
UNIVERSITY OF GENOVA & ISTITUTO ITALIANO DI

TECNOLOGIA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Structured Machine Learning for Robotics

by

Gian Maria Marconi

Thesis submitted for the degree of Doctor of Philosophy (XXXII cycle)

Curriculum in Advanced and Humanoid Robotics

December 2019

Lorenzo Rosasco Supervisor

Giorgio Metta Supervisor

Giorgio Cannata Head of the PhD program

Thesis Jury:

Maurizio Filippone, EURECOM External examiner

Marcello Restelli, Politecnico di Milano External examiner

Massimiliano Pontil, Istituto Italiano di Tecnologia Internal examiner

2

Department of Informatics, Bioengineering, Robotics and Systems Engineering

Acknowledgements

The endeavor of achieving a Ph.D. is no small task, and it must be considered a shared

effort more than an individual feat. And while words will never be enough to express my

gratitude, one must try.

Indeed, these acknowledgments begin with my advisors: Lorenzo Rosasco and Giorgio

Metta, who believed in me and supported my development as a scientist during these

three years, they are the condition sine qua non this would not have been possible. I

am also grateful to all the more experienced researchers that I have met during these

three years and that fostered my intellectual growth with endless discussions, ideas, and

collaborations: Alessandro Rudi, Fabio Anselmi, Guillaume Garrigos, Saverio Salzo, Silvia

Villa, Stefano Vigogna, and Giulia Pasquale. Special thanks go to Carlo Ciliberto and

Daniele Calandriello, the two people that taught me the most about machine learning

and academia in general, after my advisors. I will never express enough gratitude to

Maximilian Nickel, whose contribution to chapter four was essential. I also thank Elisa

Maiettini and Luigi Carratino, with whom I’ve shared the difficult path of doctoral studies.

Thanks to Vanessa D’Amario, Veronica Tozzo and Laura Di Rocco for the never-ending

encouragement and comfort. Thanks to Raffaello Camoriano and Aiko Dinale for the

variety and the quality of time spent inside and outside the laboratory.

Many technical issues would have never been overcome without the experienced advice of

Daniele Domenichelli, Nicolò Genesio and, especially, Andrea Ruzzenenti, who above all

showed me that it is not necessary to have a diploma to be a true engineer. An obligatory

mention goes to Giulia D’Angelo, Fabrizio Bottarel and Massimiliano Iacono for being

another reason for leaving my desk at the University and visit IIT.

I also want to especially acknowledge the reviewers of this thesis: Maurizio Filippone and

Francesco Nori. Without their invaluable comments and feedback this thesis as it is now,

would not have been possible.

I warmly thank Gianluca Alloisio, Marco Bandino, Marco Stanizzi, Alessio Corrado, Andrea

Mussi, Gianluca Garzarelli Doria and Luca Demetrio for defeating the stereotype of Liguria

ii

as an unwelcoming region, and especially Damiano Malafronte for dramatically increasing

my survival chances as a Ph.D. student in Genoa.

Last but not least, I would like to thank my family and Marta for supporting my research

career in the past and in the future.

Abstract

Machine Learning has become the essential tool for automating tasks that consist in

predicting the output associated to a certain input. However, many modern algorithms

are mainly developed for the simple cases of classification and regression. Structured

prediction is the field concerned with predicting outputs consisting of complex objects

such as graphs, orientations or sequences. While these objects are often of practical

interest, they do not have many of the mathematical properties that allow to design

principled and computationally feasible algorithms with traditional techniques.

In this thesis, we investigate and develop algorithms for learning manifold-valued func-

tions in the context of structured prediction. Differentiable manifolds are a mathematical

abstraction used in many domains to describe sets with continuous constraints and non-

Euclidean geometric properties. By taking a structured prediction approach we show

how to define statistically consistent estimators for predicting elements of a manifold, in

constrast to traditional structured prediction algorithms that are restricted to output sets

with finite cardinality. We introduce a wide range of applications that leverage manifolds

structures. Above all, we study the case of the hyperbolic manifold, a space suited for

representing hierarchical data. By representing supervised datasets within hyperbolic

space we show how it is possible to invent new concepts in a previously known hierarchy

and show promising results in hierarchical classification.

We also study how modern structured approaches can help with practical robotics tasks,

either improving performances in behavioural pipelines or showing more robust predic-

tions for constrained tasks. Specifically, we show how structured prediction can be used

to tackle inverse kinematics problems of redundant robots, accounting for the constraints

of the robotic joints. We also consider the task of biological motion detection and show

that by leveraging the sequence structure of video streams we significantly reduce the

latency of the application. Our studies are complemented by empirical evaluations on

both synthetic and real data.

Publications

Some ideas, figures and tables have appeared previously in the following publications.

Rudi, A., Ciliberto, C., Marconi, G. M., & Rosasco, L. (2018). Manifold structured prediction.

In Advances in Neural Information Processing Systems (pp. 5610-5621).

Marconi, G. M., Rosasco, L., & Ciliberto, C. (2020). Hyperbolic Manifold Regression. To

appear in Proceedings of the 23th International Conference on Artificial Intelligence and

Statistics.

Table of contents

List of figures xi

List of tables xiii

Introduction 3

I Background 9

1 Statistical Learning 11

1.1 Supervised Learning . 11

1.2 Data and structure . 12

1.2.1 Loss functions . 14

1.3 Learning and generalization . 15

1.4 Empirical risk minimization . 16

1.5 Regularized least squares . 16

1.6 Feature maps and Reproducing Kernel Hilbert Spaces 18

1.6.1 Feature maps . 18

1.6.2 Reproducing Kernel Hilbert Spaces . 19

1.6.3 Feature maps and kernels . 20

1.6.4 Kernel Regularized Least Squares . 21

2 Structured Prediction 23

2.1 Structured Support Vector Machine . 24

2.2 Consistent Regularized Structured Prediction 27

2.3 Neural Network Models . 30

2.3.1 Segmentation with Neural Networks . 32

2.3.2 Recurrent Neural networks . 32

viii Table of contents

II Manifold Structured Machine Learning 35

3 Manifold Structured Prediction 37

3.1 Introduction . 37

3.2 Differential geometry . 38

3.2.1 Riemannian manifold . 40

3.3 Structured Prediction for Manifold Valued Regression 41

3.3.1 Manifold Valued Regression via Structured Prediction 41

3.4 Characterization of SELF Function on Manifolds 42

3.4.1 Statistical Properties of Manifold Structured Prediction 44

3.5 Algorithm and Experimental applications . 46

3.5.1 Optimization on Manifolds . 46

3.5.2 Synthetic Experiments: Learning Positive Definite Matrices 48

3.5.3 Fingerprint Reconstruction . 50

3.5.4 Multilabel Classification on the Statistical Manifold 51

4 Hyperbolic Data Representation 53

4.1 Introduction . 53

4.2 Hyperbolic Manifold . 55

4.2.1 Lorentz Model . 56

4.2.2 Poincaré ball . 57

4.2.3 Isometries . 58

4.3 Hyperbolic representation . 58

4.3.1 Hyperbolic representation . 59

4.4 Hyperbolic regression . 61

4.4.1 Hyperbolic Structured Prediction . 61

4.4.2 Homeomorphic Geodesic Neural Network 63

4.5 Applications . 64

4.5.1 Models and training details . 65

4.5.2 Hierarchical classification . 66

4.5.3 Taxonomy expansion . 67

III Structured Machine Learning Robotics 71

5 Inverse Kinematics with Structured Prediction 73

5.1 Problem and proposed approach . 74

Table of contents ix

5.1.1 One-Class Strucured SVM . 75

5.1.2 Multivariate Neural Network Regression 76

5.1.3 Consistent Resgularized Structured Predictor 76

5.1.4 Trajectory reconstruction . 76

5.2 Experimental validation . 77

5.2.1 Results . 79

6 Faster Biological Motion Detection 81

6.1 Biological Motion Detection . 82

6.1.1 Characterization of biological movement 83

6.2 Dataset . 84

6.2.1 Training set . 85

6.2.2 Test set . 86

6.3 Accelerated pipeline . 87

6.3.1 Visual Features Extraction . 87

6.3.2 Sequence classification for biological motion detection 88

6.3.3 Robotic implementation . 90

6.4 Experiments . 91

Conclusions 95

References 99

Appendix A Appendix 111

A.1 Proof of Theorem 3.4.1 . 111

A.1.1 Auxiliary Results . 112

A.1.2 Proof of Theorem 3.4.1 . 115

A.2 Proof of Theorem 3.4.2 . 115

A.3 Proof of Theorem 3.4.4 . 116

List of figures

1 Example of structured data. (a) Social graph. (b) Covariance matrix. (c) Time

series. 4

2 The sphere manifold for representing robotic end effector orientation and

the cone of positive definite matrices for stiffness matrices 6

1.1 An example of regression function on a 1-dimensional training set. 13

1.2 An example of a non linearly separable dataset before and after applying a

feature map. 18

3.1 A representation of a tangent space and the exponential map mapping the

vector v to the corresponding element in in the manifold. 39

3.2 Fingerprint reconstruction of a single image where the structured predictor

achieves 15.7 of average error while KRLS 25.3. 51

4.1 Shortest path between two points in hyperbolic space and the ration be-

tween their distance and the distance from the origin. 56

4.2 Embedding of a tree in the Poincare disk. 57

4.3 a) Geodesics in the Poincaré disk model of hyperbolic space. b) Lorentz

model of hyperbolic space and its mapping onto the Poincaré disk. 59

4.4 Overview and close-up of predicted positions for entity ’Fox’. Models that

do not use the geometry of the hyperbolic manifold fail at positioning the

entity, while the geodesic neural network and the hyperbolic structured

predictor position the entity accordingly to its real neighbours. Only the first

2 dimensions of a 5-dimensional embedding are represented. 68

5.1 A plot showing the sampled workspace as blue markers for positions, black

short line for orientation, and the two trajectories used in the trajectory

reconstruction task. The fixed base of the robot is at (0,0). 77

xii List of figures

5.2 Trajectory reconstruction on eight-shaped trajectory. (a) NN. (b) CRiSP. (c)

OCSVM. 79

5.3 Trajectory reconstruction on circumference trajectory. (a) NN. (b) CRiSP. (c)

OCSVM. 80

6.1 Sample frames drawn from the proposed dataset: (a) a folding action, from

a lateral point of view, (b) a packing action, from a frontal point of view, and

(c) a Toy Train sequence, from a frontal point of view. 83

6.2 Sample frames from test set videos: (a) Rolling action partially occluded by

a box, (b) Toy-Train with tracks partially covered by a toy top, (c) new subject

performing the Packing action, not present in the training set. 85

6.3 A general overview of the pipeline of our method: (a) given an input se-

quence, (b-c) we estimate the optical flow by means of PWC-Net (Sun et al.,

2018), (d) we compute a set of biological motion descriptors which we finally

feed to (e) the chosen learning algorithm. 87

List of tables

3.1 Structured loss, gradient of the structured loss and retraction for P m++ and

Sd−1. Zi ∈ P m++ and zi ∈ Sd−1 are the training set points. I ∈ Rd×d is the

identity matrix. 47

3.2 Simulation experiment: average squared loss (First two columns) and ∆PD

(Last two columns) error of the proposed structured prediction (SP) ap-

proach and the KRLS baseline on learning the inverse of a PD matrix for

increasing matrix dimension. 49

3.3 Fingerprints reconstruction: Average absolute error (in degrees) for the man-

ifold structured estimator (MSP), the manifold regression (MR) approach in

(Steinke et al., 2010) and the KRLS baseline. 50

3.4 Area under the curve (AUC) on multilabel benchmark datasets (Tsoumakas

et al., 2009) for KRLS and SP. 52

4.1 Hierarchical classification on benchmark datasets. We report micro-F1

(µF1), macro-F1 (MF1), as well as the rank relative to all other models on a

dataset, e.g., (1) for the the best performing model. 67

4.2 Mean average precision for taxonomy expansion on WordNet mammals and

synthetic data . 69

5.1 Mean Squared Error (MSE) scaled by a factor of 1e2 and Explained Variance

(AE) for test set and trajectory reconstruction. 78

5.2 Experimental training time on 14000 points for NN, CRiSP and OCSVM over

12 repetitions . 79

6.1 Experimental results in terms of accuracy of the GRU-based approach and

the kernel-based approach . 92

6.2 Experimental timing in milliseconds for inference of a single frame with

kernel and GRU-based approach . 92

xiv List of tables

6.3 Accuracy using the unfiltered features . 92

Notation

Rd Euclidean space

M Differentiable manifold

w column vector (if not differently specified)

w (i) i -th element of vector w

W matrix

z⊤, Z⊤ transpose of vector z or matrix Z

x ∈X input sample and input space

X input matrix (each row is a sample x⊤)

y ∈Y output and output space

Ŷ output matrix (each row is an output label — or vector — y⊤)

〈·, ·〉H inner product in space H
∥ ·∥p Euclidean p-norm, with p = 2 if not specified

k(·, ·) kernel function

K empirical kernel matrix of size n ×n associated to K

φ(·) feature map

ψ(·, ·) structured feature map

ψ(·) structured output embedding

σ(·) element-wise non-linear function

In n ×n identity matrix

0 zero vector

∆ Structured Loss defined on some output space Y
ρ(·) probability distribution

sign(a) sign of a

∇ gradient

∇M Riemannian gradient on manifold M
d(·, ·) geodesic distance

Pr(·) probability of an event

Introduction

The volume of data gathered by information system has increased of several orders of

magnitude in the last decade. While data is the new primary raw material harvested by

tech companies, machine learning is the new digital factory, transforming petabytes of

information into digital solutions for tasks that until recently only human labour could

perform. However, while the overabundance of data is one of the main reasons of modern

machine learning success, as of today, the most common applications of machine learning

fall into one of two categories: classification or regression. These correspond to either

predicting a single number or choosing a label to classify an observed item. While these

two base tasks are surprisingly useful for a wide range of more complex applications,

many technological disciplines increasingly require to deal with richer, more structured

domains. Examples of such output domains, where the data cannot be represented as a

single scalar, are common in robotics: orientation vectors, joint configurations, behavior

trees and trajectories (Calinon, 2018; Colledanchise and Ögren, 2018; Spong et al., 2006)

However, while traditional scalar regression and classification have been object of in-

depth studies producing scalable algorithms with theoretical guarantees (Bauer et al.,

2007; Calandriello et al., 2019; Steinwart and Christmann, 2008), this has not happened

for more exotic domains. This is partially due to the flexibility of these algorithms. Many

structured problems can be approached with a regression (or classification) algorithm

acting on a proxy of the real desired output. However, this typically comes with a set of

limitations and ad-hoc fixes. Indeed, a gap still remains when working with structured

domains. The aim of this thesis is to contribute towards bridging that gap, starting from a

principled formalization of the problem and then moving towards practical applications

in the field of robotics.

4 List of tables

(a) Social graph (b) Covariance matrix (c) Time-series

Figure 1 Example of structured data. (a) Social graph. (b) Covariance matrix. (c) Time
series.

Machine Learning

Nowadays, machine learning is the fundamental tool in many Artificial Intelligence (AI)

tasks. While there are various subdomains, this thesis is focused on supervised learning.

At its core, supervised learning consists in finding a mathematical function f : X → Y
(called model) that approximates an ideal input-output relation by looking at only a finite

set of input-output couples {xi , yi }n
i=1. The process of finding this function is often called

learning, as it conceptually shows similarity to the idea of humans learning from exam-

ples. If the function is learned following proper algorithms, it can be expected to predict

accurate outputs when presented with new inputs; this property is called generalization.

Whenever the output is not a real number or a label from a finite set, we speak of struc-

tured prediction and structured data. This case is increasingly common in modern data

analysis, where the phenomena of interest are often described by complex mathematical

objects such as time series in finance (Tsay, 2014), graphs in social sciences (Farasat et al.,

2015) or covariance matrices in computer vision (Minh and Murino, 2017) (see Figure 1).

Some of these data types can be approached by repurposing regression or classification

functions, e.g. time-series prediction can be approximated element-wise with a regression.

However, it is not clear how much performance is lost when ignoring the actual structure

of the data. On the other hand, it is not always possible to find an approximation for a

structured domain. Therefore, we might require a new set of mathematical machinery

for solving the problem. As an example consider the case for dense structured output

spaces, where most traditional structured approaches are not suited for the problem since

designed for countable output spaces.

List of tables 5

Contributions First, we address the theoretical and algorithmic issues in Chapter 3, by

developing and analyzing a novel structured approach for manifold-valued regression.

Differentiable manifolds are set locally isomorph to Euclidean space that lack a global vec-

tor structure. They are often used to represent sets of complex objects such as surfaces or

positive definite matrices. For example, they have been extensively used for modelling key

quantities in robotics dynamics and kinematics (Park and Kim, 1998; Selig, 2013; Spong,

1992; Spong et al., 2006). We show how it is possible to compute statistically consistent es-

timators for differentiable manifolds and how this approach leads to multiple applications

with strong generalization properties on various tasks. In Chapter 4, we further exploit

these results by introducing hyperbolic data representation for hierarchical datasets. We

leverage the hierarchical structure that comes with many classification datasets and use

recent results on hyperbolic embeddings to recast a classification problem as a manifold-

valued regression problem. We highlight the advantages of using the geometric structure

of hyperbolic manifolds and introduce a new application called "taxonomy expansion".

Robotics

Robotics is an extremely wide and diversified field whose applications range from bi-pedal

locomotion to environment exploration (Thrun et al., 2002; Westervelt et al., 2018). In

this context, machine learning founds a thriving environment. The idea of substituting

deterministically written algorithms with example-learned models trades the cost of

modeling and analyzing the system with the cost of collecting high quality data. However,

the advantage of the machine learning paradigm lies in its increased generality. When an

algorithm performs accurately on a task, it is expected to show a comparable performance

on similar tasks. And, indeed, machine learning has enabled many succesful robotics

applications in recent years (Chua et al., 2018; D’Souza et al., 2001; Maiettini et al., 2018;

Pelossof et al., 2004). However, even more than other technological domains, robotics can

take advantage learning algorithms for structured data (Chen and Jackson, 2011; Pucci

et al., 2016; Tosun et al., 2014), see Figure 2 for the examples of sphere and positive definite

matrices. This advantages include reducing the amount of data needed for training a

model, having theoretical guarantees on the algorithm performance or reducing the

computational complexity for real-time applications.

Contributions In this thesis we propose two applications of structured prediction to

improve the perfomance on robotic tasks. In Chapter 5, we consider the problem of

learning the inverse kinematics of a robot. This problem comes with constraints in the

6 List of tables

Figure 2 The sphere manifold for representing robotic end effector orientation and the
cone of positive definite matrices for stiffness matrices

output space that correspond to the joint rotation boundaries. We compare our approach

with another structured approach and an unstructured regression. Then, we compare

them on the task of trajectory reconstruction, showing how our approach is faster to train,

has better accuracy and computes solutions compliant of the boundaries of the output

space. In Chapter 6, we consider the problem of biological motion detection, which

aims at determining if the movement present in a video stream is generated either by a

biological or non-biological entity. We leverage the natural sequence-like structure of

the problem and use Gated Recurrent Units networks. We compare our approach with

the state of the art unstructured approach and show that it is possible to obtain a faster

classification algorithm that foregoes much of the pre-processing needed in the state of

the art approach.

Structure of the thesis

This thesis is organized in the followig way. Part I is made by two introductive chapters.

In Chapter 1, we introduce the fundamental ideas of machine learning, focusing on

supervised learning. We introduce the definition of statistical learning and a first example

algorithm called Regularized Least Square. We then introduce the concept of feature

maps and kernels, showing how simple algorithms can easily be extended with these

concepts. In Chapter 2, we propose a formalization of some common algorithms for

structured prediction, we introduce the model and the minimization problem while

List of tables 7

highlighting their main characteristics from a statistical and computational perspective.

Part II focuses on structured prediction for manifold-valued functions. In Chapter 3, we

introduce a structured estimator for learning manifold-valued functions. We prove it is

statistically consistent and validate it on multiple datasets defined over different type

of manifolds. In Chapter 4, we leverage the manifold-structured estimator to introduce

hyperbolic data representation: a manifold valued embedding of supervised datasets with

hierarchical structure. We show how to compute this representation and how to apply it

to tasks of hierarchical classification using a manifold-structured estimator. Furthermore,

we introduce the task of taxonomy expansion in which we are able to reconstruct a

taxonomy embedded in hyperblic space. Part III revolves around two structured robotics

applications. In Chapter 5, we propose an improved structured algorithm for learning the

inverse kinematics of robotic arms, comparing it with both structured and unstructured

algorithms. In Chapter 6, we consider the problem of biological motion detection and

show how to obtain faster pipeline when tackling the problem with a structured algorithm

based on deep learning. We conclude the thesis with Section 6.4 where we wrap up the

results of this work.

Part I

Background

Chapter 1

Statistical Learning

In this chapter, we introduce what machine learning is about. While there are many tasks

that can be tackled within this framework, given the scope of this thesis we will focus on

supervised learning. We start by introducing the problem of statistical learning and the

main related concepts. Theoretical discussions are followed by the example of one of the

simplest algorithms for regression and binary classification: regularized least squares.

The aim of this chapter is to define the fundamental mathematical tools of supervised

learning while establishing a common notation. This will pave the road for more involved

algorithms used in the field of structured prediction.

The rest of this chapter is organized as follows. First, we define the problem of supervised

learning in the statistical sense. Then we introduce regularized least squares as a prototype

algorithm. We proceed to introduce feature maps and kernel models and finally we show

how to extend regularized least squares with kernels.

1.1 Supervised Learning

The goal of supervised learning is to find an input-output relation based on a finite set

of input-output couples D = {xi , yi }n
i=1, called training set. Mathematically, this problem

can be seen as finding a function f̂ : X →Y where xi ∈X , yi ∈Y ∀ i = 1, . . . ,n, such that

given a new input xtest, f̂ (xtest) is a good estimate (or prediction) of the corresponding

output ytest. The process of finding this function is also called "learning".

If we assume that there exists some joint distribution ρ : X ×Y → [0,1] between input

and output sets, it is clear that just computing a function interpolating the dataset points

might not be enough: there might be different values of yi corresponding to a same xi . To

12 Statistical Learning

model this problem we introduce the expected risk:

E(f) =
∫
X×Y

∆
(
y, f (x)

)
dρ(x, y). (1.1)

Given a loss function ∆ : Y ×Y → R measuring the quality of a prediction f̂ (xtest) with

respect to ytest, the expected risk gives an average estimate of how much a function f is

approximating the stochastic relation between x and y .

Thus, the problem can be written as

f ∗ = argmin
f ∈F

E(f), (1.2)

where F is the space of functions such that Equation (1.2) is well defined.

Because the expected risk is the average loss with respect to the input-output distribution,

we expect that, on average, a function minimizing Equation (1.1) will give good estimates

on new test points. In this case, we say that the function generalizes to unseen data.

1.2 Data and structure

We defined the training set as the set of input-output pairs used to learn from, with X
the input space and Y the output space. We call Z =X ×Y the data space. We introduce

some notable examples of input domains that are commonly used in machine learning.

• Euclidean space, X =Rd , x = [x(1), . . . , x(d)]. This is the simplest and most common

input space, it is a common abstraction for many problems

• Probability distributions. It is possible to define X = {x ∈Rd+ :
∑d

j=1 x(j) = 1}, i.e. the

probability simplex. Given a finite set Ω of cardinality d , we can interpret each

element of X as a probability mass function defined on the elements ofΩ

• Given a graph G = {V ,E } where V are nodes of the graph and E the edges connecting

such nodes, either set can be seen as an input space

• Strings. For a finite alphabet Σ of symbols, it is possible to consider X =Σp , p ∈N
which is the finite space of all possible combinations of p symbols

This list is just a glimpse of the many possible domains that can be used in machine

learning. As we will show later, it is easy to compute vectorial representations of the most

exotic data and thus fall in the case of Euclidean space as input space. While the theory

1.2 Data and structure 13

Figure 1.1 An example of regression function on a 1-dimensional training set.

we will introduce smoothly generalizes to a wide range of input spaces, the same does not

hold for more exotic output spaces. The two most common and studied output domains

lead to the applications known as regression (i.e. Y ⊆ R) and binary classification (i.e.

Y = {−1,1}).

Note that in both cases, the problem reduces to learning a function f̂ : X →R, where in

the case of binary classification, the algorithm uses the sign of such function to classify

inputs into two different classes.

By working with real-valued functions, the mathematical machinery at our disposal is

more powerful and refined, as an example think of differentiability or convexity, concepts

well defined for real-valued functions. However, it is often the case that output spaces

are comprised of more exotic elements with a more interesting structure. Some of these

spaces are:

• Vector spaces, Y =RT , which is the problem of multivariate regression

• Multilabel sets, Y = 2{1,2,...,T }, T ∈N, each output is any subset of T categories

• Nodes of a graph, Y =V where V are the nodes of a graph G = {V ,E }

• Space of distributions, Y is a space of measures

14 Statistical Learning

Studying how to effectively learn functions with such output spaces might be challenging,

and that is the focus of structured machine learning.

1.2.1 Loss functions

We have introduced the expected risk in Equation (1.1), as a functional parametrized by a

loss function, a function that quantifies the cost we incur in predicting f̂ (xtest) when the

likely answer is ytest. Because the learning process involves a minimization problem, the

type of loss dictates the difficulty of the problem itself and thus it is intimately related to

the learning algorithm used to train the model. Since we mentioned that the two most

common supervised machine learning tasks are regression and binary classification, we

introduce some common losses for these two. Examples for regression are the square loss

∆2 : R×R→ [0,∞), (y, z) 7→ (y−z)2; the absolute loss: ∆1 : R×R→ [0,∞), (y, z) 7→ |y−z|,
and the hinge loss∆ϵ : R×R→ [0,∞), (y, z) 7→ maxϵ{ϵ, |y −z|}. For classification, a widely

used loss is the misclassification loss function ∆b : R× {−1,+1} → {0,1}, (y, z) 7→ 1sgn(y)̸=z

where 1 : R→ {0,1} is the indicator function. These examples are strictly tailored for the

tasks of regression or classification, this implies that the output data belongs to either the

real line or a binary set. If we want to consider more structured data, then also the loss

function needs to be selected based on the new space. While this question might have

natural answers in some cases (e.g. vector spaces), in general it is not an easy problem,

especially if we take into account how the complexity of the problem might change as

the loss function changes. Some examples of such functions are the Euclidean distance

for vector spaces, Wasserstein distance for probability distributions (Peyré et al., 2019),

the Sequence-to-sequence structured losses (Edunov et al., 2017), and the Shifted inner

product similarity for graph nodes (Okuno et al., 2018).

In general, when dealing with datasets where the output space Y does not have a clear

vector structure, it is necessary to find a suitable loss function in the form

∆ : Y ×Y → [0,∞) (1.3)

that appropriately measures the similarity between two elements of Y and leads to a

computationally feasible form of Equation (1.2). We will see a study of such cases in the

next parts of this thesis Chapter 3.

1.3 Learning and generalization 15

1.3 Learning and generalization

We have introduced the problem of supervised learning from a dataset, however we have

not discussed yet what does it mean to learn and how an algorithm can achieve such

behaviour. We can think of a learning algorithm as a map A,Dn 7→ f̂ that for each training

set Dn returns a function f̂ that either solves Equation (1.2) or approximates well enough

its solution. A desirable property of an algorithm is consistency.

Definition 1.3.1 (Consistency). Given a learning algorithm A,Dn 7→ f̂ where Dn is a

training set sampled from a fixed distribution ρ and n is the size of the training set, the

learning algorithm is consistent for ρ iff

lim
n→∞P

(
E(f̂)− inf

f ∈F
E(f) > ϵ

)
= 0 ∀ ϵ> 0. (1.4)

If the algorithm is consistent for any ρ then we say that it is universally consistent.

This allows us to give an operative definition of supervised learning.

Given a loss function and sample set of input-output pairs, i.i.d with respect to some fixed

and unknown distribution, the goal of supervised learning is to find a universally consistent

algorithm.

We now introduce another fundamental definition.

Definition 1.3.2 (Uniform consistency and sample complexity). Given a learning algo-

rithm A,Dn 7→ f̂ where Dn is a training set sampled from a fixed distribution ρ and n is

the size of the training set, the learning algorithm is uniformly universally consistent iff

lim
n→∞sup

ρ
P
(
E(f̂)− inf

f ∈F
E(f) > ϵ

)
= 0 ∀ ϵ> 0. (1.5)

This condition can be rewritten for a certain distribution ρ using the definition of limit.

An algorithm is uniformly consistent with respect to ρ iff ∀ δ,ϵ> 0,∃ nρ(ϵ,δ) such that, if

n ≥ nρ(ϵ,δ), then

P
(
E(f̂)− inf

f ∈F
E(f) ≥ ϵ

)
≤ δ. (1.6)

Here nρ(ϵ,δ) is called sample complexity and depends on the distribution ρ.

It can be proved that it is impossible to achieve uniform universal consistency (Whitley

and Watson, 1970), this result is also known as No Free Lunch Theorem. We will see in the

following that a possible approch to overcome this issue is to consider smaller function

16 Statistical Learning

spaces FH ⊂F called hypothesis space. By limiting the space of possible functions, we are

effectively restricting the initial problem to an easier problem.

1.4 Empirical risk minimization

Until now we have discussed about the defining features of the learning problem and

algorithms used to approach it, however we left out an important hypothesis. Consider

the expected risk in Equation (1.2); in general it is assumed that the distribution ρ(x, y) is

unknown, as it is in most practical cases. This makes impossible to solve problem Equa-

tion (1.2) and find the minimizing f ∗. Nevertheless we have access to a finite set of

samples in the form of training set Dn ; to use this information we design algorithms that

minimize the error on finite training sets as a proxy for the true problem. For this reason,

we introduce the empirical risk

Ê(f) = 1

n

n∑
i=1
∆

(
yi , f (xi)

)
. (1.7)

This leads our actual problem to be the so-called empirical risk minimization (ERM)

inf
f ∈FH

Ê(f), (1.8)

where FH ⊂F is called hypothesis space. Ideally the hypothesis space should be complex

enough that the solution of Equation (1.8) approximates well enough the solution of Equa-

tion (1.2), while still leading to an algorithm with feasible computations. A traditional

approach to control the complexity of FH is regularization. Regularization introduces in

the learning algorithm a scalar term that penalizes the complexity of the sought function.

A regularized approach solves the problem

inf
f ∈FH

Ê(f)+λR(f), (1.9)

where λ ∈R+, and R : FH → [0,∞) is some functional that penalizes complexity in f .

1.5 Regularized least squares

After discussing basic properties of learning algorithms and data spaces, we are finally

ready to introduce an example of learning algorithm, namely Regularized Least Squares

1.5 Regularized least squares 17

(RLS). RLS is a regression algorithm that learns a linear function fw (x) = 〈w, x〉 to approx-

imate a relation between Euclidean space Rd and the real line R. It solves the following

version of Equation (1.8)

min
w∈Rd

1

n

n∑
i=1

(
yi −〈w, xi 〉

)2 +λ∥w∥2, λ≥ 0. (1.10)

We make some remarks on Equation (1.10). First, the chosen loss for this problem is the

square loss ∆(y, z) = (y − z)2. Second, the regularization functional is the Euclidean norm

of the vector w . Lastly, the hypothesis space is the class of linear functions

FH = {
f : Rd →R | fw (x) = 〈w, x〉 , w ∈Rd}

.

An advantage of this approach is that the square loss is convex. Because the sum of a

convex functions and strongly convex functions is a strongly convex function, finding any

critical point of the functional is enough to find its unique minimum (Peypouquet, 2015).

It is possible to express the regularized empirical risk in vectorial form

1

n
∥Y −X w∥2 +λ∥w∥2, (1.11)

where Y ∈ Rn is a vector Y = [y1, . . . , yn] containing all the output points of the dataset

and X ∈Rn×d is a matrix where each row is a point of the training set. The gradient with

respect to w is

∇w

(1

n
∥Y −X w∥2 +λ∥w∥2

)
=− 2

n
X ⊤(Y −X w)+2w. (1.12)

Because the functional is convex with respect to w , by imposing the gradient to be 0 it is

possible to solve for the minimizing w in closed form

w = X Y ⊤(
X X ⊤+nλIn

)−1, (1.13)

where In ∈Rn×n is the identity matrix. Note that the matrix between parentheses is always

invertible because it is the sum of a positive semi-definite matrix and a positive definite

matrix. Solving this linear system corresponds to training the model fw on the training

set. This algorithm can be easily adapted to the task of binary classification by changing

the space of functions to be defined as

FH = {
f : Rd →R | fw (x) = sgn(〈w, x〉)}. (1.14)

18 Statistical Learning

-5 0 5
-5

0

5

(a) Data non linearly separable (b) Data with a new dimension introduced

Figure 1.2 An example of a non linearly separable dataset before and after applying a
feature map.

Indeed, the problem of regression can be described as the task of finding a hyperplane w

that approximates the data, while binary classification is the task of finding a hyperplane

w that separates the data. In general, when we mention a model, we refer to the definition

of a function with trainable parameters such as fw (x) = 〈w, x〉.

1.6 Feature maps and Reproducing Kernel Hilbert Spaces

We devote the rest of this chapter to a powerful set of mathematical tools for defining

spaces of functions. This point of view is the basis for some of the algorithm that will be

used in the rest of this thesis.

1.6.1 Feature maps

Feature maps are a tool used to find suitable representations of input data such that Equa-

tion (1.8) becomes easier to solve.

Definition 1.6.1 (Feature map). Given a space of functions FH with vector structure, a

feature map is a map φ :X →FH such that
〈
φ(x1),φ(x2)

〉
FH

<∞ ∀x1, x2 ∈X .

FH is called feature space.

To give an intuition on why feature maps are useful, consider the problem of classification

depicted in Figure 1.2a. It is impossible to find a hyperplane in R2 (a line) that separates

the two classes.

1.6 Feature maps and Reproducing Kernel Hilbert Spaces 19

Let us define a simple feature map: φ :R2 →R3, φ([x1, x2]) = [x1, x2, x2
1+x2

2]. This function

maps the points from the original data set into a higher dimensional space, notice that

this can also be seen as a space of functions spanned by the basis: [x1 0 0]T , [0 x2 0]T

[0 0 x2
1 +x2

2]T . In figure Figure 1.2b, it can be qualitatively observed what happens after φ

is applied to every point in the training set: the data on the external ring results in a higher

x3 coordinate making data easily separable by a hyperplane. In this example, it is sufficient

to add a dimension to find a hyperplane that divides data; however, for more entangled

data sets, adding many dimensions and then finding the hyperplane may require more

complex feature maps.

1.6.2 Reproducing Kernel Hilbert Spaces

In Section 1.4, we showed that empirical risk minimization (Equation (1.7)) can be used as

a proxy for solving expected risk minimization (Equation (1.2)). However, this problem

depends on the considered hypothesis space FH. We now introduce a particular class of

spaces of functions that are fundamental to some classical machine learning algorithms.

This class of spaces is called Reproducing Kernel Hilbert Spaces (RKHS), and it is strictly

related to the notion of reproducing kernel (or positive definite function) and feature map.

We start by giving the definition of kernel.

Definition 1.6.2 (Reproducing kernel). A reproducing kernel is a function k :X ×X →R

that is symmetric in its arguments and such that:

M∑
i , j=1

αiα j k(xi , x j) ≥ 0, (1.15)

∀α1, . . . ,αM ∈R and ∀x1, . . . , xM ∈X , M ∈N
An important remark on the kernel matrix defined as {K }i j = k(xi , x j), i , j ∈ {1, . . . , M } is

that it is symmetric and positive semi-definite.

Every reproducing kernel identifies a space of functions FH. In order to characterize it let

us define a pre-Hilbert space making use of a generic k:

FH0 := {
f :X →R : f (x) =

M∑
i=1

k(x, xi)αi
}

(1.16)

with αi ∈R ∀i , M ∈N, xi ∈X ∀i .

We define a Reproducing Kernel Hilbert Space (RKHS) FH with k embedded, as the metric

completion of FH0.

20 Statistical Learning

Given two functions:

f (x) =
M∑

i=1
k(x, xi)αi

g (x) =
M ′∑
j=1

k(x, x j)β j

we can equip the space FH with an inner product.

Definition 1.6.3 (RKHS inner product).

〈 f , g 〉FH :=
M ,M ′∑

i , j
k(xi , x j)αiβ j . (1.17)

Notice that the function defined as kx(x ′) ≡ k(x ′, x) belongs to FH (just choose M = 1,

x1 = x and α1 = 1). From the definition of inner product on FH, we introduce a powerful

property of kernels.

Theorem 1.6.1. For a RKHS and its embedded kernel k :X ×X →Rd we have the following

property, called the reproducing property:

〈 f ,kx〉FH = f (x), ∀ f ∈FH,∀x ∈X . (1.18)

The proof can be written in a single line based on definition (1.6.3):

〈 f ,kx〉FH =∑M
i=1 k(xi , x)αi = f (x).

We have shown a way to build a RKHS from a positive definite function called the kernel.

It can be proved that every RKHS identifies a unique kernel and vice versa (Daumé III

(2004)).

1.6.3 Feature maps and kernels

An important connection between feature maps and RKHS can be made by choosing a

feature map φ : X →FH such that kx ′(·) =φ(x ′). By doing so, we have that F =FH and

the associated RKHS FH is now a space of functions induced by the feature map φ.

Theorem 1.6.2. Evaluating the kernel at points x, x ′ is equivalent to computing the inner

product of the same points in the feature space of φ(·)

k(x, x ′) = 〈φ(x),φ(x ′)〉FH . (1.19)

1.6 Feature maps and Reproducing Kernel Hilbert Spaces 21

The proof follows as a single line using the reproducing property (1.18):

〈φ(x),φ(x ′)〉FH = 〈kx ,kx ′〉FH = k(x, x ′)

So by computing the kernel k(x, x ′) we are actually computing the inner product of two

points mapped into FH.

An example of a common kernel is the Gaussian kernel, also called radial basis function.

Definition 1.6.4. The Gaussian kernel is a reproducing kernel k : Rd →R defined as

k(x1, x2) = e− ∥x1−x2∥2
2

2σ2 . (1.20)

This kernel belongs to a more general class of kernels, called translation invariant kernels,

that can be characterized by their Fourier transform (Yao, 1967). The feature map associ-

ated to the Gaussian kernel maps into an infinite dimensional space whose basis can be

computed from the Taylor expansion of ex . Assuming x ∈R, we have:

φ(x) = e− x2

2σ2

[
1,

√
1

1!σ2
x,

√
1

2!σ2
x2, . . .

]⊤
. (1.21)

This shows that kernels may allow to define algorithms in hypothesis spaces that are

otherwise computationally unfeasible such as the infinite dimensional space associated

to the Gaussian kernel.

1.6.4 Kernel Regularized Least Squares

Consider the classification problem depicted in Section 1.6.1, we mentioned that it con-

sists in finding a hyperplane (i.e. a linear function) in some feature space FH to separate

the two data classes. We use the fact that a function f ∈FH can be written as

f (x) =∑M
i=1 k(x, xi)wi

to show that it corresponds to a vector in the feature space spanned by φ:

f (x) =
M∑

i=1
k(x, xi)wi

=
M∑

i=1
〈Φ(x),Φ(xi)〉wi

= 〈Φ(x),
M∑

i=1
Φ(xi)wi 〉

= 〈Φ(x), v〉.

22 Statistical Learning

Thus, each function expressed as f (x) =∑M
i=1 k(x, xi)wi identifies a hyperplane v ∈FH.

This suggests that is is possible to generalize RLS to any RKHS by simply choosing a kernel.

This intuition is proved by the representer theorem.

Theorem 1.6.3 (Representer theorem). Given a training set D = {(xi , yi)}N
i=1, the solution

to problem (1.8) can be expressed as

f̂ (x) =
N∑

i=1
k(x, xi)wi , ∀x ∈X (1.22)

with w ∈RN (Scholkopf and Smola, 2001).

This ensures that any function in the hypothesis space can be expressed as a linear

combination of kernels centered at the training points. Therefore, the problem reverts

to finding the coefficients wi for such summation. Moreover, the representer theorem

ensures that the learnt function f̂ can be expressed by a finite set of points, allowing for a

representation with finite space complexity. The empirical risk minimization problem

can be rewritten as

min
f ∈FH

1

n

n∑
i=1

(
yi − f (x)

)2 +λ∥ f ∥FH , λ≥ 0, (1.23)

which in vector form corresponds to

min
w∈Rn

1

n
∥Ŷ −K w∥2

Rn +λ∥ f ∥2
H, λ≥ 0 (1.24)

with Ŷ ∈ Rn a vector containing the entries of each output of the training set, w ∈ Rn

the vector of weights, and K ∈ Rn×n a symmetric matrix with entries
{
K

}
i j = k(xi , x j).

Similarly to RLS, Equation (1.24) is strongly convex, therefore, computing the gradient

with respect to w and setting it equal to a vector of zeros defines a linear system whose

solution leads to the minimizing w . Specifically, we have

w = (
nλIn +K

)−1Ŷ . (1.25)

Chapter 2

Structured Prediction

Most traditional machine learning algorithms are designed for the tasks of binary classi-

fication and regression, which have as output spaces respectively the binary set {−1,1}

and the real line R. However many other output spaces are often of interest in practical

applications. In this chapter we introduce some of the efforts that have been made to

address the problem of structured prediction, i.e. learning functions with output spaces

more complex than the binary set and the real line. In general, a structured prediction

model can be seen as a composition of an encoding function ew : X →FH and a decoding

function dw : FH →Y , both of which might be parametrized by some vector w learnt from

the training set. The encoding function is used to compute a representation of the input

data in some Hilbert space, while the decoding function relates elements from FH to their

corresponding output ŷ ∈Y . The decoding procedure typically involves a maximization

problem and in general structured estimators can be written as

f̂ (x) = (dw ◦ew)(x) = argmax
y∈Y

hw (y,ew (x)) (2.1)

where hw : Y ×FH → R is an auxiliary function and represents the dependence of the

decoder with respect to w . Indeed we have dw (·) = argmaxy∈Y hw (y, ·). A classical inter-

pretation adopted in probabilistic graphical model is that hw (y,ew (x)) = logρ(y |x, w)+C ,

i.e. hw is the likelihood of the output y given the data x and a learned parameter w , plus a

constant C independent of y . However in the following we will only introduce structured

support vector machines, an approach that extends some ideas of probabilistic methods

with an SVM-like model, allowing for a kernelized approach of the algorithm. After that we

introduce consistent regularized structured predictors, a more recent family of algorithms

that enjoys statistical consistency and finite sample bounds. We close the chapter by pre-

24 Structured Prediction

senting neural networks for structured problems, an approach that has recently obtained

outstanding results in some domains thanks to the possibility of designing ad-hoc models

for the task. In all three approaches, the output space and the chosen loss define many of

the characteristics of the algorithms ranging from design of the model to computational

complexity.

2.1 Structured Support Vector Machine

Structured support vector machines (SSVM) are an extension of classical support vector

machine algorithm (Steinwart and Christmann, 2008), that generalize the traditional

max-margin model to a wider set of output domains and losses, such as multi-class

classification with hierarchical loss (Cai and Hofmann, 2004), image segmentation with

pixel-wise loss (Lucchi et al., 2012), and ranking with Kendall’s ranking loss (Joachims,

2002). By nature SSVM are highly customizable depending on the task at hand: in this

section we aim at giving an overview on its main formulations. Given the objective of

minimizing the empirical risk (see Equation (1.9)), the SSVM algorithm finds a function

f : X →Y , that minimizes the objective under the assumption that such function can be

written as

f̂ (x) = argmax
y∈Y

〈
w,ψ(x, y)

〉
FH

(2.2)

where w ∈FH is a learnt vector of weights and ψ : X ×Y →FH is a joint feature map on

both input and output. Comparing to Equation (2.1), the encoding function ew (x, y) =
ψ(x, y) is fixed by design and is defined jointly on both X and Y , while hw corresponds to

the linear function 〈w, ·〉FH . Using this model for empirical risk minimization leads to the

following problem

min
w∈FH

1

n

n∑
i=1
∆

(
yi , f (x)

)+λ∥w∥2 (2.3)

Because the structured loss ∆(y, f (x)) is typically non-convex and piece-wise constant,

solving Equation (2.3) is not a straightforward task. A possible approach is to introduce

a convex upper bound to Equation (2.3) that depends on w and minimize such bound.

This is motivated by the work of Zhang et al. (2004) where it is shown that this procedure

is enough to obtain a consistent algorithm for binary classification. However analogous

theoretical results have yet to arise for its structural counterpart.

We will now proceed to give three different reformulation of the SSVM problem for learning

the parameter vector w ∈FH. The reason for this is that the first formulation is easier to

2.1 Structured Support Vector Machine 25

understand but leads to a problem harder to minimize. The second and third formulation

correspond to the same problem in the primal and dual form, and can be solved with

more efficient algorithms.

Definition 2.1.1 (Vanilla SSVM). Let hw (x, y) = 〈
w,φ(x, y)

〉
FH

with w ∈FH and φ : X ×
Y →FH be the auxiliary function for some Hilbert space FH. We train w by minimizing

min
w∈FH

1

n

n∑
i=1
∆b(xi , yi , w)+ λ

2
∥w∥2

FH
(2.4)

where

∆b(xi , yi , w) = max
y∈Y

∆(yi , y)−hw (xi , yi)+hw (xi , y) (2.5)

is a convex upper-bound for ∆.

Intuitively, Equation (2.5) generalizes the Hinge loss to multiple output losses, therefore

solving Equation (2.4) for w can be seen as a maximum margin algorithm, in the spirit of

classical support vector machines. Notice that boundedness of ∆ can be quickly proved in

a few steps:

∆(y, f (x)) ≤∆(y, f (x))−hw (x, y)+hw (x, f (x))

≤ max
y∈Y

∆(yi , y)−hw (x, y)+hw (xi , y)

=∆b(xi , yi , w)

and convexity in w is given by the fact that ∆b is a max over affine functions of w . A

possible approach for solving approximately this problem is using subgradient descent

minimization (Shor, 2012), however this has a weak convergence rate of O(n
ϵ2), i.e. to

reduce the distance between the current w and the minimizing w∗ by a factor ϵ requires

O(1
ϵ2) algorithm iterations. To overcome this issue Joachims et al. (2009) proposed to

recast the minimization problem in an alternative form that allows using cutting plane

minimization, a faster minimization algorithm. We proceed to introduce this formulation

and its dual form in the following.

Definition 2.1.2 (One-slack variable SSVM). Let ξ ∈R be an auxiliary slack variable. For

any λ> 0, solving the problem

26 Structured Prediction

(w∗,ξ∗) = argmin
w∈FH,ξ∈R

1

2
∥w∥2

FH
+λξ (2.6)

subject to, for all (ȳ1, . . . , ȳn) ∈Y × . . . ,×Y ,

1

n

n∑
i=1

[
gw (xi , yi)− gw (xi , ȳi)

]≥ 1

n

n∑
i=1
∆(yi , ȳi)−ξ

ξ≥ 0

is equivalent to solving Equation (2.4). For a discussion on this equivalence, see the work

by Joachims et al. (2009).

This formulation can be extended to kernelized model

Definition 2.1.3 (Kernel SSVM). Let k((x1, y1), (x2, y2)) = 〈
φ(x1, y1),φ(x2, y2)

〉
, it is possible

to compute a kernelized SSVM defined as

f̂ (x) = argmax
y∈Y

n∑
i=1

∑
y ′∈Y

αi y
(
(xi , y ′), (x, y)

)
(2.7)

by solving for where then problem Equation (2.6) can be written as

min
α∈Rn×|Y |

∑
i=1,...,n

y∈Y

αi y − 1

2

∑
i=1,...,n

y∈Y

∑
j=1,...,n

z∈Y

αi yα j z K̂ i j
y z (2.8)

subject to, for i = 1, . . . ,n and for all y ∈Y :

∑
y∈Y

αi y ≤ λ

n
, αi y ≥ 0

where we with an abuse of notation we used y, z ∈Y to denote h, l = 1, . . . , |Y |, i.e. the set

indexing all the possible elements of Y . And where K̂ i j
y z = K i j

yi zi
−K i j

yi z −K i j
y zi

+K i j
y z with

K i j
y z = k((xi , y), (x j , z)). For a derivation of this algorithm, we refer the reader to the work

of Nowozin et al. (2011).

Both of these problems can be solved with a cutting-plane algorithm. This procedure

iteratively seeks the most violated constraint and adjusts the set of weights w (or α) until a

function that does not violate any constraint is found. This algorithm has O(n
ϵ) computa-

tional complexity for the linear kernel, and O(n2

ϵ
) for nonlinear kernels, improving on the

2.2 Consistent Regularized Structured Prediction 27

sub-gradient algorithm. For a detailed definition of the algorithm and the cost analysis

we refer the reader to the work of Joachims et al. (2009). We conclude this section with

three important remarks on the training of SSVM. First, cutting-plane algorithm requires

O(n) calculations of the function f (x) which involves a maximization problem. In many

applications where the output space has finite cardinality (e.g. multilabel classification)

this is easily solvable, but when the output space is dense, there’s often no immediate

solution. Second, each iteration of the algorithm requires solving a quadratic program-

ming problem, which is in general a NP-hard task, so extra care is required in the selection

of such algorithm. Third, these formulations imply |Y |n constraints, therefore they are

intractable for dense output spaces such as constrained subsets of Rd or differentiable

manifolds.

2.2 Consistent Regularized Structured Prediction

Ciliberto et al. (2017) have proposed an approach to structured problems based on the

implicit structure that a loss functions inherits from the output domain. This family of

algorithms can be shown to be statistically consistent and are suitable for dense out-

put spaces while retaining a polynomial computational complexity at training time. To

introduce this framework, we first need define an important property of loss functions.

Definition 2.2.1 (Structure Encoding Loss Function (SELF)). Given a separable Hilbert

space FH with inner product 〈·, ·〉FH , a function ∆ : Y ×Y →R is a structure encoding loss

function iff there exists a continuous embeddingψ : Y →FH and a bounded linear operator

V : FY →FH such that

∆(y, y ′) = 〈
ψ(y),Vψ(y ′)

〉
FH

∀ y, y ′ ∈Y (2.9)

This property is indeed similar to the property of reproducing kernels introduced in Equa-

tion (1.19), however ∆ does not require to be symmetric because the operator V is not, in

general, symmetric. Intuitively, this suggests that whatever structure the output space Y
has, it is possible to compare two of its element in some Hilbert space FY by means of

some map ψ and some operator V . Moreover, as observed in Ciliberto et al. (2016), a wide

range of loss functions often used in machine learning are SELF. Examples include any

loss on Y of finite cardinality, Hinge loss and Least-Squares loss. Having established the

concept of SELF loss, we can now introduce a formulation of the consistent structured

estimator.

28 Structured Prediction

Definition 2.2.2 (Consistent Regularized Structured Predictor (CRiSP)). Given a SELF loss

∆ : Y ×Y →R and a dataset {xi , yi }n
i=1 sampled from a distribution ρ(x, y), the following

function is a consistent estimator for Equation (1.1)

f̂ (x) = argmin
y∈Y

n∑
i=1

αi (x)∆(y, yi) (2.10)

with

α(x) = [α1, . . . ,αn]⊤ = (
K +nλIn

)−1Kx (2.11)

where K is the kernel matrix of a fixed kernel k : X ×X →R, with entries {K }i j = k(xi , x j),

Kx ∈R is the vector with entries {KX }i = k(x, xi) and In is the identity matrix of size n.

Conceptually, it is possible to divide training and inference in two steps. Training cor-

responds to computing the vector of weights α, while inference consists in finding the

maximizing y for the computed α. The key differences with SSVM are two. The training

complexity for computing Equation (2.11) is O(n3). However there are no hidden com-

putational costs in the procedure since it consists mainly in inverting a positive definite

matrix. Second, there are no constraints in the minimization problem, therefore is it pos-

sible to work with dense output spaces. The CRiSP estimator is similar to Equation (2.1)

since it requires to solve a minimization problem at each evaluation, but the encoding and

decoding functions are not immediatel clear. To clarify on these, we discuss the derivation

of Equation (2.10).

Derivation of CRiSP

We show briefly how the estimator in Equation (2.10) is obtained. We begin by rewriting

the expected risk in Equation (3.6) as

E(f) =
∫
X

〈
ψ(f (x)),V

∫
Y
ψ(y) dρ(y |x)

〉
FH

dρ(x) (2.12)

where we have conditioned ρ(y, x) = ρ(y |x)ρx(x), and used the SELF property of the

loss. Any function f ∗ :X →Y minimizing the above functional must satisfy the following

condition

f ∗(x) = argmin
y∈Y

〈
ψ(y),V g∗(x)

〉
FH

(2.13)

2.2 Consistent Regularized Structured Prediction 29

with

g∗(x) =
∫
Y
ψ(y) dρ(y |x) (2.14)

where we have introduced the function g∗ : X → FH that maps each point x ∈ X to

the conditional expectation of ψ(y) given x. Here hw (y, v) = 〈ψ(y), v〉FH is the auxiliary

similarity function of Equation (2.1) but it does not depend on any learnable parameter,

while ew (x) = g∗(x) plays the role of the encoding function. Notice how we cannot

compute it explicitly because we do not have access to ρ(y, x). But noting that it minimizes

the expected least squares error∫
∥ψ(y)− g (x)∥2

FH
dρ(x, y) (2.15)

suggests that a least squares estimator can be considered as a substitute. We first illustrate

this idea for X =Rd and FH =Rk , while noting that the procedure can easily be expanded

with kernel functions. In this case we can consider a ridge regression estimator for g∗

ĝ (x) = Ŵ ⊤x (2.16)

which can be computed in closed form as

Ŵ = argmin
W ∈Rd×k

1

n
∥X W −ψ(Y)∥2

F +λ∥W ∥2
F (2.17)

where X = (x1, . . . , xn)⊤ ∈ Rn×d and ψ(Y) = (ψ(y1), . . . ,ψ(yn))⊤ ∈ Rn×k are the matrices

whose i -th row correspond respectively to the training sample xi ∈X and the (mapped)

training output ψ(yi) ∈ FH. We have denoted ∥ · ∥2
F the squared Frobenius norm of a

matrix, namely the sum of all its squared entries. The ridge regression solution can be

obtained in closed form as Ŵ = (X ⊤X +nλI)−1X ⊤ψ(Y). For any x ∈X we have

ĝ (x) = ψ(Y)⊤X (X ⊤X +nλI)−1x

= ψ(Y)⊤α(x)

=
n∑

i=1
αi (x)ψ(yi)

30 Structured Prediction

where we have introduced the coefficients α(x) = X (X ⊤X +nλI)−1x ∈Rn . By substituting

ĝ to g∗ in Equation (2.13) we have

f̂ (x) = argmin
y∈M

〈
ψ(y),V

(
n∑

i=1
αi (x)ψ(yi)

)〉
= argmin

y∈M

n∑
i=1

αi (x)∆(y, yi) (2.18)

where we have used the linearity of the sum and the inner product to move the coefficients

αi outside of the inner product. Since the loss is SELF, we then obtain
〈
ψ(y),Vψ(yi)

〉=
∆(y, yi) for any yi in the training set. This recovers the estimator f̂ introduced in Equa-

tion (3.8), as desired.

Given a positive definite kernel the above idea can be extended. We can consider X to

be a set and k :X ×X →R a positive definite kernel. Then ĝ can be computed by kernel

ridge regression (see Chapter 1) to obtain the scores α(x) = (K +nλI)−1Kx . We end noting

that the above discussion applies if FH is infinite dimensional. Indeed, thanks to the SELF

assumption and the fact that we chose a ridge regression estimator, f̂ does not depend on

explicit knowledge of the space FH but only on the loss function.

2.3 Neural Network Models

Artificial neural networks (NN) are a family of parametric predictive estimators that has

recently shown remarkable results in various machine learning applications, particularly

computer vision and natural language processing. The origin of these models is dated

1943 when McCulloch and Pitts (1943) postulated a first mathematical model of neural

interactions in the human brain. This first effort paved the way to the perceptron (Werbos,

1974), an algorithm for binary classification, inspired by the biophysical model of a single

neuron. While more developements took place in the following 40 years (Rumelhart

et al., 1988; Weng et al., 1993), it is not until more recent times that these models have

obtained outstanding empirical results (Krizhevsky et al., 2012), stirring the attention

of the machine learning community. This results were made possible mostly thanks to

two factors. The introduction of a compositional structure in NN model design called

deep learning (Schmidhuber, 1992) and the accessibility of modern graphical processing

units (GPU) that made possible to exploit the inherently parallel structure of these models

to achieve faster training times. NN usually involve a careful design process to define a

model fit to the task at hand, especially for structured datasets. We start by introducing a

general form of encoding functions used in NN. We will illustrate an example of decoding

function after commenting on the encoding.

2.3 Neural Network Models 31

Definition 2.3.1 (Neural network encoding function). A neural network encoding function

is a composition of functions fl : Rul−1 →Rul called layers, layers are defined as

fl (x) =σl (Wl x) (2.19)

where W ∈Rul×ul−1 is a matrix of learnable parameters and σl : Rul →Rul is a non linear

function applied element-wise to a vector. The number ul is often referred to as the number

of hidden units of the l-th layer.

Given a number of layers L, the encoding function of a neural network is defined as

ew (x) = (fL ◦ fL−1 ◦ . . .◦ f2 ◦ f1)(x) (2.20)

Some common non-linearities are the positive part (ReLU (Hahnloser et al., 2000)), the

sigmoid function and the hyperbolic tangent (LeCun et al., 2012). While farily general,

this definition already captures the fundamental ideas in NN. At its core NN are the

combination of a linear operator and a non-linear operation, however these basic building

blocks are used to create composite structures, built by "stacking" layers one after the

other. This way of building models is called deep learning and it is hypothesized that it is

one reason of the empirical success of NN (Goodfellow et al., 2016). Another important

feature is the possibility of imposing different kind of structures on the weights {Wl }L
l=1

to leverage prior knowledge on the problem. One of the most succesful structures is the

convolutional neural network (Fukushima, 1979), which effectively transforms W x into

a product with a sparser matrix where weights are shared between different rows of W .

This results in faster training and other desirable properties for computer vision tasks.

When no structure is imposed, the layers are called fully connected layers. It’s important to

notice that when trying to minimize the empirical risk using a NN the resulting problem

is non-convex. Common practice is to approach the minimization problem with iterative

gradient based techniques, of which the most common are gradient descent (Cauchy,

1847) or related variants such as Adam optimizer (Kingma and Ba, 2014). On one hand

because the problem is non-convex, there are no guarantess that the found solution is

the global minimum, on the other hand, all this variants can be implemented in their

stochastic counterparts which allow to perform optimization on large scale dataset with

good empirical results (Bottou and Bousquet, 2008).

We discussed some ideas behind that encoding function, however we did not touch yet on

the decoding function used by NNs. Because designing a NN model is highly dependent

on the target task, decoding functions tend to be defined ad-hoc. To illustrate such

32 Structured Prediction

procedure, in the following we go over two examples. The first introduces the reader to

one of the most common types of decoding function for classification tasks. The second is

an alternative example designed specifically for sequence-to-sequence tasks.

2.3.1 Segmentation with Neural Networks

The goal of segmentation consists in labelling each pixel of an image with one of L possible

classes. Therefore the task is to find a map f̂ : RPC → {1, . . . ,L}P where P is the number of

pixel per image and C the number of color channels. We denote with x ∈RPC the vector-

ized image and with y (j) the i -th element of the sequence of labels y . A naive approach

would train P classifiers independently, one for each pixel of the image. In contrast to this

we introduce a more recent deep learning based approach for segmentation, proposed

by Chen et al. (2018). The model uses an encoder function in the form of Equation (2.20),

where the learnable weights are defined to be convolutional operators. The decoder

function is defined as

dw (y,ew (x)) = argmax
y∈{1,...,L}P

P∑
i=1

h(i)
w (y (i),ew (x)) (2.21)

with h(i)
w (y (i), x) = (fM j ◦ . . . ◦ f1 j)(x) where fm j∀ m ∈ {1, . . . , M } are convolutional layers.

In practice h(i)
w : Y ×FH → R computes the likelihood that, given the input x, its i -th

pixel belongs to one of the L classes. Intuitively, hw ◦ew approximates an unnormalized

probability distribution over the L classes for each pixel, and selects the most likely class.

Having one h(i) for pixel decouples the decoding process across different pixels, hiding the

inter-pixel dependence. This results in an estimator with fast decoding and good accuracy

when compared to the naive approach.

2.3.2 Recurrent Neural networks

Another common task is sequence to sequence classification. The goals is to label a se-

quence of samples sP = {st }P
t=1, st ∈Rd , with a sequence of labels l ∈ {1, . . . ,L}P . Similarly to

segmentation tasks, the output space grows exponentially in the number of labels and the

problem becomes quickly too computational expensive for longer sequences. Hochreiter

and Schmidhuber (1997) have proposed Recurrent Neural Networks (RNN) as a model

specifically designed to deal with this task in a more efficient way.

2.3 Neural Network Models 33

Definition 2.3.2 (Recurrent Neural Network). Given a sequence of vectors sP , a recurrent

neural network encoder function is defined iteratively as

ew (st) =σ1
(
W1mt +b1

)
(2.22)

where

mt =σ2
(
W2st +U ew (st−1)+b2

)
(2.23)

and W1 ∈Rh×d , b1 ∈Rh ,U ∈Rh×k W2 ∈Rk×h , b2 ∈Rk are parameters to be learned. σ1,σ2

are two element-wise non-linear functions. The decoding function is defined as in Equa-

tion (2.21) over the elements of the sequence instead of pixels.

Intuitively, RNN keeps an internal hidden state (the vector mt) that encodes the depen-

dencies of current sample with respect to previous samples. Notice that for recurrent

neural networks the decoding function stays the same, however the sample-by-sample

structure of the encoding function allows to decode sequence elements one at a time.

This allows for faster inference times. Moreover, this model is agnostic to the length of the

sequence and therefore can be used for sequences of varying length without the need for

any modification.

We make a final note on the loss functions for structured NN. Both of the models we

introduced are usually trained using a cross-entropy loss after trasforming the output

values of h(i)
w into a distribution over the labels with the softmax function s : R→ [0,1].

Specifically, the softmax function computed for one pixel or one sequence sample is

s(zi) = exi

L∑
j=1

ex j

(2.24)

where zi = h(i)
w

(
y (i),ew (x)

)
. And the cross-entropy loss for one sample is

min
hw ,ew

−
P∑

i=1

L∑
j=1

1y (i)= j log
(
s
(
z1

)))
(2.25)

where the dependency of the problem with respect to w is hidden in zi . In a sense, this

approach recovers the idea of probabilistic graphical models, where, for structured output,

it is a good choice to estimate a score proportional to the maximum likelihood estimator

over the possible outputs.

Part II

Manifold Structured Machine Learning

Chapter 3

Manifold Structured Prediction

3.1 Introduction

In Chapter 1 we talked about regression and classification as the most common machine

learning applications, however in Chapter 2 we introduced how it is often interesting to

estimate functions with more structured outputs. When the output space can be assumed

to be a vector space, many ideas from regression can be extended, think for example to

multivariate (Härdle and Simar, 2007) or functional regression (Morris, 2015). However,

a lack of a natural vector structure is a feature of many practically interesting problems,

such as ranking (Duchi et al., 2010), quantile estimation (Takeuchi et al., 2006) or graph

prediction (Paaßen et al., 2017). In this latter case, the outputs are typically provided

only with some distance or similarity function that can be used to design appropriate

loss function. Knowledge of the loss is sufficient to analyze an abstract empirical risk

minimization approach within the framework of statistical learning theory, but deriving

approaches that are at the same time statistically sound and computationally feasible is

a key challenge. While ad-hoc solutions are available for many specific problems (Bicer

et al., 2011; Daume and Marcu, 2006; Kadous and Sammut, 2005; Nowozin et al., 2011),

structured prediction (Bakir et al., 2007) provides a unifying framework where a variety of

problems can be tackled as special cases.

Classically, structured prediction considers problems with finite, albeit potentially huge,

output spaces. In this chapter, we study how these ideas can be applied to dense output

spaces. In particular, we consider the case where the output space is a Riemannian

manifold, that is the problem of manifold structured prediction (also called manifold-

valued regression (Steinke and Hein, 2009)). While also in this case ad-hoc methods are

available (Steinke et al., 2010), in this chapter we adopt and study a structured prediction

38 Manifold Structured Prediction

approach starting from a framework proposed in (Ciliberto et al., 2016). Within this

framework, it is possible to derive a statistically sound, and yet computationally feasible,

structured prediction approach, as long as the loss function satisfies a suitable structural

assumption. Moreover we can guarantee that the computed prediction is always an

element of the manifold.

The rest of the chapter is organized as follows. We introduce some basic differential

geometry concepts in Section 3.2. In Section 3.3, we define the problem and explain

the proposed algorithm. In Section 3.4 we state and prove the theoretical results of this

work. In Section 3.5 we explain how to compute the proposed algorithm and we show the

performance of our method on synthetic and real data.

3.2 Differential geometry

We introduce briefly the fundamental objects of differential geometry, for a more in-

depth explanation, we refer the reader to the excellent Optimization Algorithms on Matrix

Manifolds (Absil et al., 2009).

Intuitively, manifold are topological sets that do not support a vector structure but can

be mapped everywhere to Euclidean space by means of a continuous invertible function.

By exploiting this mapping it is possible to induce local vector spaces, this allows for

operations such as differentiating functions or computing distances.

The simplest example of a manifold is the sphere. Consider the sphere as a surface in a 3-

dimensional Euclidean space, it is easy to notice that adding two vectors x1, x2 ∈S2 = {x ∈
R3 : ∥x∥2 = 1}, the resulting vector is not a point of the sphere. However it is possible to find

functions that map open sets of the sphere to R2, where usual linear algebra operations

are well defined.

More formally, the definition of topological manifold is:

Definition 3.2.1 (Topological manifold). A topological manifold M of dimension d is a

topological space M, such that every point x ∈M has a neighbourhood U ⊂M which is

homeomorphic to an open setφ(U) in Euclidean spaceRd . The homeomorphismφ : U →Rd

is called chart on U and is denoted by (U ,φ).

Charts introduce a tool to define local coordinates. To guarantee that it is possible to move

from one set of coordinates to another we first introduce the transition function:

3.2 Differential geometry 39

Definition 3.2.2 (Compatible charts). Given two coordinate charts (φ,U), (ψ,V), the tran-

sition function is defined as:

φ◦ψ−1 : ψ(U ∪V) ⊂Rd →φ(U ∪V) ⊂Rd (3.1)

everywhere where U ∩V ̸= ;. Two charts are compatible if the transition maps are smooth.

If a manifold M has only pair-wise compatible charts, the manifold is differentiable.

Indeed, composing a real-valued function f : M→ R with a chart inverse φ : Rd →M
allows us to differentiate the function. Moreover, chart compatibility guarantees that this

operation is continuous even when changing charts.

It is now possible to define tangent vectors.

Definition 3.2.3 (Tangent vector). Let γ : [0,1] → M be a smooth map such that γ(0) = p.

Let Fp (M) denote the set of smooth real-valued functions defined on a neighbourhood of

p. Then a tangent vector ξp to a manifold M at a point p is an operator from Fp (M) to R

such that there exists a curve γ : [0,1] →M with γ(0) = 1 satisfying:

ξp f = γ′(0) f = d(f (γ(t))

d t

∣∣∣∣
t=0

(3.2)

The set of all tangent vectors at p is called tangent space, denoted by TpM.

Intuitively, by introducing trajectories γ on manifolds, given a fixed function f , we have

established a local equivalence between the derivative of such trajectory and elements

of the set TpM. It is then easy to show that the elements of TpM have a vector structure

and satisfy Lebniz’s rule of derivation.

Figure 3.1 A representation of a tangent space and the exponential map mapping the
vector v to the corresponding element in in the manifold.

40 Manifold Structured Prediction

3.2.1 Riemannian manifold

Having defined tangent vectors, it is possible to impose further structure on the manifold

by introducing Riemannian metrics. Riemannian metrics are a generalization of inner

products in the tangent bundle.

Definition 3.2.4 (Riemannian metric). A Riemannian metric g is a family of positive-

definite inner products gp : TpM×TpM → R, one for each tangent space of M. This

family is smooth in the sense that for any two smooth vector fields X and Y , the function

p ∈M→ gp (Xp ,Yp) is smooth.

The Riemannian metric allows us to define length of curves on the manifold.

Definition 3.2.5 (Curve length). Given a smooth curve γ : [0,1] →M, its length is defined

as:

L(γ) =
∫ 1

0

√
gγ(t)

(
γ′(t),γ′(t)

)
d t (3.3)

Where we abused the notation by using γ′(t) to denote the set of corresponding tan-

gent vectors along γ(t) and gγ(t) to denote the Riemannian metric computed along the

trajectory of points defined by γ(t).

With this definition, it is then possible to define the distance between two elements of a

manifold as the length of the shortest path between those two elements, the shortest path

is called geodesic curve while the its length is the geodesic distance.

We finally introduce one last item that will be of use in the following: the exponential map.

Definition 3.2.6 (Exponential map). Given a vector ξp ∈ TpM such that there is a geodesic

γ : [0,1] →M satisfying

γ(0) = p,
dγ

d t
(0) = ξp (3.4)

then the exponential map expp : TpM→M of ξp is defined as:

expp (ξp) = γ(1) (3.5)

Intuitively, the exponential map maps a vector from the tangent space TpM to the point at

the end of the geodesic curve having that vector as tangent vector at its start (see Figure 3.1).

The exponential map is a local diffeomorphism, the minimum geodesic distance for which

every exponential map is invertible on the manifold is called injectivity radius, we will

denote it with ρM.

3.3 Structured Prediction for Manifold Valued Regression 41

Interestingly, the notion of convexity can be generalized to geodesics. A subset U of a

Riemannian manifold is geodesically convex if there is a one and only one geodesic curve

γ : [0,1] →U between any two points in U .

3.3 Structured Prediction for Manifold Valued Regression

As we have discussed, the goal of supervised learning is to find a functional relation

between an input space X and an output space Y given a finite set of observations.

Traditionally, the output space is either a linear space (e.g. Y =RM) or a discrete set (e.g.

Y = {0,1} in binary classification). We will consider the problem of learning manifold-

valued functions (Steinke et al., 2010), in which output data lies on a manifold M⊂Rd . In

this context, statistical learning corresponds to solving

argmin
f ∈X→Y

E(f) (3.6)

with

E(f) =
∫
X×Y

∆(f (x), y)ρ(x, y) (3.7)

where Y is a subset of the manifold M and ρ is an unknown distribution on X ×Y . Here,

∆ : Y ×Y →R is a loss function that measures prediction errors for points estimated on

the manifold. The minimization is meant over the set of all measurable functions from X
to Y . The distribution is fixed but unknown and a learning algorithm seeks an estimator

f̂ :X →Y that approximately solves Equation (3.6), given a set of training points (xi , yi)n
i=1

sampled independently from ρ.

A concrete example of loss function that we will consider in this work is∆= d 2 the squared

geodesic distance d : Y ×Y → R (Lee, 2003). As we have seen, the geodesic distance is

the natural generalization to distances on a Riemannian manifold and is a natural loss

function in the context of manifold regression (Fletcher, 2013; Hauberg et al., 2012; Hinkle

et al., 2012; Steinke and Hein, 2009; Steinke et al., 2010).

3.3.1 Manifold Valued Regression via Structured Prediction

To tackle the problem of manifold structured prediction we will consider the CRiSP ap-

proach to manifold valued regression following ideas introduced in Section 2.2, which

we recall here. Given a training set {xi , yi }n
i=1, an estimator for problem Equation (3.6) is

42 Manifold Structured Prediction

defined by

f̂ (x) = argmin
y∈Y

n∑
i=1

αi (x)∆(y, yi) (3.8)

for any x ∈X . The coefficients α(x) = (α1(x), . . . ,αn(x))⊤ ∈Rn are obtained solving a linear

system for a problem akin to kernel ridge regression (see Section 2.2): given a positive

definite kernel k :X ×X →R over X , we have

α(x) = (α1(x), . . . ,αn(x))⊤ = (K +nλIn)−1Kx (3.9)

where K ∈Rn×n is the empirical kernel matrix with Ki , j = k(xi , x j), and Kx ∈Rn the vector

whose i -th entry corresponds to (Kx)i = k(x, xi).

Computing the estimator in Equation (3.8) involves two steps. During a training step the

score function α :X →Rn is learned, while during the prediction step, the output f̂ (x) ∈Y
is estimated on a new test point x ∈ X . This last step requires minimizing the linear

combination of distances ∆(y, yi) between a candidate y ∈ Y and the training outputs

(yi)n
i=1, weighted by the corresponding scores αi (x).

We next discuss the main theoretical result of this chapter, showing that a large class of

loss functions for manifold structured prediction are SELF. This will allow us to prove

consistency and learning rates for the manifold structured estimator considered in this

work.

3.4 Characterization of SELF Function on Manifolds

In this section we provide sufficient conditions for a wide class of functions on manifolds

to satisfy the definition of SELF. A key example will be the case of the squared geodesic

distance. To this end we will make the following assumptions on the manifold M and the

output space Y ⊆M where the learning problem takes place.

Assumption 3.4.1. M is a complete d-dimensional smooth connected Riemannian mani-

fold, without boundary, with Ricci curvature bounded below and positive injectivity radius.

The assumption above imposes basic regularity conditions on the output manifold. In

particular we require the manifold to be locally diffeomorphic to Rd and that the tangent

space of M at any p ∈M varies smoothly with respect to p. This assumption avoids

pathological manifolds and is satisfied for instance by any smooth compact manifold (e.g.

the sphere, torus, etc.) (Lee, 2003). Other notable examples are the statistical manifold

3.4 Characterization of SELF Function on Manifolds 43

(without boundary) (Amari and Nagaoka, 2007) any open bounded sub-manifold of the

cone of positive definite matrices, which is often studied in geometric optimization set-

tings (Absil et al., 2009). This assumption will be instrumental to guarantee the existence

of a space of functions FH on M rich enough to contain the squared geodesic distance.

Assumption 3.4.2. Y is a compact geodesically convex subset of the manifold M.

The effect of Assumption 3.4.2 is twofold. On one hand it guarantees a generalized

notion of convexity for the space Y on which we will solve the optimization problem in

Equation (3.8). On the other hand it avoids the geodesic distance to have singularities on

Y (which is key to our main result below). We are ready to prove the main result of this

chapter.

Theorem 3.4.1 (Smooth Functions are SELF). Let M satisfy Assumption 3.4.1 and Y ⊆M
satisfy Assumption 3.4.2. Then, any smooth function h :Y ×Y →R is SELF on Y .

Sketch of proof of Theorem 3.4.1. The complete proof of Theorem 3.4.1 is reported in Sec-

tion A.1. The proof hinges around the following key steps:

Step 1 If there exists an RKHS FH on M, then any h ∈ FH⊗FH is SELF. Let FH be a

reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950) of functions on M with as-

sociated bounded kernel k : M×M→ R. Let FH⊗FH denote the RKHS of functions

h :M×M→R with associated kernel k̄ such that k̄((y, z), (y ′, z ′)) = k(y, y ′)k(z, z ′) for any

y, y ′, z, z ′ ∈M. Let, h : M×M→ R be such that h ∈ FH⊗FH. Recall that FH⊗FH is

isometric to the space of Hilbert-Schmidt operators from FH to itself. Let Vh :FH →FH

be the operator corresponding to h via such isometry. We show that the SELF definition

is satisfied with V = Vh and ψ(y) = k(y, ·) ∈ FH for any y ∈ M. In particular, we have

∥V ∥ ≤ ∥V ∥HS = ∥h∥FH⊗FH , with ∥V ∥HS denoting the Hilbert-Schmidt norm of V .

Step 2: Under Assumption 3.4.2, C∞
c (M)⊗C∞

c (M) ”contains” C∞(Y ×Y). If Y is com-

pact and geodesically convex, then it is diffeomorphic to a compact set of Rd . By using this

fact, we prove that any function in C∞(Y ×Y), the space of smooth functions on Y ×Y ,

admits an extension in C∞
c (M×M) the space of smooth functions on M×M vanishing

at infinity (this is well defined since M is diffeomorphic to Rd thanks to Assumption 3.4.1),

and that C∞
c (M×M) =C∞

c (M)⊗C∞
c (M).

Step 3: Under Assumption 3.4.1, there exists an RKHS on M containing C∞
c (M). Un-

der Assumption 3.4.1, the Sobolev space FH = H 2
s (M) of square integrable functions with

44 Manifold Structured Prediction

smoothness s is an RKHS for any s > d/2 (see (Hebey, 2000) for a definition of Sobolev

spaces on Riemannian manifolds).

The proof proceeds as follows: from Step 1, we see that to guarantee h to be SELF it is

sufficient to prove the existence of an RKHS FH such that h ∈FH⊗FH. The rest of the

proof is therefore devoted to showing that for smooth functions this is satisfied for FH =
H 2

s (M). Since h is smooth, by Step 2 we have that under Assumption 3.4.2, there exists a

h̄ ∈C∞
c (M)⊗C∞

c (M) whose restriction h̄|Y×Y to Y ×Y corresponds to h. Now, denote by

H 2
s (M) the Sobolev space of squared integrable functions on M with smoothness index

s > 0. By construction (Hebey, 2000), for any s > 0, we have C∞
c (M)|Y ⊆ H 2

s (M)|Y , namely

for any function. In particular, h̄ ∈C∞
c (M)⊗C∞

c (M) ⊆ H 2
s (M)⊗H 2

s (M). Finally, Step 3

guarantees that under Assumption 3.4.1, FH = H 2
s (M) with s > d/2 is an RKHS, showing

that h ∈FH⊗FH as desired.

Interestingly, Theorem 3.4.1 shows that the SELF estimator proposed in Equation (3.8) can

tackle any manifold valued learning problem in the form of Equation (3.6) with smooth

loss function. In the following we study the specific case of the squared geodesic distance.

Theorem 3.4.2 (d 2 is SELF). Let M satisfy Assumption 3.4.1 and Y ⊆M satisfy Assump-

tion 3.4.2. Then, the squared geodesic distance ∆ = d 2 : M×M → R is smooth on Y .

Therefore ∆ is SELF on Y .

The proof of the result above is reported in the supplementary material. The main techni-

cal aspect is to show that regularity provided by Assumption 3.4.2 guarantees the squared

geodesic distance to be smooth. The fact that ∆ is SELF is then an immediate corollary of

Theorem 3.4.1.

3.4.1 Statistical Properties of Manifold Structured Prediction

In this section, we characterize the generalization properties of the manifold structured

estimator Equation (3.8) in light of Theorem 3.4.1 and Theorem 3.4.2.

Theorem 3.4.3 (Universal Consistency). LetM satisfy Assumption 3.4.1 andY ⊆M satisfy

Assumption 3.4.2. Let X be a compact set and k : X ×X → R be a bounded continuous

universal kernel1 For any n ∈ N and any distribution ρ on X ×Y let f̂n : X → Y be the

manifold structured estimator in Equation (3.8) for a learning problem with smooth loss

1This is standard assumption for universal consistency (see (Steinwart and Christmann, 2008)). An
example of continuous universal kernel on X =Rd is the Gaussian k(x, x ′) = exp(−∥x −x ′∥2/σ), for σ> 0.

3.4 Characterization of SELF Function on Manifolds 45

function ∆, with (xi , yi)n
i=1 training points independently sampled from ρ and λn = n−1/4.

Then

lim
n→∞E(f̂n) = E(f ∗) with probability 1.

The result above follows from Thm. 4 in A Consistent Regularization Approach for Struc-

tured Prediction (Ciliberto et al., 2016) combined with our result in Theorem 3.4.1. It

guarantees that the algorithm considered in this work finds a consistent estimator for

the manifold structured problem, when the loss function is smooth (thus also in the

case of the squared geodesic distance). As it is standard in statistical learning theory,

we can impose regularity conditions on the learning problem, in order to derive also

generalization bounds for f̂ . In particular, if we denote by F the RKHS associated to the

kernel k, we will require g∗ to belong to the same space FH⊗F where the estimator ĝ

introduced in Equation (2.18) is learned. In the simplified case discussed in Section 2.2,

with linear kernel on X =Rd and FH =Rk finite dimensional, we have F =Rd and this as-

sumption corresponds to require the existence of a matrix W ⊤∗ ∈Rk×d =FH⊗F , such that

g∗(x) =W ⊤∗ x for any x ∈X . In the general case, the space FH⊗F extends to the notion of

reproducing kernel Hilbert space for vector-valued functions (see the works of Alvarez et al.

(2012); Micchelli and Pontil (2005)) but the same intuition applies.

Theorem 3.4.4 (Generalization Bounds). Let M satisfy Assumption 3.4.1 and Y ⊆ M
satisfy Assumption 3.4.2. Let FH = H 2

s (M) with s > d/2 and k :X ×X →R be a bounded

continuous reproducing kernel with associated RKHS F . For any n ∈N, let f̂n denote the

manifold structured estimator in Equation (3.8) for a learning problem with smooth loss

∆ :Y ×Y →R and λn = n−1/2. If the conditional mean g∗ belongs to FH⊗F , then

E(f̂n)−E(f ∗) ≤ c∆q τ
2 n− 1

4 (3.10)

holds with probability not less than 1−8e−τ for any τ > 0, with c∆ = ∥∆∥FH⊗FH and q a

constant not depending on n,τ or the loss ∆.

The generalization bound of Theorem 3.4.4 is obtained by adapting Thm. 5 of A Consistent

Regularization Approach for Structured Prediction (Ciliberto et al., 2016) to our results in

Theorem 3.4.1 as detailed in the supplementary material. To our knowledge these are the

first results characterizing in such generality the generalization properties of an estimator

for manifold structured learning with generic smooth loss function. We conclude with a

remark on a key quantity in the bound of Theorem 3.4.4.

46 Manifold Structured Prediction

Remark 3.4.1 (The constant c∆). We comment on the role played in the learning rate by

c∆, the norm of the loss function ∆ seen an element of the Hilbert space FH⊗FH. Indeed,

from the discussion of Theorem 3.4.1 we have seen that any smooth function on Y is SELF

and belongs to the set FH⊗FH with FH = H 2
s (M), the Sobolev space of squared integrable

functions for s > d/2. Following this interpretation, we see that the bound in Theorem 3.4.4

can improve significantly (in terms of the constants) depending on the regularity of the loss

function: smoother loss functions will result in "simpler" learning problems and vice-versa.

In particular, when∆ corresponds to the squared geodesic distance, the more “regular” is the

manifold M, the learning problem will be. A refined quantitative characterization of c∆ in

terms of the Ricci curvature and the injective radius of the manifold is left to future work.

3.5 Algorithm and Experimental applications

In this section we recall geometric optimization algorithms that can be adopted to perform

the estimation of f̂ on a novel test point x. We then evaluate the performance of the

proposed method in practice, reporting numerical results on simulated and real data.

3.5.1 Optimization on Manifolds

We begin discussing the computational aspects related to evaluating the manifold struc-

tured estimator. In particular, we discuss how to address the optimization problem in

Equation (3.8) in specific settings. Optimization on Riemannian manifolds is a topic that

has recently seen growing interest from the community given its application in numerical

analysis and matrix factorization (Gower et al., 2004; Jae Hwang et al., 2015). The goal of

optimization on manifolds is to solve

min
y∈Y

F (y) (3.11)

where in our case F (y) corresponds to a linear combination of ∆(y, yi) weighted by the

scores αi (x) computed according to Equation (3.9).

In the case where Y is a linear manifold or a subset of M=Rd , this problem is well stud-

ied (Peypouquet, 2015) and a common approach is to use gradient-based minimization

algorithms, such as Gradient Descent (GD). This algorithm refines iteratively an initial

solution y0 ∈ Y , by looking at the gradient of the function to be minimized, the main

3.5 Algorithm and Experimental applications 47

Positive definite matrix manifold (P m++) Sphere (Sd−1)

F (y)
n∑

i=1
αi∥ log(Y − 1

2 Zi Y − 1
2)∥2

F

n∑
i=1

αi arccos
(〈

zi , y
〉)2

∇MF (y) 2
n∑

i=1
αi Y

1
2 log(Y

1
2 Z−1

i Y
1
2)Y

1
2 4

∑n
i=1αi (y yT − I) arccos(〈zi ,y〉)p

1−〈zi ,y〉 zi

Ry (v) Y
1
2 exp(Y − 1

2 vY − 1
2)Y

1
2 v

∥v∥
Table 3.1 Structured loss, gradient of the structured loss and retraction for P m++ and Sd−1.
Zi ∈ P m++ and zi ∈Sd−1 are the training set points. I ∈Rd×d is the identity matrix.

iteration can be written as

yt+1 = yt −ηt∇F (yt) (3.12)

for a step size ηt ∈ R. This algorithm can be extended to Riemannian gradient descent

(RGD) (Zhang and Sra, 2016) on manifolds, as

yt+1 = expyt (ηt∇MF (yt)) (3.13)

Where ∇MF is the gradient defined with respect to the Riemannian metric (Absil et al.,

2009) and expy : TyM→M denotes the exponential map on y ∈ Y , mapping a vector

from the tangent space TyM to the associated point on the manifold according to the

Riemannian metric of the manifold. For this family of gradient-based algorithms it is

possible to substitute the exponential map with a retraction Ry : TyM→M, which is a

first order approximation to the exponential map. Retractions are often faster to compute

and still offer convergence guarantees (Absil et al., 2009). In the following experiments we

will use both retractions and exponential maps. We mention that the step size ηt can be

found with a line search over the validation set.

Table 3.1 reports gradients and retraction maps for the geodesic distance of two prob-

lems of interest considered in this work: positive definite manifold and the sphere. See

Sections 3.5.2 and 3.5.3 for more details on the related manifolds.

We point out that the advantage of using optimization algorithms that comply with the

geometry of the manifold, such as RGD, guarantees that the computed value is an element

of the manifold. This is in contrast with algorithms that compute a solution in a linear

space that contains M and then need to project the computed solution onto M. Indeed

48 Manifold Structured Prediction

we will highlight this difference in the following experiments. We next discuss empirical

evaluations of the proposed manifold structured estimator on both synthetic and real

datasets.

3.5.2 Synthetic Experiments: Learning Positive Definite Matrices

We consider the problem of learning a function f :Rd →Y = P m++, where P m++ denotes the

cone of positive definite (PD) m ×m matrices, i.e. P m++ = {M ∈Rm×m : x⊤M x > 0 ∀x ∈Rn}.

Note that P m++ is a Riemannian manifold (Bhatia, 2009; Moakher and Batchelor, 2006) with

squared geodesic distance ∆PD between any two PD matrices Z ,Y ∈ P m++ defined as

∆PD(Z ,Y) = ∥ log(Y − 1
2 Z Y − 1

2)∥2
F

where, for any M ∈ P m++, we have that M
1
2 and log(M) correspond to the matrices with

same eigenvectors of M but with, respectively, the square root and logarithm of the

eigenvalues of M . In Table 3.1 we show the computation of the structured loss, the

gradient of the structured loss and the exponential map of the PD matrix manifold.

For the experiments reported in the following, we compare the performance of the mani-

fold structured estimator minimizing the loss ∆PD and a Kernel Regularized Least Squares

classifier (KRLS) baseline (detailed in Section 3.5.2), both trained using the Gaussian

kernel k(x, x ′) = exp(−∥x −x ′∥2/2σ2). The matrices predicted by the KRLS estimator are

projected on the PD manifold by setting to a small positive constant (1e −12) the negative

eigenvalues. For the manifold structured estimator, the optimization problem at (3.8) was

performed with the Riemannian Gradient Descent (RGD) algorithm (Absil et al., 2009).

KRLSs estimator for positive definite matrices

We consider the case where we want to use KRLS estimators to predict a positive definite

matrix given a data set {xi , yi }n
i=1 where xi , yi ∈ P d++ ∀i1, . . . ,n. The KRLS estimator f : Rd →

R is a function defined as f (x) = ∑n
i=1 k(x, xi)wi , introduced in Chapter 1. To predict a

positive definite matrix, we train a KRLS estimator for every element of the flattened matrix

vec(yi) ∈Rd 2
. Suppose j ∈ {1, . . . ,d 2} is the index of the j -th component of vec(y) that we

want to predict, then we learn the estimator f (j)(x) =∑n
i=1 k(x, xi)w (j)

i . The corresponding

problem has labels ŷ (j) = [vec(y1) j , . . . , vec(yd 2) j] and we solve for w (j) = [w (j)
1 , . . . , w (j)

n].

Indeed we learn a number of estimators equal to d 2, to predict vec(f) = [f (1)(x), . . . , f (d 2)]

and then recover y from its vectorized form. Once the matrix is predicted we enforce it

3.5 Algorithm and Experimental applications 49

Squared loss ∆PD loss
Dim KRLS MSP KRLS MSP

5 0.72±0.08 0.89±0.08 111±64 0.94±0.06

10 0.81±0.03 0.92±0.05 44±8.3 1.24±0.06

15 0.83±0.03 0.91±0.06 56±10 1.25±0.05

20 0.85±0.02 0.91±0.03 59±12 1.33±0.03

25 0.87±0.01 0.91±0.02 72±9 1.44±0.03

30 0.88±0.01 0.91±0.02 67±7.2 1.55±0.03

Table 3.2 Simulation experiment: average squared loss (First two columns) and ∆PD (Last
two columns) error of the proposed structured prediction (SP) approach and the KRLS
baseline on learning the inverse of a PD matrix for increasing matrix dimension.

to be positive definite by performing a spectral decomposition and setting the negative

eigenvalues to a small positive constant.

Learning the Inverse of a positive definite matrix.

We consider the problem of learning the function f : P m++ → P m++ such that f (X) = X −1

for any X ∈ P m++. Input matrices are generated as Xi = UΣU⊤ ∈ P m++ with U a random

orthonormal matrix sampled from the Haar distribution (Diestel and Spalsbury, 2014) and

S ∈ P m++ a diagonal matrix with entries randomly sampled from the uniform distribution

on [0,10]. We generated datasets of increasing dimension m from 5 to 50, each with 1000

points for training, 100 for validation and 100 for testing. The kernel bandwidth σ was

chosen and the regularization parameter λ were selected by cross-validation respectively

in the ranges 0.1 to 1000 and 10−6 to 1 (logarithmically spaced).

Table 3.2 reports the performance of the manifold structured estimator (SP) and the

KRLS baseline with respect to both the ∆PD loss and the least squares loss (normalized

with respect to the number of dimensions). Note that the KRLS estimator target is to

minimize the least squares (Frobenius) loss and is not designed to capture the geometry

of the PD cone. We notice that the proposed approach significantly outperforms the

KRLS baseline with respect to the ∆PD loss. This is expected: ∆PD penalizes especially

matrices with very different eigenvalues and our method cannot predict matrices with

non-positive eigenvalues, as opposed to KRLS which computes a linear solution in Rd 2

and then projects it onto the manifold. However the two methods perform comparably

with respect to the squared loss. This is consistent with the fact that our estimator is aware

of the natural structure of the output space and uses it profitably during learning.

50 Manifold Structured Prediction

∆Deg.

KRLS 26.9±5.4
MR(Steinke et al., 2010) 22±6
MSP (ours) 18.8±3.9

Table 3.3 Fingerprints reconstruction: Average absolute error (in degrees) for the manifold
structured estimator (MSP), the manifold regression (MR) approach in (Steinke et al.,
2010) and the KRLS baseline.

3.5.3 Fingerprint Reconstruction

We consider the fingerprint reconstruction application introduced by Steinke et al. (2010)

in the context of manifold regression. Given a partial image of a fingerprint, the goal is to

reconstruct the contour lines in output. Each fingerprint image is interpreted as a separate

structured prediction problem where training input points correspond to the 2D position

x ∈ R2 of valid contour lines and the output is the local orientation of the contour line,

interpreted as a point on the circumference S1. The space S1 is a manifold with squared

geodesic distance ∆S1 between two points z, y ∈S1 corresponding to

∆S1 (z, y) = arccos
(〈

z, y
〉)2

where arccos is the inverse cosine function. In Table 3.1 we show the computation of

the structured loss, the gradient of the structured loss and the chosen retraction for the

sphere manifold. We compared the performance of the manifold structured estimator

proposed in this chapter with the manifold regression approach introduced by Steinke

et al. (2010) on the FVC fingerprint verification challenge dataset2. The dataset consists of

48 fingerprint pictures, each with ∼ 1400 points for training, ∼ 1000 points for validation

and the rest (∼ 25000) for test.

Figure 3.2 reports the average absolute error (in degrees) between the true contour orien-

tation and the one estimated by our structured prediction approach (SP), the manifold

regression (MR) proposed by Steinke et al. (2010) and the KRLS baseline. Our method

outperforms the MR competitor by a significant margin. As expected, the KRLS baseline is

not able to capture the geometry of the output space and has a significantly larger error of

the two other approaches. This is also observed on the qualitative plot in Figure 3.2 (Left)

where the predictions of our SP approach and the KRLS baseline are compared with the

ground truth on a single fingerprint. Output orientations are reported for each pixel with

2http://bias.csr.unibo.it/fvc2004

http://bias.csr.unibo.it/fvc2004

3.5 Algorithm and Experimental applications 51

Figure 3.2 Fingerprint reconstruction of a single image where the structured predictor
achieves 15.7 of average error while KRLS 25.3.

a color depending on their orientation (from 0 to π). While the KRLS predictions are quite

inconsistent, it can be noticed that our estimator is very accurate and even “smoother”

than the ground truth.

3.5.4 Multilabel Classification on the Statistical Manifold

We evaluated our algorithm on multilabel prediction problems. In this context the output

is an m-dimensional histogram, i.e. a discrete probability distribution over m points.

We consider as manifold the space of probability distributions over m points, that is

the m-dimensional simplex ∆m endowed with the Fisher information metric (Amari and

Nagaoka, 2007). We will consider Y = ∆m
ϵ where we require y1, . . . , ym ≥ ϵ, for ϵ > 0. In

the experiment we considered ϵ= 1e −5. The geodesic induced by the Fisher metric is,

d(y, y ′) = arccos
(∑m

i=1

√
yi y ′

i

)
(Nielsen and Sun, 2017). This geodesic comes from applying

the map π : ∆m →Sm−1, π(y) = (
p

y1, . . . ,
p

ym+1) to the points {yi }n
i=1 ∈∆m . This results in

points that belong to the intersection of the positive quadrant Rm++ and the sphere Sm−1.

We can therefore use the geodesic distance on the Sphere and gradient and retraction

map described in Table 3.1. We test our approach on some of the benchmark multil-

abel datasets described in (Tsoumakas et al., 2009) and we compare the results with the

KRLS baseline. We cross-validate λ and σ taking values, respectively, from the intervals

[1e −6,1e −1] and [0.1,10]. We compute the area under curve (AUC) (Srinivasan, 1999)

metric to evaluate the quality of the predictions, results are shown in Table 3.4. It can

be observed that for the easier dataset of CAL500 there’s no gain by taking into account

52 Manifold Structured Prediction

AUC
vKRLS MSP (Ours)

Emotions 0.63 0.73
CAL500 0.92 0.92
Scene 0.62 0.73

Table 3.4 Area under the curve (AUC) on multilabel benchmark datasets (Tsoumakas et al.,
2009) for KRLS and SP.

the structure of the manifold. however a difference in performance is clear on the more

challenging datasets, Emotions and Scene.

In this chapter we showed how it is possible to perform consistent regression on dense

structured spaces such as differentiable manifold. And how, even when considering

naïve approaches that operate in the ambient Euclidean spaces, taking into account the

structure of the manifold is strongly beneficial to the final result of the prediction.

Chapter 4

Hyperbolic Data Representation

4.1 Introduction

Representation learning is a key paradigm in machine learning and artificial intelligence. It

has enabled important breakthroughs in computer vision (He et al., 2016; Krizhevsky et al.,

2012) natural language processing (Bojanowski et al., 2016; Joulin et al., 2016; Mikolov

et al., 2013), relational learning (Nickel et al., 2011; Perozzi et al., 2014), generative model-

ing (Kingma and Welling, 2013; Radford et al., 2015), and many other areas (Bengio et al.,

2013; LeCun et al., 2015). Its objective is typically to infer latent feature representations of

objects (e.g., images, words, entities, concepts) such that their similarity or distance in the

representation space captures their semantic similarity. For this purpose, the geometry of

the representation space has recently received increased attention (Davidson et al., 2018;

Falorsi et al., 2018; Wilson et al., 2014; Xu and Durrett, 2018). In this chapter we focus

on Riemannian representation spaces and in particular on hyperbolic geometry. Nickel

and Kiela (2017) introduced Poincaré embeddings to infer hierarchical representations of

symbolic data and showed that they lead to substantial gains in representational efficiency

and generalization performance. Hyperbolic representations have since been extended to

further manifolds (De Sa et al., 2018; Nickel and Kiela, 2018), word embeddings (Le et al.,

2019; Tifrea et al., 2018), recommender systems (Chamberlain et al., 2019), and image

embeddings (Khrulkov et al., 2019).

However, it is yet an open problem how to efficiently integrate hyperbolic representations

with standard machine learning methods which often make a Euclidean or vector space

assumption. In the work by Ganea et al. (2018) some fundamental steps have been made

in this direction by proposing a generalization of fully connected neural network layers

from Euclidean space to hyperbolic space. However most of the experiments shown were

54 Hyperbolic Data Representation

from hyperbolic to Euclidean space using recurrent models. Therefore in this chapter we

focus on the task of learning manifold-valued functions from Euclidean on to hyperbolic

space that allows us to leverage its hierarchical structure for supervised learning. For this

purpose, we propose two novel approaches: a non-parametric kernel-based model – for

which we also prove generalization bounds – and a parametric deep learning model which

is informed by the geodesics of the output space to learn hyperbolic-valued functions.

We illustrate the efficacy of our approach on two challenging tasks, i.e., hierarchical

classification via label embeddings and taxonomy expansion by predicting concept em-

beddings from text. For standard classification tasks, label embeddings have shown great

promise as they allow to scale supervised learning methods to datasets with massive label

spaces (Chollet, 2016; Veit et al., 2018). By embedding labels in hyperbolic space according

to their natural hierarchical structure (e.g, the underlying WordNet taxonomy of ImageNet

labels) we are then able to combine the benefits of hierarchical classification with the

scalability of label embeddings. Moreover, the continuous nature of hyperbolic space

allows us to invent new concepts by predicting their placement in a pre-embedded base

taxonomy. We exploit this property for a novel task which we refer to as taxonomy expan-

sion: Given an embedded taxonomy T , we show that we can infer the correct placement

of unknown concepts by learning to regress their Euclidean features onto the embedding.

In contrast to hierarchical classification, the predicted embeddings are here full members

of the taxonomy, i.e., they can themselves act as parents of other points. For both tasks we

show empirically that our proposed methods achieve strong generalization performance

and outperform their Euclidean regression counterparts. Moreover we also investigate

empirical results of hyperbolic neural networks (Ganea et al., 2018) compared to our

methods in the task of taxonomy expansion, showing that it is not necessary to work

with hyperbolic layers as long as the training procedure exploits the geodesic as an error

measure.

The remainder of this chapter is organized as follows: in Section 4.2 we introduce hyper-

bolic embeddings and related concepts such as Riemannian optimization. In Section 4.3,

we introduce our proposed methods and prove excess risk bounds for the kernel-based

method. In Section 4.5 we evaluate our methods on the tasks of hierarchical classification

and taxonomy expansion.

4.2 Hyperbolic Manifold 55

4.2 Hyperbolic Manifold

In Chapter 3 we already introduced basic concepts of differentiabl geometry and some

notable manifolds. Because this chapter is solely concerned with the hyperbolic man-

ifold, we devote the following section to introducing this space and its characteristics.

Hyperbolic space is the unique, complete, simply connected Riemannian manifold with

constant negative sectional curvature. There exist multiple equivalent models for hyper-

bolic space that offer different geometric interpretation of such space. These models have

seen various uses in fields such as physics where they are used to formalize some models

of special relativity (Ungar, 2008), and more recently in network science, where they used

to model complex network topologies. Hyperbolic space is well suited for representing

hierarchical data due to its geometry. By placing the root node at the origin of hyperbolic

space, the manifold geometry replicates a tree-like structure. We will now give two exam-

ples substantiating this intuition, for a more in depth discusssion we refer the reader to

the work of Hamann (2018).

Consider the task of representing a tree into a metric space, such that its structure is

reflected in the embedding. A regular tree with branching factor b has (b +1)bl−1 nodes

at level l . The number of nodes grows exponentially with respect to their distance from

the root. On the other hand, if we consider a circle with radius r in hyperbolic space, its

length grows exponentially with respect to r . This is false in the case of Euclidean space

where the length of any circumference grows only quadratically with respect to its radius.

Another example: in a graph the shortest path between two nodes x, y that have a common

node O, passes through that common node, i.e. d(x, y) = d(x,O)+d(y,O) so the ratio

between their distance and the sum of their distances from O is d(x,y)
d(x,O)+d(O,y) = 1. In

hyperbolic space, as two points x, y get farther from the origin, the ratio between their

distance and the sum of their distances from the origin asymptotically approaches 1, i.e.

lim
∥y∥,∥x∥→∞

d(x,y)
d(x,O)+d(O,y) = 1, this means that it is possible to arbitrarily approximate this

distance. This is not true for euclidean space where the ratio is constant. A representation

of this phenomenon is depicted in Figure 4.1.

Two common models for hyperbolic manifold are the Lorentz model and the Poincaré

model. We will use the former to estimate embeddings using stochastic optimization due

to its numerical advantages. For analysis, we will map embeddings into the Poincaré disk

which provides an intuitive visualization of hyperbolic embeddings. Figure 4.2 shows an

example of tree embedding in the Poincaré model.

56 Hyperbolic Data Representation

Figure 4.1 Shortest path between two points in hyperbolic space and the ration between
their distance and the distance from the origin.

4.2.1 Lorentz Model

Let y , z ∈Rd+1 and let 〈y, z〉L =−y (0)z(0) +∑d
i=1 y (i)z(i) denote the Lorentzian scalar prod-

uct. The Lorentz model of d-dimensional hyperbolic space is then defined as the Rieman-

nian manifold Ld = (Md , gL), where

Md = {y ∈Rd+1 : 〈y, y〉L =−1, y (0) > 0}, (4.1)

denotes the upper sheet of a two-sheeted n-dimensional hyperboloid and where gL(y) =
diag([−1,1, . . . ,1]) is the associated metric tensor.

Furthermore, the distance on L is defined as

dL(y, z) = acosh(−〈y, z〉L). (4.2)

An advantage of the Lorentz model is that its exponential map has as simple, closed-form

expression. As Nickel and Kiela (2018) showed, this allows us to perform Riemannian

optimization efficiently and with increased numerical stability. In particular, let y ∈Ld

and let t ∈ TyLd denote a point in the associated tangent space. The exponential map

expy : TyLd →Ld is then defined as

expy (t) = cosh(∥t∥L)y + sinh(∥t∥L)
t

∥t∥L
. (4.3)

4.2 Hyperbolic Manifold 57

Figure 4.2 Embedding of a tree in the Poincare disk.

Because the Lorentz model of hyperbolic space is a smooth sub-manifold of Euclidean

space (Robbin and Salamon, 2011), the gradient of any smooth function F : Md →R at a

point y ∈Md can be computed by taking the direction of steepest ascent h and projecting

it onto the tangent space of y Absil et al. (2009). The direction of steepest ascent can be

computed from the Euclidean gradient

h = g−1
L ∇ f (y) (4.4)

while the projection projy : Rd+1 → TyMd , for the Lorentz model has form

projy (h) = h − 〈y,h〉L
〈y, y〉L

y = h +〈y, z〉Lh (4.5)

since ∀y ∈Ld it is that 〈y, y〉L =−1.

4.2.2 Poincaré ball

The Poincaré ball model is the Riemannian manifold Pd = (Bd , gp), where

Bd = {y ∈Rd : ∥y∥ < 1} (4.6)

58 Hyperbolic Data Representation

is the open n-dimensional unit ball and where gp (y) = 4/(1−∥y∥2)2 is the associated

metric tensor. The distance function on P is defined as

dp (y, z) = acosh

(
1+2

∥y − z∥2

(1−∥y∥2)(1−∥z∥2)

)
. (4.7)

An example of geodesics in the Poincaré model is depicted in Figure 4.3a

An advantage of the Poincaré ball is that it provides an intuitive model of hyperbolic

space which is well suited for analysis and visualization of the embeddings. It can be seen

from Equation (4.7), that the distance within the Poincaré ball changes smoothly with

respect to the norm of y and z. This locality property of the distance is key for representing

hierarchies efficiently. For instance, by placing the root node of a tree at the origin of Bn ,

it would have relatively small distance to all other nodes, as its norm is zero. On the other

hand, leaf nodes can be placed close to the boundary of the ball, as the distance between

points grows quickly with a norm close to one.

4.2.3 Isometries

The Lorentz and Poincaré ball are equivalent in that there exist isometric mappings

p :Ld →Pd and p−1 :Pd →Ld between both manifolds, which are given as

p(y (0), y (1), . . . , y (d)) = (y (1), . . . , y (d))

y (0) +1
; (4.8)

p−1(y (1), . . . , y (d)) = (1+∥y∥2,2y (1), . . . ,2y (d))

1−∥y∥2
. (4.9)

This allows us to freely map between the two hyperbolic models, e.g., to perform optimiza-

tion in L and analyze the learned embeddings in P .

4.3 Hyperbolic representation

In machine learning, data representation aims at finding suitable transformations for the

input data, such that the algorithms at hand can operate on the transformed data with

increased performance, be it efficiency or accuracy. A typical example of this are feature

maps, that map input data into higher dimensional linear spaces where it is easier to find

separate data with linear functions.

4.3 Hyperbolic representation 59

p1

p2

p3

p4

p5

(a) (b)

Figure 4.3 a) Geodesics in the Poincaré disk model of hyperbolic space. b) Lorentz model
of hyperbolic space and its mapping onto the Poincaré disk.

Embeddings are representations used for structured data like text or graphs, these trans-

formations map atomic elements from the starting dataset, such as pair of words or graph

nodes, into points of a linear space thus allowing for classical machine learning algorithms,

such as support vector machines and deep models, to perform regression or classification.

However, for many problems, the label space is naturally endowed with a hierarchical

structure – the underlying WordNet taxonomy of ImageNet labels being a prime exam-

ple (Deng et al., 2009; Strapparava et al., 2004). We leverage such structure by embedding

labels with hierarchical structure in hyperbolic space and transforming a classification

problem into a manifold regression problem, albeit in a non-linear space. By learning to

predict the correct embedding from Euclidean features we are then able to combine the

benefits of hierarchical classification with the scalability of label embeddings.

4.3.1 Hyperbolic representation

We consider supervised datasets {xi ,ci }m
i=1 ∈X ×C where class labels ci can be organized

according to a taxonomy or class hierarchy T = (C,E). Edges (i , j) ∈ E indicate the onto-

logical relation ci is-a c j . The goal is to find the set Θ= {yi }|C|i=1 which is the set of points

yi ∈Md ∀i = 1, . . . , |C| that correspond to the nodes of T in hyperbolic space, mantaining

the structure structure of the original tree. To compute hyperbolic embeddings yi of all ci

that capture these hierarchical relationships of T , we follow Nickel and Kiela (2017, 2018)

and infer the embedding from pairwise similarities. In particular, let γ : C×C→R+ be the

60 Hyperbolic Data Representation

similarity function such that

γ(ci ,c j) =
1, if ci , c j are adjacent in clos(T)

0, otherwise
(4.10)

where clos(T) is the transitive closure of T . Furthermore, let N (i , j) = {ℓ : γ(i ,ℓ) <
γ(i , j)}∪ { j } denote the set of concepts that are less similar to ci then c j (including c j) and

let φ(i , j) = argmink∈N (i , j) d(yi , yk) denote the nearest neighbor of ci in the set N (i , j).

We then learn embeddingsΘ= {yi }m
i=1 by optimizing

min
Θ

−∑
i , j

logPr(φ(i , j) = j |Θ) (4.11)

with

Pr(φ(i , j) = j |Θ) = ed(yi ,y j)∑
k∈N (i , j) ed(yi ,yk)

. (4.12)

Equation (4.12) can be interpreted as a ranking loss that aims to extract latent hierarchical

structures from C (Nickel and Kiela, 2018). For computational efficiency, we follow Jean

et al. (2014) and randomly subsample N (i , j) on large datasets. To infer the embeddings θ

we then minimize Equation (4.12) using Riemannian SGD as introduced in Section 3.5.1

We apply the transitive closure in Equation (4.10) following the intuition in Poincaré

Embeddings for Learning Hierarchical Representations (Nickel and Kiela, 2017). We men-

tioned in Section 4.2 that the ratio between the distances of two points their distance and

the sum of theirs distances from the origin approaches 1. This effectively implies that

the origin of Hyperbolic space is closer to those points than they are one from each other.

Since we compute the embeddings using Equation (4.12) without looking at the actual

node distances in the tree but only checking if two nodes are connected, the transitive

closure avoids the embedding of a node to be far from its descendants.

By computing hyperbolic embeddings of T , we have then recast the learning problem

from a discrete tree D = {xi ,ci }m
i=1,ci ∈ C to its embedding in a continuous manifold

De = {xi , yi }m
i=1 with yi ∈ L. This allows us to apply manifold regression techniques to

perform classification and even learn new concepts by learning their corresponding

embedding in the manifold. To incorporate hierarchy information in the label embedding,

we also study regressing onto an augmented hierarchy where we add each example xi

as a child to its associated class ci in T . We then embed this augmented hierarchy Tx

using hyperbolic embeddings as described in Section 4.2. However, we compute similarity

4.4 Hyperbolic regression 61

scores γ(·, ·) in the transitive closure of Tx using a Gaussian kernel when features for both

nodes are available or the original γ otherwise.

We use the augmented hierarchy to overcome the over-simplified original class hierarchy.

The embedding learning process leverages also similarity among the features samples,

leading to a richer embedding. In our experiments we verified empirically that following

this strategy, similar samples from the same class tend to be closer in hyperbolic space.

Hence, different classes tend to form separate clusters of neighboring points in hyperbolic

space. In particular, the clusters associated to classes with similar semantic content

tend to be closer in hyperbolic space. Using the augmented hierarchy, the computed

embedding achieved higher fidelity with respect to the original structure.

4.4 Hyperbolic regression

Having introduced how to compute hyperbolic representations the next natural question

is how to learn We consider the problem of manifold regression detailed in Chapter 3. We

assume for simplicity that X ⊂Rd and Y ⊂Ln are compact subsets. Here we consider Ln

as target space and ∆(·, ·) = dL(·, ·)2 as loss function, but all results extend to P . We tackle

this problem proposing two approaches: one leveraging the results of Chapter 3 and one

using geodesic neural networks.

4.4.1 Hyperbolic Structured Prediction

In Chapter 3 we proposed a new approach to address manifold regression problems. We

adopted a perspective based on structured prediction and interpreted the target manifold

Y as a "structured" output. We formulate the corresponding Hyperbolic Structured

Prediction (HSP) estimator when applying this strategy to our problem (namely Y ⊂Ln).

In particular, we have fhsp :X →Ln the function such that for any test point x ∈X

fhsp (x) = argmin
y∈Ln

m∑
i=1

αi (x) dL(y, yi)2, (4.13)

where the weights α(x) = (α1(x), . . . ,αn(x))⊤ ∈Rm are learned according to Equation (3.9).

We studied the generalization properties of the estimator in Chapter 3. We proved under

suitable assumptions on the regularity of the output manifold, that it was possible to give

bounds on the excess risk in terms of the number of training examples available. The

following result specializes Theorem 3.4.3 to the case of fhsp . A key role will be played by

62 Hyperbolic Data Representation

the (s,2)-Sobolev space W s,2 of functions from Ln to R, which generalizes the standard

notion on Euclidean domains (see Hebey (2000) for an introduction on the topic).

Theorem 4.4.1. Let (xi , yi)m
i=1 be sampled independently according to ρ on X ×Y with

Y ⊂Lm a compact subset. Let fhsp defined as in Equation (4.13) with weights from Equa-

tion (3.9) learned with reproducing kernel k :X ×X →R with reproducing kernel Hilbert

space (RKHS) F . If the map x 7→ ∫
dL(·, y)2 dρ(y |x) belongs to W s,2(Y)⊗F with s > n/2,

then for any τ ∈ (0,1]

E(fhsp)− inf
f
E(f) ≤ ∥∥d 2

L
∥∥

s,2qτ
2 1

n1/4
, (4.14)

holds with probability at least 1−8e−τ, where q is a constant not depending on n,τ or∥∥dL
∥∥

s,2.

The proof of the result above hinges on Theorem 3.4.3 and is detailed in the next sub-

section. The result guarantees a learning rate of order O(n−1/4). We comment on the

assumptions and constants appearing in Theorem 4.4.1. First, we point out that, albeit

the requirement
∫

dL(·, y)2 dρ(y |x) ∈ F ⊗W s,2(Y) can seem overly abstract, it reduces

to a standard assumption in statistical learning theory. Informally, it corresponds to a

regularity assumption on the conditional mean embedding of the distribution ρ(·|x) (see

e.g. (Song et al., 2013) for more details), and can be interpreted as requiring the solution

of Equation (3.7) to belong to the hypotheses space associated to the kernel k. Second, we

comment on the constant in Equation (4.14) that depending on the geodesic distance. In

particular, we note that by Theorem 3.4.2 the squared geodesic on any compact subset of

Ln belongs to W s,2(Y) for any s ≥ 0. Hence
∥∥d 2

L
∥∥

s,2 <+∞ also for any s > n/2, as required

by Theorem 4.4.1.

Bound proof

The proof of Theorem 4.4.1 is a specialization of Theorems 3.4.2 and 3.4.3. We recall a key

assumption that is required to apply such results.

Assumption 4.4.1. M is a complete n-dimensional smooth connected Riemannian mani-

fold, without boundary, with Ricci curvature bounded below and positive injectivity radius.

The assumption above imposes basic regularity conditions on the output manifold. A first

implication is the following.

Proposition 4.4.1 (Theorem 3.4.2). Let M satisfy Assumption 4.4.1 and let Y ⊂M is a

compact geodesically convex subset of M. Then, the squared geodesic distance d : M×

4.4 Hyperbolic regression 63

M→ R is smooth on Y . Moreover, by the proof of Theorem 3.4.1 in Section A.1, we have

d 2 ∈W s,2(Y) for any s > n/2.

Leveraging standard results from Riemannian geometry, we can guarantee that the mani-

folds considered in this chapter satisfy the above requirements. For simplicity, we restrict

on M corresponding to an open bounded ball in either Pn or Ln . In particular,

• M has sectional curvature constantly equal to −1. Hence the Ricci curvature is

bounded from below since we are in a bounded ball in either Pn or Ln .

• The injectivity radius is positive (actually lower bounded by 1/(2 ·92+[n/2]) with [n/2]

the integer parts of n/2), see Main Theorem in Martin (1989).

We see that we are in the hypotheses of Proposition 4.4.1, from which we conclude the

following.

Corollary. For any s ≥ 0, the geodesic distance dL (respectively dP) belongs to W s,2(Y) for

any compact subspace of Ln (respectively Pn).

This guarantees us that we are in the hypotheses of Theorem 3.4.3, from which Theo-

rem 4.4.1 follows immediately. We note in particular that the corollary guarantees that d 2
L

is SELF, as defined in Definition 2.2.1.

4.4.2 Homeomorphic Geodesic Neural Network

As an alternative to the non-parametric model fhsp , we propose also a parametric method

based on deep neural networks. An important challenge when dealing with manifold

regression is how to design a suitable model for the estimator. While neural networks

of the form gw : Rd →Rk (parametrized by some weights w) have proven to be powerful

models for regression and feature representation (Bengio et al., 2013; LeCun et al., 2015;

Ngiam et al., 2011; Xiao et al., 2016), the study of these models for learning manifold-

valued function is limited. Some recent works have investigated how to define layers that

generalize classical neural network layers in hyperbolic space (Ganea et al., 2018; Tay

et al., 2017), however the focus has been on applying these models to learn maps from

hyperbolic manifolds to Euclidean space. On the other hand, in this chapter we consider

the Poincaré model and develop a neural architecture mapping the Euclidean space into

the open unit ball.

64 Hyperbolic Data Representation

Consider the element-wise hyperbolic tangent be defined as

t : Rk → {x ∈Rk : ∥x∥∞ < 1} (4.15)

(x(1), . . . , x(k)) 7→ (tanh x(1), . . . , tanh x(k)), (4.16)

which maps a linear space onto the open ℓ∞ ball. Moreover, we define a "squashing"

function

s : {x ∈Rk : ∥x∥∞ < 1} → {x ∈Rk : ∥x∥2 < 1} (4.17)

s(x) =
x 7→ x ∥x∥∞

∥x∥2
, if x ̸= 0

0, if x = 0
(4.18)

where 0 is the vector of all zeros. Because ∥x∥∞ < ∥x∥2, s is continuous and maps the

open ℓ∞ ball into the open ℓ2 ball. And because both s and t are bijective continuous

function with continuous inverse, the composition s ◦ t : Rk → {x ∈ Rk : ∥x∥2 < 1} is a

homeomorphism from Rk into the open ball ℓ2 and therefore also on the Poincaré model

manifold. By composing s ◦ t with the neural network feature extractor gw we obtain a

deep model that jointly learns features into a linear space and maps them to the hyperbolic

manifold:

fnng = s ◦ t ◦ gw : Rd →Pk . (4.19)

Here gw corresponds to the enconding function ew and s ◦ t is the decoding function,

where no explicit maximization over y is present. Since the only trainable parameters

are the weights w in the feature extractor gw , and the decoding s ◦ t is sub-differentiable,

the training of this model is akin to training a classical deep learning architecture. An

operation that can be easily implemented with common deep learning frameworks such

as PyTorch (Paszke et al., 2017) or TensorFlow (Abadi et al., 2016). However we train this

model, using the squared geodesic instead of the classical Euclidean loss.

4.5 Applications

We have introduced two models for predicting values in hyperbolic space. Both methods,

HSP and NN-G, benefit from label embeddings that reflect the similarity of the associated

examples and exploit the hyperbolic structure of the output space.

We evaluate our proposed methods for hyperbolic manifold regression on the following

tasks:

4.5 Applications 65

Hierarchical Classification via label embeddings. For this task, the goal is to classify

examples with a single label from a class hierarchy with tree structure. We leverage

hyperbolic representations for this task and first compute label embeddings of the class

hierarchy. We then learn to regress examples onto label embeddings and classify them

using the nearest label in the target space, i.e., by denoting yc ∈Ln the embedding of class

c and taking f :Rd →Ln .

ĉ = argmin
c∈C

dL(f (x), yc) (4.20)

Taxonomy expansion. The goal is to expand an existing taxonomy based on feature

information about new concepts. As for hierarchical classification, we first embed the

existing taxonomy in hyperbolic space and then learn to regress onto the label embeddings.

However, a key difference is that a new example c can act as the parent of another class c ′.

4.5.1 Models and training details

For hierarchical classification, we compare to standard baselines such as top-down clas-

sification with logistic regression (TD-LR) and hierarchical SVM (HSVM). Furthermore,

since both tasks can be regarded as regression problems onto the Poincaré ball (which

has a canonical embedding in Rk) we also compare to kernel regularized least squares

regression (KRLS) and a neural network with squared Euclidean loss (NN-E). In both cases,

we constrain predictions to remain within the Poincaré ball via the projection

proj(y) =
y/∥y∥−ε if ∥y∥ ≥ 1

y otherwise
,

where ε is a small constant to ensure numerical stability, equal to ε= 10−6. These regres-

sion baselines allows us to evaluate the advantages of training manifold valued models

with squared geodesic loss compared to standard methods that are agnostic of the under-

lying geodesics.

For kernel-based methods, we employ a Gaussian kernel selecting the bandwidth σ ∈
[10−1,102] and regularization parameter λ ∈ [10−6,10−2] via cross-validation. Both pa-

rameter ranges are logarithmically spaced. For HSP inference we use RSGD with batch

size equal to 50 and a maximum of 40000 iterations we stop the minimization if the the

gradient Euclidean norm is smaller than 10−5 (In most cases the inference stops before the

10000 iteration). The learning rate for RSGD is chosen via cross-validation on the interval

[10−5,10−1]. For the neural network models (NN-G, NN-E) we use the same architecture

66 Hyperbolic Data Representation

for gw . Each layer is a fully connected layer where σ(x) = max(0, x) is a ReLU non-linearity

and w = {W ∈ Rul×2ul }, i.e. each layer halves the number of hidden units with respect

to the previous layer (with the exception of the first and last layer which must fit input

and output dimensions). We use a depth of 5 layers with intermediate dimensionalities

ul ∈ (1024,1024,512,256,128) for taxonomy expansion and ul ∈ (2048,2048,1024,512,256)

for hierarchical classification. We did not find significant improvements with deeper

architectures in performance. We train the deep models using mini-batch stochastic

gradient descent, with a scheduler until the model reaches convergence of the training

loss. For the WordNet Mammals dataset we also compare our algorithms with a hyperbolic

neural network (HNN) as introduced by Ganea et al. (2018), this architecture is trained

with Riemannian Gradient Descent until convergence and has the same structure and the

same number of parameters of NN-G and NN-E.

4.5.2 Hierarchical classification

For hierarchical classification, we are given a supervised training set D = {xi ,ci }m
i=1 where

the class labels ci are organized in a tree T . We first embed the augmented hierarchy

Tx as discussed in Section 4.3.1 and learn a regression function f̂ : Rd →Ln using De =
{xi , yi }m

i=1. For a test point x ′ ∈Rd , we first map it onto the target manifold ŷ = f̂ (x ′) and

then classify ŷ according to Equation (4.20). For evaluation, we use the classic Newsgroups-

201 benchmark for hierarchical classification which comprises of 11314 training points,

7505 test points, and 20 classes. The augmented tree Tx consists of 11342 nodes and

36273 edges. We embed Tx in L10, what achieves an embedding quality of mAP 0.99 and

mean rank 1.01. We then train HSP, NN-G and NN-E as described above and measure

classification performance in terms of µF1 and macroF1 scores. We follow prior work and

measure F1 scores over the leaf classes of the hierarchy.

Table 4.1 shows the results of our experiments. It can be seen that the hyperbolic structured

predictor achieves results comparable to state-of-the-art on this task although we did not

explicitly optimize the embedding or training loss for hierarchical classification. Moreover,

it can be seen that geodesic NN-G clearly outperforms the two algorithms using an

Euclidean loss: NN-E and KRLS.

Results Table 4.1 shows the results of our experiments. It can be seen that the hyperbolic

structured predictor achieves results comparable to state-of-the-art on this task although

1http://qwone.com/~jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/

4.5 Applications 67

Table 4.1 Hierarchical classification on benchmark datasets. We report micro-F1 (µF1),
macro-F1 (MF1), as well as the rank relative to all other models on a dataset, e.g., (1) for
the the best performing model.

Model - Performance (Relative Rank)

TD-LR HSVM NN-E NN-G HSP

News-20
µF1 77.07 (3) 80.79 (1) 63.91 (5) 72.67 (4) 80.28 (2)
MF1 77.94 (3) 80.04 (1) 64.21 (5) 72.70 (4) 79.56 (2)

Imclef07a
µF1 73.86 (3) 74.98 (2) 65.49 (5) 67.49 (4) 75.95 (1)
MF1 36.03 (3) 50.44 (1) 26.76 (5) 31.20 (4) 46.41 (2)

Wipo
µF1 36.85 (2) 38.48 (1) 16.87 (5) 16.69 (6) 31.94 (3)
MF1 52.18 (3) 52.21 (2) 42.77 (5) 42.86 (4) 52.41 (1)

Diatoms
µF1 54.01 (1) 48.97 (3) 9.25 (5) 11.31 (4) 53.20 (2)
MF1 55.53 (2) 44.61 (3) 14.90 (4) 14.61 (5) 62.10 (1)

Avg. Rank (2.5) (1.75) (4.88) (4.38) (1.75)

we did not explicitly optimize the embedding or training loss for hierarchical classification.

We also observe that while NN-G outperforms NN-E, both algorithms perform significantly

worse on Wipo and Diatoms datasets. Interestingly, these two datasets are significantly

smaller compared to Newsgroup-20 and Imclef07a in terms of number of training points

(∼ 1K Vs ∼ 10K training samples). This seems to suggest that NN-G and NN-E models

have a higher sample complexity.

4.5.3 Taxonomy expansion

For taxonomy expansion, we assume a similar setting as for hierarchical classification. We

are given a dataset D = {xi ,ci }m
i=1 where concepts ci are organized in a taxonomy T and

for each concept we have an additional feature representation xi . Again, we first embed

the hierarchy Tx and split it into train De
train and test set De

test. We vary the size of the

test set (the number of unknown concepts) such that |Dtest| ∈ {5,10,20,30,50}. Whenever

necessary, we also create a validation set from Dtrain for model selection with a 80 : 20

ratio for model selection. We then train all regression functions f̂ : Rd →Ln using De
train

and predict embeddings for Dtest. In contrast to hierarchical classification, the predicted

points ŷ = f (x) can themselves act as parents of other points, i.e., they are full members of

the taxonomy T . To assess the quality of the predictions we use mean average prediction

(mAP) as proposed by Nickel and Kiela (2017). We report mAP for the predicted points

as well as for the points originally embedded by the Lorentz embedding (Orig). This

68 Hyperbolic Data Representation

(a) WordNet mammals embedding (b) Close-up of predicted embedding for ’Fox’

Figure 4.4 Overview and close-up of predicted positions for entity ’Fox’. Models that do
not use the geometry of the hyperbolic manifold fail at positioning the entity, while the
geodesic neural network and the hyperbolic structured predictor position the entity ac-
cordingly to its real neighbours. Only the first 2 dimensions of a 5-dimensional embedding
are represented.

experiment is repeated 20 times for a given size of the test set, each time selecting a new

training-test split. In our experiments, we consider the following datasets:

WordNet Mammals. For WordNet Mammals, the goal is to expand an existing taxonomy

by predicting concept embeddings from text. For this purpose, we take the mammals

hierarchy of WordNet and retrieve for each node its corresponding Wikipedia page. If a

page is missing, we remove the corresponding node and if a page has multiple candidates

we disambiguate manually. The transitive closure of T has 1036 nodes and 11222 edges.

Next, we pre-process the retrieved Wikipedia descriptions by removing all non alphabetical

characters, tokenizing words and removing stopwords using NLTK (Loper and Bird, 2002).

Finally, we associate to each concept ci ∈ T the TF-IDF vector of its Wikipedia description

as feature representation xi ∈R10000 computed using Scikit-learn (Pedregosa et al., 2011).

In the experiments we noticed that removing the taxonomy names from the TF-IDF

features does not affect significantly the outcome of the experiments. We then embed T
following Section 4.2 and obtain an embedding with mAP 0.86. This dataset is particularly

difficult given the way features were collected: Wikipedia pages have a high variance in

4.5 Applications 69

Table 4.2 Mean average precision for taxonomy expansion on WordNet mammals and
synthetic data

Number of new concepts

5 10 20 30 50

Wordnet
Mammals

Orig 0.86±0.06 0.88±0.06 0.87±0.03 0.87±0.03 0.88±0.02

KRLS 0.54±0.14 0.37±0.07 0.26±0.04 0.22±0.03 0.15±0.02
NN-E 0.61±0.12 0.47±0.08 0.38±0.04 0.31±0.03 0.20±0.03
NN-G 0.79±0.08 0.74±0.06 0.63±0.06 0.61±0.06 0.50±0.04
HNN 0.82±0.05 0.73±0.05 0.63±0.04 0.57±0.05 0.46±0.04
HSP 0.72±0.10 0.69±0.07 0.69±0.07 0.58±0.09 0.50±0.06

Synthetic
Small

Orig 0.94±0.03 0.93±0.03 0.94±0.02 0.94±0.02 0.94±0.01

KRLS 0.63±0.16 0.51±0.12 0.36±0.06 0.27±0.03 0.21±0.02
NN-E 0.76±0.07 0.72±0.09 0.63±0.09 0.56±0.09 0.45±0.08
NN-G 0.80±0.07 0.73±0.06 0.61±0.06 0.55±0.05 0.45±0.04
HNN 0.82±0.01 0.71±0.07 0.60±0.05 0.51±0.04 0.41±0.04
HSP 0.82±0.08 0.76±0.07 0.66±0.05 0.60±0.04 0.50±0.03

Synthetic
Large

Orig 0.81±0.06 0.79±0.05 0.80±0.03 0.80±0.02 0.80±0.01

KRLS 0.30±0.05 0.20±0.02 0.13±0.01 0.09±0.01 0.07±0.00
NN-E 0.69±0.09 0.68±0.09 0.64±0.05 0.61±0.05 0.59±0.05
NN-G 0.77±0.07 0.72±0.07 0.71±0.04 0.69±0.04 0.65±0.03
HNN 0.83±0.7 0.79±0.4 0.72±0.06 0.64±0.06 0.63±0.02
HSP 0.76±0.09 0.70±0.07 0.69±0.04 0.67±0.05 0.63±0.03

quality and amount of content, while some pages are detailed and rich in information

other barely contain a full sentence.

Synthetic datasets. To better control for noise in the feature representations, we also

generate datasets based on synthetic random trees, i.e., a smaller tree with 226 nodes and

1228 edges and a larger tree with 2455 nodes and 30829 edges after transitive closure. For

each node we take as feature vector the corresponding row of the adjacency matrix of the

transitive closure of the tree. We project these rows on the first d principal components of

the adjacency matrix, where d = 50 for the small tree and d = 500 for the big tree. We then

embed the nodes of the graph in L5 using both the tree structure and similarity scores

computed using the vector features. The similarity is computed by a Gaussian kernel with

σ equal to the average tenth nearest neighbour of the dataset.

70 Hyperbolic Data Representation

Results We provide the results of our evaluation for different sizes on De
test in table 4.2. It

can be seen that all hyperbolic-based methods can successfully predict the embeddings of

unknown concepts when the test set is small. The performance degrades as the size of the

test set increases, since it becomes harder to leverage the original structure of the graph.

While all methods are affected by this trend, we note that algorithms using the geodesic

loss tend to perform better than those working in the linear space. This suggest that taking

into account the local geometry of the embedding is indeed beneficial in estimating the

relative position of novel points in the space.

We conclude by noting that all hyperbolic-based methods have comparable performance

across the three settings. However, we point out that HSP and NN-G offer significant prac-

tical advantages over HNN: in all our experiments they were faster to train and in general

more amenable do model design. In particular, since HSP is based on a kernel method, it

has relatively fewer hyperparameters and requires only solving a linear system at train-

ing time. NN-G consists of a standard neural architecture with the homeomorphism

activation function introduced in section 4.4.2 and trained with the geodesic loss. This

allows one to leverage all current packages available to train neural networks, significantly

reducing both modeling and training times.

Part III

Structured Machine Learning Robotics

Chapter 5

Inverse Kinematics with Structured

Prediction

Given the mechanical model of a robot, the configuration space is defined as the set of all

possible positions that the robot joints can attain. The workspace is the set of all possible

positions and orientations that the end effector of the robot can reach. Computing the

kinematics of a robot consists in finding a function that maps the configuration space

to the workspace. In many practical situations such as robotic control or kinematics

calibration, it is often more interesting to compute the inverse of this function (Spong

et al., 2006), which is reffered to as the inverse kinematics problem.

Computing the inverse kinematics of a robot is a task traditionally solved by analyzing the

geometric model of the robot. A major problem with this approach is that the solution

to this problem is only as good as the model of the robot. A recently proposed alterna-

tive is to learn the inverse kinematics functions from sampled pairs of configuration-

workspace points (De Angulo and Torras, 2008; D’Souza et al., 2001; Oyama et al., 2001,

2005). However, traditional regression techniques are not suited for this task. For robots

with redundant joints inverse kinematics is an ill-posed problem since there are multiple

joint configurations that correspond to the same workspace point (Siciliano, 1990). To

overcome this issue, various works have reframed the problem in the velocity domain. The

goal becomes learning a map from the velocity of the end effector to the velocity of joints.

Because this problem is locally linear (Tevatia and Schaal, 2000), regression techniques

can be employed to compute piecewise functions. This approach has been explored both

with linear functions and NNs (Oyama et al., 2001; Tevatia and Schaal, 2000). Another

regression-based approach was proposed by Jordan and Rumelhart (1992), where a NN

learns the forward kinematics and is used to train a second NN such that the composition

74 Inverse Kinematics with Structured Prediction

of the two is the identity function. However the non-convex nature of miminization

problems generated by NN models led to instability during training. Bócsi et al. (2011)

proposed an approach based on structured predictors. By training a one-class structured

SVM they were able to learn the inverse kinematics for some trajectories; however this

came at the cost of sampling the training set only in a neighbourhood of the goal trajectory.

This poses a problem as it requires to retrain the model for each new trajectory or limit

the usage of a model to trajectories close to each other.

In this chapter we follow the line of work of Bócsi et al. (2011), improving it. We learn

the inverse kinematics of a robot with the goal of finding the joint configurations for a

trajectory in the workspace. However we test our approach on a more challenging task.

We solve the inverse kinematics also for the end effector orientation in addition to its

position; this problem is called pose estimation. We show that it is possible to do so using

only a limited amount of samples collected from the whole workspace of the robot. We do

so by proposing a structured prediction algorithm and comparing it with an unstructured

multivariate neural network and a one-class structured SVM. We show the limits of both

the one class structured SVM and the unstructured approach when dealing with such

problem and how our approach leads to higher accuracy and reduced training times.

The remainder of the chapter is organized in the following way. In Section 5.1 we introduce

the problem of inverse kinematics, recall the one class SVM used by Bócsi et al. (2011) and

the neural network used as unstructured baseline. Then we go over our proposed algo-

rithm for the task: a consistent regularized structured predictor as introduced in Chapter 2.

In Section 5.1.4 we introduce the task of trajectory reconstruction; then in Section 5.2 we

compare the algorithms on a test set and 2 trajectories of a simulated robotic arm.

5.1 Problem and proposed approach

Consider the space of end effector position and orientation X = Rd × [0,2π) and the

space of joint configurations Y = [y1,1, y1,2]× [y2,1, y2,2]× . . .× [y J ,1, y J ,2] where y j ,1 < y j ,2

and y j ,i ∈ [0,2π) ∀i ∈ {1,2}, ∀ j = 1, . . . , J . Here each couple [y j ,i , y j ,i] represents the joint

boundaries of the J-th joint. The goal is to find a function g−1 : X →Y such that

g−1(x) = y (5.1)

is compliant with the geometry of the robot mapping. However finding such function is not

straightforward, since the direct kinematics function is, in general, surjective. We propose

5.1 Problem and proposed approach 75

a data-driven solution to this problem using structured machine learning techhniques.

Given a sample of joint configurations and corresponding end effector pose {xi , yi }n
i=1,

we try to learn a function f̂ (x) ≈ g−1 by minimizing an error measure. We compare three

different machine learning algorithms on this task. A NN trained to perform multivariate

regression onto the joint space, a one class structured SVM as proposed by Bócsi et al.

(2011), and a consistent regularized structured predictor as introduced in Section 2.2.

Only the last two algorithms account for the structure in the output space.

5.1.1 One-Class Strucured SVM

To learn the inverse kinematics of redundant robots, Bócsi et al. (2011) proposed to use

one-class SVM (OCSVM). This algorithm is a type of SSVM originally employed for density

estimation tasks. Minimization problems using SSVM are not solvable for dense output

spaces, and this limit is overcome by OCSVM which are used to estimate a continuous

distribution ρ̂(y |x). Given a joint kernel k : (X ×Y)× (X ×Y) → R, OCSVM learns the

following prediction function

f̂OC (x) = argmax
y∈Y

n∑
i=1

αi k
(
(x, y), (xi , yi)

)
(5.2)

where ai ∈R∀ i = 1, . . . ,n. The weights ai are determined by solving

min
a∈Rn

n∑
i

n∑
j

ai a j k
(
(xi , yi), (xi , y j)

)− n∑
i=1

ai k
(
(xi , yi), (xi , yi)

)
(5.3)

subject to, ∀i = 1, . . . ,n

0 ≤ ai ≤ 1

λn

n∑
i=1

ai = 1 (5.4)

withλ ∈ (0,1] a regularization parameter to be chosen by the user. Notice how this problem

is akin to the one defined for training kernelized SSVM in Equation (2.8). For a derivation

of this algorithm we refer the reader to the work of Schölkopf et al. (2001). To solve Equa-

tion (5.3) we employ the path-following algorithm (Vandenberghe, 2010) implemented in

the CVXOPT python package (Andersen et al., 2013). To evaluate Equation (5.2) we use

the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) algorithm, a gradient-based

quasi-Newton method for unconstrained minimization (Nocedal and Wright, 2006).

76 Inverse Kinematics with Structured Prediction

5.1.2 Multivariate Neural Network Regression

As a baseline we propose to model the inverse kinematics function with an unstructured

neural network (NN) f̂N N : X →RJ with 5 layers. We choose a NN over other models for

the recent outstanding results this family of models has obtained in a variety of regression

and classification tasks (Lathuilière et al., 2019). We define each layer to have respectively

{16,64,64,32, J } hidden units, where J is the number of joints in the robot. We use hyper-

bolic tangent as non-linearity in every layer except the output one, where no non-linearity

is used. We did not notice any increase in performance by either adding hidden units or

layers to the model or changing activation function. Because the NN is agnostic to the

structure of Y its actual domain is RJ which is a superset of Y . To avoid predicting invalid

configurations, we project any prediction f̂N N (x) ∈RJ onto the actual output space Y by

thresholding element-wise all the values outside of the corresponding joint angle range.

5.1.3 Consistent Resgularized Structured Predictor

As a structured alternative to OCSVM we propose a structured predictor that stems from

the CRiSP framework detailed in Section 2.2. We argue that this method requires signifi-

cantly less samples than OCSVM to be trained. In the CRiSP framework the predictor is

defined as

f̂C R (x) = argmin
y∈Y

n∑
i=1

αi∆(yi , y) (5.5)

whereα(x) = [α1, . . . ,αn]⊤ = (
K +nλIn

)−1Kx , K is the kernel matrix of a fixed kernel k : X×
X →R, with entries {K }i j = k(xi , x j), Kx ∈R is the vector with entries {KX }i = k(x, xi) and

In ∈Rn×n is the identity matrix. Since the output space is a subset of Euclidean space, we

choose the loss to be the squared distance ∆(y1, y2) = ∥y1 − y2∥2, and we account for the

structure of the output domain by using the BFGS method for constrained functions (Byrd

et al., 1995) to minimize Equation (5.5), where the constraints are the ones defined by the

joint limits. This ensures that any resulting f̂C R (x) is within the boundaries of Y for any

x ∈X .

5.1.4 Trajectory reconstruction

In many robotics applications it is necessary to solve the inverse kinematics for a sequence

of points {xt }L
t=1 which describes a trajectory in space. Bócsi et al. (2011) propose to

compute the inverse kinematics of a trajectory one point at a time, using the inferred

f̂ (xt−1) of the previous trajectory point, as the initial value for the minimization problems

5.2 Experimental validation 77

Figure 5.1 A plot showing the sampled workspace as blue markers for positions, black
short line for orientation, and the two trajectories used in the trajectory reconstruction
task. The fixed base of the robot is at (0,0).

of Equation (5.2) and Equation (5.5). This idea hinges on the assumption that close points

in workspace have close solutions in configuration space, thus employing gradient based

techniques to evaluate the estimator will lead to such solution.

5.2 Experimental validation

We assess the performance of the proposed methods on a simulated planar robotic arm

with 3 degrees of freedom. We sample 20000 points uniformly at random in the configura-

tion space Y and generate the corresponding points in the workspace X , we use 14000 of

these points as training set (shown in Figure 5.1), 3000 as validation set and 3000 as test

set. We cross-validate the OCSVM and the CRiSP hyperparameters on the validation set

with grid search. For the OCSVM we choose the kernel

kOC
(
(x1, y1), (x2, y2)

)= e−g∥ψ̄OC (x1,y1)−ψ̄OC (x2,y2)∥2
(5.6)

with ψ̄OC = [
x, cos(x), si n(x), si n(x)cos(x), y, si n(y), cos(y), si n(y)cos(y)

]⊤ and g ∈
R the kernel bandwidth. Here si n(·) and cos(·) are the corresponding element-wise

trigonometric functions. We choose the respresentation ψ̄OC noticing an increase in

78 Inverse Kinematics with Structured Prediction

Table 5.1 Mean Squared Error (MSE) scaled by a factor of 1e2 and Explained Variance (AE)
for test set and trajectory reconstruction.

NN CRiSP OCSVM
Te

st MSE 3.8±6.4 1.6±±±4.4 5.1±39
EV 0.984 0.993 0.846

E
ig

h
t MSE 0.042±0.22 0.018±±±0.017 56±23

EV 0.958 0.998 0.80

C
ir

cl
e MSE 49.35±47.39 0.173±±±0.137 70±29

EV 0.67 0.998 0.60

performance during cross-validation when compared to the one chosen by Bócsi et al.

(2011). For the CRiSP we use the following kernel

kC R
(
x1, x2

)= e−g∥ψ̄C R (x1)−ψ̄C R (x2)∥2
(5.7)

with ψ̄C R (x) = [
x, si n(x), cos(x), si n(x)cos(x), si n(x)2, cos(x)2

]⊤. We train the NN using

Adam optimizer (Kingma and Ba, 2014) and early stopping on the validation set error. The

training tipically converges after 2000 iterations. We test the trained models on two tasks:

error on the test set and trajectory reconstruction.

Test set For each point in the test set we predict the corresponding joints configuration

and compare it with the true value by using mean squared error, we also computed the

explained variance over all the test points. The test set is sampled uniformly at random

from the workspace of the robot.

Trajectory reconstruction We create two trajectories in workspace of 100 points each,

and using the trajectory reconstruction approach by Bócsi et al. (2011) we predict the

corresponding joint configuration f̂ (x) = ŷ . We then use ŷ to compute the actual pose of

the end effector and measure the mean square error with respect to the desired trajectory

point and the explained variance. We generate 2 trajectories, both depicted in Figure 5.1.

The first is an eight-shaped trajectory within the workspace of the robot. The second is a

circle for which we impose an orientation such that the points farthest from the origin are

barely unreachable with such orientation. We do so in order to evaluate the behaviour of

the compared methods in the case of an unreachable pose.

5.2 Experimental validation 79

Table 5.2 Experimental training time on 14000 points for NN, CRiSP and OCSVM over 12
repetitions

Training time in minutes

NN 5′8"±1"
CRiSP 1′50"±1′45"
OCSVM 12′38"±5′43"

(a) NN (b) CRiSP (c) OCSVM

Figure 5.2 Trajectory reconstruction on eight-shaped trajectory. (a) NN. (b) CRiSP. (c)
OCSVM.

5.2.1 Results

Experimental results are reported in Table 5.1. It can be observed that the CRiSP is the

algorithm performing best in every task, followed by the NN which, altough unstructured,

outperforms the OCSVM. This can be observed qualitatively in Figures 5.2a to 5.2c. We

argue that this is due to intrinsic limitations of OCSVM, which was originally developed

for density estimation purposes. In the original work by Bócsi et al. (2011) the OCSVM was

trained with points sampled close to the test trajectory, while we randomly select points

from the whole workspace. Moreover we use a number of training samples less than a

half of the ones used by Bócsi et al. (2011). Looking at Figure 5.3 it is possible to observe

the behaviour of the three algorithms when presented with points that does not belong

to the workspace. The OCSVM shows an erratic trajectory. The NN predictions result

either in accurate predictions or non-valid joint configurations, 29 of the NN predictions

for the circle trajectory resulted in non valid joint configurations that were projected to

configuration space. On the other hand, the CRiSP shows a smoother approximation of

the points that cannot be reached by the robot, with a smaller loss. We also show empirical

training times in Table 5.2, showing how training a CRiSP is significantly faster.

80 Inverse Kinematics with Structured Prediction

(a) NN (b) CRiSP (c) OCSVM

Figure 5.3 Trajectory reconstruction on circumference trajectory. (a) NN. (b) CRiSP. (c)
OCSVM.

Chapter 6

Faster Biological Motion Detection

The task of biological motion detection consists in discriminating whether a movement

observed by a robot is either generated by a human or a non-biological entity such as

a toy, a car, weather conditions, etc. In general, perceiving the world represents a core

skill for autonomous agents that need to interact with the surrounding environment.

While recognizing and localizing objects might be fundamental for a scene understanding

purpose, the agents might be asked to accomplish more complex tasks which might need

a deeper comprehension of the activities around them. Especially, for those agents which

are required to interact with humans in order to help them or use tools (e.g. collaborative

robots in work places or humanoids such as iCub or the R1 robotic platforms (Metta et al.,

2010; Parmiggiani et al., 2017)), the ability to discriminate between movements gener-

ated by a collaborator or another non-biological system in the background, is essential.

Evidences of the fundamental relevance of this skill can be found in human infants and

their development. Specifically, although their sensory-motor capabilities are limited

and typically they still need to learn standard social norms, they are naturally able to

identify other humans in their surroundings. Indeed, they clearly manifest a preference

for biological motion (Simion et al., 2008) and for faces looking directly at them (Farroni

et al., 2002) which facilitate their development.

Moreover, the motivation of this work relies on its practical relevance. Numerous real

world applications would benefit from the integration of a reliable biological motion

detection algorithm since it represents the first module of a more task specific pipeline.

For instance, in a surveillance system, the detection of a biological motion can trigger more

sophisticated person identification algorithms. It is also necessary for underwater robots

that need to track and interact with humans, discarding all the other moving elements of

the surroundings (Sattar and Dudek, 2018). Furthermore, it can be used as initial step for

82 Faster Biological Motion Detection

the cooperation with a human. A collaborative robot, indeed, might be asked to detect a

working human, possibly partially or mostly hidden, among other moving non-biological

systems.

In this work we address the task considering a sequence-to-sequence classification prob-

lem to discriminate biological from non-biological motion in video frames. By forgoing

the binary classification approach originally proposed by Vignolo et al. (2017) we leverage

the structure of the input and output domain and improve the original pipeline in terms of

computational efficiency. We build on the original pipeline that makes use of a temporal

multi-resolution motion feature which automatically copes with different dynamics and

builds on top of low-level features that capture biological motion regularities. The starting

point of the representation is the optical flow, a low-level measurement which simulates

the limited amount of visual information available at birth.

Our contribution is threefold. First, we acquire a novel multi-view dataset representing

indoor biological and non-biological actions, on which we carry out the evaluation of

our method. The samples in the dataset are labeled in such a way that they can be used

also for different tasks with respect to the one described in this document, such as action

recognition, or multi-view motion analysis. Second, we build on the pipeline described

by Vignolo et al. (2017) and introduce a different learning model, a Gated Recurrent Unit

network, to better handle the intrinsic structure of the problem. Finally, we show how this

different model allowed us to improve the performances of the original work.

The chapter is organized as follows: in Section 6.1 we describe the biological motion

detection task, providing details about the two thirds power law. Then, in Section 6.2, 6.3

and 6.4 we illustrate the main contributions of this work, respectively the novel collected

dataset, the proposed pipeline and the results obtained in our empirical evaluation.

6.1 Biological Motion Detection

The task of biological motion detection (BMD) can be described as identifying the source

of movement in a sequence of frames and deciding if the movement is generated by a

biological entity (such as a human) or non-biological entity (such as a machine or a toy).

One of the first approaches proposes to use RGB and infrared information to discriminate

entities based on face information in the thermal spectrum (Correa et al., 2012), however

infrared cameras are expensive and not a standard in most robotics platform as opposed

to simpler RGB-depth cameras (Koppula et al., 2013; Sung et al., 2012). Indeed, because

BMD is typically a task supporting more complex behaviours (Bisio et al., 2014; Mutlu et al.,

6.1 Biological Motion Detection 83

Figure 6.1 Sample frames drawn from the proposed dataset: (a) a folding action, from a
lateral point of view, (b) a packing action, from a frontal point of view, and (c) a Toy Train
sequence, from a frontal point of view.

2012; Sciutti et al., 2012), hardware constraints become even more important. Vignolo

et al. (2017) introduced a method to detect biological movement by using only RGB frames,

however this method introduces a latency of 30 frames in the processing pipeline and

uses a kernel-based classifier. Because kernel classifiers use the training set to compute

a classifying function, the memory and computation efficiency get worse as the dataset

size increases. With this work we propose an improvement on this approach that has

fixed memory and computation cost while also reducing the 30 frames delay to a 5 frames

delay. In the following we recall the mathematical model for characterizing biological

movements introduced by Noceti et al. (2015), as it is the basis for the biological motion

detection application discussed in this chapter.

6.1.1 Characterization of biological movement

Various works have shown that humans can easily recognize and predict movements that

follow human-based kinematics (Gavazzi et al., 2013; Pozzo et al., 2006; Viviani et al., 1997).

While these motions are often the result of complex dynamics and subtle visual cues, hu-

mans can easily detect and interpret them based solely on a limited number of landmarks

on the moving entity (Blakemore and Decety, 2001). This suggests that there are simple

ways of characterizing biologically generated motions. For this purpose Noceti et al. (2015)

introduced a set of time-varying descriptors of human movements, based on the two-

84 Faster Biological Motion Detection

thirds power law (Lacquaniti et al., 1983). These descriptors are velocity (Equation (6.1)),

acceleration (Equation (6.2)), curvature (Equation (6.3)) and radius of curvature (Equa-

tion (6.4)):

Vt = [ut , vt ,∆t] ∈R3 (6.1)

∥Ct∥ = ∥Vt∥× At

∥Vt∥3
(6.2)

At = [ut −ut−1, vt − vt−1,0] ∈R3 (6.3)

∥Rt∥ = 1

∥Ct∥
(6.4)

where (ut , vt) is the vector representing the instantaneous velocity along vertical and

horizontal axis, t is the time index and ∆t is the sampling interval (for video-based appli-

cations the sampling interval corresponds to the frames-per-second of the camera). By

processing subsequent frames it is possible to compute these descriptors locally for each

pixel and obtain information on movements happening in various regions of the scene,

our goal is to use this information to determine the nature of the movement.

6.2 Dataset

In order to evaluate the quality of the proposed approach we acquired a dataset of human-

generated and object-generated movements from a robot point of view. While in our

work the primary task is biological motion detection, the dataset structure allows for more

general applications such as action recognition or person classification.

The BMD Dataset is a set of videos recorded from a Intel® RealSense™ D435 RGB camera,

mounted on the R1 robot (Parmiggiani et al., 2017), each video lasts approximately 20

seconds and comprises of a single biological or non-biological motion or a mix of both

types. All videos are acquired at 15 frames per second with 640× 480 resolution and

encoded using H.264 codec. Figure 6.1 shows some sample frames from three sequences

drawn from our dataset.

6.2 Dataset 85

Figure 6.2 Sample frames from test set videos: (a) Rolling action partially occluded by a
box, (b) Toy-Train with tracks partially covered by a toy top, (c) new subject performing
the Packing action, not present in the training set.

6.2.1 Training set

Biological motions Biological motion videos are grouped based on the type of action,

the subject performing the action and the point of view of the robot with respect to the

subject. Each action-subject-view configuration is recorded 2 times. In the dataset there

are a total of 6 actions: Drawing on a piece of paper, Folding some cloths, Mixing liquids

in a bucket, Transporting a small object on a table, Pointing at different locations in space,

Rolling a bottle full of water (which emulates the dynamics of rolling cooking dough).

Each action is performed repeatedly until roughly 20 seconds are recorded. Each action is

performed by 3 subjects, one per video, from 2 points of view. The primary view has the

robot standing in front of the subject, the secondary view is taken from roughly 45◦ from

the front of the robot. In total there are 72 biological motion videos in the training dataset.

Non-biological motions Non-biological videos are grouped based on the object gener-

ating the motion and the point of view of the robot. Each movement-view configuration is

recorded 4 times. The non-biological motions are 7: a Balloon moved by an electric fan, a

display playing a video of Clouds moving, a cylinder presenting a Random Pattern rotating,

a cylinder showing a Regular Pattern rotating, a Toy Top rotating, a Toy-Train running

on elliptic tracks and a Empty scene with no movement. We record 4 views for each

object: primary close, primary farther, secondary close and secondary farther. Primary

and secondary refer to the robot standing respectively in front and 45 degrees from the

86 Faster Biological Motion Detection

front with respect to the motion, while close and farther correspond to a distance of 1

meter and 2 meters from the object moving. In total there are 112 non-biological motion

videos in the training dataset.

Mixed videos Because in this chapter we propose an approach based on sequence clas-

sification, we also gather videos where the source of the motion changes from biological to

non-biological or vice-versa. Since transitions can lead to noisy visual effects we want to

test the capability of our approach to deal with these events. We mix two of the previously

described movements in a single video, each video starts with a non-biological motion,

then a human subject enters the scene stopping the non-biological source of movement

and starts performing one of the aforementioned actions. We also record the inverse: a

subject performing an action, followed by a non-biological movement, without any other

source of movement. The biological/non-biological pairs of motions are Mixing/Toy-Train,

Moving/Toy-Train, Pointing/Random Pattern and their inverses. Each video lasts 20 sec-

onds and is taken from one of two possible point of view 3 times. This repeated for each

subject for a total of 108 videos.

6.2.2 Test set

In a similar spirit to training set, we acquire a test set and use it to evaluate the quality

of our approach in different conditions. For biological motions we record a new subject

performing the same actions present in the training set plus 2 novel actions: Waving and

Packing items in a bag. All videos are recorded from two point of views as in the training

set. Then we record videos of one of the subjects present in the training set, performing a

subset of the original actions while the view is partially occluded. The action are: Folding,

Moving an object, Pointing, Rolling. We also record 2 views of the new actions (Waving

and Packing) performed by one of the subject already present in the training set. For

non-biological motion we acquire the video of an Electric Fan rotating and a Toy-Train

running on tracks with part of the path hidden from the camera. Both actions are recorded

with and without a human present in the video. Example frames from the videos are

shown in Figure 6.2.

6.3 Accelerated pipeline 87

...
GRU
KER

NEL

(a) (b) (c) (d) (e)

Figure 6.3 A general overview of the pipeline of our method: (a) given an input sequence,
(b-c) we estimate the optical flow by means of PWC-Net (Sun et al., 2018), (d) we compute
a set of biological motion descriptors which we finally feed to (e) the chosen learning
algorithm.

6.3 Accelerated pipeline

Figure 6.3 gives an overview of the pipeline of our method. Given a sequence of images,

of length t , our system produces a binary answer associated with the biological motion

classification problem. First, for every frame in the input video, we extract the visual

features corresponding to the motion taking place in the scene, as described in Vignolo

et al. Vignolo et al. (2017), by means of the chosen optical flow extraction algorithm. We

then carry out temporal smoothing on the resulting features to stabilize their behavior

over time. Finally, the smoothed features are fed to a classification model, which we have

previously trained on the dataset described in Section II.

6.3.1 Visual Features Extraction

In order to characterize mathematically the movement taking place in a video we compute

the optical flow of its stream of frames, as done by Vignolo et al. (2017). More precisely,

given a pair of images I0 and I1, an optical flow estimation algorithm produces a 2D vector

field (u, v) : I →R2 such that, for every pixel p ∈ I0, (u(p), v(p)) represents its instantaneous

velocity (i.e. the estimated translation it underwent between frame I0 and frame I1). This

quantity is the basic building block for the descriptors introduced in Section 6.1, allowing

us to compute velocity, acceleration, curvature and radius of curvature for the whole

image.

Our optical flow estimation method of choice is PWC-Net, a deep convolutional architec-

ture introduced by Sun et al. (2018). Our selection has been driven both by computational

requirements (we aim at real-time performance) and by the accuracy in the estimation

process, since a more precise estimate leads to better movement descriptors.

88 Faster Biological Motion Detection

Because optical flow algorithms are prone to generating noisy outputs even over pixels

with no actual movement, we suppress the magnitude of velocity whenever this is under

some fixed small threshold. We group the remaining points in connected components, of

which we only consider the biggest one, that we denote with R. Empirically we notice that

this choices allows us to correctly select the source of the movement, independently of its

nature. This procedure leads to a vectorial representation of an image that has non-fixed

size, depending on the amount of pixels moving between each frame. To overcome this

problem we average the norm of the four descriptors across the grouped pixels obtaining

a 4-dimensional representation xt ∈R4 for each frame:

V̂t = 1

N

∑
p∈R

∥∥Vt (p)
∥∥ , Ât = 1

N

∑
p∈R

∥∥At (p)
∥∥ ,

Ĉt = 1

N

∑
p∈R

∥∥Ct (p)
∥∥ , R̂t = 1

N

∑
p∈R

∥∥Rt (p)
∥∥

xt =
[
V̂t , Ât ,Ĉt , R̂t ,

]
(6.5)

where N is the number of points belonging to R. The sequence of vectors {xt }T
t=1 encap-

sulates the information describing the behaviour of the main moving entity in the video.

However, even after averaging across R, the resulting representation is characterized by

very high frequency changes over time, which affected negatively the results achievable

within our pipeline. To obtain a more stable signal, in the spirit of Vignolo et al. (2017), we

compute the moving average over the past 5 frames: x̂5
t = 1

5

∑t
i=t−4 xi . To allow for online

robotics applications we consider only past frames. This step effectively introduces a 5

frame delay, as opposed to the 30 frames delay introduced by the longer filters in Vignolo

et al. (2017). By concatenating xt and x̂5
t we obtain a 8-dimensional representation of

each frame.

6.3.2 Sequence classification for biological motion detection

Given a set of vectorial features as described in Section 6.3.1 it is possible to classify each

frame as containing either a biological or non-biological movement. Given the generality

of the representation it is possible to apply a variety of algorithms to perform this task. We

consider two approaches. The first is the one proposed in the original work by Vignolo et al.

(2017), it tackles the task as a frame-by-frame binary classification using a kernel-based

classifier. The second casts the problem as a sequence-to-sequence classification task

6.3 Accelerated pipeline 89

and employs a neural network model based on Gated Recurrent Units (GRU). We chose a

GRU-based approach to leverage the natural structure of video frames: it is a parametric

model that can exploit the inter-sample dependencies in sequence-structured data.

Kernel binary classification When considering the problem of biological motion detec-

tion as a frame-by-frame classification problem, the training set is the set couples of all the

vectors defined in Equation (6.5) and their corresponding label, i.e. {xi , yi }n
i=1 with n the

total number of frames in the dataset. Here the main task consists in learning a function

fk : R→ {−1,1} that is applied independently to each vector of a test sequence {xt }T
t=1 to

predict whether the corresponding frames contain biological (+1) or non-biological (−1)

movement. For kernel-based models, it is possible to learn such functions by means of

a closed form formula introduced in Section 1.6.4. For the reader convenience we recall

briefly the form of a kernel based classifier and the learning formula:

fk (x) = sg n
(n∑

i=1
k(x, xi)wi

)
(6.6)

where sg n : R→ {0,1} is the sign function, k : X ×X →R is a positive definite function and

w ∈Rn is the set of weights that can be learnt from the data by solving

w = (K +λnIn)−1Ŷ (6.7)

with K ∈ Rn×n the kernel matrix, In ∈ Rn×n the identity matrix and Ŷ = [y1, . . . , yn] the

vector containing all the labels. We make a remark, because Equation (6.6) is a non-

parametric model, its size (the size of the vector w) and the cost for its evaluation grow as

the cardinality of the dataset increases, specifically they both scale with O(n).

Gated Recurrent Unit Networks for Sequence Classification When recasting the prob-

lem as a sequence-to-sequence classification task the training set is the set sequences{(
{st }P

t=1

)
i ,

(
{yt }P

t=1

)
i

}N

i=1
with N the total number of videos in the training set. A natural

family of models to consider are recurrent neural networks, which we introduced in Sec-

tion 2.3.2, specifically we consider Gated Recurrent Unit networks. These networks are

based on a variant of RNN introduced in Chapter 2. We recall that recurrent models can

be easily used to infer only one element at a a time with little computational cost. This

allows for real-time applications where not all the elements of a sequence are at hand

from the start, such as the task of biological motion detection.

90 Faster Biological Motion Detection

Specifically for each element st ∈ Rd in a sequence, the GRU computes the following

functions:

rt =σ(Wr st +Ur mt−1) (6.8)

zt =σ(Wz st +Uzmt−1) (6.9)

mt = (1− zt)⊙mt−1 + zt ⊙ tanh(Wm st +Um(rt ⊙mt−1)) (6.10)

with Wr ,Ur ,Wz ,Uz ,Wm ,Um ∈Rd×d , σ : Rd →Rd the element-wise sigmoid function and

where ⊙ is the Hadamard product. The matrices Wr ,Ur ,Wz ,Uz ,Wm ,Um are learnt by

means of gradient descent. For the sake of conciseness, we refer the interested reader to

the works of Hochreiter and Schmidhuber (1997) and Chung et al. (2014) for additional

details about this kind of networks. In our application we use a model composed of 5 Gated

Recurrent Units sequentially stacked, each with hidden dimension d = 32. The features

computed by the stacked GRUs are then fed to a linear layer followed by a hyperbolic

tangent, mapping each element of the original sequence in the interval [−1,1]. Values

above 0 are classified as biological motions while values below are classified as non-

biological. We choose this architecture because during our experiments we don’t notice

significant improvements with deeper or wider architectures and we observe a drop in

test accuracy by using more shallow models.

6.3.3 Robotic implementation

As a byproduct of the experiment design process, we obtain an online application which

we deploy on the R1 robot. Our robotics pipeline has the following structure:

1. we first extract the optical flow in the scene, by means of one of two different dense

estimation methods, the classical algorithm introduced by Farnebäck (2003) or a

state of art, deep learning-based approach (Sun et al., 2018)

2. using a simple tracking heuristic, tailored for this application, the robot understands

when different entities are moving in the scene at the same time, so to compute

their corresponding biological motion descriptions and to understand the evolution

of their behavior over time

3. the trained model predicts the binary answer for the biological motion classification

problem, separately for each entity which is moving

6.4 Experiments 91

4. when there has been a biological entity moving in the scene for a while (we can

specify this interval in seconds, for this step), the R1 robot is asked to fixate it, so to

"focus its interest" on the corresponding part of the environment

As a sample use case of this application, we design a simple human-robot interaction

scenario. The R1 robot is placed in front of a scene, facing a human subject and a non-

biological actor. Within this scenario, the robot is asked to track the biological motions

while ignoring non-biological sources of non-biological movement keeps moving, even in

the case where both sources of movement are present in the scene. An example of this

scenario of application can be found online1. The whole use case has been implemented

by means of the YARP (Fitzpatrick et al., 2008) robotics framework.

6.4 Experiments

In this section we introduce the experimental results on our method compared to the

baseline kernel classifier. To assess the quality of the GRU-based architecture we compare

it with the kernel-based classifier. We train the kernel approach using both the features

averaged over the last 5 frames and the features averaged with multiple filters up to a

length of 30 frames as described in Vignolo et al. (2017). We choose a kernel classifier

with Gaussian kernel k(x, x ′) = exp
(
− ∥x−x ′∥2

2σ2

)
and select the best hyperparameters λ

and σ using holdout cross-validation with a 50% random split average over 5 tries for

each hyperparameter combination. We train our GRU-based architecture using Adam

optimizer (Kingma and Ba, 2014) and select the best model using early stopping (Prechelt,

1998). We split the training set into a smaller training set and a validation set, we select the

model achieving the best accuracy on the validation set. The validation set is comprised

of one repetition of each combination action-subject-view for biological videos and object-

view for non-biological videos. We then assess the prediction accuracy on the videos of

the test set introduced in Section 6.2 and on a subset of videos previously removed from

the training set: a recording for each base non-biological motion and a recording for each

mixed video. It can be observed in Table 6.1 that the classifier using GRU outperforms the

kernel counterpart on all tasks except for the old subject performing new actions, however

in this case the performance is only slightly lower. For completeness we also show the

performance of the original approach using a full 30 frameinterval of pre-processing.

1https://youtu.be/yLGnk5QXQBY

https://youtu.be/yLGnk5QXQBY

92 Faster Biological Motion Detection

Table 6.1 Experimental results in terms of accuracy of the GRU-based approach and the
kernel-based approach

GRU (5) Kernel(5) Kernel (30)

Non-Bio Base Motions 98.10 86.68 95.37
Toy Train - Occluded 98.80 92.50 100.0
Fan rotating 98.97 98.12 99.80
Old Subject - New Actions 83.70 84.47 84.38
Old Subject - Occluded Base 98.12 87.28 97.69
New Subject - Base 91.38 83.27 94.23
New Subject - New 99.23 95.98 99.20
Mixed Videos 98.40 93.11 97.04

Total Average 95.83 90.17 95.96

Table 6.2 Experimental timing in milliseconds for inference of a single frame with kernel
and GRU-based approach

Per-frame time
Kernel model 7.99±1.94
GRU model 0.79±0.45

In Table 6.1 we show the average inference time per frame on a i7-8750H laptop CPU. Given

the size of the dataset, the kernel-based classifier requires an amount of time one order

of magnitude bigger than the GRU-based classifier, which has constant computational

complexity for a fixed architecture.

Finally we investigate the quality of our approach and the kernel-based method by omit-

ting completely the averaging step, i.e. using only the sequence of feature defined in

Equation (6.5). In Table 6.3 both methods show, in general, accuracy values lower than

Table 6.3 Accuracy using the unfiltered features

GRU Kernel
Non-Bio Base Motions 89.95 78.80
Toy Train - Occluded 84.85 97.33
Fan rotating 100.0 96.58
Old Subject - New Actions 93.51 76.02
Old Subject - Occluded Base 97.61 77.98
New Subject - Base 95.22 70.39
New Subject - New 99.45 89.24
Mixed Videos 88.11 89.30

Total Average 93.58 84.45

6.4 Experiments 93

those previously shown. And while the GRU model performs better than the kernel coun-

terpart its results show more variance with respect to the same model trained using the

averaged features.

Conclusions

We conclude this work summarizing the major contributions presented throughout the

chapters and discussing future research direction. In this work we addressed the problem

of structured prediction in machine learning, which consists in computing mappings from

some input space to structured output domains such as differentiable manifolds, graphs,

or sequences. After reviewing some of the main algorithms for structured prediction, we

divide our efforts in two sections. In Part II we first establish a theoretical foundation for

structured prediction on differentiable manifolds, and leverage it to develop a novel type of

data representation. In Part III we proceed to specialize some of the structured algorithms

for robotic oriented application, showing the improvements that can be obtained by

accounting for the structure of the data.

More in detail, in Chapter 3 we study a structured prediction approach for manifold val-

ued learning problems. This expands on the classical structured prediction algorithms

that focus on finite size output domains. We characterize a wide class of loss functions

(including the geodesic distance) for which we prove the considered algorithm to be

statistically consistent, additionally providing finite sample bounds under standard regu-

larity assumptions. Our experiments show promising results on synthetic and real data

using two common manifolds: the positive definite matrices cone and the sphere. With

the latter we considered applications on fingerprint reconstruction and multi-labeling.

The proposed method leads to some open questions. From a statistical point of view it

is of interest how invariants of the manifold explicitly affect the learning rates. From a

more computational perspective, even if experimentally our algorithm achieves good

results we did not investigate convergence guarantees in terms of optimization. Further

developements would be directed at non-convex functional minimization on manifolds.

In Chapter 4 we show how to recast supervised problems with hierarchical structure as

manifold-valued regressions in the hyperbolic manifold. We then propose two procedures

for learning manifold-valued functions mapping from Euclidean to hyperbolic space: an

extension of the algorithm proposed in Chapter 1, for which we also specialize general-

96 Faster Biological Motion Detection

ization bounds, and a parametric deep-learning model that is informed by the geodesics

of the output space. We evaluate both methods empirically on the task of hierarchical

classification. Experiments show that hyperbolic structured prediction shows strong gen-

eralization performance. We also show that hyperbolic manifold regression enables new

applications in supervised learning: by exploiting the continuous representation of hier-

archies in hyperbolic space we were able to place unknown concepts in the embedding

of a taxonomy using manifold regression. Moreover, by comparing to hyperbolic neural

networks we showed that for this application, the key step is leveraging the geodesic of

the manifold. In future work, we plan to expand this framework for more manifold-based

data representations such as the sphere or product spaces. Furthermore we think that

0-shot learning applications could leverage this approach for hierarchical datasets.

In Chapter 5 we shift to a more applied problem for robotics. We consider the problem of

learning the inverse kinematics with respect to both position and orientation for the robot

end effector. We propose a consistent regularized structured predictor and validate this

approach whitin the task of trajectory reconstruction. We compare it with an unstructured

neural network as a baseline and with one class SVM, a method previously tested on this

task. Our experiments show how consistent regularized structured predictors need less

training points and smaller training time with respect to one class SVM. Moreover we show

that for trajectories slightly outside of the robot workspace, the consistent regularized

structured predictor manages to find an acceptable solution. This is in contrast to the un-

structured neural network which shows a less precise behaviour. Possible developements

include implementing our algorithms as a real-time application on a real mechanical

arm or exploring possible path planning algorithms within the boundaries of the robot

workspace.

In Chapter 6 we take a structured, deep learning based approach to the task of biological

motion detection. This task consists in determining wether the movement present in a

video stream is originated by a human or a non-biological entity. We use gated recurrent

units networks, a type of structured neural networks, to recast a problem traditionally

approached as a frame-by-frame classification task. By leveraging the sequence-like

structure of data, we effectively remove 25 frames of latency introduced by the previous

pipeline while still attaining almost state-of-the art accuracy. We also collect and distribute

a dataset that can be used for other tasks of action recognition. Indeed, by leveraging more

complex architectures or by using visual features computed by other deep models assigned

to other task, it could be possible to refine the sequence classifier to accommodate for

more complex task such as action classification or subject tracking. On the other hand,

6.4 Experiments 97

possible developments would study alternative end-to-end architectures taking as input

directly the video stream, in order to remove completely the intermediate step of optical

flow extraction and temporal averaging.

This works shows new and promising ways of exploiting the structure in the output data

for machine learning algorithms, and how this framework leads to many advantages.

Ranging from a more principled approach in term of theory to higher performance in

terms of computational complexity and accuracy.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning.
In 12th Symposium on Operating Systems Design and Implementation, pages 265–283.

Absil, P.-A., Mahony, R., and Sepulchre, R. (2009). Optimization algorithms on matrix
manifolds. Princeton University Press.

Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued
functions: A review. Foundations and Trends® in Machine Learning, 4(3):195–266.

Amari, S.-i. and Nagaoka, H. (2007). Methods of information geometry, volume 191. Ameri-
can Mathematical Soc.

Andersen, M., Dahl, J., and Vandenberghe, L. (2013). Cvxopt: A python package for convex
optimization. abel. ee. ucla. edu/cvxopt.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American mathe-
matical society, 68(3):337–404.

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., and Vishwanathan, S. (2007).
Predicting structured data. neural information processing.

Bauer, F., Pereverzev, S., and Rosasco, L. (2007). On regularization algorithms in learning
theory. Journal of complexity, 23(1):52–72.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828.

Bhatia, R. (2009). Positive definite matrices. Princeton university press.

Bicer, V., Tran, T., and Gossen, A. (2011). Relational kernel machines for learning from
graph-structured rdf data. In Extended Semantic Web Conference, pages 47–62. Springer.

Bisio, A., Sciutti, A., Nori, F., Metta, G., Fadiga, L., Sandini, G., and Pozzo, T. (2014). Motor
contagion during human-human and human-robot interaction. PloS one, 9(8):e106172.

Blakemore, S.-J. and Decety, J. (2001). From the perception of action to the understanding
of intention. Nature reviews neuroscience, 2(8):561.

100 References

Bócsi, B., Nguyen-Tuong, D., Csató, L., Schoelkopf, B., and Peters, J. (2011). Learning in-
verse kinematics with structured prediction. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 698–703. IEEE.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Advances in
neural information processing systems, pages 161–168.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.

Cai, L. and Hofmann, T. (2004). Hierarchical document categorization with support vector
machines. In Proceedings of the thirteenth ACM international conference on Information
and knowledge management, pages 78–87. ACM.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M., and Rosasco, L. (2019). Gaussian
process optimization with adaptive sketching: Scalable and no regret. arXiv preprint
arXiv:1903.05594.

Calinon, S. (2018). Robot learning with task-parameterized generative models. In Robotics
Research, pages 111–126. Springer.

Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations simul-
tanées. Comp. Rend. Sci. Paris, 25(1847):536–538.

Chamberlain, B. P., Hardwick, S. R., Wardrope, D. R., Dzogang, F., Daolio, F., and Vargas, S.
(2019). Scalable hyperbolic recommender systems. arXiv preprint arXiv:1902.08648.

Chen, C. and Jackson, D. (2011). Parameterization and evaluation of robotic orientation
workspace: A geometric treatment. IEEE Transactions on Robotics, 27(4):656–663.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-decoder
with atrous separable convolution for semantic image segmentation. In Proceedings of
the European conference on computer vision (ECCV), pages 801–818.

Chollet, F. (2016). Information-theoretical label embeddings for large-scale image classifi-
cation. arXiv preprint arXiv:1607.05691.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learning
in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, pages 4754–4765.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Ciliberto, C., Rosasco, L., and Rudi, A. (2016). A consistent regularization approach for
structured prediction. Advances in Neural Information Processing Systems 29 (NIPS),
pages 4412–4420.

References 101

Ciliberto, C., Rudi, A., Rosasco, L., and Pontil, M. (2017). Consistent multitask learning
with nonlinear output relations. In Advances in Neural Information Processing Systems,
pages 1986–1996.

Colledanchise, M. and Ögren, P. (2018). Behavior Trees in Robotics and AI: An Introduction.
CRC Press.

Correa, M., Hermosilla, G., Verschae, R., and Ruiz-del Solar, J. (2012). Human detection and
identification by robots using thermal and visual information in domestic environments.
Journal of Intelligent & Robotic Systems, 66(1-2):223–243.

Daume, H. C. and Marcu, D. (2006). Practical structured learning techniques for natural
language processing. Citeseer.

Daumé III, H. (2004). From zero to reproducing kernel hilbert spaces in twelve pages or
less. University of Maryland.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak, J. M. (2018). Hyperspherical
variational auto-encoders. arXiv preprint arXiv:1804.00891.

De Angulo, V. R. and Torras, C. (2008). Learning inverse kinematics: Reduced sampling
through decomposition into virtual robots. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 38(6):1571–1577.

De Sa, C., Gu, A., Ré, C., and Sala, F. (2018). Representation Tradeoffs for Hyperbolic
Embeddings. In International Conference on Machine Learning, pages 4460–4469.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee.

Diestel, J. and Spalsbury, A. (2014). The joys of Haar measure. American Mathematical Soc.

D’Souza, A., Vijayakumar, S., and Schaal, S. (2001). Learning inverse kinematics. In
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),
volume 1, pages 298–303. IEEE.

Duchi, J. C., Mackey, L. W., and Jordan, M. I. (2010). On the consistency of ranking
algorithms. In ICML, pages 327–334.

Edunov, S., Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2017). Classical structured
prediction losses for sequence to sequence learning. arXiv preprint arXiv:1711.04956.

Falorsi, L., de Haan, P., Davidson, T. R., De Cao, N., Weiler, M., Forré, P., and Cohen,
T. S. (2018). Explorations in homeomorphic variational auto-encoding. arXiv preprint
arXiv:1807.04689.

Farasat, A., Nikolaev, A., Srihari, S. N., and Blair, R. H. (2015). Probabilistic graphical
models in modern social network analysis. Social Network Analysis and Mining, 5(1):62.

Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In
Scandinavian conference on Image analysis, pages 363–370. Springer.

102 References

Farroni, T., Csibra, G., Simion, F., and Johnson, M. H. (2002). Eye contact detection in
humans from birth. Proceedings of the National Academy of Sciences, 99(14):9602–9605.

Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived robot genes. Robotics
and Autonomous systems, 56(1):29–45.

Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on riemannian
manifolds. International journal of computer vision, 105(2):171–185.

Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition
unaffected by shift in position-neocognitron. IEICE Technical Report, A, 62(10):658–665.

Gallot, S., Hulin, D., and Lafontaine, J. (1990). Riemannian geometry, volume 3. Springer.

Ganea, O.-E., Bécigneul, G., and Hofmann, T. (2018). Hyperbolic Neural Networks. In
Advances in neural information processing systems, pages 5345–5355.

Gavazzi, G., Bisio, A., and Pozzo, T. (2013). Time perception of visual motion is tuned by
the motor representation of human actions. Scientific reports, 3:1168.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gower, J. C., Dijksterhuis, G. B., et al. (2004). Procrustes problems, volume 30. Oxford
University Press on Demand.

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S. (2000).
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature, 405(6789):947.

Hamann, M. (2018). On the tree-likeness of hyperbolic spaces. Mathematical Proceedings
of the Cambridge Philosophical Society, 164(2):345–361.

Härdle, W. and Simar, L. (2007). Applied multivariate statistical analysis, volume 22007.
Springer.

Hauberg, S., Freifeld, O., and Black, M. J. (2012). A geometric take on metric learning. In
Advances in Neural Information Processing Systems, pages 2024–2032.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778.

Hebey, E. (2000). Nonlinear analysis on manifolds: Sobolev spaces and inequalities, vol-
ume 5. American Mathematical Soc.

Hinkle, J., Muralidharan, P., Fletcher, P. T., and Joshi, S. (2012). Polynomial regression
on riemannian manifolds. In European Conference on Computer Vision, pages 1–14.
Springer.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

References 103

Jae Hwang, S., Collins, M. D., Ravi, S. N., Ithapu, V. K., Adluru, N., Johnson, S. C., and Singh,
V. (2015). A projection free method for generalized eigenvalue problem with a nons-
mooth regularizer. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1841–1849.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). On using very large target vocabulary
for neural machine translation. arXiv preprint arXiv:1412.2007.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142. ACM.

Joachims, T., Finley, T., and Yu, C.-N. J. (2009). Cutting-plane training of structural svms.
Machine Learning, 77(1):27–59.

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning with a
distal teacher. Cognitive science, 16(3):307–354.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Kadous, M. W. and Sammut, C. (2005). Classification of multivariate time series and
structured data using constructive induction. Machine learning, 58(2):179–216.

Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., and Lempitsky, V. (2019). Hyper-
bolic image embeddings. arXiv preprint arXiv:1904.02239.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Koppula, H. S., Gupta, R., and Saxena, A. (2013). Learning human activities and object
affordances from rgb-d videos. The International Journal of Robotics Research, 32(8):951–
970.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

Lacquaniti, F., Terzuolo, C., and Viviani, P. (1983). The law relating the kinematic and
figural aspects of drawing movements. Acta psychologica, 54(1-3):115–130.

Lathuilière, S., Mesejo, P., Alameda-Pineda, X., and Horaud, R. (2019). A comprehen-
sive analysis of deep regression. IEEE transactions on pattern analysis and machine
intelligence.

Le, M., Roller, S., Papaxanthos, L., Kiela, D., and Nickel, M. (2019). Inferring concept hier-
archies from text corpora via hyperbolic embeddings. arXiv preprint arXiv:1902.00913.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

104 References

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop. In Neural
networks: Tricks of the trade, pages 9–48. Springer.

Lee, J. M. (2003). Smooth manifolds. In Introduction to Smooth Manifolds, pages 1–29.
Springer.

Loper, E. and Bird, S. (2002). NLTK. In Proceedings of the ACL-02 Workshop on Effective tools
and methodologies for teaching natural language processing and computational lin-
guistics -, volume 1, pages 63–70, Morristown, NJ, USA. Association for Computational
Linguistics.

Lucchi, A., Li, Y., Smith, K., and Fua, P. (2012). Structured image segmentation using ker-
nelized features. In European Conference on Computer Vision, pages 400–413. Springer.

Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2018). Speeding-up object detection
training for robotics with falkon. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5770–5776. IEEE.

Marconi, G. M., Ciliberto, C., and Rosasco, L. (2020). Hyperbolic manifold regression. In
Proceedings of the 23th International Conference on Artificial Intelligence and Statistics.

Martin, G. J. (1989). Balls in hyperbolic manifolds. Journal of the London mathematical
society, 2(2):257–264.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133.

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten, C., Rosander,
K., Lopes, M., Santos-Victor, J., Bernardino, A., and Montesano, L. (2010). The icub
humanoid robot: an open-systems platform for research in cognitive development.
Neural networks : the official journal of the International Neural Network Society, 23(8-
9):1125–34.

Micchelli, C. A. and Pontil, M. (2005). On learning vector-valued functions. Neural
computation, 17(1):177–204.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed represen-
tations of words and phrases and their compositionality. CoRR, abs/1310.4546.

Minh, H. Q. and Murino, V. (2017). Covariances in computer vision and machine learning.
Synthesis Lectures on Computer Vision, 7(4):1–170.

Moakher, M. and Batchelor, P. G. (2006). Symmetric positive-definite matrices: From
geometry to applications and visualization. In Visualization and Processing of Tensor
Fields, pages 285–298. Springer.

Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application,
2:321–359.

Mrčun, J. (2005). On isomorphisms of algebras of smooth functions. Proceedings of the
American Mathematical Society, 133(10):3109–3113.

References 105

Mutlu, B., Kanda, T., Forlizzi, J., Hodgins, J., and Ishiguro, H. (2012). Conversational gaze
mechanisms for humanlike robots. ACM Transactions on Interactive Intelligent Systems
(TiiS), 1(2):12.

Nestruev, J. (2006). Smooth manifolds and observables, volume 220. Springer Science &
Business Media.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal deep
learning. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 689–696.

Nickel, M. and Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Represen-
tations. In Neural Information Processing Systems Proceedings, pages 6338–6347.

Nickel, M. and Kiela, D. (2018). Learning Continuous Hierarchies in the Lorentz Model of
Hyperbolic Geometry. In International Conference on Machine Learning.

Nickel, M., Tresp, V., and Kriegel, H. (2011). A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th International Conference on Machine
Learning, pages 809–816.

Nielsen, F. and Sun, K. (2017). Clustering in hilbert simplex geometry. arXiv preprint
arXiv:1704.00454.

Nocedal, J. and Wright, S. (2006). Numerical optimization: Springer science & business
media. New York.

Noceti, N., Sciutti, A., and Sandini, G. (2015). Cognition helps vision: Recognizing biologi-
cal motion using invariant dynamic cues. In International Conference on Image Analysis
and Processing, pages 676–686. Springer.

Nowozin, S., Lampert, C. H., et al. (2011). Structured learning and prediction in computer
vision. Foundations and Trends® in Computer Graphics and Vision, 6(3–4):185–365.

Okuno, A., Kim, G., and Shimodaira, H. (2018). Graph embedding with shifted in-
ner product similarity and its improved approximation capability. arXiv preprint
arXiv:1810.03463.

Oyama, E., Chong, N. Y., Agah, A., and Maeda, T. (2001). Inverse kinematics learning
by modular architecture neural networks with performance prediction networks. In
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.
No. 01CH37164), volume 1, pages 1006–1012. IEEE.

Oyama, E., Maeda, T., Gan, J. Q., Rosales, E. M., MacDorman, K. F., Tachi, S., and Agah,
A. (2005). Inverse kinematics learning for robotic arms with fewer degrees of freedom
by modular neural network systems. In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1791–1798. IEEE.

Paaßen, B., Göpfert, C., and Hammer, B. (2017). Time series prediction for graphs in kernel
and dissimilarity spaces. Neural Processing Letters, pages 1–21.

106 References

Park, F. C. and Kim, J. W. (1998). Manipulability and singularity analysis of multiple robot
systems: A geometric approach. In Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No. 98CH36146), volume 2, pages 1032–1037. IEEE.

Parmiggiani, A., Fiorio, L., Scalzo, A., Sureshbabu, A. V., Randazzo, M., Maggiali, M.,
Pattacini, U., Lehmann, H., Tikhanoff, V., Domenichelli, D., Cardellino, A., Congiu, P.,
Pagnin, A., Cingolani, R., Natale, L., and Metta, G. (2017). The design and validation
of the r1 personal humanoid. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 674–680.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(Oct):2825–2830.

Pelossof, R., Miller, A., Allen, P., and Jebara, T. (2004). An svm learning approach to
robotic grasping. In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, volume 4, pages 3512–3518. IEEE.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social represen-
tations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM.

Peypouquet, J. (2015). Convex optimization in normed spaces: theory, methods and
examples. Springer.

Peyré, G., Cuturi, M., et al. (2019). Computational optimal transport. Foundations and
Trends® in Machine Learning, 11(5-6):355–607.

Pozzo, T., Papaxanthis, C., Petit, J. L., Schweighofer, N., and Stucchi, N. (2006). Kinematic
features of movement tunes perception and action coupling. Behavioural brain research,
169(1):75–82.

Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade,
pages 55–69. Springer.

Pucci, D., Nava, G., and Nori, F. (2016). Automatic gain tuning of a momentum based bal-
ancing controller for humanoid robots. In 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids), pages 158–164. IEEE.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Robbin, J. W. and Salamon, D. A. (2011). Introduction to differential geometry. ETH,
Lecture Notes, preliminary version, January.

Rudi, A., Ciliberto, C., Marconi, G. M., and Rosasco, L. (2018). Manifold structured predic-
tion. In Advances in Neural Information Processing Systems, pages 5610–5621.

References 107

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1.

Sakai, T. (1996). Riemannian geometry, volume 149. American Mathematical Soc.

Sattar, J. and Dudek, G. (2018). Visual identification of biological motion for underwater
human–robot interaction. Autonomous Robots, 42(1):111–124.

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of
history compression. Neural Computation, 4(2):234–242.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001). Esti-
mating the support of a high-dimensional distribution. Neural computation, 13(7):1443–
1471.

Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.

Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., Pozzo, T., and Sandini, G. (2012). Measur-
ing human-robot interaction through motor resonance. International Journal of Social
Robotics, 4(3):223–234.

Selig, J. M. (2013). Geometrical methods in robotics. Springer Science & Business Media.

Shor, N. Z. (2012). Minimization methods for non-differentiable functions, volume 3.
Springer Science & Business Media.

Siciliano, B. (1990). Kinematic control of redundant robot manipulators: A tutorial. Journal
of intelligent and robotic systems, 3(3):201–212.

Simion, F., Regolin, L., and Bulf, H. (2008). A predisposition for biological motion in the
newborn baby. Proceedings of the National Academy of Sciences, 105(2):809–813.

Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional distri-
butions: A unified kernel framework for nonparametric inference in graphical models.
IEEE Signal Processing Magazine, 30(4):98–111.

Spong, M. W. (1992). Remarks on robot dynamics: canonical transformations and rie-
mannian geometry. In Proceedings 1992 IEEE International Conference on Robotics and
Automation, pages 554–559. IEEE.

Spong, M. W., Hutchinson, S., Vidyasagar, M., et al. (2006). Robot modeling and control,
volume 3. wiley New York.

Srinivasan, A. (1999). Note on the location of optimal classifiers in n-dimensional roc
space.

Steinke, F. and Hein, M. (2009). Non-parametric regression between manifolds. In Ad-
vances in Neural Information Processing Systems, pages 1561–1568.

Steinke, F., Hein, M., and Schölkopf, B. (2010). Nonparametric regression between general
riemannian manifolds. SIAM Journal on Imaging Sciences, 3(3):527–563.

108 References

Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer Science &
Business Media.

Strapparava, C., Valitutti, A., et al. (2004). Wordnet affect: an affective extension of wordnet.
In Lrec, volume 4, page 40. Citeseer.

Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8934–8943.

Sung, J., Ponce, C., Selman, B., and Saxena, A. (2012). Unstructured human activity
detection from rgbd images. In 2012 IEEE international conference on robotics and
automation, pages 842–849. IEEE.

Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. (2006). Nonparametric quantile
estimation. Journal of machine learning research, 7(Jul):1231–1264.

Tay, Y., Tuan, L. A., and Hui, S. C. (2017). Hyperbolic Representation Learning for Fast and
Efficient Neural Question Answering.

Tevatia, G. and Schaal, S. (2000). Inverse kinematics for humanoid robots. In Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pages 294–299.
IEEE.

Thrun, S. et al. (2002). Robotic mapping: A survey. Exploring artificial intelligence in the
new millennium, 1(1-35):1.

Tifrea, A., Bécigneul, G., and Ganea, O.-E. (2018). Poincar\’e glove: Hyperbolic word
embeddings. arXiv preprint arXiv:1810.06546.

Tosun, T., Mead, R., and Stengel, R. (2014). A general method for kinematic retargeting:
Adapting poses between humans and robots. In Proc. ASME Int. Mech. Eng. Congress
and Exposition, pages 1–10. Citeseer.

Treves, F. (2016). Topological Vector Spaces, Distributions and Kernels: Pure and Applied
Mathematics, volume 25. Elsevier.

Tsay, R. S. (2014). Financial time series. Wiley StatsRef: Statistics Reference Online, pages
1–23.

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2009). Mining multi-label data. In Data
mining and knowledge discovery handbook, pages 667–685. Springer.

Ungar, A. A. (2008). Analytic hyperbolic geometry and Albert Einstein’s special theory of
relativity. World scientific.

Vandenberghe, L. (2010). The cvxopt linear and quadratic cone program solvers. Online:
http://cvxopt. org/documentation/coneprog. pdf.

Veit, A., Nickel, M., Belongie, S., and van der Maaten, L. (2018). Separating self-expression
and visual content in hashtag supervision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5919–5927.

References 109

Vignolo, A., Noceti, N., Rea, F., Sciutti, A., Odone, F., and Sandini, G. (2017). Detecting
biological motion for human–robot interaction: A link between perception and action.
Frontiers in Robotics and AI, 4:14.

Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science &
Business Media.

Viviani, P., Baud-Bovy, G., and Redolfi, M. (1997). Perceiving and tracking kinesthetic
stimuli: Further evidence of motor–perceptual interactions. Journal of Experimental
Psychology: Human Perception and Performance, 23(4):1232.

Weng, J. J., Ahuja, N., and Huang, T. S. (1993). Learning recognition and segmentation
of 3-d objects from 2-d images. In 1993 (4th) International Conference on Computer
Vision, pages 121–128. IEEE.

Werbos, P. (1974). Beyond regression:" new tools for prediction and analysis in the behav-
ioral sciences. Ph. D. dissertation, Harvard University.

Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., and Morris, B. (2018). Feedback
control of dynamic bipedal robot locomotion. CRC press.

Whitley, D. and Watson, J. (1970). Complexity Theory and the No Free Lunch Theorem,
pages 317–339.

Wilson, R. C., Hancock, E. R., Pekalska, E., and Duin, R. P. (2014). Spherical and hyperbolic
embeddings of data. IEEE transactions on pattern analysis and machine intelligence,
36(11):2255–2269.

Wolter, F.-E. (1979). Distance function and cut loci on a complete riemannian manifold.
Archiv der Mathematik, 32(1):92–96.

Xiao, T., Li, H., Ouyang, W., and Wang, X. (2016). Learning deep feature representations
with domain guided dropout for person re-identification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1249–1258.

Xu, J. and Durrett, G. (2018). Spherical latent spaces for stable variational autoencoders.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 4503–4513.

Yao, K. (1967). Applications of reproducing kernel hilbert spaces–bandlimited signal
models. Information and Control, 11(4):429–444.

Zhang, H. and Sra, S. (2016). First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638.

Zhang, T. et al. (2004). Statistical behavior and consistency of classification methods based
on convex risk minimization. The Annals of Statistics, 32(1):56–85.

Appendix A

Appendix

A.1 Proof of Theorem 3.4.1

We prove here intermediate results that will be key to prove Theorem 3.4.1. We refer to Lee

(2003) for basic definitions on manifolds and to Aronszajn (1950) for an introduction on

reproducing kernel Hilbert spaces (RKHS).

Notation and Definitions. We recall here basic notations and definition that will be used

in the following. Given a smooth manifold M, for any open subset U ⊆M we denote by

C∞(U) the set of smooth functions on U and with C∞
c (U) the set of compactly supported

smooth functions on U , namely functions such that the closure of their support is a

compact set. For a compact subset N ⊂M we denote by C∞
c (N) the set of all functions

h : N → R that admit an extension h̄ ∈ C∞
c (M) such that h̄|N = h and its support is

contained in N , namely it vanishes on the border of N . Finally, for any subset N of M we

denote C∞(N) the set of all functions that admit a smooth extension in C∞(M).

In the following, a central role will be played by tensor product of topological vector

spaces Treves (2016). In particular, for a Hilbert space H, we will denote H⊗H the

closure of the tensor product between H and itself with respect to the canonical norm

such that ∥h ⊗h′∥H⊗H = ∥h∥H∥h′∥H for any h,h′ ∈H. Moreover, to given a compact set

N ⊂Rd , we recall that C∞
c (N)⊗̂πC∞

c (N) denotes the completion of the topological tensor

product between C∞
c (N) and itself with respect to the projective topology (see Treves

(2016) Def. 43.2 and 43.5). In the following, for simplicity, we will denote this space with

C∞
c (N)⊗C∞

c (N) with some abuse of notation. Finally, for any subset Y ⊆M and space F
of functions from M to R we denote by F |Y the space of functions from Y to R that admit

an extension in F . In particular not that C∞(Y) =C∞(M)|Y .

112 Appendix

A.1.1 Auxiliary Results

We are ready to prove the auxiliary results.

Lemma A.1.1. Let M be a topological space, Y ⊆M be a compact subset and H a repro-

ducing kernel Hilbert space of functions on M with kernel K :M×M→R such that there

exists κ> 0 for which k(y, y) ≤ κ2 for any y ∈Y . Then, for any h̄ ∈H⊗H, its restriction to

Y ×Y , h = h̄|Y×Y is SELF.

Proof. Denote Ky = k(y, ·) ∈H for every y ∈M. Then the space H⊗H is an RKHS with

reproducing kernel K̄ : (M×M)×(M×M) →R such that K̄ ((y, z), (y ′, z ′)) = K (y, y ′)K (z, z ′)
for any y, y ′, z, z ′ ∈M (see e.g. Aronszajn (1950)). In particular K̄(y,z) = Ky ⊗Kz . Let now

h̄ : M×M→ R be a function in H⊗H. In particular, there exist a V ∈H⊗H such that〈
V ,Ky ⊗Kz

〉
H⊗H = h̄(y, z) for any y, z ∈ Y (reproducing property). Note that H⊗H is

isometric to the space of Hilbert-Schmidt operators from H to itself, with inner product

corresponding to 〈A,B〉H⊗H = 〈A,B〉HS = Tr(A∗B) for any A,B ∈H⊗H, with A∗ denoting

the conjugate of A∗ ∈H⊗H. Therefore, for any y, z ∈Y we have

h̄|Y×Y (y, z) = h̄(y, z)

= 〈
V ,Ky ⊗Kz

〉
H⊗H

= Tr(V ∗Ky ⊗Kz)

and thus

h|Y×Y (y, z) = 〈
Kz ,V ∗Ky

〉
H . (A.1)

Since Ky is bounded in H, for y ∈Y and the operator norm of V is bounded by its Hilbert-

Schmidt norm, namely ∥V ∥ ≤ ∥V ∥HS, we can conclude that h = h̄|Y×Y is indeed SELF.

Lemma A.1.2. Let M satisfy Assumption 3.4.1. Then there exists a reproducing kernel

Hilbert space of functions H on M, with bounded kernel, such that C∞
c (M) ⊆H.

Proof. Let H 2
s (M) denote the Sobolev space on M of squared integrable functions with

smoothness s > 0 (see Hebey (2000) for the definition of Sobolev spaces on Riemannian

manifolds). By construction (see page 47 of Hebey (2000)), C∞
c (M) ⊂ H 2

s (M) for any s > 0.

To prove this Lemma, we will show that H 2
s (M) is an RKHS for any s > d/2. The proof is

organized in two steps.

Step 1: H 2
s (M) is continuously embedded in C (M). By Assumption 3.4.1, we can apply

Thm. 3.4 in Hebey (2000) (see also Thm. 2.7 Hebey (2000) for compact manifolds), which

A.1 Proof of theorem 3.4.1 113

guarantees the existence of a constant C > 0 (see last lines of the proofs for its explicit

definition) such that

sup
y∈M

| f (y)| ≤C∥ f ∥H2
s (M),

for any y ∈M and f ∈H2
s (M).

Step 2: ConstructingH from H 2
s (M). Prop. 2.1 of Hebey (2000) proves that there exists an

inner product, that we denote by 〈·, ·〉H, whose associated norm is equivalent to ∥ ·∥H 2
s (M)

and such that the space H= (H 2
s (M),〈·, ·〉H) is a Hilbert space.

Now, for any y ∈ M denote by ey : H → R, the linear functional corresponding to the

evaluation, that is ey (f) = f (y). Now by Step 1, we have that the linear functional ey is

uniformly bounded and so continuous, indeed,

|ey (f)| = | f (y)| ≤C∥ f ∥H, ∀ f ∈H.

So by the Riesz representation theorem ey ∈H and so H is a reproducing kernel Hilbert

space, with kernel k(y, y ′) = 〈
ey ,ey ′

〉
H, (see Aronszajn (1950), page 343, for more details).

Note finally that the kernel is bounded since

∥ey∥H = sup
∥ f ∥H≤1

|〈ey , f
〉
H | = sup

∥ f ∥H≤1
|ey (f)| ≤C ,

and therefore k(y, y ′) ≤ ∥ey∥H∥ey ′∥H ≤C 2.

In the following, let A ⊆ { f : U → S} and B ⊆ {g : V → S}, with U ,V ,S topological spaces.

We denote A ∼= B if there exists an invertible map q : U → V , such that B = A ◦ q−1 and

A = B ◦q .

Lemma A.1.3 (see also Mrčun (2005); Nestruev (2006)). Let U be a geodesically convex

open subset of a d-dimensional complete Riemannian manifold M without border, then

there exists a smooth map q : U →Rd with smooth inverse, such that

C∞(U) ∼=C∞(Rd), and C∞
c (U) ∼=C∞

c (Rd)

moreover for any compact set Y ⊂U there exists a compact set R ⊂Rd such that R = q(Y)

and the map s, that is the restriction of q to Y → R, guarantees

C∞(Y) ∼=C∞(R), and C∞
c (Y) ∼=C∞

c (R)

114 Appendix

Proof. By Lemma A.2.1, there exists a point p ∈U such that d(p, ·) admits all directional

derivatives in all points q ∈U (it is, in fact in C∞(U)). We are therefore in the hypothe-

ses of Thm. 2 in Wolter (1979), from which we conclude that there exists a smooth

diffeomorphism between U and Rd (with smooth inverse). Denoting by q the diffeo-

morphism between U and Rd , for any function f ∈ C∞(U), we have f ◦ q−1 ∈ C∞(Rd),

so C∞(U) ◦ q−1 ⊆ C∞(Rd) and for any function g ∈ C∞(Rd) we have g ◦ q ∈ C∞(U), so

C∞(Rd)◦q ⊆C∞(U). Finally we recall that if A ⊆ B , then A ◦p ⊆ B ◦p for any set A,B and

any map p applicable to A,B . Then

C∞(U) =C∞(U)◦q−1 ◦q ⊆C∞(Rd)◦q ⊆C∞(U)

and so C∞(N) ∼=C∞(Rd). The same reasoning holds C∞
c (U) ∼=C∞

c (Rd).

Analogously, the smooth diffeomorphism q maps compact subsets of U to compact

subsets of Rd . Denote by R ⊂ Rd the compact subset that is q(Y), the image of Y ⊆U a

compact subset of U , then s is the restriction of q to Y → R. By the same reasoning as

above, we have that C∞(Y) ∼=C∞(R) via s.

Lemma A.1.4. Let U be a open geodesically convex subset of a complete Riemannian d-

dimensional manifold M and Y a compact subset of U , then there exists a compact subset

N ⊆U such that Y belongs to the interior of N and

C∞(Y ×Y) ⊆ (C∞
c (N)⊗C∞

c (N))|Y ×Y .

Moreover, C∞(Y) ⊆C∞
c (N)|Y .

Proof. We first consider the real case U =M=Rd with Euclidean metric. By Cor. 2.19 in

Lee (2003), for any open subset V ⊂Rd we have that any f ∈C∞(Y) admits an extension

f̃ ∈C∞(Rd) such that f̃ |Y = f and supp f̃ ⊂C∞
c (V). Then, since Y is bounded (compact

in a complete space), there exists a bounded open set V containing Y . Let N = V the

closure of V . N is a compact set as well and contains Y in its interior. In particular,

since for any f ∈C∞(Y) the extension f̃ has support contained in V ⊂ N , this shows that

C∞(Y) ⊆C∞
c (N). Analogously we have C∞(Y ×Y) ⊆C∞

c (N ×N).

Now, by Thm. 51.6 (a) in Treves (2016), we have that

C∞
c (N)⊗C∞

c (N) ∼=C∞
c (N ×N).

A.2 Proof of theorem 3.4.2 115

which concludes the proof in the real setting. The proof generalizes trivially to the case

where U is an open geodesically convex subset of a complete Riemannian manifold thanks

to the isomorphisms between spaces of smooth functions provided by Lemma A.1.3.

A.1.2 Proof of Theorem 3.4.1

For the following results we need to introduce the concept of cut locus. For any y ∈M,

denote by Cut(y) ⊆M the cut locus of y the closure of the set of points z ∈M that are

connected to y by more than one minimal geodesic (see Gallot et al. (1990); Sakai (1996)).

For any y ∈Y we have y ∈M\ Cut(y), see e.g. Lemma 4.4 in Sakai (1996).

Finally we refine Assumption 3.4.2 to avoid pathological cases. Indeed a geodesically

convex set can still have conjugate points on the boundary. To avoid this situation we

restate Assumption 3.4.2 as follows

Assumption 2’ M̃ is an open geodesically convex subset of the manifold M and Y is a

compact subset of M̃.

Proof of Theorem 3.4.1. By Asm. 2’, let M̃ be an open geodesically convex subset of M
such that Y ⊂M̃⊆M. Apply Lemma A.1.4 and let N ⊆M̃ be a compact set such that Y
is contained in the interior of N , namely

C∞(Y) ⊆C∞
c (N)|Y ⊆C∞

c (M)|Y ⊆H|Y .

Then, by applying again Lemma A.1.4 we have

C∞(Y ×Y) ⊆ (C∞
c (N)⊗C∞

c (N))|Y×Y ⊆ (H⊗H)|Y×Y . (A.2)

Therefore we conclude that for any h ∈C∞(Y), there exists h̄ :M×M→Rwith h̄ ∈H⊗H
and h = h̄|Y×Y . Finally we apply Lemma A.1.1 to h̄, which guarantees h to be SELF.

A.2 Proof of Theorem 3.4.2

We prove a preliminary result.

116 Appendix

Lemma A.2.1. Let M be a Riemannian manifold and N be a geodesically convex subset of

M. Then,

d 2|N×N ∈C∞(N ×N).

Proof. For any y ∈M, denote Cut(y) ⊆M the cut locus of y , that is the set of points in

z ∈M that are connected by more than one minimal geodesic curve with y (see Gallot

et al. (1990); Sakai (1996)). Let Cut(M) =⋃
y∈M({y}×Cut(y)) ⊆M×M. Then, then the

squared geodesic distance is such that (see e.g. Villani (2008), page 336)

d 2 ∈C∞(M×M\ Cut(M)).

Now note that by definition of geodesically convex subset N ⊆M, for any two points in

N there exist one and only one minimizing geodesic curve connecting them. Therefore,

N ×N ∩ Cut(M) =; and consequently N ×N ⊆M×M\ Cut(M). We conclude that the

restriction of d 2 on N ×N is C∞ as required.

Proof of Theorem 3.4.2. By Lemma A.2.1, under Assumption 3.4.1 and Assumption 3.4.2,

the squared geodesic distances is smooth. The desired result is then obtained by applying

Theorem 3.4.1.

A.3 Proof of Theorem 3.4.4

Proof. The theorem is proved by combining Theorem 3.4.1 with Thm. 5 in Ciliberto et al.

(2016). To characterize the constant cL we need an extra step.

Under Assumption 3.4.1 and Assumption 3.4.2 and the smoothness of L, we can apply

Theorem 3.4.1, which characterizes L as SELF. According to the proof of Theorem 3.4.1

and in particular of Lemma A.1.1, for any y, z ∈Y we have

L(y, z) = 〈
ψ(y),Vψ(z)

〉
H

where H= H 2
s (M) with s > d/2, ψ(y) = Ky (·) where K : M×M→ R is the reproducing

kernel associated to H and V : H → H is the operator defined in Equation (A.1). In

particular, by the isometry between the tensor space H⊗H and the space of Hilbert-

Schmidt operators from H to H, we have

∥V ∥HS = ∥L∥H⊗H.

A.3 Proof of theorem 3.4.4 117

To conclude, since L is SELF, the following generalization bound in Thm. 5 from Ciliberto

et al. (2016)

E(f̂)−E(f ∗) ≤ ∥V ∥ q τ2 n− 1
4

holds with probability at least 1−8e−τ. Here, ∥V ∥ denotes the operator norm of ∥V ∥ and

q is a constant depending only on Y and the distribution ρ (see end of proof of Lemma

18 for additional details). Finally, we recall, by the relation between the operator and

Hilbert-Schmidt norm, that ∥V ∥ ≤ ∥V ∥HS = ∥L∥H⊗H = cL.

	Table of contents
	List of figures
	List of tables
	Introduction
	I Background
	1 Statistical Learning
	1.1 Supervised Learning
	1.2 Data and structure
	1.2.1 Loss functions

	1.3 Learning and generalization
	1.4 Empirical risk minimization
	1.5 Regularized least squares
	1.6 Feature maps and Reproducing Kernel Hilbert Spaces
	1.6.1 Feature maps
	1.6.2 Reproducing Kernel Hilbert Spaces
	1.6.3 Feature maps and kernels
	1.6.4 Kernel Regularized Least Squares

	2 Structured Prediction
	2.1 Structured Support Vector Machine
	2.2 Consistent Regularized Structured Prediction
	2.3 Neural Network Models
	2.3.1 Segmentation with Neural Networks
	2.3.2 Recurrent Neural networks

	II Manifold Structured Machine Learning
	3 Manifold Structured Prediction
	3.1 Introduction
	3.2 Differential geometry
	3.2.1 Riemannian manifold

	3.3 Structured Prediction for Manifold Valued Regression
	3.3.1 Manifold Valued Regression via Structured Prediction

	3.4 Characterization of SELF Function on Manifolds
	3.4.1 Statistical Properties of Manifold Structured Prediction

	3.5 Algorithm and Experimental applications
	3.5.1 Optimization on Manifolds
	3.5.2 Synthetic Experiments: Learning Positive Definite Matrices
	3.5.3 Fingerprint Reconstruction
	3.5.4 Multilabel Classification on the Statistical Manifold

	4 Hyperbolic Data Representation
	4.1 Introduction
	4.2 Hyperbolic Manifold
	4.2.1 Lorentz Model
	4.2.2 Poincaré ball
	4.2.3 Isometries

	4.3 Hyperbolic representation
	4.3.1 Hyperbolic representation

	4.4 Hyperbolic regression
	4.4.1 Hyperbolic Structured Prediction
	4.4.2 Homeomorphic Geodesic Neural Network

	4.5 Applications
	4.5.1 Models and training details
	4.5.2 Hierarchical classification
	4.5.3 Taxonomy expansion

	III Structured Machine Learning Robotics
	5 Inverse Kinematics with Structured Prediction
	5.1 Problem and proposed approach
	5.1.1 One-Class Strucured SVM
	5.1.2 Multivariate Neural Network Regression
	5.1.3 Consistent Resgularized Structured Predictor
	5.1.4 Trajectory reconstruction

	5.2 Experimental validation
	5.2.1 Results

	6 Faster Biological Motion Detection
	6.1 Biological Motion Detection
	6.1.1 Characterization of biological movement

	6.2 Dataset
	6.2.1 Training set
	6.2.2 Test set

	6.3 Accelerated pipeline
	6.3.1 Visual Features Extraction
	6.3.2 Sequence classification for biological motion detection
	6.3.3 Robotic implementation

	6.4 Experiments

	Conclusions
	References
	Appendix A Appendix
	A.1 Proof of thm:smooth-self
	A.1.1 Auxiliary Results
	A.1.2 Proof of thm:smooth-self

	A.2 Proof of thm:geodesic-self
	A.3 Proof of thm:generalization-bound

