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EXISTENCE AND UNIQUENESS OF THE SOLUTION
FOR THE STOCHASTIC EQUATION OF MOTION
OF A VISCOUS GAS IN A DISCRETIZED
ONE-DIMENSIONAL DOMAIN

R. Benseghir, A. Benchettah

A stochastic equation system corresponding to the description of the motion
of a barotropic viscous gas in a discretized one-dimensional domain with a
weight regularizing the density is considered. In [3], [4], the existence and
uniqueness of the solution of this discretized problem in the stationary case
was established. In this paper, by applying the technics used in [3], we
generalize this result in the periodic case.

1. Introduction

The motion of a barotropic viscous gas in one dimension can be expressed in
massic Lagrangian coordinates £ € R by the following stochastic system

(L1) dv = [nde(0dev) — hdg(g")dt + W,
(1.2) -
. — = O,
tQ 3

with boundary conditions

(1.3) V|g=0,1 = 0;
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where v and g are the speed and density of the gas, while 77 and v are the viscosity
coefficient and adiabatic exponent ( for example, for the air, v ~ 1.4) and W is
the stochastic perturbation represented by the Brownian motion in the Hilbert
space L2(0,1).

We consider the system of equations (1.1)—(1.2) in the domain 0 < £ < 1; for
the pressure, we use the relation

p = ho" (h : positive constant).

The deterministic problem has been studied in [1]. To prove the existence
and uniqueness of the solution of the system (1.1)—(1.3) with initial conditions,
we refer to [9]; an analog problem has been studied in [5].

In [3],[4], the application of the Ito’s formula in an infinite dimension space to
a specific functional allows us to obtain an estimate useful to analyse the behavior
of the solution. But, therefore, for technical reasons, it is difficult to exploit this
estimate. Therefore, an approximate problem is considered which concerns the
equation of the barotropic viscous gas in lagrangian coordinates in a discritized

one dimensional domain with mesh size § = N (N > 2) and a “weight” € > 0

regularizing the density. More precisely, they prove the existence and uniqueness
of the solution for the problem

h
(14)  dv; = %(@H—l%‘-ﬁ-l — (0i41 + 0i)vi + 0ivi—1) — g((@iﬂ)7 —(0:)7) | dt

+ X dW;, i=1,...,N —1,
d1 1 €
1.5 R P £ i =1,...,N,
(1.5) T 6[1} vi—1] + € " i
with
(1.6) vg =vN =0,

where the A\;, : =1,..., N — 1, are positive constants and the W;, i =1,... , N —
1, are Brownian independent canonical motions with real values defined on a
stochastic basis (Q, F, (F;)¢, P). This is a real system of equations for 2N — 1
unknowns vy, ..., UN—_1, 01, ---, ON-

In this paper, the result presented in [3] is generalized in the periodic case.
The result will be presented as a theorem of existence and uniqueness of a periodic
solution for the system of equations of a barotropic viscous gas in a discretised
domain in one dimension.



Existence and uniqueness of the solution 141

2. Position of problem

Assume that the pressure p is given by

(2.1) p = h(t)o”

Consider the system of equations

h(t
(2.2) dv; = %(giﬂv,url — (0i41 + 0i)vi + 0ivi—1) — %((&‘H)W — (0:)7)| dt
—i—)\i(t)dWi, 1= 1,---7N_17
d 1 1 €
2.3 —— = [v; —vi_ - =, =1,..., N,
(2.3) dt 0; 6[1} vimi] £ 0i '
with
(2.4) vgp = vy = 0.

When we consider the system (2.2)—(2.4) with an initial condition, in addition
to the natural condition for the density

0i(0) > 0, t=1,..., N,

we require by normalization that

Al

2.5

( ) ’LZl Qz(o

In this case, from the equation (2.3), we prove that
Y5

(2.6) =1, Vit>D0.
Z.Zl ai(t)

Now, if g; > 0, then, by letting

(2.7) o; = log o;,

the system of equations (2.2)—(2.3) can be transformed into

(2.8)
h(t
dv; = %(eai“wﬂ — (€7 + e v + T i) — %((6%“)7 — (7)) dt
—f—)\l(t)dW“ 1=1,...,N —1,
d o
(2.9) S0 = —66 [v; — vi_1] — e(e” — 1), i=1,...,N,
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with

(2.10) vg =vn = 0.

The change of variables (2.7) is useful from a technical point of view as the system
(2.8)-(2.9) to be considered is of values in R*¥~1 instead of RV~ x (R4 ).

Here, we assume that h(t) and X\;(t), i = 1,..., N — 1, are T-periodic and
satisfy

N—-1
(2.11) sup Z M(t) < M, M is a positive constant,
tel0,7] =1
2.12 in h(t) =m>0
(2.12) in, h(t) = m
and
(2.13) 0<KW(it)y<C, Vtelo,T], C is a positive constant.

3. Existence and uniqueness of a T-periodic solution

Consider the system of equations (2.8)—(2.9) with the condition (2.10) and the
initial conditions

(31) Ui(o):UOi; i:1,...,N—1, 0’1‘(0):0'01*, i:1,...,N,
where Xo = (vo1,...,U0N_1,001,---, Oon) is a random variable with values in
R2N 1 gatisfying the condition

N
(3.2) 4] Z e =1 a.s..

i=1

For this problem, we are going to show the existence and uniqueness of the
T —periodic solution.

Proposition 3.1. Assume that the random variable Xo = (vo1 , ..., Von_1,

001, ---, OoN) Satisfies, in addition to (3.2), the condition
N-1 N

(3.3) E Z Vg2 < 00, EZ e?% < oo.
i=1 i=1

Furthermore, assume that the functions h(t) and \;(t) are T-periodic and
satisfy the conditions (2.11), (2.12) and (2.13). Then, for all t; € [0,T], the
system of equations (2.8)—(2.9) with the conditions (2.10) and (3.1) has, on the
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interval [0,t1], a unique T-periodic solution (vi, ..., UN—1, O1, ..., oN). In
addition, it satisfies the relation

(3.4) 52 ) =1  as, Vtel0,T]

Proof. The proof is similar to one given in [3]. More precisely, a sequence
of solution which converges to the desired solutions is constructed. Let v € N,
v > 1. We introduce the function 6, defined by

(3.5) 6, =0, ({a N ) = min(1, < U@)
i=1¢"

and we consider the system of equations in v(l’), 0’1@)
(3.6) dvfl’) = [(;729 (e” Ei)lv(y) (e” o +e ol ))U,(V) + 60511)11,@1)

h t v v

Mgy - @+ @, =1 N

d 97605”) o)
(3.7) EJEV):— 5 [vgl’)—vg)]—a& (% —1), i=1,...,N.
with
(3.8) o =oW) =0,

3.9  v0)=wvy, i=1,....N—1, ¢ 0) =04, i=1,...,N.

Lemma 3.1. For allt; € [0,T], the system of equations (3.6)—(3.7) with the
(v)

conditions (3.8)~(3.9) has, on the interval [0,t1], a T-periodic solution (vy ', ...,

v](\l,’) 17 O'gy), e 0’5\?)) which is unique and it satisfies the inequality
5 N-l
(810) SE S @)+ X IEZ YOyl < oyt Oty Ve [0,4],

where Cy and C1 are two non negative constants independent of v.

Proof of Lemma 3.1. From the definition (3.5) of 6,, il follows immedi-
ately that
W)

0<6,<1, 0<% %
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From these inequalities, it follows that the coefficients of (3.6) and (3.7) satisfy the

Lipschitz’s condition for (vy/), e v](\l,/)_l , U%y), e 0'](\1;)) e R?2V~!. Furthermore,

as the coefficients of (3.6)—(3.7) are T-periodic (by hypothesis, h(t) and \;(t) are

T-periodic), by the classical theorems of existence and uniqueness of solution (see

for example [6], Theorem 3.2), for all ¢; > 0, the problem (3.6)—(3.7) admits, in

the interval [0,¢1], a unique T-periodic solution (vgy), . v](\'f) 17 U%y), . a]\l; ).
To prove the inequality (3.10), we consider the functlon

As
W _ o)
av(’/) ¢
by applying Ito’s formula to (), it follows that
t N—-1 t N-1
(3.11) / IR Z”)der/ 53" ol Ni(s)aw,
0 =1 i=1
1 t N-—1
+5/0 5> N(s)ds
i=1
where

G = o, (e~ (et ) en” o) - Mgy ety ey,

From (3.8), the equality (3.11) is written by

Gueai v v
(3.12) W) =00 =—n [ 3 (W) —v))2ds

W)

As we have

(3.13) /O “nsy T e Ot poy(eeoryr1
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t
_/ dh(s)(eog )(s))'y—ldS,
0

— vgi)l)st

145

the equality (3.12) becomes
N-1 N-1 N (v)
1) v 1) ¢ 01/6 @ v
(314) S0P -5 3w = / S
i=1 i=1 0 =1
N N
h(t)o o (#)yy—1 , R(0)d o0e) h(s) o ()11
—ﬁz(e’ )’ +ﬁz<e° po— Z ) ds
i=1 i=1
¢ al @) )
—/ B(s)e0y 3 6((en” ) — (e Yyds + /62/\2
0 i=1

+ N-1
+/ 55" v Ni(s)aw,
0 =1

From the condition (2.12), we have

i mo N )
(3.15) =N @ D (e Oy
=1

7_11 1

N S,

(5

= h(0)o al h(s) . o) (s
— Zl UOl /y 1 Z 00i ’7 1 — 1 / Z
=

=1

[\

o)

Wflds

)

/0 Z Ve ' .V (V)) ds—/ h(s)&?@yZ(S((eagu))W— (e% ) 1)ds

Lot N1 ; N-1
+§/ 5ZA$(s)ds+/ 53" v Ni(s)aw,
0 =1 0 =1

By taking the expectation of this inequality, we get
5 M-l . ¢
7 v v ®)yy-1
(3.16) 5E ;(vi () + — IEZ
1=

6

N-1 N
Z Z ) tz dh(s)
_ i - h UOZ 'Y 1 —]E _ N/
: i=1 (oo + E v—1 /0 i=1 ds

[\

(eﬂgu) ()=
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t N pCO) ' N ) )
_UIE/ Z ue ‘V U51)1)2d5 —E/ h(s)edb, Z((eo—g ))7 (" of )) ~1ds
0 i=1 0 i=1
t N-—1
—E/ d Z M2 (s)ds
0 =1
As we have
(3.17)  — () = ()1 <sup(s ! — 1) = (ALt - Xy,
s>0 Y y

then, taking into account the conditions (2.12), (2.13) et (2.11), the inequality
(3.16) becomes

) = ) o™
v v v t) _
SE 2 (v, (1))? EZ g
5 N-1
3 2 ()’ + —EZ LOICEY

y—1.4 v—1 ) 2(4
+le((——)"" = (——)") sup h(t — su s (
< (( 0l ) ( vy ) 0<t£T 2 0<t£T Z

so, the inequality (3.10) is proved by letting

:—EZ'I}OZ +—E2h €01

01:5<(7_1)71—(7_1)7) sup h(t) + = sup Z)\2

v v 0<t<T 2 0<t<T

The lemma is proved. [

Lemma 3.2. We have

(3.18) P{ sup 256 i >v—1} -0 for v — oo.
0<t<T
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Proof of Lemma 3.2. As the inequality (3.17) is true independently of
w € Q, from (3.15), one can also deduce that

mo al O'(V)(t) y—1
v =1
5N N tN 1
5 Z vo;)? Z o0i)7~1 —i—Clt—i—/ 3)61)1 )dW

where C} is the same constant introduced for (3.10). It follows that

mo o) e N
3.20) E su e%i M)r-1 < Co+C{T+E su / ov; V))\
( ) v—1 0<t£TZ ) 0 ! 0<t£T Z

with the same constant C used for (3.10). Now, by using the Cauchy Schwarz’s
and Doob’s inequalities, we have

t
(3.21) E sup /51} Ini(s)dW; < (E( sup | | 60 Ni(s)dWil?))z
0<t<T 0<t<T J0

1 T 1
/ 5v l) )z = 2(]E/0 (61;1(”))\1-(5))2d5)5

= 25(E /0 T(Ai(s)vg”)ﬁds)%.

It follows from the condition (2.11) and the inequality (3.10) that

TN 1
< orbeh( / o Y2ds)% < 2M382C,T + C1T2)3.

Substituting this inequality in (3.20), we get
mo N () 1.1 1
(322) E sup —— > (e% D)7 < Cp+ C1T + 2M 262 (2C0T + C1T%)z,
o<t<r ¥ — 1 im1

For v > 2 and using Cauchy-Schwarz’s inequality, we have

N (v) y=2 N (v) -t
S0 < NI (3 (e 0

i=1 i=1
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and it is deduced from (3.22) that

v—1
() o)
3.23 62 7E sup se%i M) <E sup ¢ e (®) Nl < K,
( ) 0<t<T (Z 0<t<T Z
where

1
K = L2 NV"2(Cy + C4T + 2M36% (2C,T + C1T?)%).
m

By applying the Markov’s inequality, the inequality (3.23) gives

-1
(2] 1 K
. 2 () > —_ 1)1 <« .
(3.24) P{OiltlgT ( E de’ ) >v-1)"}< (-1 1 52

the lemma is proved. [

Follow up of the proof of Lemma 3.1. Having proved the existence

and uniqueness of the approximate solution (vgy), e v](\';) L agy), e (V)) for

every v, we now prove the proposition 3.1. The definition (3.5) of §,, implies that,
if 0 < v < v/, we have

vl =7, o, =0, a.s.

n{ sup ZdeU(t V—l}.

0<t<T ]
Let

={ sup Z(Sez >v—1}.

0<t<T

From the inequality (3.24), one has

i P{A,} < o0
v=1

and using Borel-Cantelli’s lemma, one gets

P{limA,} = 0.
It deduces that the sequence {(vy/), - v%zl, agy), e (V)) ° | converges
almost certainly to a limit which is denoted by (v1, ..., vN—_1, 01, ..., on). It
is easy to note that (vy, ..., vy_1, 01, ..., on) satisfies the system of equations

(2.8)-(2.9).
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The uniqueness of the solution (vi, ..., vy—1, 01, ..., on) is shown by
using the standard arguments. In fact, we simply have to note that, on

N
sup Z e () < v —1 ; the two possible solutions must coincide and we have
0<t<T =

N

P{ sup Zde”"(t) <v-1}—1 for v — oc.
0<t<T $—{

To prove (3.4), we recall the reasoning for getting (2.6); we easily find the
relation (3.4). The result is proved.
The proposition is proved. [

Remark 3.1. If welet o =¢e%,i=1,...,N, then it is clear that (v, ...,
UN—_1, 01, ---, ON) is the solution of the system of equations (2.2)—(2.3) with the
condition (2.4)and the initial conditions

v;(0) =vp;, i=1,...,N—1, 0i(0) = pp; =€, i=1,...,N

and we get

)
=1 a.s., vt > 0.
= eilt)
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