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Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified
in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and
play fundamental roles in the circadian clock of living organisms, enabling them to adapt
to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different
species: in plants, they have a blue light-sensing activity whereas in mammals they
act as light-independent transcriptional repressors within the circadian clock. These
two different functions are accomplished by two principal types of CRYs, the light-
sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative
autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses
just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have
different functions, specific to different organs, tissues, and even subset of cells in which
it is expressed. In this review, we will dissect the multiple roles of this single CRY in
Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.

Keywords: cryptochrome, Drosophila, circadian clock, phototransduction, circadian plasticity, light-independent
activity

INTRODUCTION

Cryptochromes are highly conserved proteins belonging to the flavoprotein superfamily, identified
in species from all three domains of life (Chaves et al., 2011). They are structurally related
to photolyases (Müller and Carell, 2009), evolutionarily conserved flavoproteins that catalyze
light-dependent DNA repair (Todo, 1999; Sancar, 2003). Cryptochromes and photolyases bind
the same cofactors: the flavin adenine dinucleotide (FAD) and a secondary cofactor such as
methenyltetrahydrofolate (MTHF), deazariboflavin, or others (Sancar, 2003). Cryptochromes have
essentially lost their DNA repair activity and have acquired a very divergent C-terminal domain,
intrinsically unstructured (Hemsley et al., 2007) and critical for light signaling (Chaves et al., 2011).
A class of cryptochromes, CRY-DASH (Drosophila, Arabidopsis, Synechocystis, and Homo), with
structural and photochemical properties more similar to photolyases and residual single-stranded
DNA repair activity, has been described in bacteria, plants, and animals (Selby and Sancar, 2006;
Pokorny et al., 2008).

Cryptochromes are involved in the regulation of circadian clocks, but they also display
several signaling functions, ranging from growth and development in plants (Yang et al., 2017)
to putative magnetoreception in animals (Ritz et al., 2000). From a circadian perspective,
animal cryptochromes can be essentially divided into two classes of proteins: light-responsive
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type 1 (from invertebrates), involved in clock entrainment,
and light-insensitive type 2 (mainly found in vertebrates but
also in some insects), acting as transcriptional repressors in
the central clock mechanism (Chaves et al., 2011). In recent
years, new types of CRY/PHR (cryptochromes/photolyases)
have also been described, providing evidences for the
large functional diversity of this group of proteins (for a
comprehensive description and phylogenetic classification, refer
to Ozturk, 2017).

STRUCTURE AND PHOTOACTIVATION

Drosophila CRY, defined as type 1 cryptochrome (Yuan et al.,
2007; Öztürk et al., 2008), is a photoactive pigment whose
action spectrum peaks in the UV-A range (350–400 nm) with a
plateau in the near blue (430–450 nm) (VanVickle-Chavez and
Van Gelder, 2007). The 542-amino-acid (aa) protein harbors
two different domains (Table 1): an N-terminal photolyase
homology region (PHR) and a C-terminus tail (CTT), unique
in its sequence, responsible for mediating phototransduction
(Busza et al., 2004; Dissel et al., 2004; Hemsley et al., 2007;
Figure 1). The CTT forms a helix structure that binds alongside
the main body of the PHR domain establishing contacts
with the FAD binding pocket, mimicking the damaged DNA
photolyase–DNA interaction (Zoltowski et al., 2011; Czarna
et al., 2013; Levy et al., 2013; Masiero et al., 2014; Lin et al.,
2018). Upon illumination with blue light (440 nm), the CRY
FAD cofactor is reduced to the anionic semiquinone (ASQ)
state by a fast electron transfer involving four conserved
tryptophan residues (W420, W397, W342, and W394). FAD
photoreduction induces conformational changes in the Trp
tetrad, which result in the displacement of the CTT from
the PHR domain and consequent protein activation (Zoltowski
et al., 2011; Czarna et al., 2013; Levy et al., 2013; Vaidya
et al., 2013; Masiero et al., 2014; Lin et al., 2018). However,
the Trp-tetrad-dependent photoreduction and circadian photic
resetting were suggested to be independent of each other
(Ozturk et al., 2014).

Very recently, a role for the Trp triad (W420, W397, and
W342) in circadian photoentrainment of locomotor activity
rhythm was tested in vivo, by analyzing the behavioral response
to moderately and very low light. While W420Y and W397Y
CRY flies were predominately arrhythmic (similar to wild type),
transgenic flies expressing W342Y CRY showed high levels of
rhythmicity and long periods, similar to cry0 flies (Dolezelova
et al., 2007; Baik et al., 2019).

Molecular dynamics (MD) simulations have suggested that
the CTT detachment is also a result of changes in the hydrogen
bonding network due to protonation of a conserved His
residue (His378), located between the CTT and the flavin
cofactor (Ganguly et al., 2016). H378 stabilizes the CTT in the
resting-state conformation in the dark; light induces a series
of conformational changes from nanoseconds to milliseconds
that lead to the formation of the final signaling state, which
depends on pH and requires uptake of a proton (Berntsson
et al., 2019). MD simulations have also suggested for the

FAD cofactor roles other than photoreduction and CRY
activation: the FAD presence would confer to the receptor a
more fluctuation-prone behavior, thus decreasing the amount
of necessary light input energy for CRY activation (Masiero
et al., 2014). Recent studies performed on a longer timescale
have revealed that following photoactivation, FAD is released
from the FAD-binding pocket, providing evidence that CRY
undergoes an inactivation reaction rather than a photocycle
(Kutta et al., 2018), in agreement with the reported irreversible
nature of the light-induced conformational changes (Ozturk
et al., 2009; Kattnig et al., 2018; Lin et al., 2018). The
active form of CRY is then able to bind the circadian
components TIMELESS (Ceriani et al., 1999) and PERIOD
(Rosato et al., 2001).

The CTT of CRY has been extensively studied, and a
combination of in silico analyses and experimental validation
has revealed the presence of an intrinsically disordered region
containing several interaction motifs that turn this tail into
a hot spot for molecular interactions (Hemsley et al., 2007;
Mazzotta et al., 2013; Masiero et al., 2014). It can be divided into
two subregions: one (493–520 aa) required for the interaction
with PER and TIM (Hemsley et al., 2007) and the other (521–
542 aa) specifically involved in the light activation of the CRY
protein (Rosato et al., 2001; Busza et al., 2004; Dissel et al.,
2004). The absence of part of the CTT (aa 521–540_CRY1
or aa 524–542_CRYM) results in constitutive activation of the
protein (Rosato et al., 2001; Busza et al., 2004). In this state,
CRY may bind TIM and PER in the absence of light (Rosato
et al., 2001); in flies overexpressing CRY1 in the pacemaker
neurons, the accumulation of clock proteins is reduced, and
their subcellular distribution altered. At a behavioral level, these
flies display long periods of locomotor activity rhythms in
constant darkness (Dissel et al., 2004). This is reminiscent of
the similarly long period shown by wild-type flies exposed to
constant light of low intensity (Konopka et al., 1989; Dissel
et al., 2004) (see Table 2). The first subregion of CRY CTT
(aa 515–521) harbors the interaction motifs DM1 (DILIMOT
database, Neduva and Russell, 2005) and EM1 (ELM database
(Gould et al., 2009) and contains a proline-directed kinase
phosphorylation site (Hemsley et al., 2007). In the second
subregion, four putative ELM interaction motifs have been
identified (EM2–EM5) (Hemsley et al., 2007). EM2 (526–529)
is a TRAF2 ligand motif and part of a putative phosphorylation
site, EM3 (523–529) contains putative phosphorylation sites for
casein kinase 2 (CK2) and cAMP-dependent protein kinase A
(PKA), EM4 (528–531) and EM5 (538–541) are PDZ binding
motifs (Hemsley et al., 2007).

An alternative model proposed for the light activation of
CRY involves the binding of CTT by still unknown factor(s),
acting as repressor(s) in the dark and released upon light
exposure (Rosato et al., 2001; Hemsley et al., 2007). Residue
Glu530 (E530) might be involved in the binding of a repressor
in the darkness, which would block the Ser526 (S526) residue
in the TRAF2 ligand motif, thus inhibiting further bindings.
After light exposure, the repressor would be released, and
modulator proteins might bind to TRAF2 (Hemsley et al., 2007;
Figure 2).
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FIGURE 1 | Schematic representation of Drosophila CRY. The photolyase-like and FAD binding domains (below) as well as the calmodulin binding motif (CaM) and
the C-terminus tail (CTT) (above) are indicated. In the C-terminus, relevant domains are also depicted. Numbers indicate position (amino acids). For details, see
Table 1.

CRY AND CIRCADIAN CLOCK
RESETTING

Drosophila CRY acts as photoreceptor involved in the light
synchronization of the molecular circadian clock machinery
(Stanewsky et al., 1998; Helfrich-Förster et al., 2001) based, as
in virtually all eukaryotes, on interlocked feedback loops. In the
Drosophila main negative feedback loop, PERIOD (PER) and
TIMELESS (TIM) proteins act as negative elements, inhibiting
the transcription of their own genes. Their expression is activated
by CLOCK (CLK) and CYCLE (CYC): in the evening, they
dimerize, enter the nucleus and bind to the E-box, thus inducing
the expression of per, tim, and other clock-controlled genes (ccg).
PER and TIM proteins accumulate in the cytoplasm, and late
at night, they dimerize and translocate to the nucleus, where
they bind to CLK/CYC and inhibit their activity, repressing
the transcription of ccg [for a review, refer to Özkaya and
Rosato (2012) and Figure 3]. The second feedback loop is based
on rhythmic vrille (vri) and Pdp1ε (PAR-domain protein 1)
expression (McDonald and Rosbash, 2001; Ueda et al., 2002).
Both genes are transcribed with the same phase, but while VRI
protein expression quickly follows that of its mRNA, PDP1ε

starts to accumulate 3–6 h later (Cyran et al., 2003). VRI forms

homodimers that bind to the V/P box located in the promoters
of morning genes (i.e. clk and cry), blocking their transcription
(Cyran et al., 2003; Glossop et al., 2003). After 3–6 h, PDP1ε

starts to compete with VRI for the V/P box binding position, and
because of a higher affinity, it releases the inhibitor and activates
the expression of controlled genes in the late night (Cyran et al.,
2003). This mechanism ensures the circadian expression of CRY,
with mRNA peaking at the end of the day and maximum levels of
protein level during the night (Emery et al., 1998). This rhythm
of RNA expression is maintained in constant darkness conditions
(DD), although with decreased amplitude, while CRY protein
levels in DD increase continuously during the subjective day
and night (Emery et al., 1998). In constant-light conditions,
CRY is overactivated, which causes the amplitude of TIM and
PER cycling to be reduced and TIM phosphorylation status to
be attenuated (Marrus et al., 1996). As a consequence, flies are
arrhythmic or exhibit longer period of locomotor activity rhythm,
depending on the intensity of light (Konopka et al., 1989).

The Drosophila pacemaker operates within a circuitry
consisting of a network of 150 clock neurons divided into nine
groups: four groups of dorsal neurons (DN1a, DN1p, DN2, and
DN3) and five groups of lateral neurons, further divided into
lateral posterior neurons (LPNs), ventral lateral neurons (LNvs),
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TABLE 1 | Functional domains and relevant residues in the CRY protein.

Position (amino acids) Motifs Function

N-terminus 1–492

DNA photolyase domains 8–170 Light detection

FAD binding domain 225–512

TRP tetrad W342, W394, W397, W420 Fast electron transfer
Conformational change

H378 H378 Stabilization of CTT in the resting state
conformation in the dark

C-terminus 493–541

DM1 498–502 Interaction motif

CaM binding motif 491–518 Ca2+-dependent Calmodulin binding

C-terminus tail (CTT) 510–542

EM1 515–521 Proline-directed kinase phosphorylation site PER and TIM binding

EM2 526–529 TRAF2 ligand motif and part of a putative
phosphorylation site

Light-dependent activation

EM3 523–529 Casein kinase 2 and cAMP-dependent
protein kinase A (PKA) phosphorylation site

Light-dependent activation
Phosphorylation of S526 induces the modulator
replacement by TIM/PER

EM4 528–531 PDZ binding motif Light-dependent activation
E530-repressor binding

EM5 538–541 PDZ binding motif Light-dependent activation

and dorsal lateral neurons (LNds). The ventral lateral neurons
are classified, based on their relative size, into small and large (s-
LNvs and l-LNvs, respectively), and fifth s-LNv (Miyasako et al.,
2007; Hermann-Luibl and Helfrich-Förster, 2015). s-LNv and
l-LNv express a pigment-dispersing factor (PDF), a neuropeptide
involved in intercellular communication between clock neurons
(Shafer et al., 2008; Yoshii et al., 2009).

Cryptochrome is expressed in a subset of clock neurons (all
four s-LNvs, all four l-LNvs, the fifth s-LNv, three of the six
LNds, and some of the DN1s), enabling them to directly perceive
photic information (Shafer et al., 2006; Benito et al., 2008; Yoshii
et al., 2008; Damulewicz and Pyza, 2011; Fogle et al., 2011). Upon
light exposure, CRY binds to TIM, promoting its degradation
(Ceriani et al., 1999; Koh et al., 2006b; Peschel et al., 2009). As
the presence and binding of TIM are essential for PER stability,
the light-induced degradation of TIM releases the PER–TIM
mediated transcriptional repression, hence synchronizing the
circadian clock to light–dark cycles (Ishida et al., 1999; Helfrich-
Förster, 2005). CRY is also rapidly degraded in the presence of
light through the proteasome (Lin et al., 2001; Sathyanarayanan
et al., 2008): the light-dependent CRY–TIM complex is bound
by JETLAG (JET), which promotes TIM ubiquitination and
degradation. In the absence of TIM, CRY binds JET (Peschel et al.,
2009) or Ramshackle (BRWD3) (Ozturk et al., 2013) or both. JET
is a component of a Skp1-Cullin/F-Box (SCF) E3 ubiquitin ligase
complex and functions as a substrate receptor for CRL1 E3 ligase
(Koh et al., 2006b), while BRWD3 is a substrate receptor for CRL4
E3 ligase (Ozturk et al., 2013). JET and BRWD3 initiate CRY
ubiquitination and degradation in the proteasome (Figure 3).
The light dependence of this binding, which is enhanced in the
absence of TIM, leads to a rapid decrease in CRY levels during
the day, just after TIM degradation. This way, CRY resets the
molecular clock and entrains the oscillator to light conditions.

Besides its relevance for circadian photo-synchronization, the
CRY–TIM interaction has also important functional implications
in the clock adaptation to seasonal environments. Indeed, natural
variants of TIM known to trigger seasonal responses as a function
of photoperiod show, at a molecular level, differential affinity for
CRY (Boothroyd et al., 2007; Sandrelli et al., 2007; Tauber et al.,
2007; Montelli et al., 2015).

Interestingly, CRY interacts also with PER, detecting PER as
a possible pacemaker target of the cryptochrome: in a yeast two-
hybrid assay, this interaction is light dependent, while in S2 cells,
the physical association between CRY and PER is independent of
light (Rosato et al., 2001).

From the first described CRY mutant, cryb, a missense
mutation in the FAD binding site (Stanewsky et al., 1998), several
cry mutations have been shown to affect circadian light response
(for a detailed description, refer to Table 2). Conversely, CRY
overexpression increases flies’ sensitivity to low-intensity light
(Emery et al., 1998).

The Drosophila circadian clock can be readily synchronized
by temperature cycles with an amplitude of 2–3◦C (Glaser
and Stanewsky, 2005; Yoshii et al., 2005; Goda et al., 2014;
Currie et al., 2009), and different subsets of clock neurons
are specifically involved in mediating clock synchronization at
high or low temperatures (Zhang Y. et al., 2010; Gentile et al.,
2013). Interestingly, among the various subsets of clock neurons,
those more easily synchronized by temperature are the ones
that do not express CRY (Yoshii et al., 2010; Gentile et al.,
2013; Yadlapalli et al., 2018), and consistent with this finding,
removal of CRY from clock neurons increases flies’ ability to
synchronize to temperature cycles (Gentile et al., 2013). Thus,
in clock neurons, CRY plays an important role in counteracting
the effects of temperature cycles on the molecular circadian clock,
thus contributing to the integration of different zeitgebers.
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FIGURE 2 | Two mechanisms of CRY activation. (A) Light induces a conformational change resulting in the release of CTT, thus enabling TIM binding. (B) In the
darkness, a putative repressor (R) binds to the 530 residue and blocks the 526 position. After light exposure, the repressor is released and a modulator (M) binds to
the 526 position. Phosphorylation of the 526 residue is involved in modulator release and thus TIM binding.

CRY AND CIRCADIAN PACEMAKING

Cryptochrome also acts as a circadian transcriptional repressor
necessary for the daily cycling of peripheral circadian clocks.
Indeed, the endogenous rhythms of olfactory responses are
severely reduced or abolished in cryb mutants, as well as
molecular oscillations of per and tim during and after
entrainment to light–dark cycles (Krishnan et al., 2001). The
same cryb mutation dramatically affects the pattern of PER
and TIM oscillation in Malpighian tubules (MTs), where both
proteins display very low levels during most of the DD cycle
(Ivanchenko et al., 2001). By contrast, the same mutation does
not affect circadian oscillator functions in central circadian
pacemaker neurons (Ivanchenko et al., 2001; Stanewsky et al.,
1998). Moreover, the expression level of genes activated by
CLK/CYC is reduced in cryb mutant eyes (Collins et al., 2006;
Damulewicz and Pyza, 2011); on the other hand, CRY and PER
co-expression in the compound eyes represses CLK/CYC activity
(Collins et al., 2006). This role of CRY as a clock component
seems limited to peripheral oscillators.

Besides this role as a circadian repressor, an involvement of
CRY in the posttranscriptional control of the circadian clock can
also be hypothesized. Indeed, we have recently shown that CRY
interacts with BELLE (Cusumano et al., 2019), a DEAD-box RNA
helicase essential for viability and fertility (Johnstone et al., 2005),
and plays important functions in RNA metabolism, from splicing
and translational regulation to miRNA and siRNA pathways
(Worringer et al., 2009; Pek and Kai, 2011; Ihry et al., 2012). We

have observed an involvement of BELLE in circadian rhythmicity
and in the piRNA-mediated regulation of transposable elements,
suggesting that this specific posttranscriptional mechanism could
be in place to ensure proper rhythmicity (Cusumano et al., 2019).

CRY AND MAGNETORECEPTION

In several organisms, circadian rhythms are influenced by little
changes in the intensity of the Earth’s magnetic field. In particular,
a low-frequency electromagnetic field shows a pronounced 24-
h oscillation (König, 1959), and therefore, it could act as a
geophysical synchronizer for the circadian clock (Yoshii et al.,
2009). Insects detect the geomagnetic field using photochemical
reactions: photon absorption by pigment molecules induces
the transfer of an electron from a donor to an acceptor
molecule, generating a donor–acceptor couple, each molecule
containing one unpaired electron, called radical pair in singlet
state (antiparallel spin orientation). The two unpaired electrons
are at a proper distance to undergo transition to the triplet state
(parallel orientation), and the geomagnetic field can influence the
interconversion between single and triplet states of the radical
pair (Ritz et al., 2000).

In Drosophila, CRY is a good candidate for sensing small
changes in the magnetic field. In fact, in CRY, radical
pairs are formed between the FAD cofactor and proximate
tryptophan and/or tyrosine residues within a conserved Trp
triad (W342, W397, and W420) (Zoltowski et al., 2011;
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TABLE 2 | Cry mutants.

Mutant Defect Molecular Behavioral References

cryb Missense mutation (D412N) in
the conserved FAD binding
domain

No cycling of mRNA; very low protein levels
No cycling of per/tim in peripheral clocks
Light-independent interaction with TIM
No light-dependent degradation

No phase shift in response to
light pulses
Free-running circadian rhythms
in constant light

Stanewsky et al., 1998;
Emery et al., 2000;
Krishnan et al., 2001;
Levine et al., 2002;
Busza et al., 2004;
Yoshii et al., 2004;
Rieger et al., 2006

cryM Deletion of C-terminus (amino
acids 524–542)

Low protein levels
No light-dependent degradation.
Light-independent interaction with TIM

Free-running circadian rhythms
in constant light

Busza et al., 2004

cry0 Knockout Reduced per oscillation in wings and antennae
under LD conditions

Two separate circadian
components in constant light

Dolezelova et al., 2007

cry1 Deletion in C-terminus (amino
acids 521–540)

Low protein levels
No light-dependent degradation
Reduced PER/TIM levels, cycling amplitude,
and phosphorylation status
Impaired nuclear localization of TIM/PER in
LNvs
Light-independent interaction with PER/TIM

Longer free-running period
Entrainment defects

Rosato et al., 2001;
Dissel et al., 2004

cryout Deletion of N-terminal
(amino acids 1–96)

Free running in LD
Entrainment to temperature
cycles

Yoshii et al., 2008, 2010

Czarna et al., 2013; Levy et al., 2013). The photon is
absorbed by the pigment molecule, and then one electron
is transferred from the triad following electron excitation
of the FAD and consequent protonation and deprotonation
(Dodson et al., 2013). Radical formation activates CRY, which
changes its conformation. A reverse reaction (reoxidation)
restores the fully oxidized (inactive) form of CRY in the
dark. This process can also generate magnetically sensitive
radical pairs (superoxide and peroxide radicals and flavin
radicals) (Dodson et al., 2013). There is also evidence that
CRY is co-expressed and, in the presence of light and
the magnetic field, forms a stable complex with CG8198
[Lethal (1) G0136], thereafter named MagR (Qin et al.,
2016), an iron–sulfur cluster assembly protein involved in
iron metabolism and required for proper circadian rhythmicity
(Mandilaras and Missirlis, 2012).

Drosophila behavior is influenced by the magnetic field.
Indeed, in a binary-choice behavioral assay for magneto-
sensitivity, flies exhibit a naïve avoidance of the magnetic
field under full-spectrum light but did not respond when UV-
A/blue light (<420 nm) was blocked (Gegear et al., 2008).
This response was also lost in cry mutants, clearly indicating
that CRY is directly involved in the light-dependent magnetic
sensing in Drosophila (Gegear et al., 2008). The electromagnetic
field influences the period length of the locomotor activity, as
a result of enhanced CRY signaling. Indeed, electromagnetic
field application caused lengthening of the circadian period of
locomotor activity, and this effect was greater when the flies
were exposed to constant blue light, reasonably as a result of
an enhanced CRY function upon blue-light activation (Yoshii
et al., 2009). Furthermore, cry mutants showed no magnetic
field sensitivity for period changes, whereas flies overexpressing

CRY were magnetically oversensitive (Ritz et al., 2010). Further
analyses of low-frequency electromagnetic field-induced changes
on circadian period and activity levels have shown that the
terminal tryptophan of the Trp triad (W342) is not necessary
for field responses, but a mechanism different from radical pairs
involving the Trp triad might be used by CRY to sense the
electromagnetic field (Fedele et al., 2014a). Indeed, superoxide
radicals and ascorbic acid could form a radical pair with the FAD
(Müller and Ahmad, 2011; Lee et al., 2014). However, deletion of
the CRY C-terminus weakens the period changes in response to
the magnetic field, while the N-terminus increases hyperactivity
(Fedele et al., 2014a).

Climbing activity (negative geotaxis) is disrupted by a
static electromagnetic field (Fedele et al., 2014b). This effect
is observed after blue-light exposure but is not present in
red light, indicating the involvement of light-activated CRY
(Fedele et al., 2014b). Mutation of the terminal Trp in the
triad (W342) in CRY does not affect magnetoreception
(Gegear et al., 2010; Fedele et al., 2014b), but C-terminus
deletion disrupts the fly’s response to the electromagnetic
field (Fedele et al., 2014b). cry mutants show decreased
climbing ability, which can be rescued by overexpressing
CRY in LNd clock neurons (Rakshit and Giebultowicz,
2013), antennae, and eyes (R8 photoreceptors of pale
ommatidia, R8 yellow ommatidia, H-B eyelet, or R7 cell)
(Fedele et al., 2014b).

Cryptochrome is involved also in the modulation of other
responses of Drosophila to the magnetic field. The courtship
activity of wild-type males is significantly increased when they
were exposed to a ≥20-Gauss static magnetic field (Wu et al.,
2016), but not in cry-deficient mutants (cryb and cryM) and
in flies with CRY RNAi-mediated knockdown in cry-expressing
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FIGURE 3 | The role of CRY in molecular clock resetting. In the presence of light, CRY binds TIM and promotes its degradation via proteasome by a mechanism that
involves the F-box protein JETLAG (JET). When exposed to light, CRY also becomes a substrate for JET and for Ramshackle (BRWD3), which initiates its
ubiquitination and degradation in proteasome.

neurons (Wu et al., 2016). Nevertheless, the phenotype is rescued
when CRY is genetically expressed under the control of cry-Gal4
(Wu et al., 2016).

The magnetic field influences also the seizure response
in Drosophila, specifically the recovery time of larvae
from an electric shock (Marley et al., 2014). Indeed, a
stronger seizure phenotype is observed after blue light or
magnetic field exposition, and the lack of this effect in
either cry0 mutants or in orange light (590 nm) clearly
indicates it to be CRY dependent (Marley et al., 2014).
Moreover, this strong seizure phenotype is associated with
increased synaptic excitation in the locomotor circuitry,
as it may be blocked by antiepileptic drugs (Marley and
Baines, 2011; Lin et al., 2012). Indeed, the CRY- and light-
dependent magnetic field modulates the action potential
firing of individual neurons, by increasing input resistance
and depolarization of the membrane potential of “anterior
Corner Cell” (aCC) and “Raw Prawn 2” (RP2) motoneurons
(Giachello et al., 2016).

The ability of cryptochromes to form radical pairs upon
photoexcitation makes them excellent candidate proteins for
light-dependent magnetoreception also in other organisms.

The vertebrate-like Cry2 is involved in the response to
magnetic field of two species of cockroaches, the American
cockroach, Periplaneta americana (which most likely contains
only Cry2), and Blattella germanica, which has both CRY types
(Bazalova et al., 2016). Cry2 is expressed in laminal glia cells
underneath the retina and is necessary for sensing the directional
component of the magnetic field (Bazalova et al., 2016).

The night-migratory European robins (Erithacus rubecula)
possess four different cryptochromes, but only Cry4 is predicted
to be the magnetoreceptive protein (Günther et al., 2018). Cry4
is expressed in every cell type within the retina, at significantly
higher levels during the migratory season compared to the non-
migratory season. Moreover, the modeled structure revealed
a high similarity with Drosophila CRY, also in the position
of residues important for FAD binding (Kutta et al., 2017;
Günther et al., 2018).
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FIGURE 4 | Graphical representation of CRY/calmodulin interaction mechanisms. (A) Light-independent, CaM-dependent pathway. Inactive CRY binds to CaM,
which allows the formation of a ternary complex with INAD. (B) In the presence of light, CRY can bind INAD directly. In the presence of both light and calmodulin,
CRY–INAD binding is strengthened, thus consolidating the initial light-induced response.

CRY IN THE VISUAL SYSTEM

In addition to the pacemaker neurons, CRY is also present in non-
clock cells in the anterior brain, in the glia cells located between
the central brain and the optic lobe, as well as in the terminals of
photoreceptor cells R7 and R8 (Yoshii et al., 2008; Damulewicz
and Pyza, 2011). In photoreceptor cells, it is mainly involved
in the functioning and localization of the phototransduction
cascade proteins (Mazzotta et al., 2013; Schlichting et al., 2018).
The visual cascade proteins are located in the rhabdomeres,
densely packed microvilli formed by evaginations of the
photoreceptors’ plasma membrane. These are arranged in
a multiprotein complex called Signalplex, organized by the
inactivation-no-afterpotential D (INAD), a PDZ [postsynaptic
density protein (PSD95), Drosophila disc large tumor suppressor
(Dlg1), and zonula occludens-1 protein (zo-1)] domains-
containing protein [reviewed by Hardie and Juusola (2015)].

In the photoreceptor cells, CRY binds to INAD, which,
in turn, enables the interaction with other phototransduction
components (Mazzotta et al., 2013). INAD binds the neither-
inactivation-nor-afterpotential C (NINAC) myosin III, involved
in the shuttling of signaling proteins (Gqα and arrestin
2) from the cell bodies to the rhabdomeres [reviewed by
Montell (2012)] and in the inactivation of metarhodopsin
by speeding up the binding of arrestin (Liu et al., 2008).
INAD/NINAC interaction allows binding of the complex

to F-actin filaments (Montell, 2007), which contributes to
maintaining the rhabdomere structure (Arikawa et al., 1990;
Porter et al., 1992). Especially in the dark, INAD binds to
TRP channels and keeps them in the rhabdomeres, ready for
activation, while after light adaptation, TRP channels translocate
into the cell body (Montell, 2007).

An important component of the Signalplex is calmodulin
(CaM), which binds to INAD (Chevesich et al., 1997; Tsunoda
et al., 1997; Xu et al., 1998), NINAC, TRP, and TRPL
channels (Phillips et al., 1992; Warr and Kelly, 1996), and
the rhodopsin phosphatase Retinal degeneration C (RdgC),
inducing photoresponse termination (Lee and Montell, 2001).
We have identified and characterized a functional CaM binding
motif in the CRY CTT and demonstrated that CaM bridges
CRY and INAD, forming a ternary complex in vivo (Mazzotta
et al., 2018). We therefore hypothesized that the light-dependent
CRY function in the photoreceptors may consist of fast and
slow responses: a rapid light response, mediated by CRY
conformational changes, would stimulate the direct interaction
with INAD, and a novel, slower mechanism regulated by CaM
would enhance its functional response (Mazzotta et al., 2018;
Figure 4).

Cryptochrome interaction with the visual signaling cascade
at the membrane of photoreceptor cells appears to enhance
photosensitivity, especially during the night, perhaps by
strengthening the interaction between INAD, NINAC, and
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F-actin and thus increasing the activation of TRP channels
(Mazzotta et al., 2013). CRY in photoreceptor cells ultimately
modulates circadian visual sensitivity: indeed, while wild-type
flies show maximal sensitivity (measured by electroretinogram,
ERG) in the first part of the night (Chen et al., 1992), in
cry mutants, such sensitivity does not depend on the time
of day (Mazzotta et al., 2013). Similar results are observed
for optomotor turning response (Barth et al., 2010; Mazzotta
et al., 2013), and rescue experiments show that this effect is
specific for CRY expressed only in photoreceptors (Mazzotta
et al., 2013). Moreover, flies expressing constitutively active
CRY (CRY1) show optomotor turning response at very
low levels, as a result of an impairment in either detecting
movements or processing information (Damulewicz et al.,
2017). Indeed, we have observed an involvement of CRY in
the light-dependent degradation of the presynaptic scaffolding
protein Bruchpilot (BRP), its direct partner in the photoreceptor
terminals within the lamina (Damulewicz et al., 2017). The
daily pattern of BRP in tetrad synapses in the distal lamina
(Meinertzhagen and O’Neil, 1991; Górska-Andrzejak et al., 2013)
is altered in cry0 mutants, with higher levels during the day;
by contrast, in CRY1-overexpressing flies, the daily pattern of
BRP is maintained, albeit with extremely low levels of protein
(Damulewicz et al., 2017).

We have shown that in the rhabdomeres, CRY interacts
also with F-actin, probably reinforcing the binding of the
phototransduction cascade signaling components to the
rhabdomere cytoskeleton (Schlichting et al., 2018). CRY/F-
actin interaction is enhanced by light, but it exists also during
darkness, keeping the Signalplex close to the membrane and
ready for activation during the night (Schlichting et al., 2018).
Furthermore, the strong affinity of CRY for F-actin could also
prevent its degradation through the proteasome: indeed, in
the rhabdomeres, CRY is not degraded by light, while in the
somata of photoreceptors cells, its levels strongly decrease
after light exposure (Schlichting et al., 2018). CRY in the
photoreceptor cells is involved in the ability of flies to entrain
their locomotor behavior to red-light cycles, a role that is largely
independent of its photoreceptive function, since red light is
not able to induce CRY-mediated photoresetting of the clock
(Schlichting et al., 2018).

CRY AND NEURONAL ACTIVITY:
UV-LIGHT RESPONSE AND AROUSAL

Drosophila l-LNvs show higher daytime light-driven spontaneous
action potential firing rate: this electrophysiological response is
attenuated either in the cryb hypomorphic mutant or in flies
with disrupted opsin-based phototransduction (Sheeba et al.,
2008; Fogle et al., 2015) and completely abolished in cry0 flies
(Fogle et al., 2011) but is functionally rescued by targeted
expression of CRY in the l-LNvs (Fogle et al., 2015). Indeed,
these neurons undergo a CRY-dependent rapid membrane
depolarization and augmented spontaneous action potential
firing rate upon illumination with blue light (Fogle et al., 2011).
CRY is involved in membrane depolarization by a redox-based

mechanism mediated by potassium channel heteromultimeric
complexes consisting of redox sensor potassium channel beta-
subunit (Kvβ) HYPERKINETIC (Hk) and other channels such
as Shaker, Ether-a-go-go, and Ether-a-go-go-related gene (Fogle
et al., 2015; Hong et al., 2018). Interestingly, the expression
of CRY in innately light-insensitive neurons renders them
light responsive (Fogle et al., 2011). Furthermore, it is worth
noticing that such CRY-mediated light response, involving a
flavin redox-based mechanism and relying on potassium channel
conductance, is independent of the circadian interaction of CRY
with TIM (Fogle et al., 2011). Also, in non-neural tissues, like
salivary glands, which lack a peripheral clock, CRY maintains
high membrane input resistance in an Hk, Shaker, and Ether-a-
go-go-dependent but light-independent manner (Agrawal et al.,
2017). Very interestingly, it was recently reported that light-
evoked CRY membrane electrical depolarization involves W420,
located in proximity to CRY FAD and important for CRY-
mediated depolarization in responses to not only UV and blue but
also red light, at relatively low light intensity (Baik et al., 2019).

The electric activity of l-LNvs triggers two circadian behaviors
in Drosophila: UV light avoidance/attraction and sleep/arousal
(Baik et al., 2017, 2018).

Like several insects, Drosophila shows a rhythmic short-
wavelength (UV) light avoidance, a physiological and behavioral
response to sunlight which is essential for survival. This peak
of UV avoidance coincides with siesta in adult flies and with
peak UV light intensity in the environment (Baik et al., 2017).
CRY mediates the l-LNvs electrophysiological response to UV
light: indeed, it is significantly attenuated in cry0 and hk0

mutant flies and rescued by LNv-targeted expression of CRY
(Baik et al., 2017, 2018).

In l-LNvs, CRY is also involved in the dopamine signaling
pathway responsible for acute arousal upon sensory stimulation.
Indeed, the clock mutant ClkJrk flies, which exhibit nocturnal
behavior and a clock-independent reduction in total sleep time
(Kim et al., 2002; Lu et al., 2008), also display high levels
of CRY, which drive nighttime activity (Kumar et al., 2012).
This nocturnal behavior of ClkJrk mutants largely depends on
increased dopamine, since it is suppressed by blocking dopamine
signaling, either pharmacologically or genetically (Kumar et al.,
2012). High levels of dopamine act as a trigger to activate
CRY, which promotes nocturnal activity. This role of CRY is
limited to the night since light induces either CRY degradation
(Lin et al., 2001) or the inhibition of dopamine signaling
(Shang et al., 2011).

CRY AND THE REGULATION OF
METABOLIC PROCESSES

Wild-type flies show a rhythmic feeding behavior, which is under
circadian and homeostatic control and depends on light exposure
and food availability (Xu et al., 2008). Under LD cycles, flies
show a feeding peak at ZT 0–2; this rhythm is maintained in DD,
but a late-evening feeding bout is observed at CT20-4 (Seay and
Thummel, 2011). Although endogenous, the rhythm is regulated
by light, and CRY has been identified as the light-signaling factor
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FIGURE 5 | Overview of tissue-specific activities of CRY.

involved in suppression of the evening feed activity observed
in DD (Xu et al., 2008). Indeed, in LD, cry mutants exhibit the
early morning feeding activity displayed by wild-type flies, but in
addition, they also show the late-evening feeding activity, similar
to that of wild-type flies in DD (Xu et al., 2008). However, this role
of light-activated CRY is not dependent on light-induced TIM
degradation, since tim mutants in LD do not show the evening
feeding activity (Xu et al., 2008).

Cryptochrome function is also important for metabolic
processes and carbohydrate homeostasis. Indeed, in LD-
entrained wild-type flies, trehalose, the predominant circulating
form of sugar in flies, is at its lowest values at the beginning of the
day and increases to up 80% 4 h after feeding. Most of this sugar
is confined as stored energy, and glycogen levels reach maximum
values at the end of the day, accordingly (Seay and Thummel,
2011). The oscillation in glycogen concentrations is a clock-
dependent process as, although dampened, it persists in constant
conditions, while a clear rhythm is absent in tim mutants in both
LD and DD (Seay and Thummel, 2011). The phase of glycogen
accumulation is significantly anticipated in cry01 flies entrained in
LD, indicating the involvement of light-activated CRY in setting
the phase of this oscillation, and this observation is further
supported by the dampened oscillation of glycogen accumulation
observed in DD, when CRY is not activated by light (Seay and
Thummel, 2011). This metabolic alteration observed in cry01 flies,
which still possess a functioning clock, indicates that the role
of CRY in setting the phase of accumulation and utilization of
glycogen is not related to the canonical clock function.

In mammals, CRY1 is also involved in the regulation of
gluconeogenesis by CREB/cAMP signaling through rhythmic
repression of glucocorticoid receptor and decreasing the
level of nuclear FoxO1 (Hatori and Panda, 2010; Zhang
E.E. et al., 2010; Lamia et al., 2011; Jang et al., 2016).

Moreover, CRY1 interacts with the autophagosome marker light
chain 3 (LC3), responsible for its time-dependent autophagic
degradation (Toledo et al., 2018). (LC3)-interacting region
(LIR) motifs are found in the CRY1 sequence, and their
role has been confirmed by the observation that mice in
which autophagy is genetically blocked exhibit accumulation
of CRY1 and disruption of the circadian clock in the liver
(Toledo et al., 2018). Moreover, autophagic degradation of
CRY1 is important in maintaining blood glucose levels by
driving gluconeogenesis (Toledo et al., 2018). As in mammals
(Turek et al., 2005; Green et al., 2008), the circadian clock
is involved in fat storage and mobilization also in Drosophila.
Indeed, a significantly reduced triacylglycerol concentration is
observed in tim0 compared to wild-type LD-entrained flies
(Seay and Thummel, 2011), and an altered Clk function in
the PDF neurons results in increased fat body triglycerides
(DiAngelo et al., 2011). On the other hand, a significant
reduction in triacylglycerol levels is observed in both cry
mutants reared in LD and in wild-type flies after 2 days of
DD compared to LD, indicating that also light input seems
to be necessary for lipid homeostasis (Seay and Thummel,
2011). In mammals, Cry1 mutation does not significantly affect
triglycerides and fatty acid blood levels (Griebel et al., 2014),
while Cry1/2-deficient mice exhibit increased insulin secretion
and lipid storage in the adipose tissue under a high-fat diet
(Barclay et al., 2013).

CRY AND AGING

Aging is a process affecting most physiological processes. The
circadian clock plays an important role in the aging processes:
indeed, its disruption leads to accelerated aging in animals
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(Davidson et al., 2006; Kondratov et al., 2006; Antoch et al.,
2008; Yu and Weaver, 2011), and older individuals show
decreased amplitude of clock gene oscillation and changes in
rhythmicity, that is, sleep/wake cycles and hormonal fluctuations
(Valentinuzzi et al., 1997; Huang et al., 2002; Hofman and Swaab,
2006; Kondratova and Kondratov, 2012). Similar effects are
observed in Drosophila, where clock mutants exhibit increased
oxidative stress levels and neurodegeneration (Krishnan et al.,
2009, 2012) and changes in sleep patterns and clock gene
expression amplitude are observed in older flies (Koh et al., 2006a;
Luo et al., 2012; Rakshit et al., 2012; Umezaki et al., 2012; Solovev
et al., 2019). It has been reported that CRY is reduced at both
mRNA and protein levels in the heads of older flies and that its
overexpression in the nervous system or in all clock-expressing
cells is able to increase the amplitude of clock gene expression
levels and survival under hypoxia (Rakshit and Giebultowicz,
2013; Solovev et al., 2019). cry0 flies exhibit an accelerated
functional decline, in terms of decreased climbing activity,
accumulation of oxidatively damaged proteins and reduced
health span (Rakshit and Giebultowicz, 2013; Solovev et al.,
2019). CRY overexpression in the entire nervous system and in
both central and peripheral oscillators maintains the rhythmicity
of locomotor activity, increases climbing performance, and
decreases recovery time after short-term hypoxia in older
flies (Rakshit and Giebultowicz, 2013; Solovev et al., 2019).
Nevertheless, the overexpression of CRY limited to clock neurons
is not sufficient to slow down the aging processes or to reverse
age-associated phenotypes (Rakshit and Giebultowicz, 2013).

CONCLUSION

Increasing evidence indicates that the spectrum of biological
functions of Drosophila CRY is wider than that exerted in
circadian clocks (Figure 5).

More intriguingly, all such photoreceptor-independent roles
of CRY seem to be cell or tissue specific, and different
regulating mechanisms might account for the high versatility of
its functioning. At least four different tissue-specific regulation
mechanisms could make CRY pleiotropy possible: (1) In the
clock neurons, the blue light-dependent FAD photoreduction
induces conformational changes in the Trp tetrad, which results
in the displacement of the CTT from the photolyase homology
domain and in consequent protein activation (Zoltowski et al.,
2011; Czarna et al., 2013; Levy et al., 2013; Vaidya et al., 2013;
Masiero et al., 2014; Lin et al., 2018). (2) In the l-LNvs, light-
evoked CRY membrane electrical depolarization involves W420,
which is located closest to CRY FAD and is important for CRY-
mediated depolarization in response not only to UV and blue

light but also to red light, at a relatively low intensity (Baik
et al., 2019). (3) Also in the l-LNvs, the CRY-mediated nocturnal
activity ofClkmutant flies largely depends on dopamine signaling
that increases CRY levels and switches these cells, which normally
promote arousal in response to light, to nocturnal behavior
(Kumar et al., 2012). (4) In the photoreceptor cells, CRY
interacts with CaM in a Ca2+-dependent and light-independent
manner. We have hypothesized this interaction to be functional
to a Ca2+–CaM-dependent activation that would enhance the
light-dependent CRY response (Mazzotta et al., 2018). It is
possible that this mechanism might not be restricted to the
photoreceptor cells, and further studies are needed to investigate
whether a Ca2+–CaM-dependent mechanism might account
for the activation/regulation of CRY activity in roles other
than photoreception.

The versatility of CRY functioning in Drosophila shows
several similarities with vertebrate CRYs that, besides being
negative autoregulators of the circadian clock, also act as second
messengers between the core clock and other cellular processes,
such as maintenance of cellular and genomic integrity, and
metabolism (Van Der Horst et al., 1999; Shearman et al.,
2000; Hirayama et al., 2003; Kiyohara et al., 2006; Sato et al.,
2006; McCarthy et al., 2009; Kang et al., 2010; Lamia et al.,
2011; Narasimamurthy et al., 2012; Kang and Leem, 2014;
Papp et al., 2015).

However, the nature of the transduction signaling involving
CRYs remains largely unknown. Further studies, aimed at
identifying the signal transduction underlying light-independent
CRY functions, will help to improve the understanding of the
biology of circadian rhythm regulation.
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