Università
 degli Studi
 di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Nonlocal minimal clusters in the plane

Original Citation:

Availability:
This version is available at: 11577/3339224 since: 2020-09-04T10:46:39Z

Publisher:
Elsevier Ltd

Published version:
DOI: 10.1016/j.na.2020.111945

Terms of use:
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

NONLOCAL MINIMAL CLUSTERS IN THE PLANE

ANNALISA CESARONI AND MATTEO NOVAGA

Abstract

We prove existence of partitions of an open set Ω with a given number of phases, which minimize the sum of the fractional perimeters of all the phases, with Dirichlet boundary conditions. In two dimensions we show that, if the fractional parameter s is sufficiently close to 1 , the only singular minimal cone, that is, the only minimal partition invariant by dilations and with a singular point, is given by three half-lines meeting at 120 degrees. In the case of a weighted sum of fractional perimeters, we show that there exists a unique minimal cone with three phases.

Contents

1. Introduction 1
Acknowledgements 2
2. The Dirichlet problem 3
3. Minimal cones 8
4. Weighted fractional perimeters 10
References 11

1. Introduction

A k-cluster is a family $\mathcal{E}=\left(E_{i}\right)_{i=1, \ldots k}$ of disjoint measurable subsets of \mathbb{R}^{d} such that $\cup_{i} E_{i}=\mathbb{R}^{d}$, up to a negligible set. We call each set E_{i} a phase of the cluster. Following [8], for an open set $\Omega \subset \mathbb{R}^{d}$ and $s \in(0,1)$ we define the fractional perimeter of \mathcal{E} relative to Ω as

$$
\begin{equation*}
\mathcal{P}_{s}(\mathcal{E} ; \Omega):=\sum_{1 \leq i \leq k} \operatorname{Per}_{s}\left(E_{i} ; \Omega\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\operatorname{Per}_{s}(E ; \Omega) & :=J_{s}\left(E \cap \Omega, \mathbb{R}^{d} \backslash E\right)+J_{s}(\Omega \backslash E, E \backslash \Omega) \quad \text { for } E \subset \mathbb{R}^{d} \tag{2}\\
J_{s}(A, B) & :=\int_{A} \int_{B} \frac{1}{|x-y|^{d+s}} d x d y \quad \text { for } A, B \subset \mathbb{R}^{d},|A \cap B|=0
\end{align*}
$$

The functional in (1) and more generally the weighted fractional perimeter

$$
\begin{equation*}
\mathcal{P}_{s, c}(\mathcal{E} ; \Omega):=\sum_{1 \leq i \leq k} c_{i} \operatorname{Per}_{s}\left(E_{i} ; \Omega\right) \tag{3}
\end{equation*}
$$

[^0]with $c=\left(c_{i}\right)_{i}$ and $c_{i}>0$, are a natural generalization of the (weighted) classical perimeter of a cluster
\[

$$
\begin{equation*}
\mathcal{P}_{c}(\mathcal{E} ; \Omega):=\sum_{1 \leq i \leq k} c_{i} \operatorname{Per}\left(E_{i} ; \Omega\right) \tag{4}
\end{equation*}
$$

\]

and arise in the analysis of equilibria for a mixture of k immiscible fluids in a container Ω, where the fluids tend to occupy disjoint regions in such a way to minimize the total surface tension measured through nonlocal interaction energies, rather then through surface area as in the classical case.

In [8] the authors proved existence of fractional isoperimetric clusters. More precisely, they showed that there exists a minimizer of the energy (1) with $\Omega=\mathbb{R}^{d}$, among all k-clusters such that each phase has a prescribed volume. They also established the regularity of such minimal clusters, showing that the singular set has Hausdorff dimension less than $d-2$ (and it is discrete in the planar case $d=2$), that outside from the singular set the boundary of the cluster is a hypersurface of class $C^{1, \alpha}$ for some $\alpha>0$, and finally that the blow-up of the cluster at a singular point is a minimal cone.

In this short note we consider minimizers of (3) in a bounded open set $\Omega \subset \mathbb{R}^{d}$, with Dirichlet data. More precisely, we fix the phases E_{i} outside Ω, that is, we fix exterior data

$$
\begin{equation*}
\left(\bar{E}_{1}, \bar{E}_{2}, \ldots, \bar{E}_{k}\right) \quad \bar{E}_{i} \subseteq \mathbb{R}^{d} \backslash \Omega, \forall i \quad \cup_{i} \bar{E}_{i}=\mathbb{R}^{d} \backslash \Omega \tag{5}
\end{equation*}
$$

and we show existence of a solution to the following Dirichlet problem

$$
\begin{equation*}
\inf _{\left\{\mathcal{E}, E_{i} \backslash \Omega=\bar{E}_{i}\right\}} \mathcal{P}_{s, c}(\mathcal{E} ; \Omega) \tag{6}
\end{equation*}
$$

for $c=\left(c_{i}\right)_{i}$, with $c_{i}>0$.
We are particularly interested in the analysis of singularities in dimension $d=2$, in order to characterize fractional clusters in some basic cases. For instance, in Theorem 3.4 we consider the energy (1) and we show that for s sufficiently close to 1 , the only singular minimal cone consists of three half-lines meeting at 120 degrees at a common end-point. In particular, this implies that the unique local minimizers for the fractional perimeter on k-clusters, for s sufficiently close to 1 , are half-planes and such singular 3 -cones. We recall that, for $k=2$, half-planes are the unique local minimizers for any $s \in(0,1)$, as proved in $[2,6]$ (see also [5,14$]$ for the extension to more general energies).

To obtain our result, we first provide the Γ-convergence of the fractional perimeter of a k-cluster to the classical perimeter as $s \rightarrow 1$, which is a generalization of the analogous result proven in $[2,7]$ for $k=2$, and the Hausdorff convergence of minimizers which is obtained by exploiting the density estimates obtained in [8]. We also show that this convergence can be improved outside the singular set.

Finally, we consider the analogous problem for weighted fractional perimeters, restricted to 3 -clusters. In Proposition 4.3 we show that there exists a unique minimal 3 -cone, whose opening angles are uniquely determined in terms of the weights c_{i}.

Acknowledgements. The authors wish to thank Valerio Pagliari and Alessandra Pluda for useful discussions on the topic of this paper. The authors are members of the INDAM/GNAMPA.

2. The Dirichlet problem

We start proving existence of minimizers of problem (6), then we discuss the regularity of solutions, and finally the convergence of the minimizers as $s \rightarrow 1$ to the solution of the analogous Dirichlet problem for the classical perimeter.

Theorem 2.1. Let $\Omega \subseteq \mathbb{R}^{d}$ be an open bounded set of finite perimeter and fix an exterior datum as in (5). Then, there exists a solution to the Dirichlet problem (6).
Proof. First of all note that if we consider \mathcal{E} defined as follows: $E_{1}=\Omega \cup \bar{E}_{1}, E_{j}=\bar{E}_{j}$ for $j \neq 1$, then we get $\mathcal{P}_{s}(\mathcal{E} ; \Omega) \leq k \max c_{i} \operatorname{Per}_{s}(\Omega)<+\infty$ for all j, since Ω is bounded of finite perimeter (see [7]). The existence result is then obtained by the direct method of the calculus of variations, using the fact that $\operatorname{Per}_{s}(E)$ is a Gagliardo norm of χ_{E}, recalling that a uniform bound on the Gagliardo norm implies compactness in L^{2}, and that the norm is lower semicontinuous with respect to the L^{1}-convergence (see [15]).

We recall the density estimates proved in [8], which are uniform with respect to $s \rightarrow 1$.
Theorem 2.2 (Density estimates). Let $s_{0} \in(0,1)$, and let \mathcal{E} be a minimizer of (6) for some $s \in\left[s_{0}, 1\right)$. Then there exist $\sigma_{0}=\sigma_{0}\left(d, s_{0}, c\right), \sigma_{1}=\sigma_{1}\left(d, s_{0}, c\right) \in(0,1)$ such that, if $x \in \partial E_{i} \cap \Omega$ for some i, then

$$
\sigma_{0} \omega_{d} r^{d} \leq\left|E_{i} \cap B(x, r)\right| \leq \sigma_{1} \omega_{d} r^{d} \quad \forall r<d(x, \partial \Omega)
$$

Proof. The proof can be obtained as a straightforward adaptation of the proof of Lemma 3.4, the infiltration lemma, in [8]. We note that if we fix $x \in \Omega$, then \mathcal{E} is a $(\Lambda, d(x, \partial \Omega))$ minimizer for every $\Lambda>0$ and observing in the proof that the constant r_{1} can be chosen equal to r_{0} and that σ_{0} is uniform as $s \rightarrow 1$.

Remark 2.3. By inspecting the proof of [8, Lemma 3.4], we get that this estimate degenerates as $s \rightarrow 0$, in fact $\lim _{s_{0} \rightarrow 0^{+}} \sigma_{0}\left(d, s_{0}\right)=0$.

Let us fix a partition \mathcal{E} and a point $x \in \partial \mathcal{E}$. The blow-up of \mathcal{E} at x is the cluster $\mathcal{E}_{x, r}$ defined by

$$
E_{i}^{x, r}=\frac{E_{i}-x}{r}
$$

We state the regularity result in [8, Theorem 3.3, Theorem 3.7], adapted to our problem, with an improvement of the regularity given by the application of a bootstrap argument given in [3]. We note that the same argument also applies to the isoperimetric clusters considered in [8], and allows to improve the regularity of the boundary outside the singular set from $C^{1, \alpha}$ to C^{∞}.

We first recall the definition of cone, and of regular and singular points.
Definition 2.4. A partition \mathcal{C} is called a k-cone with vertex x_{0} if it is invariant by dilatation, that is $\lambda\left(\mathcal{C}-x_{0}\right)=\mathcal{C}-x_{0}$ for every $\lambda>0$, and it has k-phases C_{1}, \ldots, C_{k}.

Definition 2.5. Let \mathcal{E} be a k-cluster. $x \in \partial \mathcal{E}$ is a regular point if there exist an half-space H and two indexes i, j, such that as $r \rightarrow 0$

$$
E_{i}^{x, r} \rightarrow H, \quad E_{j}^{x, r} \rightarrow \mathbb{R}^{d} \backslash H, \quad E_{h}^{x, r} \rightarrow \emptyset \text { for } h \neq i, j,
$$

locally in $L^{1}\left(\mathbb{R}^{d}\right)$. The set of regular points will be denoted by $\mathcal{R}(\mathcal{E})$, while the complementary set $\partial \mathcal{E} \backslash \mathcal{R}(\mathcal{E})$ will be called singular set.

Theorem 2.6. Let $\Omega \subseteq \mathbb{R}^{d}$ be an open set and \mathcal{E} be a k-cluster which is a solution to the Dirichlet problem (6), with a given boundary datum as in (5). For every $x \in \partial \mathcal{E} \cap \Omega$, there exist a h-cone \mathcal{C}, with $h \leq k$, and a sequence $r_{j} \rightarrow 0$, such that

$$
\lim _{j \rightarrow+\infty} E_{i}^{x, r_{j}}=C_{i} \text { in } L_{l o c}^{1}\left(\mathbb{R}^{d}\right) \text { and locally uniformly, } \quad \forall i=1, \ldots, h
$$

Moreover, the singular set $(\partial \mathcal{E} \backslash \mathcal{R}(\mathcal{E})) \cap \Omega$ is (relatively) closed, of Hausdorff dimension less than $d-2$ and discrete if $d=2$. Finally for every $x \in \mathcal{R}(\mathcal{E}) \cap \Omega$ there is $r_{x}>0$ such that $\partial \mathcal{E} \cap B\left(x, r_{x}\right)$ is a C^{∞} hypersurface in \mathbb{R}^{d}.

Proof. The first part of the statement about the convergence of the blow up can be obtained by a direct adaptation of the proof of the analogous theorem given in [8, Theorem 3.7]. As for the dimension of the singular set, it can be obtained exactly as in [8, Theorem 3.13 , Proposition 3.14].

Fix now $x \in \mathcal{R}(\mathcal{E}) \cap \Omega$. Proceeding as in [8, Theorem 3.3], by exploiting the definition of regular point and the density estimates, we get that there exist $r>0$ and two indexes i, j and such that $\left.E_{h} \cap B(x, 2 r)\right)=\emptyset$ for every $h \neq i, j$ and $B(x, 2 r) \subset \Omega$. We observe that there exists $\Lambda>0$, depending on c, r, s, such that E_{i} is a Λ-minimizer for Per_{s} in $B(x, r)$ in the following sense:

$$
\begin{equation*}
\operatorname{Per}_{s}\left(E_{i} ; B(x, r)\right) \leq \operatorname{Per}_{s}\left(F ; B(x, r)+\Lambda\left|E_{i} \Delta F\right| \quad \forall F \subseteq \mathbb{R}^{d}, F \Delta E_{i} \subseteq B(x, r)\right. \tag{7}
\end{equation*}
$$

This property is easily checked using the fact that \mathcal{E} is a solution to the Dirichlet problem. Indeed we define the k-cluster $\mathcal{F}^{i j}$ in this way: $F_{i}^{i j}=\left(E_{i} \backslash B(x, r)\right) \cup(F \cap B(x, r)), F_{j}^{i j}=\left(E_{j} \backslash\right.$ $B(x, r)) \cup(B(x, r) \backslash F)$ and $F_{h}^{i j}=E_{h}$ for all $h \neq i, j$. Note that $\mathcal{F}^{i j}$ satisfies the same boundary conditions as \mathcal{E}. Following [8, Theorem 3.3], and recalling that $B(x, r) \backslash E_{j}=E_{i} \cap B(x, r)$ and that $E_{h} \cap B(x, 2 r)=\emptyset$ for all $h \neq i, j$, an easy computation gives

$$
\begin{aligned}
0 \leq & \mathcal{P}_{s, c}\left(\mathcal{F}^{i j} ; \Omega\right)-\mathcal{P}_{s, c}(\mathcal{E} ; \Omega)=\left(c_{i}+c_{j}\right) \operatorname{Per}_{s}(F ; B(x, r))-\left(c_{i}+c_{j}\right) \operatorname{Per}_{s}\left(E_{i} ; B(x, r)\right) \\
& +c_{j} J_{s}\left(E_{i} \cap B(x, r),\left(\mathbb{R}^{d} \backslash\left(E_{i} \cup E_{j}\right)\right)-c_{j} J_{s}\left(F \cap B(x, r),\left(\mathbb{R}^{d} \backslash\left(E_{i} \cup E_{j}\right)\right)\right.\right. \\
\leq & \left(c_{i}+c_{j}\right) \operatorname{Per}_{s}(F ; B(x, r))-\left(c_{i}+c_{j}\right) \operatorname{Per}_{s}\left(E_{i} ; B(x, r)\right)+c_{j} J_{s}\left(E_{i} \backslash F, \mathbb{R}^{d} \backslash B(x, 2 r)\right) \\
\leq & \left(c_{i}+c_{j}\right)\left[\operatorname{Per}_{s}(F ; B(x, r))-\operatorname{Per}_{s}\left(E_{i} ; B(x, r)\right)+\frac{c_{j}}{c_{i}+c_{j}} \frac{d r^{s} \omega_{d}}{s}\left|E_{i} \Delta F\right|\right]
\end{aligned}
$$

Using this minimality property we may conclude exactly as in [8, Theorem 3.3] that, possibly reducing r, all the points in $\partial E_{i} \cap B(x, r)$ are regular and that $\partial E_{i} \cap B(x, r)$ is a $C^{1, \alpha}$ hypersurface, for some α depending on s.

Finally, at the regular points of $\partial \mathcal{E} \cap \Omega$ we can write the Euler-Lagrange equation. Let x and i, j as before. Then it is possible to show that there exists a constant $c_{i j}$ such that the stationarity condition at x reads

$$
c_{i} H_{s}\left(x, E_{i}\right)-c_{j} H_{s}\left(x, E_{j}\right)=c_{i j}
$$

where, for $E \subseteq \mathbb{R}^{d}$ and $x \in \partial E, H_{s}(x, E)$ is the fractional curvature, defined as

$$
\begin{equation*}
H_{s}(x, E)=\int_{\mathbb{R}^{d}} \frac{\chi_{\mathbb{R}^{d} \backslash E}(y)-\chi_{E}(y)}{|x-y|^{d+s}} d y \tag{8}
\end{equation*}
$$

Exploiting this definition, we obtain that the stationary condition can be written as the following equation

$$
\left(c_{i}+c_{j}\right) H_{s}\left(x, E_{i}\right)=c_{i j}+2 c_{j} \int_{\mathbb{R}^{d} \backslash\left(E_{i} \cup E_{j}\right)} \frac{1}{|x-y|^{d+s}} d y
$$

which holds in the viscosity sense. We note that if $y \in \mathbb{R}^{d} \backslash\left(E_{i} \cup E_{j}\right)$, then $|x-y| \geq 2 r>0$, so that the r.h.s. is a smooth function of x. We apply now the bootstrap argument in $[3$, Theorem 5] to conclude that $\partial E_{i} \cap B(x, r)$ is a C^{∞} hypersurface.

We now recall a density result of polyhedral clusters with respect to the (weighted) local perimeter (4), which has been obtained in [4]. We shall adapt this result in order to apply it to Dirichlet problems. In particular, we will need the notion of transversality of a cluster, which ensures that the polyhedral approximations can be chosen also to fit with the exterior data, up to a small error.

Definition 2.7 (Polyhedral clusters). A k-cluster $\mathcal{K}=\left(K_{i}\right)_{i=1, \ldots, k}$ is polyhedral in an open set Ω if for every phase K_{i} there is a finite number of $(d-1)$-dimensional simplexes $T_{1}, \ldots, T_{r_{i}} \subseteq$ \mathbb{R}^{d} such that ∂K_{i} coincides, up to a \mathcal{H}^{d-1}-null set, with $\cup_{j} T_{j} \cap \Omega$.
Definition 2.8. Let Ω be an open set of class C^{1}. For $\delta>0$ we define

$$
\Omega^{\delta}:=\left\{x \in \mathbb{R}^{d}: d(x, \Omega)<\delta\right\} \quad \Omega_{\delta}:=\left\{x \in \Omega: d\left(x, \mathbb{R}^{d} \backslash \Omega\right)>\delta\right\}
$$

We say that a measurable set F is transversal to $\partial \Omega$ if

$$
\lim _{\delta \rightarrow 0^{+}} \operatorname{Per}\left(F ; \Omega^{\delta} \backslash \Omega_{\delta}\right)=0
$$

We say that F is transversal to $\partial \Omega^{+}$if

$$
\lim _{\delta \rightarrow 0^{+}} \operatorname{Per}\left(F ; \Omega^{\delta} \backslash \Omega\right)=0
$$

A cluster is transversal to $\partial \Omega$ (resp. to $\partial \Omega^{+}$) if every phase is transversal.
Theorem 2.9. Let Ω be a bounded open set with C^{1} boundary, and let \mathcal{F} be a cluster in Ω such that every phase F_{i} has finite perimeter in Ω. For every $\varepsilon>0$ there exists a cluster $\mathcal{K}_{\varepsilon}$ which is polyhedral in Ω, such that $\mathcal{K}_{\varepsilon} \rightarrow \mathcal{F}$ in $L^{1}(\Omega)$ and $\mathcal{P}_{c}\left(\mathcal{K}_{\varepsilon} ; \Omega\right) \rightarrow \mathcal{P}_{c}(\mathcal{F} ; \Omega)$.

Assume moreover that \mathcal{F} is polyhedral in $\mathbb{R}^{d} \backslash \Omega$ and transversal to $\partial \Omega^{+}$. Then for every $\varepsilon>0$ there exists a polyhedral cluster $\mathcal{K}_{\varepsilon}$ with the following properties:
i) $\mathcal{K}_{\varepsilon} \rightarrow \mathcal{F}$ in $L^{1}(\Omega)$,
ii) $\mathcal{K}_{\varepsilon}=\mathcal{F}$ in $\mathbb{R}^{d} \backslash \Omega$,
iii) $\mathcal{K}_{\varepsilon}$ is transversal to $\partial \Omega$,
iv) $\mathcal{P}_{c}\left(\mathcal{K}_{\varepsilon} ; \Omega\right) \rightarrow \mathcal{P}_{c}(\mathcal{F} ; \Omega)$ as $\varepsilon \rightarrow 0$.

Proof. The first part of the result is proved in [4, Theorem 2.1 and Corollary 2.4]. By inspecting the proof in [4] one can check that if the initial cluster is polyhedral outside Ω, then the approximating sequence of polyhedral clusters $\mathcal{K}_{\varepsilon}$ can be chosen in such a way that $\mathcal{K}_{\varepsilon}=\mathcal{F}$ in $\mathbb{R}^{d} \backslash \Omega^{\varepsilon}$.

We fix now $\delta>0$ sufficiently small and we substitute \mathcal{F} in $\Omega \backslash \overline{\Omega_{\delta}}$ with the reflection of \mathcal{F} from $\Omega^{\delta} \backslash \bar{\Omega}$. The reflection is constructed as follows: We identify points in $\Omega^{\delta} \backslash \bar{\Omega}$ and points in $\Omega \backslash \overline{\Omega_{\delta}}$ by putting $x+t \hat{\nu}(x)=x-t \hat{\nu}(x)$ for $t \in(0, \delta)$, where $\hat{\nu}(x)$ is a C^{1} function which coincides on $\partial \Omega$ with the outer normal at x. In this way we obtain a new cluster \mathcal{F}_{δ} which coincides with \mathcal{F} in $\left(\mathbb{R}^{d} \backslash \Omega\right) \cup \Omega_{\delta}$, and which is the reflection of \mathcal{F} in $\Omega \backslash \overline{\Omega_{\delta}}$. Note
that, by construction, \mathcal{F}_{δ} is transversal to $\partial \Omega$. By using the previous result in the set Ω_{δ}, we construct a family of approximating polyhedral clusters $\mathcal{K}_{\varepsilon, \delta}$ for $\varepsilon \rightarrow 0$, which coincide with \mathcal{F}_{δ} in $\mathbb{R}^{d} \backslash\left(\Omega_{\delta}\right)^{\varepsilon}$. We choose now $\varepsilon=\varepsilon(\delta)<\delta$, so that $\left(\Omega_{\delta}\right)^{\varepsilon(\delta)} \subset \Omega$: Therefore $\mathcal{K}_{\varepsilon(\delta), \delta}$ is a polyhedral cluster which coincides with \mathcal{F}_{δ} in $\mathbb{R}^{d} \backslash\left(\Omega_{\delta}\right)^{\varepsilon(\delta)}$ and so in particular coincides with \mathcal{F} in $\mathbb{R}^{d} \backslash \Omega$, and is transversal to $\partial \Omega$. Moreover $\mathcal{K}_{\varepsilon(\delta), \delta} \rightarrow \mathcal{F}$ in $L^{1}(\Omega)$ as $\delta \rightarrow 0$, and for every $\eta>0$ sufficiently small, there holds $\mathcal{P}_{c}\left(\mathcal{K}_{\varepsilon(\delta), \delta} ; \Omega_{\eta}\right) \rightarrow \mathcal{P}_{c}\left(\mathcal{F} ; \Omega_{\eta}\right)$ as $\delta \rightarrow 0$. This implies the conclusion.

We now provide a Γ-convergence result, which is based on the analogous result obtained for the single phase in $[2,7]$ and by the density of polyhedral clusters in Theorem 2.9.

Theorem 2.10. Let Ω be a C^{1} bounded open set and let $\overline{\mathcal{E}}$ a cluster which is polyhedral in $\mathbb{R}^{d} \backslash \Omega$ and is transversal to $\partial \Omega^{+}$.

For every sequence of positive numbers $c=\left(c_{i}\right)_{i}$, as $s \rightarrow 1$ there holds

$$
\begin{equation*}
(1-s) \mathcal{P}_{s, c}(\mathcal{E} ; \Omega) \xrightarrow{\Gamma} \omega_{d-1} \mathcal{P}_{c}(\mathcal{E} ; \Omega), \tag{9}
\end{equation*}
$$

with respect to the $L^{1}(\Omega)$-convergence, where the functionals $\mathcal{P}_{s, c}(\mathcal{E} ; \Omega)$ and $\mathcal{P}_{c}(\mathcal{E} ; \Omega)$ are defined only on clusters \mathcal{E} such that $\mathcal{E}=\overline{\mathcal{E}}$ in $\mathbb{R}^{d} \backslash \Omega$, and extended as $+\infty$ elsewhere.

Proof. Let $s \rightarrow 1, \mathcal{E}^{s}, \mathcal{E}$ clusters which coincide with $\overline{\mathcal{E}}$ outside Ω and such that $\mathcal{E}^{s} \rightarrow \mathcal{E}$ in $L^{1}(\Omega)$. Then using the Γ-liminf inequality for the single phase proved in $[2,7]$ we get

$$
\begin{align*}
\liminf _{s \rightarrow 1}(1-s) \mathcal{P}_{s, c}\left(\mathcal{E}^{s} ; \Omega\right) & \geq \sum_{i=1}^{k} c_{i} \liminf _{s \rightarrow 1}(1-s) \operatorname{Per}_{s}\left(E_{i}^{s} ; \Omega\right) \\
& \geq \omega_{d-1} \sum_{i=1}^{k} c_{i} \operatorname{Per}\left(E_{i} ; \Omega\right)=\omega_{n-1} \mathcal{P}_{c}(\mathcal{E} ; \Omega) \tag{10}
\end{align*}
$$

Fix now a cluster \mathcal{E} which coincides with $\overline{\mathcal{E}}$ outside Ω. By the Γ-liminf inequality we can restrict to consider clusters whose phases have finite perimeter in Ω. By Theorem 2.9, for every ε, there exist polyhedral $\mathcal{K}_{\varepsilon}$ which are transversal to $\partial \Omega$, coincide with $\overline{\mathcal{E}}$ in $\mathbb{R}^{d} \backslash \Omega$, and satisfy $\mathcal{K}_{\varepsilon} \rightarrow \mathcal{E}$ in $L^{1}(\Omega)$ and $\mathcal{P}_{c}\left(\mathcal{K}_{\varepsilon} ; \Omega\right) \rightarrow \mathcal{P}_{c}(\mathcal{E} ; \Omega)$ as $\varepsilon \rightarrow 0$. By [2, Lemma 8], there holds for all ε

$$
\begin{aligned}
& \limsup _{s_{n} \rightarrow 1}\left(1-s_{n}\right) \mathcal{P}_{s_{n}, c}\left(\mathcal{K}_{\varepsilon} ; \Omega\right) \leq \sum_{i=1}^{k} c_{i} \limsup _{s_{n} \rightarrow 1}\left(1-s_{n}\right) \operatorname{Per}_{s_{n}}\left(K_{\varepsilon}^{i} ; \Omega\right) \\
\leq & \omega_{d-1} \sum_{i=1}^{k} c_{i} \operatorname{Per}\left(K_{\varepsilon}^{i} ; \Omega\right)=\omega_{d-1} \mathcal{P}_{c}\left(\mathcal{K}_{\varepsilon} ; \Omega\right) \leq \omega_{d-1} \mathcal{P}_{c}(\mathcal{E} ; \Omega)+o_{\varepsilon}(1)
\end{aligned}
$$

where $o_{\varepsilon}(1) \rightarrow 0$ as $\varepsilon \rightarrow 0$. We conclude recalling that $\mathcal{K}_{\varepsilon} \rightarrow \mathcal{E}$ in $L^{1}(\Omega)$ as $\varepsilon \rightarrow 0$, and choosing $\varepsilon_{n}=\varepsilon\left(s_{n}\right) \rightarrow 0$ as $s_{n} \rightarrow 1$.

Finally, using the Γ-convergence result and the density estimates recalled in Theorem 2.2, which are uniform in $s \geq s_{0}$, we get uniform convergence of minimizers of the Dirichlet problem as $s \rightarrow 1$ to the minimizer of the Dirichlet problem with local perimeter.

We recall the definition of Hausdorff convergence.

Definition 2.11. Let $E_{n}, E \subset \Omega$, where Ω is a open set. We say that $E_{n} \rightarrow E$ locally uniformly in Ω, if for any $\varepsilon>0$ and any $\Omega^{\prime} \subset \subset \Omega$, there exists \bar{n} such that for all $n \geq \bar{n}$, we have that

$$
\sup _{x \in E_{n} \cap \Omega^{\prime}} d(x, E) \leq \varepsilon \quad \text { and } \quad \sup _{x \in\left(\Omega \backslash E_{n}\right) \cap \Omega^{\prime}} d(x, \Omega \backslash E) \leq \varepsilon .
$$

First of all we state an equicoercivity property of the functionals $(1-s) \mathcal{P}_{s, c}$, which is obtained by applying to each phase the equicoercivity result in [2, Theorem 1].
Lemma 2.12. Let Ω be a bounded open set, $\overline{\mathcal{E}}$ a k-cluster in $\mathbb{R}^{d} \backslash \Omega$ and $c=\left(c_{i}\right)$ a sequence of positive numbers. Let $s_{n} \rightarrow 1$, and $\mathcal{E}^{s_{n}}$ a family of k-clusters with $\mathcal{E}^{s_{n}}=\overline{\mathcal{E}}$ in $\mathbb{R}^{d} \backslash \Omega$ and with equibounded energy, that is there exists $C>0$ for which

$$
\sup _{n}\left(1-s_{n}\right) \mathcal{P}_{s_{n}, c}\left(\mathcal{E}^{s_{n}} \Omega\right) \leq C
$$

Then $\mathcal{E}^{s_{n}}$ is relatively compact in $L^{1}(\Omega)$.
Theorem 2.13. Under the assumptions of Theorem 2.10, let $s_{n} \rightarrow 1$ and let $\mathcal{E}^{s_{n}}=\left(E_{1}^{s_{n}}, \ldots, E_{k}^{s_{n}}\right)$ be a sequence of minimizers of

$$
\begin{equation*}
\inf _{\left\{\mathcal{F}, F_{i} \backslash \Omega=\bar{E}_{i}\right\}} \mathcal{P}_{S_{n}, c}(\mathcal{F} ; \Omega) . \tag{11}
\end{equation*}
$$

Then, up to a subsequence, $E_{i}^{s_{n}} \rightarrow E_{i}$ locally uniformly in Ω, where $\mathcal{E}=\left(E_{1}, \ldots, E_{k}\right)$ is a minimizer of

$$
\inf _{\left\{\mathcal{F}, F_{i} \backslash \Omega=\bar{E}_{i}\right\}} \mathcal{P}_{c}(\mathcal{F} ; \Omega)
$$

Moreover, for any $x \in \mathcal{R}(\mathcal{E}) \cap \Omega$ there exists $r_{x}>0$ such that $\partial \mathcal{E}^{s_{n}} \cap B\left(x, r_{x}\right)$ is $C^{\infty}{ }_{-}$ diffeomorphic to $\partial \mathcal{E} \cap B\left(x, r_{x}\right)$ for n large enough.

Proof. First of all, we observe that due to minimality, reasoning as in the proof of Theorem 2.1, $\left(1-s_{n}\right) \mathcal{P}_{s_{n}, c}\left(\mathcal{E}^{s_{n}} ; \Omega\right) \leq k \max c_{i}\left(1-s_{n}\right) \operatorname{Per}_{s_{n}}(\Omega) \leq C$, since $\lim _{n}\left(1-s_{n}\right) \operatorname{Per}_{s_{n}}(\Omega)=\operatorname{Per}(\Omega)$, see [7]. Now, by Lemma 2.12, up to passing to a subsequence we have that $\mathcal{E}^{s_{n}} \rightarrow \mathcal{E}$ in $L^{1}(\Omega)$ and by Theorem $2.10, \mathcal{E}=\left(E_{1}, \ldots, E_{k}\right)$ is a minimizer of

$$
\inf _{\left\{\mathcal{F}, F_{i} \backslash \Omega=\bar{E}_{i}\right\}} \mathcal{P}_{c}(\mathcal{F} ; \Omega)
$$

We show now that, by the density estimates in Theorem 2.2 , we get that the convergence is locally uniform in Ω. Assume by contradiction that it is not true. Then, for some $\Omega^{\prime} \subset \subset \Omega$ and for some $\varepsilon>0$, either there exists $x_{k} \in E_{i}^{s_{k}} \cap \Omega^{\prime}$ such that $d\left(x_{k}, E_{i}\right)>\varepsilon$ for all k or there exists $x_{k} \in\left(\Omega \backslash E_{i}^{s_{k}}\right) \cap \Omega^{\prime}$ such that $d\left(x_{k}, \Omega \backslash E_{i}\right)>\varepsilon$. Let us consider the first case (the second is completely analogous). By the density estimates in Theorem 2.2, letting $2 \delta=\min \left(d\left(\partial \Omega^{\prime}, \partial \Omega\right), \varepsilon\right)$ we get that $\left|E_{i}^{s_{k}} \cap B\left(x_{k}, \delta\right)\right| \geq \sigma_{0} \omega_{n} \delta^{n}$ for all k. Note that $A_{k}:=$ $E_{i}^{s_{k}} \cap B\left(x_{k}, \delta\right) \subset \subset \Omega,\left|A_{k}\right|>c>0$ uniformly in k and $A_{k} \cap E_{i}=\emptyset$, in contradiction with the $L^{1}(\Omega)$-convergence of $\chi_{E_{k}}$ to χ_{E}.

Finally, let us fix a regular point $x \in \partial \mathcal{E} \cap \Omega$. Then, there exist two indexes i, j and $r>0$ such that $E_{h} \cap B(x, 2 r)=\emptyset$ for all $h \neq i, j$. By Hausdorff convergence, there exists n_{0} such that for $n>n_{0}$ there holds that $E_{h}^{s_{n}} \cap B(x, r)=\emptyset$ for all $h \neq i, j$ and moreover, reasoning as in the proof of Theorem $2.6 E_{i}^{s_{n}}$ is a Λ-minimizer for $\operatorname{Per}_{s_{n}}$ in $B(x, r)$, where Λ can be chosen uniform in $n>n_{0}$. By the uniform in s improvement of flatness of Λ-minimizers of Per_{s} proved in [9, Theorem 3.4, Corollary 3.5], we get that, eventually reducing r, all the points in $\partial \mathcal{E}^{s_{n}} \cap B(x, r)$ are regular for $n>n_{0}$. Finally, by [9, Corollary 3.6] we conclude that there
exist $\alpha \in(0,1)$ and a sequence $\psi_{s_{n}} \in C^{1, \alpha}\left(\partial E_{i} \cap B(x, r)\right)$ such that $\left\|\psi_{s_{n}}\right\|_{C^{1, \alpha}} \leq C$ for $n>n_{0}$, $\lim _{s_{n} \rightarrow 1}\left\|\psi_{s_{n}}\right\|_{C^{1}}=0$ and $\partial E_{i}^{s_{n}} \cap B(x, r)=\left(I d+\psi_{s_{n}} \nu_{E_{i}}\right)\left(\partial E_{i} \cap B(x, r)\right)$, for all $n>n_{0}$. Actually, by the bootstrap argument in [3, Theorem 6] actually $\psi_{s_{n}} \in C^{\infty}\left(\partial E_{i} \cap B(x, r)\right)$, with uniform norm. This gives the conclusion.

Remark 2.14. Note that Theorem 2.13 does not imply that $\partial \mathcal{E}^{s_{n}} \cap \Omega$ is diffeomorphic to $\partial \mathcal{E} \cap \Omega$ for n large enough. The main obstruction to obtain such a result (which is expected) is the lack of a regularity theory up to the singular set of the cluster. We point out that, for cluster minimizing the classical perimeter, the regularity theory around singular points is well-developed only in dimension $d=2,3$ (see [12, 8]).
Remark 2.15. We observe that all the results in this section can be easily extended to the isoperimetric clusters considered in [8].

3. Minimal cones

In this section we restrict to the 2 -dimensional case, $d=2$, and to consider the functional (1), that is we assume that all the weights c_{i} are equal.

We recall the definition of local minimizer (or minimizer up to compact perturbations).
Definition 3.1. We say that the k-cluster \mathcal{E} is a local minimizer for (1) if for every $R>0$ and every ball B_{R} of radius R, there holds

$$
\mathcal{P}_{s}\left(\mathcal{E} ; B_{R}\right) \leq \mathcal{P}_{s}\left(\mathcal{F} ; B_{R}\right)
$$

for all k-clusters \mathcal{F}, such that $F_{i} \backslash B_{R}=E_{i} \backslash B_{R}$ for all i.
We now observe that there exists a unique 3 -cone which is a stationary point for (1).
Lemma 3.2. Among all 3 -cones in \mathbb{R}^{2}, there exists a unique cone which is stationary for the functional in (1), and the opening angles are equals, and coincide with $2 / 3 \pi$.
Proof. We consider a cone $\mathcal{C}=\left(C_{1}, C_{2}, C_{3}\right)$ with 3 half-lines and vertex x_{0} which is stationary for the functional (1) (so, the first variation of (1) at every boundary point is 0). We denote with α_{i} the angle associated to the sector E_{i}, so $\alpha_{1}+\alpha_{2}+\alpha_{3}=2 \pi$. Up to a translation we assume that the vertex of the cone is 0 .

The stationarity condition reads

$$
\begin{equation*}
H_{s}\left(x, C_{i}\right)=H_{s}\left(x, C_{j}\right) \quad \forall x \in \partial C_{i} \cap \partial C_{j}, x \neq 0 \tag{12}
\end{equation*}
$$

where $H_{s}\left(x, C_{i}\right)$ is the fractional curvature at $x \in \partial C_{i}$, defined in (8).
It is easy to check that of $x \in \partial C_{i} \cap \partial C_{j}$, we have that

$$
\begin{equation*}
H_{s}\left(x, C_{i}\right) \leq 0 \quad \text { if and only if } \quad \alpha_{i} \geq \pi . \tag{13}
\end{equation*}
$$

Using this observation, (12), and the fact that $\alpha_{1}+\alpha_{2}+\alpha_{3}=2 \pi$, we have that $\alpha_{i}<\pi$.
We exploit now condition (12) for $i=1, j=2$ (all the other cases will be analogous). We assume without loss of generality that $\alpha_{1} \geq \alpha_{2}$ and we write $C_{1}=\tilde{C}_{2} \cup B$, where \tilde{C}_{2} is the symmetric of C_{2} with respect to the half-line separating C_{1}, C_{2} and B is a sector of the cone with opening angle $\alpha_{1}-\alpha_{2}$. Let $\tilde{B} \subseteq C_{3}$ be the symmetric of B with respect to the half-line separating C_{1}, C_{2}. By symmetry properties of the kernel it is easy to check that

$$
\begin{align*}
& H_{s}\left(x, C_{1}\right)=\int_{C_{3}} \frac{1}{|x-y|^{2+s}} d y-\int_{B} \frac{1}{|x-y|^{2+s}} d y=\int_{\left(C_{3} \backslash \tilde{B}\right)-x} \frac{1}{|y|^{2+s}} d y \tag{14}\\
& H_{s}\left(x, C_{2}\right)=\int_{C_{3}} \frac{1}{|x-y|^{2+s}} d y+\int_{B} \frac{1}{|x-y|^{2+s}} d y=\int_{\left(C_{3} \cup B\right)-x} \frac{1}{|y|^{2+s}} d y .
\end{align*}
$$

Note that $C_{3} \backslash \tilde{B}$ is a sector of the cone with opening angle $\alpha_{3}-\alpha_{1}+\alpha_{2}=2 \pi-2 \alpha_{1}>0$, whereas $C_{3} \cup B$ is a sector of the cone with opening angle $\alpha_{3}+\alpha_{1}-\alpha_{2}=2 \pi-2 \alpha_{2}>0$, and both are symmetric with respect to the half-line separating C_{1}, C_{2}. Therefore condition (12) implies that $2 \pi-2 \alpha_{1}=2 \pi-2 \alpha_{2}$. Repeating the argument we get that $\alpha_{1}=\alpha_{2}=\alpha_{3}$.
Proposition 3.3. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded C^{1} open set containing the origin, let $k=3$ and let \bar{E}_{i} be the exterior datum defined as

$$
\bar{E}_{i}:=\left\{x \in \mathbb{R}^{2}: x \cdot n_{i}>\frac{1}{2}\right\}, \quad n_{i}:=\left(\cos \left(\frac{2}{3} \pi i\right), \sin \left(\frac{2}{3} \pi i\right)\right) .
$$

Then there exists $s_{0} \in(0,1)$ such that for $s>s_{0}$ every minimizer of the Dirichlet problem (6) with $c_{i}=1$ for all i has a nonempty singular set in Ω.

Proof. Let $\mathcal{E}_{s}=\left(E_{1}^{s}, E_{2}^{s}, E_{3}^{s}\right)$ be a solution to the Dirichlet problem (6) with $c_{i}=1$. Let \mathcal{E} the solution to the Dirichlet problem with the same boundary data and functional given by the local perimeter (4), with all $c_{i}=1$. Then \mathcal{E} is the solution of the classical geometric Steiner problem and $E_{i}=\bar{E}_{i}$ for every i. By Theorem 2.10, up to a subsequence we get that $E_{i}^{s} \rightarrow \bar{E}_{i}$ locally uniformly in Ω as $s \rightarrow 1$, for $i \in\{1,2,3\}$. Let $R>0$ be such that $B(0, R) \subset \Omega$.

Assume by contradiction that there is a sequence $s_{n} \rightarrow 1$ such that $\partial E_{i}^{s_{n}} \cap \Omega$ is of class C^{1} for all n 's. There exists $r \in(0, R)$ such that, for $i \neq j$, the set $\gamma_{i j}^{n}:=\partial E_{i}^{s_{n}} \cap \partial E_{j}^{s_{n}} \cap B(0, r)$ is a finite number of C^{1} curves with endpoints on $\partial B(0, r)$, converging to the segment $\partial \bar{E}_{i} \cap \partial \bar{E}_{j} \cap$ $B(0, r)$ as $n \rightarrow+\infty$ in the Hausdorff distance. In particular, given $\varepsilon>0$, for n large enough the set $\gamma_{i j}^{n}$ divides the circle $B(0, r)$ into a finite number of small connected components and one large connected component of area greater than $|B(0, r)|-\varepsilon$. As a consequence either the set $E_{i}^{s_{n}} \cap B(0, r)$ or $E_{j}^{s_{n}} \cap B(0, r)$ is contained in the union of such small connected components, so that either $\left|E_{i}^{s_{n}} \cap B(0, r)\right| \leq \varepsilon$ or $\left|E_{j}^{s_{n}} \cap B(0, r)\right| \leq \varepsilon$ for n large enough, contradicting the convergence of $E_{k}^{s_{n}} \cap B(0, r)$ to $\bar{E}_{k} \cap B(0, r)$, for all $k \in\{1,2,3\}$.
Theorem 3.4. There exists $s_{0} \in(0,1)$ such that the following holds: Among all cones, the unique local minimizers for \mathcal{P}_{s}, for $s>s_{0}$, are half-planes and 3 -cones with equal opening angles given by $2 / 3 \pi$.
Proof. Let $s_{n} \rightarrow 1$ and let \mathcal{C}_{n} be a sequence of minimal cones for \mathcal{P}_{s}. By Theorem 2.10 there exists a minimal cone \mathcal{C} for the classical perimeter such that $\mathcal{C}_{n} \rightarrow \mathcal{C}$ locally uniformly as $n \rightarrow \infty$. Since the only minimal cones in \mathbb{R}^{2} are half-planes or 3 -cones with angles of $2 / 3 \pi$ [1], it follows by the uniform convergence that also the \mathcal{C}_{n} 's are a half-spaces or 3 -cones for n large enough. By Lemma 3.2, if \mathcal{C}_{n} is a minimal 3 -cone then necessarily it has equal angles of $2 / 3 \pi$.

By Proposition 3.3 we know that there exist minimal cones which are not half-planes, and this concludes the proof.

Remark 3.5. An interesting issue which is left open is whether Theorem 3.4 is true for all $s \in(0,1)$. We conjecture this is the case, but in order to prove this result it would be necessary to develop some new technical argument. A related problem is about the possibility of extending the nonlocal calibrations recently introduced in [5, 14] to clusters, in the same spirit of the paired calibrations used in [11].

Remark 3.6. By Theorem 2.13, for every $r>0$ there exists $s_{r} \in(0,1)$ such that the solution to the Dirichlet problem given in Proposition 3.3, with $s \in\left[s_{r}, 1\right)$, is diffeomorphic in $\Omega \backslash B(0, r)$ to the solution of the classical Steiner problem, which is given by ($\bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3}$).

We point out, recalling Remark 2.14, that even if the limit cluster has only one singular point in 0 , our results do not exclude that the approximating clusters have more singular points, all converging to 0 as $s \rightarrow 1$.

4. Weighted fractional perimeters

Let us fix a sequence c_{i} with $i \in \mathbb{N}$, such that $c_{i}>0$ for all i and consider the energy associated to a k-cluster \mathcal{E} and to the sequence c_{i} as

$$
\begin{equation*}
\mathcal{P}_{s, c}(\mathcal{E} ; \Omega)=\sum_{1 \leq i \leq k} c_{i} \operatorname{Per}_{s}\left(E_{i} ; \Omega\right) \tag{15}
\end{equation*}
$$

First of all we consider the generalization of Lemma 3.2.
Lemma 4.1. Among all 3 -cones in \mathbb{R}^{2} there exists a unique cone which is stationary for the functional in (15), and the opening angles are uniquely determined as functions of c_{i}.

Proof. The proof is analogous to that of Lemma 3.2. The stationarity condition reads

$$
\begin{equation*}
c_{i} H_{s}\left(x, C_{i}\right)=c_{j} H_{s}\left(x, C_{j}\right) \quad \forall x \in \partial C_{i} \cap \partial C_{j}, x \neq 0 \tag{16}
\end{equation*}
$$

and since $c_{i}>0$ for all i, we get $\alpha_{i}<\pi$.
Proceeding as in (14) in the proof of Lemma 3.2 and using the same notation, we note that for all $\lambda>0, \lambda\left(\left(C_{3} \backslash \tilde{B}\right)-x\right)=\left(C_{3} \backslash \tilde{B}\right)-\lambda x$ and $\lambda\left(\left(C_{3} \cup B\right)-x\right)=\left(C_{3} \cup B\right)-\lambda x$. Therefore $H_{s}\left(x, C_{i}\right)=\lambda^{s} H_{s}\left(\lambda x, C_{i}\right)$. This implies that it is sufficient to verify condition (16) just for one $x \neq 0$. We fix from now on x, with $|x|=1$.

We introduce the function $F:[0, \pi) \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
F(\alpha)=2 \int_{0}^{\alpha} \int_{0}^{+\infty} \frac{\rho}{\left(1+\rho^{2}+2 \rho \cos \theta\right)^{1+s / 2}} d \rho d \theta \tag{17}
\end{equation*}
$$

Note that if K is a sector of the cone with opening angle 2α and which is symmetric with respect to the half-line separating C_{1}, C_{2}, then $F(\alpha)=\int_{K} \frac{1}{|x-y|^{2+s}} d y$. Note that $F(0)=0$ and

$$
F^{\prime}(\alpha)=2 \int_{0}^{+\infty} \frac{\rho}{\left(1+\rho^{2}+2 \rho \cos \alpha\right)^{1+s / 2}} d \rho>0
$$

Therefore F is invertible.
Recalling the definition of F and (14), we may restate (16) as

$$
\begin{equation*}
c_{2} F\left(\pi-\alpha_{2}\right)=c_{1} F\left(\pi-\alpha_{1}\right) \tag{18}
\end{equation*}
$$

With the same argument we conclude that the cone \mathcal{C} is stationary iff

$$
\begin{equation*}
c_{2} F\left(\pi-\alpha_{2}\right)=c_{1} F\left(\pi-\alpha_{1}\right)=c_{3} F\left(\pi-\alpha_{3}\right) \tag{19}
\end{equation*}
$$

Let $k>0$ be the solution to the equation

$$
F^{-1}\left(k / c_{1}\right)+F^{-1}\left(k / c_{2}\right)+F^{-1}\left(k / c_{3}\right)=\pi
$$

which exists and is unique due to the fact that $F^{-1}:[0,+\infty) \rightarrow \mathbb{R}$ is monotone increasing. Then the angles α_{i} are uniquely determined as

$$
\alpha_{i}=\pi-F^{-1}\left(k / c_{i}\right)
$$

Remark 4.2. In the case of standard perimeter, it has been proved in [10] that the unique 3 -cone which is a local minimizer for the functional $\sum_{1 \leq i \leq 3} c_{i} \operatorname{Per}\left(E_{i}\right)$ has opening angles α_{i} which satisfies the following relation

$$
\frac{\sin \alpha_{1}}{c_{2}+c_{3}}=\frac{\sin \alpha_{2}}{c_{1}+c_{3}}=\frac{\sin \alpha_{3}}{c_{1}+c_{2}}
$$

For general k-clusters, with $k>3$, in general there could be singular cones with more than 3 phases which are local minimizers. However, in [13] it is proved that if the weights c_{i} are sufficiently close to 1 , it is possible to recover the triple-point property: Only 3 -cones are local minimizers.

We get in this case the following analogous of Theorem 3.4 for the case of 3 cones. We state it in this form since for the functional $\sum_{i} c_{i} \operatorname{Per}\left(E_{i}\right)$ it is not known if the unique local minimizers among cones are just half-planes and the 3-cone given in Remark 4.2, see [11].

Proposition 4.3. There exists $s_{0} \in(0,1)$ depending on $\left(c_{i}\right)_{i}$ such that the following holds: Among all 2-cones and 3-cones, the unique local minimizers for $\mathcal{P}_{s, c}$, for $s>s_{0}$, are halfplanes and the 3-cone obtained in Lemma 4.1.

Proof. Arguing as in the proof of Theorem 3.4, we consider $s_{n} \rightarrow 1$ and \mathcal{C}_{n} to be a sequence of minimal cones for $\sum_{i=1}^{3} c_{i} \operatorname{Per}_{s_{n}}(\cdot)$. By Theorem 2.10 there exists a minimal cone \mathcal{C} for $\sum_{i=1}^{3} c_{i} \operatorname{Per}(\cdot)$ such that $\mathcal{C}_{n} \rightarrow \mathcal{C}$ locally uniformly as $n \rightarrow \infty$. Since the only minimal cones in \mathbb{R}^{2} are half-planes or 3 -cones with angles given in Remark 4.2 , it follows by the uniform convergence that also the \mathcal{C}_{n} 's are a half-planes or 3 -cones for n large enough. By Lemma 4.1, if \mathcal{C}_{n} is a minimal 3 -cone then necessarily it coincides with the 3 -cone computed in the Lemma. Arguing as in Proposition 3.3, and recalling Remark 4.2, we get that there exist minimal cones which are not half-planes, and this concludes the proof.

References

[1] F. Almgren. Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. of Math. (2), 87:321-391, 1968.
[2] L. Ambrosio, G. D. Philippis, and L. Martinazzi. Г-convergence of nonlocal perimeter functionals. Manuscripta Math., 134(3-4):377-403, 2011.
[3] B. Barrios, A. Figalli, and E. Valdinoci. Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13(3):609-639, 2014.
[4] A. Braides, S. Conti, and A. Garroni. Density of polyhedral partitions. Calc. Var. Partial Differential Equations, 56(2):Art. 28, 10 pp., 2017.
[5] X. Cabré. Calibrations and null-lagrangians for nonlocal perimeters and an application to the viscosity theory. Ann. Mat. Pura Appl. (4), to appear, 2020.
[6] L. A. Caffarelli, J.-M. Roquejoffre, and O. Savin. Nonlocal minimal surfaces. Comm. Pure Appl. Math., 63:1111-1144, 2010.
[7] L. A. Caffarelli and E. Valdinoci. Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differential Equations, 41:1111-1144, 2011.
[8] M. Colombo and F. Maggi. Existence and almost everywhere regularity of isoperimetric clusters for fractional perimeters. Nonlinear Anal., 153:243-274, 2017.
[9] A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini. Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys., 336:441-507, 2015.
[10] G. Lawlor. Double bubbles for immiscible fluids in \mathbb{R}^{n}. J. Geom. Anal., 24(1):190-204, 2014.
[11] G. Lawlor and F. Morgan. Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms. Pacific J. Math., 166(1):55-83, 1994.
[12] F. Maggi. Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, Cambridge, 2012.
[13] G. D. Nin. Sticky-disk limit of planar n-bubbles. Adv. Calc. Var., to appear, 2020.
[14] V. Pagliari. Halfspaces minimise nonlocal perimeter: a proof via calibrations. Ann. Mat. Pura Appl. (4), to appear, 2020.
[15] O. Savin and E. Valdinoci. Г-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29(4):479-500, 2012.

Dipartimento di Scienze Statistiche, Università di Padova, Via Cesare Battisti 241/243, 35121 Padova, Italy

Email address: annalisa.cesaroni@unipd.it
Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
Email address: matteo.novaga@unipi.it

[^0]: 1991 Mathematics Subject Classification. 49Q05 58E12 35R11.
 Key words and phrases. Fractional perimeters, clusters, minimal cones.

