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Abstract. Focal epilepsy is a chronic condition characterized by hyper-activity and ab-
normal synchronization of a specific brain region. For pharmacoresistant patients, the
surgical resection of the critical area is considered a valid clinical solution, therefore,
an accurate localization is crucial to minimize neurological damage. In current clinical
routine the characterization of the epileptogenic zone (EZ) is performed using invasive
methods, such as Stereo-Electroencephalography (SEEG). Medical experts perform the
tag of neural electrophysiological recordings by visually inspecting the acquired data,
a highly time consuming and subjective procedure. Here we show the results of an au-
tomatic multi-modal classification method for the evaluation of critical areas in focal
epileptic patients. The proposed method represents an attempt in the characterization
of brain areas which integrates the anatomical information on neural tissue, inferred us-
ing Magnetic Resonance Imaging (MRI) in combination with spectral features extracted
from SEEG recordings.

1 Introduction

Epilepsy is a neurological disorder characterized by abnormal neural activity that
leads to abrupt onset of seizures. Among world population, about 50 million people
suffer from generalized epilepsy. For the majority of the affected patients, symptoms
can be pharmacologically controlled. Unfortunately, 30% of patients are refractory to
medication and, when diagnosed with focal onset, brain surgery can be considered as
treatment. In these cases, complex and multimodal investigations are mandatory to
accurately localize the Epileptogenic Zone (EZ), defined as the minimum amount of
cortex that should be removed to produce seizure-free subjects. While the patient is
hospitalized, multiple Magnetic Resonance Imaging tests (MRIs) as well as scalp elec-
troencephalography data are acquired to define putative EZ. Nevertheless, this protocol
shows clear evidence of malformations (e.g., tumors or dysplasia) only in a small per-
centage of patients candidate for surgery. Moreover, even in presence of positive results
the border of the EZ or the localization of the onset zone might be elusive. In these cases,
neurophysiologists require the acquisition of invasive intracerebral recordings such as
Stereo-Electroencephalography (SEEG) [3]. It consists in the implantation in the brain
tissue of depth filiform electrodes, whose number depends on the severity of the case,
each endowed with several acquisition channels, that record local field potential at high
sampling frequency.

Clinicians then perform a very time-consuming and highly subjective visual inspec-
tion on the signal acquired from each channel, looking for epileptic biomarkers, such
as spike or spike-and-wave patterns and characterizing the relationship between brain
regions by co- or lagged-occurrence of these pathological patterns [6]. This tagging
procedure is a time- and resource-consuming task, with medical experts spending, on
average, about two hours for the analysis of a 10 minutes neural activity recording.
Moreover, even if SEEG is a highly precise acquisition method, surgical resection, does
not lead to positive outcomes in a relevant portion of patients [17]. Among the possible
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reasons of this unsatisfactory success rate there is the highly subjectivity due to the EZ
identification procedure.

Therefore, it is clear that the definition of an automatic tool for the detection of the
pathological tissue may prove as a great advancement in this context.

1.1 Related works

Most of the available works are not only restricted to the localization of the epilepto-
genic areas but also to seizure prediction.

Since the advent of new medical devices, developed to monitor the neural activity
and to forecast critical events, high interest concerns the transition from interictal to
ictal states, that is the change from a normal state to a seizure. Motivated by this, a
great deal of recent literature focuses on automatic seizure detection tools. We mention,
for instance the Kaggle challenge on the Melbourne dataset!.

State of the art methods both for classification epileptogenic areas and seizure fore-
casting perform a feature extraction stage. The scientific community agrees in the im-
portance of spectral quantities both in temporal and frequency domain as descriptors
of the neurological signal. Relative amount of signal power in frequency bands of in-
terests and temporal events characterized by critical amplitudes are indeed considered
pathological biomarkers [19, 20, 1, 15]. In Truong [19] et al. the authors analyze the
Melbourne dataset using standard spectral analysis methods as Fast Fourier Transform
(FFT) to measure correlations across channels, in order to infer which are the mostly
involved in the seizure generation. In the work of Vila et al. [20] some criteria for the
localization of Seizure Onset Zone (SOZ) are established using spectral measures. The
study is performed on seven patients, and characterizes the transition between interictal
and ictal states. Mean activation measure, defined as the average of the instantaneous
activity during the seizure epochs and relative time average power of every channel is
shown to be significatly higher in SOZ across all patients in the « (8-13 Hz) and /5 (13-
30 Hz) rhythms. Oscillations in the 5 and v (30-70 Hz) range, rapid discharges, spectral
and temporal aspects are taken into account to discriminate SOZ from physiological
areas. The presence of rapid discharges in a given brain area immediately before the
ictal state is also shown to be a good measure of epileptogenicity of the zone [1]. In this
regard significant changes of the activity are evaluated using thresholds. The authors
demonstrate a statistical correlation between duration of high energy phenomena and
epileptogenicity of the area.

In this work we define a feature extraction pipeline which leverages on spectral fea-
tures in line with the ones defined above. In particular we are interested in (i) imple-
menting the feature extraction in such a way to obtain a characterization of the neural
signal independent from the specific patient, so to realize an automatic classification
method across patients, (ii) including anatomical knowledge derived from imaging test
(MRI) and (ii1) measuring the classification performances of our pipeline in the analysis
of interictal signal.

The paper is organized as follows: Section 2 provides a description of the SEEG
and MRI dataset, the feature extraction pipeline and the machine learning methods used
for the analysis. Section 3 regards the statistics and the obtained results, in Section 4
we conclude by describing the ongoing work on epileptic signal classification through
network analysis.

2 Materials and methods

We acquired the dataset at the Hospital Niguarda Neurology Unit (Milan, Italy).
Patients provided written consent for the analysis of the data. The dataset consists of
SEEG and MRI data for forty patients and SEEG data only for another set of twenty

https://www.kaggle.com/c/melbourne-university-seizure-prediction
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patients.

We registered local field potential with common reference in white matter, using
platinum-iridium, multi-lead electrodes. The number of contacts for each electrodes
varies from 8 to 15, each is 2 mm long, 0.8 mm of thickness and have distance of 1.5
mm from its neighbours (DIXI medical, Besancon, France). We acquired 10 minutes of
spontaneous resting state activity, at a sampling frequency of 1kHz, with eyes closed,
using a 192-channels SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110).
We automatically ascertained the position of each recording contact using a dedicated
segmentation software [14].

We fused MRI-pre with CT-post (Computed Tomography) using affine rigid-body
coregistration, [3]. After the coregistration phase, the algorithm automatically segments
each contact contained in the multi-lead electrodes by searching its center of mass.

The total amount of channels for this set of patients is 5315, only 1342 have been
marked as pathological by an equipe of medical experts. On average, the total number
of channels per patient is 140 + 20 (mean = std), of which 34 + 21 (mean = std) are
epileptogenic or characterized by critical activity.

For what concerns the SEEG acquisition, the extraction of relevant spectral features
is first preceded by a preprocessing stage which consists of two steps: 1) local reference
of potential, ii) removal of power line effects. We proceed in the former case to the
computation of the potential difference of neighbour channels on the same electrode.
This local reference of potential is shown to decrease the correlation of spurious electri-
cal activity which propagates through fibers in the white tissue [12] and for this reason
it is preferable than average reference of the potential or other settings. We remove the
power line effects through notch filters peaked at 50 Hz and harmonics (Butterworth,
2nd order).

2.1 Time-frequency features

In order to get effective descriptors of the average activity in the interictal stage, we
extracted spectral features on temporal windows of 300 seconds. First, we measured
basic features as the first moments: variance, skewness and kurtosis.

Then, to capture the variability across patients, we measure the mean energy values
[15] for the frequency bands of clinical interest o 1-4 Hz, 6 4-8 Hz, o 8-13 Hz, 8 13-30
Hz, v 30-70 Hz, high-v 70-90 Hz, using a 2nd order Butterworth filter and dividing
every measure at a specific band by the sum of energy across all frequencies, up to the
Nyquist frequency (500 Hz). Recent results [11, 5, 7] show a relevant contribution of
high frequency patterns in determining the pathological state. To this aim, we include
in the analysis mean energy values at frequencies higher than high-+ band. Band pass
filters of width 50 Hz has been used, spanning the frequency space from high-v up to
Nyquist frequencies.

We also evaluate the wavelet entropy measure, which has been shown to be a dis-
criminative quantity in the evaluation of signal coherence in neurophysiology [16], es-
pecially in pathological activity detection [13]. We use an orthogonal discrete mother
wavelet (Daubechies, 2nd order) to perform the decomposition of the signal.

As in Bartolomei et al. [1] we also measure the hyperactivity of each channel, de-
fined as abnormal signal amplitudes, with respect to the baseline activity. To distinguish
between baseline and hyperactivity, we set different threshold values on the filtered sig-
nal at different bands. We compute the absolute value for each outcome in the temporal
domain and estimate the length of hyperactivity periods. The thresholds were learned on
the 20 subjects with only the SEEG data available, we excluded this subset of patients
from the classification pipeline, in order to prevent from potential overfit issues. From
these recordings, we consider the 1968 physiological channels to estimate an adaptive
signal baseline. We first filter these recordings in the frequency bands defined above,



Proceedings of CIBB 2018 4
band f | (oy) [uV]

o 13.19
0 15.54
a 12.45
I6; 11.09
v 4.58
high-v 1.19

90-140 Hz 1.07

140-190 Hz | 5.78 - 10!
190-240 Hz | 3.91-101
240-290 Hz | 2.98 - 10!
290-340 Hz | 2.44 - 107!
340-390 Hz | 2.03 - 107!
390-440 Hz | 1.83 - 107!
440-490 Hz | 1.90 - 101

Table 1: Mean values of (o) for different energy bands f evaluated on 1968 physiological channels for

which the MR images where not available. These values can be considered as a physiological standard
activity across patients

and consider the standard deviation of the activity at each band. We denote by (o) the
mean standard deviation for the band f for this subset of patients. We then computed
(o¢) over the channels. The values relative to each band are shown in Table 1. Then we
measure the time spent over a variable threshold a - o ¢, where a assumes discrete values
in the range (2, 7], by first filtering the time series in the band f.

2.2 Spatial feature

To the best of our knowledge there has been no attempt to integrate anatomical quan-
tities together with spectral features in automatic learning pipelines for detection of
critical areas.

With this regard, the recent work of Mercier [12] gives a broad insight in the role
played by white matter in the signal propagation through the brain. He points out the
improvement in the analysis of brain potential obtained by computing local difference
of potential for neighboring channels, in order to decouple spurious activity. His work
also shows the relevance of quantifying the anatomical nature of the brain tissue in the
area of acquisition of the signal.

The characterization of brain regions is based on the differentiation of gray and white
matter evaluated through FreeSurfer [8], a software tool which parcellates cortical and
subcortical regions from MRI acquisition. By defining each voxel imaging as 1 mm?,
the Partial Tissue Density (PTD) index is defined as follows

Vox Gray — Vox White

PTD =
Vox Gray + Vox White

where Vox Gray and Vox White correspond respectively to the number of gray and
white voxels contained in a volume of 3 x 3 x 3 mm? centered around the electrode
position [12]. Indeed in the same work, the electrode position is proved to be crucial for
clinical evaluations, as there is a high correlation between signal power and PTD index,
and signal amplitude is greater in the gray matter than in the white matter regions. It is
well known in the clinical routine that the amplitude of the signal at low frequencies is a
pathological biomarker of the epileptic activity, which is originated by the excitation of
neural population, localized in the gray matter only. The PTD quantifies the proximity
between the gray matter and white matter and assumes continuous values between [-1,
1].
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Figure 1: Plot of PTD values for a single patient, with a common number of epileptic and non epileptic
channels. The colormap identifies the PTD index. In (a), channels tagged as pathological, in (b) there
are instead PTD values relative to physiological channels. The matrix of non epileptic channels contains
also low values of PTD, that can be easily excluded from the analysis, given the absence of gray matter
in those areas.

2.3 Data representation

Each sample collects the features computed for a fixed channel position for a window
of 5 minutes of activity. By applying the feature extraction pipeline we get the data
matrix used for classification, which contains 10630 samples, each described by 156
time-spatial features.

2.4 Machine learning methods

We consider several machine learning techniques for classification, both linear and
non-linear. In particular, we use sparse Logistic Regression (LR) [10], Support Vector
Machines with linear kernel (SVMs) [4], Random Forest (RF) [2] and Gradient Boosting
(GB) [9]. All the learning methods require the tuning of hyperparameters, which is
performed through cross validation.

We used different metrics for the evaluation of results, performed on the test set.
From the confusion matrix we extracted the number of false positive (FP), false negative
(FN), true positive (TP), true negative (TN) which are needed to compute precision,
recall, balanced accuracy and F1 score.

.. TP
precision = ——
TP + FP

recall = P
~ TP+FEN

2 \TP+FEN TN+FP
5 precision - recall

1 TP TN
balanced accuracy = — - ( + )

F1 score =

precision + recall

3 Results

The proportion of epileptic and non epileptic channels is unbalanced in favor of non
epileptic channels, with random guess corresponding to 0.74%. For this reason, we
computed the performance of our methods using metric scores that take into account
the unbalancedness of the dataset. We split the dataset in 80% samples for training and
20% for test, using automatic scikit-learn procedures that split the dataset with respect to
the unbalancedness of the original problem. The choice of the optimal hyperparameters
for all the algorithms was performed by using three-fold cross-validation in the learning
procedure.

In LR we imposed sparsity through the L; norm on the regularization term, with the

regularization constant C' varying in a logarithmically spaced range of twenty values
between (1072, 10?).
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For SVM, we fixed a linear kernel and let the cross validation choose the best values
of C, in the same range of LR.

For what concerns RF we fixed the number of estimators to 10° where the tunable
parameters were the percentage of maximum features with respect to the total, in the
range (0.1,0.2,0.3,0.4,0.5,0.6).

In GB we fixed the learning rate to 10~3, the tunable parameters were the max depth
of trees, free to vary in a linearly space interval between (3, 31) and the number of
estimators, chosen between three linearly spaced values in (100, 500).

The learning and testing procedures were repeated 50 times in order to get a statisti-
cally reliable outcome for the four classifiers.

classifier || precision | recall
LR 0.68 +0.03 0.34 +0.03
SVM 0.57 +0.04 0.15+0.03
RF 0.88 £0.02 0.57 £ 0.02
GB 0.80 £ 0.07 0.35 + 0.06
balanced accuracy F1 score
LR 0.64 +0.01 0.45 +0.03
SVM 0.55 £ 0.01 0.23 £ 0.05
RF 0.77 £0.01 0.69 £0.01
GB 0.66 + 0.02 0.48 £ 0.05

Table 2: Scores of different learning algorithms trained on the extracted features. The values corresponds
to mean = std obtained from 50 repetition of the learning pipeline. Random forest classifier gives the best
performances for all the score metrics used.

The results obtained from the testing phase of the machine learning algorithms intro-
duced in previous section are shown in Table 2. Random Forest performs best for all the
considered metrics. The values of balanced accuracy and F1 score are highlighted. Both
metrics show a performance which is highly above chance level and is promising in the
discrimination of epileptic areas. The precision value for RF indicates that the number
of false positives is relatively low. This can help in the discrimination of epileptic areas,
because areas classified as pathological have high probability to belong to that class.

4  Conclusions and future work

In this work we defined a pipeline for the analysis of brain activity in focal epilep-
tic patients during the interictal period, with the aim of localizing critical areas, in-
volved in seizure generation and propagation. By considering relative measures based
on single patient, several machine learning methods have been trained across patients,
all of them with results highly above chance. In particular random forest classifiers
has been shown to achieve the best performances (balanced accuracy = 0.77 £ 0.01,
F; score = 0.69 £ 0.01). To the best of our knowledge, the integration of spectral
features with anatomical characteristics of the recorded areas represents a first attempt
to merge multiple tests results, fixing a set of features which are both functional and
structural descriptors of the epileptic brain. In the analysis we have considered long
interictal period, segments of 5 minutes at high sampling frequency and the features
extracted represents an average behavior of each area.
In the future, we plan to improve this multi-modal approach in order to enrich the de-
scription of the brain areas for the classification task. We will characterize the brain
dynamics more in detail, by considering chuncks of smaller length. For this scope, we
will resort to graphical methods [18], which we again will combine to structural features
extracted from MRI tests.
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