
materials

Review

The Impact of Bioceramic Sca↵olds on Bone
Regeneration in Preclinical In Vivo Studies:
A Systematic Review

Giulia Brunello 1,2 , Sourav Panda 3,4, Lucia Schiavon 2, Stefano Sivolella 2 , Lisa Biasetto 1

and Massimo Del Fabbro 3,5,*
1 Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza

Italy; giulia-bru@libero.it (G.B.); lisa.biasetto@unipd.it (L.B.)
2 Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova,

Italy; luciaschiavon.08@gmail.com (L.S.); stefano.sivolella@unipd.it (S.S.)
3 Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano,

Via Commenda 10, 20122 Milan, Italy; sourav.panda@unimi.it
4 Department of Periodontics and Oral Implantology, Institute of Dental Sciences,

Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
5 Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
* Correspondence: massimo.delfabbro@unimi.it; Tel.: +39-0-250319950; Fax: +39-0-250319960

Received: 4 March 2020; Accepted: 23 March 2020; Published: 25 March 2020
!"#!$%&'(!
!"#$%&'

Abstract: Bioceramic sca↵olds are appealing for alveolar bone regeneration, because they are
emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this
systematic review is to answer to the focal question: in critical-sized bone defects in experimental
animal models, does the use of a bioceramic sca↵olds improve new bone formation, compared with
leaving the empty defect without grafting materials or using autogenous bone or deproteinized
bovine-derived bone substitutes? Electronic databases were searched using specific search terms.
A hand search was also undertaken. Only randomized and controlled studies in the English language,
published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models
in non-medically compromised animals, were considered. Risk of bias assessment was performed
using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen
studies reporting on small animal models (six studies on rats and seven on rabbits) were included.
The calvarial bone defect was the most common experimental site. The empty defect was used as the
only control in all studies except one. In all studies the bioceramic materials demonstrated a trend
for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes
among the included studies, no meta-analysis could be performed. Bioceramics can be considered
promising grafting materials, though further evidence is needed.

Keywords: animal study; bioceramic; bone grafting; critical-sized bone defect; sca↵old

1. Introduction

One of the major challenges in dentistry, and in maxillofacial and orthopedic surgery, still
remains to be the reconstruction of extensive bone defects [1,2]. The ideal bone substitute should
be biocompatible, osteoconductive, and resorbable, and thereby replaced by newly formed bone,
while maintaining adequate mechanical strength and structural support in the meantime, especially in
load-bearing applications [3–5].

Ceramic materials have been successfully used for the reconstruction of bone tissue defects [6,7].
The term bioceramics comprises a broad range of biocompatible inorganic non-metallic materials,

Materials 2020, 13, 1500; doi:10.3390/ma13071500 www.mdpi.com/journal/materials



Materials 2020, 13, 1500 2 of 26

characterized by a crystal structure, high melting point, electrical resistivity, and corrosion
resistance [8,9]. These features make them suitable for a variety of applications, including oral
and maxillofacial surgery, periodontal treatments, and orthopedics [8]. However, one of the major
drawbacks of ceramic sca↵olds consists of their brittle behavior, which has restricted their use mainly
to non-load-bearing applications [10].

Among various bioceramics, calcium phosphates, such as hydroxyapatite (HA) and tricalcium
phosphate (TCP), are commonly used bone grafting materials due to their resemblance to the bone
mineral phase [10,11]. Besides calcium phosphate ceramics, more recently a new class of biomaterials,
known as silicate bioceramics, have received significant attention for hard tissue regeneration [12–15].

The variety in chemical composition of bioceramics contributes to their adjustable mechanical
features, bioactivity, and degradation rate. Another strategy to produce sca↵olds with tailored
mechanical properties and resorbability, based on application needs, consists of the development of
composite materials, containing bioceramics and polymers in di↵erent ratios [16,17]. To improve the
performances of bioceramic sca↵olds, the incorporation of growth factors stimulating osteogenesis and
angiogenesis has been described [18,19]. Moreover, bone sca↵olds could act as stem cell carriers for
accelerating bone repair [20].

In order to test bone substitute materials, preclinical in vivo studies in clinically relevant animal
models are a fundamental step in translational research [21,22]. Various experimental approaches
have been proposed, including the “critical-sized defect” (CSD) model [23,24]. An intrabony defect
of critical dimensions is not expected, by definition, to heal spontaneously within the lifetime of the
animal [25,26]. CSD models have been described for many kind of animal models. Among them,
the use of rabbits and rats o↵ers the advantages of easy handling and reduced experimental costs
and timing. Despite the higher similarity to human bone (e.g., anatomy, biomechanics), the use of
larger-sized animals, such as dogs or pigs, is limited due to high experimental costs, more demanding
management, the need for long follow-ups, and ethical concerns [21,27–29].

In order to assess new bone formation, several methods have been utilized, such as histological
and histomorphometric analyses, gene expression analysis, and radiographic evaluations. Micro-CT
analysis has been recently introduced as a complementary non-destructive approach to assess bone
healing [30,31]. It does not require the sectioning of the sample, which might a↵ect the three-dimensional
anisotropic information of bone architecture [30].

There are many reviews about di↵erent kinds of ceramic sca↵olds for bone tissue regeneration,
mainly focusing on biomaterial properties and production methods [6,7,10,12,14]. However, although
preclinical in vivo studies in clinically relevant animal models represent a key aspect of translational
research, there is no systematic review investigating the e↵ects of bioceramic sca↵olds on bone formation
in CSD in experimental animal models, compared with the blood clot alone or with widely investigated
materials, such as autogenous bone or deproteinized bovine-derived bone mineral (DBBM).

Hence, the aim of this systematic review was to investigate the results of the application of
bioceramic sca↵olds in terms of bone regeneration in the treatment of CSDs in vivo in comparison
with leaving the empty defect without grafting materials or with the use of autogenous bone or DBBM.
The quality of the available studies was also assessed.

2. Materials and Methods

The protocol for this review was registered with the international prospective register of systematic
reviews (PROSPERO) with registration n. CRD42019139963.

2.1. Focal Question

The present systematic review was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [32].

The focused “PICO” (population, intervention, comparison, outcome) question addressed was
the following: in bone defects in experimental animal models, does the use of a bioceramic sca↵old
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improve new bone formation, compared with leaving the empty defect without grafting materials or
using autogenous bone or deproteinized bovine-derived bone substitutes?

2.2. Eligibility Criteria

2.2.1. Inclusion Criteria

• Publication written in English.
• Randomized or non-randomized controlled animal experimental studies with at least two study

groups and at least 6 animals per group.
• Use of experimental critical-sized bone defect (CSD) in non-medically compromised animals.

2.2.2. Exclusion Criteria

• In vitro studies, clinical studies, reviews, meta-analyses, conference proceedings, book chapters.
• Animal studies reporting ectopic models (e.g., subcutaneous).
• Absence of an empty defect and/or autogenous bone and/or deproteinized bovine-derived bone

substitutes control group.
• Treatment of periodontal defects.
• Studies using sca↵olds loaded with chemotherapeutic agents, anti-inflammatory drugs, antibiotics.

Studies using sca↵olds loaded with drugs/stem cells/substances a↵ecting bone metabolism were
not excluded. Table 1 summarizes the dimensions of the critical-sized bone defects in di↵erent
animal models.

Tooth extraction socket model was not considered a critical-sized bone defect model.

Table 1. Definition of critical-sized bone defect (CSD).

Animal Defect Site Dimension of CSD References

Mouse
Calvaria 4 mm diameter [33]

Segmental long-bone defect Radius: 4 mm
Femur: 5 mm [34]

Rat

Calvaria Unilateral/central:8 mm diameter; bilateral: 5 mm diameter [23]
Cylindric defect Femur: 2 mm in diameter and 3 mm in length [35]

Segmental long-bone defect Radius: 1 cm diameter [36]
Mandible 4 mm diameter [37]

Rabbit

Calvaria Four defects: 8 mm diameter; unilateral defect: 15 mm
diameter; bilateral defect: 11 mm diameter [38]

Segmental long-bone defect Radius: defect > 1.4 cm involving periosteum [39]

Cylindric defect Femur: 6 mm in diameter and 5 mm in length; tibiae: 6 mm
diameter

[40] (femur)
[41] (tibiae)

Mandible 5 mm diameter [42]

Pig Segmental long-bone defect Femur: 7.6 cm; tibiae: 2 cm; radius: 2.5–3 cm; ulna: 2 cm [34,36]

Sheep Calvaria 22 mm in diameter [43,44]
Segmental long-bone defect Femur: 2.5 cm; tibiae: 3–3.5 cm [34]

Dog
Calvaria 2 cm [45]

Segmental long-bone defect Femur: 2.1–7 cm; radius: 0.3–2.5 cm; ulna: 2–2.5 cm [34]

Segmental mandibular defect 50 mm (in presence of periosteum); 15 mm (in absence of
periosteum) [46]

2.3. Search Strategy, Screening Method, and Data Extraction

The protocol for this review was registered with the international prospective register of systematic
reviews (PROSPERO) with registration number CRD42019139963. The MEDLINE (PubMed) online
library and the Web of Science (WoS) database were searched on 21th November 2018. The search
was limited to studies published between January 2013 and November 2018. The time-frame was
selected considering the recent advancements in biomaterial production, such as the rise of additive
manufacturing technologies.
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For the identification of studies to analyse for the present systematic review, detailed search
strategies were developed for both databases, using a combination of the following keywords: “animal,”
“bioceramic,” “bone,” “bone defect,” “bone regeneration,” “grafting,” and “in vivo.” Details of the
search strategy are provided in the Supplementary Materials, Table S1.

A 2-stage screening was carried out. The screening of the titles and of the abstracts was performed
in duplicate and independently by two reviewers (G.B. and L.S.). Full texts of all eligible articles were
obtained and reviewed independently by the same two reviewers (G.B. and L.S.). For each study,
relevant data were extracted and recorded on a previously designed data collection form. The final
inclusion was based on the aforementioned eligibility criteria. Reasons for exclusion were also entered.
Cohen’s kappa statistic was calculated at both the stages, titles/abstracts and full texts, to measure the
level of agreement between the two reviewers. In case of disagreement, when a consensus between the
two reviewers was not reached after discussion, a third experienced reviewer (M.D.F.) was consulted.

2.4. Outcome Measures

2.4.1. Primary Outcomes

New bone formation can be measured with di↵erent techniques (e.g., histomorphometric
analysis, radiographic analysis like computed tomography (CT), micro-CT, standard radiographs);
residual biomaterial.

2.4.2. Secondary Outcomes

Any complications and adverse events related to the biomaterials used.
Sca↵old production and characterization were also investigated.

2.5. Quality Assessment and Risk of Bias Analysis

The quality of the studies was assessed independently by two reviewers (S.P. and G.B.), based
on the ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines [47]. The items
considered were the following: ethical statement, experimental procedures, experimental animals,
randomization, allocation concealment, sample size calculation, completeness of information, blinding
of the evaluator, and financial conflict of interest.

The risk-of bias of the studies was assessed by using the SYRCLE tool [48], evaluating 10 items.
All items could be judged as yes/no/unclear. Studies were considered at high risk of bias if at least
two items were judged as “no.” Studies were judged as low risk of bias if at least 7 items were judged
as “yes” and no item was judged as “no.” In other cases the studies were considered at medium risk
of bias.

2.6. Data Synthesis and Statistical Analysis

Due to the heterogeneity in study protocols, biomaterials used, methods for assessing the outcomes,
outcome measures, and follow-up duration, no meta-analysis could be performed. Only qualitative
data extracted from each study were synthesized in analytic tables.

3. Results

3.1. Study Selection

Only qualitative data extracted from each study were used in analytic tables. A total of 186 articles
were reviewed. After title/abstract screening, 78 articles were included as relevant for the purpose
of the present systematic review. Following the final screening of full texts, 12 articles fulfilled the
inclusion criteria and 66 papers were excluded. The reasons for exclusion are summarized in Table 2.
The kappa values for inter-reviewer agreement were 0.91 and 0.90 for title/abstract selection and
for full-text articles, respectively, thereby indicating almost perfect agreement. An additional article
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identified by handsearching was also included. Flow diagram of search results is shown in Figure 1:
the number of articles for quantitative analysis was equal to zero; for this reason data were only
qualitatively discussed.

Table 2. Main reasons for exclusion after full-text screening.

Main Reason for Exclusion No. References

Language 3 [49–51]
In vitro study 2 [52,53]

Ectopic bone formation model 4 [54–57]
Use of compromised animals 4 [58–61]
Absence of a control group 13 [62–74]

Control group other than empty defect and/or autogenous bone and/or
deproteinized bovine-derived bone 20 [75–94]

Unclear sample size 5 [95–99]
Less than 6 animals per each test group 4 [100–103]

Non-critical size bone defect 11 [104–114]
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Figure 1. Flowchart of the article selection procedure.

3.2. Study Characteristics

Only qualitative data extracted from each study were synthesized in analytic tables. In seven of
the 13 included studies, New Zealand rabbits were used [16,115–120], while six studies were conducted
in rats, of which three used the Sprague–Dawley strain [17,121,122], two the Wistar strain [123,124] and
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one the Lewis strain [125]. The calvarial critical-sized defect was the most used model for assessing
new bone formation (Table 3).

Table 3. Distribution of defect types among the included studies.

Animal Study Model Number of Publications References

Rabbit
(n = 7)

Calvarial defect 2 [116,117]
Dome model (calvaria) 1 [119]

Cylindrical femoral defect 1 [118]
Segmental radial defect 1 [120]
Mandibular square hole 2 [16,115]

Rat
(n = 6)

Calvarial defect 5 [17,121–124]
Cylindrical femoral defect 1 [125]

Two studies used bone marrow-derived mesenchymal stem cells (BMSCs) of di↵erent
origins [17,115,120]. Interestingly, in none of those studies was the use of resorbable or non-resorbable
membranes reported. Histological evaluation was the most frequent evaluation method (n = 13) to
assess bone healing, followed by histomorphometric analysis (n = 6); radiographic evaluation (n = 4),
micro-computed tomography analysis (n = 4); and other methods, less represented, including real-time
polymerase chain reaction (real-time PCR), Western blot, immunofluorescence, immunohistochemistry,
scanning electron microscopy (SEM), and multi slice spiral computer tomography (MSCT). Follow-ups
varied between two and 18 weeks. A single observation time was reported in two out of
13 studies [120,121], while the other studies had multiple observation times.

As the chemical composition and processing technology are considered key factors for determining
the properties of the sca↵olds, they were analyzed and summarized in Table 4.

A variety of production methods were reported, leading to the manufacturing of sca↵olds with
di↵erent compositions and morphologies, from 3D bone structures to particles of smaller dimensions,
such as the microspheres employed in Xu et al. [117]. The definition of bone sca↵old was not limited to
3D bone structures, but it was here used to describe a matrix allowing and stimulating cell attachment
and proliferation on its surfaces. Interestingly, addictive manufacturing technologies, which present the
main advantage of producing customized sca↵olds tailored to the specific critical-size bone defect [11],
were utilized in two studies [116,122].

As regards 3D bone structures, which could not only promote new bone formation, but could
potentially be submitted to a mechanical load before the bone healing process is complete, no mechanical
characterization was reported in all included studies, but one [116]. In Shao et al. [116], it was found
that the dilute Mg doping and/or two-step sintering schedule was particularly beneficial for enhancing
the mechanical strength of CaSi sca↵olds, as reported in Table 4.

Even though porosity and pore size are considered key parameters influencing the biological
properties of biomaterials, as a porous structure provides an ideal environment for bone tissue ingrowth
and repair, only in four studies was the porosity evaluated, with values ranging between 53 and 93
vol.% (see Table 4) and pore size ranging between 100 and 500 µm.

The chemical dissolution of the sca↵old should be evaluated, as the mechanical integrity of the
sca↵old could be compromised during the healing time. Moreover, the release of some components
might participate in human metabolism, thereby a↵ecting bone formation. Only in two papers was the
in vitro resorbability assessed (see Table 4) [17,118]. In addition, in Zong et al. [17] the sca↵olds were
implanted intramuscularly into rats to examine the in vivo degradation with results consistent with
the in vitro findings.

For simplicity, the included studies are presented based on the animal model.
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3.2.1. Studies in Rabbits—Main Features

The characteristics and the main results of the studies in rabbits are summarized in Table 5.
Notably, all the included studies reported uneventful healing outcomes and no relevant adverse
reactions. Two studies reported on the use of polyether-ether-ketone/odontogenic biphasic bioceramic
composites (PEEK-BBC) prepared via calcination for the treatment of mandibular bone defects [16,115].
Porous PEEK-BBC composites were found to promote bone healing in vivo, potentially via the
upregulation of bone morphogenetic protein-2 (BMP-2), as suggested by the higher mRNA and
protein expression levels of BMP-2 in the presence of PEEK-BBC composites, than in bone defects
left empty [16]. Moreover, when vascular endothelial growth factor (VEGF) was encapsulated into
PEEK-BBC composites, a relative upregulation of VEGF at 8 and 16 weeks of healing was observed
compared to jaw defects left empty [115]. However, the specific e↵ect of the exogenous VEGF, itself,
encapsulated in the PEEK-BBC composites, could not be determined, due to the absence [115] of
a control group treated with PEEK-BBC alone.

In two studies the same calvaria bone defect model was used to assess the osteoconductive
properties of di↵erent calcium phosphate and silica-based bioceramics [116,117]. In Shao et al.,
the in vivo behaviors of 3D-printed pure calcium silicate (CaSi) and dilute Mg-doped CaSi (CaSi–Mg6)
sca↵olds, characterized by di↵erent side-wall pore architectures depending on the deposition mode,
were investigated [116]. Single-layer printing (SLP) sca↵olds, featured by smaller layer thickness and
interconnection size, exhibited a higher osteogenic capacity than double-layer printing (DLP) sca↵olds
in early phases (4 weeks). DLP sca↵olds showed higher osteoconduction in later healing stages. Twelve
months postoperatively, the highest percentage of new bone was observed in the group treated with
CaSi sca↵olds with double layer pore morphology (~26%), followed by DLP CaSi–Mg6 (~23%). Even
though DLP CaSi sca↵olds promoted new bone formation to a greater extent, Mg doping considerably
enhanced the mechanical properties of the sca↵olds, which might be required in particular clinical
situations. Details are provided in Figure 2.

Dual-shell microspheres, composed of layers of slowly degraded �-TCP and rapidly degraded
�-CaSi, displayed di↵erent bone regeneration patterns depending on the distribution of the materials
within the dual-shell architectures [117]. Microspheres characterized by a core and an external layer of
CaSi, separated by an intermediate �-TCP layer (CaSi@CaP@CaSi), showed superior performances
in vivo, which might be due to the quick degradation of the external CaSi layer leading to an
increased local silicon ion concentration. Interestingly, using micro-CT data from 12 weeks of healing,
CaSi@CaP@CaSi microspheres [117] showed a bone volume/total defect volume ratio (BV/TV) of
approximately 20% like SLP CaSi–Mg6 sca↵olds [116], while the other 3D-printed sca↵olds investigated
in Shao et al. [116] exhibited higher values up to 27.5%.

Calcium sulfate (CS) was utilized only in Li et al. [118], wherein it was incorporated into poly(amino
acid) (PAA), to reduce the excessively rapid degradation rate of the former. Two CS/PAA composites
containing 50% and 65% (mass fraction) of CS were produced via the in situ melting polymerization
method and tested in a femoral bone defect model up to three months. Both the composites displayed
good biocompatibility and similar amounts of newly formed bone. However, as in preliminary in vitro
evaluations, the granules with higher CS content (65CS/PAA) exhibited a faster degradation rate.

Resorbable biphasic calcium phosphate sca↵olds, composed of HA and TCP, tested the remaining
two included studies in rabbits [119,120]. In Ezirganlı al. [119], after three months of healing, the
amount of newly formed bone was similar in DBBM and bicalcium phosphate groups. However, only
DBBM group showed a significantly higher new bone formation compared to the empty group used
as the control. Moreover, BMSCs of di↵erent origin (i.e., autologous, allogenic, ovine, and canine)
seeded on biphasic calcium phosphate sca↵olds were found to enhance new bone formation in radial
segmental bone defects compared to defects filled with cell-free sca↵olds and to untreated ones [120].
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Figure 2. Osteogenesis of the ceramic scaffolds in vivo. (A) The cross-sectional images of implanted 
ceramic scaffolds of CaSi and CaSi–Mg6 with single layer pore morphology by microCT scanning 
after 4, 8, and 12 weeks, respectively. (B) The cross-sectional images of implanted ceramic scaffolds 
of CaSi and CaSi–Mg6 with double layer pore morphology by microCT scanning after 4, 8, and 12 
weeks, respectively. (C) Morphometric analysis of the volume of the newly formed bone (BV/TV) in 
the skull defect area at 4, 8, and 12 weeks with single layer pore morphology and double layer pore 
morphology, respectively. (*p < 0.05) [116]. 

3.2.2. Studies in Rats—Main Features 

The characteristics and the main findings of the studies in rats are provided in Table 6. 
In none of the included studies were adverse reactions to the implanted biomaterials reported. 

To evaluate the osteogenic potential of the bioceramics in rats, calvarial critical-sized defects were 
used in all studies but one [125].  

Porous composite scaffolds, composed of HA and polylactic acid (PLA) and produced with 
different techniques, were tested in two studies [17,122]. In Zong et al. [17], nano-HA/PLA scaffolds 
fabricated by a porogen-leaching technique and loaded with BMSCs were able to induce bone 
formation in vivo. Nevertheless, higher new bone formation was detected in defects grafted with 
poly(lactic-co-glycolic acid) (PLGA) scaffolds seeded with BMSCs, with average new bone formation 
of about 50% after 16 weeks of healing, against the approximately 30% found in the group treated 
with nano-HA/PLA loaded with BMSCs. It was inferred by the authors that the lower degradation of 
nano-HA/PLA scaffold compared to PLGA matrix could be responsible for its inferior bone-repairing 
effects. Interestingly, no bone regeneration was observed in defects filled with nano-HA/PLA 
scaffolds alone.  

Figure 2. Osteogenesis of the ceramic sca↵olds in vivo. (A) The cross-sectional images of implanted
ceramic sca↵olds of CaSi and CaSi–Mg6 with single layer pore morphology by microCT scanning after
4, 8, and 12 weeks, respectively. (B) The cross-sectional images of implanted ceramic sca↵olds of CaSi
and CaSi–Mg6 with double layer pore morphology by microCT scanning after 4, 8, and 12 weeks,
respectively. (C) Morphometric analysis of the volume of the newly formed bone (BV/TV) in the skull
defect area at 4, 8, and 12 weeks with single layer pore morphology and double layer pore morphology,
respectively. (*p < 0.05) [116].

3.2.2. Studies in Rats—Main Features

The characteristics and the main findings of the studies in rats are provided in Table 6.
In none of the included studies were adverse reactions to the implanted biomaterials reported. To

evaluate the osteogenic potential of the bioceramics in rats, calvarial critical-sized defects were used in
all studies but one [125].

Porous composite sca↵olds, composed of HA and polylactic acid (PLA) and produced with di↵erent
techniques, were tested in two studies [17,122]. In Zong et al. [17], nano-HA/PLA sca↵olds fabricated
by a porogen-leaching technique and loaded with BMSCs were able to induce bone formation in vivo.
Nevertheless, higher new bone formation was detected in defects grafted with poly(lactic-co-glycolic
acid) (PLGA) sca↵olds seeded with BMSCs, with average new bone formation of about 50% after 16
weeks of healing, against the approximately 30% found in the group treated with nano-HA/PLA loaded
with BMSCs. It was inferred by the authors that the lower degradation of nano-HA/PLA sca↵old
compared to PLGA matrix could be responsible for its inferior bone-repairing e↵ects. Interestingly, no
bone regeneration was observed in defects filled with nano-HA/PLA sca↵olds alone.
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In contrast with these findings, in Zhang et al. [122] highly resorbable three-dimensional
(3D) printed PLA/HA sca↵olds showed good bone repairing capacity, as confirmed by histological
examination (Figure 3). As revealed by micro-CT data, both at four and eight weeks after surgery the
highest amount of bone volume per total volume (BV/TV) was found in the defects filled with �-TCP
ceramic sca↵olds, with values around 50%, followed by PLA/HA sca↵olds, and then, by partially
demineralized bone matrix (DBM).
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Figure 3. Hematoxylin and eosin images of implanted and control group after four and eight weeks.
(A) Histological images of implanted (1) PLA/HA, (2) �-TCP, and (3) DBM sca↵olds, and (4) the control
group four weeks after implantation. (B) Histological images of (1) implanted PLA/HA, (2) �-TCP,
and (3) DBM sca↵olds, and (4) the control group eight weeks after implantation. Scale bars 10 µm [122].

Combining HA with a fibrin sealant (FS) derived from snake venom exerted a beneficial e↵ect on
bone healing, compared to HA or fibrin sealant alone, as confirmed by histomorphometric analysis [123].
Six weeks postoperatively, the highest relative volume of new bone was recorded in HA/FS samples
(53.66 ± 0.57%), whereas in empty defects, HA and FS groups lower values were registered (i.e., 10.66
± 0.57%, 20.66 ± 1.15%, and 29.66 ± 1.52%, respectively).

In two papers the osteoconductive capacity of the bioceramic sca↵olds was evaluated using 8 mm
cylindrical bone defects in a rat’s calvaria [114,124]. Despite the same model being used in these
studies, no direct comparison could be drawn due to the di↵erent timepoints selected by the authors.

Silica aerogel-based �-TCP composite was demonstrated [124] to better support new bone
formation compared to the mesoporous silica aerogel alone. Interestingly, three months after
implantation, most of the aerogel-based �-TCP composite was resorbed and signs of intense bone
remodeling and ossification were confirmed by histological observations and immunohistochemistry
for Ki-67. At this stage, bone defects filled with silica aerogel alone exhibited bone ossification to
a lower extent, whereas only a minimal ossification in the periphery of the defects was detected in the
untreated control group.
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PLGA electrospun nanofibers coated with a bioactive silica-based ceramic containing zinc
and willemite (Zn2SiO4) were proved to be promising candidates for bone tissue engineering
applications [121]. After 8 weeks of healing, in the defects treated with willemite-coated PLGA
sca↵olds, the area of reconstructed bone tissue, resulting from quantitative analysis of histologic and
multislice spiral-computed tomography data, was found to be approximately 70%, twice the amount
of bone detected in the rats receiving PLGA sca↵olds with no bioceramic coating.

Another silica-based ceramic, merwinite [Ca3Mg(SiO4)2], was found to enhance new bone
formation in rat femoral defect model to a greater extent than HA ceramics and leaving the defects
unfilled [120]. It is likely that the higher in vivo material degradation of merwinite granules compared
to HA ones induced a wider and faster osteogenesis, hence confirming the superior bioactive properties
of this material.

3.3. Study Quality and Risk of Bias Assessment

A study quality assessment according to the ARRIVE guidelines is shown in Table 7. Scoring
criteria are provided in Table S2.

Table 7. Study quality assessment.
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[115] 2 2 0 2 1 0 2 1 2
[16] 2 2 2 0 1 0 2 1 2

[116] 2 2 2 2 2 0 2 1 1
[117] 2 2 2 2 1 0 2 1 2
[118] 2 2 2 0 1 0 2 1 1
[119] 2 2 2 1 1 0 2 1 2
[120] 2 2 2 0 0 0 2 1 2
[17] 2 2 2 2 1 0 2 1 1

[122] 2 2 2 2 1 0 2 1 2
[123] 2 2 2 1 1 0 2 1 1
[124] 2 2 2 1 1 0 2 1 2
[121] 2 2 2 2 1 0 2 1 1
[125] 2 2 2 0 1 0 2 1 1

All the studies reported data on ethical statements and provided detailed information about the
experimental procedures and outcome evaluation (items 1, 2, 7, respectively). All the studies, except
one, gave adequate information about experimental animals (item 3), while the majority of studies
lacked complete information regarding allocation concealment (item 5) and blinding of the evaluator
(item 8). Only in six studies (46.1%) were animals or defects randomly allocated to di↵erent treatment
groups (item 4) and no study provided information on the sample size calculation (item 6). Finally,
regarding financial conflict of interest and possible role of the funders, approximately half of the studies
(53.8%) provided clearly adequate information, whereas in the remaining six studies, the information
was unclear/possibly adequate.

Risk of Bias Assessment of the selected studies according to the SYRCLE tool is provided in
Table 8.
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Table 8. Risk of bias assessment.
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[116] Yes Yes Yes Yes No Yes Unclear Yes Unclear Yes
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[118] Yes Yes Unclear No No Yes Unclear Yes Unclear Yes
[119] Yes Yes Unclear Yes No Yes Unclear Yes Unclear Yes
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[122] Yes Yes Unclear Yes No Yes No Yes Unclear Yes
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[121] Yes Yes Unclear No No No No Yes Unclear Yes
[125] Yes Yes Unclear Yes No Yes No Yes Unclear Yes

4. Discussion

The aim of this systematic review was to investigate the role of bioceramic sca↵olds in regenerating
critical-sized bone defects in experimental animal models, compared with leaving the empty defect
without grafting materials or filling the defects with autogenous bone or deproteinized bovine-derived
bone substitutes. Overall, the results showed that bioceramic sca↵olds better supported new bone
formation, compared to untreated empty defects. In general, there was only a limited spontaneous
bone regeneration at the site of defects substituted with no material. In none of the included studies
were autogenous bone grafts used as controls, whereas, when DBBM was considered, a similar amount
of new bone formation was observed in DBBM and bioceramic groups [119].

The most frequent reason for exclusion was the absence of a control group overall, along with the
absence of a control group consisting of leaving the defect without any biomaterials and/or filling it
with autogenous bone graft and/or DBBM. Eleven papers were not included due to the sizes of the
defects, which were not considered of critical dimensions.

Numerous bioceramic and composite materials for bone regeneration were developed and tested
in vivo in CSD. However, the considerable heterogeneity among the selected studies, in terms of
sca↵old composition, size, and type of the defect and observation time, did not allow cross-study
comparisons. Indeed, due to the lack of standardization of these variables across the studies together
with the few quantitative data reported, a meta-analysis could not be performed and the generalizability
was limited.

No extensive physico-chemical and mechanical characterization was reported in most of the
studies. Regarding the fabrication of the sca↵olds, resumed in Table 4, many production technologies
were applied, leading to the manufacturing of bioceramic powders within a polymeric matrix or 3D
sca↵olds. In two studies [119,125], commercially available biomaterials were used. However, for the
other produced materials, only lab-scaled processes were investigated.

Although studies in dogs, minipigs, sheep, and non-human primates, could provide a better
insight into new bone formation and sca↵old e↵ectiveness thanks to the closer resemblance to the
human bone, only studies employing rat and rabbit models were found to satisfy eligibility criteria,
and were, therefore, included in the present systematic review [21,27–29,126]. Even though after the
first step of screening, studies in dogs, sheep, and pigs were included, the full-text analysis revealed
that most of these studies did not meet the selection criteria due to a reduced sample size (n < 6 animals
per group) or the non-critical dimensions of the bone defects [94,100,102,103,106]. Among the papers
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included, the most frequently used CSD model was the CSD in rat calvaria, which is one of the most
commonly used animal models for evaluating bone healing [23,127].

Despite the high heterogeneity among the studies, bioceramic sca↵olds generally showed
a remarkable osteoconductive e↵ect. However, it was not possible to determine which bioceramic
performed better than the others and in regard to which kind of CSD.

Sca↵old architecture is considered a fundamental aspect in tissue engineering. A bone sca↵old
should present an interconnected porous structure mimicking that of natural bone, thus facilitating
cell ingrowth, proliferation, and di↵erentiation, as well as the di↵usion of nutrient and the removal of
waste products [128]. In the meantime, the sca↵old should possess adequate mechanical properties,
which are particularly required for load-bearing applications [129]. It has to be stressed that, although
these aspects are of primary importance, in most of the articles no comprehensive characterization of
the sca↵olds was provided and compressive strength values were reported in only one work [116].

An ideal sca↵old should also possess an adequate degradation rate, matching the osteogenesis
rate occurring in the replaced bone [118,130]. One of the strategies to tailor the biodegradability of
a sca↵old consists of the development of composite materials, composed of biodegradable polymers
and bioceramic particles, added as fillers or as coatings. Therefore, in composites the osteoconductive
properties of the bioceramics are combined with the easy processing and faster resorbability of
the polymers [17,118,131,132]. Interestingly, in two articles the in vitro degradation of the sca↵olds
was evaluated [17,118]. In Li et al. [118], two calcium sulfate/poly(amino acid) (CS/PAA) sca↵olds,
characterized by di↵erent CS content, exhibited weight losses of 41.5% and 56.2% after soaking in
simulated body fluid (SBF) for 16 weeks, thereby indicating that the relative amount of CS in the
composite a↵ected the degradability of the material. In contrast, in Zong et al. [17], after 8 weeks in
phosphate bu↵ered saline (PBS), the weight loss of the composite sca↵old (i.e., nHAP/PLA) was nearly
10% of its initial weight, while the weight loss rate of PLGA sca↵old was much higher, with values
around 50%. The authors assumed that the in vivo performances of nHAP/PLA sca↵olds in terms of
new bone formation were lower than expected due to the low degradation of the sca↵old, hampering
the regeneration process.

With regard to the incorporation of bioactive molecules for localized and controlled delivery [18,19],
in one study [115] VEGF, a potent angiogenic factor, was successfully encapsulated within
a PEEK/biphasic bioceramic composite sca↵old and found to facilitate the vascular remodeling
in vivo.

Furthermore, bone sca↵olds were used as stem cell carriers for accelerating and promoting bone
repair in two articles [17,120]. In particular, BMSCs, pluripotent mesenchymal stem cells with the
proven ability to di↵erentiate into di↵erent cell lineages, including osteoblasts [133–135], were used in
both studies. The combination of BMSCs and HA/TCP sca↵olds for the treatment of rabbit segmental
radial bone defects showed increased quantity of newly formed compared to the bioceramic sca↵old
alone [120]. Moreover, a higher bone-repairing e↵ect was exhibited by nano HA/PLA sca↵olds seeded
with BMSCs than by the composite sca↵olds alone in rat calvarial CSD model [17]. These findings are
in agreement with what has been reported in other studies, in which bone regeneration was aided by
the addition of BMSCs seeded onto the sca↵olds before implantation [136,137].

5. Conclusions

In conclusion, several bioceramic sca↵olds were demonstrated to be osteoconductive in a variety
of animal models, showing better results than leaving the bone defects with no grafting material. It
was not possible to compare the investigated sca↵olds with autogenous bone, and only in one study
was DBBM evaluated, showing similar behavior in vivo. The results also indicated that composite
materials, comprising bioceramic particles and polymers, could be promising candidates as bone
substitutes. Bioceramic sca↵olds should therefore be applied in the repair of bone defects on a regular
basis, in order to promote bone tissue healing. Regarding the use of stem cells or growth factors, there
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is still scarce, though promising evidence that the addition of mesenchymal stem cells or VEGF to the
sca↵olds further enhances bone regeneration in preclinical in vivo studies.

However, due to the high variability among the studies with regard to the compositions of the
biomaterials, the production methods, the type and dimensions of the bone defects used, and the
follow-up duration, no conclusive statements about the clinical e↵ectiveness of bioceramic sca↵olds
for bone regeneration can be made. In the future, in vivo animal models should be designed following
standardized parameters (i.e., adoption of critical-sized defects, empty control group, and quantitative
measurements for bone formation), in order to allow the comparison of findings, thereby favoring the
advancement of knowledge in this fast-growing area of research. Moreover, further studies are needed
in order to determine the optimal evaluation times for each CSD in di↵erent animal models.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/7/1500/s1,
Table S1. Search strategies used for Web of Science (WoS) and Medline (PubMed) and related results; Table S2.
Categories to assess the quality of the included studies.
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have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tonetti, M.S.; Hämmerle, C.H.; European Workshop on Periodontology Group C. Advances in bone
augmentation to enable dental implant placement: Consensus Report of the Sixth European Workshop on
Periodontology. J. Clin. Periodontol. 2008, 35, 168–172. [CrossRef] [PubMed]

2. Chiapasco, M.; Casentini, P.; Zaniboni, M. Bone augmentation procedures in implant dentistry. Int. J. Oral
Maxillofac. Implants 2009, 24, 237–259. [PubMed]

3. Moore, W.R.; Graves, S.E.; Bain, G.I. Synthetic bone graft substitutes. ANZ J. Surg. 2001, 71, 354–361.
[CrossRef] [PubMed]

4. Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. Biomaterials in orthopaedics. J. R. Soc. Interface 2008, 5,
1137–1158. [CrossRef] [PubMed]

5. Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic
composite sca↵olds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [CrossRef] [PubMed]

6. Diaz-Rodriguez, P.; Sánchez, M.; Landin, M. Drug-loaded biomimetic ceramics for tissue engineering.
Pharmaceutics 2018, 10, 272. [CrossRef]

7. Pina, S.; Rebelo, R.; Correlo, V.M.; Oliveira, J.M.; Reis, R.L. Bioceramics for osteochondral tissue engineering
and regeneration. Adv. Exp. Med. Biol. 2018, 1058, 53–75. [CrossRef]

8. Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705–1728. [CrossRef]
9. Ratner, B.D. Biomaterials Science: An Introduction to Materials in Medicine; Elsevier Academic Press: Amsterdam,

The Netherlands; Boston, MA, USA, 2004.
10. Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.; Benkirane-Jessel, N.; Bornert, F.;

O↵ner, D. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone
defects management. J. Tissue Eng. 2018, 9, 2041731418776819. [CrossRef]

11. Brunello, G.; Sivolella, S.; Meneghello, R.; Ferroni, L.; Gardin, C.; Piattelli, A.; Zavan, B.; Bressan, E.
Powder-based 3D printing for bone tissue engineering. Biotechnol. Adv. 2016, 34, 740–753. [CrossRef]

12. Wu, C.; Chang, J. A review of bioactive silicate ceramics. Biomed. Mater. 2013, 8, 032001. [CrossRef] [PubMed]
13. Brunello, G.; Elsayed, H.; Biasetto, L. Bioactive glass and silicate-based ceramic coatings on metallic implants:

Open challenge or outdated topic? Materials 2019, 12, 2929. [CrossRef] [PubMed]
14. Gmeiner, R.; Deisinger, U.; Schönherr, J.; Lechner, B.; Detsch, R.; Boccaccini, A.R.; Stampfl, J. Additive

manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 2015, 6, 75–86. [CrossRef]
15. Fiocco, L.; Elsayed, H.; Badocco, D.; Pastore, P.; Bellucci, D.; Cannillo, V.; Detsch, R.; Boccaccini, A.R.;

Bernardo, E. Direct ink writing of silica-bonded calcite sca↵olds from preceramic polymers and fillers.
Biofabrication 2017, 9, 025012. [CrossRef] [PubMed]



Materials 2020, 13, 1500 20 of 26

16. Yu, H.; Chen, Y.; Mao, M.; Liu, D.; Ai, J.; Leng, W. PEEK-biphasic bioceramic composites promote mandibular
defect repair and upregulate BMP-2 expression in rabbits. Mol. Med. Rep. 2018, 17, 8221–8227. [CrossRef]

17. Zong, C.; Qian, X.; Tang, Z.; Hu, Q.; Chen, J.; Gao, C.; Tang, R.; Tong, X.; Wang, J.
Biocompatibility and bone-repairing e↵ects: Comparison between porous poly-lactic-co-glycolic acid
and nano-hydroxyapatite/poly(lactic acid) sca↵olds. J. Biomed. Nanotechnol. 2014, 10, 1091–1104. [CrossRef]

18. Trombetta, R.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D Printing of calcium phosphate ceramics
for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 2017, 45, 23–44. [CrossRef]

19. Sivolella, S.; De Biagi, M.; Brunello, G.; Ricci, S.; Tadic, D.; Marinc, C.; Lops, D.; Ferroni, L.; Gardin, C.;
Bressan, E.; et al. Delivery systems and role of growth factors for alveolar bone regeneration in
dentistry. In Regenerative Medicine and Tissue Engineering; Andrades, J.A., Ed.; InTech: London, UK,
2013; ISBN 978-953-51-1108-5. [CrossRef]

20. Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017,
5, 17059. [CrossRef]

21. Pellegrini, G.; Seol, Y.J.; Gruber, R.; Giannobile, W.V. Pre-clinical models for oral and periodontal reconstructive
therapies. J. Dent. Res. 2009, 88, 1065–1076. [CrossRef]

22. Stavropoulos, A.; Sculean, A.; Bosshardt, D.D.; Buser, D.; Klinge, B. Pre-clinical in vivo models for the
screening of bone biomaterials for oral/craniofacial indications: Focus on small-animal models. Periodontol.
2000 2015, 68, 55–65. [CrossRef]

23. Vajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A systematic review on the critical size
defect model. Clin. Oral Impl. Res. 2014, 25, 879–893. [CrossRef]

24. Muschler, G.F.; Raut, V.P.; Patterson, T.E.; Wenke, J.C.; Hollinger, J.O. The design and use of animal models
for translational research in bone tissue engineering and regenerative medicine. Tissue Eng. B 2010, 16,
123–145. [CrossRef]

25. Schmitz, J.P.; Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial
nonunions. Clin. Orthop. Relat. Res. 1986, 299–308. [CrossRef]

26. Hollinger, J.O.; Kleinschmidt, J.C. The critical size defect as an experimental model to test bone repair
materials. J. Craniofac. Surg. 1990, 1, 60–68. [CrossRef]

27. Wancket, L.M. Animal Models for evaluation of bone implants and devices: Comparative bone structure
and common model uses. Vet. Pathol. 2015, 52, 842–850. [CrossRef]

28. Pearce, A.I.; Richards, R.G.; Milz, S.; Schneider, E.; Pearce, S.G. Animal models for implant biomaterial
research in bone: A review. Eur. Cell Mater. 2007, 13, 1–10. [CrossRef]

29. Poser, L.; Matthys, R.; Schawalder, P.; Pearce, S.; Alini, M.; Zeiter, S. A standardized critical size defect model
in normal and osteoporotic rats to evaluate bone tissue engineered constructs. Biomed. Res. Int. 2014, 2014,
348635. [CrossRef] [PubMed]

30. Yeom, H.; Blanchard, S.; Kim, S.; Zunt, S.; Chu, T.M. Correlation between micro-computed tomography and
histomorphometry for assessment of new bone formation in a calvarial experimental model. J. Craniofac.
Surg. 2008, 19, 446–452. [CrossRef] [PubMed]

31. Bartov, M.S.; Gromov, A.V.; Poponova, M.S.; Savina, D.M.; Nikitin, K.E.; Grunina, T.M.; Manskikh, V.N.;
Gra, O.A.; Lunin, V.G.; Karyagina, A.S.; et al. Modern approaches to studies of new osteogenic biomaterials
on the model of regeneration of critical-size cranial defects in rats. Bull. Exp. Biol. Med. 2016, 162, 273–276.
[CrossRef] [PubMed]

32. Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.
PRISMA-P Group, Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P)
2015 statement. Syst. Rev. 2015, 4, 1. [CrossRef] [PubMed]

33. Ye, J.H.; Xu, Y.J.; Gao, J.; Yan, S.G.; Zhao, J.; Tu, Q.; Zhang, J.; Duan, X.J.; Sommer, C.A.; Mostoslavsky, G.; et al.
Critical-size calvarial bone defects healing in a mouse model with silk sca↵olds and SATB2-modified iPSCs.
Biomaterials 2011, 32, 5065–5076. [CrossRef] [PubMed]

34. van Griensven, M. Preclinical testing of drug delivery systems to bone. Adv. Drug Deliv. Rev. 2015, 94,
151–164. [CrossRef] [PubMed]

35. Tielinen, L.; Manninen, M.; Puolakkainen, P.; Kellomäki, M.; Törmälä, P.; Rich, J.; Seppälä, J.; Rokkanen, P.
Inability of transforming growth factor-b1, combined with a bioabsorbable polymer paste, to promote healing
of bone defects in the rat distal femur. Arch. Orthop. Trauma Surg. 2001, 121, 191–196. [CrossRef] [PubMed]



Materials 2020, 13, 1500 21 of 26

36. Ji, W.; Bolander, J.; Chai, Y.; Katagiri, H.; Marechal, M.; Luiten, F.P. Toward advanced therapy medicinal
products (ATMPs) Combining Bone Morphogenetic Proteins (BMP) and cells for bone regeneration. In
Bone Morphogenetic Proteins: Systems Biology Regulators. Progress in Inflammation Research; Vukicevic, S.,
Sampath, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 127–169. [CrossRef]

37. Bartee, B.K.; Carr, J.A. Evaluation of a high-density polytetrafluoroethylene (n-PTFE) membrane as a barrier
material to facilitate guided bone regeneration in the rat mandible. J. Oral Implantol. 1995, 21, 88–95.

38. Sohn, J.Y.; Park, J.C.; Um, Y.J.; Jung, U.W.; Kim, C.S.; Cho, K.S.; Choi, S.H. Spontaneous healing capacity of
rabbit cranial defects of various sizes. J. Periodontal Implant Sci. 2010, 40, 180–187. [CrossRef]

39. Zhao, M.D.; Huang, J.S.; Zhang, X.C.; Gui, K.K.; Xiong, M.; Yin, W.P.; Yuan, F.L.; Cai, G.P. Construction of
radial defect models in rabbits to determine the critical size defects. PLoS ONE 2016, 11, e0146301. [CrossRef]

40. Liu, Y.J.; Yang, Z.Y.; Tan, L.L.; Li, H.; Zhang, Y.Z. An animal experimental study of porous magnesium
sca↵old degradation and osteogenesis. Braz. J. Med. Biol. Res. 2014, 47, 715–720. [CrossRef]

41. Calvo-Guirado, J.L.; Delgado-Ruíz, R.A.; Ramírez-Fernández, M.P.; Maté-Sánchez, J.E.; Ortiz-Ruiz, A.;
Marcus, A. Histomorphometric and mineral degradation study of Ossceram: A novel biphasic B-tricalcium
phosphate, in critical size defects in rabbits. Clin. Oral Implants Res. 2012, 23, 667–675. [CrossRef]

42. Zhang, X.; Cai, Q.; Liu, H.; Heng, B.C.; Peng, H.; Song, Y.; Yang, Z.; Deng, X. Osteoconductive e↵ectiveness
of bone graft derived from antler cancellous bone: An experimental study in the rabbit mandible defect
model. Int. J. Oral Maxillofac. Surg. 2012, 41, 1330–1337. [CrossRef]

43. Viljanen, V.V.; Gao, T.J.; Lindholm, T.C.; Lindholm, T.S.; Kommonen, B. Xenogeneic moose (Alces alces) bone
morphogenetic protein (mBMP)-induced repair of critical-size skull defects in sheep. Int. J. Oral Maxillofac.
Surg. 1996, 25, 217–222. [CrossRef]

44. Viljanen, V.V.; Lindholm, T.C.; Gao, T.J.; Lindholm, T.S. Low dosage of native allogeneic bone morphogenetic
protein in repair of sheep calvarial defects. Int. J. Oral Maxillofac. Surg. 1997, 26, 389–393. [CrossRef]

45. Kawai, T.; Matsui, K.; Iibuchi, S.; Anada, T.; Honda, Y.; Sasaki, K.; Kamakura, S.; Suzuki, O.; Echigo, S.
Reconstruction of critical-sized bone defect in dog skull by octacalcium phosphate combined with collagen.
Clin. Implant Dent. Relat. Res. 2011, 13, 112–123. [CrossRef] [PubMed]

46. Huh, J.Y.; Choi, B.H.; Kim, B.Y.; Lee, S.H.; Zhu, S.J.; Jung, J.H. Critical size defect in the canine mandible.
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 296–301. [CrossRef]

47. Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G.; National Centre for the Replacement,
Refinement and Reduction of Animals in Research. Animal research: Reporting in vivo experiments—The
ARRIVE guidelines. J. Cereb. Blood Flow Metab. 2011, 31, 991–993. [CrossRef] [PubMed]

48. Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W.
SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [CrossRef]

49. Aristizabal, O.L.P.; Castro, J.A.V.; Vargas, M.I.V.; Rezende, C.M.F. Histological and nano-structured calcium
phosphate bioceramic micro-macro porous granules in critical defect rabbits radius scanning electron
microscopy evaluation. Arq. Bras. Med. Vet. Zootec. 2017, 69, 1539–1550. [CrossRef]

50. Castro, J.A.V.; Aristizabal, O.L.P.; Alves, E.G.L.; Louzada, M.J.Q.; Torres, R.C.S.; Viloria, M.I.V.; Rezende, C.M.F.
Bioceramics of calcium phosphate nano-structured micro-macro porous granules rapidly absorbed in filling
critical radial defect in rabbits (Oryctolagus cuniculus). Arq. Bras. Med. Vet. Zootec. 2018, 70, 797–805.
[CrossRef]

51. Dallabrida, A.L.; Camargo, N.B.A.; Moraes, A.N.; Gava, A.; Dalmonico, G.M.L.; Costa, B.D.; Oleskovicz, N.
Bioceramic characterization of calcium phosphates microstructured in di↵erent composition in sheep. Pesqui.
Vet. Bras. 2018, 38, 1327–1336. [CrossRef]

52. Desantis, S.; Accogli, G.; Burk, J.; Zizza, S.; Mastrodonato, M.; Francioso, E.G.; Rossi, R.; Crovace, A.; Resta, L.
Ultrastructural characteristics of ovine bone marrow-derived mesenchymal stromal cells cultured with
a silicon stabilized tricalcium phosphate bioceramic. Microsc. Res. Tech. 2017, 80, 1189–1198. [CrossRef]

53. Yang, J.Z.; Hu, X.Z.; Sultana, R.; Edward Day, R.; Ichim, P. Structure design and manufacturing of layered
bioceramic sca↵olds for load-bearing bone reconstruction. Biomed. Mater. 2015, 10, 045006. [CrossRef]

54. Dai, Y.; Liu, H.; Liu, B.; Wang, Z.; Li, Y.; Zhou, G. Porous beta-Ca2SiO4 ceramic sca↵olds for bone tissue
engineering: In vitro and in vivo characterization. Ceram. Int. 2015, 41, 5894–5902. [CrossRef]

55. Huang, Y.; Wu, C.; Zhang, X.; Chang, J.; Dai, K. Regulation of immune response by bioactive ions released
from silicate bioceramics for bone regeneration. Acta Biomater. 2018, 66, 81–92. [CrossRef] [PubMed]



Materials 2020, 13, 1500 22 of 26

56. Prabha, R.D.; Kraft, D.C.E.; Harkness, L.; Melsen, B.; Varma, H.; Nair, P.D.; Kjems, J.; Kassem, M. Bioactive
nano-fibrous sca↵old for vascularized craniofacial bone regeneration. J. Tissue Eng. Regen. Med. 2018, 12,
1537–1548. [CrossRef] [PubMed]

57. Xing, M.; Wang, X.; Wang, E.; Gao, L.; Chang, J. Bone tissue engineering strategy based on the synergistic
e↵ects of silicon and strontium ions. Acta Biomater. 2018, 72, 381–395. [CrossRef]

58. Chandran, S.; Babu, S.S.; Vs, H.K.; Varma, H.K.; John, A. Osteogenic e�cacy of strontium hydroxyapatite
micro-granules in osteoporotic rat model. J. Biomater. Appl. 2016, 31, 499–509. [CrossRef]

59. Fu, Y.C.; Chen, C.H.; Wang, C.Z.; Wang, Y.H.; Chang, J.K.; Wang, G.J.; Ho, M.L.; Wang, C.K. Preparation
of porous bioceramics using reverse thermo-responsive hydrogels in combination with rhBMP-2 carriers:
In vitro and in vivo evaluation. J. Mech. Behav. Biomed. Mater. 2013, 27, 64–76. [CrossRef]

60. Kim, D.H.; Kim, T.W.; Lee, J.D.; Shin, K.K.; Jung, J.S.; Hwang, K.H.; Lee, J.K.; Park, H.C.; Yoon, S.Y.
Preparation and in vitro and in vivo performance of magnesium ion substituted biphasic calcium phosphate
spherical microsca↵olds as human adipose tissue-derived mesenchymal stem cell microcarriers. J. Nanomater.
2013, 762381. [CrossRef]

61. Mao, L.; Xia, L.; Chang, J.; Liu, J.; Jiang, L.; Wu, C.; Fang, B. The synergistic e↵ects of Sr and Si bioactive
ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater.
2017, 61, 217–232. [CrossRef]

62. El-Ghannam, A.; Hart, A.; White, D.; Cunningham, L. Mechanical properties and cytotoxicity of a resorbable
bioactive implant prepared by rapid prototyping technique. J. Biomed. Mater. Res. A. 2013, 101, 2851–2861.
[CrossRef]

63. Fu, J.; Zhuang, C.; Qiu, J.; Ke, X.; Yang, X.; Jin, Z.; Zhang, L.; Yang, G.; Xie, L.; Xu, S.; et al. Core-shell biphasic
microspheres with tunable density of shell micropores providing tailorable bone regeneration. Tissue Eng.
Part A 2018, 25, 588–602. [CrossRef]

64. Ke, X.; Zhuang, C.; Yang, X.; Fu, J.; Xu, S.; Xie, L.; Gou, Z.; Wang, J.; Zhang, L.; Yang, G. Enhancing the
osteogenic capability of core-shell bilayered bioceramic microspheres with adjustable biodegradation. ACS
Appl. Mater. Interfaces 2017, 9, 24497–24510. [CrossRef] [PubMed]

65. Kim, J.H.; Park, M.H.; Jang, S.J.; Son, S.J.; Lee, J.Y.; Son, J.S.; Kim, S.E.; Kang, S.S.; Choi, S.H. E↵ect of hydrogen
dioxide treatment on the osteogenic potential of duck-beak bone-derived natural bioceramic microparticles.
In Vivo 2017, 31, 373–379. [CrossRef] [PubMed]

66. Liu, A.; Sun, M.; Shao, H.; Yang, X.; Ma, C.; He, D.; Gao, Q.; Liu, Y.; Yan, S.; Xu, S.; et al. The outstanding
mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite
sca↵olds in critical size bone defects. J. Mater. Chem. B 2016, 4, 3945–3958. [CrossRef]

67. Lu, X.; Wang, Y.; Jin, F. Influence of a non-biodegradable porous structure on bone repair. RSC Adv. 2016, 6,
80522–80528. [CrossRef]

68. Macedo, R.M.; Lacerda, S.A.; Thomazini, J.A.; Brentegani, L.G. Bone integration behavior of
hydroxyapatite/�-tricalcium phosphate graft implanted in dental alveoli: A histomorphometric and scanning
electron microscopy study. Implant Dent. 2014, 23, 710–715. [CrossRef]

69. Martínez, C.; Fernández, C.; Prado, M.; Ozols, A.; Olmedo, D.G. Synthesis and characterization of a novel
sca↵old for bone tissue engineering based on Wharton’s jelly. J. Biomed. Mater. Res. A 2017, 105, 1034–1045.
[CrossRef]

70. Qi, X.; Pei, P.; Zhu, M.; Du, X.; Xin, C.; Zhao, S.; Li, X.; Zhu, Y. Three dimensional printing of calcium sulfate
and mesoporous bioactive glass sca↵olds for improving bone regeneration in vitro and in vivo. Sci. Rep.
2017, 7, 42556. [CrossRef]

71. Trimeche, M.; Smaoui, H.; Ben Cheikh, R.; Smida, M.; Rebai, T.; Keskes, H.; Oudadess, H. Elaboration and
evaluation of a composite bone substitute based on beta-TCP/DCPD and PHBV, preliminary results. Biomed.
Eng. Appl. Bas. C 2016, 28, 1650031. [CrossRef]

72. Xu, M.; Li, H.; Zhai, D.; Chang, J.; Chen, S.; Wu, C. Hierarchically porous nagelschmidtite bioceramic-silk
sca↵olds for bone tissue engineering. J. Mater. Chem. B 2015, 3, 3799–3809. [CrossRef]

73. Yang, C.; Wang, X.; Ma, B.; Zhu, H.; Huan, Z.; Ma, N.; Wu, C.; Chang, J. 3D-printed bioactive Ca3SiO5 bone
cement sca↵olds with nano surface structure for bone regeneration. ACS Appl. Mater. Interfaces 2017, 9,
5757–5767. [CrossRef]



Materials 2020, 13, 1500 23 of 26

74. Zhuang, C.; Ke, X.; Jin, Z.; Zhang, L.; Yang, X.; Xu, S.; Yang, G.; Xie, L.; Prince, G.A.E.; Pan, Z.; et al.
Core-shell-structured nonstoichiometric bioceramic spheres for improving osteogenic capability. J. Mater.
Chem. B 2017, 5, 8944–8956. [CrossRef]

75. Chen, Z.; Yuen, J.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. The e↵ect of osteoimmunomodulation on the
osteogenic e↵ects of cobalt incorporated �-tricalcium phosphate. Biomaterials 2015, 61, 126–138. [CrossRef]

76. Dasgupta, S.; Maji, K.; Nandi, S.K. Investigating the mechanical, physiochemical and osteogenic properties
in gelatin-chitosan-bioactive nanoceramic composite sca↵olds for bone tissue regeneration: In vitro and
in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 713–728. [CrossRef] [PubMed]

77. Drager, J.; Sheikh, Z.; Zhang, Y.L.; Harvey, E.J.; Barralet, J.E. Local delivery of iron chelators reduces in vivo
remodeling of a calcium phosphate bone graft substitute. Acta Biomater. 2016, 42, 411–419. [CrossRef]
[PubMed]

78. Gan, D.; Liu, M.; Xu, T.; Wang, K.; Tan, H.; Lu, X. Chitosan/biphasic calcium phosphate sca↵olds functionalized
with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. J. Biomed. Mater. Res. A 2018, 106,
2613–2624. [CrossRef] [PubMed]

79. Ke, D.; Dernell, W.; Bandyopadhyay, A.; Bose, S. Doped tricalcium phosphate sca↵olds by thermal
decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model. J.
Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1549–1559. [CrossRef]

80. Liu, A.; Sun, M.; Yang, X.; Ma, C.; Liu, Y.; Yang, X.; Yan, S.; Gou, Z. Three-dimensional printing akermanite
porous sca↵olds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical
evolution. J. Biomater. Appl. 2016, 31, 650–660. [CrossRef]

81. Ma, H.; Luo, J.; Sun, Z.; Xia, L.; Shi, M.; Liu, M.; Chang, J.; Wu, C. 3D printing of biomaterials with
mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials 2016, 111, 138–148.
[CrossRef]

82. Mondal, B.; Mondal, S.; Mondal, A.; Mandal, N. Fish scale derived hydroxyapatite sca↵old for bone tissue
engineering. Mater. Charact. 2016, 121, 112–124. [CrossRef]

83. Shao, H.; Liu, A.; Ke, X.; Sun, M.; He, Y.; Yang, X.; Fu, J.; Zhang, L.; Yang, G.; Liu, Y.; et al. 3D robocasting
magnesium-doped wollastonite/TCP bioceramic sca↵olds with improved bone regeneration capacity in
critical sized calvarial defects. J. Mater. Chem. B 2017, 5, 2941–2951. [CrossRef]

84. Shao, H.; Sun, M.; Zhang, F.; Liu, A.; He, Y.; Fu, J.; Yang, X.; Wang, H.; Gou, Z. Custom repair of mandibular
bone defects with 3D printed bioceramic sca↵olds. J. Dent. Res. 2018, 97, 68–76. [CrossRef] [PubMed]

85. Wang, G.; Roohani-Esfahani, S.I.; Zhang, W.; Lv, K.; Yang, G.; Ding, X.; Zou, D.; Cui, D.; Zreiqat, H.; Jiang, X.
E↵ects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized
calvarial defect repair. Sci. Rep. 2017, 7, 41135. [CrossRef] [PubMed]

86. Wang, X.; Gu, Z.; Jiang, B.; Li, L.; Yu, X. Surface modification of strontium-doped porous bioactive ceramic
sca↵olds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic
properties. Biomater. Sci. 2016, 4, 678–688. [CrossRef] [PubMed]

87. Xia, L.; Lin, K.; Jiang, X.; Xu, Y.; Zhang, M.; Chang, J.; Zhang, Z. Enhanced osteogenesis through
nano-structured surface design of macroporous hydroxyapatite bioceramic sca↵olds via activation of
ERK and p38 MAPK signaling pathways. J. Mater. Chem. B 2013, 1, 5403–5416. [CrossRef]

88. Xia, L.; Lin, K.; Jiang, X.; Fang, B.; Xu, Y.; Liu, J.; Zeng, D.; Zhang, M.; Zhang, X.; Chang, J.; et al. E↵ect of
nano-structured bioceramic surface on osteogenic di↵erentiation of adipose derived stem cells. Biomaterials
2014, 35, 8514–8527. [CrossRef]

89. Xia, L.; Zhang, N.; Wang, X.; Zhou, Y.; Mao, L.; Liu, J.; Jiang, X.; Zhang, Z.; Chang, J.; Lin, K.; et al. The
synergetic e↵ect of nano-structures and silicon-substitution on the properties of hydroxyapatite sca↵olds for
bone regeneration. J. Mater. Chem. B 2016, 4, 3313–3323. [CrossRef]

90. Xie, H.; Wang, J.; Li, C.; Gu, Z.; Chen, Q.; Li, L. Application of strontium doped calcium polyphosphate
bioceramic as sca↵olds for bone tissue engineering. Ceram. Int. 2013, 39, 8945–8954. [CrossRef]

91. Xu, M.; Zhai, D.; Xia, L.; Li, H.; Chen, S.; Fang, B.; Chang, J.; Wu, C. Hierarchical bioceramic sca↵olds with
3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis. Nanoscale 2016,
8, 13790–13803. [CrossRef]

92. Zhang, W.; Feng, C.; Yang, G.; Li, G.; Ding, X.; Wang, S.; Dou, Y.; Zhang, Z.; Chang, J.; Wu, C.; et al.
3D-printed sca↵olds with synergistic e↵ect of hollow-pipe structure and bioactive ions for vascularized bone
regeneration. Biomaterials 2017, 135, 85–95. [CrossRef]



Materials 2020, 13, 1500 24 of 26

93. Zhang, Y.; Xia, L.; Zhai, D.; Shi, M.; Luo, Y.; Feng, C.; Fang, B.; Yin, J.; Chang, J.; Wu, C. Mesoporous
bioactive glass nanolayer-functionalized 3D-printed sca↵olds for accelerating osteogenesis and angiogenesis.
Nanoscale 2015, 7, 19207–19221. [CrossRef]

94. Zhu, Y.; Zhang, K.; Zhao, R.; Ye, X.; Chen, X.; Xiao, Z.; Yang, X.; Zhu, X.; Zhang, K.; Fan, Y.; et al. Bone
regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone
defect and the induced immunoregulation of MSCs. Biomaterials 2017, 147, 133–144. [CrossRef] [PubMed]

95. Diao, J.; OuYang, J.; Deng, T.; Liu, X.; Feng, Y.; Zhao, N.; Mao, C.; Wang, Y. 3D-plotted beta-tricalcium
phosphate sca↵olds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties
in a critical-sized calvarial defect rat model. Adv. Healthc. Mater. 2018, 7, e1800441. [CrossRef] [PubMed]

96. Peng, S.; Feng, P.; Wu, P.; Huang, W.; Yang, Y.; Guo, W.; Gao, C.; Shuai, C. Graphene oxide as an interface
phase between polyetheretherketone and hydroxyapatite for tissue engineering sca↵olds. Sci. Rep. 2017,
7, 46604. [CrossRef] [PubMed]

97. Smeets, R.; Barbeck, M.; Hanken, H.; Fischer, H.; Lindner, M.; Heiland, M.; Wöltje, M.; Ghanaati, S.; Kolk, A.
Selective laser-melted fully biodegradable sca↵old composed of poly(d,l-lactide) and �-tricalcium phosphate
with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro and in vivo
results. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1216–1231. [CrossRef] [PubMed]

98. Son, J.S.; Jang, S.H.; Kwon, T.Y.; Kim, K.H.; Kang, S.S.; Choi, S.H. Preliminary evaluation of bone graft
substitute produced by bone of duck beak. Mater. Lett. 2014, 121, 181–184. [CrossRef]

99. Xu, S.; Liu, J.; Zhang, L.; Yang, F.; Tang, P.; Wu, D. E↵ects of HAp and TCP in constructing tissue engineering
sca↵olds for bone repair. J. Mater. Chem. B 2017, 5, 6110–6118. [CrossRef]

100. Shi, Y.; Quan, R.; Xie, S.; Li, Q.; Cao, G.; Zhuang, W.; Zhang, L.; Shao, R.; Yang, D. Evaluation of a novel
HA/ZrO2-based porous bioceramic artificial vertebral body combined with a rhBMP-2/Chitosan slow-release
hydrogel. PLoS ONE 2016, 11, e0157698. [CrossRef]

101. Taktak, R.; Elghazel, A.; Bouaziz, J.; Charfi, S.; Keskes, H. Tricalcium phosphate-fluorapatite as bone tissue
engineering: Evaluation of bioactivity and biocompatibility. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 86,
121–128. [CrossRef]

102. Ulum, M.F.; Nasution, A.K.; Yusop, A.H.; Arafat, A.; Kadir, M.R.; Juniantito, V.; Noviana, D.; Hermawan, H.
Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. J. Biomed. Mater.
Res. B Appl. Biomater. 2015, 103, 1354–1365. [CrossRef]

103. Wang, C.; Wang, S.; Li, K.; Ju, Y.; Li, J.; Zhang, Y.; Li, J.; Liu, X.; Shi, X.; Zhao, Q. Preparation of laponite
bioceramics for potential bone tissue engineering applications. PLoS ONE 2014, 9, e99585. [CrossRef]

104. Demirel, M.; Aksakal, B. Enhanced bone regeneration in rabbit tibial defects implanted with newly fabricated
bioceramic bone grafts. Int. J. Appl. Ceram. Technol. 2015, 12, 254–263. [CrossRef]

105. Despang, F.; Bernhardt, A.; Lode, A.; Dittrich, R.; Hanke, T.; Shenoy, S.J.; Mani, S.; John, A.; Gelinsky, M.
Synthesis and physicochemical, in vitro and in vivo evaluation of an anisotropic, nanocrystalline
hydroxyapatite bisque sca↵old with parallel-aligned pores mimicking the microstructure of cortical bone.
J. Tissue Eng. Regen. Med. 2015, 9, 152–166. [CrossRef]

106. Ho, K.N.; Salamanca, E.; Chang, K.C.; Shih, T.C.; Chang, Y.C.; Huang, H.M.; Teng, N.C.; Lin, C.T.; Feng, S.W.;
Chang, W.J. A Novel HA/beta-TCP-collagen composite enhanced new bone formation for dental extraction
socket preservation in beagle dogs. Materials 2016, 9, 191. [CrossRef] [PubMed]

107. Kim, J.A.; Lim, J.; Naren, R.; Yun, H.S.; Park, E.K. E↵ect of the biodegradation rate controlled by pore
structures in magnesium phosphate ceramic sca↵olds on bone tissue regeneration in vivo. Acta Biomater.
2016, 44, 155–167. [CrossRef] [PubMed]

108. Lee, H.R.; Kim, H.J.; Ko, J.S.; Choi, Y.S.; Ahn, M.W.; Kim, S.; Do, S.H. Comparative characteristics of porous
bioceramics for an osteogenic response in vitro and in vivo. PLoS ONE 2013, 8, e84272. [CrossRef]

109. Liu, T.; Ding, X.; Lai, D.; Chen, Y.; Zhang, R.; Chen, J.; Feng, X.; Chen, X.; Yang, X.; Zhao, R.; et al. Enhancing
in vitro bioactivity and in vivo osteogenesis of organic-inorganic nanofibrous biocomposites with novel
bioceramics. J. Mater. Chem. B 2014, 2, 6293–6305. [CrossRef]

110. Oryan, A.; Alidadi, S.; Bigham-Sadegh, A. Dicalcium phosphate anhydrous: An appropriate bioceramic in
regeneration of critical-sized radial bone defects in rats. Calcif. Tissue Int. 2017, 101, 530–544. [CrossRef]

111. Reddy, S.; Wasnik, S.; Guha, A.; Kumar, J.M.; Sinha, A.; Singh, S. Evaluation of nano-biphasic calcium
phosphate ceramics for bone tissue engineering applications: In vitro and preliminary in vivo studies.
J. Biomater. Appl. 2013, 27, 565–575. [CrossRef]



Materials 2020, 13, 1500 25 of 26

112. Ros-Tárraga, P.; Mazón, P.; Rodríguez, M.A.; Meseguer-Olmo, L.; De Aza, P.N. Novel resorbable and
osteoconductive calcium silicophosphate sca↵old induced bone formation. Materials 2016, 9, 785. [CrossRef]

113. Wang, J.; Yang, M.; Zhu, Y.; Wang, L.; Tomsia, A.P.; Mao, C. Phage nanofibers induce vascularized osteogenesis
in 3D printed bone sca↵olds. Adv. Mater. 2014, 26, 4961–4966. [CrossRef]

114. Zhou, W.; Zhang, J.; Lin, K.; Chen, F. Comparison between mandibular and femur derived bone marrow
stromal cells: Osteogenic and angiogenic potentials in vitro and bone repairing ability in vivo. RSC Adv.
2017, 7, 56220–56228. [CrossRef]

115. Yu, H.; Zeng, X.; Deng, C.; Shi, C.; Ai, J.; Leng, W. Exogenous VEGF introduced by bioceramic composite
materials promotes the restoration of bone defect in rabbits. Biomed. Pharmacother. 2018, 98, 325–332.
[CrossRef] [PubMed]

116. Shao, H.; Ke, X.; Liu, A.; Sun, M.; He, Y.; Yang, X.; Fu, J.; Liu, Y.; Zhang, L.; Yang, G.; et al. Bone regeneration in
3D printing bioactive ceramic sca↵olds with improved tissue/material interface pore architecture in thin-wall
bone defect. Biofabrication 2017, 9, 025003. [CrossRef]

117. Xu, A.; Zhuang, C.; Xu, S.; He, F.; Xie, L.; Yang, X.; Gou, Z. Optimized bone regeneration in calvarial bone
defect based on biodegradation-tailoring dual-shell biphasic bioactive ceramic microspheres. Sci. Rep. 2018,
8, 3385. [CrossRef] [PubMed]

118. Li, S.; Li, H.; Lv, G.; Duan, H.; Jiang, D.; Yan, Y. Influences of degradability, bioactivity, and biocompatibility of
the calcium sulfate content on a calcium sulfate/poly(amino acid) biocomposite for orthopedic reconstruction.
Polym. Compos. 2016, 37, 1886–1894. [CrossRef]
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