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A dynamical approach to the Sard problem in Carnot groupsI

Francesco Boarottoa,∗, Davide Vittonea

aDipartimento di Matematica “T. Levi-Civita”, Università degli studi di Padova, Italy

Abstract

We introduce a dynamical-systems approach for the study of the Sard problem in sub-
Riemannian Carnot groups. We show that singular curves can be obtained by concatenating
trajectories of suitable dynamical systems. As an applications, we positively answer the Sard
problem in some classes of Carnot groups.
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1. Introduction

It can be safely stated that, despite the explosion of interest it has witnessed in the last
decades, plenty of questions pertaining to sub-Riemannian geometry remain elusive even
among the foundational ones. One of them is surely the so-called Sard problem, that is
presently unsolved even in rich structures such as Carnot groups. In this paper we intend to
give a contribution to this problem, as we now explain.

Remember that a Carnot group G of rank r and step s is a connected, simply connected
and nilpotent Lie group whose Lie algebra g, here identified with the tangent at the group
identity e, admits a stratification of the form:

g = g1 ⊕ · · · ⊕ gs,

with gi+1 = [g, gi] for 1 ≤ i ≤ s − 1, [g, gs] = {0} and dim(g1) = r. A Carnot group can
be naturally endowed with a sub-Riemannian structure by declaring the first layer g1 of the
Lie algebra to be the horizontal space. Actually, Carnot groups are infinitesimal models for
sub-Riemannian manifolds (that we do not introduce here, see [4, 24, 29, 31]). Denoting by
Lg the left-translation on G by an element g ∈ G, we consider the endpoint map

Fe : L1([0, 1], g1)→ G,
u 7→ γu(1),

(1.1)
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where we denoted by γu : [0, 1] → G the absolutely continuous curve issuing from e, whose
derivative is given by (dLγu(t))eu(t) for a.e. t ∈ [0, 1]. Any such curve γu is called horizontal.

Definition 1. Given a Carnot group G, we denote by AbnG ⊂ G the set of the singular
values of Fe. In particular, a point g ∈ G belongs to AbnG if and only if there exists a
horizontal curve γu joining e and g that is associated with a critical value u of the differential
dFe.
As a matter of terminology, we call u a singular control and γu the associated singular (or,
equivalently, abnormal) curve.

As explained for instance in [3] and [29, Section 10.2], the Sard (or Morse-Sard) problem
concerns the following question: is it true that the singular set AbnG is negligible in G?
More generally, how large can it be? Remember that the Morse-Sard theorem for a smooth
map defined on a finite dimensional manifold states that the set of critical values of the
map has zero measure. However, this is no longer true in case the domain manifold is
infinite-dimensional. The relevance of the Sard problem in sub-Riemannian geometry stems
from the well-known influence that singular curves have on the regularity of geodesics, the
regularity of the distance and of its spheres, the heat diffusion, the analytic-hypoellipticity
of sub-Laplacians, etc.

Answers to the Sard problem are at the moment only partial. Building on techniques
by L. Rifford and E. Trélat [32], A. Agrachev [2] proved that, for general sub-Riemannian
manifolds, singular curves that are also length-minimizing are contained in a closed nowhere
dense set. A similar result has been obtained in [10] by D. Barilari and the first author
in the more general case of control systems that are affine in the control, i.e., admitting
a drift. In [28], the authors prove the negligibility of AbnG in Carnot groups of step 2 as
well as in some other cases, some of which will be mentioned below. A detailed study of
the singular set has been carried out in [13, 12] for 3-dimensional analytic sub-Riemannian
manifolds with 2-dimensional analytic horizontal distributions: it turns out that such a set
has Hausdorff dimension 1 and, actually, it is a semi-analytic curve. Other partial or related
results are contained in [35, 32, 26, 27, 7, 30]. Different approaches to study singular curves
are found e.g. in [18, 19, 17, 16], where the authors establish some regularity results that
hold for the generic control system. Another line of investigation is pursued e.g. in [5, 7, 15],
where singular curves are analyzed through a topological viewpoint, building on variational
methods à la Morse.

The main results of the present paper are the following theorems.

Theorem 2. Let G be a Carnot group of rank 2 and step 4. Then, AbnG is a sub-analytic
set of codimension at least 3 in G.

Theorem 3. Let G be a Carnot group of rank 3 and step 3. Then, AbnG is a sub-analytic
set of codimension at least 1 in G.

Theorem 2 was proved in [27] for the free Carnot group of rank 2 and step 4, see also [28,
Section 5.1]. Recall that a Carnot group is free if the only relations imposed on its Lie algebra
are those generated by the skew-symmetry and Jacobi’s identity. Also Theorem 3 is known
for the free group of rank 3 and step 3, see [28, Section 5.1]. We however believe that the main
novelty does not lie in the results per se, but rather in the techniques we exploit. The proofs
given in [27, 28] are purely algebraic and both rely on the so-called Tanaka prolongation of
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the Lie algebra of G. In order for the strategy in [27, 28] to work, it is necessary that the
prolongation is long enough and, as a matter of fact, this does not happen in general. On
the contrary, our dynamical-systems oriented approach can in principle be pursued in any
Carnot group. Let us describe it.

Recall that each singular control u is associated with a covector λ ∈ g∗ in such a way
that λ annihilates the image of dFe(u); since this image always contains g1 (see (2.11)), we
actually have λ ∈ g⊥1 . We use the necessary condition given by Proposition 17 below to show
that the primitive w (see Definition 6) of the control u is a concatenation (Definition 19)
of trajectories of a suitable dynamical system in Rr ≡ g1; w can switch between different
trajectories only at the equilibrium points of the dynamical system. When the group G is
either as in Theorem 2 or as in Theorem 3, the dynamical system is linear and, since the
primitive has to start at the origin, one can classify all the singular curves associated with λ.
The dynamical systems, of course, depend on λ ∈ g⊥1 : an important part of our work consists
in stratifying g⊥1 as the finite union of sub-varieties Λi in such a way that the dynamical
systems associated with elements of each (fixed) Λi are all conjugate. Eventually, the set
AbnΛi

G made by the union of all singular curves associated with elements of Λi is sub-analytic,
and its codimension can be explicitly bounded. In particular, this codimension is at least 1
provided the codimension (in g∗) of Λi is strictly greater than the dimension, in G, of the set
that can be reached by (lifts to G of) concatenations of trajectories of the dynamical system,
associated with any λ ∈ Λi, that start at the origin.

We believe that, in Theorem 3, the bound 1 on the codimension of AbnG can be improved
and we conjecture that it holds with a lower bound 3 (see [30] for an analogous open question
in step 2 Carnot groups). We are able to prove our conjecture at least when G is the free
Carnot group of rank 3 and step 3.

Theorem 4. Let G be the free Carnot group of rank 3 and step 3. Then, AbnG is a sub-
analytic set of codimension 3 in G.

The computation of a better bound on the codimension of AbnG reduces to the compu-
tation of the codimension of each AbnΛi

G and is in principle possible with our techniques.
It requires some extra algebraic work and, since we were not interested in obtaining better
bounds on the codimension of AbnG, we completed this task for the free group only.

Another interesting feature of our approach is that it allows for a classification of singular
curves revealing also their very shapes and their possible singularities. In particular, we
recover many of the most exotic known examples of singular curves, see Remarks 29 and 31,
as well as new ones as in Remarks 38 and 43.

When the rank r and step s of G satisfies

• either r = 2 and s ≥ 5

• or r = 3 and s ≥ 4

• or r ≥ 4 and s ≥ 3

the Sard problem is open. One can nevertheless set up our approach and see that singular
curves are again concatenations of trajectories of suitable dynamical systems; however, such
systems are polynomial with degree two or more, and their study gets much harder. In Section
5 we briefly discuss the situation in the case of Carnot groups of rank 2 and step 5, where
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the involved dynamical systems are quadratic. Notice that a dynamical-systems approach
appears, although for different purposes, also in the beautiful paper [11]. It turns out that,
in the setting of Carnot groups of rank 2 and step 4, the dynamical system appearing in that
paper is the same we study; however, the analysis we need to perform is much finer than the
one needed for the scopes of [11].

The paper is structured as follows. In Section 2 we discuss the preliminary material and
we show how to derive the dynamical systems involved in our analysis; as an introductory
warming up, we also use our dynamical approach to study the Sard problem in Carnot groups
of rank 2 and step 3, see Section 2.4. Theorems 2 and 3 are proved, respectively, in Sections 3
and 4, while Theorem 4 is demonstrated in Section 4.10. Finally, Section 5 contains some
musings about Carnot groups of rank 2 and step 5.

2. Preliminaries

Let G be a Carnot group as introduced in Section 1. We consider on G the exponential
map exp : g → G, which is a real analytic diffeomorphism by, e.g, [20, Theorem 1.2.1]. We
also denote by · the group law in G and we define, given g ∈ G, the left-translation map
Lg : G→ G by Lg(h) = g · h.

Let n := dim(G) and let X1, . . . , Xn be a basis of g such that X1, . . . , Xr is a basis of g1.
When necessary, we tacitly identify g1 and (dLg)eg1, g ∈ G, so that the elements Xj ’s can
be thought of as left-invariant vector fields on G. We define a sub-Riemannian structure on
G considering on g1 the Riemannian metric that makes X1, . . . , Xr an orthonormal system.

Definition 5. Let γ : [0, 1] → G be absolutely continuous and such that γ(0) = e. We say

that γ is an admissible curve if γ̇(t) ∈ g1 for a.e. t ∈ [0, 1] and length(γ) :=
∫ 1

0
|γ̇(t)|dt < +∞,

where we denoted by | · | the norm on g1 induced by the fixed Riemannian metric.

Let u ∈ L1([0, 1], g1) and let γu : [0, 1]→ G be the curve solving a.e. on [0, 1] the ODE:

γ̇(t) = (dLγ(t))eu(t), γ(0) = e. (2.1)

Then γu is admissible. Conversely if γ : [0, 1]→ G is an absolutely continuous curve satisfying
(2.1) for some element u ∈ L1([0, 1], g1), then γ is admissible and u is its associated control.
In coordinates, i.e. identifying g1 with Rr = spanR{X1, . . . , Xr}, admissible curves are
parametrized a.e. on [0, 1] by the integral curves of the ODE:

γ̇(t) = u1(t)X1(γ(t)) + · · ·+ ur(t)Xr(γ(t)), γ(0) = e, (2.2)

where u ∈ L1([0, 1],Rr).
The notion of primitive of a control will play a basic role in the rest of the paper; we state

it here.

Definition 6. Let u ∈ L1([0, 1],Rr). We call primitive of u the function w ∈ AC([0, 1],Rr)
defined by:

w(t) :=

∫ t

0

u(τ)dτ

for every t ∈ [0, 1]. Observe that, if we denote by πg1 the projection of g onto g1, by well-
known properties of left-invariant vector fields in exponential coordinates (see e.g. [34, Propo-
sition 1.2.13]) we see that w(t) = πg1

(exp−1(γu(t))) for a.e. t ∈ [0, 1]. In particular, once
the function w is known, γẇ is determined integrating (2.2) with u = ẇ.
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2.1. Elements of chronological calculus

Singular curves are introduced in terms of the differential of the endpoint map in (1.1):
in this section we introduce the formalism of the chronological calculus needed for its study.
Chronological calculus is in essence an operatorial calculus introduced in [6], whose main
properties we now recall. We identify points g ∈ G with homomorphisms of C∞(G) onto R
by the formula gf := f(g), while we identify diffeomorphisms P of G with automorphisms
of C∞(G), i.e. with maps f 7→ Pf := f(P (·)) ∈ C∞(G). Tangent vectors at g ∈ G are
identified with linear functionals on C∞(G) that satisfy the Leibniz rule: if v ∈ TgG and g(t)
is a curve on G such that g(0) = g and ġ(0) = v, then

v : C∞(G)→ R,

vf :=
d

dt
f(g(t))

∣∣∣∣
t=0

.

Finally, we treat a smooth vector field V as the derivation of the algebra C∞(G) given by
f 7→ V f for every f ∈ C∞(G). We denote by Vec(G) the set of all smooth vector fields on
G. Given tI , tF ∈ R, a non-autonomous vector field on G, or simply a vector field on G, is
a measurable and locally bounded family t 7→ Vt for t ∈ [tI , tF ] and Vt ∈ Vec(G) for every
t ∈ [tI , tF ]. We also agree that, in chronological notations, compositions are indicated by ◦
and are read from left to right. For more details, we refer the interested reader to [8, Chapter
2] and to [25].

Let t0 ∈ [tI , tF ]. The flow of a vector field Vt is a family of diffeomorphisms (P tt0) on G,
t ∈ [tI , tF ], defined by the Cauchy problem:

d

dt
P tt0(g0) = Vt(P

t
t0(g0)),

P t0t0 (g0) = g0

(2.3)

for every g0 ∈ G. The assumptions on the family (Vt)t∈[tI ,tF ] imply that the solution to (2.3)
exists and is unique, at least locally.

Definition 7. Given t0 ∈ [tI , tF ] and a vector field (Vt)t∈[tI ,tF ], we define the (time-t right)

chronological exponential −→exp
∫ t
t0
Vτdτ of V as the diffeomorphism of G given by the formula

−→exp

∫ t

t0

Vτdτ := P tt0 , (2.4)

where P tt0 is defined as in (2.3).

Notice that P tt0 solves the Cauchy problem d
dtP

t
t0 = P tt0 ◦ Vt on the space of operators

on C∞(G), and that, if we want to include the initial datum g0 ∈ G, in the formalism
of chronological calculus we write d

dt

(
g0 ◦ P tt0

)
= g0 ◦ P tt0 ◦ Vt. Integrating iteratively the

differential equation in (2.4), we may formally expand P tt0 in the following Volterra series:

P tt0 = Id +

∞∑
k=1

∫
Σk(t0,t)

Vτk ◦ · · · ◦ Vτ1dτk . . . dτ1, t ≥ t0,

P tt0 = Id +

∞∑
k=1

(−1)k
∫

Ξk(t,t0)

Vτk ◦ · · · ◦ Vτ1dτk . . . dτ1, t < t0.

(2.5)
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where
Σk(t0, t) := {(τ1, . . . , τk) ∈ Rk | t0 ≤ τk ≤ · · · ≤ τ1 ≤ t} if t ≥ t0,
Ξk(t, t0) := {(τ1, . . . , τk) ∈ Rk | t ≤ τ1 ≤ · · · ≤ τk ≤ t0} if t < t0.

We also agree that Σk(t) := Σk(0, t), Ξk(t) := Ξk(t, 0) and Σk := Σk(1), that is the k-th
dimensional simplex.

Remark 8. The equations in (2.5) are to be read as formal Volterra series. Indeed, as
a consequence of Borel’s Lemma [23, Theorem 1.2.6], these series are never convergent on
C∞(G) in the weak sense unless Vt ≡ 0. This causes no harm to the rigour of our arguments,
since we will only deal with finitely many terms in these expansions.

Remark 9. We will need to deal in the paper with vector fields t 7→ Vt well-defined for all
times t ∈ R ∪ {±∞} and, accordingly, with chronological exponentials where either t or t0 is
equal to ±∞. In these cases, denoting by P tt0 the flow of Vt as in (2.4), one should read

−→exp

∫ ±∞
t0

Vτdτ := lim
t→±∞

P tt0 ,
−→exp

∫ t0

±∞
Vτdτ := lim

t→±∞
(P tt0)−1.

By this, we mean that for every f ∈ C∞(G)

−→exp

∫ ±∞
t0

Vτdτf = lim
t→±∞

P tt0f,
−→exp

∫ t0

±∞
Vτdτf = lim

t→±∞
(P tt0)−1f

as elements of C∞(G).

Let B be a diffeomorphism of G. The tangent map B∗ acts on vectors v ∈ TgG as a
composition B∗v = v ◦B ∈ TB(g)G. Then, if V ∈ Vec(G), the action of B∗ on V is given by

B∗V = B−1 ◦ V ◦B,

that is, B∗V is the standard push-forward map. The vector field (AdB)V is defined by the
formula

(AdB)V = B ◦ V ◦B−1

and we have the identity Ad(B−1) = B∗.

Given a flow P tt0 := −→exp
∫ t
t0
Vτdτ , we want to write down an ODE describing the evolution

of AdP tt0 . This differential equation is meant at the level of operators on the Lie algebra of
the smooth vector fields on G. For every X ∈ Vec(G) we have:

d

dt
AdP tt0X = P tt0 ◦ (Vt ◦X −X ◦ Vt) ◦ P−tt0 = (AdP tt0)[Vt, X] = (AdP tt0)adVtX,

where ad denotes the standard left Lie multiplication. By the arguments in [8, §2.5] we see
that AdP tt0 is the unique solution to the Cauchy problem

d

dt
Att0 = Att0 ◦ adVt, At0t0 = Id,

and this allows for the definition:

−→exp

∫ t

t0

adVτdτ := Ad

(
−→exp

∫ t

t0

Vτdτ

)
. (2.6)
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2.2. The differential of the endpoint map

Given v ∈ Rr, we introduce the short-hand notation Xv :=
∑r
i=1 viXi ∈ g1; recall that e

denotes the identity of G and, in coordinates, e = 0.

Definition 10. For every t ∈ [0, 1], we define the map

F te : L1([0, 1],Rr)→ G
u 7→ γu(t).

The endpoint map Fe in (1.1) coincides with F 1
e , and for every t ∈ [0, 1] the map F te is

given by the formula:

F te(u) = e ◦ −→exp

∫ t

0

Xu(τ)dτ.

Let v ∈ L1([0, 1],Rr). We compute Fe(u+ v) as a perturbation of Fe(u). By (2.6) we define,
for t ∈ [0, 1],

gu,tv(t) : = Ad

(
−→exp

∫ t

0

Xu(τ)dτ

)
Xv(t) =

(
−→exp

∫ t

0

adXu(τ)dτ

)
Xv(t), (2.7)

and by the variations’ formula in [8, Section 2.7] we write:

Fe(u+ v) = e ◦ −→exp

∫ 1

0

Xu(t) +Xv(t)dt

= e ◦ −→exp

∫ 1

0

Ad

(
−→exp

∫ t

0

Xu(τ)dτ

)
Xv(t)dt ◦ −→exp

∫ 1

0

Xu(t)dt

= e ◦ −→exp

∫ 1

0

gu,tv(t)dt ◦
−→exp

∫ 1

0

Xu(t)dt.

(2.8)

The derivative duFe(v) is given by the first-order term in the series expansion with respect
to v of (2.8), that is

duFe(v) = e ◦
∫ 1

0

gu,tv(t)dt ◦
−→exp

∫ 1

0

Xu(t)dt.

Notice that, in the classical formalism of differential geometry this means that

duFe(v) =

(
−→exp

∫ 1

0

Xu(t)dt

)
∗

(∫ 1

0

gu,tv(t)dt(e)

)
,

so that duFe(v) is nothing but the push-forward, via the tangent map (−→exp
∫ 1

0
Xu(t)dt)∗, of

the tangent vector
∫ 1

0
gu,tv(t)dt(e) ∈ g.

The image of the differential duFe is then described, up to a diffeomorphism, by the
mapping

Gue : L1([0, 1],Rr)→ g,

v 7→
∫ 1

0

gu,tv(t)dt(e),
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and it follows by construction that the differential duFe is surjective if and only if Im (Gue ) = g.
Owing to (2.7) and [8, equation (2.23)], Gue (v) admits the expansion:

Gue (v) =

s∑
j=1

∫
Σj

(
adXu(τj) ◦ · · · ◦ adXu(τ2)

)
Xv(τ1)dτj . . . dτ1(e), (2.9)

where the sum runs over a finite number of indices because g is nilpotent of step s, and the

first term in (2.9) is to be intended as
∫ 1

0
Xv(τ1)dτ1(e). A useful characterization of the image

of Gue is provided in the next proposition (compare with [28, Proposition 2.3]).

Proposition 11. The following formula holds:

Im (Gue ) := span
Y ∈g1,t∈[0,1]


s−1∑
j=0

∫
Σj(t)

(
adXu(τj) ◦ · · · ◦ adXu(τ1)

)
Y dτj . . . dτ1(e)

 , (2.10)

where, for every Y ∈ g1, the 0-th term in the summation simply denotes Y (e).

Proof. By (2.9), we have:

Im (Gue ) =


s∑
j=1

∫
Σj

(
adXu(τj) ◦ · · · ◦ adXu(τ2)

)
Xv(τ1)dτj . . . dτ1(e) | v ∈ L1([0, 1],Rr)

 .

To establish the ⊂ inclusion in (2.10), we notice that any element in Im (Gue ) can be seen as
the limit of finite sums of elements in the right-hand side of (2.10), which in turn is a closed
set that contains all of its limit points.

To deduce the ⊃ inclusion in (2.10), we fix instead a basis (ei)
r
i=1 of Rr, so that Xei = Xi

for 1 ≤ i ≤ r. We fix t ∈ [0, 1) (the case t = 1 can be treated similarly) and, for n large
enough, we consider ψn := nχ[t,t+ 1

n ] to see that

s−1∑
j=0

∫
Σj(t)

(
adXu(τj) ◦ · · · ◦ adXu(τ1)

)
Xidτj . . . dτ1(e) = lim

n→∞
Gue (ψnei) ∈ Im (Gue )

since Im (Gue ) is closed as well, and we conclude.

One can consider the elements of the right-hand side of (2.10) corresponding to t = 0 to
see that

g1 ⊂ Im (Gue ). (2.11)

In particular, by (2.10) and (2.11) one can write Im (Gue ) = g1 ⊕Ru, where

Ru := span
Y ∈g1,t∈[0,1]


s−1∑
j=1

∫
Σj(t)

(
adXu(τj) ◦ · · · ◦ adXu(τ1)

)
Y dτj . . . dτ1(e)

 . (2.12)

We defined a singular control u as a critical point of dFe, i.e. as an element u ∈
L1([0, 1],Rr) such that the map duFe : L1([0, 1],R) → g is not surjective, see Definition 1.
With our discussion we have shown the following alternative characterization.
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Proposition 12. A control u ∈ L1([0, 1],Rr) is singular if and only if the subspace Ru is a
proper subspace of g2 ⊕ · · · ⊕ gs.

Remark 13. For a Carnot group G of step 2, a control u ∈ L1([0, 1],Rr) is singular if and
only if the family

{
Xu(t) | t ∈ [0, 1]

}
spans at most an (r − 2)-dimensional subspace. Indeed,

if this is not the case, we see that Ru = g2. This is one of the key observations leading to
the proof of the Sard property for Carnot groups of step 2 (see [7, 28]).

2.3. A dual point of view

Definition 14. Given k ∈ N and i1, . . . , ik ∈ {1, . . . , r}, we define

Xi1...ik(e) := [Xi1 , [. . . , [Xik−1
, Xik ] . . . ]](e). (2.13)

By multi-linearity of the Lie brackets, recalling that for v ∈ Rr we defined Xv ∈ g1 as the sum∑r
i=1 viXi, (2.13) can be extended to expressions of the form Xv1...vk(e) for arbitrary vectors

v1, . . . , vk ∈ Rr. We also use round brackets to indicate the priority of nested commutators.
In this way, any commutator is identified with a word J = (j1, . . . , jk) with letters in the
alphabet {1, . . . , r, (, ), v | v ∈ Rr}. For example, assuming r = 2, we have

X(12)(112)(e) = [[X1, X2], [X1, [X1, X2]]](e).

Given a covector λ ∈ g∗ and a string J as above, we define λJ := 〈λ,XJ(e)〉. If the
strings J1, . . . , Jdim(gk) are such that XJ1 , . . . , XJdim(gk)

form a basis of gk for k ∈ {1, . . . , s},
λJ1 , . . . , λJdim(gk)

are the coordinates of λ on g∗k.

It follows from Proposition 12 that a control u ∈ L1([0, 1],Rr) is singular if and only
if there exists a nonzero λ ∈ g∗2 ⊕ · · · ⊕ g∗s such that λ ∈ Im (Gue )⊥: in fact, the inclusion
g1 ⊂ Im (Gue ) yields that any λ ∈ Im (Gue )⊥ has zero projection on g∗1.

Definition 15. For a given subset Λ ⊂ g∗, we define

AbnΛ
G :=

{
γu(1) | u ∈ L1([0, 1],Rr), and there exists λ ∈ Λ such that λ ∈ Im (Gue )⊥

}
⊂ G,

that is AbnΛ
G contains all the final points of singular curves γu issuing from the origin e ∈ G,

and associated with some covector λ ∈ Λ orthogonal to Im (Gue ).

Remark 16. The condition λ ∈ Im (Gue )⊥ is projectively invariant. Given any quadratic
norm ‖ · ‖ on g∗, we can always assume that

λ ∈ S(g∗2 ⊕ · · · ⊕ g∗s) := {ξ ∈ g∗2 ⊕ · · · ⊕ g∗s | ‖ξ‖ = 1} .

It follows from (2.12) that λ ∈ g∗2 ⊕ · · · ⊕ g∗s belongs to Im (Gue )⊥ if and only if

s−1∑
k=1

∫
Σk(t)

λu(τk)...u(τ1)jdτk . . . dτ1 = 0,

for every j = 1, . . . , r and all t ∈ [0, 1]. By differentiating with respect to t we obtain

s−1∑
k=1

∫
Σk−1(t)

λu(τk−1)...u(τ1)u(t)jdτk−1 . . . dτ1 = 0, (2.14)
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for every j = 1, . . . , r and a.e. t ∈ [0, 1]. Owing again to the multi-linearity of the Lie
brackets, (2.14) implies that

r∑
i=1

ui(t)

(
s−1∑
k=1

∫
Σk−1(t)

λu(τk−1)...u(τ1)ijdτk−1 . . . dτ1

)
= 0, j = 1, . . . , r (2.15)

for a.e. t ∈ [0, 1]. This discussion proves the following result.

Proposition 17. Given u ∈ L1([0, 1],Rr), we define the skew-symmetric matrix Mu(λ, t) ∈
Mr(R) by:

Mu(λ, t)ij :=

s−1∑
k=1

∫
Σk−1(t)

λu(τk−1)...u(τ1)ijdτk−1 . . . dτ1, i, j = 1, . . . , r. (2.16)

Then a control u ∈ L1([0, 1],Rr) is singular if and only if there exists λ ∈ S(g∗2 ⊕ · · · ⊕ g∗s)
such that

u(t) ∈ ker(Mu(λ, t))

for a.e. t ∈ [0, 1].

Remark 18 (Goh condition on Carnot groups of rank 2). Given a singular trajectory γu
contained in a Carnot group G of rank 2, it is not difficult to see that g2 ⊂ Im (Gue ) (see,
e.g. [28, Remark 2.8]). In particular, every covector λ ∈ Im (Gue )⊥ is orthogonal to g2

(equivalently λ ∈ g∗3 ⊕ · · · ⊕ g∗s), i.e. λ automatically satisfies the so-called Goh condition.

Proposition 17 is of fundamental importance in our paper: indeed, it will allow us to study
singular curves in terms of concatenations of trajectories of suitable dynamical systems. Let
us fix some terminology: first, given a smooth vector field V on Rr, we call set of equilibria
of the first-order differential system ẋ = V (x), x ∈ Rr, the set {x ∈ Rr | V (x) = 0}.

Definition 19 (Concatenation). For a smooth vector field V on Rr consider a differential
system of the form

ẋ = V (x), x ∈ Rr. (2.17)

We say that w ∈ AC([0, 1],Rr) is a concatenation of the integral curves of (2.17) if there
exists an open set I ⊂ [0, 1] with the following properties:

(i) write I =
⋃
i Ii as a finite or countable disjoint union of open intervals. Then, for every

i, w(Ii) is contained in an integral curve of (2.17);

(ii) w([0, 1] \ I) is contained in the set of equilibria of (2.17).

The differential systems involved in our analysis will depend on some parameter λ, typi-
cally in a sub-analytic fashion. We recall here the relevant definitions, borrowed from [14].

Definition 20 (Sub-analytic sets and functions).

(a) A set X ⊂M of a real analytic manifold M is semi-analytic if, for every x ∈M , there
exists an open neighborhood U of x such that X ∩ U is a finite Boolean combination
of sets {y ∈ U | f(y) = 0} and {y ∈ U | g(y) > 0}, where f, g : U → R are analytic
functions.
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(b) Let M be a real analytic manifold. A set X ⊂ M is sub-analytic if, for every x ∈ M ,
there exist an open neighborhood U of x, a real analytic manifold N and a relatively
compact semi-analytic subset A ⊂M ×N such that X ∩U = π(A), where π : M ×N →
M is the canonical projection.

(c) Let M,N be real analytic manifolds. A function f : M → N is sub-analytic if its graph
is a sub-analytic set in M ×N .

The image of a relatively compact sub-analytic set by a sub-analytic mapping is sub-
analytic.

2.4. Carnot groups of rank 2 and step 3

As a warming up, we discuss Lie groups G of rank 2 and step 3. This case is already well-
known in the literature, as G is either the 5-dimensional free group (where AbnG = exp(g1))
or the 4-dimensional Engel group (where AbnG = exp(RX) for some X ∈ g1).

Pick a singular trajectory γu and let u ∈ L1([0, 1],Rr) be the associated control. Since u
is singular, there exists λ ∈ g∗2 ⊕ g∗3 such that (2.15) holds. In fact g1 ⊕ g2 ⊂ Im (Gue ) by the
Goh condition, Remark 18, and therefore λ ∈ g∗3.

Following Definition 14, the skew-symmetric matrix Mu(λ, t) ∈ M2(R) in (2.16) is given
by:

Mu(λ, t)ij =

∫ t

0

λu(τ1)ijdτ1 = λ∫ t
0
u(τ1)dτ1ij

= λw(t)ij , i, j = 1, 2,

where w is the primitive of u (see Definition 6) and the second equality follows by the linearity
of the map v 7→ λvij for every v ∈ R2. By Proposition 17, u(t) ∈ ker(Mu(λ, t)) a.e. t ∈ [0, 1],
and then

Pf(Mu(λ, t)) = w1(t)λ112 + w2(t)λ212 = 0

for every t ∈ [0, 1]. By differentiating this last relation we finally deduce that

u1(t)λ112 + u2(t)λ212 = 0

a.e. on [0, 1], meaning that (u1(t), u2(t)) is parallel to (λ212,−λ112) for a.e. t ∈ [0, 1].
Let us now fix λ ∈ g∗3. Then all the primitives w associated with such a λ (that is, such

that λ ∈ Im (Gẇe )⊥ where ẇ = u) are supported within the integral curves of the differential
system

ẋ(t) = v(λ), x ∈ R2,

where we denoted by v the map (see Remark 16 for the definition of S(g∗3)):

v : S(g∗3)→ R2,

λ 7→
(
λ212

−λ112

)
.

Since w(0) = 0 and for every λ ∈ g∗3 the vector v(λ) is not zero (for otherwise λ itself would
be zero), we conclude that the primitives w associated with λ are supported within the line
x(t) = v(λ)t. Accordingly, every singular curve γẇ ⊂ G associated with λ is supported within
the one-dimensional analytic submanifold {L (λ, t) | t ∈ R} ⊂ G, where

L (λ, t) := exp (t(λ212X1 − λ112X2)) .
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Noticing that also the assignment λ 7→ L (λ, t) is analytic for every t ∈ R, we conclude by
standard transversality arguments (see e.g. [1, 22]) that AbnG is an analytic submanifold of
codimension at least 3 in G (we have taken into account that the projection of λ onto g∗1⊕g∗2
is 0).

Proposition 21. Let G be a Carnot group of rank 2 and step 3. Then, AbnG is an analytic
submanifold of codimension at least 3 in G.

3. Carnot groups of rank 2 and step 4

Let u ∈ L1([0, 1],R2), w ∈ AC([0, 1],R2) be the primitive of u and γu be the singular
trajectory associated with u. By Proposition 12, the subspace Ru, generated by elements of
the form

[Xw(t), Xj ](e)+

∫ t

0

[Xw(τ1), [Xu(τ1), Xj ]](e)dτ1+

∫∫
0≤τ2≤τ1≤t

[Xw(τ2), [Xu(τ2), [Xu(τ1), Xj ]]](e)dτ2dτ1,

(3.1)
for a.e. t ∈ [0, 1] and j = 1, 2, is strictly contained in g2 ⊕ g3 ⊕ g4 (compare with (2.12)).
By the Goh condition (Remark 18) we deduce as in Section 2.4 the existence of a covector
λ ∈ S(g∗3 ⊕ g∗4) such that, upon differentiating (3.1) with respect to t, the identity

λw(t)u(t)j +

∫ t

0

λw(τ1)u(τ1)u(t)jdτ1 = 0

holds for a.e. t ∈ [0, 1] and j = 1, 2. The skew-symmetric matrix Mu(λ, t) ∈M2(R) in (2.16)
is given by

Mu(λ, t)ij = λw(t)ij +

∫ t

0

λw(τ1)u(τ1)ijdτ1, i, j = 1, 2,

and u(t) ∈ ker(Mu(λ, t)) a.e. t ∈ [0, 1] implies that:

Pf(Mu(λ, t)) = λw(t)12 +

∫ t

0

λw(τ1)u(τ1)12dτ1 = 0 (3.2)

for every t ∈ [0, 1]. Notice that (3.2) is differentiable with respect to t, and gives

2∑
i=1

ui(t)
(
λi12 + λw(t)i12

)
= 0, a.e. t ∈ [0, 1], (3.3)

that is, we conclude that (u1(t), u2(t)) is parallel to (λ212 + λw(t)212,−λ112 − λw(t)112) ∈ R2

for a.e. t ∈ [0, 1]. Let us recall that λ1212 = λ2112 by Jacobi’s identity.
We fix λ ∈ S(g∗3⊕g∗4). Forgetting about possible parametrizations, we conclude from (3.3)

that all the primitives w such that λ ∈ Im (Gẇe )⊥, are concatenations (see Definition 19) of
the integral curves of the differential system

ẋ = M(λ)x+ v(λ), x ∈ R2
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where we introduced this time the mappings:

M : S(g∗3 ⊕ g∗4)→M2(R),

λ 7→
(
λ2112 λ2212

−λ1112 −λ2112

)
,

v : S(g∗3 ⊕ g∗4)→ R2,

λ 7→
(
λ212

−λ112

)
.

Notice that, since the primitives w satisfy w(0) = 0, one has to take into account only those
concatenations starting at the origin. Observe also that tr(M(λ)) = 0 for every λ ∈ S(g∗3⊕g∗4),
and that both the assignments λ 7→M(λ) and λ 7→ v(λ) are analytic.

We stratify S(g∗3 ⊕ g∗4) according to rank(M(λ)), and we consider the (pairwise disjoint)
sub-analytic sets

Λ1 := {λ ∈ S(g∗3 ⊕ g∗4) | det(M(λ)) < 0} ,
Λ2 := {λ ∈ S(g∗3 ⊕ g∗4) | det(M(λ)) > 0} ,
Λ3 := {λ ∈ S(g∗3 ⊕ g∗4) | rank(M(λ)) = 1} ,
Λ4 := {λ ∈ S(g∗3 ⊕ g∗4) |M(λ) = 0} .

We complete the proof of Theorem 2 analyzing separately each one of the above cases. Notice
that the Jordan normal form N of M(λ) is constant on each of the sets above, i.e. there
exists N = N(Λi) ∈ M2(R) such that, for every λ ∈ Λi, there exists P (λ) ∈ GL2(R) such
that

N = P (λ)−1M(λ)P (λ). (3.4)

Moreover, the mappings λ 7→ P (λ) and λ 7→ P (λ)−1 can be chosen to be sub-analytic on
each one of the sets Λi.

Up to a linear change of coordinates on R2 (not depending on time), of the form z :=
P (λ)−1x, it is therefore sufficient to study, for λ ∈ Λ ∈ {Λ1,Λ2,Λ3,Λ4}, the differential
system

ż = Nz + b(λ), z ∈ R2, (3.5)

where we defined b(λ) := P (λ)−1v(λ) ∈ R2, and the assignment λ 7→ b(λ) is sub-analytic.

Remark 22. In the sequel we will make an abuse of notation by identifying the primitive w
with P (λ)−1w.

Remark 23. The change of coordinates z = P (λ)−1x induces a change in the basis X1, X2

of g1. More specifically, assuming

P (λ)−1 =

(
p11(λ) p12(λ)
p21(λ) p22(λ)

)
,

we obtain
X1(λ) := p11(λ)X1 + p21(λ)X2,

X2(λ) := p12(λ)X1 + p22(λ)X2,

and the map λ 7→ (X1(λ), X2(λ)) is sub-analytic.
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(−b(λ)1; b(λ)2)

z1

z2

Figure 1: Trajectories of (3.6).

3.1. Case I: Λ = Λ1

In this case

N =

(
1 0
0 −1

)
.

Given λ ∈ Λ1, the integral curves of (3.5) starting at (z0
1 , z

0
2) are given by{

z1(t) = (et − 1)b(λ)1 + etz0
1 ,

z2(t) = −(e−t − 1)b(λ)2 + e−tz0
2 .

(3.6)

These trajectories are depicted in Figure 1. Therefore, a trajectory of (3.5) asymptotically
approaches the equilibrium (−b(λ)1, b(λ)2) if and only if

either b(λ)1 + z0
1 = 0 or −b(λ)2 + z0

2 = 0. (3.7)

If both the conditions in (3.7) are met, z(t) remains indefinitely in the equilibrium. If
only one of these conditions is satisfied, z(t) approaches the equilibrium asymptotically, and
only once (i.e., either in the limit as t→ +∞ or as t→ −∞).

Since the concatenations we consider have to start at the origin, it is natural to introduce
the sets

Ξ1 := {λ ∈ Λ1 | b(λ)1 6= 0, b(λ)2 6= 0} ,
Ξ2 := {λ ∈ Λ1 | b(λ)1 = 0} ,
Ξ3 := {λ ∈ Λ1 | b(λ)2 = 0} ,

whose union covers Λ1

For every λ ∈ Ξ1, the solution to (3.5) starting at the origin never crosses the equilibrium,
not even asymptotically, and is defined for all times t ∈ R. Every primitive w associated
with such a λ is supported within the set {z(t) | t ∈ R}. The corresponding singular curves
γẇ are then supported within the one-dimensional submanifold {L (λ, t) | t ∈ R} ⊂ G, where
for every t ∈ R we have

L (λ, t) =

(
−→exp

∫ t

0

ż1(τ)X1(λ) + ż2(τ)X2(λ)dτ

)
(e), (3.8)
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z2

z1(0; 0)

(0; z0
2
)

(0; b(λ)2)

(z0
1
; b(λ)2)

Figure 2: A possible concatenation in `λ.

and z(t) is as in (3.6) with z0 = 0. Since the codimension of Ξ1 in g∗ is 4, we conclude that
AbnΞ1

G = {L (λ, t) | λ ∈ Ξ1, t ∈ R} (compare with Definition 15) is a sub-analytic set of
codimension at least 3 in G.

Next, we consider the case of λ ∈ Ξ2 (λ ∈ Ξ3 is analogous). The solution to (3.5) starting
at (0, z0

2) tends to (0, b(λ)2) only as t→ +∞, and we see as well that z1(t) ≡ 0 for all times.
Likewise, any curve z(t) in (3.6) starting at z0

1 6= 0 approaches asymptotically the equilibrium
(0, b(λ)2) if and only if z0

2 = b(λ)2, in which case we conclude that z2(t) ≡ b(λ)2.
Every primitive w (recall Remark 22), associated with some λ ∈ Ξ2, is a concatenation

of the integral curves of (3.5). Since we are interested only in those concatenations starting
at the origin, we see that all such primitives are supported within in the set

`λ := {(0, t) | t ∈ R} ∪ {(t, b(λ)2) | t ∈ R} ,

and w may switch between either one of the two components only at the equilibrium, see
Figure 2.

The corresponding singular curves γẇ are then supported within the set {L 1(λ, t) | t ∈
R} ∪ {L 2(λ, t) | t ∈ R}, where for every λ ∈ Ξ2 and t ∈ R we define

L 1(λ, t) : = exp(tX2(λ)) ∈ G

L 2(λ, t) : =

(
−→exp

∫ 1

0

tX1(λ)dτ

)(
−→exp

∫ 1

0

b(λ)2X2(λ)dτ(e)

)
= exp(b(λ)2X2(λ)) · exp(tX1(λ)) ∈ G.

Since the codimension of Ξ2 in g∗ is at least 4, AbnΞ2

G is a sub-analytic set of codimension
at least 3 in G.

Remark 24. One can be more precise in case G is the free Carnot group of rank 2 and step
4. Indeed, in this case the condition b(λ)1 = 0, which involves the g∗3 component of λ, is
independent from the other requirements on λ (i.e. that λ has zero projection on g∗1⊕ g∗2 and
that its norm is one). It follows that Ξ2 has codimension at least 5 in g∗, hence AbnΞ2

G is a
sub-analytic set of codimension at least 4 in G.
Similar considerations apply also for the families Ξi appearing in the sequel.
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We summarize the discussion of Case I in the following proposition.

Proposition 25. For a Carnot group G of rank 2 and step 4, AbnΛ1

G is a sub-analytic set
of codimension at least 3 in G.

3.2. Case II: Λ = Λ2

Here N has the form

N =

(
0 −1
1 0

)
.

Given λ ∈ Λ2, the integral curves of (3.5) starting at z0 are given by:{
z1(t) = (b(λ)2 + z0

1) cos t− (z0
2 − b(λ)1) sin t− b(λ)2,

z2(t) = (b(λ)2 + z0
1) sin t+ (z0

2 − b(λ)1) cos t+ b(λ)1;
(3.9)

namely, these integral curves are circles centered at the equilibrium (−b(λ)2, b(λ)1). In par-
ticular, they pass through the equilibrium if and only if z0 is the equilibrium itself, in which
case the curves are constant.

We introduce the sets

Ξ4 := {λ ∈ Λ2 | b(λ)1 = 0, b(λ)2 = 0} ,
Ξ5 := {λ ∈ Λ2 | b(λ)1 6= 0} ,
Ξ6 := {λ ∈ Λ2 | b(λ)2 6= 0} .

A trajectory z(t) starting at the origin passes through the equilibrium if and only if λ ∈ Ξ4,
in which case it stays there for all times. On the other hand, if λ ∈ Ξ5 or λ ∈ Ξ6, z(t)
describes a circle through the origin with center in (−b(λ)2, b(λ)1).

We conclude that every singular curve γẇ, associated with a covector λ ∈ Ξ4, reduces
to the point e ∈ G, while the singular curves γẇ associated with covectors λ ∈ Ξ5 ∪ Ξ6 are
supported within the set {L (λ, t) | t ∈ R} ⊂ G, where L (λ, t) is as in (3.8) and z(t) is as in
(3.9) with z0 = 0. Since the codimension of Λ2 = Ξ4∪Ξ5∪Ξ6 is 4, we can state the following
proposition.

Proposition 26. For a Carnot group G of rank 2 and step 4, AbnΛ2

G is a sub-analytic set
of codimension at least 3 in G.

3.3. Case III: Λ = Λ3

Here N has the form

N =

(
0 1
0 0

)
,

and the integral curves of (3.5) starting at z0 are given by:z1(t) = b(λ)2
t2

2
+ (b(λ)1 + z0

2)t+ z0
1 ,

z2(t) = b(λ)2t+ z0
2 .

(3.10)
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We observe from the beginning that a necessary condition for the existence of equilibria
is that λ ∈ Λ3 \ Ξ7, where

Ξ7 := {λ ∈ Λ3 | b(λ)2 6= 0} .

In particular, the primitives w associated with a covector λ ∈ Ξ7 are supported within the
set {L (λ, t) | t ∈ R} ⊂ G, where L (λ, t) is as in (3.8) and z(t) is given by (3.10) with z0 = 0.
We conclude that AbnΞ7

G has codimension at least 3 in G.
If instead λ ∈ Λ3\Ξ7, i.e. b(λ)2 = 0, equilibria of (3.5) are found on the line {(η,−b(λ)1) |

η ∈ R}, and z(t) in (3.10) describes the horizontal line z2(t) ≡ z0
2 . In particular it crosses the

set of equilibria if and only if z0
2 = −b(λ)1. Recalling that we start with z0

2 = 0, we consider
the sets:

Ξ8 := {λ ∈ Λ3 | b(λ)2 = 0, b(λ)1 6= 0} ,
Ξ9 := {λ ∈ Λ3 | b(λ)2 = 0, b(λ)1 = 0} .

For every λ ∈ Ξ8, the primitives w associated with λ are supported within the horizon-
tal axis ` ⊂ R2, and AbnΞ8

G is a sub-analytic set of codimension at least 3 in G. Similar
conclusions hold for λ ∈ Ξ9, because in this case the primitives w are supported within the
horizontal axis, which coincides here with the set of equilibria.

Remark 27. We observe that Ξ9 has codimension at least 5 in g∗: indeed, the condition
b(λ) = 0 necessarily imposes at least one extra condition on the g∗3 component of λ, for
otherwise one would get g∗3 = 0. In particular, we have the better lower bound 4 on the
codimension of AbnΞ9

G .

Proposition 28. For a Carnot group G of rank 2 and step 4, AbnΛ3

G is a sub-analytic set
of codimension at least 3 in G.

Remark 29. C. Golé and R. Karidi provided in [21] examples of strictly singular length
minimizing curves. One of their examples is revisited in [26, Section 6.3]: this example is a
parabola-type curve as in (3.10) associated with some λ ∈ Λ3.

3.4. Case IV: Λ = Λ4

The condition M(λ) = 0 implies that the projection of λ onto g∗4 is zero, and this implies
that v(λ) 6= 0, for otherwise the covector λ itself would be zero. Solutions to (3.5) are
therefore parallel lines and the concatenations giving the possible primitives w are simply
lines through the origin. We conclude as before.

Proposition 30. For a Carnot group G of rank 2 and step 4, AbnΛ4

G is a sub-analytic set
of codimension at least 3 in G.

The proof of Theorem 2 is complete.

4. Carnot groups of rank 3 and step 3

Consider a Carnot group G of rank 3 and step 3, and pick a singular trajectory γu ⊂ G.
Let u ∈ L1([0, 1],R3) be the control associated with γu. By Proposition 12, the elements of
the form

[Xw(t), Xj ](e) +

∫ t

0

[Xw(τ1), [Xu(τ1), Xj ]](e), t ∈ [0, 1], j = 1, 2, 3 (4.1)
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do not generate the subspace g2 ⊕ g3, and therefore, up to differentiating (4.1), one gets the
existence of a covector λ ∈ S(g∗2 ⊕ g∗3) such that

λu(t)j + λw(t)u(t)j = 0,

for j = 1, 2, 3 and a.e. t ∈ [0, 1].
We introduce the skew-symmetric matrix Mu(λ, t) ∈M3(R) defining

Mu(λ, t)ij = λij + λw(t)ij , 1 ≤ i, j ≤ 3.

Then u ∈ ker(Mu(λ, t)) for a.e. t ∈ [0, 1] by Proposition 17.
Let Imax ⊂ [0, 1] be a maximal open set where rank(Mu(λ, t)) = 2, and observe that

Mu(λ, t)) is zero on the complement [0, 1] \ Imax. For a.e. t ∈ Imax, u is parallel toλ23 + λw(t)23

λ31 + λw(t)31

λ12 + λw(t)12

 .

As in the previous section, we drop the parametrization of γu, and we see that all the
primitives w such that λ ∈ Im (Gẇe )⊥ are obtained by concatenation of the integral curves of
the differential system

ẋ(t) = M(λ)x(t) + v(λ), x ∈ R3, (4.2)

where we defined

M : S(g∗2 ⊕ g∗3)→M3(R),

λ 7→

λ123 λ223 λ323

λ131 λ231 λ331

λ112 λ212 λ312

 ,

v : S(g∗2 ⊕ g∗3)→ R3,

λ 7→

λ23

λ31

λ12

 .

Again, since the primitives w satisfy w(0) = 0, one has to take into account only those
concatenations starting at the origin. Observe that, as a consequence of Jacobi’s identity,
the matrix M(λ) has zero trace. Notice moreover that the set [0, 1] \ Imax coincides with the
set of times t ∈ [0, 1] such that the solution x(t) to (4.2) crosses the set of equilibria of the
system.

Keeping track of the zero-trace condition on M(λ), we stratify S(g∗2 ⊕ g∗3) as follows:

Λ1 := {λ ∈ S(g∗2 ⊕ g∗3) | det(M(λ)) 6= 0, M(λ) has three distinct real eigenvalues} ,
Λ2 := {λ ∈ S(g∗2 ⊕ g∗3) | det(M(λ)) 6= 0, M(λ) has two distinct real eigenvalues} ,
Λ3 := {λ ∈ S(g∗2 ⊕ g∗3) | det(M(λ)) 6= 0, M(λ) has two non-real eigenvalues} ,
Λ4 := {λ ∈ S(g∗2 ⊕ g∗3) | det(M(λ)) 6= 0, M(λ) has a generalized eigenvector of order 2} ,
Λ5 := {λ ∈ S(g∗2 ⊕ g∗3) | rank(M(λ)) = 2, M(λ) has two real eigenvalues} ,
Λ6 := {λ ∈ S(g∗2 ⊕ g∗3) | rank(M(λ)) = 2, M(λ) has two non-real eigenvalues} ,
Λ7 := {λ ∈ S(g∗2 ⊕ g∗3) | rank(M(λ)) = 2, M(λ) has a generalized eigenvector of order 3} ,
Λ8 := {λ ∈ S(g∗2 ⊕ g∗3) | rank(M(λ)) = 1} ,
Λ9 := {λ ∈ S(g∗2 ⊕ g∗3) |M(λ) = 0} .
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It is again convenient to change coordinates: we assume that M(λ) is in its normal form
N = N(λ) and we complete the proof of Theorem 3 analyzing separately each possibility for
N . Recall that, similarly to (3.4), the change of coordinates λ 7→ P (λ) and λ 7→ P (λ)−1 can
be chosen to be sub-analytic on each of the sets Λi. Then we write

ż = Nz + b(λ), z ∈ R3, (4.3)

with the same conventions as in (3.5). We recall that this choice of coordinates induces
a sub-analytic change of the frame λ 7→ (X1(λ), X2(λ), X3(λ)) as in Remark 23. We also
make an abuse of notation similarly to Remark 22, identifying primitives w with their new
coordinate presentation P (λ)−1w.

4.1. Case I: Λ = Λ1

Here

N =

a 0 0
0 b 0
0 0 −(a+ b)

 , a, b ∈ R \ {0}, ab > 0, |a| > |b|.

The solution to (4.3) starting from the point z0 is given by:

z1(t) =
eat − 1

a
b(λ)1 + eatz0

1 ,

z2(t) =
ebt − 1

b
b(λ)2 + ebtz0

2 ,

z3(t) = −e
−(a+b)t − 1

a+ b
b(λ)3 + e−(a+b)tz0

3 ,

(4.4)

and the equilibrium set reduces to the single point
(
− b(λ)1

a ,− b(λ)2
b , b(λ)3

a+b

)
.

The curve z(t) tends to the equilibrium (either as t→ +∞ or as t→ −∞) if and only if

either
b(λ)1

a
+ z0

1 =
b(λ)2

b
+ z0

2 = 0, or −b(λ)3

a+ b
+ z0

3 = 0.

It is not restrictive to discuss the cases in which only one of these conditions holds (if both

conditions hold, z(t) is constant). Assuming for example − b(λ)3
a+b + z0

3 = 0 and a > b > 0,
then

lim
t→+∞

(
z1(t)2 + z2(t)2

)
= +∞;

(this limit tends to +∞ as well for t → −∞ if a < b < 0). We conclude that z(t) tends
asymptotically to the equilibrium only once, either as t→ +∞ or as t→ −∞.

Recalling that we are interested only in concatenations of solutions to (4.3) starting from
the origin, we introduce the sets

Ξ1 :=
{
λ ∈ Λ1 | b(λ)2

1 + b(λ)2
2 6= 0, b(λ)3 6= 0

}
,

Ξ2 := {λ ∈ Λ1 | b(λ)3 = 0} ,
Ξ3 := {λ ∈ Λ1 | b(λ)1 = b(λ)2 = 0} .
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(0, 0, 0)

(

−

b(λ)1
a

,−
b(λ)2
b

, 0
)

z1

z2

z3

Figure 3: The reachable set from the origin by trajectories of (4.3) when λ ∈ Ξ3.

For every λ ∈ Ξ1, the trajectory z(t) with z0 = 0 never approaches the equilibrium. All
the primitives w associated with such values of λ are supported within {z(t) | t ∈ R}, and
the corresponding singular curves γẇ are supported within {L (λ, t) | λ ∈ Ξ1, t ∈ R}, where

L (λ, t) :=

(
−→exp

∫ t

0

ż1(τ)X1(λ) + ż2(τ)X2(λ) + ż3(τ)X3(λ)dτ

)
(e) (4.5)

and z(t) is as in (4.4) with z0 = 0. Taking into account that λ has zero g∗1 component, we
deduce that AbnΞ1

G is a sub-analytic set of codimension at least 3 in G.

Remark 31. We observe that the singular curve discussed in [28, Section 6.3] is associated
with a covector λ ∈ Ξ1.

If instead λ ∈ Ξ2, the equilibrium point is (−b(λ)1
a , −b(λ)2

b , 0) and the trajectory z(t) in

(4.4) can approach the equilibrium only if either z0
1 + b(λ)1

a = z0
2 + b(λ)2

b = 0 or z0
3 = 0.

Any primitive w starting at the origin and associated with λ ∈ Ξ2, which is a concatenation
of trajectories of (4.3), must then be initially supported within the curve z(t) in (4.4) with
z0 = 0, i.e., in the plane z3 = 0, until it approaches the equilibrium. The point in G
corresponding to the equilibrium is then

g0 :=

(
−→exp

∫ −∞
0

ż1(τ)X1(λ) + ż2(τ)X2(λ)dτ

)
(e),

where z(t) is the trajectory in (4.4) with z0 = 0, and the chronological exponential above is
to be intended with the same meaning as in Remark 9. From the equilibrium, it can then
continue either by flowing along trajectories supported within the same plane, or by following

the line z1 + b(λ)1
a = z2 + b(λ)2

b = 0, and by switching between these two possibilities at the
equilibrium, potentially infinitely many times (see Figure 3). Any such primitive is then
supported within the set

{g0 · exp(tX3(λ)) | t ∈ R} ∪ {L (λ, θ, t) | t ∈ R, λ ∈ Ξ2, θ ∈ S1},
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where, setting zθ(t) as the trajectory z(t) as in (4.4) with z0 = (cos θ− b(λ)1
a , sin θ− b(λ)2

b , 0),
we defined

L (λ, θ, t) :=

(
−→exp

∫ t

−∞
żθ1(τ)X1(λ) + żθ2(τ)X2(λ)dτ

)
(g0) (4.6)

Again, if a < b < 0 the chronological exponential above should be taken from +∞ to t (with
limits of integration in this order, see Remark 9). Since Ξ2 has codimension at least 4 in g∗,
we conclude that AbnΞ2

G is a sub-analytic set of codimension at least 2 in G (see Figure 3).

If λ ∈ Ξ3, the equilibrium point is (0, 0, b(λ)3
a+b ). It can be easily checked that the trajectory

z(t) in (4.4) can approach the equilibrium only if either z0
1 = z0

2 = 0 or z0
3 = b(λ)3

a+b . Any
primitive w starting at the origin and associated with λ ∈ Ξ3 is then supported within the
set

{exp(tX3(λ)) | t ∈ R} ∪ {L (λ, θ, t) | t ∈ R, λ ∈ Ξ3, θ ∈ S1},

where, setting zθ(t) as the trajectory z(t) as in (4.4) with z0 = (cos θ, sin θ, b(λ)3
a+b ), we defined

L (λ, θ, t) :=

(
−→exp

∫ t

−∞
żθ1(τ)X1(λ) + żθ2(τ)X2(λ)dτ

)(
exp

(
b(λ)3

a+ b
X3(λ)

))
.

Again, if a < b < 0 the chronological exponential above should be taken from +∞ to t (in
this order). We conclude that AbnΞ3

G is a sub-analytic set of codimension at least 2 in G.

Remark 32. When G is the free group of rank 3 and step 3 one can be more precise: indeed,
Ξ2 and Ξ3 have higher codimension and it follows that AbnΞ2

G and AbnΞ3

G are sub-analytic
sets of codimension 3 and 4 in G, respectively.

The discussion of Case I can be summarized as follows.

Proposition 33. For a Carnot group G of rank 3 and step 3, AbnΛ1

G is a sub-analytic set
of codimension at least 2 in G.

4.2. Case II: Λ = Λ2

One can treat this case exactly as the case Λ = Λ1 with a = b; distinguishing the two
cases is necessary to guarantee that the change of coordinates λ 7→ P (λ) is sub-analytic for
λ ∈ Λi, i = 1, 2.

Proposition 34. For a Carnot group G of rank 3 and step 3, AbnΛ2

G is a sub-analytic set
of codimension at least 2 in G.

4.3. Case III: Λ = Λ3

Here we have

N =

1 −a 0
a 1 0
0 0 −2

 , a ∈ R \ {0}.

Setting

α := b(λ)1 + ab(λ)2 + (1 + a2)z0
1 and β := −ab(λ)1 + b(λ)2 + (1 + a2)z0

2 ,
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the solution to (4.3) starting from the point z0 is given by:

z1(t) =
et

a2 + 1

(
α− iβ

2
e−iat +

α+ iβ

2
eiat
)
− b(λ)1 + ab(λ)2

a2 + 1

z2(t) =
et

a2 + 1

(
α− iβ

2
eiat +

α+ iβ

2
e−iat

)
− −ab(λ)1 + b(λ)2

a2 + 1

z3(t) =
1

2
e−2t

(
−b(λ)3 + 2z0

3

)
+
b(λ)3

2
.

(4.7)

A trajectory z(t) passes through the equilibrium
(
− b(λ)1+ab(λ)2

1+a2 ,−−ab(λ)1+b(λ)2
1+a2 , b(λ)3

2

)
if and

only if

either
b(λ)1 + ab(λ)2

1 + a2
+ z0

1 =
−ab(λ)1 + b(λ)2

1 + a2
+ z0

2 = 0 or 2z0
3 − b(λ)3 = 0.

Recalling that we are interested only in concatenations of solutions to (4.3) starting from the
origin, we introduce the sets

Ξ4 :=
{
λ ∈ Λ3 | b(λ)2

1 + b(λ)2
2 6= 0, b(λ)3 6= 0

}
,

Ξ5 := {λ ∈ Λ3 | b(λ)1 = b(λ)2 = 0} ,
Ξ6 := {λ ∈ Λ3 | b(λ)3 = 0} .

It is clear at this point that, for every λ ∈ Ξ4, the singular curves γẇ associated with λ are
supported within a one-dimensional submanifold {L (λ, t) | t ∈ R}, where L is defined as in
(4.5), so that AbnΞ4

G is a sub-analytic set of codimension at least 3 in G.

If instead λ ∈ Ξ5, a trajectory z(t) approaches the equilibrium
(

0, 0, b(λ)3
2

)
only if either

z0
1 = z0

2 = 0 or z0
3 = b(λ)3

2 . Any primitive w associated with λ ∈ Ξ5 is then supported within
the set

{exp(tX3(λ)) | t ∈ R} ∪ {L (λ, θ, t) | t ∈ R, λ ∈ Ξ2, θ ∈ S1},

where

L (λ, θ, t) :=

(
−→exp

∫ t

−∞
żθ1(τ)X1(λ) + żθ2(τ)X2(λ)dτ

)(
exp

(
b(λ)3

2
X3(λ)

))
.

and zθ(t) is the trajectory z(t) as in (4.7) with z0 = (cos θ, sin θ, b(λ)3
2 ). We conclude that

AbnΞ5

G is a sub-analytic set of codimension at least 2 in G.

If λ ∈ Ξ6, a curve z(t) as in (4.7) reaches the equilibrium
(
− b(λ)1+ab(λ)2

1+a2 ,−−ab(λ)1+b(λ)2
1+a2 , 0

)
only if

either z0
3 = 0 or z0

1 +
b(λ)1 + ab(λ)2

1 + a2
= z0

2 +
−ab(λ)1 + b(λ)2

1 + a2
= 0.

Any primitive w associated with λ ∈ Ξ4 is then supported within the union of the sets

{g0 · exp(tX3(λ) | t ∈ R} ∪ {L (λ, θ, t) | t ∈ R, λ ∈ Ξ6, θ ∈ S1}
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where, if z(t) is as in (4.7) with z0 = 0, we defined

g0 :=

(
−→exp

∫ −∞
0

ż1(τ)X1(λ) + ż2(τ)X2(λ)dτ

)
(e)

and L (λ, θ, t) is given by (4.6), provided zθ(t) is the trajectory z(t) as in (4.7) with z0 =(
cos θ − b(λ)1+ab(λ)2

1+a2 , sin θ − −ab(λ)1+b(λ)2
1+a2 , 0

)
. We deduce that AbnΞ6

G is a sub-analytic set of

codimension at least 2 in G.

Proposition 35. For a Carnot group G of rank 3 and step 3, AbnΛ3

G is a sub-analytic set
of codimension at least 2 in G.

4.4. Case IV: Λ = Λ4

Here

N =

1 1 0
0 1 0
0 0 −2

 .

The solution to (4.3) starting from the point z0 is given by
z1(t) = (et − 1)b(λ)1 + et(t− 1)b(λ)2 + b(λ)2 + et(z0

1 + tz0
2),

z2(t) = (et − 1)b(λ)2 + etz0
2 ,

z3(t) = −e
−2t − 1

2
b(λ)3 + e−2tz0

3 ,

.

A curve z(t) passes through the equilibrium
(
−b(λ)1 + b(λ)2,−b(λ)2,

b(λ)3
2

)
if and only if

either b(λ)2 + z0
2 = b(λ)1− b(λ)2 + z0

1 = 0 or − b(λ)3
2 + z0

3 = 0. The situation is similar to that
of Case I in Section 4.1, and the computations are left to the reader.

Proposition 36. For a Carnot group G of rank 3 and step 3, AbnΛ4

G is a sub-analytic set
of codimension at least 2 in G.

4.5. Case V: Λ = Λ5

Here

N =

1 0 0
0 −1 0
0 0 0

 ,

and the solution z(t) to (4.3) starting from the point z0 is given by
z1(t) = (et − 1)b(λ)1 + etz0

1 ,

z2(t) = −(e−t − 1)b(λ)2 + e−tz0
2 ,

z3(t) = b(λ)3t+ z0
3 .

A necessary condition for the existence of equilibria is that λ ∈ Λ5 \ Ξ7, where

Ξ7 := {λ ∈ Λ5 | b(λ)3 6= 0} .
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z3

z1

z2

(0; 0; 0)

(0; b(λ)2; 0)

Figure 4: Concatenation of solutions to (4.3) if λ ∈ Ξ9.

Therefore, AbnΞ7

G is a sub-analytic set of codimension at least 3 in G.
If λ ∈ Λ5 \ Ξ7, equilibria of (4.3) are found on the line {(−b(λ)1, b(λ)2, η) | η ∈ R}, and a

curve z(t) approaches the equilibrium set if and only if

either b(λ)1 + z0
1 = 0 or −b(λ)2 + z0

2 = 0. (4.8)

Recalling that we are interested only in concatenations of solutions to (4.3) starting from the
origin, we introduce the sets

Ξ8 := {λ ∈ Λ5 | b(λ)3 = 0, b(λ)1 6= 0, b(λ)2 6= 0} ,
Ξ9 := {λ ∈ Λ5 | b(λ)3 = 0, b(λ)1 = 0} ,

Ξ10 := {λ ∈ Λ5 | b(λ)3 = 0, b(λ)2 = 0} .

Since z(t) does not approach the set of equilibria if λ ∈ Ξ8, we readily deduce that AbnΞ8

G is
a sub-analytic set of codimension at least 3 in G.

The cases λ ∈ Ξ9 and λ ∈ Ξ10 are symmetric, and without loss of generality we study
only the first one. Assume then that λ ∈ Ξ9. The trajectory z(t) through z0 is now given by

z1(t) = etz0
1 ,

z2(t) = −(e−t − 1)b(λ)2 + e−tz0
2 ,

z3(t) = z0
3 .

In particular we see that if (4.8) is satisfied, then either z1(t) ≡ 0, or z2(t) ≡ b(λ)2. Since the
w3 coordinate of a primitive is allowed to change only within the line {(0, b(λ)2, η) | η ∈ R}
of equilibria, we conclude that the primitives w associated with λ ∈ Ξ9 are supported within
the union Π(λ) of the planes

{
(0, z2, z3) | (z2, z3) ∈ R2

}
and

{
(z1, b(λ)2, z3) | (z1, z3) ∈ R2

}
,

as shown in Figure 4. Observe that the concatenations of solutions z(t) have a “tree-like”
structure within Π(λ). Any primitive w associated with λ ∈ Ξ9 is supported within the set

{L (λ, z0) | λ ∈ Ξ9, z
0 ∈ Π(λ)} where, denoting by `z

0

: [0, 1] → R3 the unique injective
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absolutely continuous curve joining the origin and z0, and realized as a concatenation of
solutions to (4.3), we defined

L (λ, z0) :=

(
−→exp

∫ 1

0

˙̀z0
1 (τ)X1(λ) + ˙̀z0

2 (τ)X2(λ) + ˙̀z0
3 (τ)X3(λ)dτ

)
(e).

In particular, we deduce that AbnΞ9

G is a sub-analytic set of codimension at least 2 in G.

Proposition 37. For a Carnot group G of rank 3 and step 3, AbnΛ5

G is a sub-analytic set
of codimension at least 2 in G.

Remark 38. Let F be the free Carnot group of rank 3 and step 3. The following curve
γ : [0, 1] → F, with associated control u ∈ L1([0, 1],R3), starts from the origin and sweeps
three segments on the coordinate axes:

u(t) =



(1, 0, 0) if t ∈ [0, 1/6)

(−1, 0, 0) if t ∈ [1/6, 2/6)

(0, 1, 0) if t ∈ [2/6, 3/6)

(0,−1, 0) if t ∈ [3/6, 4/6)

(0, 0, 1) if t ∈ [4/6, 5/6)

(0, 0,−1) if t ∈ [5/6, 1],

γ(t) =



exp(tX1) if t ∈ [0, 1/6]

exp((2/6− t)X1) if t ∈ [1/6, 2/6]

exp((t− 2/6)X2) if t ∈ [2/6, 3/6]

exp((4/6− t)X2) if t ∈ [3/6, 4/6]

exp((t− 2/6)X3) if t ∈ [4/6, 5/6]

exp((1− t)X3) if t ∈ [5/6, 1].

Let us check that γ is singular. We use Proposition 12 and compute the subspace Ru in (2.12):

Ru = span
Y ∈g1,t∈[0,1]

{∫ t

0

[Xu(τ), Y ]dτ +

∫ t

0

∫ τ

0

[Xu(σ), [Xu(τ), Y ]]dσdτ

}
= span
Y ∈g1,t∈[0,1]

{
[Xw(τ), Y ] +

∫ t

0

[Xw(τ), [Xu(τ), Y ]]dτ

}
,

where w is as usual the primitive of u. Since, for all τ , w(τ) and u(τ) are parallel, and
actually of the form (sXi,±Xi) for some s = s(τ) ∈ R and i ∈ {1, 2, 3}, we deduce

Ru ⊂ g2 ⊕ span{Xiij | i, j ∈ {1, 2, 3}}.

In particular, Ru is a proper subspace of g2⊕g3 because X123 and X213 do not belong to Ru.
The singular curve γ is associated with a covector λ ∈ Ξ9 ∩ Ξ10 = {λ ∈ Λ5 | b(λ) = 0}

and is associated with a dynamical system with the equilibrium point at the origin; compare
with Figure 4. Actually, one can choose λ in such a way that λ ∈ g⊥2 (i.e., v(λ) = b(λ) = 0),
λiij = 0 for all couples i, j and λ123 = 1, λ231 = −1. We also observe that such a γ provides
a new example of a singular curve that is not contained in any subgroup of F, see [28, Section
6.3].

4.6. Case VI: Λ = Λ6

Here

N =

0 −1 0
1 0 0
0 0 0

 ,
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and the solution to (4.3) starting from the point z0 is given by
z1(t) = (b(λ)2 + z0

1) cos t− (z0
2 − b(λ)1) sin t− b(λ)2,

z2(t) = (z0
2 − b(λ)1) cos t+ (b(λ)2 + z0

1) sin t+ b(λ)1,

z3(t) = b(λ)3t+ z0
3 .

(4.9)

A necessary condition for the existence of equilibria is that λ ∈ Λ6 \ Ξ11, where

Ξ11 := {λ ∈ Λ6 | b(λ)3 6= 0} ,

and the primitives w associated with a covector λ ∈ Ξ11 are supported within the set
{L (λ, t) | t ∈ R} ⊂ G, where L (λ, t) is as in (4.5) provided that z(t) is given by (4.9)
with z0 = 0. In particular, AbnΞ11

G is a sub-analytic set of codimension at least 3 in G.
If instead λ ∈ Λ6 \ Ξ11 the set of equilibria is the line {(−b(λ)2, b(λ)1, η) | η ∈ R}, and

the curves z(t) in (4.9) are circles contained in the plane {(z1, z2, z
0
3) | (z1, z2) ∈ R2} with

center in the equilibrium (−b(λ)2, b(λ)1, z
0
3). In particular, these curves pass through the

equilibrium if and only if z0 is an equilibrium itself, in which case the components z1(t) and
z2(t) remain constant (instead, the concatenation allows the coordinate z3 to vary within
the line of equilibria). Recalling that we are interested only in concatenations of solutions to
(4.3) starting from the origin, we introduce the sets

Ξ12 := {λ ∈ Λ6 | b(λ)1 6= 0, b(λ)3 = 0} ,
Ξ13 := {λ ∈ Λ6 | b(λ)2 6= 0, b(λ)3 = 0} ,
Ξ14 := {λ ∈ Λ6 | b(λ)1 = b(λ)2 = b(λ)3 = 0} ,

Our discussion shows that AbnΞ12

G and AbnΞ13

G are sub-analytic sets of codimension at least 3
in G. On the other hand, the singular curves γẇ associated with λ ∈ Ξ14 are supported within
{exp (tX3(λ)) | t ∈ R}, and since Ξ14 ⊂ S(g∗3) we conclude that AbnΞ14

G is a sub-analytic set
of codimension at least 4 in G.

Proposition 39. For a Carnot group G of rank 3 and step 3, AbnΛ6

G is a sub-analytic set
of codimension at least 3 in G.

4.7. Case VII: Λ = Λ7

Here we have

N =

0 1 0
0 0 1
0 0 0

 . (4.10)

The solution to (4.3) starting from the point z0 is given by
z1(t) = z0

1 + (b(λ)1 + z0
2)t+ (b(λ)2 + z0

3)
t2

2
+ b(λ)3

t3

6
,

z2(t) = z0
2 + (b(λ)2 + z0

3)t+ b(λ)3
t2

2
,

z3(t) = z0
3 + b(λ)3t.

(4.11)
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A necessary condition for the existence of equilibria is that λ ∈ Λ7 \ Ξ15, where

λ ∈ Ξ15 := {λ ∈ Λ7 | b(λ)3 6= 0} ,

and the primitives w starting at the origin and associated with a covector λ ∈ Ξ15 are
supported within the set {L (λ, t) | t ∈ R} ⊂ G, where L (λ, t) is as in (4.5) and z(t) is given
by (4.11) with z0 = 0. In particular, AbnΞ15

G is a sub-analytic set of codimension at least 3
in G.

If instead λ ∈ Λ7 \ Ξ15 the set of equilibria is the line {(η,−b(λ)1,−b(λ)2) | η ∈ R}, and
a curve z(t) as in (4.11) approaches this line if and only if z0

2 = −b(λ)1 and z0
3 = −b(λ)2,

in which case z(t) ≡ (z0
1 ,−b(λ)1,−b(λ)2) for all times. Since we are interested only in

concatenations of solutions to (4.3) starting from the origin, we introduce the sets

Ξ16 := {λ ∈ Λ7 | b(λ)3 = 0, b(λ)1 6= 0, } ,
Ξ17 := {λ ∈ Λ7 | b(λ)3 = 0, b(λ)2 6= 0, } ,
Ξ18 := {λ ∈ Λ7 | b(λ)1 = b(λ)2 = b(λ)3 = 0} .

As in the previous subsection, we deduce that AbnΞ16

G and AbnΞ17

G are sub-analytic sets of
codimension at least 3 in G. On the other hand, the singular curves γẇ associated with
λ ∈ Ξ18 are supported within {exp (tX1(λ)) | t ∈ R}, and we easily conclude that AbnΞ18

G is
a sub-analytic set of codimension at least 4 in G.

Proposition 40. For a Carnot group G of rank 3 and step 3, AbnΛ7

G is a sub-analytic set
of codimension at least 3 in G.

4.8. Case VIII: Λ = Λ8

Here

N =

0 1 0
0 0 0
0 0 0

 ,

The solution to (4.3) starting from the point z0 is given by
z1(t) = z0

1 + (b(λ)1 + z0
2)t+ b(λ)2

t2

2
,

z2(t) = z0
2 + b(λ)2t,

z3(t) = z0
3 + b(λ)3t.

(4.12)

Let us define
Ξ19 := {λ ∈ Λ8 | b(λ)2 6= 0} ,
Ξ20 := {λ ∈ Λ8 | b(λ)3 6= 0} ,

and let us notice that if λ ∈ Ξ19∪Ξ20 then there are no equilibria, so that AbnΞ19

G and AbnΞ20

G
are sub-analytic sets of codimension at least 3 in G. If instead λ ∈ Λ8 \ (Ξ19 ∪ Ξ20), the set
of equilibria coincides coincides with the plane {(η,−b(λ)1, θ) | η, θ ∈ R}, and a trajectory
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z(t) as in (4.12) approaches this plane if and only if z0
2 = −b(λ)1. To analyze concatenations

starting at the origin, we introduce the sets

Ξ21 := {λ ∈ Λ8 | b(λ)2 = b(λ)3 = 0, b(λ)1 6= 0} ,
Ξ22 := {λ ∈ Λ8 | b(λ)1 = b(λ)2 = b(λ)3 = 0} ,

and we notice that, for λ ∈ Ξ21, trajectories through the origin never approach the plane of
equilibria. In particular, AbnΞ21

G is a sub-analytic set of codimension at least 3 in G.
Observe that for every λ ∈ Ξ22 any singular primitive w is in fact an absolutely continuous

curve contained in the plane of equilibria. The singular curves γẇ starting at e and associated
with λ ∈ Ξ22 are given as integral curves of differential system:

γ̇ẇ(t) = ẇ1(t)X1(λ)(γẇ(t)) + ẇ3(t)X3(λ)(γẇ(t)), (4.13)

and are therefore contained within the subgroup of G generated by X1(λ) and X3(λ), which
has dimension at most 5 in G. We now distinguish two cases:

• If dim g2 ≥ 2, then Ξ22 ⊂ S(g∗3) has codimension at least 6, therefore AbnΞ22

G is a
sub-analytic set of codimension at least 1 in G.

• If dim g2 = 1, then we conclude by the following lemma.

Lemma 41. Let G be a Carnot group of rank 3 and step 3 such that dim(g2) = 1. Then
G is isomorphic to H × R for some Carnot group H of rank 2 and step 3, and AbnG is an
analytic manifold of codimension 3.

Proof. The first part of the statement follows by noticing that the map [·, ·] : g1 × g1 → g2

can be identified with a non-zero skew-symmetric bilinear form on g1, hence it has a one-
dimensional kernel, say, span{X3}. We then have G = H × R, where H is the subgroup
generated by X1 and X2.

By [30, Proposition 2.7] we have AbnG = AbnH × R and we distinguish two cases:

• H is the free group of rank 2 and step 3, and AbnH = exp(span{X1, X2}) by the
discussion in Section 2.4.

• H is (isomorphic to) the Engel group with [X1, [X1, X2]] 6= 0 and [X2, [X1, X2]] = 0. It
is well-known (see e.g. [33, Section 3] or [21, p. 541]) that AbnH = exp(span{X2}).

In both cases the conclusion is immediate.

Proposition 42. For a Carnot group G of rank 3 and step 3, AbnΛ8

G is a sub-analytic set
of codimension at least 1 in G.

Remark 43. In [27, Section 5] the authors provided an example of a Goh singular curve that
is not better than Lipschitz continuous, as well as an example of a spiral-like Goh singular
curve. We can recover both examples in the framework of the discussion of the present section
(case VIII).

Let F be the free Carnot group of rank 3 and step 3, and consider the curve γẇ as in (4.13).
Choosing w1 and w3 arbitrarily in Lip([0, 1]) we obtain a Goh singular curve with no regularity
beyond the Lipschitz one. Choosing

(w1(t), w3(t)) = (t cos(log(1− log |t|)), t sin(log(1− log |t|)))

28



we recover the spiral-like example. Using Proposition 12 and computations similar to those in
Remark 38 we obtain that X223 6∈ Im (Gẇe ), i.e., the two curves just constructed are singular
and associated with the unique covector λ ∈ g∗3 such that M(λ)ij = 0 with the exception of
M(λ)12 = λ223 = 1.

4.9. Case IX: Λ = Λ9

The condition M(λ) = 0 implies that the g∗3 component of λ is zero, and this implies that
v(λ) 6= 0 for otherwise the covector λ itself would be zero. Solutions to (4.3) are therefore
lines through the origin.

Proposition 44. For a Carnot group G of rank 3 and step 3, AbnΛ9

G is a sub-analytic set
of codimension at least 2 in G.

The proof of Theorem 3 is complete.

4.10. Proof of Theorem 4

We sketch in this section how to show Theorem 4 if G is the free Carnot group of rank 3 and
step 3. By Remark 32, it is easy to conclude that AbnΛ1

G is a sub-analytic set of codimension 3

in G. A similar reasoning shows that the same conclusion holds also for AbnΛi

G , for i = 2, 3, 4;

actually, the codimensions of AbnΛ2

G , AbnΛ3

G , AbnΛ4

G are 4, 3, 4, respectively.

To see that AbnΛ5

G is a sub-analytic set of codimension 3 in G it suffices to analyze the case

of AbnΞ9

G ,AbnΞ10

G , taking into account the two conditions imposed on b(λ) and the further
one given by det(M(λ)) = 0.

The lower bound 3 on the codimension of AbnΛ6

G ,AbnΛ7

G is already stated in Proposi-
tions 39 and 40. However, it can be showed that they are sub-analytic sets of codimension 4
and 5 in G, respectively. Indeed, the Jordan normal form presented in (4.10) is a condition
of codimension 2 on the g∗3 component of λ by, e.g., [9, §5.6].

In order to study the codimension of AbnΛ8

G it suffices to study AbnΞ22

G . Here, the tra-
jectories of singular curves associated with a fixed λ ∈ Ξ22 sweep a 5-dimensional subgroup.
On the other hand, λ ∈ Ξ22 imposes 9 independent conditions on λ itself: 7 come from
λ ∈ S(g∗3) and 2 more are consequences of the prescribed normal form N of M(λ). Indeed,
the prescribed normal form is a constraint of codimension 1 [9, §5.6] and leads to the matrixa 1 0

0 a 0
0 0 −2a

 , a ∈ R.

But then, by the rank-one condition, a = 0 and we conclude.
Finally, an easy argument shows that AbnΛ9

G = exp(g1) is an analytic manifold of codi-
mension 11 in G, and the proof follows.

5. An open problem: the free Carnot group of rank 2 and step 5

We discuss in this section the case of Carnot groups of rank 2 and step 5, where the
dynamics of singular controls is lead by a quadratic system of differential equations. We
derive explicitly such equations, but we leave as an open question their qualitative analysis.
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Let u ∈ L1([0, 1],R2), w ∈ AC([0, 1],R2) be the primitive of u and γu be the singular
trajectory associated with u. With the same conventions as in Section 3, by Remark 18 we
can find a covector λ ∈ S(g∗3 ⊕ g∗4 ⊕ g∗5) such that:

λw(t)u(t)j +

∫ t

0

λw(τ1)u(τ1)u(t)jdτ1 +

∫∫
0≤τ2≤τ1≤t

λw(τ2)u(τ2)u(τ1)u(t)jdτ2dτ1 = 0

for a.e. t ∈ [0, 1] and j = 1, 2. The skew-symmetric matrix Mu(λ, t) ∈ M2(R) in (2.16) is
given by

Mu(λ, t)ij = λw(t)ij+

∫ t

0

λw(τ1)u(τ1)ijdτ1 +

∫∫
0≤τ2≤τ1≤t

λw(τ2)u(τ2)u(τ1)ijdτ2dτ1, i, j = 1, 2,

and we have:

2∑
i=1

ui(t)

(
λi12 + λw(t)i12 +

∫ t

0

λw(τ)u(τ)i12

)
dτ = 0, for a.e. t ∈ [0, 1].

We therefore conclude that (u1(t), u2(t)) is parallel to(
λ212 + λw(t)212 +

∫ t

0

λw(τ)u(τ)212dτ,−λ112 − λw(t)112 −
∫ t

0

λw(τ)u(τ)112dτ

)
∈ R2

for a.e. t ∈ [0, 1]. Let us recall the relations (compare with Definition 14)

λ1212 = λ2112, λ12112 = λ(12)(112) + λ21112, λ12212 = λ(12)(212) + λ21212.

After an integration by parts and some algebraic manipulations, we obtain the system:

ż(t) =

(
λ212

−λ112

)
+

(
λ2112 λ2212

−λ1112 −λ2112

)
z(t) +

1

2
z(t)T


(
λ11212 λ21212

λ21212 λ22212

)
(
−λ11112 −λ21112

−λ21112 −λ22112

)
 z(t)

+

(
λ(12)(212)

−λ(12)(112)

)∫ t

0

z1(τ)ż2(τ)dτ.

(5.1)

This integro-differential system can be differentiated in t to obtain a second-order differential
system in R2 or, equivalently, a first-order quadratic differential system in R4: all the primi-
tives w such that λ ∈ Im (Gẇe )⊥ are obtained by concatenation of (the first two components
of) the integral curves of such extended system.

Let us go back to the system (5.1), which is set in R2 with variable z = (z1, z2) ∈ R2.
One can however set it in the first Heisenberg group H1 by adding a new variable θ = θ(t):
if H1 is identified with R3

z1,z2,θ
by exponential coordinates of the second type (see e.g. [26,

Proposition 3.5]) in such a way that a basis of left-invariant vector fields is provided by

Z1 = ∂z1 , Z2 = ∂z2 + z1∂θ, T = [Z1, Z2] = ∂θ,

we see that (5.1) can be equivalently written as

ṗ(t) = v1(p(t))Z1(p(t)) + v2(p(t))Z2(p(t)), (5.2)
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where p = (z1, z2, θ) = (z, θ) and

(
v1(p)
v2(p)

)
:=

(
λ212

−λ112

)
+

(
λ2112 λ2212

−λ1112 −λ2112

)
z+

1

2
zT


(
λ11212 λ21212

λ21212 λ22212

)
(
−λ11112 −λ21112

−λ21112 −λ22112

)
 z+

(
λ(12)(212)

−λ(12)(112)

)
θ.

The system (5.1) in R2 is then equivalent to the first-order, quadratic horizontal dynamical
system (5.2) in H1. It would be interesting to know, at least, how the associated trajectories
approach the equilibria.
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Poincaré Anal. Non Linéaire, 14(2):167–186, 1997.
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