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Abstract 
 

The aim of this doctoral thesis is to present the research activity fulfilled during the 

Ph.D. studies. 

The research project of the candidate was focused on two main cores. 

The first core is centred in the microgrid area; in particular in islanded microgrid 

modelling and control. Firstly, the model was compared with experimental results 

collected in some facilities available at University of Genoa. Then traditional 

controllers for islanded microgrid are analysed and explored, proposing a new stability 

estimation procedure for droop controlled microgrid. Finally, a new control strategy 

based on Model Predictive Control (MPC) is proposed in order to collect many 

functionalities in just one control layer. MPC is widely used in MG environment, but 

just for power and energy management at tertiary level; instead here it is here proposed 

with an inedited use. Some experimental validations about this new methodology are 

obtained during a research period in Serbia and Denmark. 

The second core is related with synthetic inertia for wind turbine connected to the main 

grid, i.e. frequency support during under-frequency transients. This aspect is very 

important today because it represents a way to increase grid stability in low inertia 

power systems. The importance of this feature is shared by all the most important 

Transmitter System Operators (TSO) all over the world. 
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1 Introduction 
 

The aim of this chapter is to introduce the structure, the goals, the contribution obtained 

and achieved during the Ph.D. studies. 

 

1.1 Background 
The need of reducing emissions in the electricity generation field, recent technological 

developments in the microgeneration domain, and electricity business restructuring are 

the main factors responsible for the growing interest in the use of microgeneration. 

Electrical grids tend to be more distributed, intelligent, and flexible. New power-

electronic equipment will dominate the electrical grid in the next decades. The trend 

of this new grid is to become more and more distributed and hence energy generation 

and consumption areas cannot be conceived separately. Nowadays, electrical and 

energy engineering must face a new scenario in which small distributed power 

generators and dispersed energy-storage devices have to be integrated together into the 

grid. The new electrical grid, also named Smart Grid (SG), will deliver electricity from 

suppliers to consumers using digital technology to control appliances at consumers’ 

homes to save energy, thus reducing cost and increasing reliability and transparency. 

In this sense, the expected whole energy system will be more interactive, intelligent, 

and distributed. The use of Distributed Generation (DG) of energy systems makes no 

sense without using distributed storage systems to cope with the energy balances. 

Microgrids (MGs), are becoming important concepts to integrate DG and energy-

storage systems. The concept has been developed to cope with the penetration of 

renewable-energy systems, which can be realistic if the final user is able to generate, 

store, control, and manage part of the energy that it will consume.  

Today power generation comes essentially from large power plants mainly fuelled by 

fossil fuels, nuclear and hydroelectric power that operate through well-established 

transmission and distribution systems. Although these systems have offered efficient 

ser-vice around the world for over a century, the times are changing. Demand for 

energy is growing rapidly due to rapid social developments in many parts of the world, 

but also because modern digital economies increasingly depend on electricity 

availability. This dependence relationship imposes new structural developments in 

order to avoid network problems.  

At the same time, modern societies have realized that, in order to combat climate 

change, it is necessary to reduce emissions. Optimum use of traditional sources has to 

underpin the development of production from non-traditional sources such as wind, 

solar, solar, geothermal, and biomass power plants. Thus, there is a great variety of 

energy sources whose integration and optimum use yield complex problems relevant 

to the design and management of electrical grids.  

The impact of climatic conditions on the availability of wind and solar energy, together 

with the need to develop distributed facilities (e.g., domestic photovoltaic systems), 

further complicates the scenario, imposing the need for designing local networks 

capable of receiving and delivering electricity. In this connection, the power grid itself 
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is used in new ways. Instead of serving relatively small geographic areas with links to 

other regions to ensure security of supply, networks are currently used as energy-

efficient channels for longer distances.  

All these elements bring a change of paradigm that allows the final user to be not only 

a consumer but also a part of the grid. Consequently, it opens new possibilities and 

new solutions. Nowadays there is no a “winner” methodology yet among the many 

solutions proposed; this is because i) the market is still young and in fast evolution and 

ii) the variety and complexity in grids lead to different solutions. 

 

1.2 Main Contribution 
The main contributions of this thesis are summarised below: 

• Chapter 3 proposes a simplified, first harmonic model for a generic structure 

of MG characterized by its use of only electronic power converter interfaced 

generation. The main advantages of the proposed method lie in the model’s 

simplicity and its reduced solving time, thanks to the limited number of 

necessary parameters to describe the system. Moreover, the developed 

formulation allows the avoidance of specific (and often licensed) software to 

simulate the system 

• A new approach to evaluate the stability of a droop-controlled microgrid as 

stated in Chapter 4. It has a simple formulation that It does not require to find 

the final equilibrium point and to calculate the system matrix eigenvalues in 

that point as it is required in the (more widely used) small signal stability 

approach. 

• An innovative control technique for the primary regulation of an islanded MG 

composed only by power converters and without any rotating electrical 

machine. The proposed method is based on the Model Predictive Control 

(MPC) technique and is deeply investigated in Chapter 5. The proposed 

control system is a decentralized one since each inverter is equipped with its 

own control system that requires only local measurements and has the 

advantage of avoiding any frequency or voltage deviations. 

• Chapter 6 proposes a new approach for the synthetic inertia of Wind Turbine 

Generators (WTGs) to ensure an effective impact on the system frequency 

avoiding unstable operation of the WTG and minimizing secondary frequency 

drop due to the rotor speed restoration. Furthermore, the chapter details the 

definition of the switching logics to activate and deactivate the frequency 

support controller and its implementation in available industrial controllers. 

 

1.3 List of Publication 
This Ph.D. has originated the following scientific publications on journals and 

conferences. 

1.3.1 International journals 
Bonfiglio, A., Brignone, M., Invernizzi, M., Labella, A., Mestriner, D., & Procopio, R. (2017). A 

simplified microgrid model for the validation of islanded control logics. Energies, 10(8), 1141. 
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Bonfiglio, A., Delfino, F., Labella, A., Mestriner, D., Pampararo, F., Procopio, R., & Guerrero, 

J. M. (2018). Modeling and experimental validation of an islanded no-inertia microgrid 

site. IEEE Transactions on Sustainable Energy, 9(4), 1812-1821. 

Bonfiglio, A., Invernizzi, M., Labella, A., & Procopio, R. (2018). Design and Implementation of 

a Variable Synthetic Inertia Controller for Wind Turbine Generators. IEEE Transactions on 

Power Systems, 34(1), 754-764. 

Labella, A.; Filipovic, F.; Petronijevic, M.; Bonfiglio, A.; Procopio, R. (2020) An MPC Approach 

for Grid-Forming Inverters: Theory and Experiment. Energies, 13, 2270. 

 

 

1.3.2 International conferences 
Bonfiglio, A., Delfino, F., Invernizzi, M., Labella, A., Mestriner, D., Procopio, R., & Serra, P. 

(2015, September). Approximate characterization of large Photovoltaic power plants at the 

Point of Interconnection. In 2015 50th International Universities Power Engineering 

Conference (UPEC) (pp. 1-5). IEEE. 

Labella, A., Mestriner, D., Procopio, R., & Brignone, M. (2017, March). A new method to 

evaluate the stability of a droop controlled micro grid. In 2017 10th International Symposium 

on Advanced Topics in Electrical Engineering (ATEE) (pp. 448-453). IEEE. 

Labella, A., Mestriner, D., Procopio, R., & Delfino, F. (2017, June). A simplified first harmonic 

model for the Savona Campus Smart Polygeneration Microgrid. In 2017 IEEE International 

Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and 

Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE. 

Labella, A., Mestriner, D., Pampararo, F., & Procopio, R. (2017, October). Measurement 

campaign and experimental results of an islanded microgrid. In 2017 International Conference 

on energy and environment (CIEM) (pp. 31-35). IEEE. 

Bonfiglio, A., Gonzalez-Longatt, F. M., Labella, A., & Procopio, R. (2017, October). 

Implementation of primary frequency regulation on fully rated wind turbine generators. In 2017 

International Conference on ENERGY and ENVIRONMENT (CIEM) (pp. 316-320). IEEE. 

Blanco, F., Labella, A., Mestriner, D., & Rosini, A. (2018, June). Model Predictive Control for 

Primary Regulation of Islanded Microgrids. In 2018 IEEE International Conference on 

Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power 

Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE. 

Bonfiglio, A., Labella, A., Mestriner, D., Milani, F., Procopio, R., & Ye, Y. (2018, June). ITER 

Fast Discharging Units: A Black Box Model Approach for Circuital Simulations. In 2018 IEEE 

International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial 

and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-7). IEEE. 

Labella, A. (2019, March). A Novel Synthetic Inertia Control for Wind Turbine Integration into 

Traditional Grids. In 2019 Advances in Science and Engineering Technology International 

Conferences (ASET) (pp. 1-6). IEEE. 

Labella, A. (2019, March). Power Management Analysis in PV-BESS Islanded AC Microgrid. 

In 2019 11th International Symposium on Advanced Topics in Electrical Engineering 

(ATEE) (pp. 1-6). IEEE. 

Mestriner, D., Labella, A., Bonfiglio, A., Benfatto, I., Li, J., Ye, Y., & Song, Z. (2019, June). 

ITER Reactive Power Compensation Systems: analysis on reactive power sharing strategies. 

In 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 

IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). 

IEEE. 
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1.4 List of patents 

1.4.1 Patents under review  
 

Patent Application: ITALY – 07/08/2018 

Application Number: 102018000007930 

Title: Metodo e sistema di controllo di generatori non inerziali, in particolare di 

generatori eolici, mediante emulazione di inerzia 

 

 

Patent Application: ITALY – 15/07/2019 

Application Number: 102019000011739 

Title: Metodo e sistema per il controllo di inverter in microreti 

 

 

Patent Application: ITALY – 05/06/2019 

Application Number: 102019000008163 

Title: Metodo e sistema per valutare la stabilità di microreti in modalità 
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2  Microgrid State of the Art1 
 

The aim of this chapter is to present the state of the art of microgrid in terms of 

modelling, controls and possibilities. 

Recent developments in the electric utility industry and ICT are encouraging the entry 

of power generation and energy storage at the distribution level. Together, they are 

identified as DG units. Several new technologies are being developed and marketed 

for distributed generation. The DG includes microturbines, photovoltaic systems, wind 

energy systems and batteries among others. 

 

2.1 Microgrid Definition 
The MG concept assumes a cluster of loads and microsources operating as a single 

controllable system that provides both power and heat to its local area. This concept 

provides a new paradigm for defining the operation of distributed generation. The 

microgrid study architecture consists of a group of radial feeders, which could be part 

of a distribution system. There is a single point of connection to the utility called point 

of common coupling (PCC). The feeders have sensitive loads which should be 

supplied during the events. The feeders can also have the presence of microsources 

consisting of photovoltaic units (PV), wind turbines (WT), a microturbines (MT), 

battery storage and others equipment.  

To serve the load demand, electrical power can be produced either directly by PV, WT 

or by MT.  

Each component of the microgrid system is separately modelled according to its 

characteristics and constraints. The characteristics of some equipment as wind turbines 

are available from the appropriate manufacturers.  

Microgrid technologies are playing an increasingly important role in the world’s 

energy portfolio. They can be used to meet baseload power, peaking power, backup 

power, remote power, power quality, and cooling and heating needs. Customers 

usually own small-scale, on-site power generators, but they may be owned and 

operated by a third party.  

If the distributed generators do not provide 100% of the customer’s energy needs at all 

times, it can be used in conjunction with a distributed energy storage device or a 

connection with the local grid for backup power. The microgrid resources support and 

strengthen the central-station model of electricity generation, transmission, and 

distribution [1]. 

2.2 Reasons for Microgrids 
The conventional arrangement of a modern large power system offers a number of 

advantages. Large generating units can be made efficient and operated with only a 

relatively small number of personnel. The interconnected high voltage transmission 

 
1  This Chapter is from “F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, "Microgrids 

Management – controls and operation aspects of microgrids," IEEE Power and Energy Magazine, vol. 

6, no. 3, 2008.” 
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network allows the generator reserve requirement to be minimized, the most efficient 

generating plants to be dispatched at any time, and bulk power to be transported 

through large distances with limited electrical losses.    

The distribution network can be designed for unidirectional flows of power and sized 

to accommodate customer loads only. However, over the last few years several 

influences have combined to lead to the increased interest in microgrid schemes.  

The policy drivers encouraging microgrids are [1]: 

➢ Reduction in gaseous emissions (mainly CO2). 

➢ Energy efficiency or rational use of energy. 

➢ Deregulation or competition policy. 

➢ Diversification of energy sources. 

➢ National and global power requirements. 

 

2.3 Motivation of Microgrids 
Currently a lot of research is being undertaken into microgrids. Although components 

of the microgrids are fairly well understood, the system as a whole is not. When several 

sources are connected to form a microgrid, the system behavior is unpredictable. This 

being the case, modelling the system and simulating it, in order to develop an 

appropriate management system, is the heart of microgrid research. Nowadays, several 

research groups around the world are investigating the feasibility and benefits that the 

microgrids may provide [2]. Some problems are encountered including dealing with 

the unbalanced loads and harmonics associated with the system. This work does not 

intend to address such problems, rather it is concerned with the modelling of the 

microgrid for management. 

Modelling is an important component for power system energy management system. 

A precise model helps the electric utility to make unit commitment decisions and to 

reduce operating costs and emission level properly.  

Besides playing a key role in meeting the load demand, it is also essential to the 

reliability of the microgrid.  

 

2.4 Importance of Microgrids 
The environmental and economic benefits of the microgrid, and its acceptability and 

degree of proliferation in the utility power industry, are primarily determined by the 

envisioned controller capabilities and the consequently operational features.  

Depending on the type and depth of penetration of DER units, load characteristics,  

power quality constraints and market participation strategies, the required control 

and operational strategies of a microgrid can be significantly, and even conceptually, 

different from those of the conventional power systems. 

The main reasons are the following [3]: 

➢ steady-state and dynamic characteristics of DER units, particularly 

electronically coupled units, are different than those of the conventional large 

turbine-generator units; 
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➢ a microgrid is inherently subject to a significant degree of imbalance due to the 

presence of single-phase loads and/or DER; 

➢ a noticeable portion of supply within a microgrid can be from “not 

controllable” sources; 

➢ short and long-term energy storage units can play a major role in control and 

operation of a microgrid; 

➢ economics often dictates that a microgrid must readily accommodate 

connection and disconnection of DER units and loads while maintaining its 

operation; 

➢ a microgrid may be required to provide pre-specified power quality levels or 

preferential services to some loads; 

➢ in addition to electrical energy, a microgrid is often responsible for generating 

and supplying heat to all or parts of its loads. 

The following pages provide an overview of the existing microgrid controls and 

highlight the importance of power and energy management strategies and describe 

potential approaches for market participation. 

 

2.5 Structure and Characteristics in Microgrids 

 

Fig. 1 A typical microgrid structure including loads and DER units 

Fig. 1 shows a microgrid schematic diagram. The microgrid encompasses a portion of 

an electric power distribution system that is located downstream of the distribution 

substation, and it includes a variety of DER units and different types of end users of 

electricity and/or heat. DER units include both DG and distributed storage (DS) units 

with different capacities and characteristics. 

The electrical connection point of the microgrid to the utility system, at the low-voltage 

bus of the substation transformer, constitutes the microgrid PCC. The microgrid serves 

a variety of customers, e.g., residential buildings, commercial entities, and industrial 

parks. 
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The microgrid in Fig. 1 normally operates in a grid-connected mode through the 

substation transformer. However, it is also expected to provide sufficient generation 

capacity, controls, and operational strategies to supply at least a portion of the load 

after being disconnected from the distribution system at the PCC and remain 

operational as an autonomous (islanded) entity.  

The existing power utility practice often does not permit accidental islanding and 

automatic resynchronization of a microgrid, primarily due to the human and equipment 

safety concerns. However, the high amount of penetration of DER units potentially 

necessitates provisions for both islanded and grid-connected modes of operations and 

smooth transition between the two to enable the best utilization of the microgrid 

resources. 

DER units, in terms of their interface with a microgrid, are divided into two groups. 

The first group includes conventional or rotary units that are interfaced to the 

microgrid through rotating machines.  

The second group consists of electronically coupled units that utilize power electronic 

converters to provide the coupling media with the host system. The control concepts, 

strategies, and characteristics of power electronic converters, as the interface media 

for most types of DG and DS units, are significantly different than those of the 

conventional rotating machines. Therefore, the control strategies and dynamic 

behavior of a microgrid, particularly in an autonomous mode of operation, can be 

noticeably different than that of a conventional power system. 

Furthermore, in contrast to the well-established operational strategies and controls of 

an interconnected power system, the types of controls and power/energy management 

strategies envisioned for a microgrid are mainly determined based on the adopted DER 

technologies, load requirements, and the expected operational scenarios. Fig. 2 shows 

a schematic representation of the building blocks of a micro-grid that includes load, 

generation/storage, electricity, and thermal grids.  

 

Fig. 2 general representation of the microgrid building blocks 

Fig. 2 implies two levels of controls; i.e. component-level and system-level controls. 
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2.6 The DER Units 
Both DG and DS units are usually connected at either medium or low-voltage levels 

to the host microgrid.  

 

Fig. 3 Block representation of a DG unit 

Fig. 3 shows a DG unit comprising a primary energy source, an interface medium, and 

switchgear at the unit point of connection (PC).  

In a conventional DG unit the rotating machine: 

• converts the power from the primary energy source to the electrical power 

• acts as the interface medium between the source and the microgrid. 

• For an electronically coupled DG unit, the coupling converter: 

• can provide another layer of conversion and/or control; e.g. voltage and/or 

frequency control 

• acts as the interface medium with the microgrid. 

The input power to the interface converter from the source side can be AC at fixed or 

variable frequency or DC. The microgrid-side of the converter is at the frequency of 

either 50 or 60 Hz.  

Fig. 3 also provides a high-level representation of a DS unit for which the “primary 

energy source” should be replaced by the “storage medium”. 

 

2.7 DER Controls 
Control strategies for DER units within a microgrid are selected based on the required 

functions and possible operational scenarios. Controls of a DER unit are also 

determined by the nature of its interactions with the system and other DER units. The 

main control functions for a DER unit are voltage and frequency control and/or 

active/reactive power control. Table 1 provides a general categorization of the major 

control functions of a DER unit and divides the strategies into the grid-following and 

grid-forming controls. 

Each category is further divided into not-interactive and grid-interactive strategies.  
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Table 1 Classification of control strategies for electronically coupled DER units 

 Grid-Following Controls Grid-Forming Controls 

Noninteractive 

Control  

Methods 

Power  export (with/without MPPT) Voltage & frequency control 

Interactive Control 

Methods 

Power dispatch 

Real and Reactive power support 
Load sharing (droop control) 

 

The grid-following approach is employed when direct control of voltage and/or 

frequency at the PC is not required. Furthermore, if the unit output power is controlled 

independently of the other units or loads (not-dispatchable DER unit), it constitutes a 

grid-not-interactive strategy. An example of the grid-not-interactive strategy is the 

MPPT control of a solar-PV unit.  

A grid-interactive control strategy is based on specifying real/reactive power set points 

as input commands. The power set points are either specified based on a power 

dispatch strategy or active/reactive power compensation of the load or the feeder. 

 

2.8 Power and Energy Management  
Sound operation of a microgrid with more than two DER units, especially in an 

autonomous mode, requires a Power Management Strategy (PMS) and an energy 

management strategy (EMS).  

Fast response of the PMS/EMS is more critical for a microgrid compared with a 

conventional power system. The reasons are: 

• presence of multiple, small DER units with significantly different power 

capacities and characteristics 

• potentially no dominant source of energy generation during an autonomous 

mode; i.e. lack of infinite bus 

• fast response of electronically coupled DER units that can adversely affect 

voltage/angle stability when appropriate provisions are not in place. 

Fig. 4 shows information/data flow and functions of a PMS/EMS for a microgrid. 
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Fig. 4 Information flow and functions of a real-time PMS/EMS for a microgrid 

The real-time management block receives the present and the forecasted values of 

load, generation, and market information to impose appropriate controls on power 

flow, output generation, consumption level of the utility grid, dispatchable sources, 

and controllable loads, respectively. 

The PMS/EMS assigns real and reactive power references for the DER units to: 

• appropriately share real/reactive power among the DER units 

• appropriately respond to the microgrid disturbances and transients 

• determine the power set points of the DER units to balance the microgrid power 

and restore the frequency 

enable resynchronization of the microgrid with the main grid, if required. 

In a grid-connected mode, the DER units supply prespecified power, e.g. to minimize 

power import from the e.g., islanding transients, and damp out power and frequency 

oscillations.  

The PMS/EMS should accommodate both short-term power balancing and long-term 

energy management requirements. 

The short-term power balancing may include: 

• provisions for load-following capability, voltage regulation, and frequency 

control based on real power sharing among DER units and/or load shedding to 

alleviate power mismatch 

• provisions for acceptable dynamic response, and voltage/frequency restoration 

during and subsequent to transients 

• provisions to meet power quality constraints of sensitive loads 

• provision for resynchronization subsequent to the main system restoration. 

The long-term energy management may include: 
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• provisions to maintain an appropriate level of reserve capacity while 

rescheduling the operating points of dispatchable DER units based on an 

optimization process to  

• control the net power import/export from/to the main grid, 

minimize power loss 

maximize power outputs of the renewable-based units 

minimize the cost of energy production of fuel-based units 

• consideration for specific requirements/limitations of each DER unit, including 

type of unit, cost of generation, time dependency of the prime source, 

maintenance intervals, and environmental impacts 

• provisions for demand response management (load-profile control) and 

restoration of non-sensitive loads that are disconnected/shed during the 

microgrid transients; for instance, in response to a load-shedding requirement 

subsequent to an islanding event. 
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3 Microgrid Modelling 
 

The aim of this chapter is to define the modelling approach proposed by the candidate. 

The present chapter aims at developing a simplified model that accounts for all the 

details typical of a fundamental frequency analysis. Moreover, it should be able to 

evaluate all the voltage and frequency transients necessary to test a primary regulation 

scheme 

3.1 Introduction 
MGs can easily integrate RES into the electric network guaranteeing an optimized 

management both from the economic and the environmental point of view and a higher 

level of power quality [4, 5]. Moreover, if a MG is capable of working in islanded 

configuration and to seamless transit form islanded to grid connected and vice-versa, 

this could generate a scenario where the power system is capable of modulate itself in 

accordance to the need of having a stable asset using the MG capabilities to modulate 

the balance between load and generation. Due to their complexity and to the variety of 

their sources and infrastructures, MGs also represent one of the best environments for 

the testing of innovative and advanced control and energy management systems. In 

this framework, the necessity to have a reliable model of a MG is essential in order to 

use it for the control system design, the tuning of its parameters and the validation of 

innovative energy management logics. 

This goal can be reached, in one way, representing the MG in an electromagnetic 

power systems simulator (e.g. PSCAD-EMTDC - Power System CAD - 

ElectroMagnetic Transient and DC - [6], SPICE [7], PLECS [8]). The advantage of 

this approach is that the resulting model is extremely detailed; on the other hand, i) it 

requires a lot of time set up the model; ii) trained users are required and iii) each 

simulation becomes very cumbersome from a CPU point of view. It is well known that 

any model introduces approximations and has a domain of validity. The value of a 

model is represented by the trade-off between reliability, accuracy and simplicity: in 

particular, this last characteristic results very important to reduce the computational 

efforts and to give the users the possibility to handle the model easily and to have the 

sensitivity of the way variables interact with each other. Indeed, another possible 

approach is to develop a simplified model that is able to describe all the phenomena 

that have to be taken into account when designing a proper control system suited on 

the specific MG. Simplified equivalent models are very strong instruments for 

analysing the MG behaviour; an overview on these models is presented in [9, 10]. One 

of the most used approximations consists of neglecting the voltage drop along the 

connection (i.e. the so-called Single Bus Bar (SBB) model, according to which 

generators and loads are positioned at the same bus [11-13]). In other works [14-16], 

in order to evaluate the power flow easily, voltages are considered equal to 1 per unit 

so that it is possible to mismatch current with apparent power. Moreover, in [17] a 

simplified Ordinary Differential Equations (ODEs) system to evaluate the MG 

behaviour is presented, for economic purposes only. 

The most relevant part of bibliography deals with the developing of MG models in the 

view of energy management systems accounting for longer time horizon (several 
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seconds, hours, days) in order to manage power sharing and the stochastic behaviour 

of loads and renewables [18-21]. The literature is much reduced if one considers 

islanded microgrids and especially those characterized by no synchronous generators 

connect directly to the main AC system. In this configuration, the issue of frequency 

and voltage control and load sharing is trickier and cannot rely on the scheme adopted 

for the traditional regulation. For this reason, a simplified way of representing the 

dynamic behaviour of a MG characterized by only power electronic interfaced 

generation would represent a useful tool to study and test innovative control strategies 

for islanded MGs.  

As will be clarified later in the text, contrarily to the SBB approximation, the 

methodology proposed in this chapter does not neglect voltage deviations and/or 

power losses [13-17, 22] and allows to perform a complete analysis of the evolution 

of all the electric variables. The proposed approach results in a system of ODE that 

can be implemented in any general purpose software, giving the possibility to interface 

it with both traditional MG control systems [23-26] and more advanced ones [27-29] 

and allowing to account both for islanded and grid-connected configurations. In other 

words, the challenge of the proposed model, from here on Simplified Model (SM), 

which represents an optimal trade-off between accuracy and simplicity, is that it can 

be used as a universal general MG emulator, just like a base brick compatible with 

many lids, representing the control logics (Fig. 5). These lids can be elementary, as 

droop [24], isochronous [30] and current sharing [31], but also based on complex and 

advanced optimization and control algorithms (e.g. Model Predictive Control (MPC) 

[32-34], Feedback linearization (FBL) [35]). In conclusion, the advantages of the 

proposed model can be summarized as follows: 

➢ Provide a simple but reliable model for islanded MGs characterized by all the 

generation interfaced to the AC part of the MG by means of power electronic 

devices; 

➢ Running the model does not require a dedicated often licensed specific 

software, a relevant time to set-up the model and a high computational effort; 

➢ The model is presented as a system of ODE that does not need too many input 

parameters and can be used to design different controllers and tune their 

parameters. 

The proposed model has been validated comparing its results with the ones provided 

by PSCAD-EMTDC model, from here on PSCAD model, and  on the Smart 

Polygeneration Microgrid (SPM) of the Savona Campus of Genoa University [36], 

highlighting a very good agreement between the two simulators and actual 

measurement.  

 
Fig. 5 Graphical representation of the proposed concept of defining a simplified model that 

can be used with various control strategies 
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3.2 The Microgrid test facility - The Savona Campus Smart 

Polygeneration Microgrid 
The SPM is a tri-generative, Low Voltage (LV) MG realized in the Savona Campus 

of Genoa University in operation since February 2014. The SPM is an infrastructure 

realized for demonstrative and research purposes and is intended as a test-bed facility 

for innovative solutions for MG management and control. In order to achieve this goal, 

the SPM accounts for various types of generations (tri-generative micro-turbine, 

photovoltaic and CSP units), storage devices, electric vehicle charging stations, 

thermal production units and the campus as electric and thermal load. The SPM project 

represents nowadays an important research area for the validation of new algorithms, 

logics and management strategies to provide and improve innovative solutions to the 

problem of the integration of DERs and energy storages, fundamental requirements, 

for example, to the European 20-20-20 calls (Horizon 2020 Programme for Research) 

[37]. In 2017, a portion of SPM is being tested in an islanded configuration and 

analysed in terms of stability and load sharing. Such portion is represented in Fig. 7 

and consists of: 

➢ The public grid connected to switchgear (SG) Q1; 

➢ N.1 Sodium-Nickel ST unit manufactured by FIAMM and characterized by 

141 kWh energy capacity and 62 kVA rated power connected to bus Q2 (Fig. 

6a); 

➢ N.3 aggregated PV power plants each characterized by 5 kWp rated power (for 

a total of 15 kWp) connected to bus Q1 by means of a LV cable, from now on 

PV1 ( Fig. 6b); 

➢  N.1 77 kWp PV plant connected to bus Q2, from now on PV2 (Fig. 6c); 

➢ An adjustable resistive symmetric load connected to bus Q2, rated power of 

10kW. This load is used to simulate load variations in a controllable way (see 

Fig. 6d). 

 

 

Fig. 6. a) FIAMM storage; b) PV1 generating unit; c) PV2 generating unit; d) adjustable load 

 

Moreover, both PV2 and the storage have a transformer, whose rated values are 

80kVA, 6%, 200/400 V and 70 kVA, 4%, 400/400 V respectively. 

The sources ratings and the main data of the network components are reported in Table 

2. 
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Table 2 Sources data. 

 PV 1 PV 2 Storage Load 

Rated Power 3x5 kWp 77 kWp 62 kW  

Cable resistance to Q2 157.2 mΩ 20.8 mΩ 43.5 mΩ 181 mΩ 

Cable inductance to Q2 3023.7 μH 14.15 μH 12.42 μH 14.59 μH 

 

 

 
Fig. 7 SPM portion used to create the island 

 

3.3 MG Sources and main Elements 
In the present section, a mathematical modelling of the SPM components involved in 

the islanded portion is presented. 

3.3.1 PV units model 
The PV modules are modelled as a DC dipoles whose voltage-current characteristic 

curve (dependent on the irradiance α in W/m2, the temperature T in °C and the V 

voltage expressed in V) in the I-V plane is described as follows [38]: 
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where the meaning of symbols and their values are reported in in Table 3. The number 

p of parallel modules and s of series modules is: p=3 and s=22 for PV1 and p=14 and 

s=24 for PV2.  

Table 3. PV Module parameters 

PV Module parameters 

Short circuit current in Standard Test Conditions (STC) 
SCI  8.75 A 

Rated external temperature 
NT  25°C 

Temperature coeff. of the short circuit current 
CIT  0.06 

Temperature coeff. of the open module voltage 
CVT  -0.31 
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Minimum solar radiation to supply energy 
MIN  0.2 kW/m2 

Maximum solar radiation to supply energy 
MAX  1 kW/m2 

Open voltage module at MIN  
MINV  35 V 

Open voltage module at MAX  
MAXV  37.11 V 

Maximum power point voltage in STC VMPP 29.7 V 

Maximum power in STC PMPP 240 W 

Model fit parameter b 0.0777 

 

 

3.3.2 Electric storage model 
The electric storage system is a FIAMM SoNick battery (Zebra), with rated capacity 

of 141 kWh, 228 Ah of nominal current capacity (NCC), rated power of 62 kW when 

suppling and 30 kW when absorbing. It is structured in Nm=6 modules in parallel each 

one composed by the series of Nc=240 cells [39]. The storage is represented by a non-

ideal DC voltage generator, where the produced voltage V is a function of its state of 

charge (SOC) [40], its internal resistance Rint and the current I injected by the storage, 

according to the following equation: 

 ( ) ( ), intV V SOC I E SOC IR = −   (2) 

where the internal voltage (E) is an unknown function of the SOC, to be deduced from 

measured data. The model proposed in (2) is justified observing Fig. 8, where it can 

be noticed that discharging the battery at different (constant) currents results in a rigid 

translation of the curve. Under this assumption, for a fixed value of the SOC, the 

voltage V depends proportionally on the current. In terms of electric equivalent, if there 

is a linear relationship between voltage and current, there is an internal resistance, 

whose value can be estimated by simply knowing two voltage-current couples. 

 

Fig. 8  V/SOC cell characteristic [40] 

For each current I, a set of N measurements is available in Fig. 8, formally encoded in 

the following 
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 ( ) ,I, : 1, ,  and 1, ,
pk k iSOC V k N p N= =   (3) 

where, for our measurements, NI=3 and I1=2A, I2=4A and I3=6A. The cell resistance 

value can be calculated as the following average 
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that allows to obtain that Rcell=0.028 . As a consequence, the pairs (SOCk , Ecell,k ) can 

be obtained as follows: 

 
1, ,I 1cell k k cellE V R I= +    (5) 

Finally the possible analytical expression for the link between the internal voltage and 

the SOC can be obtained fitting the pairs (SOCk , Ecell,k ) with the following polynomial 

formula: 
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where the coefficients ai have been found with a least square method aimed at 

minimizing the difference between the polynomial output and the measured sequence 

Ecell,k. The numerical values of the coefficients are reported in Table 4 and the resulting 

curve is depicted in Fig. 9. 

 

Table 4 Polynomial coefficients 

[A] a6 a5 a4 a3 a2 a1 a0 

0 [A] 1.6 10-11 -4. 10-9 6. 10-7 -3.3 10-5 7.5 10-4 5.2 10-4 2.42 

 

Fig. 9 Voltage against SOC cell characteristic 

Then, the maximum voltage of a single cell results: 

 ( )100% 2.66 VcellE SOC = =   (7) 

therefore, the maximum voltage of the overall storage is 
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 ( ) ( )100% 100% 2.66V 240 640 Vcell cE SOC E SOC N= = =  =  =   (8) 

and the internal resistance is 
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The dependence of the voltage from the temperature is neglected according to Zebra 

features [41]. Often, and thus also in this MG, between the storage and its inverter, a 

DC/DC bidirectional converter is interposed (that will be discussed in detailed in the 

following). 

3.3.3 Inverter model 
The aim of the inverter is to couple the DC sources to the AC grid correctly. Each 

inverter is modelled by the mean-values input/output relation, thus 

 
j

2 2

DC
AC

mV e
V


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where AC
V is voltage phasor, m is the modulation index, VDC is the voltage at DC 

terminals, j as usual is the imaginary unit, and δ is the angle of the phasor.  

Each inverter presents a filter posed at its AC terminals in order to attenuate high 

frequencies harmonics and a capacitor of 2.5 µF at the DC terminals in order to 

stabilize the voltage. Fig. 10 and Table 5 present the configuration and the parameters 

of the filter. 

 
Fig. 10 Inverter AC filter configuration 

 

Table 5. AC filter parameters 

Lse Rse Lsh Csh Rsh 

1 [mH] 0.314 [mΩ] 0.0166 [mH] 1 [µF] 2.61 [kΩ] 

 

3.3.4 DC/DC Converter Model 
In order to allow a proper operation of the inverter it is necessary to keep its DC voltage 

as much constant as possible. Thanks to the MPPT algorithm, PV inverters are 

controlled in a way that keep the DC voltage almost constant, since the MPP voltage 

do not vary so much [42]. The storage inverters, on the other hand, are characterized 

by a sensible variation of the voltage on the battery, thus they need a dedicated control 
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of the voltage obtained by the insertion of a DC/DC bi-directional (buck-boost) 

chopper. The DC/DC converter has the structure depicted in Fig. 11 [43]. 

 

Fig. 11 DC/DC converter circuital layout 

The well-known chopper input/output relationship [43] is given by: 

 ,3DC ST STV K V=  (11) 

being VDC,3 and VST the DC/DC output (inverter side) and input (battery side) voltages 

respectively, while KST is related to the switch duty cycles D1 (boost) and D2 (buck) 

according to the following: 
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being PST the power injected by the storage into the network. Moreover, a filter 

consisting of a series inductor and a shunt capacitor have been inserted, whose values 

are 1 mH and 0.5 mF respectively. 

 

3.4 The Proposal 
The aim of this subsection is to propose an approximate model able to adequately 

represent both the transient and the steady state of any MG, after any contingency.  

The final goal is to define a simple but effective model for no-inertia islanded MGs 

expressed in terms of a system of Ordinary Differential Equations (ODEs) capable of 

capturing all the dynamics of the involved electric quantities with a reduced set of 

input parameters. The proposed model keeps the system non-linearity and assumes the 

control input of the MG converters as its own inputs in order to be interfaced with any 

proposed control strategy. Moreover, it does not need any specific licensed software 

to be implemented and requires a limited CPU effort to run. 

To do this, the following simplifications are introduced: 

➢ Each input/output power electronics converter relationship neglects the 

presence of the higher order harmonics 

➢ The shunt sections of inverters AC filters are neglected for simplicity (indeed 

it can be noted from Table 5 that the shunt filter impedance at fundamental 

frequency is more than 3 kΩ). If one considered it, this would imply only an 

enlargement of the network admittance matrix Y without changing the model 

structure.  
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➢ The AC-side portion of the MG (the inverter filter too) is supposed to be at 

steady state (assuming that both the angular frequency of the sources and their 

voltage amplitude can vary), while all the DC dynamics are accounted 

➢ The loads are described with a constant impedance model. Consequently, as 

typical in RMS transients they are inserted in the network model, giving origin 

to the so called extended admittance matrix YE [44]. 

Let us assume that the MG is composed by N power generating units and NL load buses 

and let us use the index k to represent the generic k-th inverter. The overall schematic 

representation of the off-grid MG considered for the SM is depicted in Fig. 12. 

Thus, in the case of the SPM, the portion described in Fig. 7 collapses in the one shown 

in Fig. 12.As will be clear writing the equations, it is apparent that the description of 

the AC grid with the extended admittance matrix allows to couple in a simple but 

effective way the sources dynamics. 

 
Fig. 12 Simplified model of the islanded portion of the SPM 

The first assumption allows to write that [43]: 
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where j, as usual, is the imaginary unit, and, for the k-th source, mk is the modulation 

index (in accordance to its linear meaning [43], its lays in the range [0, 1.15]) and δk 

is the angle such that: 

 ( ) ( ) ( )k k kt t t  = +   (14) 

where  
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while ωk and φk are the angular frequency and the phase of the k-th source, respectively. 

The main network is an independent voltage source, whose phasor is given by: 
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Thus, the active power injected by the k-th source is given by: 
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where YE,ki=Gki+jBki is the (k,i) element of the extended admittance matrix and 

1.. L

T

L L LNV V   =   V  being LiV  the i-th load bus voltage. As stated before, Eq. (17) shows 

the strong coupling of the sources through YE.  

Indicating with ( )ki LG V and ( )ki LB V  ( ),E ki LY V  real and imaginary part, it is possible 

rewriting (17) as: 
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Moreover, on the DC side of the inverter a capacitor Ck is connected with the aim of 

supporting the DC inverter voltage during power transients. The capacitor power 

balance can be written as: 
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PDC,k being the power injected by the k-th energy source at the DC link. 

The generic n-th ST is modelled as a non-ideal DC voltage generator representing the 

battery units connected to the DC side of the inverter by means of an intermediate 

DC/DC chopper in buck-boost configuration. The DC/DC converter is needed in order 

to keep a constant voltage at the DC side of the converter while the buck-boost 

configuration allows a bi-directional power flow. Between the battery and the DC/DC 

converter a series inductor is considered, LST,n, in order to operate the DC/DC converter 

also in step-up configuration. The ST equivalent circuit is depicted in Fig. 13. 
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Fig. 13. Schematic circuital representation of the generic n-th ST unit. 

 

The battery is represented by a Thevenin equivalent where the value of the voltage 

generator, namely En, is dependent on its state of charge (SOCn). This dependency 

could be expressed by means of a 6th order polynomial in the form: 
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The values of ai coefficients vary in accordance to the specific battery technology 

(details on the ST modelling are available in [45]). Neglecting the dependence of the 

state of charge on the temperature (which is reasonable for the SPM battery 

technologies as specified in [45]), the DC voltage provided at the battery terminals, 

Vbatt,n, can be then written as: 

 ( ) ( ), , , ,,batt n n ST n n n ST n int nV SOC I E SOC I R= −   (21) 

where Rint,n is the battery internal resistance. SOCn is related to the ST current IST,n by: 

 ,ST nn

n

Id SOC

dt NCC
= −   (22) 

where NCCn is the nominal current capacity of the n-th ST. 

Furthermore, the ST device current dynamic equations are: 
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where KST,n is the DC/DC converter gain. The DC/DC controller has the aim of keeping 

constant the ST DC link voltage [43]. For the n-th ST unit, one can now define the DC 

power to be used in (19) as: 
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Equations (14), (15), (18) - (24) represent the system behaviour and completely 

describe the DC dynamics of the MG. The modelling of the network with the extended 

admittance matrix allows accounting for the influence of the network topology on the 

AC side power flows. The inputs of the proposed SM can be divided into two 

categories: i) physical inputs that depend on the specific energy source (wind speed, 

solar irradiance, fuel, etc.) and ii) control inputs that are the inverters modulation index 

mk, frequency ωk and phase φk. Such inputs are provided by the MG controller 

according to the specific control strategy. Since the scope of the work is to propose a 

SM of the MG power system to be interfaced with any control logic i) and ii) are going 

to be the boarder signals of the proposed modelling.  

In conclusion, a differential equations (ODE) system can be written as: 

 ( , )x xf= U   (25) 

where f collects (15), (19), (22) and (23),  while the vectors X and U are given by: 
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The initial equilibrium point can be obtained by solving the non-linear algebraic 

system, obtained by zeroing all the time derivatives in (25). 

Starting from an assigned equilibrium point, a structure perturbation (encoded in a 

variation in one or more elements of the extended admittance matrix) causes the 

dynamics. It is useful to underline that, in order to exclude a source from the analysed 
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grid, it is sufficient to cancel the related admittances, highlighting the flexibility of the 

proposed approach to be applied at different MG structures. 

In summary, a step by step synopsis could be useful to summarize the whole 

procedure: 

➢ Define the MG topology, parameters (rated data of cables, transformers, 

sources etc.) and admittance matrix; 

➢ Define the sources and their characteristic (power- irradiance for PV, power-

wind velocity for wind generator, V-SOC for chemical storage etc.); 

➢ Define the all the state variables and write the resulting ODEs;  

➢ Define an equilibrium point of the system zeroing all the time derivatives; 

➢ Define a contingency; 

➢ Solve the resulting ODE system and get the involved variables dynamics. 

 

The proposed model differs from the well-known Dynamic Phasor modelling [46, 47] 

in terms of considering the relationships among AC quantities as steady-state ones. On 

the other hand, DC dynamics are considered, so that any DC inductor or capacitor 

gives origin to one differential equation. AC variations are consequent to the variation 

of the DC quantities by means of the interfacing converters. 

 

3.5 The PSCAD Model 
Beside the validation on the SPM experimental test bed, the proposed SM has also 

been compared against an implementation of the islanded portion of the SPM on 

PSCAD-EMTDC, a commercial software for electromagnetic simulation. This 

comparison is done in order to have a simulative reference for the proposed SM 

accounting for a more accurate dynamic of electrical quantities. Implementation on an 

electromagnetic simulator allows accounting for higher order dynamics of the system 

in order to evaluate the impact of the SM hypotheses on the final result. 

The main differences between the PSCAD model and the proposed SM are: i) all 

electronic devices (DC/DC and DC/AC) consist of controlled not ideal IGBT with 

PWM modulation and ii) each inverter has an AC filter composed with a series and a 

shunt section in order to suppress the PWM harmonics, as depicted in Fig. 14. 

se,kR se,kL

AC

DC

AC,kV
sh,kRsh,kL

sh,kC

 
Fig. 14. Inverter AC filter implemented in PSCAD 

Under these assumptions, the whole harmonic spectrum is accounted both on the DC 

and AC side in the PSCAD environment. As far as the PV systems and the ST unit are 

concerned, they have been implemented by the authors as a DC bipole connected to 
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the DC side of the corresponding converter section. The PV one accounts for (1) while 

the ST one includes (20), (21) and (22). 

3.6 Test Case Definition 
Before starting with the experimental validation of the proposed SM, it is necessary to 

characterize all the parameters needed to set up the SM in a suitable environment. For 

the following simulations the SM has been implemented in MATLAB. With reference 

to the SM general formulation of Section II, for the specific case of the islanded portion 

of the SPM N is equal to three, NST is one and NPV is equal to two. Using the same 

structure depicted in Fig. 12, it is possible to include in the extended admittance matrix 

all the loads and the elements of the AC side of each power generating unit. Fig. 15 

depicts the considered system one-line diagram. 

 

Fig. 15. SPM islanded section one-line diagram. 

 

As one can see, both PV2 and the ST system are equipped with a dedicated transformer 

and a cable connection is present for every generating unit to connect busses Q1 and 

Q2. In the proposed implementation, cables are modelled by means of a simple 

resistive-inductive series impedance, suitable at the light of the reduced length of the 

cables, and transformers are represented with the only leakage reactance. All the 

parameters of the test bed AC network are reported in Table 6. 

 

Table 6 Test bed facility AC section parameters 

Rse,1 0.314mΩ RPV2-Q2 0.0208 Ω 

Xse,1 0.314 Ω XPV2-Q2 0.0044 Ω 

RPV1-Q1 0.057 Ω Rse,3 0.314 mΩ 

XPV1-Q1 1.027 Ω Xse,3 0.314 Ω 

Rse,2  0.314 mΩ XT-ST 0.0088 Ω 

2ST QR − 2ST QjX − ,3seR
,3sejX

1 1PV QR − 1 1PV QjX − ,1seR
,1sejX

2 2PV QR − 2 2PV QjX − ,2seR ,2sejX

cableR

cablejX

BjX

BR

ADJR
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Xse,2  0.314 Ω RST-Q2 0.0435 Ω 

XT-PV2  0.137 Ω XST-Q2 0.0039 Ω 

 

The PV parameters necessary to implement (1) are the same for the two PV plants and 

are detailed in Table 3. 

Finally, attention must be paid to the load characterization, especially to the building 

one. As stated in §3.4, in the SM, the load is represented by an algebraic 

voltage/current law. Since the building load is characterized by a stochastic behaviour, 

the first problem to be faced is to find out a possible closed-form law that fits with the 

real behaviour. As a first comment, no motors or large under converter loads are 

present in the building, since it only hosts classes and offices (heating and cooling are 

provided by a central station which is not electrically connected to the islanded SPM). 

This suggests the possibility of considering a linear law (i.e. to suppose that the 

building load can be represented by a resistance and a reactance posed in parallel). Of 

course, a specific validation of this assumption is not possible, but the agreement 

between simulation results and measurements will give a justification of this choice. 

In order to calculate the suitable value of the building equivalent resistance and 

reactance, the following procedure has been derived. If one neglects distribution 

losses, the active and reactive power absorbed by the building load (PLOAD and QLOAD) 

can be estimated from the active and reactive power delivered at the ST AC terminals, 

PAC,3 and QAC,3 in addition to the active and reactive power injected by each PV unit, 

PAC,2(1) and QAC,2(1): 

 
,1 ,2 ,3

,1 ,2 ,3

LOAD AC AC AC

LOAD AC AC AC

P P P P

Q Q Q Q

= + +


= + +
  (27) 

Assuming that the system voltage drop is negligible, due to the limited length of all 

connecting cables, the voltage at bus 2 can be assumed equal to the ST one (VAC,3). It 

is then possible to calculate the equivalent building load phase resistance and reactance 

RB and XB as: 

 
2 2

,3 ,33 3AC AC

B B

LOAD LOAD

V V
R X

P Q
= =   (28) 

In the considered case, the numerical values of the equivalent building load phase 

resistance (RB) and reactance (XB) are 13.2 Ω and 33 Ω respectively (corresponding to 

an active and reactive power absorption of about 12 kW and 4.8 kVAr). In addition to 

the parameter list up to here, the PSCAD model needs a wider set of data, since it also 

includes the shunt section of the inverter AC filters; those are listen in Table 7 

(identical for the three units). 

 

Table 7 PSCAD additional parameters 

Rsh,1=Rsh,2=Rsh,3 Lsh,1=Lsh,2=Lsh,3 Csh,1=Csh,2=Csh,3 

2.615 kΩ 0.0166 mH 1 μF 
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As pointed out in §3.4, the specific control logic is out of the scope of the present 

article; nevertheless, in order to compare the results obtained by the experimental 

validation and the simulation ones, the islanded SPM control strategy needs to be 

implemented in both the models. The islanded SPM accounts for a master/slave control 

where the ST is the master unit providing the frequency reference to the system and 

regulating its terminal voltage. The slave units, PV1 and PV2, are regulated based on 

an active and reactive power independent reference and they are locked to the 

measured system frequency. Consequently, the master unit guarantees the electric 

power balance. The PVs active power reference is provided by a minimum logic 

selection between the signal of the MPP and the eventual active power external 

limitation. As outputs, the master/slave control logic provides the frequency and 

modulation index for the master unit and the modulation index and the phase shift for 

the slave ones.  

 

Fig. 16. SPM island control logic 

The master/slave control logic of the islanded portion of the SPM is sketched in Fig. 

16. This philosophy has been implemented in both models in order to achieve 

consistent results. The Master controller aims at keeping the ST AC voltage after the 

filtering section VACf,3 at its rated value acting on the modulation index m3 by means 

of a Proportional Integral (PI) controller, as depicted in Fig. 17 while the modulation 

function phase is fixed at zero. The master controller also imposes the system 

frequency .  

 

Fig. 17. Master unit control scheme 
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Fig. 18. Slave unit control scheme 

The slave controllers provide active and reactive power control in accordance to 

specific reference signals (e.g. for the PV systems the MPP signal and the reactive 

power external reference). The controller accounts for two PI controllers and a cross 

coupling compensation as depicted in Fig. 18 for the generic i-th slave unit (see [48] 

for details). 

 

3.7 Experimental Validation 
The aim of this section is to provide a validation of the proposed MG model. As 

previously highlighted, the validation has been performed comparing the results 

obtained by the proposed SM with the ones of a detailed time domain simulation 

implemented in PSCAD environment and against on-field measurement acquired at 

the University of Genoa SPM test bed facility. To achieve the target of acquiring a 

complete set of meaningful data, two different measurement instruments were used, 

both posed downstream of the ST inverter and transformer. The first one is a Jupiter 

Power Quality Analyser [49] (Fig. 19a), while the second is a Fluke 190-104 

ScopeMeter [50] (Fig. 19b). The Jupiter Power Quality is used to acquire the 

measurement of the values of current, voltage and power on a wider horizon due to its 

capability to sample one value per second. The Fluke 190-104 ScopeMeter, on the 

other hand, can show voltages and currents waveforms in a precise way and was used 

to record phase currents and voltages waveforms in a narrow temporal window thanks 

to its 16 μs sampling time.  

 

Fig. 19 a) Jupiter Power Quality Analyser; b) Fluke 190-104 ScopeMeter 
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The comparison is made considering the ST active power, the AC line to ground 

voltage and the AC phase current. However, since the Jupiter Power Quality Analyzer 

sampling time is in the order of one point per second, it is not capable of providing a 

suitable measurement for an accurate comparison. For this reason, active and reactive 

power have been calculated on the basis of the ST current and voltage waveforms 

recorded by the Fluke oscilloscope applying the well-known instantaneous power 

theory in the Park domain [48]. The comparison is performed accounting for three 

different scenarios representative of possible occurrences in the MG operation, 

corresponding to a load variation (Scenario A), a reactive power reference variation 

(Scenario B) and a PV unit disconnection (Scenario C). For the three scenarios, PV 

units were limited in power production in order to avoid errors introduced by possible 

power variation due to unpredicted irradiance changes during the measurement period. 

The SPM initial operational condition is summarized in Table 8. 

 

Table 8  Initial MG steady-state condition  

Component Active power Reactive power 

PV1 9 kW 0 kVAr 

PV2 20 kW 0 kVAr 

ST -16.8 kW 5.0 kVA 

Load about 12 kW about 4.8 kVAr 

Resistor load 0 kW 0 kVAr 

 

3.7.1 Scenario A – Load variation 
The first test case scenario aims at highlighting the performances of the SM after a 

load variation. The load variation is simulated in a deterministic way inserting the 

additional resistor bank after 1 s from the beginning of the data acquisition with an 

equivalent power request increase equal to 10 kW. As one can see from Fig. 20, the 

ST active power absorption decreases and this is confirmed by the reduction of its AC 

current (see first sub-plot of Fig. 21), where the current peak passes from about 35 A 

to 20 A. in particular, the active power variation recorded at the ST terminals is 

10.4 kW, showing that this component satisfies the load increased demand together 

with losses compensation. The AC ST voltage (second sub-plot of Fig. 21) does not 

suffer the load variation keeping mainly constant its peak value. All the figures exhibit 

a good agreement among the curves both for steady-state and transient. The most 

relevant difference among the simplified and PSCAD models and the experimental 

results can be seen in Fig. 20, where both the models active powers reach the final 

steady-state before the measured one. 
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Fig. 20. Scenario A ST active power. Experimental data (blue line), PSCAD (red line) and 

SM (green line). 

 

Fig. 21. Scenario A ST current and phase voltage. Experimental data (blue line), PSCAD (red 

line) and SM (green line). 

This is because, as the inverter controller and filter details have not been shared by the 

manufacturer, typical topologies, parameters and control strategies have been assumed 

in the models in order to achieve the best possible fitting. 

3.7.2 Scenario B - Reactive power variation  
The second test case concerns a reactive power variation of PV2 unit. Starting from 

the initial condition of table 8, a step variation of the reactive power reference is 

provided to PV2 inverter, passing from 0 to -10 kVAr. The experimental recording of 

Fig. 22 (blue curve) highlights that the ST reactive power follows the step reference 

with a sensible delay. This is probably due to a rate limiter included in the PV internal 

controller, whose details have not been shared by the manufacturer. For this reason, in 
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order to mimic the experimental conditions for the two models, a rate limiter has been 

implemented in both models whose parameters have been guessed in order to reach a 

good fitting with experimental results. The comparison appears in in Fig. 22 

highlighting an excellent agreement concerning steady-state values and some slight 

deviations during the transient. Finally, Fig. 23 shows the good agreement among the 

three curves in terms of current and phase voltage waveforms at the AC side of the 

inverter. 

 
Fig. 22. Scenario B ST reactive power. Experimental data (blue line), PSCAD (red line) and 

SM (green line). 

 

Fig. 23. Scenario B ST current and phase voltage. Experimental data (blue line), PSCAD (red 

line) and SM (green line). 

3.7.3 Scenario C - PV2 disconnection 
PV2 disconnection (after 1 s from the beginning of data acquisition) is representative 

of a clouding or a disconnection subsequent to a fault or an overloading of the PV 

system. In the SM the PV2 disconnection can be simulated zeroing the line and the 
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column of the admittance matrix corresponding to its bus. The initial steady-state for 

Scenario C is a little different from test cases A and B because the controllable resistive 

bank was fully inserted in the initial steady-state. This variation has been introduced 

to obtain a ST dynamic characterized by a power flow inversion in order to validate 

the model in both the ST operational conditions (power production and absorption) 

and during the transition between different assets. For this reason, the initial ST power 

production is equal to -6.8 kW. The first sub-plot of Fig. 24 describes the behaviour of 

the ST phase current when PV2 is detached. As one can see, the current increases its 

amplitude and has a phase shifting so that the active power request by the load is 

satisfied. Moreover, in Fig. 25 one can notice the active power inversion at the ST AC 

bus bar. The agreement among the two approaches is still good with some deviations 

with experimental data in the power sign inversion transient, partially due to the lack 

of information on the inverter and chopper controllers. The second sub-plot of Fig. 24 

describes the voltage behaviour, which is again not affected by the contingency. 

 

Fig. 24. Scenario C ST current and phase voltage. Experimental data (blue line), PSCAD (red 

line) and SM (green line). 
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Fig. 25. Scenario C ST active power. Experimental data (blue line), PSCAD (red line) and 

SM (green line). 

In conclusion, the experimental campaign shows that the proposed SM is in good 

agreement with the measurements and the PSCAD simulation, with some minor 

differences that can be mainly ascribed to the following reasons. Firstly, the load is 

unknown due to its stochastic behaviour and it cannot be directly measured due to 

SPM actual layout. Secondly, inverter and DC-DC converter internal controller details 

and computational delays are not precisely known (modulation strategy, carrier 

frequency, filters data and so on) since the producer did not share detailed information. 

Finally, the electrochemical dynamics in the ST system are not taken into account in 

the SM and PSCAD one. Nevertheless, the results allow considering the SM 

sufficiently reliable to be implemented for the validation and preliminary test of 

innovative control strategies and EMS for islanded no-inertia MGs. In particular, the 

SM ODE could constitute the set of constraints for a Model Predictive Controller 

(MPC) aimed at regulating the MG voltages and frequency. The flexibility of the 

structure of the SM allows extending it at different assets of MGs characterized by a 

heterogeneous generation mix. 

 

3.8 Chapter 3 Conclusions 
This chapter aimed at providing an experimental validation of a modelling approach 

to study the behaviour of no-inertia MGs in islanded configuration. Such model 

describes the MG with a system of ODEs representing a first harmonic dynamics of 

the power electronic devices and of all the components at the DC converters side. The 

coupling among the various MG components is achieved by means of a steady-state 

representation of the AC section of the MG using the extended admittance matrix. The 

main advantage of the SM is that it can be easily interfaced with many different control 

logics in order to provide a preliminary evaluation of the controller expected 

performances in an easy but effective way, reducing the commissioning cost. The 

proposed model has been validated against a detailed simulation in the PSCAD-

EMTDC environment and with data acquired during a measurement campaign on a 

portion of the SPM islanded from the rest of the campus grid. Results highlighted a 

good trade-off between accuracy and computational effort, suitable for a first 

assessment of innovative control approaches.  
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4 Microgrid stability 
 

The aim of this chapter is to present and to discuss a novel procedure, developed by 

the student, to study MG stability under some conditions. 

4.1 Introduction 
Islanded (or autonomous) MGs are the most challenging ones especially if no-inertia 

MGs are concerned (MGs where all the power generating units are connected to the 

MG by means of power electronic devices). With such MGs, stability issues claim for 

specific analysis methods  as approaches developed for classical power system can 

seldom be applied due the presence of power electronic devices (highly nonlinear) and 

to the reduced or null inertia [51, 52]. The importance of such a topic is witnessed by 

the relevant number of studies performed by researchers under different 

configurations. Nevertheless, stability studies on MGs have been mainly performed 

using small signal stability theory. In particular, small signal models for inverters [53], 

synchronous generators [54], rectifiers [55] and induction motors [56] have been 

deeply investigated. 

The major drawback of a small signal stability approach is related to the fact that the 

results validity is limited to a neighbourhood of a specific working point (whose 

magnitude is unknown) [57]. Therefore, it is not possible to provide an estimation of 

the amplitude of the disturbance that can be withstood without compromising the 

system stability. To overcome this problem, the system needs to be analysed 

accounting for its intrinsic nonlinearity and this can be done in two main ways: i) using 

numerical simulations and ii) applying the Lyapunov theory [58].  The first approach 

allows an accurate evaluation of the system stability but does not provide any 

analytical stability conditions. Therefore, a complete simulation of the system must be 

run for each configuration one needs to analyse. This results in a limited analysis of 

the system with a prohibitive computational effort [59].  On the other hand, Lyapunov 

based approaches have not been positively applied to assess the stability of traditional 

power systems due to their relevant extension and complexity. On the contrary, MGs 

are of limited extension by their nature, making Lyapunov stability approaches [59, 

60] much more appealing. In this framework, researchers have focused their efforts on 

the definition of Lyapunov functions for the stability assessment for the whole MG 

system as well as on the stability assessment of individual sub-systems (synchronous 

generators, power converters and motor loads) [59].  

While the overall MG stability has been analysed in a limited amount of works, which 

usually involve complex techniques such as  the genetic algorithm [61] or Takagi-

Sugeno multi-modeling approach [62], the number of studies involving the stability 

individual sub-systems is surely higher. In particular, droop controlled inverters have 

been investigated in [63-65]. More in detail, in [63, 64] an equivalence between the 

inverter DC side capacitance dynamics and the rotating machine rotor one is 

established, while the authors of [65] have developed a reduced order model for the 

system that allowed finding the energy function and the stability conditions. 
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Unfortunately, some of the assumptions on which it is based e.g. inductive 

infrastructure and voltage/reactive power droop controller disabled, make the 

configuration quite unrealistic for Low-Voltage (LV) and Medium-Voltage (MV) 

MGs applications. 

To do so, it is also necessary to consider the control architecture implemented in the 

MG. On this topic, the most diffuse approach to manage islanded MGs is the droop 

logic [66], thanks to its capability to guarantee the load sharing without 

communication and to integrate both traditional and under converter generation units 

[67]. In accordance with the analysis provided before, the approaches to assess the 

stability of droop controlled islanded MGs are very limited and all of them relies on 

the small-signal stability theory [68]. 

In this framework, the goal of this chapter is to find a new and simple formulation, 

able to evaluate the MG stability with the classic droop control technique described in 

[24], without the necessity of numerically finding an equilibrium point as required in 

the small signal stability approach. This is the reason why it is not possible to compare 

them directly. Such method is firstly presented for an easy case of two sources with no 

reactive power droop and a mathematical proof of the obtained analytical stability 

conditions is given. Then, thanks to some reasonable approximations, the validity of 

such condition is extended to the general case of a MG with N generating units with 

both the droop control channels enabled. The proposed method is then validated 

comparing its results with the ones provided by numerical simulations performed in 

the PSCAD-EMTDC environment that represents all the MG components and 

controllers in deep details. 

 

4.2 Problem Statement 

4.2.1 Droop controlled MG mathematical model 
Let us consider the generic no-inertia MG layout depicted in Fig. 26, with N droop-

controlled sources. 
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Fig. 26 General layout of a no-inertia, islanded MG 

 

The i-th droop controlled energy source is managed according to the well-known 

control logic proposed in [69] and in Fig. 27, where the DC/AC converter controller is 

divided in droop controller, voltage controller and current controller. 

 

Fig. 27 DC/AC Converter Control Scheme 

The droop controller provides the modulation frequency (ωi) and the direct-axis 

voltage reference (𝑉𝑑.𝑖
∗ ) of the DC/AC converter according to the well-known droop 

control scheme: 
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where Pset,i and Qset,i are the active and reactive power set-points values, Vni is the 

voltage set-point and ωn is the system rated frequency [24]. Moreover, Pi, Qi are the 

actual active power and reactive power while mi and ni are the active and reactive 

power droop coefficients.  

The voltage control loop receives as input the d-q voltage references and provides the 

d-q current references to the current control loop. 
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The current control loop provides the modulating signals for the i-th DC/AC converter. 

For sake of completeness a detailed description of voltage and current control loops 

can be found in [69]. Finally, it is important to remind that the following relationship 

holds between the i-th converter frequency i and corresponding angle δi: 

 ( )i
i i n base

d

dt


     = −   (30) 

base  being the system rated angular frequency. 

Under the hypothesis that i) the AC grid is at steady state and ii) the loads can be 

modeled as constant impedance [70], the AC network can be represented with the 

extended admittance matrix, YE=GE+jBE so that the active/reactive power injections at 

i-th bus can be computed as follows [71]: 
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where the * operator represents the complex conjugate and j i

i iV V e


= , δi being the 

angle of the voltage of the i-th source and Vi the voltage amplitude. Extensive 

validation of the above-mentioned assumptions can be found in [70] together with the 

treatment of the more general case of a load described with a generic algebraic 

relationship in the voltage/current plane (such as constant power load).  

Assuming the steady state of the voltage and current controllers one has that: 
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System (34) is a Differential Algebraic Equation (DAE) system whose general form 

is: 
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while all other parameters (droop coefficients, network admittance matrix elements 

and so on) are collected in the multidimensional variable k for the sake of readability. 

Obviously, f and g are multidimensional functions that reproduce relations (34). 

 

4.2.2 Equilibria of a droop-controlled MG 
Let suppose that an equilibrium point ( )0 0 0, ,y x k  for the considered MG exists, i.e.: 
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any perturbation in the network (e.g. a load change, a line opening or closing, etc.) can 

be coded in a change of k from k0 to k1. As a consequence, the dynamic of the MG is 

described by (35) setting k=k1 and initial values  y(0)= y0.  

Under this consideration, the “stability of the MG” corresponds to the existence of a 

new equilibrium point and the possibility to reach it after the contingency. The 

common approach adopted to face such a problem relies on the Lyapunov’s 

linearization method [72]: if the system linearized around the new equilibrium point 

y1 is strictly stable (i.e. all eigenvalues of the Jacobian Matrix of the system are strictly 

in the left-half complex plane), then the equilibrium point is locally asymptotically 

stable. However, as shown in an easy example in the Appendix, this result does not 

guarantee that the new equilibrium point is reached starting from the initial point y0. 

In other words, one should still verify that the initial condition belongs to the domain 

of attraction of the final equilibrium point [72]. 

 

4.3 Proposed Approach 
In the present section, an alternative approach to assess a MG large-signal stability is 

proposed starting from a simple case in which a two sources MG is considered 

provided with active power droop law enabled (first of (29)) and reactive power droop 

law disabled (second of (34)). For this reason, voltages Vi are supposed to be constant. 

The results achieved in §4.3.1Subsection III-A are then generalized for any no-inertia, 

droop-controlled MG layout in §4.3.2. 

4.3.1 Two sources MG configuration 
Rewriting the first of (34) for N=2 and summing up the two differential equations, the 

following mono-dimensional Cauchy problem can be written: 
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having defined: 
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Notice the difference between BE and B(y) (or simply B), where the first one stays for 

the imaginary part of the admittance, instead the latter represents the coefficient 

introduced in (38). 

The stability analysis focuses on the research of a constant solution for (37) that 

implies constant active power flows. 

Since f ϵ C∞(ℝ), i.e. is a continuous and differentiable function, (37) is a Cauchy 

problem with existence and uniqueness of the solution. So, if f(y0)=0 then the solution 

is y(t)=y0. Otherwise, if f(y0)≠0, then, due to the continuity of f, one can assume that 

an interval I exists containing y0 and where f is always not null; therefore the solution 

is easily obtained as: 
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whose invertibility is a consequence of the continuity of the constant sign of f in I. 

 

If the reactive control is disabled (setting all the reactive droop coefficients (29) to 

zero), then the voltages constant and A, B, C are no more dependant on y. With this 

assumption, f becomes just a trigonometric function. 

Rewriting f as: 
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with  such that: 
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Let us show that  

 
2 2 2A B C 0− −  . (44) 

is a sufficient condition that ensures that the limit for t approaching infinity of the 

solution y exists and it is bounded. 
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More precisely, if (44) is not verified, then (42) does not admit zeros, hence it is easy 

to obtain that H is unbounded and defined in I = ; this implies that y diverges. 

Otherwise, if condition (44) is verified, the zeros of f belong to the following set: 

 
2 2
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The domain of H can be obtained evaluating the order of the zeros of f. To this aim, 

the value of the first and second derivative of f for any y Z is necessary:  
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and 

 ( )f y A = − . (47) 

This means that y  is a zero of first order if A2-B2-C2<0, otherwise, if A2-B2-C2=0, 

y is a second order zero. In both the cases, the order of the zero is greater or equal 

than one so the integral function that defines H diverges in y . Then, once (44) is 

verified, the domain of H is ( )1 2,I y y= , with y y Z1 2, , such that y1
 is the largest zero 

of f such that y y1 0
and y2

is the smallest zero of f such that y y0 2
. Moreover, if f 

is positive (negative) in I, then
1

lim ( )   (+ )
y y

H y
+→

= −   and 
2

lim ( )   ( )
y y

H y
−→

= + − , 

meaning that: 
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where  
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2 0

if ( ) 0

if ( ) 0

y f y
y

y f y


= 


 (49) 

This proves that (44) is a sufficient condition to obtain a solution y that becomes 

constant for t large enough, i.e. for the existence of a final working point such that y0 

belongs to its domain of attraction. 

 

4.3.2 Extension of the proposed approach to a generic MG layout 
In order to extend the previous results to a more realistic configuration two main issues 

need to be addressed: 

• the necessity to a consider MG layout with more than two droop-controlled 

power sources; 

• the inclusion of the reactive power/voltage droop law (i.e. considering the 

second of (34)). 

This is done making some simplifying assumptions on (34) that allow describing the 

MG dynamics in an approximate way with N-1 decoupled differential equations of the 
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kind (37)-(38) and so to assess the MG stability with N-1 conditions of the kind of 

(44). 

With this goal in mind, it should be observed that the second of (34) can be seen as a 

system of N algebraic equations in the N unknowns voltage amplitudes Vi, for any 

i=1,...,N. Its solution can provide the correlation between voltage amplitudes and 

phases. However, as such system is seldom analytically solvable, a simplified 

approach is here proposed. 

Let us reconsider the second of (34); supposing  that the i-th converter voltage is 

weakly affected by the angular variations and the other converters voltages, one can 

assume that: 

 
0 0

0

i k i k

k kV V k i

   − = −


= 
 (50) 

being δi0, δk0 and Vk0 the angular phases and voltages initial values. Thanks to this 

assumption, the second of (34) becomes a set of decoupled, second degree algebraic 

equations that can be solved in order to find the values of Vi. Simulations proposed in 

the next section will show, if the final working point exists, then assumptions (50) are 

reasonable. Otherwise, the solution of (34) is of no use as no final steady-state exists. 

The assumption (50) has two main consequences: i) it allows solving in an 

approximate but analytical way the nonlinear algebraic system and ii) it provides a 

value for the bus voltages to be used in the first of (34). 

This implies that the right-hand side of the differential equations in (34) is again as a 

linear combination of trigonometric functions. Such property is fundamental if one 

aims at extending the results obtained for the two sources case presented in the 

previous section. 

The final step one needs to make in order to extend the results of the simplified test 

case is to consider the angular differences rather than the single angle dynamics. Let 

us rewrite the first of (34) in terms of angular differences as follows: 
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



 (51) 

for any i,j=1,…,N such that i≠j. 

In a MG with N sources there are K=(N2-N)/2 possible angular differences. Among 

these, only N−1 are linearly independent. Following the criteria that led to the study of 

large power systems stability [73], let’s suppose to divide the set of angular differences 

in two groups: the first set, from now on named Critical Sources (CS) set, contains 

N−1 differences that satisfy the following properties: i) they are linearly independent 

and ii) they are the ones that, in the initial instant, assume the N−1 highest amplitudes 

among all the possible differences. The remaining K−N+1 differences are indicated as 

Non-Critical Sources (NCS) set. 
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Now, reconsidering the right-hand side of (51) in the hypothesis that δi - δj ϵ CS, the 

following approximation can be done: 

 ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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00
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k ki j i j

ki j j i j iki j
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− − 


− + − − = 
− 

− + −

 (52) 

The meaning of (52) is that angular differences belonging to the NCS can be frozen to 

their initial value while for angular differences belonging to the CS set there is the 

necessity to highlight the δi - δj term. This is done by adding and substituting δj to the 

angular difference itself. In this second case, a residual difference δj - δk appears. Since 

the CS set is defined by linearly independent differences δj - δk must belong to NCS 

set and thus it can be frozen. 

The idea supporting assumption (52) is that machine angles that were close to each 

other at the beginning of the transient remain sufficiently close to each other during 

the whole transient, due to the fact that both the initial point and the eventual final one 

are determined by the same control laws. 

According to (52) and exploiting trigonometric properties of sinusoidal and 

cosinusoidal functions, one has that (51) is reduced to the following set of N-1 

independent differential equations: 

 
( )

( )( ) 0 0

' cos( ) sin( )

0

i j ij ij i j ij i j

i j i j

A B C     

   

 − = + − + −


− = −

 (53) 

which have the same form as (38). So the MG dynamic converges to an equilibrium 

working point if N−1 conditions of the kind (44) are satisfied, e.g.: 

 
2 2 2 0ij ij ijA B C− −    (54) 

ij are subscripts corresponding to CS set sources. 

 

4.4 Validation of the Proposed Approach 
The aim of the present section is to validate the proposed procedure comparing the 

results obtained with the ones provided by an electromagnetic simulation performed 

using PSCAD-EMTDC [6] environment that allows representing all the MG 

components with a high level of details. It is worth pointing out that in the proposed 

PSCAD simulations all the MG control loops are represented in detail (e.g. voltage 

and current control loops as depicted in Fig. 27) differently from what has been done 

to define the proposed simplified approach. 

 

Since MGs are usually of limited extension by definition, validation testbeds usually 

account for three sources configurations [56, 74]. For this reason, let us consider a LV 

MG with N=3 sources and the electric diagram of Fig. 28. 



  49 

 
Fig. 28 Test case MG layout. 

 

The MG AC rated voltage is equal to 0.4 kV. Network parameters have been chosen 

carefully to produce some unstable operational points in order to better highlight the 

results of the proposed approach. Table 9 reports the AC distribution system 

parameters while Table 10 collects the data of each droop-controlled unit. Per unit 

parameters of the droop controllers are defined on each source rated power An. 

 

Table 9 AC grid parameters 

R1 L1 R2 L2 R3 L3 

0.36 Ω 0.45 mH 0.36 Ω 0.45 mH 0.44 Ω 4.5 mH 
 

Table 10 – droop-controlled sources parameters 

Source An Pset Qset m  n 

Source 1 7 kVA 5 kW 5 kVAr -6 % -0.5 % 

Source 2 14 kVA 10 kW 10 kVAr -6 % -0.5 % 

Source 3 140 kVA 100 kW 100 kVAr -6 % -0.5 % 

 

Without any loss of generality, the MG load is represented as resistive-reactive parallel 

impedance [70]. The MG initial working point is characterized by a load absorption of 

16 kW and 6.4 kVAr, corresponding to a load series impedance of 8.63+j 3.44 Ω 

calculated at the MG rated voltage. Starting with this load conditions and equipping 

the sources with the active and reactive power droop laws, the solution of the load flow 

equations allows evaluating the power generations and the voltage phasors of the three 

sources (Table 11). 

Starting from this working point, two load variations are analysed in detail. The first 

one (§4.4.1) corresponds to a “stable transient” while the second (§4.4.2) is an 

“unstable one”. For each of the two test-cases, a first evaluation of the transient is 

performed by means of the PSCAD simulation. Following, the application of the 

proposed procedure is provided to assess its effectiveness.  

Finally, §4.5 provides a practical application of the proposed approach: starting from 

a given initial point, a map of all the possible load variations is drawn that leads to a 

stable final steady-state condition.  

 

 



  50 

Table 11 MG initial working point 

Source P0  Q0  δ0 V0  

Source 1 0.72 kW 4.89 kVAr 0° 400.0 V 

Source 2 1.44 kW 5.51 kVAr 0.042° 400.9 V 

Source 3 14.36 kW -2.20 kVAr 8.258° 402.0 V 

 

4.4.1 Test-case 1 
This case is representative of an increase of the load active and reactive power passing 

from 16 kW and 6.4 kVAr to 64 kW and 25 kVAr after 2s from the beginning of the 

simulation. The final working point corresponds to a load impedance of 2.17+j 0.85 Ω 

calculated at the MG rated voltage. As one can see from Fig. 29 the sources frequencies 

change according to the droop laws, until reaching the same steady-state value, 

corresponding to a stable equilibrium point for system (34). Stability can also be 

verified from Fig. 29 and Fig. 30 where both the angular differences and the voltage 

amplitudes converge to a steady-state solution. 

 

Fig. 29 Frequency variation time profile for test-case 1.  

The initial angle differences, in accordance with the data reported in Table 11, are: 

 

10 20
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 

 

 

− = − 


− = − 
 − = − 

  (55) 

According to (55), The CS set consists of δ1- δ3 and δ2- δ3, while the NCS set includes 

δ1- δ2. This fact is also confirmed by the PSCAD simulation, where in Fig. 30 one can 

see that δ1- δ2 is almost constant during the transient while the most meaningful 

variation occurs in the differences belonging to the CS set. 
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Fig. 30 Angular differences time profile for test-case 1. 

In accordance with the proposed procedure, it is now necessary to get an estimation of 

the three sources voltages considering the second of (34) under assumption (50). For 

the considered test-case one obtains: 

 

1
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=


=
 =

  (56) 

Please note that the exact initial values appearing in Fig. 31 are very close to the 

approximate ones reported in (56), which is, to a certain extent, a justification of 

assumption (50). 

 

Fig. 31 Voltages time profile for test-case 1. 

Using (56) it is possible to calculate the stability coefficients for the two angular 

differences of the CS set, as reported in Table 12. 
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Table 12 Test-case 1 stability coefficients 

 − − 

Aij 0.0851 0.0426 

Bij -0.0315 -0.0141 

Cij 0.0941 0.0515 

2 2 2

ij ij ij
A B C− −  -0.0026 -0.0010 

As one can notice from the last row of Table 12, conditions (54) are verified for 
both the angular differences of the CS set, thus indicating the stability of the final 
working point. This consideration is in accordance with the results provided by the 
numerical simulation. 

4.4.2 Test-case 2 
This case is representative of a much higher power increase occurring at 2 s from the 

initial value defined in Table 11 to 91 kW and 36.4 kVAr, corresponding to an 

impedance of 1.51 + j0.60 Ω calculated at the MG rated voltage. 

Simulation results for the sources frequencies are reported in Fig. 32. As one can see, 

frequencies diverge which means that no final equilibrium is reached. 

 

Fig. 32 Frequency variations time profile for test-case 2. 

Instability can also be verified from Fig. 33 and Fig. 34 where both the voltage 

amplitudes and the angular differences of the CS are characterized by a divergent 

behaviour. 
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Fig. 33 Voltages time profile for test-case 2. 

 

Fig. 34 Angular differences time profile for test-case 2. 

Since the initial point of the transient is the same as for test-case 1, the initial 

differences are again given by (55) and the CS set and the NCS set are the same of 

§4.4.1. Eq. (34) with assumption (50) leads to: 
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  (57) 

Also in this second test-case, Fig. 34 confirms the hypothesis that the dynamic of the 

NSC set angular differences is negligible with respect to the one of the CS set that are 

the cause of the system instability. Once again, it is possible to calculate the stability 

coefficients for the two angular differences of the CS set for test-case 2, as reported in 

Table 13. 
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Table 13 – Test-case 2 stability coefficients 

 − − 

Aij 0.1047 0.0530 

Bij -0.0303 -0.0136 

Cij 0.0910 0.0499 

2 2 2

ij ij ij
A B C− −  0.00176 0.00014 

 

From the last row of Table 13 one can see that conditions (54) are not verified for both 

the angular differences of the CS set. This implies that the proposed method is 

correctly pointing out the instability of the considered final working point, as verified 

by means of the numerical dynamic simulation. 

 

4.5 Evaluation of the Overall Stability Region of the Considered MG 

Layout. 
The developed approach allows performing with MGs what is typically done for 

traditional power systems in the so-called Dynamic Security Assessment (DSA) 

framework [73]. Given a MG layout and a specific working point, one can generate a 

set of reasonable contingencies or events and check whether the MG is able to 

withstand them or not. 

More in details, let us reconsider the network of Fig. 28, the MG-DSA can be obtained 

as follows: 

• Acquire the MG initial working point 

• Define the angular differences CS and NCS sets; 

• Define a contingency (e.g. an active and reactive power load variation); 

• Check whether conditions (44) are satisfied or not; 

• Conclude about the existence and the stability of the final working point. 

 

As an example, the application of the proposed approach allows drawing the DSA map 

of Fig. 35 (continuous yellow and blue areas). Such a map is drawn in the load active 

power (PL) vs. load reactive power (QL) plane representing the MG load request and it 

is calculated starting from the initial working point of Table  (white dot in Fig. 35). 

The blue area represents the set of the PL-QL couples leading to a final stable working 

point, while the yellow one is the set of load requests that do not allow to reach a final 

steady-state condition. Examining Fig. 35, it is possible pointing out that the existence 

of a final stable working point is mostly influenced by the load active power (beyond 

a load active power of 80 kW no stable working point can be found). In order to 

validate the results achieved by the DSA map provided by the application of the 

proposed approach the same DSA map has been obtained by means of detailed PSCAD 

simulations. For the sake of results readability, a set of 427 contingencies characterized 

by the load requests given by the red markers appearing in Fig. 35 has been simulated.  

Star markers indicate the load requests that allow to find out a final stable working 

point, while unstable ones are represented with a rhombus marker. The validation 



  55 

shows a good agreement between the proposed approach and the complete simulation, 

with a slight overestimation of the unstable zone predicted by the simplified approach.  

However, number at hand, only 27 stable working points over 427 (i.e. 6.3%) are 

misclassified as unstable by the proposed procedure that is, by the way, a conservative 

result. This implies i) a 93.7 % agreement between the proposed approach results and 

the detailed PSCAD simulation and ii) the fact that no unstable working points are 

labelled as stable. 

 

Fig. 35 DSA for the considered MG starting from an initial working point characterized by a 

load request of 16 kW and 6.4 kVAr. 

As a final remark, it is worth noticing that this result cannot be achieved with a 

linearized, eigenvalues-based approach and that the proposed approach allows 

reducing the CPU effort in the evaluation of the DSA map. The computational time 

requested for the proposed approach is 45s, while the exact approach needs 1 hour and 

26 minutes (both on an 8Gb RAM, Intel Core i7-6700 CPU at 4.00 GHz machine). 

Finally, the simplicity of the proposed approach allows its implementation in a MG 

Energy Management System that, for any operating condition (initial point), can draw 

the map in real-time. So, the system operator can know in advance whether a 

contingency can be withstood or not and, in the latter case, evaluate the effectiveness 

of the actions to be taken to prevent the system from instability. 

 

4.6 Chapter 4 Conclusions 
A new method for the evaluation of the stability of a droop-controlled MG was 

proposed. The approach started from the proof of a stability criterion to be applied to 

a simple MG configuration characterized by only two power sources. Then the 

criterion was extended to a general case by means of some simplifying hypothesis. 

The validation of the proposed methodology was performed comparing the obtained 

results with the ones provided by complete simulations in the PSCAD-EMTDC 

environment. The proposed approach was also applied to perform a DSA of the MG 

under different working conditions.  
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In conclusion, the proposed approach has two main advantages with respect to 

previously developed methods: i) it overcomes the problem that, from a theoretical 

point of view, the existence of a final equilibrium point with all left half-plane 

eigenvalues does not imply that, for a given initial condition, such final working point 

will be reached; ii) from a numerical point of view, the eigenvalues analysis requires 

the numerical solution of an algebraic nonlinear system to evaluate all the possible 

system final working points and the numerical evaluation of the Jacobian matrix 

system eigenvalues for each of them. On the other hand, the developed stability 

conditions do not require any numerical solver as they consist of a set of N-1 

inequalities to be verified. 
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5 MPC Controller for Microgrid 
 

This chapter proposes a novel decentralized and communication-less control strategy 

for frequency and voltage regulation in PV-Storage islanded MGs. The proposed 

approach aims at achieving a suitable management of the different operational assets 

of the PV-Storage islanded MGs providing suitable transition among them in order to 

achieve a continuous and effective power supply to the system loads. Local inverter 

controllers are designed exploiting the capabilities of the Model Predictive Control 

(MPC) achieving an architecture that relying only on local measurements, is able to 

nullify both frequency and voltage errors. This way, the proposed approach can 

combine the advantages of the classic droop and master/slave controllers as it does not 

need neither communication among devices nor a secondary centralized control loop. 

Moreover, it is able to account for the Storage characteristics imposing a power 

curtailment of the PV units whenever either the power absorption or the State of 

Charge (SOC) limit is reached. 

Finally, a simple experimental test is presented in order to show an actual 

implementation of this control algorithm. 

 

5.1 Introduction 
Primary microgrids frequency and voltage control strategies can be divided into two 

main categories depending on the need of an ICT infrastructure or not [75]. ICT based 

MG control techniques e.g. the so called master/slave control [76, 77] and distributed 

control [78]. On the other side, among  the communication-less primary regulation 

approaches it is worth citing the droop control [79] and its numerous variants [80]. The 

main problems of ICT based primary controllers are related to the need for high-

bandwidth communication channels, which can be impractical, vulnerable and 

expensive in MGs with long connection distances among generating units. On the 

other hand, the droop approach for primary regulation implies two main drawbacks: i) 

frequency and voltage deviations from their rated values, resulting in the need of 

secondary regulation, and ii) the inability to satisfy multiple control objectives [75]. 

Among the various MGs set-ups, the one that is collecting some relevant interest from 

producers, customers and researchers is the so called autonomous Photovoltaic-

Storage (PV-Storage) configuration [81]. The reason of this interest lays in the large 

amount of PV installations all over the world and the idea that efficiently shifting the 

production capability of PV plants significantly improves their exploitability. 

Moreover, a PV-Storage MG can also be self-sustainable if properly designed [82] 

providing an important contribution to the electrification of rural areas and to the 

flexibility and resiliency of existing electric networks. 

Beside the simplicity of the idea to integrate PV and Storage devices, many are the 

problems to be faced to efficiently do it, especially if an autonomous PV-Storage MG 

is considered [83]. In this latter case, the system needs to be capable to satisfy the load 

demand, providing frequency and voltage regulation, but also to suitably manage the 

Storage SOC in order to guarantee the continuity of supply to the MG loads.  
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For these reasons, the control of islanded PV-Storage configurations was deeply 

investigated in literature. Previous works focused their attention on solutions where 

the PV unit and the battery share the same converter [84, 85]. Such a configuration is 

quite limiting since it cannot be applied for the retrofit of existing PV plants or for 

configurations where the PV and the Storage are not installed close to each other. 

Alternative solutions to provide a suitable system regulation without ICT 

infrastructure were gathered by the installation of diesel generators [86] or by 

implementing the so called “Virtual Synchronous Generator” [87] in order to create a 

real or artificial inertial frequency response allowing the application of control 

solutions based on inertial frequency dynamics. The main drawback of these solutions 

is the necessity of a dedicated device (a diesel generator or a power converter) to 

achieve the inertial frequency response, increasing the topological complexity and the 

cost of the system. Beside these solutions, recent works tried to solve this issue with 

smart control approaches using the system frequency as a communication signal but 

without the necessity to install additional devices. In particular, [88] shows a PV-

Storage management where each generation unit is provided with a dedicated local 

primary controller and the frequency produced by each inverter is used to give and 

receive information about the operational status of the system. The main drawback of 

[88] is that it needs a secondary controller to restore the MG frequency at its rated 

value; moreover, it does not take into account the bounds on the system frequency and 

on the rating of the inverter, limitation that could strongly affect the proper operation 

of the system. In a recent paper, a MPC approach is proposed to replace traditional 

PID based ones for the control of inverters fed by renewable power generation [89]. It 

must be underlined that [89] is one of the very few cases where MPC is proposed for 

component control rather than for secondary and tertiary control [90, 91]. However, in 

[89] the MPC controller is only used to merely substitute the classical PID ones but is 

inserted in a traditional droop-based scheme. Consequently, the method does not 

nullify frequency and voltage errors; moreover, no hint is provided on the management 

of different operational assets of the PV-Storage MG (e.g. SOC saturation, Storage 

power limitations, PV production curtailment, etc.). 

So, the aim of the present article is to start from the idea developed in [89] to design 

local inverter controllers that better exploit the features of the MPC (i.e. predicting the 

future behaviour of the system and inserting constraints on the variables) providing a 

plug-and-play control architecture for the islanded PV-Storage system. Such 

architecture meets both the primary and secondary controller goals (sharing the load 

request among the sources and zeroing the voltage and frequency errors) without the 

need of an ICT infrastructure (i.e. based only on local measurements). This combines 

the advantages of the droop and master/slave controllers recalled at the beginning of 

this introduction. Moreover, the developed approach can account for the Storage and 

PV characteristics in order to i) manage the storage SOC and power limits ii) constrain 

the PVs to work at their Maximum Power Point (MPP) when possible and curtail their 

power when necessary and iii) guarantee an automatic and seamless transition among 

the different MG operation assets providing a suitable adjustment of the MPC goals. 
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5.2 General Overview and Structure of the Proposed Control  
The considered MG configuration consists of a Storage unit and NPV PV systems, each 

interfaced with the AC MG distribution system via power electronics converter. The 

assumption of considering many PV units is related to the fact that large PV plants are 

organized in sub-fields each provided with a dedicated converter in order to suitably 

manage a fixed number of PV strings [92]. Each PV and Storage converter is equipped 

with a local controller (please note that the structure of the Storage controller is 

different from the PV ones, as will be clarified later on). In this layout (see Fig. 36) 

three main MG configurations can be defined for the unit controllers, namely the 

Normal Operation (NO), Storage Power Priority (PP) and Storage SOC Priority (SP) 

[93]. 

 

Fig. 36. General PV-Storage MG layout. 

The MG NO is when the load request and the PV Maximum Power Point production 

are not causing any violation of the Storage power and SOC limits. In this 

configuration, the PV units local controllers make them work at their MPP, while the 

Storage controller makes it act as an independent voltage source in order to achieve 

the active and reactive power balance. The PP operation mode corresponds to a 

condition when the Storage should absorb a power greater than its rating and thus it is 

necessary to limit its power at the maximum absorption threshold while the PV 

controllers must curtail their production to satisfy the power balance. Finally, the SP 

mode is activated when the Storage reaches its maximum SOC; in this case the Storage 

controller needs to nullify the Storage power absorption and, once again, the PVs must 

curtail their production to balance the load demand. As a result, the Storage controller 

accounts for three different operational modes, while the PV controller accounts for 

only two operational modes since the PV behaviour in PP and SP modes is exactly the 

same (for this reason in the following this will be labelled as PP_SP for the PV MPC 

controllers). For the sake of completeness two other scenarios can happen when the 

load request is greater than the overall PV MPP production and i) the Storage is 

providing its maximum power injection and ii) the Storage is totally discharged i.e. the 

SOC is at its lower limit value. Nevertheless, these two cases can only be managed via 

Demand Response strategies; for this reason, they are disregarded in the present 

chapter. 
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5.3 The MPC Approach 
Consider the following time-invariant-affine discrete time system: 

 1k k kA B f+ = + +x x u   (58) 

where xk ∈ ℝn and uk ∈ ℝm represent the states and inputs, respectively, at time kTs, 

being Ts the sampling time. The MPC regulator acts to control the states of the system 

to a reference value xref by computing the solution of the following constrained 

quadratic-programming problem: 

  
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 1| | |. .     k i k k i k k i ks t A B f+ + + += + +x x u   (60) 

 ,     0, , 1u k i uH K i N+  = −u   (61) 

 ,     0, , 1x k i xH K i N+  = −x   (62) 

where ek is the state vector error, xk+1|k refers to the prediction of the state at time 

(k+1)Ts calculated at time kTs and N is the prediction horizon, i.e. the number of 

samples taken into account in forecast. U=[uk
T…uk+N-1

T ]
T
is the vector containing the 

optimal input vector uk, while Q=QT, R=RT are symmetric and positive semi-definite 

weighting matrices. Hu, Ku, Hx, Kx are the matrices that define the constraints for the 

controlled system. The MPC controller generates the control action using this strategy: 

at each step the control solves the optimization problem (59), predicts the evolution of 

the state variables based on their current values and calculates the optimal input for the 

system within the control horizon. Then, only the first step uk is applied to the system 

while the rest of the solution is just discarded. The process is then repeated: a new 

prediction of the evolution of the states is calculated based on the measurements of 

their current value, and another set of optimal control action is produced (Fig. 37). 

If the considered model is not linear, at any sampling step kTs a linearization procedure 

around xk is required in order to obtain the system described in (58). More details can 

be found in [94]. 



  61 

 

Fig. 37 Receding horizon technique. 

 

For the interested reader more details on the MPC can be found in [94]. Considering 

the layout of Fig. 36 two types of MPC controllers need to be defined, one for the PV 

inverters and the other for the Storage inverter. The first step necessary to design the 

controllers is to define a so-called “auxiliary model”, i.e. the one used for the solution 

of the optimization problem on the prediction horizon. In accordance to the 

experimental validation of [95] the model used for the controllers design  relies on the 

following assumptions (as described also in chapter 3.4): 

• the MG AC section is supposed to be at steady-state; 

• inverters are supposed to work in their linear range; 

• inverters efficiency is assumed to be unitary; 

• higher order harmonics are neglected; 

• shunt and resistive component of harmonic filters are neglected. 

For the sake of clarity, it is worth pointing out that these assumptions are only made 

for the controllers design. Simulations provided in Section IV account for a detailed 

representation of the MG components and infrastructure allowing to test the 

robustness of the proposed architecture 

5.3.1  PV Inverters Controller Design 
Considering one of the NPV units connected to the MG as in Fig. 36, the line-to-

ground RMS inverter output voltage is: 

 
2 2

PVj ( t )a ,PV dc,PV

inv,PV

m ( t )V ( t )
V ( t ) e


=   (63) 

where ma,PV is the inverter modulation index, Vdc,PV  is the DC-link voltage and PV ( t ) is 

given by: 

 ( ) 0

0

t

PV PV PV( t ) d    = +   (64) 

where ωPV is the angular frequency of the PV inverter modulation signals and θPV0 is 

the PV system initial phase. 
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The PV voltage at the harmonic-filter output can be written as: 

 f ,PVj ( t )

ac ,PV ac,PVV ( t ) V ( t )e


=   (65) 

where Vac,PV is the line-to-ground voltage at the harmonic-filter output and θf,PV(t) is 

given by: 

 ( ) ( )
0

t

f ,PV f ,PV f ,PV( t ) d t    = +   (66) 

ωf,PV being the AC-bus angular frequency measured via PLL and φ
f,PV

(t) the phase angle 

of Vac,PV. For the sake of readability, from now on the explicit time dependence will be 

omitted. Under the active sign convention, the active power flow injected by the PV 

unit into the MG is given by: 

 ( )3
2 2

a,PV dc,PV ac,PV

ac,PV PV f ,PV

f ,PV

m V V
P sin

x
 = −  (67) 

where xf,PV is the longitudinal reactance of the harmonic-filter calculated at the MG 

rated angular frequency. Substituting (64) and (66) in (67) one can easily obtain: 

 
0

0

3

2 2

t

a ,PV dc,PV ac,PV

ac,PV PV f ,PV PV f ,PV

f ,PV

m V V
P sin ( )d

x
    
 

= − + − 
 

 . (68) 

Let us now define: 

 0PV PV f ,PV  = −  (69) 

and 

 ( ) ( )( )
0

t

PV PV f ,PV d     = − , (70) 

inserting (69) and (70) into (68) one obtains: 

 ( )3
2 2

a,PV dc,PV ac,PV

ac,PV PV PV

f ,PV

m V V
P sin

x
 = + . (71) 

Moreover, the DC-link voltage dynamic is: 

 
dc,PV

dc,PV ac,PV dc,PV PV

dV
P P V C

dt
− =  (72) 

CPV being the DC-link capacitor and Pdc,PV the power coming from the PV unit that 

depends on the DC voltage Vdc,PV, the solar irradiance α and the PV cells temperature 

T, as follows (see [96] for its explicit expression): 

 ( )dc,PV dc,PV dc,PV dc,PVP I V , ,T V= . (73) 

Substituting (71) and (73) in (72), one has: 
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( ) ( )
31

2 2

dc ,PV a ,PV ac ,PV

dc ,PV dc ,PV PV PV

PV f ,PV

PV
PV f ,PV

dV m V
I V , ,T sin

dt C x

d

dt

  


 

  
 = − + 
   


= −


.  (74) 

System (74) is a non-linear continuous-time system in the form: 

 ( , , )PV PV PV PVf=x x u g   (75) 

where uPV= [ma,PV   ωPV]
T is the input vector, xPV= [Vdc,PV   δPV]

T is the state vector and 

gPV=[Vac,PV σPV α T ωf,PV]
T is a vector that collects measurements and estimated variables. 

In particular, Vac,PV, α, T and ωf,PV can be easily measured, while σPV can be estimated 

measuring the PV AC side active power and inverting (71) as follows: 

 ( ) ( )( )1

0

2 2

3

t
ac ,PV f ,PV

PV PV f ,PV

a ,PV dc ,PV ac ,PV

P x
sin d

m V V
     −

 
= − − 

 
 

  . (76) 

The mathematical model used for prediction by the MPC controller can be put in the 

classical linear representation as in [94] by linearizing and discretizing (74). From 

now on, xk , gk
 and uk will indicate states, measurements and inputs, respectively, at 

time kTs, being Ts the sampling time. Since the time evolution of measurements is 

unknown during the prediction, they are supposed to remain constant overall a single 

prediction horizon and then updated at the following sampling instant, which 

corresponds to set: 

 1PV ,k PV ,k+ =g g  . (77) 

Finally, as it is important that the modulation index is constant at steady-state no 

matter the value it assumes in its operational range, the following state equation can 

be added: 

 , , 1 , , ,a PV k a PV k s PV km m T J+ = +  (78) 

that transforms the modulation index in a state considering its derivative JPV as an 

input, to be regulated to zero. The other input is the PV unit frequency that is regulated 

to restore the inverter angular frequency (e.g. 314 rad/s in Europe). The resulting PV 

unit model is: 

 
, 1 , ,PV k PV PV k PV PV k PVA B h+ = + +x x u   (79) 

where: 

 PV ,k PV ,k PV ,k a ,PV ,km


=   x x g   (80) 

 PV ,k PV ,k PV ,kJ


=   u   (81) 

APV, BPV and hPV being suitable matrices coming out from the 

linearization/discretization processes. Additional constraints included in the PV MPC 

controller are listed in the following. The PV unit frequency does not have to exceed 

the minimum limit fmin and the maximum limit fmax, so: 
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 2 2min PV ,k maxf f    . (82) 

The modulation index is constrained in order to guarantee the inverter working in its 

operational range [97]: 

 a ,min a ,PV ,k a ,maxm m m  . (83) 

Furthermore, regulation of the PV unit reactive power exchange can be performed 

the reactive power QPV injected by the PV unit, calculated as: 

 

2 2

3
8 2 2

a ,PV dc ,PV a ,PV dc ,PV ac ,PV

PV PV PV

f ,PV f ,PV

m V m V V
Q cos( )

x x
 

 
= − + 

  

 (84) 

can be linearized and discretized to impose the following constraint: 

 Q PV ,ref PV ,k PV ,ref QQ Q Q − +   +  (85) 

QPV,ref being the reactive power reference and εQ half the amplitude of the admissible 

reactive power error. Finally, the inverter capability curve can be linearized and 

discretized in order to impose: 

 2 2

ac,PV ,k PV ,k PVP Q A+   (86) 

APV being the inverter rating. The resulting configuration of the PV MPC controller is 

depicted in Fig. 38 where one can notice that only PV unit local measurements are 

necessary. 

 

Fig. 38. PV control scheme. 

 

5.3.2 PV Controller – Normal Operation 
The goals of PV MPC controller in NO are to regulate the PV DC-link voltage Vdc,PV  

to its MPP value Vmpp,PV, restoring ωPV to its rated value and bringing JPV to zero 

accounting for constraints (79), (82), (83), (85) and (86). Vmpp,PV is obtained using the 

open voltage method (see [98]) in order to avoid iterative procedures. Under these 

considerations the definition of the weighting matrixes for the PV MPC controller in 

NO are the following: 

a,PVm

PV

dc,PVV  T

PV

0PV

f ,PVR
f ,PVL

f ,PVC

ac,PVV

ac,PVP

f ,PV

PVC

1

s

MG

ac,PVVinv ,PVV
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 1 7( ,0 )

( , )

dc

PV

PV NO V

PV PV

PV NO J

Q Q diag q

R R diag r r

− 

−

 = =


= =

  (87) 

5.3.3 PV Controller – Power Priority and SOC Priority 
In PP_SP operation modes the PV unit controller needs to stop following its DC 

Vmpp,PV providing a curtailment of the active power production in order to guarantee 

the MG power balance. This is done imposing that each PV unit regulates JPV to zero 

and ωPV to its rated value, accounting for constraints (79), (82) , (83), (85) and (86). 

This leads to the definition of the following control matrixes for the PP_SP operation 

mode: 

 
_ 1 8

_

(0 )

( , )

PV PP SP

PV PV

PV PP SP J

Q Q diag

R R diag r r

− 

−

= =


= =

  (88) 

 

5.3.4 Storage Inverter MPC Controller Design 
The mathematical model used for the design procedure of the Storage MPC 

controller is the following: 

 

31

2 2

dc,ST a ,ST ac,ST

dc,ST ST ST

ST f ,ST

ST
ST f ,ST

dc,ST ST dc,ST dc,ST

ST

dc,ST

dV m V
I sin( )

dt C x

d

dt

dI E( SOC ) R I V

dt L

IdSOC

dt NCC

 


 

  
 = − + 
   

 = −


− −
=




= −


  (89) 

where Idc,ST is the Storage DC-current, E is the Storage internal voltage depending on 

its SOC, RST and LST are the Storage internal resistance and inductance respectively and 

NCC is the Nominal Current Capacity. The first two equations of (89) have the same 

meaning as for the PV MPC controller, the third is the DC R-L circuit dynamics (see 

Fig. 36) and the fourth is the relationship between the Storage DC current and the 

SOC (see [71] for details). Following the same procedure used for the definition of 

the PV MPC controller, linearization and discretization of system (89) produces: 

 , 1 , ,ST k ST ST k ST ST k STA B h+ = + +x x u   (90) 

being: 

 
ST ,k dc,ST ,k ST ,k dc,ST ,k k ac,ST ,k ST ,k f ,ST ,k a ,ST ,kV I SOC V m  



 =  x   (91) 

 
ST ,k ST ,k ST ,kJ



=   u  . (92) 

The system matrices can be easily obtained as described for the PV unit. The 

resulting control scheme is reported in Fig. 39 showing that the regulator relies only 

on local measurements. 
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Fig. 39. Storage control scheme. 

 

5.3.5 Storage Controller – Normal Operation 
In NO conditions the Storage must act as an independent voltage source. Thus, 

regulation of the Storage AC side voltage Vac,ST is mandatory. As such voltage is not a 

state, it is necessary to express it as a function of the Storage states and inputs in order 

to obtain a linear constraint among them. Using the simplified voltage drop 

expression, one has: 

 , ,

,
2 2

a ST dc ST

ac ST

m V
V v= −   (93) 

 
, , ,

,

1
( )

3
f ST ac ST f ST ST

ac ST

v R P X Q
V

 = +  . (94) 

So, the constraint for Vac,ST at time sample kTs is: 

 , , , ,* *

, ,
2 2

a ST k DC ST k

V ac ST ac ST V

m V
V v v V − + +     + +   (95) 

where εV is half the amplitude of a boundary layer centred in Vac,ST

*  where the Storage 

AC voltage must lay in. As for the other constraints, (95) has to be linearized. Please 

note that v is calculated as in (94) starting from the measurements of voltage and 

active and reactive power at the beginning of the prediction horizon and then supposed 

to be constant until the following sampling instant. The capability of the Storage 

inverter is accounted imposing a constraint as the one in (86). Summarizing, in NO 

the Storage MPC controller regulates JST to zero and ωST to its rated value, accounting 

for constraints (90) and (95) together with the inverter capability and the limits on the 

frequency (of the kind (82)) and on the modulation index (of the kind (83)). The NO 

Storage MPC controller matrixes can be defined as: 

 
1 8(0 )

( , )

ST NO

ST ST

ST NO J

Q Q diag

R R diag r r

− 

−

= =


= =
  (96) 
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5.3.6 Storage Controller – Power Priority 
In PP mode the Storage MPC controller forces the unit to exchange a fixed power to 

the grid, namely Pab,lim. This is achieved as follows: consider the third of (89) at steady-

state and multiply both members by Idc,ST. It follows that: 

 
2

dc,ST ST dc,ST dc,ST dc,ST ac,ST ab,limE( SOC )I R I V I P P− = = =  (97) 

which gives: 

 
2 0dc,ST dc,ST ST ab,limV E( SOC )V R P− − = . (98) 

The positive solution Vdc,ST

*  of (98) is the reference value to which the Storage PP MPC 

controller regulates the DC link voltage. So, the PP-Storage controller regulates Vdc,ST 

to Vdc,ST

* , JST to zero and ωST to its rated value, accounting for constraints (90) and (95) 

together with the inverter capability and the limits on the frequency (of the kind (82)) 

and on the modulation index (of the kind (83)). The Storage control matrixes in PP 

operational mode can be written as: 

 
1 7( ,0 )

( , )

dc

ST

ST PP V

ST ST

ST PP J

Q Q diag q

R R diag r r

− 

−

 = =


= =

  (99) 

 

5.3.7 Storage Controller – SOC Priority 
In case the Storage is absorbing power but its SOC becomes greater than a threshold 

SOClim, it enters the SP mode in which the MPC controller forces it to nullify its power 

injection. This is done as in the PP mode with the only difference that in SP model 

Pab,lim is set to 0. So, the SP mode Storage controller regulates Vdc,ST to Vdc,ST

* , JST to zero 

and ωST to its rated value, accounting for constraints (90) and (95) together with the 

capability and the limits on the frequency (of the kind (82)) and on the modulation 

index (of the kind (83)). The Storage control matrixes in SP operational mode can be 

written as: 

 
1 7( ,0 )

( , )

dc

ST

ST SP V

ST ST

ST SP J

Q Q diag q

R R diag r r

− 

−

 = =


= =

 . (100) 

 

5.3.8 Automatic transition among operating modes 
The transition of local unit controllers in accordance to the MG operational modes is 

easily performed by changing the MPC controllers weighting matrixes Q and R. The 

aim of this subsection is to define the conditions for such transition.  The Storage 

MPC controller transition from NO to PP occurs when the Storage is required to 

absorb a DC power |Pdc,ST
| greater than a specified threshold |Pab,lim

|, sufficiently close 

to its maximum power absorption limit. So, with the adopted sign conventions, the 

condition for the transition of the Storage controller from the NO to PP is: 

  , ,dc ST ab limP P . (101) 

Similarly, the Storage MPC controller switches from NO to SP when: 
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 limSOC SOC  (102) 

SOClim being a specified threshold lower than 100%. 

In both cases, the power injected by the PV units into the MG Pac,PV must decrease to 

satisfy the active power balance. As a consequence, since the PV controllers haven’t 

produced any  variation in the PV power yet, the DC link voltages increase (in 

accordance to (72)). At this point, each PV controllers try to reduce its local DC link 

voltage by increasing PV (acting on PV). The result is an increase of the angular 

frequency f,PV sensed by the PLL. So, the condition for the PV controller transition 

from NO to PP_SP is: 

 , 2f PV curtf   (103) 

fcurt being a specified threshold. The inverse transition (from PP or SP to NO) occurs 

when the load request increases. In this case, since the PV units must guarantee the 

active power balance, they need to increase their real power injection. So, the 

condition for the PV controller transition from PP_SP to NO is: 

 ( ), , 0,1ac PV PV MPPTP kP k   (104) 

where k is a suitable coefficient to improve the effectiveness of the controller 

transition. 

At the same time, one can observe a decrease in the Storage AC-bus angular frequency 

ωf,ST because the PP (or SP) Storage control acts to maintain the voltage set-point 

calculated from (98), decreasing the modulation angular frequency ωST. So, the 

condition for the Storage controller transition back to NO is: 

 , ,2f ST min NOf   (105) 

fmin,NO being another specified threshold. 

As a result, one can notice that the proposed controller provides an intrinsic frequency 

dynamic that allow managing the local unit controller in all the relevant MG 

operational asset without the need of ICT infrastructure of dedicated element to 

emulate an inertial frequency response of the system. The logic described can be easily 

translated into the logic circuits depicted in Fig. 40 and Fig. 41 (one for each type of 

controller). 

 

Fig. 40. Storage MPC controller logics transition circuit. 
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Fig. 41. PV MPC controller logics transition circuit. 

 

5.4 Simulations 
The proposed control system has been applied to the microgrid described in [95] and 

depicted in Fig. 42, consisting of two PV units and one Storage. 

 

Fig. 42 One line diagram of the test case MG 

The peak powers of units PV1 and PV2 are respectively 16 kW and 80 kW while the 

corresponding inverter ratings are 17 kVA and 85 kVA. Transformer T-PV2 is at 

unitary transformation ratio. For the Storage the NCC is 228 Ah while power limits 

are 25 kW (when the Storage is charging) and 60 kW (when the Storage is 

discharging) and the inverter rating is 62 kVA. A load is connected at the MG main 

bus. 

Simulation are performed in Simulink/Simscape® environment that represents all the 

MG components and infrastructure with a high level of detail. Inverters are two-level 

IGBT converters whose models are available in the Simscape library. Moreover, 

modulation is performed using a PWM technique with a 10 kHz carrier signal. PV 

units are modelled as suggested in [95], while details on the adopted Storage model 

can be found in [71]. Cables are modelled by means of resistive-inductive series 

impedances, while transformers are represented with the only leakage reactance. 

f ,PV

ac ,PVP

J

K

Q

Q

CLK

2 curtf
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Numerical values of the sources and grid parameters appear in  Table 22 and Table 

23 respectively. 

Table 14 – Sources parameters 

Parameter Value Parameter Value Parameter Value 

CPV 3.3 mF RST 1.12 Ω CPV2 6.0 mF 

Rf,PV1 3.14 mΩ LST 1 mH Rf,PV2 1.05 mΩ 

Lf,PV1 1 mH Rf,ST 3.14 mΩ Lf,PV2 0.3 mH 

Cf,PV1 10 μF Lf,ST 1 mH Cf,PV2 5 μF 

CST 3.5 mF Cf,ST 10 μF - - 

 

Table 15 – Grid Parameters 

Parameter Value Parameter Value 

T-PV2 vcc% 8 % T-PV2 An 85 kVA 

Rc,PV1 0.15 Ω Xc,PV1 1.03 Ω 

Rc,PV2 0.04 Ω Xc,PV2 0.16 Ω 

Rc,ST 0.04 Ω Xc,ST 0.01 Ω 

 

In the following, three different simulations are proposed, all starting from the initial 

working point specified by the load flow assignments reported in Table 16. Finally, 

all regulators parameters are reported in Table 17 and Table 18.  

The performances of the proposed MPC approach are compared with the ones of a 

traditional control architecture for an islanded PV-Storage MG [79]. In this traditional 

architecture the Storage inverter is controlled in the so-called grid forming 

configuration, i.e. controlling its AC terminal voltage and frequency with two voltage 

and current axis nested loops (see Fig. 2 of [79] for more details) while PV inverters 

are controlled in grid feeding configuration providing active power according to the 

MPPT and reactive power in accordance to the specific external reference (see Fig. 3 

of [79] for details). 

Table 16 – Load flow assignments 

 PV1  

(PQ bus) 

PV2  

(PQ bus) 

Storage 

 (Slack bus) 

Load  

(PQ bus) 

Active power  16 kW 80 kW - 80 kV 

Reactive power 0 kVAr 0 kVAr - 15 kVAr 

Voltage - - 230 V - 

 

Table 17– PV controller parameters  

fmin/fmax 49.5/50.5 Hz εQ 1 kVAr rω
PV 700 

ma,min 0.5 fcurt 50.3 Hz rJ
PV 200 

ma,max 1.05 k 0.9 q
Vdc

PV  60 
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Table 18– Storage controller parameters 

fmin/fmax 49.5/50.5 Hz ε𝑉 11.5 V (5%) q
Vdc

𝑆𝑇  10 

ma,min 0.5 
Pab,lim 

-20 kW (PP) rJ
ST 30 

ma,max 1.05 0 kW (SP) r𝜔
ST 10 

fmin,NO 49.8 Hz SOClim 90.0% - - 

 

5.4.1 Simulation A – Load and irradiance variation in NO 
The aim of this simulation is to show the performances of the NO controllers in case 

of two contingencies: i) a load decreases at 0.2 s from 80 kW to 70 kW and ii) a solar 

irradiance decreasing ramp starting at 0.6 s from its initial value of 1 kW/m2 and 

reaching 0.7 kW/m2 at 0.8 s. Fig. 43 shows the sources and load active power flows 

while Fig. 44 presents the three sources AC voltages (the proposed MPC control 

profiles are represented in solid lines while traditional control ones in dashed lines).  

 

Fig. 43. Active powers time profiles. 

As one can see, there is no remarkable differences between the two methods: in both 

cases, the Storage keeps the voltage within the admissible range (230±5% V, dash-

dotted black lines) and maintains the power balance after both contingencies. Fig. 45 

represents the frequencies that are restored to the desired value of 50 Hz at the end of 

the transient. 

 

Fig. 44. RMS phase-to-ground voltage time profiles. 
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Fig. 45. Frequency time profiles. 

5.4.2 Simulation B – Load decrease causing PP operation 
The aim of this simulation is to test the performances of the controllers in the PP 

mode. This is done by imposing a load decreases to 25 kW at 0.2 s which causes the 

Storage absorption to exceed the 20 kW limit and thus requiring operating in PP mode. 

Following, at 0.6 s the load is increased in order to restore a NO condition and 

allowing to verify a proper transition both in and out PP mode. 

The MPC control transition between NO and PP modes logic is triggered for the 

Storage when active power hits his limit. As far as the PV units are concerned, when 

their frequencies ωf,PV1  and ωf,PV2 exceed the value fcurt (see Fig. 46), the control 

transition between NO and PP modes logic is triggered and the PV units are forced to 

curtail their production. 

 

Fig. 46. Frequency time profiles. 

Fig. 47 highlights that the Storage MPC controller can regulate the voltage at its 

terminals even in the transition to and during the PP mode. On the other hand, in Fig. 

48 one can see what happens if the traditional approach is not equipped with a suitable 

communication system. The two PV units are not curtailed, resulting in a sudden 

increase of the AC bus voltages that cause the overvoltage protection tripping, 

according to the main standards [99]. 
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Fig. 47. RMS values of phase to ground voltages. 

 

Fig. 48. RMS values of phase to ground voltages: comparison with the traditional approach 

 

Fig. 49. Active powers time profiles. 

When the load increases one can see that the MPC controllers restores the NO mode 

according to the rules defined in §5.4; i.e. for the PV units when their active power 

become greater than the value kPPV,MPPT, (see Fig. 49) and for the Storage when ωf,ST 

becomes lower than 2fmin,NO  (see Fig. 46). Fig. 50 shows the DC link voltages of the 

three sources highlighting that that the first transition needs about 0.1 seconds, while 

the NO restoration occurs in about 0.2 seconds. 
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Fig. 50. DC-link voltage time profiles. 

 

5.4.3 Simulation C – Load decrease causing SP operation 
The aim of this third simulation is to show the performance of the proposed control 

strategy in the SP mode. To better highlight this, the SOC is initialized very close to 

SOClim. Moreover, the load power request decreases from 80 to 40 kW at 0.2 s as 

shown in Fig. 51. This first variation implies the transition to the PP mode since SP 

mode occurrence probability increases if the Storage absorbs its maximum power (see 

Fig. 52 for the PV transition and Fig. 51 for the Storage one).  

 

Fig. 51. Active powers time profiles. 

 

 

Fig. 52. Frequency time profiles. 
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Fig. 53. Storage SOC time profile. 

 

At about 0.55 s the Storage reaches its SOClim (see the detail in Fig. 53), which triggers 

the transition to SP mode. At 0.8 s the load request increases to 100 kW, which 

determines the restoration of the NO mode in which the PV units are set back to their 

MPP (Fig. 54)  while the Storage injects about 18 kW in order to guarantee the MG 

active power balance (Fig. 51). Finally, Fig. 55 shows again the effectiveness of the 

Storage controller in regulating the voltage and Fig. 52 highlights that frequencies are 

restored in less than 0.2 seconds. In this case, no comparison is presented with the 

traditional approach for the sake of readability since this would result in the same 

overvoltage behaviour seen in the previous case. 

 

Fig. 54. DC-link voltage time profiles. 

 

 

Fig. 55. RMS values of phase to ground voltages. 
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5.5 MPC Experimental Test 
This section investigates the feasibility of this control for grid forming inverter in a 

MG environment. The MPC strategy allows to open new scenarios in grid-forming 

research, due to the possibility to address in very explicit way the goal. MPC strategy 

is deeply described and strongly addressed to the actual implementation. In test 

configuration, realizing a fast prototyping approach, dSPACE software and hardware 

were used to perform the experimental validation of the proposed method. 

According  [100-102] inverters that connect Distributed Energy Resources (DERs) to 

MGs can be classified according one of the three following operation way: Grid-

feeding, Grid-forming and Grid-supporting power converters [100, 101]. 

The grid-feeding power converters are designed to supply a specified value of active 

and reactive power, nothing more. This operation mode brings to assimilate the 

controlled source as an ideal current source connected to the grid in parallel with high 

impedance. The grid-forming converters can be represented as an ideal ac voltage 

source with a low impedance in series, defining the frequency of the MG and the 

voltage amplitude at its bar. 

Finally, grid-supporting converters can be seen either as current or voltage sources in 

which the current (voltage) is selected according specified control laws (e.g. droop 

characteristic [23], V/Q control curves [103, 104], P/Q characteristic [103, 104] and 

so on). In Fig. 56 these operation modes are represented. 

 
Fig. 56 Elementary scheme for a) grid forming; b) grid feeding; c) grid supporting acting as 

voltage source; d) grid supporting acting as current source. 

 

The basic control scheme for grid-forming converter can be found in Fig. 57. It is 

composed by two very common internal loops) regulated by proportional-integrator 

controllers [105]. In the proposed control scheme, the amplitude of the voltage at the 

PCC and current are measured and transformed to dc values in the dq frame by 
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applying the Park transformation and compared to reference values as shown in Fig. 

57. All the nomenclature is available in [105]. 

 
Fig. 57 Grid-forming base control scheme [105]  

 

5.5.1 The grid forming control 
Let’s consider a generic DG as depicted in Fig. 58. It consists of a DC source, a DC 

link, a full IGBT bridge, an AC filter and finally PCC. 

 
Fig. 58 General layout of a DG. 

In order to perform the design procedure for the MPC for grid forming, it is necessary 

to derive a mathematical model for the controlled system. Such model is here proposed 

according to the assumptions [71, 95] described in §3.4 and §5.3. 

The resulting model, represented in Fig. 59, has been extensively validated with 

experimental measurements, as detailed in [95]. 
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Fig. 59 System model for the MPC controller design 

Moreover, it is important to highlight that the proposed MPC controllers do not require 

information about MG topology and parameters, just because they are proposed in a 

decentralized formulation. This makes this strategy not sensitive to MG topology 

variations. 

The phasor of the line-to-ground voltages at the inverter output and at the harmonic-

filter output can be respectively written as: 

 ( )
( ) ( ) ( )

2 2

j ta dc

inv

m t V t
V t e


=   (106) 

 ( ) ( )fj t

ac acV t V ( t )e


=   (107) 

where ma is the inverter modulation index, Vdc is the DC-link voltage and Vac is the 

line-to-ground voltage at the harmonic-filter output. The phase angles can be written 

as follows: 

 ( ) ( ) 0

0

t

t d    = +   (108) 

 ( ) ( ) ( )
0

t

f f ft d t    = +   (109) 

where ω is the angular frequency of the inverter modulation signals and ωf  is the AC 

bus frequency measured via PLL (in the following equations the explicit time 

dependence will be omitted for notation simplification). The active power flow Pac 

injected by the unit into the MG is given by: 

 ( )3
2 2

a dc ac
ac f

f

m V V
P sin

x
 = −   (110) 

where xf is the longitudinal reactance of the harmonic-filter. Obviously if the ac filter 

is composed by a LCL configuration, xf represents the sum of the two reactances in 

series according to the former hypotesis. 

Substituting (108) and (109) in (110) one gets: 
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   (111) 

Defining: 

 0 f  = −   (112) 
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and 

 ( ) ( )( )
0

t

f d     = −   (113) 

equation (111) can be rewritten as: 

 ( )3
2 2

a dc ac
ac

f

m V V
P sin

x
 = +   (114) 

Considering now the differential equation that describes the DC-link voltage 

dynamics, it follows that: 

 dc
dc ac dc

dV
P P V C

dt
− =   (115) 

where C is the dc-link capacitor and Pdc is the power coming from the DC source that 

can be written as: 

 ( )dc dc dc dcP I V V=   (116) 

where Idc is a given function of Vdc depending on the specific nature of the source. 

Substituting (114) and (115) in (116) it is possible to write the dynamic system of the 

DG: 
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I (V ) sin( )

dt C x
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
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  
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
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

  (117) 

System(117) is a non-linear continuous -time system in the form: 

 ( , , )f=x x u g   (118) 

where u=[ma  ω]T is the input vector that has to be provided by the controller, x=[Vdc 

δ]T is the state vector and g=[Vac  σ ωf]
T is a vector that collects measurements and 

estimated variables. In particular, Vac and ωf, can be easily measured, while σ can be 

estimated as follows: 

 ( )1
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2 2
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t
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sin ( ) ( ) d
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     −

 
= − − 

 
 

   (119) 

As specified before, the mathematical model for the prediction in MPC controllers (58) 

can be obtained at any time t*  linearizing (117) around x(t*). Performing the 

linearization procedure, (117) becomes: 

 
* * * *A B G D= + + +x x u g   (120) 

where the system matrices are reported below. 
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 (124) 

 

Then, due to the fact MPC control works in the discrete-time domain, (120) needs to 

be discretized as follows: 

 ( )* * * *

1k s k s k s k sI T A T B T G T D+ = + + + +x x u g   (125) 

where the subscript k denotes the system variables discretized at the sampling time kTs. 

Since during the prediction the time evolution of the measurements is unknown, they 

are supposed to remain constant during the prediction horizon N, i.e. gk is considered 

as a state with no dynamics as described by the following equation: 

 1k k+ =g g   (126) 

Furthermore, as what matters for the modulating index is that at steady state it becomes 

constant no matter its value in the linear range (0,1) instead of considering ma  as a 

control variable for the system, its derivative J is taken as an input. So, a  new dynamic 

equation ma,k+1= ma,k+Ts JK is added to (125). The resulting general DG model of the kind 

(58) necessary for the prediction computed by the controller is: 

 
* * *

1k dm k dm k dmA B f+ = + +x x u   (127) 

where: 

 k k k a ,km


=   x x g   (128) 

  
T

k k kJ=u   (129) 
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  (131) 

 

in which TsB*(1) and TsB*(2) are the first and the second column of the matrix TsB
*

 

respectively. 

Moreover, some relevant constraints (see (61) and (62)) are implemented. The angular 

frequency for the inverter modulation signals ω acts on the system to satisfy the control 

objectives within the operational limits to achieve MG power quality: 

 2 2min maxf f      (132) 

The modulation index is constrained as follows to guarantee the inverter working in 

its linear operational range: 

 a ,min a a ,maxm m m    (133) 

 

To ensure that even during a transient the inverter capability curve is never exceeded 

the following constraint, after a linearization procedure, is implemented:  

 
2 2

ac ac maxP Q A+    (134) 

where Qac can be expressed as combination of state and input as follows 
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As specified before, grid-forming inverters must regulate their AC terminal voltage. 

In the proposed approach, the aforementioned goal is obtained expressing the desired 

voltage in terms of states and inputs of the controlled system and using the simplified 

voltage drop expression: 

2 2

1 1 1
( ) ( ) ( )

3 3
3
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a dc
ac

f ac f ac f ac f ac f ac f ac
a dcinv ac

m V
V v

v R P x Q R P x Q R P x Q
m VV V

= −

  +  +  +
 (136) 

One can combine (136), (135), (114) and (106) in order to obtain the Vac formulation 

composed by just states, inputs and constants: 
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Let’s define e=Vac-Vac,ref and 𝒖̃𝒓𝒆𝒇 = [𝜔𝑛 0]𝑇. These definitions are essential in order 

to make MPC act properly, indeed the minimization is expected to reduce the distance 

to some reference. 𝜔𝑛 is the rated frequency of the MG, Vac,ref is the reference for Vac 

and the zero of 𝒖̃𝒓𝒆𝒇 represents the desired J, i.e. null that means ma is constant. 

Now it is time to set the MPC goal, i.e. solving the following equation: 

  
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| |

0

min
N

T T T

k N V k N k i k V k i k k i k i
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e Q e e Q e R
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+ + + + + +

=

+ +
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u u   (138) 

in which 𝑼̆=[𝒖̆k
T…𝒖̆k+N-1

T ]
T
is the vector containing the optimal input vector 𝒖̆ = 𝒖̃ −

𝒖̃𝒓𝒆𝒇. R=diag(Rω; RJ), where Rω and RJ represent the weight for the input, and QV is 

the weight for the voltage error. 

Finally, the control scheme is reported in Fig. 60. MPC regulator needs the 

measurement of voltage, active power and the angular frequency at the inverter AC 

side and of the DC-link voltage from the inverter DC side. Then, the online 

optimization process is performed to generate the control signals for the inverter PWM 

modulation. 

 
Fig. 60 Control scheme overview 

 

5.5.2 Experimental Setup 
The power system setup is depicted in Fig. 61. 
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Fig. 61 Test system overview, (AC LCL filter is omitted for sake of compactness). 

It consists of the main grid (400 V) that supplies a power train composed by variable-

ratio autotransformer, diode bridge rectifier, DC link, inverter and passive loads. The 

main grid data and parameters as in Fig. 58 can be found in Table 19. 

In Fig. 62 it is possible to see some details of the experimental setup. 

 

Fig. 62 Experimental set up detail at Niš University 

 

Table 19. Power system variables. 

DC link Autotransformer AC filter 

C 1.1 mF Transf. size 7.6 kVA Li 28 mH 

L 2.35 mH Transf. ratio 400/223 V RLi 0.17 Ω 

  Vcc% 4.7% Lg 1.3 mH 

    RLg 11 mΩ 

    Cf 3.3 μF 
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 Two different constant resistive loads are at disposal: i.e. Load1 and Load2 with a 

resistance of 66 Ω and 160 Ω respectively. The inverter is a Danfoss FC 302, 8.2A, 

controlled by dSPACE 1103, whose board was used to collect the measuring signals 

and to drive the inverter. More details are available in [106]. The control algorithm is 

developed in MATLAB/Simulink. The QP was solved using qpOASES [107, 108], an 

open source library for C++ which proposes some simplified tools for this kind of 

interfaces in which more than one software is involved. 

In Table 20 it is possible to find the control variables used in the experimental test 

described in the following section. 

Table 20. Control variables. 

MPC parameter Other numerical data 

QV 3 fmin 49.5 Hz Amax 4 kVA 

Rω 10 fmax 50.5 Hz ωn 314.159 rad/s 

RJ 5 ma,min 0.18   

N 3 ma,max 1.156   

 

Examining (73), it is apparent that a relationship between voltage and current of the 

DC source is required. Thus, before proceeding with the MPC controller design and 

implementation, a simple experimental campaign is to be set up to define the V/I 

characteristic of the available source (main grid, autotransformer- diode bridge – DC 

link). More details about the procedure are available on the appendix. 

For the specific powertrain, the obtained characteristic is shown in Fig. 63, in which 

the blue stars represent the discrete experimental characteristic and the red line 

represents the best 5th order polynomial interpolation. 

 

Fig. 63 Experimental setup V/I characteristic 

For sake of completeness it is important to highlight that this procedure is useless if a 

DC/DC converter is inserted in the power train in between the source and the inverter, 

because the converter can be controlled in order to impose any desired V/I 

characteristic on the inverter DC side. 
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5.5.3 Experimental Results 
The fast prototyping Approach represents the core and the added value of this chapter. 

The test consists of providing a ramp signal for the grid voltage, from 35 to 175 V rms 

phase to phase in 4 seconds, starting at 5 s. During this operation just Load1 is supplied. 

At 16 s Load2 is posed in parallel for 3.5 s and then it is disconnected. Finally, at 22.3 

s Load1 is detached too, and a no load condition is explored. In the following figures, 

it is possible to see the main variables in their time evolution. Fig. 64 represents the 

measured rms grid voltage; it can be considered very satisfactory since it does never 

exceed the range Vac,ref ±10%. Instead Fig. 65 shows the active power supplied to the 

loads. 

 

Fig. 64 Grid voltage (rms). 

 
Fig. 65 Active power supplied by grid-forming inverter. 

In the previous figure it is possible to see that active power injected at: 

• about 12 s and then again at about 21s is exactly 1752/Load1=464W; 

• about 17 s is around 1752/(Load1// Load2)=655W. 
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Fig. 66 MPC output - Modulation index

 
Fig. 67 MPC output – Angular frequency. 

Dc voltage is shown in Fig. 68. 

 

Fig. 68 Dc voltage across C. 

During this test, the run time of the QP was recorded between 0.78 and 0.91 ms, i.e. 

shorter than the MPC sampling time (Ts) equal to 1 ms. 
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5.5.4 Appendix  
The aim of this appendix is to explain how the V/I characterization of the specific 

powertrain was obtained. The setup is summarized in Fig. 69. It is worthy to remind 

that any characterization process is meaningful if the conditions in which the 

characterization takes place is the same used in the utilization. This means that in the 

characterization activity DC filter, diode bridge and autotransformer are the same used 

and described before. V/I characteristic was obtained by defining twenty-three 

different working points (Vdc; Idc) by changing twenty-three different values of the 

resistor Rc. Rc is made changed from infinite (open circuit) to 50 Ω. Measuring points 

are highlighted in Fig. 69. After recording it is possible to use a fitting tool (e.g. Matlab 

Basic Fitting) and obtain an analytical relationship. In this work, it is used a 5th order 

polynomial Idc(Vdc), whose coefficients are listed in Table 21, because in this specific 

case a 5th order polynomial is assumed the best trade-off between accuracy and 

easiness in using MPC process. 

Table 21. Polynomial coefficients. 

5th 4th 3rd 2nd 1st zero 

-5.25×10-7 7.87×10-4 -0.471 114 -2.12×104 1.27×106 

 
Fig. 69 Characterization experiment setup 

 

5.6 Chapter 5 Conclusions 
This chapter proposed a new control strategy for islanded PV-Storage MGs based on 

decentralized controllers acting without communication to properly manage the MG 

under all its operational assets. The main advantages of the proposed approach with 

respect to existing methods are the following: i) it can restore voltage and frequency 

without communication among devices and thus without the necessity of a secondary 

centralized control scheme; ii) it is able to account for the Storage battery power and 

SOC limits curtailing the consequent over-production of PV units. Three different 

operating conditions were defined for the controllers (NO, PP and SP) and conditions 

to automatically switch from one mode to the others were derived. Simulations to 

validate the performances and the robustness of the proposed control approach were 

performed in Simulink/Simscape® environment. Results highlighted the effectiveness 

of the proposed method to reach the above defined goals providing good dynamic 

performances and achieving a restoration of the system voltage and frequency. 

The strategy is described in all the details and it is also proposed in actual 

implementation. This approach is easily replicable in other labs just adapting the 

present system to the new power train characteristic. The test results show the 

effectiveness of the proposed grid-forming control. Future development will focus on 
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enlarging the laboratory capability in hosting different sources, in that way will be 

possible to extend the algorithm to grid feeding and grid supporting units to develop 

further logics and features. 
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6 Wind Turbine Frequency Support 
 

The increasing penetration of RES and, more in general, of converter connected power 

generation is progressively reducing the overall inertia of the electricity system 

introducing new challenges in the network Frequency Support (FS). Therefore, FS 

strategies for RES are becoming an important aspect to be developed in order to ensure 

the secure operation of the electricity power grid.  

This chapter is composed by two steps: i) presenting a general basic outline of the 

ideas related to power system frequency response and ii) proposing a new control 

strategy for virtual inertia. 

The aim of the first part of the chapter is to analyse the possible contributions provided 

by renewable power plants, with specific focus on wind power generation, on the 

problem of frequency support.  

The aim of the second part of the chapter is to propose an innovative approach for the 

inertial emulation of Wind Turbine Generators (WTGs) in order to ensure a positive 

effect on the system frequency avoiding unstable operations of the WTG and reducing 

the negative impact of the rotor speed recovery on the secondary frequency drop. 

Moreover, this thesis provides a detailed definition of the triggering logics adopted to 

activate and deactivate the FS making it suitable for implementation in available 

industrial controllers. The proposed controller is firstly tested in a simplified 

configuration to show its enhanced performances with respect to previously developed 

approaches. Then, simulations are carried out in a more realistic network to assess the 

positive impact of the controller on the system frequency 

6.1 Introduction 
In recent years, renewable energies exponentially increased, and this trend has a 

beneficial effect on environment and on the other hand they introduce some problems 

in grids management. In this framework, wind power generation is playing and will 

incisively play the most important role in the migration towards an environmentally 

sustainable energy mix. Indeed, the total installed wind power at the end of 2016 was 

equal to almost 486 MW scoring a 11,8 % increase with respect to the amount installed 

at the end of 2015 (435 MW) and the trend is foreseen to be growing also for the 

upcoming years the upcoming years [109]. Therefore, their interest in modelling and 

simulation is increased. Indeed, they can open new possibilities in grid management 

and ancillary services. Along with the well-established advantages of RES the strong 

increasing of power generation interfaced to the Transmission and Distribution (T&D) 

grids by means of power electronic devices, is introducing new challenges related to 

the necessity of operating the electricity system in a secure and reliable way. Among 

them, one of the most important related to the secure operation of the T&D network is 

the reduction of the overall inertial of electricity system. This latter aspect is of great 

interest since the electric system inertia is the parameter that allows the grid to cope 

with load variations. 

One of the most important drawbacks of the introduction of generation units connected 

to the network by means of power electronics converters is the reduction of the overall 
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inertia of the electricity system [110]. For this reason, many Transmission System 

Operators (TSOs) are conducting extensive studies aimed at implementing Frequency 

Support (FS) actions to face this inertia reduction [111, 112]. Among the various 

technologies committed for FS, RES are the most promising ones due to their 

flexibility and the possibility to define integrated solutions with energy storage units 

[113] (an exhaustive overview on FS techniques involving RES can be found in [114] 

where the summary in Fig. 70 is taken from.).  

 
Fig. 70 General overview of FS techniques for various types of RES. The red path indicated 

the field of application of the thesis. 

 

In particular, Wind Turbine Generators (WTGs) can play an important role in FS due 

to the relevant amount of kinetic energy stored in the generator rotors. Three are the 

most diffuse techniques to achieve FS from a WTG, namely inertial response [115], 

droop control [116] and de-loading [117]. Available strategies belonging to the first 

category can be further divided in two main families: Hidden Inertia Emulation (HIE) 

[118] and Fast Power Reserve [119]. The first one is characterized by an emulation of 

the inertial response of a traditional synchronous generator while the other provides a 

constant power contribution for a certain amount of time. The main drawback of Fast 

Power Emulation is the insensitivity to the system perturbation and the difficulty to 

define the overall contribution to the inertia at power system level [114]. On the other 

hand, HIE, at least in its classical implementation [118], provides a power contribution 

proportional to the frequency deviation. However, HIE main drawbacks are the 

secondary frequency drop with a consequent increase of the frequency nadir during 

the Rotor Speed Recovery (RSR) phase [120] (when the WTG recalls power from the 
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grid to restore its optimal speed) and potential unstable behaviours due to the WTG 

speed reduction that may lead to the disconnection of the WTG from the grid [121]. 

Attempts to mitigate the problem of the speed reduction have been faced in [122] 

providing a constant torque inertial contribution, but this makes the HIE controller 

again insensitive to the entity of the system perturbation (similarly to the Fast Power 

Reserve technique). In [123] a variable synthetic inertia coefficient is used to reduce 

the impact of the FS controller on the WTG rotor speed. Nevertheless, the synthetic 

inertia coefficient of [123] is inversely proportional to the rotor speed thus decreasing 

the FS contribution in the time frame in which it is more necessary i.e. in the first 

instants after the frequency transient when the Rate of Change of Frequency (RoCoF) 

is higher and when the FS would be more effective (i.e. the kinetic energy of the WTG 

is higher). The issue of the RSR phase is discussed in [124, 125] where a proportional-

integral based approach is used to smooth the speed transient. However, the evaluation 

of the possibility of optimizing the secondary frequency drop is totally overlooked. 

Instead, a novel strategy to manage the speed recovery phase based on an extended 

state observer is presented in [126], but this method appears too complex to be installed 

on a real WTG. Another important issue concerns the definition of suitable FS 

activation and deactivation logics that should be effective but sufficiently simple to be 

implemented in available industrial controllers. Some preliminary evaluations about 

the activation logics of the FS phase are discussed in [127] but no reference is made to 

the deactivation one. Starting from this state of the art, the aim of the present article is 

to define a novel approach to design and implement a Variable Hidden Inertia 

Emulator (VHIE) for WTGs equipped with Permanent Magnet Synchronous 

Generators (PMSGs). Differently from [123], the proposed FS controller provides an 

extra power contribution directly proportional to the frequency deviation by means of 

a WTG speed dependent coefficient that allows: i) avoiding unstable conditions caused 

by a relevant rotor speed reduction and ii) providing the maximum contribution to FS 

in correspondence of the highest speed values at the beginning of the frequency 

transient. Moreover, the proposed control manages the RSR phase in order to minimize 

the secondary frequency drop if necessary. Finally, the control logics to be considered 

to activate and deactivate all the phases of the FS controller are presented and 

thoroughly discussed together with an effective criterion for the definition of the 

necessary amount of synthetic inertia needed to satisfy the TSO requests in terms of 

frequency stability. The effectiveness of the proposed FS control approach is tested by 

means of two sets of simulations performed with DIgSILENT PowerFactory®. The 

first one is a simplified test case, which aims at evaluating the controller effects on the 

WTG dynamics and at comparing its performances with respect to previously 

developed approaches. Then, a thorough analysis on a dedicated benchmark network 

is provided in order to assess the proposed controller impact on the FS in a more 

realistic operational condition. 

 

6.2 The Proposed Strategy 
A WTG equipped with PMSG is connected to the AC grid by means of two power 

electronic devices, namely the Machine Side Converter (MSC) and the Grid Side 

Converter (GSC) as depicted in Fig. 71. For the sake of brevity a detailed description 
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of the two converters control system is here omitted but it can be found in [136]. Our 

attention is focused on the interaction between the MSC control systems and the 

proposed FS controller. 

 

Fig. 71. General layout of a fully-rated WTG equipped with PMSG 

 

The dynamic of the WTG rotor is described by: 

 ( ), , 2 r
w w r s WTG r

d
P v P H

dt


  − =   (139) 

being HWTG the WTG inertia (in s on the WTG rated apparent power base), Ps the p.u. 

stator active power of the PMSG, Pw (p.u.) the power extracted by the WTG, vw the 

wind speed in m/s,  the pitch angle in deg and r the rotor speed in p.u. on the rotor 

rated speed. Ps is controlled acting on the MSC by means of a power control scheme 

that provides the reference for the stator current quadrature axis component (isq,ref) to 

the MSC inner current control loop, as shown in Fig. 72. The stator current direct axis 

reference isd,ref is set to zero in order to minimize the amplitude of the stator current. 

Usually, the stator active power reference Ps,ref is defined by the MPPT signal 

calculated on the basis of the rotor speed measurement r in accordance to the well-

known MPPT characteristic (see [136]). The FS control signal, PVHIE, is usually added 

to the MPPT one as depicted in Fig. 72. Let us now analyze the dynamic evolution of 

the WTG when a FS action is needed and, to better understand the system dynamic 

evolution, let us refer to Fig. 73. In normal operation, the WTG power production is 

on the MPPT curve (blue line); in particular, for a fixed wind speed, the equilibrium 

point in normal operation (A) is the intersection between the MPPT curve and the wind 

power one (red dashed curve). 
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Fig. 72. Power control structure of the MSC. 
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If FS is required, the WTG controller provides an inertial response increasing the 

power production (point B). In accordance to (139), the power unbalance makes the 

WTG decelerate and the system evolves towards point C. The horizontal segment B-

B’ highlights the possibility of power limitation in order to avoid the converter 

overloading. When the FS phase terminates (point C) the system passes in the RSR 

phase (starting at point D). If no recovery strategy was implemented, point D would 

fall on the blue curve (point D’) providing a quicker recovery but a higher power step-

down (represented by segment C-D’) and thus a higher secondary frequency drop. The 

proposed idea for the RSR phase is to provide the system with a power reference in 

between the blue and the red curve in order to get a good trade-off between a 

reasonably fast recovery and a reduced impact on the secondary frequency drop. Once 

the system is sufficiently close to the MPPT curve (point E) the RSR phase terminates, 

bringing the WTG back on the MPPT curve (point F) to return at the normal operation 

point (A). 

 

Fig. 73. Schematic description of a WTG dynamics during FS  

 

6.2.1 Activation and deactivation logics for the VHIE controller 
The aim of this subsection is to define suitable logics that allow starting and stopping 

the FS and the RSR phases. The FS phase is activated if the time derivative of the 

frequency fe becomes smaller than a warning threshold RoCoFact: 

 0e
act

d f
ROCOF

dt
   (140) 

This is justified by the fact that, even if different networks in different countries may 

have different alert values for the RoCoF, the necessity of avoiding high absolute 

values of the RoCoF is a common element for the safe operation of an electricity grid 

[140]. 

In this condition, the FS controller logic switches the FS activation signal SFS (equal to 

zero in normal operation) to one and keeps it so until a deactivation condition occurs. 

The deactivation of the FS phase occurs according to the following condition: 
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 , 0
e

deact s ref MPPT

d f
RoCoF P P

dt
    (141) 

The first one means that the RoCoF has returned over a certain deactivation threshold, 

RoCoFdeact (higher than RoCoFact and at least equal to zero). The second one occurs 

when, during the FS phase, the reduction of the WTG speed makes the power reference 

smaller than the power production before starting the FS phase (namely PMPPT0). With 

reference to the conceptual scheme of Fig. 73, this means that the ordinate of point C 

is falling below the ordinate of point A, which makes the action of the FS controller 

useless.  

The necessity to know PMPPT0 implies that the FS control logic has to store the WTG 

power reference at the beginning of the FS phase. When one of the two conditions of 

(141) occurs, SFS switches back to zero while the RSR phase activation signal SSR 

passes from zero to one and remains so until the RSR phase is over. The RSR phase 

terminates when the power reference Ps,ref is sufficiently close to the PMPPT signal. 

Defining a positive tolerance threshold ΔPSR,deact, signal SFS returns to zero when: 

 , ,s ref MPPT SR deactP P P +    (142) 

The definition of the state of switching signals SFS and SFS can be easily translated into 

a circuit composed by logical operators, comparators and flip-flops as depicted in Fig. 

74. 
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Fig. 74 Implementation logic for the management of the FS and RSR phases for the proposed 

VHIE controller. 

This way, the VHIE controller contribution appearing in Fig. 72 can be written as: 

 VHIE FS FS SR SRP P S P S=  +   (143) 

being PFS and PSR the power contributions in the FS and RSR phases, that are detailed 

in the next subsections. 

6.2.2 Frequency support phase with variable hidden inertia emulation 
The starting point for the proposed VHIE is the structure of the classical HIE (CHIE) 

controller [118] where the addition synthetic inertia contribution during the FS phase 

(PSynt), in p.u. on WTG apparent power base, is defined as: 
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 2 e
synt synt e

d f
P H f

dt
=  (144) 

where Hsynt is the synthetic inertia coefficient in s. As highlighted in [121], there are 

practical limits on Hsynt with a consequent potential risk of instability and WTG shut 

down if such limits are overcome. Such limits are somehow related to the reduction of 

the WTG rotor speed [123]. Therefore, the basic idea of the proposed FS controller is 

that the FS action has to be more effective during the first part of the transient, when 

the RoCoF is more severe, and should reduce its contribution when the rotor speed 

decreases, in order to avoid the stall of the wind turbine. For this reason, Hsynt 

coefficient is changed during the FS so that its maximum value is provided when the 

system enters the FS phase and becomes zero for a limit value of the WTG rotor speed 

r,min. This can be obtained defining the following linear decreasing function: 

 0
max

0 ,min

( ) 1 r r
synt r

r r

H H
 


 

 −
= + 

−  

 (145) 

In order to implement (145), the controller needs to “remember” the rotor speed at the 

beginning of the FS phase ωr0, which can be achieved using a simple Sample and Hold 

device triggered by the activation signal of the FS phase SFS. 

According to (144) and (145), it is possible to define the power contribution PFS in the 

FS phase as: 

 2 ( ) e
FS synt r e

d f
P H f

dt
=  (146) 

For the actual implementation of the FS scheme, it is also necessary to account for a 

filtering of the system frequency, in order to wash out disturbances introduced by the 

frequency measurement and by the numerical frequency derivation appearing in (146). 

The final scheme of the FS controller is reported in Fig. 75: 

 
Fig. 75. Block diagram layout of the FS section of the proposed VHIE controller.  

The filters time constants Tf1 and Tf2 have to be defined in order to remove the noise 

form the signal without interfering with the performances of the controller. 

6.2.3 Rotor speed recovery phase 
As discussed earlier, in the RSR phase it is important to control the WTG power 

reduction in order to avoid a secondary frequency drop and an aggravation of the 
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frequency nadir [120]. The proposed approach consists in providing a power reference 

lying in between the MPPT curve (which would produce a higher frequency drop) and 

the wind power one (which would not allow the WTG optimal speed recovery). 

Consequently, in the RSR phase, one has that the power reference must be a linear 

combination of these two extreme situations, that is to say: 

 ( ) ( ) ( ), , , 1s ref SR w w r SR MPPT rP K P v K P  = + −  (147) 

Being KSR a suitable coefficient between 0 and 1. Now, examining the control scheme 

appearing in Fig. 72, it is evident that: 

 ( ),s ref MPPT r VHIEP P P= −  (148) 

so, inserting (147) in (148), recalling (143) and observing that SFS=0 and SSR=1 in the 

RSR phase, one has that: 

 ( ) ( ), ,SR SR MPPT r w w rP K P P v   = −   (149) 

In order to implement (149), the control system needs to know an estimation of the 

wind power Pw, which is possible on the basis of the WTG rotor speed knowing the 

wind speed vw (see [136] for the formula). If no wind speed measurement is available, 

it is enough to observe that in the equilibrium point before the FS phase one had that: 

 ( ) ( )0 0 0 0, ,w w r MPPT rP v P  =  (150) 

where the subscript 0 is used to indicate the initial steady-state conditions before the 

FS action. Now, since both r0 and 0 can be measured, it is possible to numerically 

solve (150) with respect to vw0 in order to get an estimate of the initial value of the 

wind speed. Now, assuming that, during both the FS and the RSR phases the wind 

speed remains constant, (149) becomes: 

 ( ) ( )0 , ,SR SR MPPT r w w rP K P P v   = −   (151) 

which can be easily calculated since both the rotor speed and the pitch angle can be 

measured. The schematic representation of the proposed configuration for the RSR 

phase is depicted in Fig. 76. 

 

Fig. 76. Block diagram layout of the RSR section of the proposed VHIE controller. 

The choice of KSR can be done considering that, if the system frequency is low due to 

a severe power transient, a secondary frequency drop is highly avoidable; thus KSR 
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should be the higher possible (e.g. 0.9). On the other hand, if the system frequency is 

far from critical values, the secondary frequency drop is not too compromising for the 

system and one could opt for a quicker but more demanding RSR choosing KSR close 

to 0. For this reason, one can set: 

 ( ) min

max min

0.9 1 e
SR e

f f
K f

f f

 −
= − 

− 
 (152) 

Being fmin and fmax limits values of the system frequency to be defined in accordance 

to the specific grid requirements of the system where the WTG is installed. Out of the 

range defined by fmin and fmax KSR is saturated to 0.9 and 0 respectively.  

An overall representation of the proposed VHIE controller to be integrated in the 

MSC power controller is depicted in Fig. 77. 

 

Fig. 77. Overall architecture of the proposed VHIE controller 

 

6.2.4 A Criterion for the definition of the WTG synthetic inertia 
As a final comment, it is worth providing an applicative criterion for the definition of 

the VHIE coefficient Hmax. If one considers a power system with NSG synchronous 

machines and no WTGs, the overall system inertia Htot can be calculated as: 

 , , ,

1 1

SG SGN N

tot SG i r i r i

i i

H H S S
= =

=   (153) 

where HSG,i is the inertia in s and Sr,i is the rated apparent power in MVA of the i-th 

synchronous machine. According to [141] the maximum RoCoF is inversely 

proportional to Htot and can be estimated as: 

 0
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being PL and PL the load variation and the total load of the system in MW and f0 the 

initial frequency in Hz. If WTGs are included in the power system and no FS is 

provided, the overall installed power of the system increases but since no additional 

inertia is seen by the grid, the overall inertia coefficient Htot decreases: 

 , , , ,

1 1 1

SG SG WTGN N N

tot SG i r i r i WTG j

i i j

H H S S S
= = =

 
= + 

 
    (155) 

being NWTG the number of WTGs and SWTG,j the rated apparent power of the j-th WTG. 

This implies that, at fixed PL, RoCoFmax increases making the system frequency 

weaker. 

A criterion for the definition of the synthetic inertia coefficient of the proposed VHIE 

controller could be the following: imposing a RoCoFmax reference value for a certain 

load variation (e.g. the same the system had when only traditional power generation 

was present or one defined by the local TSO) and then calculating the necessary power 

system inertia Htot using (154). Recalling that for the first instants of the FS transient 

the proposed VHIE controller (146) behaves like the traditional HEI (144) providing 

synthetic inertia equal to Hmax, one can rewrite (155) introducing the contribution of 

the NFS WTGs providing FS (with NFS ≤ NWTG) obtaining: 
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Imposing Htot in (156) it is possible to determine the overall inertia necessary from all 

the WTGs providing FS: 

 , , , WTG, ,

1 1 1 1

FS SG WTG SGN N N N

max k WTG k tot r i i i r i

k i i i

H S H S S H S
= = = =

 
= + − 

 
    . (157) 

The repartition among the NFS WTGs can be done according to various criteria; 

however, if one assumes that Hmax is the same for all WTGs contributing to FS (and it 

is reasonable since Hmax,k are in p.u. on WTG base) one can simplify (157) as: 

 

, WTG, ,
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. (158) 

This criterion can be easily applied to new WTG installations, imposing that their 

insertion will not affect the system RoCoF, or one can use it for the retrofit of existing 

WTGs in order to improve the RoCoF to more secure values. 

 

6.3 Illustration of the Proposed Frequency Support 
In this section, the proposed VHIE control strategy is tested on a simplified grid 

configuration in order to evaluate its expected impact on the system frequency and on 
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the WTG dynamics. The network and WTG models are implemented in DIgSILENT 

PowerFactory. The layout is the same proposed in Fig. 71 and PMSG WTG model 

includes all the control loops of the MSC and GSC together with inner current control 

loops of the two converters. As one could know, DIgSILENT does not include into its 

library a detailed model of the fully rated wind generating units or of the PMSG. For 

this reason, the WTG model has been developed by the authors as a user-defined one 

including: the wind model, a third order model for the PMSG, a first harmonic 

representation for the MSC and GSC and all the machine controllers such as the 

MPPT, the DC voltage and the reactive power controller together with the inner current 

controllers of the two converters. As a result, the WTG is described by a sixth order 

dynamic system. For the sake of brevity a detailed description of the WTG model is 

here omitted; nevertheless, details about the structure implemented in DIgSILENT and 

the parameters used for the following simulations are the same defined in [136]. In 

order to achieve a dynamic response of the system frequency, the external grid 

connected to the High Voltage (HV) side of the WTG transformer is considered as 

fixed in voltage (infinite short circuit power) but characterized by a finite inertia Hg 

and a droop bp. The frequency dynamics is triggered by a step load variation on the 

grid side of the power system. The impact of the proposed FS strategy on the system 

frequency is compared with the case of no FS and of FS provided by the CHIE control 

scheme. In accordance to the criteria given by ENTSO-E technical documentation 

[142], a critical value of the system RoCoF is assumed equal to -0.5 Hz/s, thus all the 

parameters of the frequency controllers are defined in Table 22. The proposed 

simulations are relevant to two different scenarios: the first one (case A) is 

characterized by Hsynt=Hmax=100 s i.e. a value that provides a stable operation for the 

CHIE; the second (case B) by Hsynt=Hmax=250 s for which the CHIE causes a 

disconnection of the WTG as pointed out in [121]. The proposed frequency transient 

has been chosen to be very severe to stress the performances of the considered FS 

controllers and to better highlight the improved performances of the proposed 

approach with respect to classical one. For this reason, the final frequency falls to 47.5 

Hz, the lower limit value provided by [143] for which the system has to ride through 

for a minimum of 30 minutes. 

 

Table 22 Controllers parameters 

Symbol VHIE Controller CHIE Controller 

RoCoFact -0.25 Hz/s -0.25 Hz/s 

RoCoFdeact 0.00 Hz/s 0.00 Hz/s 

ΔPSR,deact 0.01 p.u. - 

r,min 0.3 p.u. - 

fmin / fmax 47 / 49 Hz - 

6.3.1 Case A 
The system frequency response in the proposed scenario is depicted in Fig. 78. As one 

can notice, in case of no FS (black dotted curve) the system frequency presents a 
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steeper frequency transient in the first instants after the load variation. This is 

confirmed from Fig. 79 where one can notice the RoCoF without FS falling below the 

critical value of -0.5 Hz/s. 

 
Fig. 78. Frequency time profile 

 

Fig. 79. System Rate of Change of Frequency time profile 

The action of the VHIE and HIE are very similar in the FS phase providing a 

significant increasing of the system RoCoF that passes very rapidly from -0.5 Hz/s to 

almost -0.2 Hz/s. At about 20 s the VHIE control exits from the FS phase switching to 

the RSR one. In this transition, one can notice a minimal effect on the system RoCoF 

that is recovered very quickly but a sensible improvement of the frequency secondary 

drop, with a consequent improvement of the frequency nadir with respect to the HIE 

control. Fig. 80 reports the WTG rotor speed during the transient. 
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Fig. 80. WTG rotor speed time profile 

As one can see, beside almost identical performances on the RoCoF, the rotor speed 

with VHIE has a lower reduction with respect to the HIE. In addition, the speed 

recovery is more performing since the VHIE avoids the rotor speed overshoot. Even if 

the RSR is controlled in the proposed configuration one can notice from Fig. 80 that 

the time needed to restore the rotor speed is substantially the same as with the HIE 

control strategy. 

Fig. 81 highlights the power reference evolution during the simulation. It starts on the 

MPPT curve before increasing to perform the FS. 

 

Fig. 81. Stator power reference time profile. 
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Fig. 82. Machine stator current time profile 

Then, during the RSR, the power reference correctly falls between the wind power 

(red dashed curve) and the MPPT curve (dotted black one). Fig. 82 reports the time 

domain waveform of the machine current, highlighting that, even in the FS phase, the 

PMSG is not overloaded (20% overrating for the converter current was considered). 

6.3.2 Case B 
In order to highlight the stability properties of the proposed VHIE a simulation with 

high values of synthetic inertia is proposed. As pointed out in [121], in this 

configuration the HIE exhibits unstable operations due to the severe speed reduction 

that is not recovered by the WTG, as shown in Fig. 83. 

 

Fig. 83. WTG rotor speed time profile. 

On the other hand, the VHIE is designed to reduce its contribution when the rotor 

speed decreases too much and thus the WTG stability is always achieved. This is a 

very important point because if during a FS action the WTG stalls, the network is 

losing further generation causing an aggravation on the system frequency. This can be 

seen in Fig. 84 where the WTG disconnection provides a secondary frequency 
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decreasing and an aggravation of the system frequency final value due to the reduction 

of the overall power generation (it is like having a bigger load variation). 

 

Fig. 84. Frequency time profile 

 

6.4 Test-Case Definition 
The validation of the proposed VHIE control system has been performed considering 

a benchmark network defined to perform wind power integration studies [144] and 

implemented in DIgSILENT PowerFactory. This test-case network aims at evaluating 

the performances of the proposed VHIE in a more realistic condition where the 

frequency dynamics are different from the academic ones showed in §6.3 due both to 

a more complex topology and to a more complete model of the synchronous generators 

equipped with governors, primary frequency regulators and AVRs (see [144] and [145] 

for their parameters). As far as the WTGs are concerned the model used is the same as 

§6.3 and thus accounting for all the electromagnetic dynamics of the PMSG and all 

the WTG control systems. 

 

Fig. 85. Benchmark network layout 
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The system is a 12-bus, four machines network, characterized by a 230 kV ring and a 

345 kV line. Power generation are connected to MV busses at 13.8 kV or 15 kV, as 

depicted in Fig. 85. Network parameters are omitted for the sake of brevity but all the 

data can be found in [144]. The six loads require a total active power equal to 1,470 

MW and a total reactive power equal to 705 MVAr. In the Base Reference Scenario 

(BRS), no wind power generation is considered and the system accounts for a total 

installed power from synchronous generators equal to 2,248 MVA. The overall system 

inertia for the BRS, calculated using (153), is 3.95 s on the basis of the main generator 

data reported in Table 23 [144]. 

Table 23 Generator parameters for the BRS 

Generator Number of generators Rated Power [MVA] Inertia [S] 

G1 6 125 4.77 

G2 4 160 3.96 

G3 2 192 3.30 

G4 3 158 3.18 

 

The BRS is then modified introducing three Wind Power Parks (WPPs) at Bus 3, Bus 

4 and Bus 5, namely WPP1, WPP2 and WPP3. WPP1 and WPP2 represent the 

aggregation of 100 WTGs, each characterized by 2 MW rated power, while WPP3 

accounts for the aggregation of 80 WTGs. In this configuration, from now on indicated 

with Wind Integration Scenario (WIS), the total installed wind power is equal to 560 

MVA. Traditional power generation in WIS is reduced to 1,736 MVA resulting in a 

RES penetration is equal to 24% with respect to the total installed power generation. 

With respect to the data of Table II the WIS accounts of a reduction of two 160 MVA 

generators and one 192 MVA generator. The introduction of the three WPPs in place 

of traditional generation causes a reduction of the system inertia which is now equal 

to 3 s (calculated in accordance to (155)). 

The load flow condition of the WIS is characterized by the same load request of the 

BRS while WPPs are set to produce different powers (i.e. assuming different wind 

conditions for each WPP) in order to account for different WTG operating points 

before contributing to FS (all at unitary power factor). In the WIS the WTGs of WPP1 

produce 1 MW active power, WTGs of WPP2 produce 1.4 MW while WTGs of WPP3 

produce 1.8 MW for a total RES production equal to 384 MW (around 26% of the total 

load demand). For both the BRS and the WIS a 120 MW increasing of load L1 

generates a frequency transient. 

The parameters of the VHIE controllers for the three WPPs are the same reported in 

Table I while the synthetic inertia coefficient Hmax is set to 4 s and has been calculated 

in accordance to (158) imposing the inertia of the system for the WIS Htot equal to the 

value of the inertia in the BRS. 

6.5 Simulations and Results 
As one can see from Fig. 86, the frequency transient in the BRS (red dashed curve) 

is oscillatory and characterized by a frequency nadir of 48.9 Hz. Also the RoCoF in 
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the BRS, red dashed curve of Fig. 87, is reasonable with minimum value around -0.4 

Hz/s. 

 

Fig. 86. Frequency time profile 

For the WIS, the frequency behaviour is evaluated in two conditions: the first one 

without FS from the WTGs (black dotted lines) and the other with the proposed VHIE 

(blue solid lines). 

 

Fig. 87. System Rate of Change of Frequency time profile 

Fig. 86 shows that after the introduction of the wind power generation without the FS 

controller the system frequency suffers from a degeneration of the frequency 

dynamics. The frequency nadir falls below 48.5 Hz and the initial RoCoF is steeper. 

This is confirmed in Fig. 87 where RoCoF for the WIS scenario without FS overcomes 

the limit threshold of -0.5 Hz/s. This critical condition is well coped by the proposed 

VHIE which provides an effective FS action. 

Fig. 86 shows the increasing of the frequency nadir, coming back to the same values 

reach the in BRS. Also, the system RoCoF has a significant improvement since it does 

not exceed the value of -0.3 Hz/s and it is less swinging even if compared with the 

BRS. 

Finally, Fig. 88 provides a plot of the power contribution in p.u. of the three WPP in 

order to highlight the good performances of the proposed VHIE in different operational 

conditions of the WTGs. 
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Fig. 88. WPPs power production time profile. 

 

Moreover, it could be interesting to compare the effects of two different FS strategy 

in the same grid, same penetration and same external condition as explained in §6.5. 

In the following picture it is possible to have at glance the benefit introduced by the 

VHIE in terms of Frequency, nadir and RoCoF. 

 

Fig. 89 Frequency comparison 
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Fig. 90 RoCoF comparison 

6.6 Chapter 6 Conclusions 
This thesis proposed a new methodology to enable WTG to provide FS by means of a 

VHIE controller designed to avoid unstable operation of the WTG with a strong 

contribution at the first instants of the frequency transient. Moreover, the proposed 

architecture accounts for a suitable management of the RSR phase, that might be 

critical for the CHIE strategy, and for dedicated activation and deactivation logics 

easily implementable on industrial controllers. The performance of the proposed FS 

controller has been initially tested on a simplified configuration in order to assess its 

impact on the WTG dynamics in comparison with a classical HIE approach. Secondly, 

a more realistic set of simulations has been proposed on a dedicated test-case network 

in order to evaluate the behaviour of the VHIE when frequency dynamics are also 

affected by traditional generators primary frequency controller and AVRs. Simulation 

highlighted the better performances of the proposed VHIE on the WTG dynamics with 

a reduced rotor speed decreasing and a softer RSR phase. Moreover, VHIE has shown 

to avoid unstable behaviour exhibited by CHIE. The proposed VHIE has also shown 

an effective impact on the system frequency providing a reduction of the system 

RoCoF and the increasing of the frequency nadir restoring a condition very similar to 

the one characterized by all traditional power generation. Future developments will 

regard the possibility of integrating the proposed strategy with storage devices in order 

to improve the flexibility of the FS. This could give the possibility of including a droop 

controller making the WTG more and more similar to a traditional power plant in case 

of need. 
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7 Conclusions 
 

This thesis has dealt with some interesting topics in electrical engineering research, 

i.e. microgrid control, microgrid stability and wind turbine integration into traditional 

grids. 

As stated in Fig. 91 the interest in microgrid is quickly increasing since 2015, year in 

which the candidate started in researching on this topic, moving from about 3000 

published articles collected in Scopus in 2015, up to more than 9000 just four years 

after. Again, the same could be explained for the other studied topic, i.e. synthetic 

inertia, that in the same time span has moved from 211 to 436 in the same database 

(Fig. 92). 

 

Fig. 91 Documents by year for “Microgrid” 

 

Fig. 92 Documents by year for “Synthetic inertia” 
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In the previous chapters, a detailed state of the art and literature review on the main 

topics are analysed and used in order to define a path to move the research forward. 

Control problems related to the management of microgrids cover a wide range of 

possible topics. In this Ph.D. thesis, some of them have been considered in some 

details, and possible approaches for the solution of such problems have been 

developed. A considerable attention has been devoted to the analysis of problems 

relevant to modelling, stability and control. These problems have been analysed using 

different tools and approach, mixing experimental validation, theory and mathematical 

demonstrations and simulation using different software. On the other hand, a simple 

but very effective strategy to deplete the stored kinetic energy by a decelerating wind 

turbine speed. The amount of active power support depends on several static and 

dynamic factors, including wind speed and wind turbine inertia. The merit of this thesis 

is in providing a complete strategy, detailed in logic trips, impact evaluation and wind 

speed estimator without using an anemometer 

The chosen steps for this three-years microgrid research can be summarized in few 

lines as follows: 

• to define a reliable and simple model for microgrid simulation; 

• to test it in real microgrid environment and validate it; 

• to empower tools for well know microgrid control strategies and simulate them 

using the microgrid model; 

• to define a new strategy for frequency and power flow management; and 

simulate it using the microgrid model; 

• to test the proposal strategy in lab. 

Analogous steps for the wind turbine control, i.e.: 

• to study the synthetic inertia control state of the art and to understand what 

could be improved; 

• to defining a new and simple strategy able to go over the limitations and the 

deficiencies of the other control; 

• to test in through a powerful tool in a significant power system. 

This thesis opens some new scenarios and new research area that in future could be 

investigated. 

In particular, the MPC approach, that allows to combine the first and the second control 

layer in one even more complete able to manage critical situations, is already deeply 

investigated in this thesis. Future developments would move towards, first to grid 

follower inverter and then towards more complex experimental environment, e.g. at 

the SPM, involving also the batteries of charging cars, in order to evaluate the actual 

scalability of this strategy. 

Moreover, the stability algorithm for microgrid could be refined and implemented in 

working microgrid controlled by droop strategy. Obviously, it could be adapted in 

order to be able to study the stability problem under other droop-based controls, such 

as virtual impedance. 
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Finally, about VHIE, a specular strategy for over-frequency contingency could be 

studied and developed, i.e. increasing the rotational speed and paying attention to 

avoid any wind turbine instability. 

The efforts and the novelty were awarded with publications in internationals journals 

and conferences. 
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