated parameters. The gray cells

indicate the selected model according to AIC and BIC.
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Figure 4: Filtered γt (black line) for the Student’s t model for European credit default swap (CDS) spreads and

(10% − 90%) in–sample simulation–based confidence bands (gray bands) computed as in Blasques et al. (2016a). The

estimation period spans from 28 July 2008 to 2 July 2018. Blue shaded bars indicate periods of European recession

according to the OECD based Recession Indicators for Euro Area from the Period following the Peak through the

Trough (EURORECD), see Federal Reserve Bank of St. Louis (2018a).

Figures 4 and 5 show the evolution of γt and the spatial indicator $t detailed in Section 3.3,

respectively. We find that the level of γt ranges between approximately 0.5 and 4.0 over the sample

period, while the spatial association index ranges between 0.75 and 0.8. These results indicate a

relatively strong spatial connection between the perceived risk of European countries during the whole
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Figure 5: The evolution of the indicator of spatial association as in Equation (20) for CDS spreads and (10%−90%) in–

sample simulation–based confidence bands (gray bands) computed as in Blasques et al. (2016a). The estimation period

spans from 28 July 2008 to 2 July 2018. The blue shaded bars indicate periods of European recession according to the

OECD based Recession Indicators for Euro Area from the Period following the Peak through the Trough (EURORECD),

see Federal Reserve Bank of St. Louis (2018a).

sample. Interestingly, we find that during the peak of the European sovereign debt crisis of 2008-2012

the spatial connection between the European countries diminished and reached its minimum of 75%,

nonetheless still quite high.

Looking at the filtered conditional variances of the CDS changes in Figure 6 (the diagonal elements

of Σ̃t in Equation (5)), we note that the CDS variance reaction to changes in the spatial connections is

heterogeneous among European countries. For example, the countries that are paying more, in terms

of increasing uncertainty around their CDS changes, are France, Germany, and the Netherlands.

On the contrary, Ireland, Italy, Portugal, and Spain experience a reduction in their conditional

variance. This result suggests that European countries react differently to different levels of spatial

dependence. Generally, the European countries want to reduce their CDS spreads and also control

for the uncertainty around their evolution. According to this reasoning we might assume that the

European country i at time t wants to maximize the following objective function:

`i,t = − µ̃i,t
σ̃i,t

, (24)
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Figure 6: Credit default swap (CDS) spread filtered conditional variance for eight European countries and (10%− 90%)

in–sample simulation–based confidence bands (gray bands) computed as in Blasques et al. (2016a). The estimation

period spans from 28 July 2008 to 2 July 2018. The blue shaded bars indicate periods of European recession according

to the OECD based Recession Indicators for Euro Area from the Period following the Peak through the Trough

(EURORECD), see Federal Reserve Bank of St. Louis (2018a).

where µ̃i,t and σ̃i,t are the mean and variance of Yi,t|Ft−1. Maximization of `i,t is achieved for

decreasing values of µ̃i,t and σ̃i,t. Clearly, `i,t = `i,t(γt,d) for all i, such that the objective function

of each European country is affected by the level of spatial connection and the distance from other

countries. While γt is endogenous and cannot be directly controlled by a single country, the “distance”

with other countries, d, can be modified by policy interventions.

In Figure 7 we report the long run level of `i,t for different values of γt for all the European
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Figure 7: Estimated long run objective function, `i,t, for the individual European countries as a function of γt.

Uncertainty is represented by the (10% − 90%) in–sample simulation–based confidence bands (gray bands) computed

as in Blasques et al. (2016a). The orange dashed vertical bar indicates the estimated long run value of γt.

countries. Interestingly, we find that, for high values of γt (low spatial connection) the objective

function is lower than for low values of γt (high spatial connection) indicating that spatial connection

among European countries increases each individual objective function. However, we note that the

optimum value of γt is different among European countries. Indeed, while Ireland, Portugal, and Spain

want to maximize their connection with other European countries (γt → 0), Belgium (γt = 1.27),

France (γt = 1.92), Germany (γt = 1.26), Italy (γt = 0.92), and the Netherlands (γt = 1.80) find

their optimal level of connection for values of γt in the range (0.9, 2). At the end of the estimation

period the value of γt is approximately 0.47, which indicates that, along with Ireland and Portugal,
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also Spain would benefit from a decrease in the level of connection with other countries in the future.

Overall, our findings suggest that, at the end of the estimation period, economically strong countries

like Germany, the Netherlands, and France have their perceived risk increased due to their spatial

connection with economically weaker countries like Ireland, Portugal, and Spain. Finally, while it

is reasonable that governments benefit from the maximization of equation (24), they also might

pursue other maximization strategies which would lead to different results in terms of optimal spatial

association.

6.3. House price dynamics in the UK

In this section we analyze the evolution of house price dynamics in UK. The spatio–temporal

analysis of housing markets has recently received a growing attention in the literature, see Shi and

Lee (2017b), Billé et al. (2017), Bailey et al. (2016), Brady (2011) and Holly et al. (2010). The aim

of this section is to analyze, through the evolution of a distance decay parameter γt, the radius at

which the spatial effects tend to diminish rapidly. In this way, we aim at identifying periods of time

in which the evaluated time–series are more inter–connected, suggesting a common behavior among

them. Periods of reasonably lower γt, i.e. γt → 0, can guide the researcher in properly selecting

the most appropriate weighting scheme between a sparse and a dense matrix in order to avoid, in a

cross—sectional or panel data framework, potential model misspecification due to wrongly assumed

weight matrices.

Although geographical locations/regions are time–invariant, the strength of spatial dependence

may also depend on economic variables that are time–varying. The use of economic information to

define a metric as an alternative to geographical distances has been accounted for by some authors,

see e.g. Holly et al. (2011). In this paper, we consider geographical distances based on Euclidean

distances between centroids of the regions (i.e. areal statistical units of interest).13 Data are available

from the UK Office of National Statistics website.

13In an unreported analysis we also employed distances based on an economic metric using information coming from

the regional Gross Value Added (GVA) indicators. Although the level of the estimated γt turns out to be different from

the case reported in this paper, its evolution over time looks very similar and thus does not change our results.
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6.3.1. Data

Data are quality adjusted regional house price series available at the Nationwide Building Society

website14 and cover the period from Q1 1974 to Q2 2018. These quality adjusted house prices are

referred to as “mixed adjusted”, i.e. corrected for price variations due to location and physical

characteristics of the housing stock. The definition of regions used by the Nationwide differs in

significant ways from the regional definitions used by the Office of National Statistics that are based

on the Nomenclature of Territorial Units for Statistics (NUTS) of the European Union. Starting

from NUTS data, Nationwide regions are defined by aggregating NUTS data following a pre–specified

neighbor criterion (see Holly et al., 2011, Tables 1–2). The Nationwide regions consist of 12 regions:

East Anglia (EA), Outer South East (OSE), East Midlands (EM), Scotland (S), London (L), South

West (SW), North (N), Wales (W), North West (NW), West Midlands (WM), Outer Metropolitan

(OM), Yorkshire & Humberside (YH). We exclude Northern Ireland from our analysis.

Figure 8 reports the house price series for each region defined by the Nationwide in the UK,

whereas Table 6 shows their summary statistics. The house price time series reveal the highest

peak close to the year 1989, just before the recession experienced by UK in early 1990s, with the

exception of London, the Outer Metropolitan Area, and Scotland, and an important slump in the

period 1990-1992. Most of the series also shows another significant house price slump during the

2007-2008 financial crisis called “the Great Recession”.

14http://www.nationwide.co.uk/about/house-price-index/download-data
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Min 1st Qu. Median Mean 3rd Qu. Max. St. Dev. Ex. Kurt. Skew.

North -5.69 -0.20 1.08 1.57 3.10 11.46 3.17 0.67 0.56

Yorkshire & Humberside -8.24 -0.15 1.43 1.56 2.87 14.21 3.09 2.21 0.57

North West -5.39 0.22 1.35 1.68 2.65 10.30 2.65 1.31 0.62

East Midlands -5.01 0.16 1.50 1.71 2.87 15.65 2.88 3.26 0.87

West Midlands -8.48 0.18 1.39 1.68 2.78 15.70 2.86 4.19 0.92

East Anglia -8.81 0.19 1.54 1.75 3.23 14.34 3.20 1.78 0.28

Outer South East -6.15 0.49 1.68 1.82 3.25 11.16 2.90 0.88 0.05

Outer Metropolitan -6.80 0.36 1.79 1.88 3.37 10.95 2.77 0.87 -0.09

London -6.17 0.40 1.98 2.01 3.83 11.37 3.07 0.30 -0.11

South West -7.57 0.34 1.71 1.81 3.06 12.87 2.79 2.00 0.51

Wales -8.77 0.20 1.46 1.59 2.90 14.52 3.15 2.53 0.59

Scotland -6.11 0.10 1.38 1.57 3.10 9.14 2.37 0.89 -0.12

Table 6: Summary statistics of the logarithmic changes of house price changes in different areas of the UK. Statistics

are computed using quarterly observations spanning the period from Q1 1974 to Q2 2018 for a total of 178 observations.

Columns “1st Qu.” and “3st Qu.” report the first and the third quartile of the empirical distribution of the data,

respectively. The three columns report the standard deviation (St.Dev), excess of kurtosis (Ex.Kurt.), and the skewness

(Skew.) coefficients, respectively.
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To explain UK house price dynamics, we use the series of explanatory variables as in Brady (2011).

In particular, we consider the lag of house prices, the unemployment index, the industrial production

index, the population level, and the interest rate. All variables are considered in their first difference.

The unemployment rate, industrial production, and population level are provided by the Office for

National Statistics, whereas the interest rate stems from the website of the Federal Reserve Bank of

St. Louis.

6.3.2. Main results

Starting from the nationwide definition of regions, we parametrize our dynamic spatial weighting

matrix Wt by defining the centroids and calculating Euclidean distances between them, following the

parametrization function in Equation (17). Table 7 shows the results related to different nested–model

specifications. The dynamic version with negative exponential function, spectral–normalization, and

Student’s t distribution is to be preferred.

Gaussian Student’s t

AIC BIC NP AIC BIC NP

(γ Σ) 8619.03 8654.03 11 8263.70 8301.88 12

(γt Σ) 8577.42 8618.79 13 8237.10 8281.65 14

(γt Σt) 8228.49 8276.22 15 8115.52 8201.43 27

Table 7: This table reports the AIC and BIC evaluated using the likelihood computed at its maximum value for different

models using the UK house price changes. The last column labelled “NP” reports the number of estimated parameters.

Gray cells indicate the selected model according to AIC and BIC.

The evolution of γt is reported in Figure 9. The unconditional mean is 1.323. In particular, we

can observe two decades of reasonably low values of γt: (i) 1976–1985 and (ii) 2004–2012. During

both these periods, the evolution reveals an important role played by the spatial process. Specifically,

the spatial impact does not rapidly decrease after a first–order neighborhood, so that the house

price time–series related to more distant regions appear to be highly inter–connected. Therefore,

the evolution of house prices in the majority of the nationwide regions of the UK reveals a common

behavior during the above–mentioned periods.

The estimated ρ∗ coefficient is approximately 0.63 with a standard deviation of 0.01, indicating
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Figure 9: Filtered γt for the Student’s t model for UK house price dynamics and (10% − 90%) in–sample simulation–

based confidence bands (gray bands) computed as in Blasques et al. (2016a). The estimated period spans from Q1

1974 to Q2 2018 for a total of 178 observations. The blue shaded bars indicate periods of UK recession according to

the OECD based Recession Indicators for the United Kingdom from the Peak through the Trough (GBRRECDM), see

Federal Reserve Bank of St. Louis (2018b).

that the spatial process behavior is also not inhibitory.15 From a statistical point of view, the evolution

of γt in those periods highlights a potential model misspecification problem for researchers who

make use of static cross–sectional spatial autoregressive models with sparse or first–order weighting

matrices. A dense weighting matrix, defined by any smooth function, can be a more appropriate

choice instead. Figure 10 shows the evolution of the indicator of spatial association $t in Equation

(20) for UK house prices. According to the evolution of γt, we identify two periods (in red), i.e. (a)

1976 – 1985 and (b) 2004 – 2012, in which $t → 1. In these two cases the spatial effects go beyond

a first–order neighborhood, and a dense matrix is presumably the correct one.

Figure 11 displays the higher–order effects of the spatial process for 4 different periods of time

as suggested by the evolution of γt in Figure 9. These effects are evaluated with respect to London,

which has been indicated by Holly et al. (2011) to be the dominant region in the house price markets

15We do not report all estimated coefficients since the main goal of this analysis is to show periods when a dense/sparse

matrix is more appropriate for UK house prices.
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Figure 10: The evolution of the indicator of spatial association as in Equation (20) for house price dynamics and

(10% − 90%) in–sample simulation–based confidence bands (gray bands) computed as in Blasques et al. (2016a). The

estimated period spans from Q1 1974 to Q2 2018 for a total of 178 observations. The blue shaded bars indicate periods

of UK recession according to the OECD based Recession Indicators for the United Kingdom from the Peak through the

Trough (GBRRECDM), see Federal Reserve Bank of St. Louis (2018b).

in UK. Periods are: 1976 – 1985 and 2004 – 2012, when γt is smaller than 1 and equal to 0.42 and

0.49, respectively, and 1986 – 2003 and 2013 – 2016, when γt is larger than 1 and equal to 1.73 and

4.05, respectively. By looking at the figure, we observe that the magnitude of London’s dominance

over the other regions as described by Holly et al. (2011) is remarkably different across time. Indeed,

during the periods 1976 – 1985 and 2004 – 2012 house prices in London have important spatial effects

on the house prices of other regions, whereas during the periods 1986 – 2003 and 2013 – 2016 the

spatial effects are much smaller.

7. Conclusion

In this paper we propose a new flexible spatio–temporal dynamic model named Dynamic Spatial

Weighting Matrix (DSWM). We account for a time–varying spatial weighting matrix as well as time–

varying error heteroscedasticity. We allow the time–varying model parameters to be updated using

the scaled score of the spatial conditional distribution, relying on the recently proposed SD updating
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(a) Period 1976-1985 (b) Period 1986-2003

(c) Period 2004-2012 (d) Period 2013-2016

Figure 11: Higher–order effects of Wt with respect to London for 4 different periods of time. The intra–periods average

values of γt are: (a) γ1 = 0.415, (b) γ2 = 1.734, (c) γ3 = 0.492, (d) γ4 = 4.054. The spatial units (i.e. regions) are

defined according to the Office of National Statistics.

mechanism, see e.g. Creal et al. (2013) and Harvey (2013). Our specification generalizes the static

SAR(1) model allowing for a time–varying distance decay parameter γt, i.e. by considering a time-

varying spatial weighting matrix Wt. We also consider different parametrization and normalization of

Wt as well as both Gaussian and Student’s t distributions, defining several nested model specifications.

The model is a novel contribution to the recent spatial literature that considers time–varying weight
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matrices. We detail the model characteristics and assess the finite-sample properties of the maximum

likelihood estimator for the DSWM model. The flexibility of the proposed model is also investigated

in a simulation study. Specifically, we found that the DSWM model has very good filtering abilities

and is able to replicate many artificial patterns for the spatial decay parameter. For instance, we

found that our model is able to adequately approximate a SAR model with distance decay parameter

following a first–order autoregressive process.

The paper also contributes from an empirical perspective. In this respect, we illustrate the

usefulness of the DSWM model for two different empirical applications related to: (i) European credit

default swap (CDS) spreads, (ii) UK house price dynamics. We find that the dynamic specification

has to be preferred in both empirical applications. Specifically as regards the CDS spreads we

find that there is a strong spatial connection between the risk perceived by European countries.

Moreover, the CDS variance reaction to changes in the spatial connections is quite heterogeneous

among the European countries: depending on different values of γt, some countries always benefit

from their spatial connection while other countries do not. Pertaining to UK house price dynamics,

we find an interesting evolution of the γt parameter. We identify two different periods in which γt

is low and for which a sparse matrix is not appropriate to describe the underlying spatial process.

Straightforward extensions of our DSWM model could include two time–varying spatial weighting

matrices, as extensions of the well-known static Spatial Durbin models and static SARAR(1,1) models.
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Appendix A. Score and information quantity of γt

For the purpose of this appendix let us write the conditional distribution of yt given Ft−1 as

yt|Ft−1 ∼ D
(
µ̃t(γt), Σ̃t(γt), ψ

)
, (A.1)

where:

µ̃t(γt) = (I− ρ∗W∗t (γt))
−1 Xtβ (A.2)

Σ̃t(γt) = (I− ρ∗W∗t (γt))
−1 Σ (I− ρ∗W∗t (γt))

−1′ . (A.3)

The following quantities are required:

∂µ̃t
∂γt

= ρ∗LtXtβ (A.4)

∂Σ̃t

∂γt
= L′tΣA−1

t +
(
A−1
t

)′
ΣLt, (A.5)

with Lt = A−1
t Ẇ∗tA

−1
t .

Theorem Appendix A.1. Score and information quantity of γt: Normal case.

Let yt|Ft−1 be distributed according to Equation (5). The log–pdf of the multivariate Gaussian

distribution is proportional to:

log p (yt|γt,η,Xt) ∝ −
1

2
log |Σ̃t(γt)| −

1

2
(yt − µ̃t(γt))′ Σ̃t(γt) (yt − µ̃t(γt)) , (A.6)

(a) The score of γt is given by:

∇t (yt, γt,η,Xt) =
∂ log p (yt; γ,η,Xt)

∂γ

∣∣∣
γ=γt

(A.7)

= −ρ∗
(

Tr
[
A−1
t Ẇ∗t

]
−B′tΣ

−1
t Ẇ∗tyt

)
, (A.8)

where

Bt = Atyt −Xtβ (A.9)

and Ẇ∗t is an N ×N matrix with (i, j)–th element equals to

ω̇∗ij,t =
∂gij (γ,d)

∂γ

∣∣∣
γ=γt

(A.10)

43

 Electronic copy available at: https://ssrn.com/abstract=3241470 



(b) The information quantity of γt is given by:

It (γt,η,Xt) =
∂µ̃t
∂γt

′
Σ̃−1
t

∂µ̃t
∂γt

+
1

2
Tr

[
Σ̃−1
t

∂Σ̃t

∂γt
Σ̃−1
t

∂Σ̃t

∂γt

]
(A.11)

where:

µ̃t(γt) = (I− ρ∗W∗t (γt))
−1 Xtβ (A.12)

Σ̃t(γt) = (I− ρ∗W∗t (γt))
−1 Σ (I− ρ∗W∗t (γt))

−1′ . (A.13)

and
∂µ̃t
∂γt

and ∂Σ̃t
∂γt

are defined in (A.4) and (A.5), respectively.

Theorem Appendix A.2. Score and information quantity of γt: Student’s t case.

Recall that the log–pdf of the multivariate Student’s t distribution parametrized in terms of its

covariance matrix is proportional to:

p(yt|γt, µ̃t, Σ̃t, ν) ∝ −ν +N

2

[
1 +

(yt − µ̃t(γt))′ Σ̃t(γt) (yt − µ̃t(γt))
ν − 2

]
− 1

2
log |Σ̃t(γt)| (A.14)

(a) The score with respect to γt is given by:

∂ log p(yt|·)
∂γt

=

(
∂µ̃t
∂γt

)′ ∂ log p(yt|·)
∂µ̃t

+

∂vec
(
Σ̃t

)
∂γt

′ ∂ log p(yt|·)

∂vec
(
Σ̃t

) , (A.15)

where:

∂ log p(yt|·)
∂µ̃t

=
(ν +N) Σ̃−1

t (yt − µ̃t)
wt (ν − 2)

(A.16)

∂ log p(yt|·)

∂vec
(
Σ̃t

) =
1

2
D′N (Jt ⊗ Jt)

′ [wtJt (yt − µ̃t)− vec(I)] , (A.17)

and Jt is an N ×N matrix implicitly defined by Σ̃−1
t = J′tJt. The matrix DN is the duplication

matrix such that DNvech(Q) = vec(Q) where vech(·) is the half–vectorization operator. The quantities

∂µ̃t
∂γt

and
∂vec(Σ̃t)

∂γt
= vec

(
∂Σ̃t
∂γt

)
are defined in (A.4) and (A.5), respectively. The quantity wt is equal

to:
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wt =
ν +N

ν − 2 + (yt − µ̃t)
′ Σ̃−1

t (yt − µ̃t)
. (A.18)

(b) The information quantity of γt is given by

I(γt) =

(
∂µ̃t
∂γt

′ ∂vec(Σ̃t)
∂γt

′
)Iµ̃µ̃ 0

0 Ivec(Σ̃)vec(Σ̃)

 ∂µ̃t
∂γt

∂vec(Σ̃t)
∂γt

 , (A.19)

where

Iµ̃µ̃ =
ν +N

ν +N + 2

ν

ν − 2
Σ̃−1
t , (A.20)

and

Ivec(Σ̃)vec(Σ̃)
=

1

4
D′N (Jt ⊗ Jt)

′
[

ν +N

ν + 2 +N
G− vec(I)vec(I)′

]
DN (Jt ⊗ Jt), (A.21)

and G is a N × N matrix with G[(i − 1)k + l, (j − 1)k + m] = δijδlm + δilδjm + δimδjl for

i, j, l,m = 1, . . . , N and δhk = 1 if h = k and δhk = 0 otherwise, see Creal et al. (2011).

Theorem Appendix A.3. Score and information quantity of σi,t.

In order to compute ui,t in Equation (22) we first compute:

∂vec(Σ̃t)

∂σi,t
= Evec

(
A−1
t UiA

−1
t
′
)
, (A.22)

where E is the elimination matrix such that Evec(M) = vech(M) and Ui = eie
′
i where ei is a

vector of size N of zeros with 1 at its i-th position.

The score and the information quantity for σi,t for the Student’s t case are then computed as:

∂ log p(yt|·
∂σi,t

=
∂vec(Σ̃t)

∂σi,t

′
∂ log p(yt|·)

∂vec
(
Σ̃t

) , (A.23)

and

I(σi,t) =
∂vec(Σ̃t)

∂σi,t

′

Ivec(Σ̃)vec(Σ̃)

∂vec(Σ̃t)

∂σi,t
, (A.24)

respectively. The Gaussian case is obtained by letting ν →∞ in ∂ log p(yt|·)
∂vec(Σ̃t)

and Ivec(Σ̃)vec(Σ̃)
.
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Appendix A.1. Derivatives of g(·)

For the case

g (Wt) =
Wt

λ (Wt)
, (A.25)

the quantities ω̇∗ij,t needed for the evaluation of ∇t (yt, γ̃t,η,Xt) and It (γ̃t,η,Xt) are given by

ω̇∗ij,t = −ω∗ij,t
(

1 +
1

λ (Wt)

dλ (Wt)

dγt

)
, (A.26)

and

ω̇∗ij,t = −ω∗ij,t
(

log dij +
1

λ (Wt)

dλ (Wt)

dγt

)
, (A.27)

for the inverse distance and negative exponential decay functions, respectively.16

Under row–normalization we have that g(Wt) = W∗t such that the i, j element of W∗t is given by:

w∗ij =
f(γt, dij)∑N
h=1 f(γt, dih)

. (A.28)

The quantities ω̇∗ij,t for all i 6= j, have the form

ω̇∗ij,t = −
ωij,t

[
− log (dij)

∑N
l=1 ωil,t +

∑N
l=1 ωil,t log (dil)

]
[∑N

l=1 ωil,t

]2 , (A.29)

and

ω̇∗ij,t = −
ωij,t

[
−dij

∑N
l=1 ωil,t +

∑N
l=1 ωil,tdil

]
[∑N

l=1 ωil,t

]2 , (A.30)

for the inverse distance and negative exponential decay functions, respectively.

16The quantity dλ(Wt)
dγt

is the derivative of the spectral radius of Wt with respect to γt and can be numerically evaluated

by slightly increasing the computational cost.
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Appendix B. Proofs

Appendix B.1. Proof of Proposition 1

Proof: The stationarity and ergodicity of the limit sequence {γ̃t}t∈Z,

γ̃t+1 = (1− ξ)κ+ αs̃εt + ξγ̃t,

is obtained by the application of the Theorem 3.1 in Bougerol (1993) under conditions (i), (ii), (iv) and (v) in Proposition

1. The stationarity and ergodicity of the resulting sequence of the spatial weights

{wij,t}t∈Z = {f(γt, dij)}t∈Z = {f(exp(γ̃t), dij)}t∈Z,

follows by the application of Proposition 4.3 in Krengel (1985) as f is assumed to be a measurable function (condition

(iii) in Proposition 1).

The stationarity and ergodicity of the data sequence {yt}t∈Z

yt = A−1
t Xtβ + A−1

t εt where At = IN − ρ∗W∗t ,

is then naturally inherited from the stationarity and ergodicity of the sequence of the spatial weights matrices {Wt}t∈Z,

the sequence of exogenous regressors {Xt}t∈Z (condition (iv)) and the sequence of innovations {εt}t∈Z (condition (v)).

Finally, the n bounded moments for the data follow by a simple application of the cn-inequality in Dufour (2015),

which ensures that ∃ 0 < c <∞ such that

E‖yt‖n ≤ cE‖A−1
t Xtβ‖n + cE‖A−1

t εt‖n

≤ cE‖A−1
t ‖nE‖Xtβ‖n + cE‖A−1

t ‖nE‖εt‖n <∞

with E‖A−1
t ‖n ≤ A for some A < ∞, since that all the elements wij,t of Wt are uniformly bounded by condition (iii).

�

Appendix B.2. Proof of Proposition 2

Proof: The invertibility of the data sequence {γ̂t}t∈N is obtained by the application of the Theorem 3.1 in Bougerol

(1993) under conditions (i), (ii), (iv) and (v) in Proposition 1. The convergence of the sequence of the spatial weights

is obtained as follows

ιt sup
θ∈Θ

sup
ij
|ŵij,t − wij,t| = ιt sup

θ∈Θ

sup
ij
|f(γ̂t, dij)− f(γt, dij)|

≤ sup
(γ,d)

∣∣∣∂f(γ, d)

∂γ

∣∣∣ιt sup
θ∈Θ

|γ̂t − γt|
as→ 0 as t→∞ for some ι > 1,

where ιt supθ∈Θ
|γ̂t − γt|

as→ 0 by invertibility of {γ̂t}t∈N and sup(γ,d)

∣∣∣ ∂f(γ,d)
∂γ

∣∣∣ < ∞ by condition (iii). Furthermore,

supθ∈Θ
|wij,t| <∞ is immediately implied by the uniform bound on condition (iii) in Proposition 1. �
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Appendix B.3. Proof of Proposition 3

Proof: We obtain θ̂T
a.s.→ θ0 by showing that

sup
θ∈Θ

| 1
T

T∑
t=2

log p(yt|θ,Xt, Ŵt)− E log p(yt|θ,Xt,Wt)|
a.s.→ 0 ∀ f1 ∈ F as T →∞ (B.1)

and

sup
θ:‖θ−θ0‖>ε

E log p(yt|θ,Xt,Wt) < E log p(yt|θ0,Xt,Wt) ∀ ε > 0; (B.2)

see e.g. Theorem 3.4 in White (1994) or Theorem 3.3 in Gallant and White (1988). The uniform convergence in (B.1)

follows by noting that

sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

log p(yt|θ,Xt, Ŵt)− E log p(yt|θ,Xt,Wt)
∣∣∣

≤ sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

log p(yt|θ,Xt, Ŵt)−
1

T

T∑
t=2

log p(yt|θ,Xt,Wt)
∣∣∣

+ sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

log p(yt|θ,Xt,Wt)− E log p(yt|θ,Xt,Wt)
∣∣∣.

(B.3)

The second term in the last inequality of (B.3) converges through the application of the ergodic theorem for separable

Banach spaces in Rao (1962), as in Straumann and Mikosch (2006, Theorem 2.7). The stationarity and ergodicity of

{log p(yt|θ,Xt,Wt)}T∈Z holds by the stationarity and ergodicity of {(yt,Xt)}t∈Z and the invertibility of Wt established

in Proposition 2, and Proposition 4.3 in Krengel (1985). The moment bound needed for the law of large numbers holds

since that

E sup
θ∈Θ

| log p(yt|θ,Xt,Wt)| =
1

2
E sup
θ∈Θ

| log det Σ|+ E sup
θ∈Θ

| log det At|+
1

2
E sup
θ∈Θ

|(Atyt −Xtβ)′Σ−1(Atyt −Xtβ)| <∞

and Σ− < det Σ < Σ+ for some Σ− > 0 and some Σ+ < ∞, A− < det At < A+ for some A− > 0 and some A+ < ∞,

and

E sup
θ∈Θ

|(Atyt −Xtβ)>Σ−1(Atyt −Xtβ)| ≤ tr(Σ−1V)|+ sup
θ∈Θ

|µ>Σµ| <∞ ,

where µ and V denote the mean vector and covariance matrix, respectively, of the random vector Atyt −Xtβ, which

has two bounded moments by Proposition 1.

The first term in the last inequality of (B.3) vanishes by the invertibility of the spatial weights matrix

sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

log p(yt|θ,Xt, Ŵt)−
1

T

T∑
t=2

log p(yt|θ,Xt,Wt)
∣∣∣ ≤ 1

T

T∑
t=2

sup
θ∈Θ

∥∥∥∥∥∂ log p(yt|θ,Xt,W
∗
t )

∂W

∥∥∥∥∥‖Ŵt −Wt‖
as→ 0

where the mean value theorem is obtained equation by equation, with W∗t denoting the implied set of mean–value

points, under some abuse of notation. The a.s. convergence is achieved since that supθ∈Θ
‖Ŵt −Wt‖

eas→ 0 holds by the

invertibility of the filter proved in Proposition 2.

The fact that θ0 is the unique maximizer of the limit log likelihoodfollows easily under the assumption of

identifiability, by application of Gibbs’ inequality. Finally, (B.2) is implied by the uniqueness of θ0, the compactness of

the parameter space Θ, and the continuity of the limit log likelihood E log p(yt|θ,Xt,Wt) in θ ∈ Θ, see e.g. Potscher

and Prucha (1986). The continuity of the limit criterion follows from the continuity of 1
T

∑T
t=2 log p(yt|θ,Xt,Wt) in

θ ∈ Θ ∀ T ∈ N and the uniform convergence in (B.1), see also Potscher and Prucha (1986). �
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Appendix B.4. Proof of Proposition 4

Proof: The proof follows the same steps as those in Proposition 3. This time however, the moment bound needed for

the law of large numbers holds by noting that

E sup
θ∈Θ

| log p(yt|θ,Xt,Wt)| =
∣∣∣ log Γ

(ν + n

2

) ∣∣∣ +
∣∣∣ log Γ

(ν
2

) ∣∣∣ +
∣∣∣n
2

log(ν − 2)
∣∣∣

+
∣∣∣ log det At

∣∣∣ +
∣∣∣1
2

log det Σ
∣∣∣+
∣∣∣ν + n

2

∣∣∣ E∣∣∣ log

(
1 +

z′tzt
ν − 2

) ∣∣∣ <∞
since that the restrictions on the parameter space Θ are such that ν > 2, ensuring that

∣∣∣n2 log(ν − 2)
∣∣∣ < ∞,

Σ− < det Σ < Σ+ for some Σ− > 0 and some Σ+ < ∞,
∣∣∣ 12 log det Σ

∣∣∣ < ∞, and A− < detAt < A+ for some

A− > 0 and some A+ < ∞,
∣∣∣ log det At

∣∣∣ < ∞. Finally, the logarithmic moment for z′tzt is guarantee by the fact that

Proposition 1 and 2 hold with n > 0, and hence E|z′tzt|m < 0 for some m > 0. �

Appendix B.5. Proof of Theorem 4.1

Proof: We obtain the asymptotic Gaussianity of the maximum likelihood estimator by employing the usual quadratic

expansion of the log likelihood found e.g. in White (1994, Theorem 6.2) and relying on (i) the strong consistency of

θ̂T
a.s.→ θ0 ∈ int(Θ); (ii) the a.s. twice continuous differentiability of the log likelihood 1

T

∑T
t=2 `t(θ) in θ ∈ Θ; (iii) the

asymptotic normality of the score

√
T

1

T

T∑
t=2

ˆ̀′
t

(
θ0)

d→ N (0,J (θ0)
)
, J (θ0) = E

(
`′t
(
θ0)`′t

(
θ0)>

)
; (B.4)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥ 1

T

T∑
t=2

ˆ̀′′
T (θ)− 1

T

T∑
t=2

ˆ̀′′∞(θ)
∥∥ a.s.→ 0; (B.5)

and finally, (v) the non–singularity of the limit `′′∞(θ) = E`′′t (θ) = I(θ).

The consistency of the MLE θ̂T
a.s.→ θ0 ∈ int(Θ) in (i) follows by Proposition 3 or 4 and the additional assumption

that θ0 ∈ int(Θ). The differentiability required by (ii) is trivially satisfied for either the Gaussian or Student’s-t densities

used in Proposition 3 and 4. The asymptotic normality of the score in (B.7) follows by first noting that

√
T

1

T

T∑
t=2

ˆ̀′
t(θ0) =

√
T

1

T

T∑
t=2

[
ˆ̀′
t(θ0)− `′t(θ0)) + `′t(θ)

]
=

1

T

T∑
t=2

√
T
(

ˆ̀′
t(θ0)− `′t(θ0)

)
+
√
T

1

T

T∑
t=2

`′t(θ0).

(B.6)

Asymptotic normality for the second term in (B.6) holds by an application of the CLT for SE martingales in Billingsley

(1961), to obtain

√
T

1

T

T∑
t=2

`′t(θ0)
d→ N (0,J (θ0)

)
as T →∞, (B.7)

where J (θ0) = E(`′t
(
θ0)`′t

(
θ0)>) <∞. In addition, we have that

√
T
[ 1

T

T∑
t=2

(
ˆ̀′
t(θ0)− `′t(θ0)

)]
p→ 0
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as T →∞, by noting that

√
T
∥∥∥ˆ̀′
t(θ0)− `′t(θ0)

∥∥∥ ≤ ∥∥∥∇W`
′
t(θ0,W

∗
t , Ẇ

∗
t )
∥∥∥×√T max

{
‖Ŵt −Wt‖ , ‖ ̂̇Wt − Ẇt‖

}
,

where
∥∥∥∇W`

′
t(θ0,W

∗
t , Ẇ

∗
t )
∥∥∥ denotes the derivative of `′t(θ0) w.r.t. (Wt, Ẇt) and evaluated, equation by equation, at a

point (W∗t , Ẇ
∗
t ) between (Wt, Ẇt) and (Ŵt,

̂̇Wt) as typically applied on the multivariate mean–value–theorem.17 Now
√
T max

{
‖Ŵt −Wt‖ , ‖ ̂̇Wt − Ẇt‖

}
will vanish in probability by the e.a.s. assumption, and

∥∥∥∇W`
′
t(θ0,W

∗
t , Ẇ

∗
t )
∥∥∥ can

be shown to be bounded in probability since that, for t large enough, we have max
{
‖Ŵt−Wt‖ , ‖ ̂̇Wt− Ẇt‖

}
< 1 a.s.,

and hence

lim
t,c→∞

P
(∥∥∥∇W`

′
t(θ0,W

∗
t , Ẇ

∗
t )
∥∥∥ > c

)
≤ lim
t,c→∞

P
(

sup
(W,W ′):max

{
‖Wt−W‖ , ‖Ẇt−W ′‖

}
<1

∥∥∥∇W`
′
t(θ0,Wt +W, Ẇt +W ′)

∥∥∥ > c
)

and since the sequence
{

sup
(W,W ′):max

{
‖Wt−W‖ , ‖Ẇt−W ′‖

}
<1

∥∥∥∇W`
′
t(θ0,Wt + W, Ẇt + W ′)

∥∥∥} is SE by continuity of

the supremum operator, we have,

lim
t,c→∞

P
(

sup
(W,W ′):max

{
‖Wt−W‖ , ‖Ẇt−W ′‖

}
<1

∥∥∥∇W`
′
t(θ0,Wt +W, Ẇt +W ′)

∥∥∥ > c
)

= 0

which implies ∥∥∥∇W`
′
t(θ0,W

∗
t , Ẇ

∗
t )
∥∥∥×√T max

{
‖Ŵt −Wt‖ , ‖ ̂̇Wt − Ẇt‖

}
.

The uniform convergence in (iv) is obtained in a similar fashion by noting that, for every θ ∈ Θ, we have

1

T

T∑
t=2

ˆ̀′′
t (θ) =

1

T

T∑
t=2

[
ˆ̀′′
t (θ)− `′′t (θ)) + `′t(θ)

]
=

1

T

T∑
t=2

(
ˆ̀′′
t (θ)− `′′t (θ)

)
+
√
T

1

T

T∑
t=2

`′′t (θ).

(B.8)

Uniform convergence for the second term in (B.8) holds under the moment bound E supθ∈Θ
‖`′′t (θ)‖ < ∞ and by the

SE nature of {`′′T }t∈Z. In addition, we have that

sup
θ∈Θ

∥∥∥ 1

T

T∑
t=2

(
ˆ̀′′
t (θ0)− `′′t (θ0)

)∥∥∥ p→ 0

as T →∞, by noting that∥∥∥ˆ̀′′
t (θ0)− `′′t (θ0)

∥∥∥ ≤ ∥∥∥∇W`
′′
t (θ0,W

∗
t , Ẇ

∗
t , Ẅ

∗
t )
∥∥∥×√T max

{
‖Ŵt −Wt‖ , ‖ ̂̇Wt − Ẇt‖ , ‖ ̂̈Wt − Ẅt‖

}
,

where
∥∥∥∇W`

′
t(θ0,W

∗
t , Ẇ

∗
t , Ẅ

∗
t )
∥∥∥ denotes the derivative of `′′t (θ0) w.r.t. (Wt, Ẇt, Ẅt) and evaluated, equation by equation,

at a point (W∗t , Ẇ
∗
t ) between (Wt, Ẇt, Ẅt) and (Ŵt,

̂̇Wt,
̂̈Wt). Now

√
T max

{
‖Ŵt−Wt‖ , ‖ ̂̇Wt− Ẇt‖, ‖ ̂̈Wt− Ẅt‖

}
will

vanish in probability by the e.a.s. assumption, and
∥∥∥∇W`

′′
t (θ0,W

∗
t , Ẇ

∗
t , Ẅ

∗
t )
∥∥∥ can be shown to be bounded in probability

by a similar argument as the one above for
∥∥∥∇W`

′
t(θ0,W

∗
t , Ẇ

∗
t )
∥∥∥. �

17The usual abuse of notation is applied here as a different point (W∗t , Ẇ
∗
t ) may be selected equation by equation.
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