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Abstract In 1994, Moss Sweedler’s dog proposed a cryptosystem, known as Bar-
kee’s Cryptosystem, and the related cryptanalysis. Its explicit aim was to dispel the
proposal of using the urban legend that “Gröbner bases are hard to compute”, in order
to devise a public key cryptography scheme. Therefore he claimed that “no scheme
using Gröbner bases will ever work”.

Later, further variations of Barkee’s Cryptosystem were proposed on the basis of
another urban legend, related to the infiniteness (and consequent uncomputability) of
non-commutative Gröbner bases; unfortunately Pritchard’s algorithm for computing
(finite) non-commutative Gröbner bases was already available at that time and was
sufficient to crash the system proposed by Ackermann and Kreuzer.

The proposal by Rai, where the private key is a principal ideal and the public key
is a bunch of polynomials within this principal ideal, is surely immune to Pritchard’s
attack but not to Davenport’s factorization algorithm. It was recently adapted special-
izing and extending Stickel’s Diffie-Hellman protocols in the setting of Ore extension.
We here propose a further generalization, point the potential cryptanalisis given by
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the Passau result and show that such protocols can be performed simply via polyno-
mial division.

Keywords Barkee’s cryptosystem · Polly Cracker · Buchberger Theory · Stickel’s
protocol

1 Introduction

In 1994, Moss Sweedler’s dog [6] proposed a cryptosystem – the Barkee’s Cryp-
tosystem – and the related cryptanalysis. Its explicit aim was to dispel the proposal of
using “the fact that Gröbner bases are hard to compute, to devise a public key cryp-
tography scheme” claiming that “no scheme using Gröbner bases will ever work”.
Barkee’s scheme writes down an easy-to-produce Gröbner basis F = { f1, . . . , fs} via
Macaulay’s Trick [48] generating an ideal I := I(F) ⊂ P := F[X1, . . . , Xn] and pub-
lishes a set G := {g1, . . . , gl} ⊂ I(F) of dense polynomials of degree at most d in P
and a set T := {τ1, . . . , τs} ⊂ N(I(F)) = T \T(I(F)) of normal terms “either the whole
of it, or, for added security, a subset of it” [6] belonging to the Gröbner éscalier of
I(F). In order to send a message M :=

∑s
i=1 ciτi ∈ SpanF(T ), the sender produces

random dense polynomials p j ∈ P, 1 ≤ j ≤ l, deg(pi) = r, and encrypts M as
C := M +

∑l
j=1 p jg j; the receiver, possessing the Gröbner basis of I(F) applies Buch-

berger’s reduction to obtain the canonical form of C: Can(C, I(F)) = M =
∑s

i=1 ciτi.
It is easy to realize that denoting, for each δ ∈ N, T≤δ := {τ ∈ T : deg(τ) ≤

δ} and T(δ) := #T≤δ =
(
δ+n

n

)
both encoding and decoding costs between O(T(d + r))

(the time needed to scan a dense message) and O(T2(d + r)) (the cost of Buchberger’s
reduction algorithm in the generic case).

The point of [6] was that an enemy would have been able to read the message
without even attempting to perform the hard Gröbner basis computation but with a
more elementary linear-algebra based approach. Namely the authors proposed two
attacks, one based on [22], with complexity O(T4(d + r)), the other solving a dense
linear algebra problem costing O(T2.4...(d + r)).

In the end of their paper [6], B. Barkee et al. challenged the researchers to pro-
duce sparse cryptographic schemes applying the complexity of Gröbner bases to an
ideal membership problem, claiming that they would be even easier to crack, but
expressing the will to test their conjecture.

Probably, they were unaware that a sparse scheme of that kind – the so-called
Polly Cracker - existed from 1992 [26–28]. The key to break such cipher was using a
root of the system, which is even simpler than the use of a Gröbner basis.

The public ideal was generated using polynomials coming from combinatorial
or algebraic NP-complete problems (hence such systems were naturally named CA-
style or California style cryptographic schemes). Therefore, cryptanalisis was lated
based both on satisfiability [39] and on the sparsity of the generators [62–64]. The
success of these attacks led researchers to develop totally different cryptosystems,
mainly based on binomial ideals/Euclidean lattices [13–16,2,3,46].

For a survey on CA-systems and their analysis see [38].
In 2006, [1] proposed essentially a verbatim adaptation of [6]; the main differ-

ences are that the Gröbner basis F is taken in a free module over a monoid ring and
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the public data are the free monoid, the set G (usually a generating set formed by
binomials) and the whole set N(I(F)), so that the system is widely open to an oracle
attack [4,11].

However, ten years before, Pritchard [54] published a procedure which is able to
crack also the obvious improvement of publishing a subset of terms [12]: the exis-
tence, in the non-commutative setting, of infinite Gröbner bases implies that Buch-
berger Algorithm becomes a semidecision procedure which terminates returning a
finite Gröbner basis if and only if such basis is finite; Pritchard adapted such ver-
sion of Buchberger Algorithm into a semidecision procedure which, given a basis
G ⊂ Q = F〈X1, . . . , Xn〉 and a polynomial f ∈ Q terminates if and only if f ∈ I(G). It
is then a trivial excercise ([50, Figure 47.7]) to adapt Pritchard’s Procedure in order
to produce an algorithm to decrypt any non-commutative version of Barkee’s Cryp-
tosystem.

Rai’s cryptosystem [56], based on the infiniteness of non-commutative Gröbner
bases, and consisting in hiding the (principal) Gröbner basis {g} into a public basis
{l1gr1 . . . lsgrs} cannot be cracked via Pritchard’s algorithm but yields under Daven-
port’s algorithm factorizing non-commutative polynomials [18].

The proposal by Rai, where the private key is a principal ideal and the public key
is a bunch of polynomials within this principal ideal was then recently adapted [12]
specializing and extending Stickel’s Diffie-Hellman protocols [61,58,44,17] in the
setting of Ore extensions A: given public 3 non-commuting elements L,C,R ∈ A,
Alice selects two polynomials l, r ∈ F[X] and sends to Bob l(L)Cr(R).

The proposal of [12] has been extended by [20] to (graded) iterated Ore exten-
sions with power substitutions A [53,49] which, after pointing the potential weak-
ness toward the result by Kandri-Rody–Weispfenning [35] generalized by the Passau
school [50, Prop. 49.3.5]), gives an attack through an adaptation of Buchberger re-
duction.

2 Notation

Given a ring R and a semigroup (T , ◦) ordered by a semigroup ordering <, we con-
sider the R-moduleM := R〈T 〉 whose generic elements f ∈ R〈T 〉\ {0} have a unique
representation as an ordered linear combination of terms t ∈ T with coefficients in R:

f =

s∑
i=1

c( f , ti)ti : c( f , ti) ∈ R \ {0}, ti ∈ T , t1 > · · · > ts.

The support of f is the set supp( f ) := {t : c( f , t) , 0}; we further denote T( f ) := t1
the maximal term of f , lc( f ) := c( f , t1) its leading coefficient and M( f ) := c( f , t1)t1
its maximal monomial.

Here we will consider either

– the commutative ring P := F[X1, . . . , Xn] over a field F, and the semigroup of
terms

T := {Xa1
1 · · · X

an
n : (a1, . . . , an) ∈ Nn}.
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– or the free monoid ring Q := F〈Z〉 over the monoid 〈Z〉 of all words over the
alphabet Z.

– We will further impose on a submodule of R[X1, . . . , Xn],

A � R[B] ⊂ R[X1, . . . , Xn],B ⊂ T

a twisted ring structure A := (R[B], ?) defining on it a multiplication ? which
satisfies, for each f , g ∈ R[B], T( f ? g) = T( f ) ◦ T(g)

For any set F ⊂ M, write

– T{F} := {T( f ) : f ∈ F};
– M{F} := {M( f ) : f ∈ F};
– T(F) := {τT( f ) : τ ∈ T , f ∈ F} ⊂ T , a semigroup ideal;
– N(F) := T \ T(F), an order ideal;
– I(F) = 〈F〉 the (in principle two-sided) ideal generated by F.
– F[N(F)] := SpanF(N(F)).

Recall that a generating set F of the ideal I := I(F) is called a Gröbner bases if
T(F) = T(I), that is, T{F} generates T(I) = T{I}, and the order ideal N(I) is called the
Gröbner escalier of I; moreover for each element f ∈ M, the unique element

g := Can( f , I) ∈ F[N(F)]

such that f − g ∈ I will be called the canonical form of f w.r.t. I. It can be computed,
if F is Gröbner, via Buchberger reduction.

3 Prologo: an Ur-Barkee Scheme

A scheme which anticipated the Barkee Scheme was developed in 1984, when Wanger
and Magyarik proposed [65] to base a public-key cryptosytem on the unsolvability of
the word problem. In particular, they proposed to

1. consider
– a finitely presented group G := (X,R) whose word problem is unsolvable and
– futher relations1 S , so that the quotient group G′ := (X,R ∪ S ) has instead a

solvable word problem;
– a finite set of elements w1, . . . ,ws ∈ G such that, denoting Ω : G → G′ the

canonical projection, it holds Ω(wi) . Ω(w j) in G′, for each pair i, j, i , j;
2. publish G := (X,R) and W := {w1, . . . ,ws};
3. in order to send the message wi, one rewrites it using the relations R thus obtaining

a word w which is equivalent to wi in G, so that, in G′, Ω(w) ≡ Ω(wi) and Ω(w) .
Ω(w j), j , i;

4. the receiver then just needs to apply the solvable word problem in G′ to decide to
which word Ω(w j), Ω(w) is equivalent. ut

1 To be chosen e.g in the set

A := X ∪ {xi x−1
j : xi, x j ∈ X} ∪ {xi x j : xi, x j ∈ X} ∪ {xi x j x−1

i x−1
j : xi, x j ∈ X}.
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4 Barkee’s cryptosystem

In 1993 B. Barkee et al. wrote a paper [6] whose aim was to dispel the urban legend
that “Gröbner bases are hard to be computed” 2 and to orient research on applications
of Gröbner bases to cryptosystems toward the use of sparse schemes.

To do so, they proposed the most obvious dense Gröbner-based cryptosystem
remarking that, equally obviously, cracking the system costed as much as using it.
Their pseudo-system consisted in

1. writing down an easy-to-produce Gröbner basis F = { f1, . . . , fs}— this can be ef-
ficiently performed via Macaulay’s Trick3 [48] — generating an ideal I := I(F) ⊂
P and

2. publishing a set G := {g1, . . . , gl} ⊂ I(F) of dense polynomials of degree at most
d in P and a set

T := {τ1, . . . , τs} ⊂ N(I(F)) = T \ T(I(F))

of normal terms belonging to the Gröbner éscalier of I(F), “either the whole of
it, or, for added security, a subset of it” [6];

3. in order to send a message M :=
∑s

i=1 ciτi ∈ SpanF(T ), the sender produces
random dense polynomials p j ∈ P, 1 ≤ j ≤ l, deg(pi) = r and encrypts M as
C := M +

∑l
j=1 p jg j;

4. the receiver, possessing the Gröbner basis of I(F) applies Buchberger’s reduction
to obtain Can(C, I(F)) = M =

∑s
i=1 ciτi. ut

It is easy to realize that denoting, for each δ ∈ N,

T≤δ := {τ ∈ T : deg(τ) ≤ δ} and T(δ) := #T≤δ =

(
δ + n

n

)
both encoding and decoding cost between O(T(d + r)) (the time needed to scan a
dense message) and O(T2(d + r)) (the cost of Buchberger’s reduction algorithm in the
generic case).

The point of the paper was that an enemy would have been able to read the mes-
sage without even attempting to perform the hard4 Gröbner basis computation but

2 which perhaps could be true if, instead of using the most efficient implementations [32,29] of Buch-
berger’s algorithm [7,8] based on Möller Lifting Theorem [47], the decypher applies the obsolete S-
polynomial test/completion [9], but is definitely false if Gröbner bases are produced either with Macaulay-
like algorithms [40,41] as Faugère’s F4 [24] and F5 [25] or with involutive algorithms [30,31] based on
Janet theory [37].

3 Given a finite set of terms m1, . . . ,mr ∈ T let us construct, by repeated GCDs, a finite sequence — a
sequence and not just a set — M := [n1, . . . , ns] ⊂ T and subsets Ji ⊂ {1, . . . , s} i, 1 ≤ i ≤ r, such that

– for each i, 1 ≤ i ≤ r, mi =
∏
l∈Ji

nl;

– for each i, j, 1 ≤ i < j ≤ r, lcm(mi,m j) =
∏

l∈Ji∪J j

nl.

Now let us choose, for each l, 1 ≤ l ≤ s, an element hl ∈ P such that T(hl) < nl and let us define
γl := nl − hl, for each l, 1 ≤ l ≤ s,
gi :=

∏
l∈Ji

γl, for each i, 1 ≤ i ≤ r.

Then G = {gi.1 ≤ i ≤ r} is a Gröbner basis such that T(G) = (m1, . . . ,mr).
4 O(T4

≤δ) where δ := max(deg(τ) : τ ∈ G≺(I) = O(dn2n
).
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with a more elementary linear-algebra based approach. Namely they proposed two
attacks which they labelled as

(A). The Fantomas Attack: consult the library.
(B). The Moriarty Attack: linear algebra.

to which one could add

(C). The Gordan Attack: consult the King of Invariants.

They consist in the following

(A). The Fantomas Attack is based on a result [22] of the TERA community which
proved that for a basis G := {g1, . . . , gl}, deg(gi) ≤ d and a polynomial C, deg(C) ≤
d + r for which C − Can(C, I(F)) =

∑l
j=1 p jg j satisfies deg(p j) ≤ r it is possible

to compute Can(C, I(F)) by a version of Buchberger’s Algorithm modified so that
each reduction of S-polynomials of degree higher than d + r is not performed.
The attacker does not know the exact value r since there could be highest-degree
cancellation so that r > deg(C)−d but this is not a problem: computations involv-
ing S-polynomials of degree higher then D := deg(C) are postponed instead of
being not-performed; if the first round fails, not returning an element in SpanF(T ),
the algorithm sets D := D + 1 and performs now reductions of S-polynomials of
degree bounded by D. Repeating this procedure after r + d − deg(C) rounds, the
attacker finds both r and M.
Being a Buchberger algorithm computation truncated at degree d+r, the Fantomas
Attack costs O(T4(d + r)).

(B). The Moriarty Attack consists in simply repeatedly (for D := deg(C)..d+r) solving
the dense linear algebra systems with unknowns{

b jτ : τ ∈ T (D − deg(g j)), 1 ≤ j ≤ l
}⋃
{c1, . . . , cs}

and, as linear equations, the coefficients of each term in T in the polynomial
equation ∑

τ∈T (D)

aττ −
l∑

j=1

 ∑
τ∈T (D−deg(g j))

b jττ

 g j −

s∑
i=1

ciτi = 0

where
∑
τ∈T (D) aττ := C is the known received message.

Being a dense linear algebra problem, the Moriarty Attack costs O(T3(d+r)) with
Gaussian algebra, O(T2.4...(d + r)) with fast linear algebra.

(C). It consists into a forgetton result by Buchberger [10] who essentially restated
Gordan’s approach to Hilbert’s Basisisatz proving that, given a system

F = {g1, . . . , gu} ⊂ P = F[x1, . . . , xn]

of multivariate polynomials, the following three steps yield a Groebner basis for
I(F).
(a) Generate all multiples

B := {ωgi : gi ∈ F, ω ∈ T }
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Consider the set of these multiples

ωgi :=
∑
τ∈T

c(ωgi, τ)τ

as the rows of an (infinite) Macaulay’s Matrix with the columns numbered by
the power products τ ∈ T and ordered according to the term ordering w.r.t. to
which one wants to find the Groebner basis for F.

(b) Gaussian row-reduce this matrix obtaining a new matrix whose rows give an
enumerated set of polynomials hi :=

∑
τ∈T c(hi, τ)τ.

(c) Take the set G ⊂ {hi, i ∈ N} of those polynomials hi in this triangularized
matrix whose leading terms T(hi) satisfy

T(h j) - T(hi) for each j < i.

Of course, this is not an algorithm because the first step is an infinite step that
generates an infinite matrix. Therefore, Buchberger posed the question whether
one can find an a priori bound on the degree D so that, when the above steps are
applied to the finite set (and related matrices)

B(D) := {ωgi : gi ∈ F, ω ∈ T , deg(ωgi) ≤ D}

the returning basis GD is guaranteed to be Gröbner.
Recently his PhD student Manuela Wiesinger-Widi [66] was able to give such a
bound with a relatively easy proof using a combination of Hermann’s bound [34]
and the bound given by Dubé [23]. Her degree bound is as follows

Theorem 41 (Wiesinger-Widi) [66] Let n be the number of variables, u be the
number of polynomials in F, and d := max(deg( f ), f ∈ F), I = I(F).
Then, in the above procedure, it suffices to take B(D) with

D = 2
(

d2

2
+ d

)2n−1

+

n−1∑
j=0

(ud)2 j

in order to obtain the required Gröbner basis GD.
If the above procedure is applied to B(D0) with

D0 =

n−1∑
j=0

(ud)2 j

thenZ(I) = ∅ ⇐⇒ 1 ∈ T(GD0 ).

Remark 42 Of course this bound is definitely outside the theme of Barkee’s approch,
but we consider important to point this precise bound, which by choice does not con-
sider coefficient explosion, to the community applying polynomials with coefficient in
finite fields.
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5 Intermezzo: Polly Cracker

B. Barkee et al. concluded their paper [6] with a challange:

A cryptographic scheme applying the complexity of Gröbner bases to an ideal
membership problem is bound to fail. Is our reader able to find a scheme
which overcomes this difficulty? In particular our reader could think (perhaps
with some reason) that a sparse scheme could work. We believe (perhaps
without reason) that sparsity will make the scheme easier to crack. We would
be glad to test our belief on specific sparse schemes.

Boo was unaware that a sparse cryptographic scheme based on the ideal membership
problem was already developed by Fellows and Kobitz [26–28] in 1992, under the
label of Polly Cracker, where the trapdoor of their system is not a Gröbner basis of
the ideal, but, more simply, a root of it. What is more important, the polynomials
generating the public ideal are derived from combinatorial or algebraic NP-complete
problems (hence such systems were naturally named CA-systems). This oriented to
consider both analysis based on satisfiability [39] and attacks exploiting the sparsity
of the generators [62–64]. Soon the research oriented toward cryptosystems based on
binomial ideals/Euclidean lattices [13–16,2,3,46].

But this is another story to which Boo did not contribute. For a survey on CA-
systems and their analysis see [38].

6 Noncommuatative Gröbner bases

6.1 A non-commutative version of Barkee’s Cryptosystem

Having thus disposed of the urban legend that “Gröbner bases are hard to be com-
puted”, we need now to dispel another urban legend that “non-commutative Gröbner
bases are impossible to be computed being infinite”. Before doing that, we simply
cryptanalize the proposal of [1], which is essentially a verbatim adaptation of [6]; the
main differences are:

1. the Gröbner basis F is taken in a free module over a monoid ring, a Gröbner basis
theory and a Buchberger’s Algorithm in this setting being proposed in [42,57].

2. the public data are the free monoid, the set G, usually made of binomials, and the
whole set N(I(F));

moreover sparsity/density of the data is not discussed.
The omission of the crucial caveat of [6] “for added security, a subset” of N(I(F))

led them to publish the whole set N(I(F)) and, consequently, to make known the set
T(G) = (m1, . . . ,mr). This choice left them no defence against

(E). The Bulygin Attack: chosen ciphertext attack.
Bulygin [11], in his attack, remarks that, for each fi ∈ F, it holds Can

(
T( fi), I(F)

)
=

fi − T( fi). He thus built fake ciphertexts

C̃i :=
∑̀
j=1

p jg j + T( fi).
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The decrypted version of this message being Can
(
C̃i, I(F)

)
= fi − T( fi), allows

then to obtain the polynomials fi = Can
(
C̃i, I(F)

)
+ T( fi) of the secret key.

6.2 Rai: Protecting Barkee’s scheme against Bulygin’s Attack

Rai [56] remarked that it is not difficult to detect the fake ciphertexts C̃i just spe-
cializing the vague statement of [6] public [. . . ] , for added security, a subset T :=
{τ1, . . . , τs} ⊂ N(I(F)) of [6] in order to make step 2 of Section 4 solid against At-
tack 6.1.

He in fact suggests to publish a subset T ⊂ N(I(F)) such that :

(N(I(F)) \ T ) ∩ supp( fi) , ∅,∀i, 1 ≤ i ≤ s.

The decryption procedure will be then modified so that an error message is returned
as soon as the decrypted message M does not satisfy supp(M) ⊂ T .

6.3 Finite computation of non-commutative Gröbner Bases

The claimed security, however, of Rai’s variation [55] is based on the fake urban
legend on the uncomputability of non-commutative Gröbner bases due to their infinite
size. While it is true that such bases are infinite it is equally true that some infinite
Gröbner bases can be produced (and their property proved) with a few and easy hand
computation; for instance [33, p.99] proves that

Proposition 61 Under the degree-lexicographical ordering induced by x < y the
principal ideal I(p0) ⊂ F〈x, y〉, p0 = yxy − xyx has, as a Gröbner basis, the infinite
basis G = {pi, i ∈ N} where we define pi := yxi+1yx − xyxxyi.

Moreover, Ufnarovski’s implementation in the system BERGMAN [5] is able to
compute those infinite Gröbner bases representing finite state automata [21] while it
is not sufficent to prove their being Gröbner. An analysis [45, p.35] of all homogeneus
pure binomials in F〈x, y〉 of degree bounded by 6,

deg. fin. inf. reg. not reg. #
2 4 2 0 6
3 18 8 2 28
4 65 39 16 120
5 271 176 49 496
6 1019 845 152 2016

shows that most either have a finite Gröbner basis or an infinite regular bases com-
putable via Ufnarovski approach and that only nearly 10% of these ideals have an
infinite but not regular Gröbner basis.
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6.4 Pritchard’s Decryption Algorithm

Generalizing Buchberger Theory of Gröbner bases to non-commutative settings is
simple, but lacking a generalization of Noetherianity, they may be infinite. The ex-
istence of such infinite bases modifies the status of a Buchberger Algorithm for pro-
ducing them, making it a semidecision procedure which terminates returning a finite
Gröbner basis if and only if such basis is finite.

Actually, Pritchard [54], reformulating in this setting the original approach of
[22], adapted such version of Buchberger’s algoritm to a semidecision procedure
which, given a basis G ⊂ Q := F〈X1, . . . , Xn〉 and a polynomial f ∈ Q terminates
if and only if f ∈ I(G).

Given a polynomial f ∈ Q and a countable5 sequence

F := { fi, i ≥ 1} ⊂ Q, fi = M( fi) − pi =: ciτi − pi,

and considered the twosided ideal M := I(F), Pritchard’s procedure, once fixed a
sequential6 term ordering ≺ and enumerated a sequence of elements

υ1, υ2, . . . , υi, υi+1, . . .

such that υi ≺ υi+1 for each i iteratively computes a sequence of finite sets

Gi =
{
g(i)

1 , . . . , g
(i)
s(i)

}
⊂ M \ {0}, i ≥ 1

which satisfy the following properties

1. G1 ⊆ G2 ⊆ · · · ⊆ Gi ⊆ · · · ⊆ M;
2. for each j ≤ i, there is `( j) ≤ s(i) such that f j = g(i)

`( j) ∈ Gi;
3. for each i and each member of the syzygy basis for Gi−1 truncated at υi−1

Bi :=

 µ∑
k=1

dkλkelkρk, for each k, λkτkρk ≺ υi−1


the S-polynomial

µ∑
k=1

dkλkg(i−1)
lk

ρk ∈ I2(Gi−1) ⊂ M has a bilateral Gröbner repre-

sentation in terms of Gi

each Gi and `(i) being defined as

Gi := Gi−1 ∪ { fi} ∪ {NF(g,Gi−1 : g ∈ Bi} \ {0} and `(i); = #Gi−1 + 1.

At each iterative loop, one performs a (further step of) Buchberger reduction of f
w.r.t. Gi, the procedure continues unless NF( f ,Gi) = 0 for some i, proving that g ∈ M.

5 If the sequence is finite F := { fi, u ≥ i ≥ 1} we can simply set, for each i > u either fi := 0 or fi := fu.
6 id est a term ordering ≺ on Tm is called sequential if for each τ ∈ 〈X1, . . . , Xn〉

m the set {ω ∈
〈X1, . . . , Xn〉 : ω ≺ τ}m is finite.
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Remark 62 It is clear that, if at each step we denote by τi any term such that each
member

∑µ
k=1 dkλkelkρk of the syzygy basis for Gi−1 satisfies, for each k, λkτkρk ≺ υi,

then the procedure terminates if and only if Gi = Gi−1; this happens if and only if M
has a finite Gröbner basis, in which case the procedure returns Gi = Gi−1 as such
finite Gröbner basis.

More easily, it is a trivial task to modify Pritchard’s procedure so that, given a
basis G ⊂ Q, a polynomial C ∈ Q and a finite set of terms

T ⊂ N(I(F)) ⊂ 〈X1, . . . , Xn〉,

terminates if and only if M := Can(C, I(G)) ⊂ SpanF(T ), in which case it returns such
a canonical form, thus reading the message M := Can(C, I(F)) encrypted as C.

6.5 Rai’s cryptosystem and non-commutative polynomial

Rai’s cryptosystem [55], based on the infiniteness of non-commutative Gröbner bases,
and consisting in hiding the (principal) Gröbner basis {g} into a public basis {l1gr1, . . . , lsgrs}

cannot be cracked via Pritchard’s algorithms but yields under Davenport’s algorithm
factorizing non-commutative polynomials [18].

7 Why you should not even think to use Ore algebras in Cryptography

7.1 Burger–Heinle Diffie-Hellman-like scheme

In 2014 Burger–Heinle [12] reproposed essentially Ray’s application of principal ide-
als this time as a Diffie-Hellman-like scheme; the chose as their setting not the non-
commutative free algebras but a multivariate Ore extension [52,19] S , attributing the
strength of their proposal to the hardness of factorizing in R.

In their proposal, the two communicating parties, Alice and Bob, choose a mul-
tivariate Ore extension S with constant subring R and agree on non-central elements
L, P,Q ∈ S , non-mutually commuting; all these data are public. Alice picks secretly
a pair of commuting polynomials (PA,QA) ∈ R[X] × R[X] and Bob chooses an-
other pair of the same fashion (PB,QB) ∈ R[X] × R[X]. Finally, Alice sends Bob
A = PA(P)LQA(Q) and receives B = PB(P)LQB(Q) from him. Note that both pairs
PA(P), PB(P) and QA(P),QB(P) commute while there is no commutation be between
the elements P∗(P) and Q∗(P), since neither P nor Q commute with L. Thus the
shared secret is given by

PA(P)BQA(Q) = PA(P)PB(P)LQB(Q)QA(Q) = PB(P)PA(P)LQA(P)QB(P) = PB(P)AQB(Q).

7.2 And its generalization

Instead of cryptoanalizing Burger–Heinle scheme we intend to consider the widest
similar setting, namely iterated Ore extensions with power substitutionsA [49,?].
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Definition 71 Let us denote by ◦ the commutative multiplication of T and < a term
ordering on it. A left module over an effective ring R

A � R[B] ⊂ R[X1, . . . , Xn],B ⊂ T

endowed with a multiplication ? which satisfies

1. for each term τ ∈ B ⊂ T there are an automorphism ατ : R → R and an ατ-
derivation θτ : R→ R so that for each r ∈ R, t ? r = αt(r)t + θt(r);

2. for two terms τ1, τ2 ∈ B ⊂ T , there are elements $(τ2, τ1) ∈ R and ∆(τ2, τ1) ∈
A,T(∆(τ2, τ1)) < τ2 ◦ τ1 such that τ2 ? τ1 = $(τ2, τ1)τ2 ◦ τ1 + ∆(τ2, τ1).

3. cuτu ? cvτv = cuατu (cv)$(τu, τv)τu ◦ τv + h, h ∈ A,T(h) < τu ◦ τv

is defined an iterated Ore extensions with power substitutions

Example 1 LetA = R[X1, . . . , Xn,Y1, . . . ,Ym] with the arithmetics

X j ? Xi = ai jXiX j, Yl ? X j = b jlX
ei−1
j (X jYl),Yk ? Yl = clkYlYk

where ai j, b jl, clk are invertible elements in R, ei ∈ N
∗. Thus

(a). cuτu ? cvτv = cuατu (cv)$(τu, τv)τu ◦ τv.
(b). ατu = Id, θτ = 0, ∆(τ2, τ1) = 0 for each τu, τ2, τ1 ∈ B.
(c). τu ◦ τv = Υ(τu, τv)τuτv, Υ(τu, τv) ∈ {Xd1

1 · · · X
dn
n | (d1, . . . , dn) ∈ Nn};

(d). cuτu ? cvτv = cuατu (cv)$(τu, τv)Υ(τu, τv)τuτv = $(τu, τv)Υ(τu, τv) · cuτu · cvτv.

7.3 The Passau Attack

We point out that, as for noncommutative cryptosystems an attack was already known
[54], also in this case, a potential attack is present and can be deduced by the result
introduced by Kandri-Rody–Weispfenning result [35][50, IV.Prop.49.3.5] and con-
stantly extended in all the results of the Passau school and which is a direct conse-
quence of condition of Definition 71.3.

Proposition 72 For each f , g ∈ A there are d ∈ R \ {0}, h ∈ A,T(h) < T( f )T(g)
such that

f ? g = d · f · g + h.

We do not care to discusse whether and how the Passau Attack could crash such
Diffie-Hellman protocol in our setting since we are able to recover the common key
by the simple application of Buchberger Reductiom.

7.4 Stickel’s Key Exchange Protocol

Before proposing our attack (Section 7.5), we intend to introduce a survey on proto-
cols similar to the one proposed in [12] and extended here.
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– In Stickel’s proposal [61] Alice and Bob, choose a non-abelian finite group G and
agree on two elements P,Q ∈ G, PQ , QP; all these data are public. Alice picks
secretly a pair of integers (PA,QA) and Bob chooses another pair of the same
fashion (PB,QB). Alice sends Bob A = PPA QQA and receives B = PPB QQB from
him. Thus the shared secret is given by

PPA BQQA = PPA+PB QQA+QB QA(Q) = PPB AQQB .

He proposed to use G := GLn(Fn). Some weaknesses of the scheme are discussed
in [60,?]. [58] considers more secure working on the set Mn(R) of all metrices of
order n over a finite ring R.

– Shpilrain [58] also proposed, 6 years before, a variation of the scheme as [12]. Al-
ice and Bob, choose a finite ring R and agree on two elements P,Q ∈ Mn(R), PQ ,
QP; all these data are public. Alice picks secretly a pair of commuting polyno-
mials (PA,QA) ∈ R[X] × R[X] and Bob chooses another pair of the same fashion
(PB,QB) ∈ R[X] × R[X]. Finally, Alice sends Bob A = PA(P)QA(Q) and receives
B = PB(P)QB(Q) from him, the shared secret being

PA(P)BQA(Q) = PA(P)PB(P)QB(Q)QA(Q) = PB(P)PA(P)QA(P)QB(P) = PB(P)AQB(Q).

Mullan [51] successfully mounted a linear algebra attack on it
– Another variation was proposed in 2007 in [44] (see also [43,59]). Alice and Bob,

choose a finite semiring R with nonempty center C, not embeddable into a field
and agree on three elements C, P,Q ∈ Mn(R); all these data are public. Alice
picks secretly a pair of commuting polynomials (PA,QA) ∈ C[X]×C[X] and Bob
chooses another pair of the same fashion (PB,QB) ∈ C[X] × R[X]. Alice sends
Bob A = PA(P)CQA(Q) and receives B = PB(P)CQB(Q) from him, the shared
secret being

PA(P)BQA(Q) = PA(P)PB(P)CQB(Q)QA(Q) = PB(P)PA(P)CQA(P)QB(P) = PB(P)AQB(Q).

– In the same year [17] proposes a Diffie-Hellman-like protocol which evaluates
univariate polynomials over elements and agreed non-commutative ring R. Alice
picks a, b ∈ R,m, n ∈ N, f ∈ Z[X] and sends Bob m, n, a, b, A := f (a)mb f (a)n;
Bob chooses h ∈ Z[X] and sends Alice A := h(a)mbh(a)n the shared secret being

f (a)mB f (a)n = f (a)mh(a)mbh(a)n f (a)n = h(a)mAh(a)n.

– Finally, simplifying [17], [36] proposes verbatim the suggestions of both [44]
and [12] in the most general setting: an agreed non commutative ring R whose
center is denoted Z(R), three agreed elements, P,Q ∈ R,C ∈ R \ Z(R), the four
polynomials being selected in Z(R)[X].

7.5 A Buchberger-like Attack

Suppose the polynomials P,Q, L ∈ A (P,Q non commuting with L) to be publicly
known, whereas the polynomials f , g ∈ R[t] are kept secret. Since Alice sends A :=
f (P)Lg(Q), an eavesdropper can get it, with the aim of discovering f , g.
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The polynomial g has the form g(t) =
∑d

i=a citi, a ≤ d, ca , 0, so that g(Q) =∑d
i=a ciQi. Given a term ordering on A, we can deduce the leading term T(Q) of Q

and the tail of Q (denoted by tail(Q)). We define a new variable B and we reduce A
from the right using the following rewriting rule:

T(Q)→ tail(Q) + B.

After a + 1 reduction steps one gets

f (P)L
d∑

i=a

ciQi → f (P)L
d∑

i=a+1

ciQi−a−1B · Ba + f (P)LcaBa =

= XB · Ba + YBa

In this case, Y := f (P)Lca and X := f (P)L
∑d

i=a+1 ciQi−a−1, so:

– dividing Y by L from the right it is possible to find f (P) and f can be retrieved by
reducing w.r.t. P;

– dividing X by Y from the left we get L
∑d

i=a+1 ciQi−a−1

the only remaining problem is: how to be sure to have reached the case Y := f (P)Lca

and X := f (P)L
∑d

i=a+1 ciQi−a−1, being a unknown?
To understand this, we evaluate whether Y |L X. If so, we got to the case, otherwise
we reduce from the right until the answer becomes “Yes”.
We conclude by remarking that, by symmetry, we can find Lg(Q) and f .

8 Continue?
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24. J.-C. Faugère, A new efficient algorithm for computating Gröbner bases (F4), J. Pure Appl. Algebra
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Science and Applied Logic 15 (1991), 93–104, Birkhäuser
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47. H.M. Möller, On the construction of Gröbner bases using syzygies, J. Symb. Comp. 6 (1988), 345–359
48. F. Mora. De Nugis Groebnerialium 2: Applying Macaulay’s Trick in order to easily write a Groebner

basis J. Appl. Alg. (2003)
49. B. Nguefack, E. Pola, Effective Buchberger-Zacharias-Weispfenning theory of skew

polynomial extensions of restricted bilateral coherent rings, J. Symb. Comp. (2019),
Doi:https://doi.org.10.1016/j.jsc.2019.03.003

50. T. Mora, Solving Polynomial Equation Systems 4 Vols., Cambridge University Press, I (2003), II
(2005), III (2015), IV (2016)

51. Mullan, C.: Some results in group-based cryptography, Technical report, Department of Mathematics,
Royal Holloway, University of London, (2012).

52. Ore O., Theory of non-commutative polynomials , Ann. Math. 34 (1933), 480–508
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