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EVOLUTION OF A TWO-TYPE BELLMAN–HARRIS

PROCESS GENERATED BY A LARGE NUMBER

OF PARTICLES

V. A. Topchii*, V. A. Vatutin**, A. M. Iksanov

We investigate the evolution of a two-type critical Bellman–Harris branching

process with the following properties: the tail of the life-length distribution

of the first type particles is of order o(t−2); the tail of the life-length distri-

bution of the second type particles is regularly varying at infinity with index

−β, β ∈ (0, 1]; the process is generated at time t = 0 by a large number

N of the second type particles and no particles of the first type. Letting

t = NγL(N), where γ ∈ [0,∞) and L(N) is a function slowly varying at

infinity, we show that the set of triples (β, γ, L(N)) may be divided into sev-

eral regions within each of which the process at time t exhibits asymptotics

(as N, t → ∞) which is different from those in the other regions.

We investigate a two-type critical Bellman–Harris branching process Z(t) =
(Z1(t), Z2(t)), t ≥ 0 in which a particle of type i ∈ {1, 2} has the life–length

distribution Gi(t). At the end of her life she produces ξi1 particles of the first

type and ξi2 particles of the second type in accordance with generating function

fi(s) = fi(s1, s2) := Esξi1
1
sξi2
2
, s := (s1, s2) ∈ [0, 1]2.

Define the two–dimensional vector-columns

G(t) := (G1(t), G2(t))
†, f(s) = (f1(s), f2(s))

† .
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For vectors s := (s1, s2) ∈ [0, 1]2 and z := (z1, z2) ∈ Z
2
+ := {0, 1, . . .} × {0, 1, . . .}

we write sz := sz1
1
sz2
2
. Symbols 1 and 0 will be used to denote (depending on the

context) either the vector-rows (1, 1) and (0, 0) or the vector-columns (1, 1)† and

(0, 0)†. Put

(1) mij := Eξij, b
i
jk := Eξijξik, i, j, k = 1, 2,

M :=

(

m11 m12

m21 m22

)

.

We assume that Z(t) is indecomposable, aperiodic and critical. This means, in

particular, that there exists a positive integer n0 such that all the elements of

the matrix Mn0 are positive, the Perron root of M is equal to 1 and there exist

unique left and right eigenvectors v = (v1, v2) and u = (u1, u2) such that

Mu† = u†, vM = v, vu† = 1, u > 0, v > 0, v1 = 1.

In addition, we suppose that

B := 0.5
∑

i,j,k=1,2

vib
i
jkujuk <∞.

Along with the criticality we impose the following conditions on the tail be-

havior of the life-length distributions of particles:

(2) 1−G1(t) = o(t−2) and 1−G2(t) = ℓ(t)t−β , β ∈ (0, 1],

where ℓ(t) is a function slowly varying at infinity. Here and hereafter all unspec-

ified limiting relations are assumed to hold as t→ ∞ or N, t→ ∞.

We suppose that the two-type Bellman-Harris process is generated at time

t = 0 by a large number N of the second type particles and no particles of the

first type, i.e., Z(0) = (Z1(0), Z2(0)) = (0, N), and analyze the distribution of the

population size Z(t) = (Z1(t), Z2(t)), as t→ ∞. Note that a similar problem for a

single-type critical Bellman-Harris branching process has been investigated in [3].

The critical multi-type Sevastyanov branching processes (see [1]) initiated by a

large number of particles were (implicitly) considered in [2] under the assumption

that the expected life-lengths of particles of all types are finite. In view of (2)

our results do not follow from the results obtained in [2].

In this note we present a condensed and slightly generalized version of the

results obtained in [5]. In particular, Theorem 7 below is more general than the

corresponding statement in [5].
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We show that the time axis 0 ≤ t < ∞ splits into several regions whose

ranges depend on β, γ and the ratio N/t within each of which the process at time

t exhibits asymptotics (as N, t → ∞) which is different from those in the other

regions.

Let µi(t) :=

∫ t

0

(1 − Gi(w))dw and µi := µi(∞), i = 1, 2. We suppose that

µ2 = ∞ and, consequently, (1 − β)µ2(t) ∼ t1−βℓ(t) = t(1 − G2(t)), if β ∈ (0, 1),

and µ2(t) ∼ ℓ1(t), if β = 1, where ℓ1(t) :=

∫ t

0

ℓ(u)u−1du → ∞ is a function

slowly varying at infinity. Note that ℓ(t) = o(ℓ1(t)). Put R(t) := tµ−1

2
(t),

Fi(t; s) := Eis
Z(t), F(t; s) := (F1(t; s), F2(t; s))†, Q(t; s) := 1−F(t, s),

Φ(s) = (Φ1(s),Φ2(s))
† := Ms− (1− f(1− s)),

E(0,N)[·] := E[·|Z(0) = (0, N)], P(0,N)(·) := P(·|Z(0) = (0, N)),

where Ej[·] := E[·|Z(0) = (δ1j , δ2j)], Pj(·) := P(·|Z(0) = (δ1j , δ2j)), j = 1, 2, and
δij is the Kronecker symbol.

One of the main characteristics of any critical branching process is its survival

probability. A specialization of Theorem 1 in [4] gives the asymptotic behavior of

the survival probability of the two-type Bellman-Harris branching process which

satisfies conditions (2): for any fixed s ∈ [0, 1]2

(3) Q(t; s) = 1− F (t; s) ∼ u†

√

v2u2
B

(1−G2(t)) (1− s2).

In particular, Pi(Z1(t) > 0) = o(Qi(t)), i = 1, 2. The last two asymptotic

relations mean that if the two-type population survives up to a distant time t,
then, with probability close to 1, the population at that time consists of the

second type particles only.

Clearly,

(4) E(0,N)s
Z(t) = FN2 (t; s) = e−N(1−F2(t;s))(1+o(1))

provided that lim
t→∞

(1−F2(t; s)) = 0. Thus, to understand the asymptotic behav-

ior of Z(t) under the present assumptions one has to investigate the behavior of

N(1− F2(t; s)), as N, t → ∞, under a proper scaling of the components of Z(t).
If N and t tend to infinity in such a way that N

√

1−G2(t) → 0, then, in view

of (3) the population becomes extinct. If, however, N
√

v2u2 (1−G2(t)) /B →
r ∈ (0,∞), then

(5) lim
N,t→∞

E(0,N)s
Z(t) = e−ru2

√
1−s2 .
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Thus, despite the indecomposability of the process there is only a finite number

of the second type particles and no particles of the first type in the limit. This

phenomenon has a natural intuitive explanation: at a distant time t the popula-

tion only consists of the particles whose life-length distributions have heavy tails

(see [3] where a similar effect is discussed for a single-type critical Bellman-Harris

process).

Below we introduce basic assumptions of the paper borrowed from [7] and [6].

Hypothesis A. The distribution functions G1(t) and G2(t) satisfy (2). In

addition, if β ∈ (0, 1/2] then there exist positive constants C and T0 such that

G2(t+∆)−G2(t) ≤ C∆ℓ(t)t−β−1

for t ≥ T0 and any fixed ∆ > 0.

If the range of β is other than (0, 1], then we write that Hypothesis A(a, b)
or A(a, b] holds, meaning that we only consider the range β ∈ (a, b) or β ∈ (a, b]
and require the validity of Hypothesis A for the indicated range.

Note that if Hypothesis A holds, then

NP2(Z1(t) > 0) = N(1− F2(t; 0, 1)) ≤ NE2 [Z1(t)] ≤ CN/µ2(t)(6)

which implies that there are no particles of the first type in the limit if µ2(t) ≫ N .

This means, in particular, that if, given µ2(t) ≫ N , the limit

Π2(λ) := lim
N,t→∞

N
(

1−E2e
−λZ2(t)ψ(t)

)

= lim
N,t→∞

N
(

1− F2

(

t; 0, e−λψ(t)
))

exists for some function ψ(t) and λ > 0, then, for any choice s1 = s1(t) ∈ [0, 1]

(7) lim
N,t→∞

N
(

1−E2s
Z1(t)
1

e−λZ2(t)ψ(t)
)

= Π2(λ)

and vice versa.

An intuitive explanation of this effect is as follows. The branches of the ge-

nealogical trees generated by N initial particles consist of the rays which may be

thought of as those generated by renewal processes with increments which (de-

pending on the type of the corresponding particle) have the distribution function

G1(t) or G2(t). As we know by (5), there are only a few surviving branches at a

distant time t such that µ2(t) ≫ N and, as a result, not too many rays attain the

time-level t. Since the life-length distribution of the first type particles has a light

tail of order o(t−2), particles of this type are present in the population at time t
with probability which is negligible in comparison with the survival probability

of the whole process up to this time.
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It will be shown that there are several natural regions of t = t(N) which cor-

respond to essentially different limiting distributions of the vector Z(t), properly
scaled, as N, t → ∞. To describe the ranges of the regions in more detail we

introduce three functions

y = g1(N), y = g2(N) and y = g3(N)

which are the inverse functions to

N(y) = (1− β)yβℓ−1(y), N(y) = y1−βℓ(y)(1− β)−1

and N(y) = [B−1v2u2(1−G2(y))]
−1/2,

respectively, if β ∈ (0, 1) and to

N(y) = yℓ−1

1
(y), N(y) = ℓ1(y) and N(y) = [B−1v2u2(1−G2(y))]

−1/2

respectively, if β = 1. By the properties of regularly varying functions we have

g1(N) = N1/βL1(N), g2(N) = N1/(1−β)L2(N), g3(N) = N2/βL3(N)

for functions Li(·), i = 1, 2, 3, slowly varying at infinity, where β ∈ (0, 1], exclud-
ing the case β = 1 for g2. Of course, g2(N) ≫ Nk for all k ∈ N, if β = 1. It can

be checked that

g2(N) ≪ g1(N) ≪ g3(N)

for β ∈ [0, 1/2),
g1(N) ≪ g2(N) ≪ g3(N)

for β ∈ (1/2, 2/3), and
g1(N) ≪ g3(N) ≪ g2(N)

for β ∈ (2/3, 1], as N → ∞.

We call the ranges of t = t(N) satisfying t = o(g1(N)), t ∼ g1(Nr) and

t ≫ g1(N), as N → ∞, the early evolutionary stages of the population, the

intermediate evolutionary stages and the final evolutionary stages, respectively.

1. Early evolutionary stages

Denote by D = (Dij)
2

i,j=1
a 2×2 matrix with positive entries Dii =

1−mii

1−m11

and

Dij =
mij

1−m11

if i 6= j. Set Γβ = 1 for β = 1 and Γβ := [πβ(1 − β)]−1 sinπβ for

β ∈ (0, 1).
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Theorem 1. Suppose that Hypothesis A holds and that t = o(g1(N)), t =
o(g2(N)). If β = 1/2, assume additionally that

(8) lim
N, t→∞

µ2(t)N
−1

∫ t

0

dw(1 + µ2(w))
−2 = 0.

Then, for any λ1, λ2 ∈ R
+,

lim
N,t→∞

E(0,N)e
−λ1

Z1(t)µ2(t)

N
− λ2

Z2(t)

N = e−µ1βΓβD21λ1 −D22λ2 .

Corollary 2. Suppose that Hypothesis A holds and that t = o(g1(N)). Then,

for λ ∈ R
+,

lim
N,t→∞

E(0,N)e
−λZ2(t)

N = e−D22λ.

This corollary does not require t = o(g2(N)), nor condition (8). Set

O(s) := (O1(s), O2(s))
†
:= βΓβ

∫ ∞

0

DΦ(Q(w; s, 1))dw.

Theorem 3. Suppose that Hypothesis A(0, 0.5] holds and that t = o(g1(N))

and t ∼ g2(r
−1N), r ∈ R

+. If β = 1/2, assume additionally that

(9) Υ :=

∫ ∞

0

dw(1 + µ2(w))
−2 <∞.

Then, for any s ∈ [0, 1] and λ ∈ R
+,

lim
N,t→∞

E(0,N)s
Z1(t)e−λ

Z2(t)

N = e−rβΓβµ1D21 (1− s) + rO2(s)−D22λ.

Thus, in this case we asymptotically have a few individuals of the first type,

while the number of individuals of the second type is still of order N . Moreover,

Z1(t) and Z2(t)N
−1 are asymptotically independent.

Remark. The assumptions of Theorem 3 hold if either β = 1/2 and lim
t→∞

ℓ(t) =

∞ or β < 1/2.

Theorem 4. Suppose that Hypothesis A(0, 0.5] holds and that t = o(g1(N))

and t≫ g2(N). Then, for any λ ∈ R
+,

lim
N,t→∞

E(0,N)

[

e−λ
Z2(t)

N ;Z1(t) = 0

]

= lim
N,t→∞

E(0,N)e
−λZ2(t)

N = e−D22λ.

Remark. The assumptions of Theorem 4 hold for β = 1/2 only if ℓ(t) → ∞.



Evolution of a two-type Bellman–Harris process 95

2. The intermediate evolutionary stages

There are three essentially different intermediate subranges which are character-

ized by one of the conditions t ≫ g2(N), t = o(g2(N)) or t ∼ g2(Nr2), r2 ∈ R
+,

which are assumed to hold along with the defining property of the intermediate

stages. We only analyze the first and the second subranges. The remaining case

which implies β = 1/2 is not considered, because it requires much more delicate

analysis.

Put

Ni(x) := 0.5
∑

j,k=1,2

bijkxjxk, N (x) := (N1(x), N2( x))
† .

The system of equations

(10) Ω (λ) = D (0, λ)† − Γβ

∫

1

0

DN
(

Ω
(

λ (1− w)β
))

(1− w)2β
dwβ, λ > 0,

has a unique solution with non-negative components, and we denote this solution

by Ω (λ) := (Ω1(λ),Ω2(λ))
†
.

Theorem 5. Suppose that Hypothesis A holds and that t ∼ g1(Nr
−1). Then,

for any λ ∈ R
+,

(11) lim
N, t→∞

E(0,N)e
−λ rZ2(t)

N = e−rΩ2(λ).

Furthermore, if Hypothesis A(0, 0.5] holds together with t ∼ g1(Nr
−1) and t ≫

g2(N), then, for any λ ∈ R
+,

(12) lim
N, t→∞

E(0,N)

[

e−λ
rZ2(t)

N ;Z1(t) = 0

]

= e−rΩ2(λ).

Observe that there are no first type particles in the limit under the asymptotic

regime t ≫ g2(N). Note also that the assumptions t ∼ g1(Nr
−1) and t≫ g2(N)

entail β = 1/2 and lim
t→∞

ℓ(t) = ∞, or β < 1/2.

Put

Cβ :=

(

D11βΓβ D12

D21βΓβ D22

)

.

The system of equations

(13) H(θ, λ) = Cβ

(

1, λθ1−β
)†

− Γβθ
2β−1

∫

1

0

DN (H(θ(1− y), λ))

(1− y)2−2β
dyβ,

for θ, λ > 0 and β ∈ (1/2, 1], has a unique solution with non-negative components,

and we denote this solution by H(θ, λ) = (H1(θ, λ),H2(θ, λ))
†
.
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Theorem 6. Suppose that Hypothesis A(0.5, 1] holds, and that t ∼ g1(Nr
−1)

and t = o(g2(N)). Then, for λ1, λ2 ∈ R
+,

lim
N,t→∞

E(0,N)e
−λ1

rµ2(t)Z1(t)
µ1N

− λ2
rZ2(t)
N = e

−rλ1H2

(

λ
1

2β−1

1
, λ2λ

−
β

2β−1

1

)

.

2.1. Final evolutionary stages

Recall that relations (3) and (4) imply that the population dies out whenever

N
√

1−G2(t) → 0, whereas the limit distribution of the number of particles

is given by formula (5) whenever N
√

1−G2(t) → r ∈ (0,∞). Therefore, if

t≫ g1(N), we only investigate the case N
√

1−G2(t) → ∞. Observe that under

the additional assumption t ≫ g2(N) we have in Theorem 7 given below that

β = 2/3 and lim
t→∞

ℓ(t) = ∞, or β < 2/3.

For γ ∈ [0, 1), define ψ(y) := y−γℓ(y) and assume that lim
y→∞

ψ(y) = 0. Denote

by

y = gγ,1(N) and y = gγ,2(N)

the inverse functions to

N =
√

B[v2u2ψ(y)(1 −G2(y))]−1 and N = µ2(y)ψ
−1(y),

respectively. By the properties of regularly varying functions we have

gγ,1(N) = N2/(γ+β)Lγ,1(N) and gγ,2(N) = N1/(γ+1−β)Lγ,2(N)

for some Lγ,1(·) and Lγ,2(·) slowly varying at infinity.

Theorem 7. Suppose that Hypothesis A(0, 1) holds, and that t ≫ g1(N),

t ≫ gγ,2(N) and, for a fixed r ∈ (0,∞) set t ∼ gγ,1(Nr
−1). Then, for each

λ ∈ R
+,

(14) lim
N,t→∞

E(0,N)e
−λu2Z2(t)ψ(t) = e−ru2

√
λ.

Replacing t≫ gγ,2(N) by a stronger condition t≫ g2(N) we also have

(15) lim
N,t→∞

E(0,N)

[

e−λu2Z2(t)ψ(t);Z1(t) = 0
]

= e−ru2
√
λ.
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Let us describe the conditions of Theorem 7 in terms of the restrictions im-

posed on β and γ. Set t = NνL∗(N) and ν ∈ (1/β, 2/β). According to Theorem 7

relations (14) and (15) hold if ν = ν(β, γ) = 2/(γ + β) and L∗(N) is a function

slowly varying at infinity which is defined by the condition t ∼ gγ,1(Nr
−1).

For simplicity we omit the cases ν = 1/β, 2/β, γ = β, γ = 0 and γ = 2− 3β.
Direct calculations show that ν increases when γ decreases and, moreover, γ ∈
(0, β) for β ≤ 2/3. Besides, to demonstrate (14) we assume that γ ∈ (3β−2, β) for
β ≥ 2/3. Finally, the assumption t ≫ g2(N) needed to prove (15) is meaningful

only for t = o(g3(N)) or β ≤ 2/3 which gives γ ∈ (0, 2 − 3β).
We think that relation (15) holds true without the condition t≫ g2(N), i.e.,

under the same assumptions that are formulated for (14). At the moment we

only have a preliminary result: for β ∈ (1/2, a), where 2/3 < a < 1 is fixed, there

exists slowly varying L∗
i (t) such that Pi(Z1(t) > 0) ∼ t−βL∗

i (t). We believe that

a similar result holds for a = 1, too. If this were the case we would have

0 ≤ E(0,N)e
−λu2Z2(t)ψ(t) −E(0,N)

[

e−λu2Z2(t)ψ(t);Z1(t) = 0
]

= E(0,N)

[

e−λu2Z2(t)ψ(t);Z1(t) > 0
]

≤ P(0,N)(Z1(t) > 0)

= 1−PN
2 (Z1(t) = 0) = 1− (1− t−βL∗

2(t)(1 + o(1)))N ∼ t−βL∗
2(t)N

provided that t−βL∗
2(t)N → 0, as t → ∞. On the other hand, under the condi-

tions of Theorem 7 t = NνL∗(N) for ν ∈ (1/β, 2/β) which leads to

t−βL∗
2(t)N = (NνL∗(N))−βL∗

2(N
νL∗(N))N → 0,

as t→ ∞. Thus, it seems the assumption t≫ g2(N) given in the second part of

Theorem 7 can be dispensed with.
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