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Abstract: Monitoring and prediction of within-field crop variability can support farmers to make the
right decisions in different situations. The current advances in remote sensing and the availability of
high resolution, high frequency, and free Sentinel-2 images improve the implementation of Precision
Agriculture (PA) for a wider range of farmers. This study investigated the possibility of using
vegetation indices (VIs) derived from Sentinel-2 images and machine learning techniques to assess
corn (Zea mays) grain yield spatial variability within the field scale. A 22-ha study field in North
Italy was monitored between 2016 and 2018; corn yield was measured and recorded by a grain
yield monitor mounted on the harvester machine recording more than 20,000 georeferenced yield
observation points from the study field for each season. VIs from a total of 34 Sentinel-2 images at
different crop ages were analyzed for correlation with the measured yield observations. Multiple
regression and two different machine learning approaches were also tested to model corn grain
yield. The three main results were the following: (i) the Green Normalized Difference Vegetation
Index (GNDVI) provided the highest R2 value of 0.48 for monitoring within-field variability of corn
grain yield; (ii) the most suitable period for corn yield monitoring was a crop age between 105 and
135 days from the planting date (R4–R6); (iii) Random Forests was the most accurate machine learning
approach for predicting within-field variability of corn yield, with an R2 value of almost 0.6 over
an independent validation set of half of the total observations. Based on the results, within-field
variability of corn yield for previous seasons could be investigated from archived Sentinel-2 data
with GNDVI at crop stage (R4–R6).

Keywords: Sentinel-2; precision agriculture; machine learning; vegetation indices; corn yield;
within-field variability; digital farming

1. Introduction

Crop yield is defined as the total production per unit area and is commonly measured in tons
per hectare [1]. Such yield changes spatially and temporally within-field zones based on local spatial
variability in soil physical and chemical properties, management practices and localized damage
due to pests and pathogens [2–4]. Information on within-field yield variability supports farmers to
improve their management decisions, profit, land rental, and for insurance assessment as well [5,6].
The first step in PA is yield monitoring, which is one of the fundamental elements for delineating
management zones (MZ) based on previous yield maps [7]. Delineating MZ requires information on
soil characteristics and archived management practices for the field, while yield monitoring evaluates
the final result of these practices at the end of the growing season.
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Satellite remote sensing (RS) offers a wide range of indications for crop and vegetation parameters,
such as Leaf Area Index (LAI) [8,9], leaf nitrogen accumulation [10], the fraction of absorbed
photosynthetically active radiation (FPAR) [11] and crop biomass [8,12–14]. Most of these applications
were on the large scale of a region or country compared with few applications at a field scale. The most
common reasons for this trend are the high cost of obtaining and processing RS data on a field scale,
research funders such as governments and organizations are focusing on total production, and a lack
of ground truth data and measurement accuracy [5].

Traditional methods for crop yield monitoring such as quadratic frame sampling are
time-consuming, destructive, laborious, and not accurate for large fields where spatial variability
becomes an issue [2]. Currently, the availability of crop yield monitoring systems mounted to harvesters
can provide yield maps but obviously only at the end of the season. Therefore, the rapid development
in RS and the need for crop yield monitoring and prediction attracts the attention of many researchers
to investigate within-field variability through satellite and aerial RS data [15–19].

In most yield monitoring studies using RS data, two main strategies have been typically proposed.
The first method integrates RS data with meteorological data and plant physiological models to monitor
crop development and then crop yield [20,21]. The other method relies on RS data to predict the yield
for crops that have a direct relation between biomass and the harvest index [22]. The harvest index
is the ratio between grain yield and above ground crop biomass. The first method is complicated
and requires a lot of inputs, while the latter method does not provide an explanation of physiological
process [23].

The development of empirical equations between vegetation indices (VIs) and crop yield is a
simple and operational way to assess within-field variability [24,25], whereas the developed equations
have spatial and temporal constraints to apply in another field or another season [19,26,27]. A large
number of VIs have been developed to describe crop growth and subsequently yield. Some well-known
ones are the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index
(SAVI), Enhanced Vegetation Index (EVI), Green Normalized Difference Vegetation Index (GNDVI),
Green Atmospherically Resistant Vegetation Index (GARVI), and Normalized Difference red edge
(NDRE) [16,28–32]. Specific modifications by differential weighting of some bands (in particular of the
near-infrared range) have been applied to provide specific indices for crop yield monitoring, like the
Wide Dynamic Range Vegetation Index (WDRVI) [33,34] and the Green Chlorophyll Vegetation Index
(GCVI) [35]. Selecting the most suitable VI and crop age for yield assessment is an important step in
crop yield empirical model development [16].

Predicting corn (Zea mays L.) grain yield and assessing its spatial and temporal variability have
been investigated in several studies [24,26,36–40]. Lobell et al. [5] introduced a yield prediction method
based on Landsat 5 and Landsat 7 satellite imagery and weather data used as inputs with crop model
simulations. This approach was tested between different fields based on farmers reports in the USA
and the overall R2 for corn was 0.35. Shanahan et al. [41] reported that GNDVI derived from aircraft
imagery at mid-grain filling stage provided the highest correlations (0.7 to 0.92) with corn grain yield
in a plots experiment. Bognar et al. [42] used the greenness index derived from the Advanced Very
High Resolution Radiometer (AVHRR) imagery to predict corn yield at the Hungarian county scale
with 90% accuracy in late July (70 days before harvesting). A recent study was performed in Brazil and
the USA to investigate different VIs derived from Sentinel-2 images to predict corn grain yield at a
field scale. The collected images were in the range of ±20 days from flowering. This study showed that
NDRE, GNDVI, and NDVI presented high performance to forecast field variability and provided an
R2 value of 0.32 for the universal corn yield estimation equation [19].

Currently, various agricultural models based on RS imagery have been developed using Machine
Learning (ML) techniques [43–45]. ML techniques potentially provide a higher accuracy and a more
robust performance compared to conventional correlations as they learn to model complexity through
training. Therefore, variance is explained through either parametric or nonparametric approaches.
Parametric approaches are simpler, need less data for training, but are less suited for complex problems.
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Nonparametric models are harder to interpret with regards to input features, need more time and more
data for training, and can suffer from overfitting, but by making no assumptions in the underlying
function, they are more flexible [46].

A note must be made about deep learning methods. Applications of deep learning to imagery in
the literature have proven to give added accuracy and improve results. In this study, deep learning
methods were not considered because of the implicit complexity to the deep learning approach.
The complexity lies in defining the architecture of the hidden layers that require testing combinations
of pooling layers and convolutional layers with the respective parameters. The ML methods tested in
this investigation only require tuning a few parameters. It is certainly worth testing deep learning
methods, but this was not the focus of this research.

In this work we tested three regression methods. One is a common multiple linear Regression
(MR), and two are ML algorithms, Random Forests (RF) and Support Vector Machines (SVM). The two
ML approaches are more effective as they are not affected by collinearity and non-normal distribution
of the variables, can handle overfitting, and do not require scale normalization. They are nonparametric
models, as opposed to MR, and therefore have the drawback that they add complexity to interpretation.
Recently, ML algorithms have emerged with big data technologies to create new opportunities in the
agricultural domain [47]. Applying ML algorithms on crop yield estimation from RS data is a flexible
approach and capable of processing a large number of inputs with the increase in data volumes due to
higher resolution and the shorter revisit times of new satellite sensors [48].

Yuan et al. [45], compared different ML techniques to estimate the LAI of soybean using Unmanned
Aerial Vehicle (UAV) imagery and reported that RF was the most suitable technique when the sample
plots and variations in LAI were relatively large. Yue et al. [49] reported that RF was extremely
robust against noise compared with other ML techniques in estimating winter wheat biomass using
near-surface spectroscopy. Karimi et al. [50] used SVM and Artificial Neural Networks (ANN) to
classify hyperspectral images based on nitrogen application rates and weed management practices
over a corn field and the results showed that SVM provided very low misclassification rates compared
with ANN. In addition, they recommended the SVM technique for early stress detection in corn, which
could aid in effective early application of site-specific remedies. Han et al. [51] applied MR, ANN,
SVM, and RF algorithms on UAV RS data to predict the above ground maize biomass and their results
showed that RF provided the most balanced results with low error.

Monitoring within-field variability requires sufficient spatial and temporal resolutions according
to crop type and targeted application [6,18]. In the case of corn, which represents about 20% of Italian
cereal cultivated area, more than 80% of corn fields have an area over 10 ha [52]. The Sentinel-2 satellite
constellation provides images with a 10 m spatial resolution for red, green, blue, and near-infrared
(NIR) bands, which is equivalent to 1000 pixels in a 10 ha field. Moreover, the corn growing seasons
are spring and summer (April to September), which have fewer clouds compared to other seasons,
and Sentinel-2 provides images with a 5-day revisit frequency [53]. Thus, Sentinel-2 provides images
that have sufficient spatial and temporal resolutions for monitoring within-field variability in Italian
corn fields.

The purpose of this paper was to evaluate the potential of using different VIs derived from archived
Sentinel-2 satellite images for identifying corn yield spatial variability within-field and compare results
with three regression methods that have been proven to perform best in the recent literature: random
forests (RF), support vector machines (SVM), and multiple regression (MR). The specific objectives were

(1) to examine different vegetation indices for corn yield estimation;
(2) to define the suitable crop age for predicting yield variability within the field scale;
(3) to develop a corn yield prediction model based on Sentinel-2 images and the best performing

machine learning technique and compare the results with VIs.
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2. Materials and Methods

2.1. Study Area

This study was carried out on a 22-ha field located in a typical valley area (at Porto Felloni Co.) in
Ferrara, North Italy (Figure 1). The study field lies within the Mediterranean climatic zone and the
total rainfall during the corn growing season was 266 mm on average. The soil texture is silt loam
and the study field has been irrigated by a center pivot irrigation system and cultivated with corn
for two decades, with the exception of 2015, when it was cultivated with wheat. This work focused
on three years of corn cultivation from 2016 to 2018. The corn planting dates were 30 March 2016,
22 March 2017 and 11 April 2018 for the study field and harvest was done at a crop age of 160 days on
average. The company cultivated the same corn seed variety (Pioneer P1916) during the study period
with 75 cm of row spaces and 16 cm between seeds, on average. Additionally, they used a variable rate
of nitrogen application with an average urea application (nitrogen 46%) of 344 kg/ha in 2016 and 2017
and 367 kg/ha in 2018. The prescription map of applied nitrogen was the same for the 2016 and 2017
seasons and modified for the 2018 season.
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Figure 1. Study field in Ferrara, North Italy.

2.2. Measured Yield Data

A grain yield monitoring system mounted on a combine harvester was used to record corn yield.
This system could record about 1000 yield points for each hectare (about 20,000 points from the whole
study field). The harvester width was 6 m and the monitor could record yield every 1 s, which is
equivalent to an average speed of the harvester of 1.5 m along the direction of harvesting. Corn yield
varied between 9 and 18 ton/ha across the study field for the three seasons. After harvesting and
downloading the yield data, maps were processed as follows. Field borders were removed to avoid
noise arising from the partial presence of corn in the field margins. Data recorded while the harvesting
machine was turning at the end of each line were also removed to avoid zero production from the
corresponding field portions. Secondly, two lines were removed from the 2016 yield data where the
harvester passed twice during field operations. The measured yield is provided as a dataset with
~20,000 sparse points, whereas the Sentinel-2 data is a raster with a 10-m resolution. Therefore, the
sparse points were interpolated to a raster with the same resolution as Sentinel-2 using the Kriging
method. Kriging was run using R’s Gstat package. The best models and fits (range, partial sill, and
nugget) are, respectively, for each of the three seasons from 2016 to 2018: (i) Exponential—57.29 m, 1.628,
2.78; (ii) Exponential—46.18 m, 3.087, 5.123; (iii) Spherica—114.87 m, 3.982, 5.55. The field contains
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2006 cells with yield values for each of the three seasons analyzed. Figure 2 shows a color-scaled image
of the final corn yield data for the three studied seasons.
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Figure 2. Corn grain yield data for the 2016, 2017, and 2018 growing seasons.

2.3. Satellite Imagery

Sentinel-2 Level 2A (L2A) Bottom-Of-Atmosphere (BOA) reflectance product was acquired from
the Copernicus Open Access Hub. Sentinel-2 L2A data provided 12 bands with channels ranging
from 443 to 2190 nm and a spatial resolution (ground sampling distance—GSD) of 10 to 60 m [54].
All images were resampled to 10 m pixel size and clipped to the region of interest (the study field).

To compare between the plant development stages, we used “crop age”, defined by the number of
days counted from the planting date. The crop ages at harvesting time were 168, 159, and 160 days from
planting for 2016, 2017, and 2018, respectively. In our case, there were no available cloud-free Sentinel-2
images until a crop age of 60 days (April and May). Starting from June, cloud-free satellite images
were more frequently available. In 2016, there were only six Sentinel-2 images available. This number
increased to reach 14 images per season for 2017 and 2018. A total of 34 Sentinel-2 images between 2016
and 2018 were available during the corn growing season at different crop ages, as shown in Table 1.

Table 1. Sentinel-2 images dates corresponding crop age in days and phenological stage at each
growing season.

2016 Season 2017 Season 2018 Season

Planting Date: 30 March 2016 Planting Date: 22 March 2017 Planting Date: 11 April 2018
Harvesting Date: 14 September 2016 Harvesting Date: 25 August 2017 Harvesting Date: 18 September 2018

I Date Age (Stage) I Date Age (Stage) I Date Age (Stage)

1 18 June 2016 80 (R3) 1 31 May 2017 70 (R2) 1 19 May 2018 38 (V10)
2 18 July 2016 110 (R4) 2 03 June 2017 73 (R2) 2 10 June 2018 60 (R1)
3 28 July 2016 120 (R5) 3 13 June 2017 83 (R3) 3 15 July 2018 95 (R3)
4 04 August 2016 127 (R6) 4 20 June 2017 90 (R3) 4 18 July 2018 98 (R4)
5 14 August 2016 137 (R6) 5 23 June 2017 93 (R3) 5 20 July 2018 100 (R4)
6 24 August 2016 147 (R6) 6 03 July 2017 103 (R4) 6 28 July 2018 108 (R4)

7 10 July 2017 110 (R4) 7 04 August 2018 115 (R6)
8 13 July 2017 113 (R5) 8 17 August 2018 128 (R6)
9 23 July 2017 123 (R6) 9 19 August 2018 130 (R6)

10 30 July 2017 130 (R6) 10 22 August 2018 133 (R6)
11 02 August 2017 133 (R6) 11 24 August 2018 135 (R6)
12 04 August 2017 135 (R6) 12 27 August 2018 138 (R6)
13 12 August 2017 143 (R6) 13 29 August 2018 140 (R6)
14 22 August 2017 153 (R6) 14 06 September 2018 148 (R6)
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Clouds and other opaque aerosol in the atmosphere can partially occlude the transmission
of energy at the wavelengths recorded by the Multispectral Instrument (MSI) on-board Sentinel-2.
Level 2A products provide a raster map with cloud cover confidence ranging from 0 for high confidence
of clear sky to 100 for high confidence of cloudy sky [54]. This information was used to isolate pixels
with a cloud probability above zero. Out of 34 images, 14 had at least one pixel covered by clouds.
Table 2 below gives an overview. The study crop field covered 2006 pixels at 10 m GSD. All pixels with
cloud probability above zero were masked and thus not considered for further processing. Masking
removed these pixels from further processing.

Table 2. Number of pixels covered by clouds in each image and cloudy sky confidence (%) of
removed pixels.

Cloudy Sky Confidence

Image Date N. Pixels * Min Mean Max

18 June 2016 6 1 1.83 2
18 July 2016 4 1 1.00 1
28 July 2016 4 1 1.00 1

24 August 2016 4 1 1.00 1
31 May 2017 70 1 1.17 3
3 June 2017 690 1 1.08 5
13 June2017 619 1 1.05 5
23 June 2017 4 2 2.00 2
10 July 2017 4 1 1.00 1
13 July 2017 4 4 4.00 4

2 August 2017 12 1 1.00 1
4 August 2017 4 1 1.00 1

12 August 2017 4 1 1.00 1
10 June 2018 4 3 3.00 3

* Number of pixels with cloudy sky confidence above zero. There are a total n. of 2006 pixels (10 m GSD) in the
study area.

2.4. Vegetation Indices

Nine different vegetation indices (NDVI, NDRE1, NDRE2, GNDVI, GARVI, EVI, WDRVI,
mWDRVI, and GCVI) were derived from Sentinel-2 images after resampling all bands to 10 m
pixel size using SNAP software (Sentinel application platform) version 5.0. These indices are the most
common VIs used for crop yield monitoring in the literature and were derived using Equations (1)–(9).

NDVI =
NIR− B4
NIR + B4

, (1)

NDRE1 =
NIR− B5
NIR + B5

, (2)

NDRE2 =
NIR− B6
NIR + B6

, (3)

GNDVI =
NIR− B3
NIR + B3

, (4)

GARVI =
NIR− (B3− B1− B5)
NIR− (B3 + B1− B5)

, (5)

EVI =
NIR− B4

NIR + 6B4− 7.5B1 + 1
× 2.5, (6)

WDRVI =
α×NIR− B4
α×NIR + B4

, (7)
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mWDRVI =
{

NDVI NDVI ≤ 0.6
WDRVI NDVI > 0.6

, (8)

GCVI =
(NIR

B3

)
− 1, (9)

where NDVI is the Normalized Difference Vegetation Index (Equation (1)), NDRE 1 and 2 are the
Normalized Difference Red Edge calculated based on band numbers 5 and 6, respectively (Equations (2)
and (3)), GARVI is the Green Atmospherically Resistant Vegetation Index (Equation (4)), GNDVI is the
Green Normalized Difference Vegetation Index (Equation (5)), EVI is the Enhanced Vegetation Index
(Equation (6)), WDRVI is the Wide Dynamic Range Vegetation Index (Equation (7)), and mWDRVI is a
mixed WDRVI where the WDRVI value is used conditionally if the NDVI value is above 0.6, otherwise
NDVI is used, as per the literature in [34,55] (Equation (8)). GCVI is the Green Chlorophyll Vegetation
Index (Equation (9)). B1 is the reflectance of the blue band (432–453 nm), B3 is the reflectance of
the green band (542–578 nm), B4 is the reflectance of the red band (649–680 nm), B5 and B6 are the
reflectance of the vegetation red edge band at (697–712 nm) and (733–748 nm), respectively, and NIR is
the reflectance of the near-infrared bands of the Sentinel-2 satellite images. For NIR, we tested bands 8,
8A, and 9, at (780–886 nm), (854–875 nm), and (935–955 nm), respectively, for all the VIs. The α value
in WDRVI is a weighting factor equals to 0.15 as average value between 0.1 and 0.2 as it is reasonable
according to literature [55]. The derived vegetation indices were analyzed and compared with the
actual yield maps for each season. The correlation measured using R2 value was calculated for each
index at different crop ages.

2.5. Yield Prediction with Machine Learning

The prediction of a continuous variable, i.e., regression, can be done with several ML approaches.
Three algorithms were tested in this investigation: multiple regression (MR), random forests (RF),
and support vector machines (SVM). The last two are nonparametric methods, as the number of
parameters in the model is not fixed, but changes depend on the data used for training—which usually
grows as the training data volume increases [46]. These models were chosen because in the existing
literature, they have been proven to yield better results when compared with other methods [56–60].
The independent variables were the reflectance values of the considered bands and the dependent
variable to be predicted was the yield value. At each image, band values were used as independent
variables to train a model using the values in the raster derived from the measured yield, as described
in Section 2.2.

Multiple regression uses multiple simple linear regressions on the input variables using least
squares optimization to define the best fit for each dependent variable as a function of the independent
variable (measured yield). This is the simplest model and assumes a linear relationship between the
yield and the band reflectance values, and that band values are not correlated. This last assumption
is known to be untrue, as band values are correlated; thus, this method was applied to the first four
principal components which contained 92% of variance.

Random Forests (RF) is a method based on decision trees for classification and regression.
The training data are used to define decision boundaries that create the “trees” in the “forest” via
split nodes in the decision tree process. The best combinations of splits are defined by a bootstrap
approach. The available training data is sampled without replacement, keeping the remaining data
for determining residuals from an independent set (out-of-bag validation) and thus comparing the
accuracy metrics between combinations and choosing the best. Two main parameters need to be
defined by the user: the number of features randomly sampled as candidates at each split—usually the
square root of the total number of features—and the number of trees to grow.

The Support Vector Machine (SVM) method defines boundaries in high-dimensional space, i.e.,
a hyperplane, that separates training data into labelled classes, which, in our case, is a continuous
variable (yield) for the regression task. Nonlinear boundaries use a nonlinear kernel function, in our
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case, the Radial Basis kernel “Gaussian” RBF. For more information on the method, there is extensive
literature on SVM applied to remote sensing [45,48,56,57].

In order to validate the tested models, the predicted yield was compared against the measured
yield from independent samples. Only cells that were free from clouds were used by masking any
cell with a cloud coverage probability above zero (see Table 2). The cause for using this conservative
threshold is to avoid the noise from clouds taking into consideration that this study investigated
the within-field variability of a relatively small area cultivated with the same crop through limited
satellite spectral reflectance bands. Therefore, for each cloud-free date, we made 2006 observations
with 12 variables, i.e., reflectance values of the land cover at the time the satellite image was recorded.
In case of clouds, fewer cells were used.

The model was run 60 times, each time randomly dividing data into two parts and using one half
for training and the remaining half for validation. This procedure was repeated to assess variation in
accuracy metrics when using different point samples for training. Five accuracy metrics were extracted
in order to obtain a thorough overview of the distribution of errors as per Equations (10)–(14).

ME =

∑n
i=1 yi − xi

n
, (10)

MAE =

∑n
i=1

∣∣∣yi − xi
∣∣∣

n
, (11)

MAPE =

∑n
i=1

∣∣∣∣ yi−xi
yi

∣∣∣∣× 100

n
, (12)

RMSE =

√∑n
i=1(yi − xi)

2

n
, (13)

R2 = 1−

∑n
i=1(yi − xi)

2∑n
i=1(yi − y)2 , (14)

where MAE is the mean absolute errors, MAPE is the mean absolute percentage error, ME is the mean
error, R2 is the R-squared, RMSE is the root mean square of errors, x is the measured yield value, y is
the predicted yield value, n is the number of observations, i is the iteration of observations, and y is the
mean value of predicted yield. All procedures were carried out in R with an rminer package [61,62].
The results show that random forests [63] provided the most accurate results. Therefore, random
forests was used for further tuning and analysis (see Results section).

3. Results

The following sections report on results from VIs and machine learning approaches. Correlations
of VIs with yield were analyzed to assess how VIs can potentially be used to model yield. The three
machine learning models were assessed with the five mentioned accuracy metrics.

3.1. Vegetation Indices

Each year presented a different pattern of yield spatial distribution due to different soil
characteristics, variable rate nitrogen application by the farmer, and other weather conditions.
In general, the yield maps showed a high yield at the north-western zone of the field compared
with the south-eastern zone in 2016 and 2017 (Figure 2). In 2018, yield improved in the south-eastern
zone while yield decreased in the north-western zone compared to previous seasons.

Nine vegetation indices (NDVI, NDRE1, NDRE2, GNDVI, GARVI, EVI, WDRVI, mWDRVI, and
GCVI) derived from each Sentinel-2 image calculated with three different NIR bands (8, 8A, and 9)
were correlated with the actual yield map of each year. In general, correlations based on bands 8 and
8A were higher than those based on band 9. Band 8 and 8A correlations had the same trend for all
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seasons and at all crop ages with slight differences. Band 9 has a spatial resolution of 60 m which
provided only 57 pixels for the whole study field compared to band 8A and 8, which have a spatial
resolution of 20 and 10 m and provided 516 and 2067 pixels, respectively. The higher spatial resolution
could describe the field variability more accurately and improve the correlation results. Therefore, VIs
based on band 8 were considered for further analysis.

The correlation between vegetation indices and corn grain yield (Figure 3) were low at the
vegetative growth stages and early reproductive development stages (first 80 days of crop age) for
2017 and 2018 seasons. This correlation increased during the grain filling stage R3 (90 to 110 days)
and reached its peak at the physiological maturity stage R4–R6 (105 to 135 days). This trend could be
realized from the three seasons correlations (R2 value), as shown in Figure 3. In 2016, the coefficient of
determination (R2 value) started from less than 0.2 at a crop age of 80 days (R3) and reached the highest
R2 value of 0.48 at 137 days (R6) from GNDVI. In 2017, a clearer trend was observed due to the higher
number of available images, starting from an R2 value of less than 0.2 at a crop age of 70 days (R2) and
more than 0.35 for five different images from a crop age of 110 to 135 days (R4–R6). The highest R2

value was for GNDVI compared to the other investigated indices at all stages, which reached a peak of
0.42 at the R6 stage at a crop age of 135 days. In 2018, R2 values were not stable due to fog and blur in
the images that affected the image quality but followed the same trend as previous seasons. The R2

values started from less than 0.1 at a crop age between 60 and 100 days (R1–R4), then improved to reach
the peak of 0.37 from GARVI and 0.36 from GNDVI at a crop age of 130 days (R6). All correlations
between VIs and corn grain yield for all satellite image dates are available in the Supplementary files.
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Figure 3. Coefficient of determination (R2 value) between vegetation indices and actual yield at different
crop ages for the three seasons. The three columns represent different NIR bands used.

GARVI provided the highest correlations in 2018 slightly higher than GNDVI. GARVI is more
resistant to atmospheric effects, as described by Gitelson et al. [30], which explain GARVI’s trend for
this season in particular. Moreover, the correlation decreased dramatically at a crop age of 140 days
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for the 2017 and 2018 seasons with a R2 value of less than 0.25, while it decreased to 0.4 for 2016.
After 140 days, the crop enters the stage of full maturity and leaves turns from green to brown, thus
decreasing the coefficient of determination R2 value. The highest R2 value was observed from GNDVI
at crop ages of 127, 135, and 130 days for 2016, 2017, and 2018, respectively. The corn yield maps after
kriging and resampling to a 10 m pixel size with mostly correlated GNDVI and corresponding R2

graph are shown in Figure 4. In Figure 4, GNDVI and yield maps are shown with the same color map
stretched with the histogram equalization method.
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Figure 4. Measured yield maps (top) and Green Normalized Difference Vegetation Index (GNDVI)
maps of date with a higher coefficient of determination for each year (middle) and corresponding
scatter plot, equations, coefficient R2 values where p values < 0.001 (bottom (a) for 2016, (b) for 2017
and (c) for 2018 season).

3.2. Machine Learning Models

The random forests algorithm can be tuned by changing two parameters: the number of trees
(Nt) and the number of features (Nf). Iterative methods to find the best Nt and Nf combinations were
applied by testing 3 × 5 combinations of Nf ∈ {4, 8, 12} and Nt ∈ {50, 100, 120, 200, 500}. The best
combination resulted in Nf = 4 and Nt = 120. Each node in a tree is split by randomly selecting Nf
features from the d-dimensional input feature space. Figure 5 shows how accuracy grows by increasing
the number of trees, with the optimal value when no significant increase is seen. Figures 6 and 7 show
that the results were optimal at a certain time from planting the crops, which is in line with results
from vegetation indices correlations but with a higher overall R2 value.
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Figure 5. Improvement of fit versus the number of trees used in the Random Forests method.

The Random Forests method gave more accurate results when compared with other types of
models that use decision trees and neural network ensembles (Figure 6). For each training and
validation step, more runs were carried out, as mentioned in the Methods section; therefore, variance
can be reported and is visible in the plot as standard deviation whiskers (Figure 6). Only ME had a
high enough value of standard deviation to be visible in the plot, showing that the absolute accuracy
metrics are significantly different between methods. This is coherent with the existing literature [56,57].
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Figure 6 shows the result of the five calculated accuracy metrics, as reported in Equations (10)–(14).
The mean absolute error (MAE) and the same as a percentage (MAPE) can distinguish how the
best ML method ranges between 0.7 and 1.0 ton/ha, which corresponds to 5–8% of measured yields.
Mean error is useful to assess bias; support vector machines ME values show that predicted yield values
underestimated with respect to measured values. The whiskers in Figure 6 in the plot of the mean error
show the variation of bias of each model when predictions were compared with measured yield values.
This variation is +/− 0.05 ton/ha, which is minimal considering the 9 to 18 ton/ha range within-field
zones. The correlation coefficient is reported for comparison reasons against the correlations found
using the VIs reported in the previous section. Root mean square of errors is an important metric that
is more sensitive than MAE to residuals of predicted and measured yield values.

The results in Figure 7 report the accuracy of each model trained using certain images at certain
dates (rows) when predicting yield values using other images from other dates (columns). More is
discussed on this in the next section. The most accurate results (low MAE values) were provided by
the 2016 images compared to 2017 and 2018. The availability of more images in 2017 and 2018 showed
that MAE values are higher during the early and late corn growing stages which is in line with high
correlations in R4–R6 growing stages.
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Figure 7. Mean absolute error (MAE) values from the Random Forests model that was trained with Sentinel-2 data on a certain date (rows) applied for prediction
using Sentinel-2 images at all dates (columns). Table color scaling from green for low values to red for high values. Values are in kg for error metrics.
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4. Discussion

The first outcome of this study is that GNDVI showed the highest correlation between VI and
corn grain yield. This result is in line with Shanahan et al. [41], who reported the same index from
aircraft imagery at a small scale. In addition, Schwalbert et al. [19] and Peralta et al. [18] reported that
GNDVI and NDVI reflected the potential on corn yield prediction models. The difference between
the examined VIs was not large, except for EVI, but GNDVI showed a clearer trend and the highest
correlations. This result is clearer in the 2017 season, while other seasons have more fluctuation in
other VIs and less image availability. Gitelson et al. [30] reported that GNDVI is more sensitive to
the chlorophyll concentration in a wide range of chlorophyll variations. Additionally, they reported
that the reflectance range between 520 and 630 nm is the most sensitive for chlorophyll. This range
matches with the green band B3 of Sentinel-2 data that ranges between 524 and 596 nm. Meanwhile,
Tan et al. [64] reported that GNDVI was the most positively correlated vegetation index with FPAR for
corn canopies which subsequently describes the strong relation to corn biomass and yield.

Secondly, GNDVI derived from Sentinel-2 images in the study field could provide a clear
description of the corn grain yield spatial variability within-field scale for around 1 month between
the end of grain filling and physiological maturity stages. This period is around the physiological
maturity stages (R4–R6) at crop ages of 105 to 135 days from planting and mostly between mid-July
and mid-August in North Italy. This period was mentioned by Ferencz et al. [42] in a Hungarian
county scale, Shanahan et al. [41], and Maestrini and Basso [40] in the USA for corn yield prediction.
The consistency for this period in the USA, Hungary, and Italy and with multiple scales supports
defining it as the most suitable corn yield prediction time. This period is the summer season with less
probability of clouds and fog, and Sentinel-2 could provide about six images during this month, which
could describe the corn grain yield variability within-field.

Machine learning provides overall higher R2 and more robust results than the VIs approach.
Practical results from this study are clearly the application of random forests after 105 days from
planting, training the model with a few ground truths sampled over the field, and then applying
the trained model over other fields that must be modelled. Evidently, fields must have similar
characteristics. The final target is to have a mapped spatial distribution of corn yield over the field of
interest that could support farmers for site specific applications.

Another result pertaining to the application of machine learning models with Sentinel-2 reflectance
timeseries data for crop yield prediction is depicted in Figure 7. Figure 7 reports on the accuracy of a
model that was fitted by training with imagery from a certain date (rows), applied to imagery from all
other dates (columns). The diagonal row in this table represents fitting and modelling on the same
image and, as expected, provided the best performance. Other combinations show how well a model
that is fitted on one image date performs on another image date. Figure 7 shows that the model must
be used in the same conditions of crop growing stage to replicate acceptable accuracies. Machine
learning methods are nonparametric methods and have many advantages, as mentioned here and in
other studies, but are not easily interpreted and, therefore, replication of a model with imagery from
other dates or different conditions is not advised.

Another aspect worth discussing is that correlations became worse from 2016 to 2018 for VIs.
In machine learning, it is clear that compared to other models, 2016 provided the highest coefficients
of determination (Figures 6 and 7). In Figure 7, the 2016 images (columns) provided better accuracy
values with other models (rows) than other years, in particular, in August, as the columns show lower
MAE values. There are possible explanations for 2016 being a better year for predicting yield values
that can be brought forward, even if at this stage, they are only hypotheses. One important point to
consider is the accuracy of the measured yield values. The measured yield values are used as “truth”,
but as all measures go, they are prone to a certain degree of error. The method used for measuring
provides about 10 times higher accuracy than prediction models, but it can record values incorrectly,
such as explained in the materials section, i.e., border effects, harvester passing twice. Then, it might
be possible that seasons 2017 and 2018 yield data underwent higher errors due to unpredicted or



Remote Sens. 2019, 11, 2873 16 of 20

unseen sensor or measurement distortions such as GPS and yield sensors’ inaccuracies or calibration
errors from year to year. This can explain the overall difference in correlation and prediction accuracy
between years, as the measured yield is fixed per year. Burke and Lobell [35] have found R2 up to 0.4
for corn yield prediction from RS data, stressing the importance of the quality of the field measures.
Another possible and probably more realistic hypothesis can be related to atmospheric conditions, as
the images in 2017 and 2018 might have suffered from more opaque atmospheric conditions, not so
much to be detected as cloud probability by the sen2cor algorithm used in Sentinel-2 processing.

Even the relation between yield and VIs are affected by spatial and temporal constraints, as
reported by many researchers [19], but it could be used for identifying management zones [7,65],
evaluating within-field variability and subsequently, the need for PA practices. According to the study
results, Sentinel-2 could assess only 40–60% of field variability: such percentage is clearly unsatisfactory
if seen at single pixel level, but is fully acceptable in common PA practices, where management zones
are to be defined. Indeed, in this case, a relatively high number of values are averaged within each
MZ (typically larger than 1 acre, corresponding to at least 40 pixels) eventually allowing reduction of
variability and a corresponding increase of overall robustness of the method. Within-field variability
is common due to variations in soil type, topography, nutrient level, and many other factors of
agricultural fields. Mapping this variability, delineating to homogeneous zones, and applying the
variable rate application of agricultural inputs leads to more profitable and efficient management
practices. In addition, the archived Sentinel-2 images could provide an important source for monitoring
fields’ history and the cumulative production for each zone. Recent studies reported that the profit of
PA applications ranged between −30 $/ha and 70 $/ha and about 25% of studies reported economic
losses [66]. In view of this, evaluating field spatial variability on previous seasons from archived
satellite images could be a simple approach to evaluate the actual need for site-specific management
practices. Mulla [67] highlighted the necessity of integrating archived satellite images for PA decision
support systems and this approach could be a promising application in this field. Moreover, monitoring
yield variability within fields through archived satellite images could be applied for different crops,
varieties, countries, and farming management practices to widen the use of archived data.

5. Conclusions

A field study was conducted to investigate the possibility of monitoring corn grain yield within a
22-ha field using Sentinel-2 satellite images. Actual corn yield maps for three seasons were correlated
with different vegetation indices and crop ages through the implementation of machine learning
techniques. Monitoring the within-field variability of corn yield was possible and the R2 value reached
more than 0.5 in some cases. The main findings can be summarized as follows:

- GNDVI was the most correlated VI with corn grain yield at the field scale;
- the most suitable time for corn yield forecasting was during the physiological maturity stages

(R4–R6) between 105 and 135 days from the planting date, i.e., between mid-July and mid-August;
- this period is not only the most correlated, but also is provides a higher number of satellite images

due to reduced cloud events in the area considered;
- Random Forests was the most accurate machine learning technique in corn yield monitoring with

R2 values almost reaching 0.6 in an independent validation set;
- the Random Forests method works best when trained with imagery close to the above-mentioned

most suitable time for forecasting; applying it to images at different crop stages is not advised.

The overall question “can Sentinel-2 imagery be used to predict corn yield values?” can be
answered by saying that in a scenario with expected yields between 9 and 18 ton/ha, a likely prediction
with a 10% error can be expected using a Random Forests model trained with a few ground samples
taken between 105 and 135 days of crop age. Without ground samples of yield values, thus, with less
effort on the ground, one can validly use GNDVI at the same crop age range for understanding the
spatial variation of yield. Future research will use more tests to understand the ideal combination
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of volume of training data and the spatial distribution of training data for understanding the best
economical combination for an accurate prediction of corn yield with the least effort in terms of
surveying training data for the model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/23/2873/s1,
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