
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Biology Faculty Publications and Presentations Department of Biological Sciences 

3-2-2020 

Operational Large-Area Land-Cover Mapping: An Ethiopia Case Operational Large-Area Land-Cover Mapping: An Ethiopia Case 

Study Study 

Trevor Caughlin 
Boise State University 

Publication Information Publication Information 
Khatami, Reza; Southworth, Jane; Muir, Carly; Caughlin, Trevor; Ayana, Alemayehu N.; Brown, Daniel G.; . . . 
and Agrawal, Arun. (2020). "Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study". 
Remote Sensing, 12(6), 954-1 - 954-24. https://dx.doi.org/10.3390/rs12060954 

For a complete list of authors, please see the article. 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/bio_facpubs
https://scholarworks.boisestate.edu/biosciences
https://dx.doi.org/10.3390/rs12060954


remote sensing  

Article

Operational Large-Area Land-Cover Mapping: An
Ethiopia Case Study

Reza Khatami 1,* , Jane Southworth 1, Carly Muir 1, Trevor Caughlin 2, Alemayehu N. Ayana 3,
Daniel G. Brown 4, Chuan Liao 5 and Arun Agrawal 6

1 Geography Department, University of Florida, Gainesville, FL 32611, USA; jsouthwo@ufl.edu (J.S.);
carlysmuir@ufl.edu (C.M.)

2 Biological Sciences, Boise State University, Boise, ID 83725, USA; trevorcaughlin@boisestate.edu
3 Ethiopian Environment and Forest Research Institute, P.O. Box 24536 Code 1000 Addis Ababa, Ethiopia;

alemayehunegassa@yahoo.com
4 School of Environment and Forest Sciences, University of Washington—Seattle, Seattle, WA 98195, USA;

danbro@uw.edu
5 School of Sustainability, Arizona State University, Tempe, AZ 85281, USA; cliao29@asu.edu
6 School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA;

arunagra@umich.edu
* Correspondence: seyedghkhatami@ufl.edu

Received: 3 February 2020; Accepted: 13 March 2020; Published: 16 March 2020
����������
�������

Abstract: Knowledge of land cover and land use nationally is a prerequisite of many studies on
drivers of land change, impacts on climate, carbon storage and other ecosystem services, and allows
for sufficient planning and management. Despite this, many regions globally do not have accurate
and consistent coverage at the national scale. This is certainly true for Ethiopia. Large-area land-cover
characterization (LALCC), at a national scale is thus an essential first step in many studies of land-cover
change, and yet is itself problematic. Such LALCC based on remote-sensing image classification is
associated with a spectrum of technical challenges such as data availability, radiometric inconsistencies
within/between images, and big data processing. Radiometric inconsistencies could be exacerbated
for areas, such as Ethiopia, with a high frequency of cloud cover, diverse ecosystem and climate
patterns, and large variations in elevation and topography. Obtaining explanatory variables that
are more robust can improve classification accuracy. To create a base map for the future study of
large-scale agricultural land transactions, we produced a recent land-cover map of Ethiopia. Of key
importance was the creation of a methodology that was accurate and repeatable and, as such, could
be used to create earlier, comparable land-cover classifications in the future for the same region. We
examined the effects of band normalization and different time-series image compositing methods on
classification accuracy. Both top of atmosphere and surface reflectance products from the Landsat 8
Operational Land Imager (OLI) were tested for single-time classification independently, where the
latter resulted in 1.1% greater classification overall accuracy. Substitution of the original spectral
bands with normalized difference spectral indices resulted in an additional improvement of 1.0% in
overall accuracy. Three approaches for multi-temporal image compositing, using Landsat 8 OLI and
Moderate Resolution Imaging Spectroradiometer (MODIS) data, were tested including sequential
compositing, i.e., per-pixel summary measures based on predefined periods, probability density
function compositing, i.e., per-pixel characterization of distribution of spectral values, and per-pixel
sinusoidal models. Multi-temporal composites improved classification overall accuracy up to 4.1%,
with respect to single-time classification with an advantage of the Landsat OLI-driven composites
over MODIS-driven composites. Additionally, night-time light and elevation data were used to
improve the classification. The elevation data and its derivatives improved classification accuracy by
1.7%. The night-time light data improve producer’s accuracy of the Urban/Built class with the cost
of decreasing its user’s accuracy. Results from this research can aid map producers with decisions
related to operational large-area land-cover mapping, especially with selecting input explanatory
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variables and multi-temporal image compositing, to allow for the creation of accurate and repeatable
national-level land-cover products in a timely fashion.

Keywords: image classification; time-series analysis; multi-temporal image compositing; land
transaction; map accuracy assessment; phenology modeling

1. Introduction

Understanding land-cover change is a central goal of contemporary human-environment
geography. Land cover is commonly defined as the physical materials on the Earth’s surface, whereas
land use is usually used to identify the specific application of the land. In this manuscript, when
referring to land cover, we mean land cover and land use interchangeably, as many land-cover classes
can also infer land use or support multiple land-use types. As such, we are careful to clearly define all
land-cover definitions, with both cover type and cover use information, an essential component of any
land-cover study. The dynamics of land-use and land-cover change are considered to be one of the key
factors behind global environmental change [1–3]. Significant changes in land use and land cover have
many consequences including habitat fragmentation [4] and consequential biodiversity loss [5]. Land
cover is a fundamentally complex occurrence that exhibits self-organizing patterns across multiple
scales upon which different inferences can be made.

As global efforts towards identifying broad relationships between drivers of land-cover change
continue [6], there is increasing recognition that these relationships can be significantly modified by local
socio-economic and policy developments, and that studies of land-cover change need to be carefully
grounded within the local context [2,7]. For example, reviews of the deforestation literature [2,6] stress
the complexity of land-cover change, which happens in the context of the increasing connectedness of
people and places through economic integration, transportation, communication, and international
agreements (globalization). Globalization, however, is strongly mediated by local factors, and results
in regionally distinct modes of land change. Understanding land-cover change, therefore, requires
research that recognizes the role of global factors, captures the generic qualities of socio-economic
and biophysical drivers, and situates such factors in the context of place-based human-environment
research. To identify change itself, let alone link such change to a variety of economic, social, and
institutional driving forces of land-use change, is a daunting, yet crucial task [8].

Across Ethiopia, large-scale land transactions represent change in coupled agricultural and natural
ecosystems, particularly due to the land being a principal basis of livelihoods and the provision of
substantial ecosystem services, both of which are impacted by land transactions. The scale and pace of
recent transactions across the globe is historically unprecedented [9], with 30–100 million hectares of
land having changed hands in the last decade [10–12]. In the absence of reliable data and rigorous
analyses, large-scale land transactions generate diametrically divergent viewpoints. Control over
land enables the cultivation of new commodity crops, deployment of new agricultural practices and
technologies, and sale of produced commodities for new uses and markets—with attendant impacts
on food-energy security, human wellbeing, and ecological processes [12,13]. Emerging evidence has
indicated, however, low investment levels, limited increases in output, rent-seeking behavior, and
displacement of households [14–16]. Critics have argued that large-scale land transactions lead to
declines in livelihoods and nutrition for local communities [17], losses in household incomes [18], fewer
food calories [19], and local dissatisfaction [20]. Agricultural use of transacted lands to grow biofuels
and cash crops may adversely affect ecosystems, ecological services, and tree cover directly [12,21].
Ethiopia has registered among the largest numbers and areas for recent land transactions, however
many do not have accurate locations or boundaries on the ground. As such, addressing impacts and
linkages is impossible without the creation of a known coverage of land-cover types from which to
ascertain and locate the land-cover transactions themselves.
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Use of satellite data permits the study of a wide range of human–environment interactions.
Satellite based analysis of land-use land-cover change is a key necessity in the study of global processes.
Added into this complexity, is the scale of the study. In areas where a single image scene covers a
study area, there is some elegant simplicity to the creation of land-cover classifications. However,
in our increasingly globalized and complex world, such studies are more likely to address highly
diverse landscapes and still require the creation of a land-cover classification. In this research, a
large-area land-cover map production process is established, through testing several time-series image
compositing methods and ancillary data. The process is used to produce a recent 30-m land-cover
map of Ethiopia through classification of remote-sensing images, with Landsat images as the base
imagery. The proposed process will be used in our future work to produce time-series of national-level
land-cover maps for Ethiopia, dating back to early 2000s before the land transactions began, enabling
mapping and quantification of land transactions.

Because of the large area of Ethiopia, which is greater than 1.1 million square kilometers, the
classification task can be identified as a “large-area” land-cover mapping project. Operational
land-cover mapping is defined as land-cover characterization projects where the map products
are being utilized in consequent modeling and decision-making tasks, which makes it different
from experimental classification where the focus is more on testing the classification process itself.
Consequently, operational land-cover mapping commonly has stricter quality requirements than
experimental classification [22–24]. Moreover, operational large-area land-cover mapping is engaged
with some technical obstacles that normally are less severe for small-area mapping tasks. Large-area
mapping requires handling big spatial datasets that limits analysts’ ability to investigate different
classification processes. Generally, these can cause lengthy data processing time and a potential
reduction in the accuracy of the final map product. In addition, given the processing time, the lag
between capture date and map release date may also make the map outdated and questionable for
some applications [25]. Cloud-computing platforms, such as Google Earth Engine (GEE) [26], can
provide the computational power for big data processing, enabling the implementation of methods that
were extremely burdensome, if not impossible, before. Even though it is a fairly new platform, GEE
has already been successfully used in many environmental applications such as forest/deforestation
monitoring [27]; agricultural and cropland mapping [28–30]; land change analysis [31]; water, hydrology,
and drought studies: [32,33]; and urban area and settlement mapping [34–37]. Similarly, phenology
and Normalized Difference Vegetation Index (NDVI) trajectory analyses [38,39] and fusion of Phased
Array-type L-band Synthetic Aperture Radar (PALSAR) and Landsat data has been used for vegetation
mapping [28,40].

One important consideration for mapping large areas is radiometric inconsistencies between
images captured at different dates and locations. In tropical areas, frequent cloud cover can lead
to large temporal differences among cloud free images for different scenes, which can exacerbate
the between scene radiometric variation issue [41]. Therefore, a normalization might be required to
adjust different images captured at different dates and locations. This can be achieved either through
absolute normalization, i.e., conversion of spectral values to surface reflectance, or through relative
normalization [42,43] using spectral values in overlapping areas of images [44]. Even though these
methods can alleviate radiometric variations among images to some extent, some degree of error can
usually be expected to exist and affect classification accuracy. Consequently, in many cases, large-area
maps are constructed via mosaicking separate classifications per scene, (for examples see: [25,45–48].
However, per scene land-cover characterization requires a reference dataset for each scene, which
would involve substantial labor/time/budget requirements. To perform a single classification for the
entire country, we examined different avenues to obtain explanatory variables that are more consistent
over different scenes. Time-series analysis has been shown as one of the major avenues for classification
accuracy improvement [49–53]. Time-series composites can be produced by extracting summary
measures for each pixel from the time-series. For instance, mosaics can be created based on such
criteria as the most recent observation, the observation corresponding to the largest/smallest value
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of an index such as the NDVI, a statistical measure such as a mean or median, and so on [54–58].
Creation of composite layers based on monthly/seasonal/annual or statistical measures has shown
great potential for characterizing land-cover classes [59–63]. Because these composite layers are
extracted from time-series of observations, they could provide higher levels of consistency compared
to single-time imagery.

In this research, several classifications based on different explanatory input variables are
implemented and compared based on classification overall and class-specific accuracies. We are
interested in comparing performances of top of atmosphere (TOA) and surface-reflectance (SR)
products in terms of classification accuracy and if additional radiometric normalization might improve
classification while mapping large areas. In addition, we investigate if and how much different
multi-temporal composites can improve classification accuracy of large areas with respect to single-time
classification. Finally, ancillary datasets are tested for classification accuracy improvement. Even
though, some of those methods have been used in previous research for small-area mapping projects,
here we are interested in testing the effects and implications of such methods and decisions on the
accuracy of large-area operational land-cover mapping. This will provide more information about the
relative performance of different methods/data, for example comparison between surface versus top of
atmosphere reflectance products or comparison among different time-series compositing methods,
which will assist other researchers with similar questions and enhance the existing discussion on
comparisons and uses of the rapidly increasing selection of global land-cover products.

2. Materials and Methods

2.1. Study Area: Ethiopia

Ethiopia maintains the second largest population among African countries (102 million) and is
also among the poorest in the world. Per capita income remains at $660 USD despite the government
pushing to reach lower-middle-income status by 2025 [64]. Under the Growth Transformation Plan
of Ethiopia, the agricultural sector is listed as the country’s major source of economic growth [65].
Farming provides a livelihood to about 80% of the population and 45% of the country’s Gross Domestic
Product (GDP) comes from the agricultural sector [66]. Approximately 96% of the cultivated land
is accounted for by smallholder rainfed agriculture; most of which work with less than one hectare.
Cereals constitute most of the production and are estimated to make-up nearly three quarters of the
total cultivated area. Other crops include fruits, vegetables, root crops, oil seeds and coffee, though
these only make up about 10% of the area under cultivation combined [67,68]. Larger industrial-style
farms specialize in the cultivation of crops such as sugarcane and cotton, which contribute far less
to total crop production. Smallholder, multiple crop farming is practiced by 80% of the country’s
population and is concentrated predominantly in the highlands. Similar practices are followed in the
lowlands with more drought tolerant varieties of cereals and oil crops. The northern and Somali regions
of the country are largely occupied by agro-pastoralism while the southern and western portions use
shifting cultivation with slash and burn [69]. Pastoralism areas mainly include north eastern, eastern,
south eastern and some part of south of the country.

Ecological zones throughout the country are characterized into fifteen classes based on elevation
and rainfall [70]. The elevation ranges from approximately 110 m below sea level to more than 4000 m
above sea level. This vast irregularity in topography creates varying rainfall regimes with annual totals
of 150 mm in the southeast and as much as 2000 mm in the southwest [71]. The key agricultural regions
of Ethiopia experience two rainy seasons known as the Kiremt or Mehere (June–September) and the
Belg (March–May) [72]. According to Biazin and Sterk [73], dry lands occupy approximately 65% of the
country and only 15.1% of the land is considered arable. The dominant land covers present throughout
the country include bare areas in the northeast, grassland/shrubland in the east, and rainfed croplands
in the western highlands. Due to the rampant deforestation in the 1900s, forest cover is limited to just
12.5% of total land area and remains mostly concentrated in the southwest [74]. The northwestern
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region is barren with sparse vegetation caused by low elevation that results in high temperatures. The
major cause of changes in land use/land cover in the highland regions has been deforestation, mainly
due to agricultural intensification [75]. In addition to expanding agricultural land, population growth
has exerted pressure through increased urban development [76,77].

2.2. Classification Scheme and Reference Data Collection

The classification scheme included six classes as shown in Table 1. As our goal was to study
changes in agricultural activities and savanna systems, the classification scheme was mainly focused
on these classes, which was considered appropriate given the national scale of this research. While
more local or regional classifications do exist, these classifications were inappropriate to scale up
nationally, and given the focus of this research was the creation of a national product, which would be
reproducible across earlier dates for future research, we focused on these broader land-cover classes at
this initial stage. Table 1 also includes the corresponding classes from two existing land-cover maps
of Ethiopia: Copernicus Global Land Operations (https://land.copernicus.eu/global/; last accessed
on February 2020) and GlobeLand30 [22]. The two existing land-cover maps were used for spatial
stratification of the reference pixels (explained below) and benchmarking of the performance of the
proposed mapping process (Section 3.2).

Table 1. Land-cover classification scheme and corresponding classes in Copernicus and GlobeLand30
map products.

Land-Cover Class Class Definition Used
in this Work

Corresponding Class in
Copernicus

Corresponding Class in
GlobLand30

Dense Forest
Vegetation dominated by

tree cover of 70% or
greater.

Forest, closed forest
(deciduous, evergreen) Forest

Savanna
Grasses, shrubs,

herbaceous plants, and
tree cover less than 70%.

Shrubs, herbaceous
vegetation Shrubland, grassland

Cultivated

Land used for
agriculture, small-holder
and intensive cultivation,

including plantations.

Cultivated and managed
vegetation/agriculture Cultivated land

Bare Soil Bare soil and rock with
<5% vegetation cover. Bare/sparse vegetation Bareland

Urban/Built

Land predominantly
covered by man-made

structures; roads,
buildings.

Urban/built up Artificial surfaces

Water/Wetland
Permanent water bodies

(rivers, lakes) or
wetlands.

Temporary water bodies,
Permanent water bodies Wetland, water bodies

Figure 1 shows some examples for each class representing the wide range of variations for
most classes. Our initial assessment revealed confusion among both visual appearance and spectral
signatures of some classes. The major confusions observed were among Dense Forest and Savanna;
Cultivated and Bare Soil; and Urban/Built and Bare Soil classes. While additional refinement and very
careful selection of training pixels helped reduce these confusions, it is also clear that these confusions
can be expected to be the main sources of misclassifications in the final product and must be considered
when reviewing the final products.

https://land.copernicus.eu/global/
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Figure 1. Examples of the target land-cover classes showing the ranges of class distribution, ordered by
land-cover proportion cover of a pixel, from maximum cover to minimum cover to still be assigned to
the class, from left to right. Red squares show footprints of Landsat pixels.

Representative precise and robust reference data are essential for land-cover classification.
Maintaining consistent, high quality reference data is challenging when the data are being collected
for large areas, by different analysts, and over long periods. For our classification, we used GEE to
implement a protocol to ensure the high quality of the reference data. Landsat 8 imagery were used
as the main remote-sensing data for classification (details are presented in Section 2.3) and therefore
reference labels were collected for Landsat pixels. Because Ethiopia is located on multiple Universal
Transverse Mercator (UTM) projected coordinate system zones, images were reprojected into the
WGS84 geographic coordinate system (details are presented in Section 2.3). For each class, 250 reference
pixels were collected. To distribute the reference data over the entire study area, Copernicus Global
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Land Operations and GlobeLand30 land-cover products were used to implement a stratified random
sampling, in which Copernicus and GlobeLand30 classes and their areas of agreement/disagreement
were used to define the strata. The Copernicus Global Land Operations is a 100-m pixel size global
land-cover product for 2015 and includes 18 land-cover classes. The GlobeLand30 is another global
product and has 30-m pixel size. The GlobeLand30 map includes 10 classes and was constructed for
2010. The classes of the two existing land-cover products were recoded to match our six target classes as
shown in Table 1, and some of the two products’ classes did not exist over our study area. In addition,
the two land-cover products were reprojected and resampled, using the nearest neighbor method, to
match with the Landsat images. Then, the two maps were overlaid to specify areas of agreement and
disagreement. This was done to identify areas that might be potentially simpler (agreement areas)
and more difficult (disagreement areas) to classify for each class. The 250 reference pixels of each
class were allocated to the areas of agreement and disagreement proportionate to their areas and were
selected at random from the corresponding areas. The above procedure was used to ensure reference
pixels were spatially well distributed and that there was a balance between areas of agreement and
disagreement. The reference labels of sampled pixels were identified through manual interpretation of
high-resolution imagery in GEE. To do so, using codes, footprints of reference pixels were highlighted
on GEE’s high-resolution imagery (as shown in image 1) and a spectrum of examples for each class
were produced and used as guides by analysts during reference data collection. The pixels were
labeled based on the majority rule, i.e., the most common class within a pixel. To ensure high-quality
reference data collection, the same reference pixels (250 pixels per class) were independently labeled
by two interpreters. Discrepancies in labels assigned by the two interpreters were double-checked and
resolved by a third, more experienced, interpreter.

2.3. Classification Data

2.3.1. Landsat-Based Single-Time Classification

Long-term systematic acquisition and well-balanced spatial, spectral, and temporal resolutions
of Landsat sensors make them valuable resources for large-area land monitoring and change
detection [78–81]. Additionally, free availability of Landsat images over the last decade has made
it the main source for large-area land-cover characterization [82–85]. Additionally, Landsat sensor
was selected over the other sensors, such as Sentinel-2, mainly due to Landsat’s longer-term data
continuity. This enables us to produce land-cover maps for past periods, before the beginning of the
Ethiopia land transactions in early 2000s, to map the land-cover changes due to land transactions in our
future work. This need for reproducible methods and high accuracies thus resulted in the selection of
Landsat as the main data source for this analysis. The entire area of Ethiopia is covered by 66 Landsat
scenes. Different image dates were investigated based on cloud/shadow cover and images from 1
January 2017 to 17 January 2017 were selected because of low cloud cover. The selected 16-day period
includes one image acquisition per scene that was used for single-time land-cover classification. Both
Landsat 8 Collection 1 TOA and SR data were examined in this research. SR images are TOA images
that have undergone pixel level atmospheric adjustment, through the Landsat 8 Surface Reflectance
Code (LaSRC) [86], in order to obtain consistent spectral values over space and time, i.e., within
and between images [86,87]. The pixels of the selected images were filtered based on Fmask quality
flags [88,89] to exclude pixels with cloud and cloud shadow. Because the images fall in different UTM
zones, the images were reprojected to WGS84 geographic coordinate system and mosaicked. While
reprojecting the images, a bilinear resampling method was used to calculate the new pixel values.
Two separate classifications were performed using spectral bands 1 to 7 of each of the TOA and SR
images to compare their differences in classification accuracy. Even though SR images provide the
required normalization adjustment for consistency of spectral values, these products, just as with any
measurement/model-based product, have some imperfections. Therefore, as a simple normalization
method, normalized difference indices (NDIs) (Equation (1)) were calculated from the seven spectral
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bands from each image and replaced the original bands during classifications. Indices do not provide
an additional source of information for classification, as their information already exists in the original
bands. However, NDIs were used, as they are relative measures, i.e., differences/ratios of bands, and,
as such, could be more consistent among images acquired across different dates and locations. Six
NDIs were created using consecutive pairs of bands. Other pairs of bands were excluded, as they
would include redundant information. Additionally, to incorporate textural information content of
images in classifications, textural layers were calculated [90]. The textural layers were calculated using
the panchromatic band, with 15-m pixel size, from the cloud masked TOA images (the panchromatic
band does not have a corresponding SR band). The textural layers were calculated over 3 × 3 pixel
windows based on the gray-level co-occurrence matrix (GLCM) using GEE’s built-in functions which
outputs 18 textural layers such as entropy, variance, contrast, and homogeneity [26].

NDIi =
Bandi+1 − Bandi

Bandi+1 + Bandi
, i = 1 to 6 (1)

2.3.2. Multi-Temporal Image Compositing

Incorporation of time-series imagery has been shown as one effective way to improve classification
accuracy [91–94]. Compared to single-time images, time-series images include additional information
such as vegetation phenology, which can be utilized to separate land-cover classes that might have
similar spectra for some dates but different patterns over time. Therefore, composite layers based
on monthly/seasonal/annual or statistical measures have frequently been used to enhance land-cover
classification [95–99]. Compositing helps to deal with cloudy and missing value pixels. Moreover,
compared to single-time images, summary measures extracted from time-series could be more
consistent, both between and within scenes, as they represent longer period distributions of spectral
values rather than values at a specific date/condition. In this research, three types of composites for
land-cover classification have been investigated including sequential and probability density function
(PDF) composites and a sinusoidal model. Sequential composites were calculated as per-pixel/per-band
median values over predefined periods. Sequential composites were calculated for different periods
and therefore could be used to separate land-cover classes based on their temporal patterns. On the
other hand, PDF composites are per-pixel/per-band annual percentiles of spectral values and could be
used to model probability density function of pixel values. PDF composites are time-independent
and, therefore, they would be more helpful when different regions of the same class have similar
distributions but different timing. This is very common for large-area mapping as timing of agricultural
activities and vegetation greening could vary for different areas.

Landsat 8 images from 1 March 2016 to 1 March 2018, were used for the construction of composite
layers, which included 2807 individual Landsat images. Landsat images from two years were used
to increase data availability for cloudy periods. First, the Landsat images were masked per-pixel for
cloud and cloud shadow using the Fmask values. This resulted in 90% of pixels with the number of
observations in the range of 14–112. Because in single-time classifications the SR images outperformed
the TOA images and the NDIs outperformed the original bands (details discussed in the Results
section), the Landsat multi-temporal composites were constructed using the SR NDIs. PDF composites
were extracted for five percentiles: 5%, 25%, 50%, 75%, and 95%. The five values were obtained
independently per-pixel/per-band.

To create the Landsat sequential composite, the same cloud-masked images were divided into
four periods of three months. The periods were established using the greenness onset, greenness
maximum, senescence, and dormancy of vegetation in Ethiopia’s ecoregions [100]. Additionally,
precipitation was assessed to ensure appropriate division of the water year. The periods were formed
as 1) December, January, and February; 2) March, April, and May; 3) June, July, and August; and 4)
September, October, and November. For each period, the median spectral values were calculated
per-pixel/per-band. This resulted in four median layers per band. The three-month periods were
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selected to increase availability of cloud-free observations for most pixels. However, this aggregation
would eliminate some finer temporal resolution phenology variations. Therefore, Moderate Resolution
Imaging Spectroradiometer (MODIS) images were used to take advantage of their finer temporal
resolution. Terra surface reflectance daily products with 250-m pixel size (MOD09GQ version 6) from 1
July 2016 to 30 June 2017 were used for MODIS compositing. MOD09GQ provides spectral values
at red and infrared wavelengths. To mask cloudy pixels in the MOD09GQ images, pixel-level cloud
state information from Terra surface reflectance daily products with 1000-m pixel size (MOD09GA
version 6) were used. First, all MOD09GQ images were matched with their corresponding MOD09GA
images based on image acquisition date. Then, non-clear pixels were masked from MOD09GQ based
on “state_1km” quality band of the corresponding MOD09GA images. NDVI values were calculated
for clear pixels for all images and used for the MODIS composites calculations. This resulted in 90%
of pixels with the number of observations in the range of 29–254. The MODIS NDVI images were
resampled to 30 m to match with the base Landsat imagery. For PDF composite, ten percentile layers
were created in 10% increments from 5% to 95% of NDVI values for each pixel. In addition, 12-monthly
NDVI layers were constructed by extracting median NDVI values per-pixel/per-month.

In addition to the multi-temporal image composites, a seasonality analysis was used to model the
patterns of Landsat NDVI variations. To do so, a sinusoidal model [101,102] was used to model NDVI
variation over one year (1 July 2016 to 1 July 2017) as follows:

NDVIt = a0 + a1t + A cos(2πωt + ϕ) = a0 + a1t + a3 sin(2πωt) + a4 cos(2πωt) (2)

where t is time in days starting from 1 July 2016, A is the amplitude, ω is the frequency of oscillation
(set to equal 1 as we assumed a full cycle over one year), and ϕ is a phase shift. The sinusoidal model
was fitted to the annual time-series of Landsat NDVI values independently for each pixel. The four
estimated coefficients a1 − a4 were used as additional explanatory variables for classifications.

2.3.3. Ancillary Datasets

Elevation information was examined as one source of ancillary data for classification improvement.
The Shuttle Radar Topography Mission (SRTM) version 4 [103] was used as the elevation dataset.
Besides elevation, slope and aspect layers were calculated and used as additional classification
explanatory variables. In addition, night-time light data were used to improve the classification of
urban areas [58,104,105]. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band
(DNB) was used as the night-time light dataset. DNB are monthly average radiance composite images
with 15 arc seconds pixel size. The DNB data has been filtered to remove data that has been affected by
stray light, lightning, lunar illumination, and cloud cover (https://ngdc.noaa.gov/eog/viirs/download_
dnb_composites.html, last accessed on November 2019). Seven monthly images from October 2016 to
April 2017 were used. The “cf_cvg” band identifies per-pixel number of observations for each monthly
composite. The pixels with less than four observations were excluded from monthly data. Then, a
single layer was created by extracting the per-pixel minimum value of the seven months. This was
done to reduce the effects of faulty observations, which mostly come from unfiltered cloudy pixels.
Both elevation and night-time light datasets were resampled to match with the Landsat images.

2.4. Land-Cover Classification

To assess the effects of the classification input variables on the classification accuracy, a series of
classifications based on different choices of explanatory variables were implemented. This included
13 classifications with the following input explanatory variables: classifications 1–3 corresponded
to single-time classifications of TOA, SR, and SR NDIs images (results indicated outperformance of
SR NDIs with respect to TOA and SR images and therefore the SR NDIs were used in classifications
4–13); classification 4 included textural layers in addition to classification 3 data; classifications 5–9
included one multi-temporal composite (described in Section 2.3.2) in addition to classification 4

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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data; classification (10) included all the multi-temporal composites in addition to classification 4
data; classification 11 included the night-time data in addition to classification 10 data; classification
12 included the elevation data in addition to classification 11 data; and classification 13 included
classification 12 data except excluding the single-time NDIs.

Random forest [106,107] was used as the classification algorithm. Random forest is a
non-parametric ensemble machine learning algorithm which has been used frequently for land-cover
mapping and has shown relatively high accuracy compared to other state-of-the-art algorithms [50,108].
Random forest is an easy and fast algorithm to train and is commonly resistant to over-fitting because it
averages large numbers of trees trained based on random permutations of training data and explanatory
variables. Similar to many other non-parametric classification algorithms, random forest is capable of
prioritizing explanatory variables that are more informative for delineating target classes [106,108].
Given the statistical rigor of random forest it is a commonly used approach, especially when many and
varied input data are being evaluated, given the lack of over-fitting concerns with this approach. As
such, there was no concern regarding the number of variables being used and, indeed, all variables
could be included and evaluated using this technique. The reference pixels were randomly divided
into training and test data based on 70% and 30% proportions, respectively, which is a commonly used
division and appropriate here, in terms of pixel numbers and training data rigor. The same training
and test data were used for all classifications. In addition, training of the random forest classifier
was conducted in the out-of-bag mode where bag fraction was set to 30% of training data (out-of-bag
data was different from the test data that was exclusively used for accuracy assessment). For all
classifications, the random forest’s number of trees parameter was set to 100. The number of variables per
split parameter was determined using a grid search optimization based on out-of-bag error. For the
grid search, number of variables around two-thirds of the number of explanatory variables, which
depended on the number of variables used for a given classification, over a range of about one-third
of the number of explanatory variables were tested, and the number of variables that resulted in the
smallest out-of-bag error was selected as optimal number of variables per split.

3. Results

3.1. Comparison of the Land-Cover Classification Processes

Several classifications based on combinations of explanatory variables were performed. The
classifications were compared based on classification accuracy of the independent test dataset.
Single-time classification of Landsat 8 images were conducted separately for SR and TOA image
products where the seven spectral bands were used as classification independent variables. Table 2
presents the estimated overall accuracy (OA) and class-specific accuracy values. SR classification
(classification 2 in Table 2) outperformed TOA classification (classification 1 in Table 2) by 1.1% in
OA. This improvement might be attributed to the higher degree of radiometric consistency among SR
images than TOA images. In addition, the classification of six NDIs from SR images (classification
3 in Table 2) resulted in 1.0% larger classification OA with respect to the seven original SR bands
(classification 2 in Table 2). In terms of user’s accuracy (UA) and producer’s accuracy (PA), each of the
three classifications (classifications 1–3 in Table 2) outperformed in some categories, with the overall
best performance from SR NDIs. Incorporation of textural layers (classification 4 in Table 2) from the
panchromatic band as additional explanatory variables to the SR NDIs improved classification OA
by 1.9%. The textural layers improved classification accuracy by up to 5.3% for Cultivated, Dense
Forest, Savanna, and Urban/Built classes. Bare Soil and Water/Wetland classes have relatively uniform
spatial patterns and less textural information compared to the other classes and did not benefit from
the inclusion of textural layers.
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Table 2. Overall and class-specific accuracies (%) of classifications based on different combinations of input data.

No.
Classification
Explanatory

Variables

Number of
Explanatory

Variables
Cultivated Dense Forest Savanna Bare Soil Urban/Built Water/Wetland

OA UA PA UA PA UA PA UA PA UA PA UA PA

1 TOA 7 66.1 58.6 70.8 79.7 67.1 63.5 56.0 55.6 70.3 55.4 55.4 98.2 96.4

2 SR 7 67.2 50.5 63.9 80.0 62.9 63.7 64.5 63.0 79.7 66.7 42.1 100.0 96.4

3 SR_NDIs 6 68.2 45.1 63.9 77.6 64.3 66.2 55.4 64.6 79.7 81.1 75.4 100.0 96.4

4 SR_NDIs + TXT 24 70.1 50.5 63.9 80.7 65.7 66.2 59.8 63.3 79.4 83.6 80.7 100.0 92.9

5 SR_NDIs + TXT
+ SIN_MDL 28 72.2 52.6 69.4 85.2 65.7 70.4 68.3 69.6 76.2 75.5 70.2 100.0 92.9

6 SR_NDIs + TXT
+ LND_PDF 54 72.8 55.8 73.6 80.7 65.7 69.4 67.7 71.6 76.2 80.0 70.2 100.0 94.6

7 SR_NDIs + TXT
+ LND_SEQ 48 73.2 54.8 69.7 75.5 62.5 70.3 68.5 71.0 77.8 86.0 78.2 100.0 92.9

8 SR_NDIs + TXT
+ MDS_PDF 34 71.8 52.1 68.1 79.3 65.7 70.0 68.3 73.4 74.6 75.5 70.2 98.1 92.9

9 SR_NDIs + TXT
+ MDS_SEQ 36 72.0 51.0 77.6 82.2 58.7 69.2 67.9 75.0 76.2 84.4 69.1 100.0 90.7

10 SR_NDIs + TXT
+ ALL_CPT 104 75.2 57.0 72.6 78.3 59.0 70.3 73.4 79.7 81.0 87.0 75.5 100.0 94.4

11
SR_NDIs + TXT
+ ALL_CPT +

DNB
105 73.8 55.3 75.8 84.1 60.7 70.6 68.4 76.6 77.8 77.4 77.4 98.1 94.4

12
SR_NDIs + TXT
+ ALL_CPT +

DNB + ELV
108 76.9 59.8 79.0 86.0 60.7 73.1 74.1 78.1 79.4 84.3 81.1 100.0 94.4

13 TXT + ALL_CPT
+ DNB + ELV 102 74.3 56.3 79.0 82.2 60.7 70.4 70.4 76.2 76.2 81.1 71.7 100.0 96.3

Abbreviations: OA: overall accuracy; UA: user’s accuracy; PA: producer’s accuracy; TOA: top of atmosphere reflectance; SR: surface reflectance; SR_NDIs: surface reflectance normalized
difference indices; TXT: textural layers; SIN_MDL: sinusoidal model; LND_PDF: Landsat probability density function (PDF) composite; LND_SEQ: Landsat sequential composite;
MDS_PDF: Moderate Resolution Imaging Spectroradiometer (MODIS) PDF composite; MDS_SEQ: MODIS sequential composite; ALL_CPT: all multi-temporal composites (including PDF
and sequential composites from both Landsat and MODIS plus Landsat sinusoidal model); DNB (Day/Night Band): Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light
composite; ELV: elevation data and their derivative from Shuttle Radar Topography Mission (SRTM) version 4.
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Because SR NDIs outperformed the original TOA and SR images, the Landsat multi-temporal
composites were constructed using the SR NDIs instead of the original spectral bands. Examples of
the multi-temporal composites are presented in Figure 2 for an area covering parts of Addis Ababa
and its vicinity. In Figure 2a, the area in the south-east is highly urbanized, while patches of dense
forest exist immediately in the north and with some distance to the west of Addis Ababa. The majority
of land in the north and west of Figure 2 are cultivated fields, visualized mainly as light brown in
Figure 2a. Gefersa reservoir is located approximately in the center of Figure 2a. Figure 2b shows the
Landsat NDVI sinusoidal model fitted independently to time-series data for each pixel. Red green
blue (RGB) colors in Figure 2b correspond to the coefficients a4, a3, a2 in Equation (2). As different
land-cover classes have different NDVI model amplitudes and phase shifts, the sinusoidal model
coefficients can differentiate them. Figure 2c illustrates the Landsat PDF composites with 95%, 75%,
50% of NDI4, i.e., NDVI, as RGB colors. The urban area and Gefersa reservoir appear dark as they have
low NDVI value distributions. Forest patches appear very bright as NDVI values are larger for longer
periods of time compared to the other classes. Cultivated fields appear as red/yellow as they have high
NDVI at some periods and lower NDVI at other periods of the year. Figure 2d shows the Landsat
sequential composites with the median of NDI4, i.e., NDVI, from seasons 4,2,1 (see Section 2.3.2) as
RGB colors. Similar to Figure 2c vegetated and non-vegetated classes can be differentiated in Figure 2d
due to the differences in their ranges of NDVI values. Due to differences in their phenology patterns,
forest patches are differentiated from cultivated fields, mainly because forested areas have large NDVI
for longer periods of the year. While NDI4, i.e., NDVI, was used for visualization of the Landsat
composites in Figure 2c,d, the other NDIs also seemed effective in differentiating the target land-cover
classes. The MODIS PDF composite, represented in Figure 2e where RGB colors correspond to the
per-pixel 95%, 75%, and 50% of NDVI values, is similar to the Landsat PDF composite in Figure 2c
but with lower spatial resolution. The MODIS sequential composite is shown in Figure 2f as the
median of NDVI, for June 2016, October 2016, and January 2017 as RGB. Cultivated areas have high
NDVI in October but low NDVI in January, therefore, they appear mostly as green/yellow in Figure 2f.
Forested areas appear as white/cyan as they have higher NDVI compared to the other classes especially
in January.

Overall, the inclusion of any multi-temporal composite, in addition to single-time and textural
layers, improved overall classification accuracy (OA). The largest improvement in OA was obtained
by the addition of the Landsat sequential composites, which resulted in 3.1% improvement in OA
(classification 7 in Table 2), followed by inclusion of the Landsat PDF composites and sinusoidal
models (classifications 6 and 5 in Table 2) with 2.7% and 2.1% improvement in OA, respectively.
In terms of a comparison between Landsat and MODIS composites, Landsat composites resulted
in larger OA improvements than MODIS for both PDF and sequential compositing methods. The
advantage of Landsat over MODIS was 1.0% and 1.2% for PDF (classifications 6 and 8 in Table 2) and
sequential composites (classifications 7 and 9), respectively. The performances of the two methods of
compositing were similar with slight advantages of sequential over PDF compositing; the advantages
were 0.4% (classifications 7 and 6 in Table 2) and 0.2% (classifications 9 and 8 in Table 2) for Landsat and
MODIS compositing, respectively. In classification 10, where all the Landsat and MODIS composites
were used as additional variables to the single-time and textural layers, classification OA improved
by 5.1%, which was larger than improvements achieved by each of the multi-temporal composites
(classifications 5–9 in Table 2) individually. Generally, Cultivated, Savanna, and Bare Soil classes
benefited the most from multi-temporal composites. The largest improvement was obtained for UA of
the Bare Soil class that was 16.4%. The Dense Forest, Urban/Built, and Water/Wetland classes did not
improve substantially with the addition of multi-temporal composites and in some cases classification
accuracy decreased for those classes, especially PA of the Urban/Built class (Table 2). This might be
attributed to the fact that spectral signatures of those classes, especially Urban/Built and Water/Wetland,
have fewer variations compared to the other classes over different seasons and benefited less from
multi-temporal compositing.
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Figure 2. Visualization of multi-temporal image composites for Addis Ababa for: (a) high-resolution
imagery from Google Earth Engine (GEE); (b) Landsat Normalized Difference Vegetation Index (NDVI)
sinusoidal model coefficients, Red green blue (RGB): a4, a3, a2 (see Equation (2));(c) Landsat PDF
composite, RGB: 95%, 75%, 50% of NDI4, i.e., NDVI; (d) Landsat sequential composite, RGB: median
NDI4, i.e., NDVI, from periods 4,2,1 (see Section 2.3.2); (e) MODIS PDF composite, RGB: 95%, 75%, 50%
of NDVI; and (f) MODIS sequential composite, RGB: median NDVI for June 2016, October 2016, and
January 2017.

Night-time light data from the VIIRS DNB and SRTM elevation dataset were evaluated as ancillary
explanatory variables to improve land-cover characterization (classifications 11 and 12 in Table 2).
Night-time data improved PA of the Urban/Built class by1.9%; however, UA for this class decreased
by 9.6%. This can be partly explained by the blooming effect of night-time data, i.e., the expansion
of light beyond urban boundaries, which can lead to an over-estimation of urban areas. Overall, the
DNB dataset did not improve classification OA. On the other hand, incorporation of elevation and its
derivatives, slope and aspect, improved classification OA by 3.1% (classification 12 in Table 2). This
was the classification where all 108 explanatory variables were utilized. Class-specific accuracies also
improved by an average of around 2.8%. Classification 13 in Table 2 shows the results of the classification
where single-time NDIs were excluded. Exclusion of single-time NDIs decreased classification OA
by 2.6%. This suggests that even though multi-temporal information of a sensor, Landsat 8 here, is
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employed in a classification process, the classification might still benefit from inclusion of single-time
image mosaics, if cloud-free images, from a relatively short period, exist for the entire case study.

3.2. Comparison with the Existing Land-Cover Products

To further investigate the performance of the classification outputs, the best classification in
terms of OA (classification 12 from Table 2), referred to as LC_2017 hereafter, is compared with the
two existing contemporary land-cover products for Ethiopia, which are the GlobeLand30 for 2010
at 30 m resolution and the Copernicus Global Land Operations for 2015 at 100 m resolution. As
discussed earlier (Section 2.2), these classifications were recoded and resampled to match with LC_2017
classifications. Note that there are some temporal gaps between the two products and LC_2017
classification. Therefore, some of the differences among these products and their accuracies could be
related to actual land changes. Consequently, the comparisons in this section are performed to provide
some context to interpret the relative performance of the proposed method rather than selecting a
superior methodology. Figure 3 shows the three land-cover map products. The same test dataset
used for accuracy assessment of LC_2017 product (Table 2) was used to evaluate the accuracy of
the two existing land-cover products (Table 3). Overall, the Copernicus and LC_2017 classifications
outperformed the GlobeLand30 product by more than 10% in overall accuracy (Table 3). The difference
between OA of LC_2017 and GlobeLand30 was 11.0% and the difference was statistically significant
(p-value < 0.001). The difference between OA of LC_2017 and Copernicus products was minor, 0.7%
(p-value = 0.46). Moreover, for most classes, the Copernicus and LC_2017 classifications had larger
class-specific accuracies than the GlobeLand30 (Table 3). For the Cultivated class, LC_2017 classification
had the largest PA (lowest omission error), 79.0% and the Copernicus map had the largest UA (lowest
commission error), 75.3%. As Table 4 shows, the cultivated area was 221,303 km2, 264,511 km2, and
298,831 km2 for the GlobeLand30 (2010), Copernicus (2015), and LC_2017, respectively. Given the
temporal order of the three products from 2010 to 2017, increasing rates of cultivation activities were
observed, which confirms the recent land transactions and increase in intensified agricultural activities.
For the Dense Forest class, a high degree of similarity exists between the Copernicus and LC_2017
products where Dense Forest pixels are mainly existing in the southwestern part of the country, whereas
in the GlobeLand30 map many Forest pixels also exist in north, north-west, and eastern parts of the
country (Figure 3). Moreover, the area of Dense Forest class varies substantially from 64,505 km2 for the
Copernicus map to 139,657 km2 for the GlobeLand30 map. Besides classification error, the discrepancies
among Dense Forest estimations can be attributed to some extent to the differences in the Dense Forest
class definition by the different products. Considerable disagreements exist among the pattern of
coverage of the Bare Soil class in GlobeLand30 map (Figure 3A) and the other two products, where
many bare areas are classified as Savanna by GlobeLand30. Consequently, the estimated Bare Soil
area in GlobeLand30 is less than half of those in the Copernicus and LC_2017 classifications (Table 4).
LC_2017 classification had more than 10% larger UA and PA for the Bare Soil class than the existing
land-cover products (Table 3). For the Urban/Built class, LC_2017 classification had notably larger PA,
81.1%, than GlobeLand30 and Copernicus maps, 60.0% and 64.3%, respectively. The Urban/Built class
UA of the existing maps, however, was larger than LC_2017 map by an average of 6.5%. Finally, with
estimated 100% UA, LC_2017 classification outperformed the existing maps, 55% and 78.1% UA for
the GlobeLand30 and Copernicus maps, in terms of Water/Wetland class commission error. Water class
PA for the Copernicus map was on average 3.7% larger than those of the other two maps (Table 3).
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Table 3. Classification accuracy information for the three different land cover products: GlobeLand30
for 2010 at 30 m resolution, Copernicus 2015 Land Cover Product at 100 m resolution (resampled to
30 m), and our newly developed land cover product for 2017 at 30 m resolution.

Classification Cultivated Dense
Forest Savanna Bare Soil Urban/Built Water/Wetland

OA UA PA UA PA UA PA UA PA UA PA UA PA

GlobeLand30
(2010) 65.9 58.4 57.8 89.2 72.2 77.4 50.8 67.7 66.7 91.4 60.0 55.0 94.6

Copernicus
(2015) 76.2 75.3 74.5 83.1 80.6 62.5 98.5 68.1 68.5 90.2 64.3 78.1 98.2

LC_2017
(2017) 76.9 59.8 79.0 86.0 60.7 73.1 74.1 78.1 79.4 84.3 81.1 100.0 94.4

Where OA = Overall Accuracy, UA = User’s Accuracy and PA = Producer’s Accuracy.

Table 4. Land-cover area, from the three different land-cover products: GlobeLand30 for 2010 at 30 m
resolution, Copernicus 2015 Land-Cover Product at 100 m resolution (resampled to 30 m), and LC_2017
product for 2017 at 30 m resolution.

Classification Cultivated
(km2)

Dense
Forest (km2)

Savanna
(km2)

Bare Soil
(km2)

Urban/Built
(km2)

Water/Wetland
(km2)

GlobeLand30
(2010) 221,303 139,657 736,251 32,900 1580 10,757

Copernicus
(2015) 264,511 64,505 729,809 83,452 1526 8785

LC_2017
(2017) 298,831 101,467 654,104 85,607 4387 8092
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3.3. Final Classification Production

The final classification product of this work is illustrated in Figure 4. The newly developed map
provides a contemporary high spatial resolution land-cover characterization for Ethiopia, enabling
investigation of the land transactions. To quantify agricultural expansion due to land transactions, a
similar classification process will be utilized to produce land-cover maps for earlier dates and change
maps will be produced. As evidenced from the three different coverage products already shown
(Figure 3), there appears to have been a significant increase in agricultural coverage across Ethiopia,
so the specific locations, transaction types and conversion trajectories becomes an important area of
future study. The creation of the national classification, with our user-defined classes (Figure 4) is
an essential first step, as is the development of full accuracy analyses and tools for comparison with
existing products and with available high-resolution imagery. This research thus sets the stage for
substantial, and meaningful additional research.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 25 
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4. Discussion

Land-cover maps are essential variables to study the dynamics of environment. Human activities,
such as urbanization, expansion of agricultural activities, and deforestation, as well as natural
phenomena such as wildfire, flooding, and desertification frequently lead to changes in land cover.
On the other hand, land-cover change itself can direct subsequent changes in the environment and
its inhabitants. Therefore, land-cover mapping is integral to understand types of land change, their
magnitude and distribution, and the drivers of change. Remote-sensing data provide practical means to
map land cover of large areas in more efficient ways, in terms of time and cost, than traditional methods.

The national land-cover product we created shows that 26% of the land surface is in cultivated
land use. This is higher than both the GlobeLand30 and Copernicus products (Table 4). GlobeLand30
was created in 2010 and Copernicus is for 2015 and show 221,303 km2 and 264,511 km2 of area under
cultivated uses, compared to our estimate of 298,831 km2. Given that our product is for 2017 much of
the differences in area may well relate to actual increases in area under cultivated uses, in part related to
increased land transactions. In order to account for the differences across product types, future research
will focus on this cultivated class and create a land-cover classification using these same methodologies,
now they have been defined, developed and tested to compare increasing cultivated area and locations
across Ethiopia from early 2000 through current. The remaining land-cover proportions nationally are
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8.8% dense forest cover, 56.7% savanna cover, 7.4 % bare soil, 0.4% urban and built and 0.7% water.
Comparing our results to theGlobeLand30 and Copernicus products, we show three times the area in
urban/built cover, and less area in savanna cover. While some differences vary by each product, these
differences are consistent across both products compared to LC_2017. Increases in urban/built are
expected over time, and the increase in cultivated area has come at the expense of savanna vegetation
and so these differences are explainable. As already noted previously, there will be some confusion in
classes with cultivated and savanna, urban/built and bare soil, and dense forest and savanna and so
these potential spectral overlaps will be evaluated in more detail in future work focused specifically on
the changes in cultivated land due to increased land transactions.

The land transactions and intensified agricultural activities over the last two decades in Ethiopia
have caused considerable environmental change, as well as socio-economic impacts on farmers’
livelihoods. To understand land-cover distribution nationally, within which the land transactions
are located, it is necessary to characterize land cover at a national level. Time-series of land-cover
characterizations are required to quantify the magnitude of land transactions and their spatial
distribution. Consequently, to identify an optimum classification process, we examined several
land-cover classifications using remote sensing imagery for Ethiopia and assessed their accuracy in
this work.

Large-area land-cover image classification is associated with a spectrum of technical challenges
such as cloud cover, radiometric inconsistencies within/between images, and big data processing.
Consequently, classification accuracy for large-area land-cover products are usually less than those of
small area single-scene classifications and in many cases the qualities of the final products might not
be sufficient for the intended applications. For example, Yang et al. [109] investigated the accuracy
of seven land-cover products over China and reported that overall accuracies ranged from 31.9% to
58.7%. A study of 64 global and regional land-cover products revealed that except in a small number
of cases, the reported overall accuracies of most products ranged from 60% to 80% [110]. In addition,
spatial variations are likely present in classification accuracies of land-cover products, which might
increase as the size of the target area and the number of scenes increases [111–115].

Achieving the target quality could be challenging in large-area mapping projects, as it might
require revising classification process/data and investigating multiple classification improvement
avenues, which would require considerable effort, time, and budget. These requirements commonly
confine analysts’ ability to implement and examine several classification processes to determine
which processes and input data are more appropriate for their specific case-study. Therefore, in this
research, the classification was replicated using Landsat 8 TOA, SR, and SR NDIs’ variables and the
best-performing variable set was identified. In addition, different image compositing methods were
investigated to quantify their relative performances.

On review, the NDIs outperformed the original spectral bands. The advantage of the spectral
derivatives over the original bands may be attributed to the fact that the derivatives are differences
and ratios of bands and are less affected by within and between image radiometric variations. Also, SR
images resulted in larger classification OA than TOA images. In addition, multi-temporal composites
improved classification accuracies. The advantage of multi-temporal composites is that they are
constructed based on time-series of images experiencing broad ranges of sun illumination and
atmospheric conditions. These composites can communicate longer-term characteristics of land objects
and, therefore, could be more consistent than single-time images that represent only a single snapshot
of the case study. Landsat multi-temporal composites resulted in larger OA improvements than MODIS
composites. However, because of shorter revisit time, MODIS composites might be more helpful than
Landsat composites when short time series of data are being analyzed or when the classification area
experiences frequent cloud cover and less probability of clear observations. Sequential composites
outperformed PDF composites for both Landsat and MODIS sensors, although the differences were
small. Sequential composites could be especially useful with delineating target classes when different
target classes have different phenology across a year, such as for Cultivated versus Dense Forest, as in
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this study (see Figure 2). On the other hand, PDF compositing might be prioritized over sequential
compositing for areas with consistent cloud cover where there might not exist enough observations
for some months/seasons/periods. In addition, timing of vegetation phenology and agricultural
activities could vary over large areas, especially when the target area covers a wide range of latitudes.
This can lead to within-class variations of variables of sequential composites. In such cases, PDF
composites might provide more consistency than sequential composites, as PDF composites model
the overall distributions of spectral values independent from their timing. Moreover, a combination
of Landsat and MODIS multi-temporal composites outperformed each of them individually. This
means that the two datasets provide complementary information for classification purposes. The
efficacy of multi-temporal composites depends on the classification scheme target classes as well.
For instance, Urban/Built and Water/Wetland did not largely benefit from those composites in this
study as these classes have limited variation over different seasons. Moreover, night-time light data
decreased omission error but at the cost of increasing commission error, partly due to a blooming effect.
Depending on the application of a target map and effects of those errors on subsequent analyses, an
analyst might prioritize one type of error over another. Finally, elevation data and its derivatives as
ancillary explanatory variables improved classification accuracy.

5. Conclusions

In this research we examined the effects of several factors on the accuracy of land-cover map
production at a national level. The Landsat 8 OLI surface reflectance products are aimed to provide
spectral consistency among images captured from different scenes. However, replacing the top of
atmosphere images with their corresponding reflectance images resulted in a moderate improvement
of 1.1% in classification overall accuracy (OA) in this research. On the other hand, a simple substitution
of the original spectral bands with normalized difference spectral indices resulted in an improvement
of 1.0% in OA. Therefore, replacement of the original bands with spectral indices might be considered
by image analysts, especially for situations (or sensors) where surface reflectance products are not
available. The largest improvement (5.1% improvement in the classification OA with respect to
the single-time classification) was achieved by the application of the multi-time image composites.
Overall, Landsat time-series composites resulted in larger OA improvements than MODIS for both
probability density function (PDF) and sequential compositing methods. Among the three approaches
for multi-temporal image compositing, the sequential composites slightly outperformed the PDF and
sinusoidal composites. The elevation data and its derivatives improved classification accuracy by
1.7%. The night-time light data improve producer’s accuracy of the Urban/Built class with the cost of
decreasing its user’s accuracy. Results from this research can aid map producers with decisions related
to operational large-area land-cover mapping projects, especially with selecting input explanatory
variables and multi-temporal image compositing.

In our future work, we will examine additional methods to improve LC_2017 classification such
as incorporation of active sensor data, alternative radiometric normalization methods, object-based
image analysis methods, and post-processing techniques. Additional analysis will be conducted on the
Cultivated class to separate smallholder fields from industrial fields. To quantify rates and locations of
land-cover change in Ethiopia, especially those that are due to recent agricultural land transactions, a
similar classification will be conducted for the years 2005–2006 and will be used for post-classification
change detection. Developing these methods now allows for multiple applications across multiple
dates for more accurate land-cover change analyses.

The land-cover map produced in this research provides up-to-date land information that is
reproducible and accurate such that we can use this as a base map for future work, specifically the
creation of a 2005–2006 land-cover national product to more fully evaluate the impact of increased
land transactions and thus cultivated area, across Ethiopia. Such information is vital to study land
transactions, as those changes have been occurring and accelerating over the last 10–15 years. Indeed, a
frequent time-series of consistent and well validated accurate land-cover maps is required to investigate
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land transactions, a highly-paced land change phenomenon of national importance. Creation of such
land-cover products, however, is effort/time consuming but essential to develop in-depth understanding
of the land transaction practice. Based on the classification process developed in this research, we can
now create earlier land-cover classifications for Ethiopia, which will allow for better understanding
and quantification/identification of land transactions. In addition, such national land-cover maps
can be utilized in global or regional studies of carbon, climate, ecosystem services, deforestation,
and so on. This study benefits such studies by developing reproducible techniques for land-use
land-cover mapping, enabling understanding of environmental processes, and establishing protocols
and methodologies for such construction.
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