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Abstract

Ultra-High Pressure (UHP) metamorphic rocks represent the evidence we have for the
detailed reconstruction of deep-seated tectonic processes, which are the source of natural

hazards like deep-focus earthquakes and volcanic eruptions.

Mineral inclusions are often the only proof of ultrahigh pressure metamorphism and their
study provides insights into the mechanisms of subduction and subsequent exhumation of
metamorphic rocks. The most frequently used approach for this purpose is the application of
equilibrium thermodynamics assuming a linear relationship between the inferred Pressure
(P) and the depth of formation of metamorphic mineral assemblages. For instance, coesite
or diamond-bearing systems suggest that rocks can be exhumed from depths even greater
than 100 km. However, a major current controversy is whether high-pressure minerals
actually indicate such great depths of subduction or whether they are the result of tectonic
overpressure during subduction. If tectonic overpressure were effective, coesite- and
diamond-bearing rocks could come from shallower domains of the lithosphere and a

revaluation of the current knowledge of plate tectonics would be necessary.

So far, there are no available techniques to constrain the amount of deviatoric paleo-stress
present during metamorphic processes. A first attempt has been recently proposed
combining mineral physics and petrology: the elastic thermobarometry. The advantage of
this technique is that it is not based on the equilibrium thermodynamic assumption but,
rather, on the contrast in the elastic properties of two crystals that are constrained within a

confined space such as a mineral inclusion and its surrounding host.

The analysis of solid inclusions that are fully buried within their hosts by non-destructive
techniques, such as Raman spectroscopy or single crystal X-ray diffraction, reveals pressures
that can considerably deviate from the external (ambient) one. This is the so-called residual
pressure and it arises as a response to the contrast in the thermo-elastic properties between
the host and the inclusion if, for example, the entrapment of the inclusion occurred at high
P-T conditions. Importantly, the amount of residual pressure is linked to the entrapment
pressure and knowing the physical properties of the two crystals (i.e. their equations of state),
using theoretical models it is possible to back-calculate the P-T conditions of inclusion
entrapment. The current theoretical models for interpreting the residual pressure are based

on simplified assumptions and ideal host-inclusion systems (e.g. isotropic elasticity for both



the host and the inclusion crystals, shape of the inclusions are spherical and infinite in size
for the host crystal).

In this regard, this PhD Thesis has two main objectives: (i) to understand, from an
experimental point of view, how much the deviations from the ideal host-inclusion system
can actually influence the thermobarometric estimates and (ii) to apply the new theoretical
and experimental developments of the elastic thermobarometry to a natural case of study.
The first point focuses on the use of Raman spectroscopy to measure and determine the strain
state of natural (i.e. non-ideal) mineral inclusions while the second one develops the
application of this technique to the famous UHP metamorphic rocks of the Dora-Maira
Massif (Western Alps).

This study allowed the development of experimental protocols devoted in selecting reliable
mineral inclusions for elastic-thermobarometric purposes. Backbone of this work are zircon
inclusions because they represent one of the most common accessory minerals in
metamorphic rocks and, furthermore, can give also age information on the metamorphic
processes. Finally, the application of the elastic thermobarometric method to a natural case
of study, shows the possibility in considering the presence of deviatoric stresses during
inclusion entrapment starting from experimental measurements of stress field in host-
inclusion mineral systems. Although this last point remains currently difficult to confirm,
the aim of this work is also to give some perspectives that, eventually, can be used to describe

metamorphic processes at a higher level than has ever been envisaged before.



Chapter 1

Introduction and Scope

1.1 The role of stress in equilibrium thermodynamics and pressure

distribution from micro to macroscale during metamorphism

To retrieve pressure and temperature (P-7) conditions of rock recrystallization during
tectonic processes in the Earth’s interiors, metamorphic petrology relies on equilibrium
thermodynamics. In many cases however, the textural features and the compositional zoning
of minerals suggest that metamorphic rock recrystallization is not controlled by equilibrium
thermodynamics alone; rather, they can be the result of kinetically-favoured processes
(Carpenter and Putnis 1985). In this regard, reasonable assumptions such as /local
equilibrium attainment, coupled with careful micro-textural analysis of metamorphic
mineral assemblages, help to obtain correct interpretations of the tectono-metamorphic rock
histories (Lanari and Engi, 2017). Recently, a growing number of studies discussed the
limitations of the equilibrium thermodynamic approach by emphasizing, in particular, the
fact that hydrostatic stress conditions may not be dominant during metamorphism
(Mancktelow, 2009). The planar anisotropic structures (e.g. foliations, shear zones)
developed in metamorphic rocks from macro- to micro- scales provide a convincing
observational basis that significant deviatoric stress components can be involved during
metamorphism and crystal growth (Brodie and Rutter, 1985). In his classic paper on
thermodynamics, Gibbs (1906) considered the effect of non-hydrostatic stress on phase
equilibria. He noticed that the chemical potential between solids and adjacent fluids vary
according to the orientation of the solid surfaces and showed that the magnitude of such a

variation depends on the degree to which the stress departs from hydrostatic conditions along
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the solid-fluid boundaries. After Gibbs, numerous scientific articles have dealt with this
topic. As an example, Coe and Paterson (1969) suggested that the temperature of a—f
transition in single quartz crystals strongly depends on the crystallographic orientation of
quartz with respect to the principal axes of a non-hydrostatic stress field. More recently,
Wheeler (2014) pointed out the “dramatic effect of stress on metamorphic reactions” for
which, for example, garnet and clinopyroxene breakdown might be offset by the equivalent
of 0.5 GPa for a 0.05 GPa differential stress. However, Hobbs and Ord (2015), commenting
the work of Wheeler, concluded that deviatoric stresses have small effects on phase
equilibria, pointing out that the major flaw in Wheeler’s (2015) argumentation is that the
stress is treated as a thermodynamic state variable. Hobbs and Ord (2015) stated that the
shift in the breakdown reaction modelled by Wheeler (2015) is not dramatic, and pointed out

that a temperature shift of just 1K requires a deviatoric stress of 1.4 GPa.

Another consequence of the assumption of hydrostatic stress conditions during
metamorphism is the linear relationship between the formation pressure of a mineral and the

corresponding depth within the Earth:

P = pgh (1.1)

where P is the pressure, g the gravity acceleration constant, h the depth and p the density of
the overlying rock column. Following equation 1.1, coesite or diamond-bearing rocks, whose
minimum formation pressure is estimated at about 3 and 4.5 GPa should be exhumed from
depths exceeding 80 and 100 km, respectively. Differently, numerical simulations (e.g.
Schmalholz et al., 2014), suggest the possibility to reach deviatoric stresses as high as 2 GPa
during crustal tectonics and metamorphism: therefore, the mean normal stress and then the

P affecting phase equilibria, could be significantly different at same depths.



Nowadays, many sessions at international conferences focus on the above subjects trying to
shed light on a major debated issue: can we measure deviations from hydrostatic conditions
in terms of paleo-stress recorded by metamorphic rocks within the Earth? Given the
controversy about equilibrium thermodynamics that I have described, the advent of the
practical implementation of elastic thermobaromtery is especially valuable as it provides a
completely independent method to determine stresses and pressures acting in a rock at the

time of metamorphism.

1.2 Elastic thermobarometry

Basic concepts

Let us consider the entrapment of a mineral inclusion within a growing, coarser, mineral host

(Figure 1.1).
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Figure 1.1. Schematic step-representation of inclusion (red) entrapment in a mineral host (white) and
development of a residual pressure at room conditions. The red dashed line represents the volume of the
inclusion as it would be if it was free to expand. Note that, in this case the inclusion is anisotropic, i.e. it would
expand more along one direction (vertical) with respect the other (horizontal).



Under such a circumstance the two minerals record the same external P-T' conditions.
However, once the entrapment is completed and the host has grown a sufficient amount, the
inclusion is physically (elastically) isolated from the surrounding rock environment.
Therefore, any later modification of the external conditions will be recorded in a different
way by the two minerals (the inclusion and the host). Importantly, if the host-inclusion
system is tectonically exhumed, the two minerals will expand in a different amount due to
their different thermo-elastic properties. If the inclusion is softer than the host, it will want
to expand more than the stiffer host which, in turn, inhibits the volume expansion of the
inclusion: this contrast in the physical properties of the two adjacent minerals brings the
development of an elastic stress field that the inclusion transmits to the host walls (e.g. Angel

et al. 2015 and reference therein).

500 pm 30 pm

coesite in zircon in
diamond garnet

Figure 1.2. Stress-induced birefringent haloes in cubic crystals (diamond and garnet) surrounding stressed
inclusions. To the left: coesite inclusion in diamond by Howell et al. (2010). To the right: zircon inclusion in
garnet from by Campomenosi et al. (2018).

Key evidence of this process in natural samples are stress-induced birefringent haloes
(Figure 1.2) in cubic minerals hosting stressed inclusions (e.g. Rosenfeld and Chase, 1961;
Howell et al. 2010; Nasdala et al. 2003; Campomenosi et al., 2020). This stress field,

generated by the inclusion, is usually referred as residual pressure since it is still detectable



at room conditions. The quantification of this property represents the starting point of any

elastic barometric estimate (e.g. Angel et al. 2015).

The residual pressure built-up in host-inclusion systems can be measured by means of
Raman spectroscopy and by single crystal X-ray diffraction (see Chapter 2). The basic
principle consists of (i) measuring the stress state of the inclusion taking a free crystal as
reference standard and, (ii) to calculate the corresponding residual pressure by means of

reliable calibrations (e.g. Murri et al. 2018).

The main point of elastic barometry is to back calculate the entrapment P and T conditions
starting from this residual pressure by using the combination of the equations of state (EoS)

of the two crystals and their mutual elastic relaxation (e.g. Angel et al. 2015).

Isomeke: a “mechanical” univariant line

From a thermodynamic point of view, the possible entrapment conditions of a specific host-
inclusion pair are defined by a line within the P-T space whose slope, for a constant fractional

volume between the host and the inclusion (i.e. V! — V¥ = constant), is given by:

P al—aH
(5)(VI—VH) - ﬁl—ﬁH (1'2)

where @ and f8 are the coefficients of thermal expansion and of compressibility for the host
(H) and the inclusion (I), respectively. Along this line there is no pressure gradient between
the host and the inclusion (indeed they are at the same P-T conditions, including at the time
of entrapment). Note that the equation 1.2 is different from that of an isochor of a single
mineral because it considers the properties of the host and of the inclusion simultaneously

(Figure 1.3).
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Figure 1.3. (A): how to construct an isomeke (dashed violet line?) using the equations of state (EoS) of the host
(blue line) and of the inclusion (red line) at two different temperatures (T; and T). (B) The effect of the
difference in the thermal expansion and compressibility coefficients between the host and the inclusion. Note
that, in both cases, the inclusion has larger bulk moduli (i.e. smaller compressibility) with respect the host, i.e.
the inclusion is stiffer than the host. On the other hand, if the inclusion would have smaller bulk modulus with
respect to the host, the over-pressure and under-pressure domains are inverted.

The concept of isomeke is fundamental in elastic thermo-barometry because this line divides
P-T space in two domains (Figure 1.3): one defined by under-pressure conditions of the
inclusion with respect to the host and the other by over-pressure conditions. In P-T space,
the relative position of these two domains with respect to the isomeke line depends if the
host is stiffer or softer than the inclusion (i.e. higher or lower bulk modulus respectively)
and on the isomeke slope. In this regard, different minerals have different physical properties
and consequently the isomeke slope will change for different host-inclusion systems. In
particular, as shown in Figure 1.3, a larger difference between the thermal expansion
coefficients of the host and of the inclusion will define an isomeke line that is more sensitive
to T changes (a geo-thermometer), while a larger difference in the compressibility
coefficients defines a line more sensitive to P changes (a geo-barometer). Then, based on the

same principle of classic geo-thermobarometry, this allows us to use different host-inclusion



systems to define a unique point within P-T space (e.g. Kohn, 2014, Zhong et al., 2019).
However, one major advantage of the elastic barometry is that, differently from the classic

approach, it does not depend on the chemical equilibrium between the involved minerals.

First applications and issues

Rosenfeld and Chase (1961) were the first to exploit the contrast in the elastic properties in
host-inclusion systems in metamorphic petrology. After their pioneering work, a large use
of this technique has been applied to rocks where the use of classic geo-thermobarometric
calibrations is difficult due to the lack of specified mineral assemblages that can be exploited

as geo-thermometer and or geo-barometer.

So far, elastic barometry has been successfully applied to “simple systems” only, in which
both the host and the inclusion display cubic symmetry and the strain field involved is
essentially isotropic (e.g. Milani et al. 2015). In such cases, the principle used to calculate
the residual pressure starting from the measured Raman shift is straightforward, and only a
hydrostatic pressure calibration for the Raman shift as a function of pressure for that phase
is needed. Usually, such calibrations are available for numerous minerals (e.g. Gillet et al.
1992): in such cases, if the variation in the Raman peak position (A®) with respect to an
unstressed free crystal is known, one can directly calculate the residual pressure. Despite this
simple approach, however, it is important to realize that the stress field between the host and
the inclusion can deviate from hydrostatic conditions due to the intrinsic anisotropy of the
involved crystals. Strictly speaking, one can expect that the hydrostatic calibrations are good
approximation if the host and the inclusion are both pseudoisotropic in terms of elastic
properties. However, this is not true for many host-inclusion systems in metamorphic rocks,

where elastically anisotropic minerals (e.g. quartz, coesite) occur because, by definition,



anisotropic crystals have different compressibility and thermal expansion coefficients along
different crystallographic directions. Therefore, during exhumation, a crystal will expand
more in one direction than another, and the developed stress field cannot be hydrostatic even
if the host is a cubic crystal (e.g. Angel et al. 2015). Recently, Murri et al. (2018) developed
the approach for measuring the strain state of quartz inclusions taking into account their
intrinsic anisotropy. Indeed, they exploit the concept of the phonon mode Grueneisen tensor,

relating the changes in the phonon wavenumber directly to the strain tensor.

Furthermore, the effect of the real geometry of the host-inclusion systems on the elastic
mutual relaxation and, consequently, on the measured residual pressure has been quantified
and modelled (Mazzucchelli et al., 2018). The results show that the inclusion shape, its
mutual orientation with respect to the host (because of the intrinsic anisotropy), the distance
from any kind of boundary affect the final residual pressure in the inclusion. Indeed, the
results deviate from those obtained using the available models which consider that (i)
inclusions are spherical, (ii) the host is infinite in size, (iii) host and inclusion are elastically
isotropic (Zhang, 1998). For this purpose, it is worth considering that, strictly speaking, no

mineral is elastically isotropic (e.g. Nye, 1985).

Another misconception, that has been largely applied to derive residual inclusion pressures,
is to use the strain state of the mineral host, in terms of measured Raman peak position, to
get the pressure of the inclusion entrapment (e.g. Israeli et al. 1999). Differently from the
inclusion, the mineral host is at room pressure; therefore, the strain field within the host and
the eventual Raman shift variation are only given by the change in the normal stress
components transmitted by the inclusion. From force balance considerations, one can expect
that only in a narrow zone at the host-inclusion boundary does the radial stress in the host
match the one of the inclusion. However, this is difficult to quantify and for anisotropic stress

fields (i.e. the majority of the cases) the radial stress does not correspond to the pressure in
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the inclusion because, in this case, the mean normal stress will be different from the single

stress components (i.e. radial stress).

1.3 Scope of this Thesis

This PhD thesis is part of an interdisciplinary research program focussed on theoretical
aspects of the elastic barometry method and its application to natural anisotropic mineral
inclusions. The metamorphic history of the ultrahigh-pressure (UHP) Dora-Maira unit is
investigated here by exploiting the physical properties of anisotropic (zircon) inclusions in
pyrope megablasts hosted by UHP whiteschists (Chopin, 1984). Petrology and mineral
physics are combined to gain information on the physical conditions achieved during zircon
entrapment in garnet including the nature (isotropic or deviatoric) of stress and strain fields
acting on the zircon-pyrope couples. Up to now, different experimental techniques and
approaches have been employed and applied to zircon inclusions and their garnet hosts.
These include: high magnification optical and electron microscopy; Raman spectroscopy;
single-crystal X-ray diffraction; cathodolumiscence of zircon inclusions; zircon trace
element ICP-MS laser ablation analysis. These techniques have been combined with
thermodynamic modelling and with numerical modelling. The latter branch has been

developed in collaboration with other PhD students.

This PhD has been developed in a collaboration program between the Universities of Pavia
and Genova, in the frame of the ERC project TRUE-DEPTH (Horizon 2020 714936),
awarded to Prof. M. Alvaro (University of Pavia). The core of the ERC project is the
theoretical development of the elastic barometry method considering elastically anisotropic
inclusions and its application to natural metamorphic rocks, to reconstruct their metamorphic

histories and determine if the pressure conditions revealed by thermo-barometry do
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correspond to true depth conditions (i.e. hydrostatic pressures), or are generated by tectonic

deviatoric stresses and overpressures.

In my PhD thesis, I developed experimental methodologies to confirm theoretical
predictions on the anisotropic behaviour of crystals and I tested the effects of real (natural)
host-inclusion geometries on the elastic relaxation and residual pressure estimates.
Specifically, I have provided experimental evidence for the effect of the host inclusion
geometry and anisotropy on the measured residual pressure using Raman spectroscopy. My
observations and measurements, coupled with numerical models, helped to define an

experimental protocol allowing reliable estimates and corrections of the residual pressure

measured on anisotropic inclusions (see Chapter 5).

Further, I developed a simple protocol to select zircon inclusions in proper textural settings
within their garnet hosts, whose Raman spectra are unaffected by metamictization and whose
peak positions are only function of the residual elastic stress built up within the inclusion
and at the interface between inclusion and garnet host. These investigations and data have
provided a useful basis for a robust interpretation of zircon elastic behaviour, with the
possibility to reconstruct even more detailed P-T-time paths in metamorphic rocks (see

Chapter 6).

I also performed a detailed Raman spectroscopic study of the strain state of the host minerals
surrounding stressed inclusions. I have tried to exploit, for the first time, the theory of the
morphic effects in lattice dynamics in the quantification of the stress/strain amount in
optically anomalous crystals. The theoretical considerations and preliminary experimental
results demonstrate the possibility to use the intensity variation of fully symmetric phonons

mode to better define and map strain fields in crystals (see Chapter 7).
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Finally, taking advantage from these new protocols and from theoretical development of
other PhD theses developed in the frame of the Truedepth ERC program, I have applied
elastic barometry to the well-known case of the UHP metamorphic terrain of the Dora-Maira

Massif (Western Alps) (see Chapter 8).
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Chapter 2

Analytical techniques

In the following a description of the main analytical techniques, used during this PhD Thesis,

is presented.

Electron microscopy and micro-analysis

Mineral chemistry of garnets was determined by means of a TESCAN Vega-3 electron
microprobe at the University of Genova (DISTAV department), using an energy-dispersive
technique (with an acceleration voltage of 15 kV, a beam current of 14 nA) and by means of
a JEOL JXA 8200 electron microprobe at the University of Milan (Earth Science Institute).
The electron microprobe analysis and chemical element mapping of some zircon inclusions
were performed using a Cameca SX-100 SEM system electron microprobe available at the
University of Hamburg (Earth Science department), using a wavelength-dispersive

technique with an acceleration voltage of 15 kV and a beam current of 40 nA.

Polarized-(micro)Raman spectroscopy

Raman measurements were collected with two different Horiba Jobin-Yvon spectrometers:
a T64000 triple-monochromator system operating in a subtractive mode and an Explora_Plus
single-monochromator spectrometer. The first one was equipped with a symphony LN>-
cooled CCD detector, 1800-gr/mm holographic gratings, an Olympus BH-41 optical
microscope and a Coherent Ar" laser, while the second with a Peltier-cooled CCD detector,
a 2400 gr/mm grating, an Olympus BH-41 optical microscope, and Nd-YAG solid-state

laser. In both cases the spectral resolution was approximately 2 cm™! and therefore apparatus
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corrections of the peak widths were not required (Nasdala et al. 2001). In order to avoid
heating of the sample due to laser energy absorption (Zhong et al. 2019), Raman
measurements were collected with a laser power lower than 15 mW. The instrumental
accuracy in the peak position determination is of about 0.35 cm™ for the T64000
spectrometer and of about 0.55 cm™ for the Explora_Plus.

Origin Lab-Pro 2018 software package was used for data fitting and evaluation. The
collected spectra were baseline corrected for the continuum luminescence background when
necessary, temperature-reduced to account for the Bose-Einstein occupation factor
(Kuzmany, 2009) and normalized to the acquisition time. Peak positions, full-widths at half
maximum (FWHMSs), and integrated intensities were determined from fits with pseudo-
Voigt functions (PV = (1 — q)-Lorentz + q-Gauss, q is the weight coefficient). The criterion
for the maximum number of fitted peaks was A7 < I/2, where I and AI are the calculated

magnitude and uncertainty of each peak intensity, respectively.

Charge-Contrast (CC) imaging

CC images were acquired with a ZEISS EV050 scanning electron microscope at the Institute
of Geological Sciences, University of Bern, at low vacuum conditions (18 Pa), 12 kV, a
beam current of 100 mA and a working distance of 9.5 mm. CC images are obtained from
well-polished, uncoated samples. It has been demonstrated that CC images correlate exactly
to cathodoluminescence images and result from the complex interaction between the electron
beam, the positive ions generated by electron-gas interactions in the chamber, a biased
detector, and the sample (Griffin et al. 2000; Watt et al. 2000). Internal check in the Bern
laboratory confirmed that CC images are virtually identical to panchromatic

cathodoluminescence (CL) images.
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Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS)

Zircon and rutile inclusion as well as garnet hosts were measured by LA-ICP-MS with a
Resonetics RESOlutionSE 193nm excimer laser system equipped with a S-155 large volume
constant geometry chamber (Laurin Technic, Australia) at the Institute of Geological
Sciences, University of Bern, Switzerland. The laser system was coupled to an Agilent 7900
quadrupole ICP-MS instrument. Samples were ablated in a He atmosphere and the aerosol
mixed with Ar carrier gas before being transported to the ICP-MS. The ICP-MS was tuned
for low oxide production (ThO/Th < 0.2%) and Th/U ratio close to one (Th/U > 97%).
Measurement beam size was set from 20 to about 80 um depending on grain size, and the
surface area of each measurement spot was cleaned by pre-ablation for 3 pulses employing
a larger spot size. Total acquisition time for each analysis was 70 s, consisting of 30 s of gas
background acquired with the laser switched off, 10 s of washout after pre-ablation cleaning
and 30 s of ablation signal. The laser was tuned to a repetition rate of 5 Hz and an energy
output of 4 mJ (corresponding to an HV of about 26-27 kV). The ICPMS was tuned for
maximum sensitivity and minimum production of molecular species, maintaining ThO"/Th"
at <0.5%. The spot size on the zircon crystals was 20 um while those on rutile and garnet
crystals was 64 um. Analyses were standardized to glass NIST 612 and GSD-1g from USGS.
Zircon 91500 was run as secondary standard to monitor accuracy for the zircon inclusions.
Stoichiometric Si was employed as internal standard for both zircon (SiO2: 31.6 wt%) and
garnet (Si02: 43.9 wt%) while for rutile was employed stoichiometric TiO2 (99 wt%).
Reproducibility and accuracy were within 10 % or less across all analysed elements. The
data were reduced with the freeware lolite (Paton et al. 2011) and its data reduction scheme

for trace elements (Woodhead et al. 2007).
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Chapter 3

Ultrahigh Pressure (UHP) metamorphism in

Western Alps: the Dora-Maira Massif (Italy)

3.1 UHP metamorphism: definition and occurrence

Following the definition by Carswell et al. (2005), UHP metamorphic rocks “form at very
high lithostatic pressures within the eclogite facies but above the stability field of quartz”.
The resulting rocks can contain crystals of coesite or, depending on the bulk chemistry of
the protolith, other ultrahigh-pressure minerals (e.g. diamond, majoritic garnet) and mineral
assemblages (Dobrzhinetskaya et al., 1995; Parkinson and Katayama, 1999; Ye et al., 2000;

Hermann et al., 2001; Scambelluri et al., 2008; Katayama and Maruyama, 2009).

Christian Chopin (1984) wrote one of the first high impact paper on the occurrence of coesite
in metamorphic rocks and the possible geo-tectonic implications. Chopin (1984) found
coesite and quartz pseudomorphs after coesite as inclusions in pyrope-rich garnet within
quartz-phengite schists (the so-called whiteschists) from the continental crust of the Dora-
Maira Massif in the Western Alps (Italy). At that time, the work by Chopin had enormous
echo in the petrologic and geo-tectonic community. Before Chopin’s (1984) work, it was
accepted that only the oceanic lithosphere could be subducted to mantle depths, while the
continental crust either remained close to the Earth’s surface or, in some cases, was obducted
at the top of the oceanic crust. Chopin’s discovery showed that the continental crust can be
involved in deep subduction, reaching pressures in excess of 2.8 GPa for temperature values
of about 700 °C. Conversion of such pressure values into depth suggested that subduction of
continental crustal slices in the Alps reached and even went beyond depths of 90 kilometres

17



if hydrostatic forces were continuously acting on the Dora-Maira rocks during the formation

of the relevant assemblage.

Consequently, in his 1984 paper, Chopin concluded with the statement “the range of
pressure endured by crustal rocks of continental derivation might be in fact much wider then
presently thought. Some of our present concepts about earth tectonics might have to be

modified by these coesite discoveries and other possible ones to come”.

After Chopin’s (1984) findings, coesite and, later on, diamond and majoritic garnet were
shown to occur in metamorphic crustal rocks and ophiolites. Figure 3.1 reports, on a
simplified global geotectonic map, the currently recognised UHP metamorphic terrains now

exposed at the Earth’s surface. These correspond to:

1) Dora-Maira Massif, Western Alps (Chopin, 1984; Chopin et al., 1991; Hermann, 2003)

2) Cignana Unit, Zermatt-Saas Zone, Western Alps (Reinecke, 1991; van der Klauw et
al., 1997; Frezzotti et al., 2011)

3) Leaota Massif, South Carpathians (Sabau, 2000)

4) Rhodope Metamorphic Province, Northern Greece (Krohe and Mposkos, 2001)

5) Western Gneiss Region, Norwegian Caledonides (Smith, 1984; van Roermund, 1998)

6) Northeast Greenland Caledonides (Gilotti and Krogh Ravna, 2002)

7) Saxonian Erzgebirge, Germany (Nasdala and Massonne, 2000)

8) Sudetes Mountains, Poland (Bakun-Czubarow, 1991)

9) Maksyutov Complex, Southern Urals (Leech and Ernst, 1998)

10) Kokchetav Massif, Kazakhstan (Sobolev and Shatsky, 1990)

11) Tian Shan, Kyrghyzstan/China (Tagiri et al., 1995; Zhang et al., 2002)

12) Kaghan Valley, Pakistan Himalaya (O’Brien et al., 2001; Treloar et al., 2003)

13) Tso-Morari Complex, eastern Lakakh, Indian Himalaya (Sachan and Mukherjee, 2003)

14) Su-Lu Terrane, Eastern China (Zhang et al. 1995; Zhang and Liou, 1998)
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15) Dabie Shan, Central China (Wang et al., 1989)

16) North Qinling, Central China (Liu et al., 2003)

17) North Qaidam, Tibet Plateau, China (Yang et al., 2002; Song et al., 2003)

18) South Altyn Tagh, China (Liu et al., 2001)

19) Bantimala Complex, Central Sulawezi, Indonesia (Parkinson et al., 1998)

20) Pan-African Nappes of Northern Mali (Caby, 1994)

21) Pan-African Nappes of Minas Gerais State, Brazil (Parkinson et al., 2001)

22) Lanterman Range, North Victoria Land, Antarctica (not shown on figure 3.1)

(Ghiribelli et al., 2001; Palmieri et al., 2003)

Note that some of the above occurrences, such as the ones at points 3), 8), 9) and 22), are
currently less certain with respect to the others and require further confirmation (Carswell et

al. 2005).

Statistically, the majority of the UHP metamorphic remnants are preferentially preserved
within mafic rocks. In particular, most UHP index minerals survive as inclusions within stiff
host minerals such as garnet and zircon (see references listed above). These mafic rocks
largely occur within continental crustal terrains consisting of large bodies of ortho- and para-
gneisses, which are supposed to play a buoyant-geodynamic role in driving the exhumation
of denser UHP mafic rocks (A-type continent-continent collision) (Carswell et al., 2005 and

reference therein).

On the other hand, only two recognised UHP metamorphic terrains represent remnants of
deeply subducted oceanic lithosphere (B-type continent-continent collision). These are the
Zermatt-Saas Zone in the Western Alps and the Sulawesi terrain in Indonesia (Reinecke,

1991; Parkinson et al., 1998).
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Figure 3.1 Simplified global tectonic map showing the UHP metamorphic terrains listed in

the main text (the numbers are for reference to the list). After Carswell et al. 2005.

3.2 The Dora-Maira Massif: a type locality of UHP metamorphism in

subducted continental crust

The Dora-Maira Massif (DMM) together with the Monte Rosa and the Gran Paradiso

Massifs constitute the “Internal Crystalline Massifs” of the Pennine Domain in the Western

Alps (Beltrando et al. 2010). The DMM as described in the review by Carswell et al. (2005)

is a nappe pile composed of continent-derived tectonic units locally separated by thin ocean-

derived units of the Piemonte Zone. Figure 3.2 reports a schematic tectonic map of the

Western Alps
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Figure 3.2 Tectonic map of the Western Alps (taken from Beltrando et al., 2010). A: Acceglio
Zone; AG: Argentera Massif; AM: Ambin Massif; AR: Arolla Series; Bl: Brossasco—Isasca
UHP Unit; C: Combin Zone; ECM: External Crystalline Massifs; F: Furgg Zone; GP: Gran
Paradiso Massif; IVZ: Ivrea Zone, 1Z: Internal Zone; LC: Lago di Cignana UHP Unit; M:
Money Unit; MB: Mont Blanc Massif; MF: Mont Fort Unit; MR: Monte Rosa Massif; MV
Monviso Massif; P: Pinerolo Unit; PM: Pelvoux Massif; Q. Queyras Schistes Lustrés; R:
Rutor Massif; SL: Serie dei Laghi; SM: Siviez—Mischabel; TPB: Tertiary Piemonte Basin,
VA: Vanoise; VO: Voltri Massif; VS: Valpelline Series;, ZH: Zone Houillere; ZS: Zermatt—
Saas Zone. Star indicates location of the UHP Lago di Cignana Unit.
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Vialon (1966) carried out the first modern work on the Dora-Maira massif, describing it as
representing the deep structural roots of the internal Western Alps exposed in a large tectonic
window. It forms a broad half-dome delimited on the east by boundary faults and Tertiary

fill of the Po basin and overlain by oceanic Penninic nappes on the west.

In general, the Dora-Maira tectonic units derive from reworking of former Variscan
continental crust and of the associated Triassic cover, which experienced different
metamorphic peak conditions during the Alpine subduction to HP and UHP conditions (e.g.

Carswell et al., 2005).

The southern and most famous part of the DMM is composed by four metamorphic units

described below: (1) San Chiaffredo (2) Rocca Solei; (3) Pinerolo; (4) Brossasco-Isasca.

The San Chiaffredo and Rocca Solei units

The San Chiaffredo and Rocca Solei Units are very similar: they both represent portions of
pre-Alpine continental crust consisting of Variscan metamorphic basement equilibrated at
amphibolite-facies conditions and subsequently intruded by Permian granitoid bodies. The
metamorphic basement consists of a garnet-bearing micaschist with micaceous gneiss,
marbles and eclogites. On the other hand, the granitoid bodies consist mainly of fine-grained

orthogneiss and augen-gneiss (Matsumoto and Hirajima, 2000).

The analysis performed by Matsumoto and Hirajima (2000) on the garnet-bearing
micaschists revealed a complex metamorphic evolution of this unit that, however, is
consistent with the evolution of adjacent HP and UHP units (see below). The zoning pattern
of large garnet crystals and the distribution of solid inclusions within them, suggest two main
metamorphic stages of garnet growth. The first stage, interpreted as pre-Alpine in origin,

leads to formation of garnet cores with low pyrope content that enclose staurolite inclusions;
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the second stage, related to HP conditions during the Alpine metamorphism, leads to the
formation of garnet richer in pyrope component and enclosing chloritoid inclusions. Finally,
a last garnet growth event takes place during a low-pressure (LP) exhumation event
characterized by a tiny Mn enrichment along the garnet external rim (Sandrone and Borghi
1992; Matsumoto and Hirajima 2000). Chopin et al. (1991) suggested that the peak
conditions of these units, in the southern Dora-Maira, were probably close to the reaction
curve of albite breakdown to give jadeite and quartz at about 1.5 GPa and 550 °C at the
quartz-eclogite facies stability field. However, they also pointed out that further
mineralogical studies on less deformed rocks are necessary to better define the maximum
pressure conditions of these units. Recently, Groppo et al. (2019) suggested, on the base of
pseudosection modelling and internally consistent thermobarometric estimates, an eclogite-

facies metamorphism for these two units at about 500-520 °C and 2-2.4 GPa.

Finally, it is interesting to note that, as reported in a short note by Compagnoni et al. (2012),
due to their similarities, the San Chiaffredo and Rocca Solei Units, located to the north and
south of the UHP unit respectively, could possibly be the same unit just repeated by folds.
However, according to these authors, it seems highly unlikely that such a geometry would
allow the insertion between them of the UHP Brossasco-Isasca unit, which has been

interpreted with a different peak metamorphic condition and subsequent exhumation history.

The Pinerolo unit

The Pinerolo unit (in some cases reported also as Sanfront-Pinerolo unit) is tectonically
exposed below the UHP unit and it is a metasedimentary sequence with graphite-rich lenses,
quartzite layers and local granitic intercalations. It represents the lowest structural unit
exposed in the internal Western Alps and it has been interpreted as a distal part of the more

external European Brianconnais platform (Avigad et al. 1993).
23



Several studies on this unit, mostly by Avigad and co-authors (1993; 2003), described two
main metamorphic stages distinguished by the presence of solid inclusions and changes in
the chemical composition of garnet porphyroblasts within the metapelitic rocks. The garnet
cores display low Ca, Mg and Mn contents; the Spessartine component increases from the
garnet cores towards the rims. The presence of staurolite solid inclusions in the early-formed
garnet cores has been taken as evidence for pre-Alpine metamorphism. Differently, the
garnet rims, containing phengite and chloritoid inclusions, have been related to a second
stage of garnet growth, during Alpine blueschist-facies metamorphism. The coexistence of
staurolite and chloritoid allowed Avigad et al. (2002) to estimates temperature of 500°C for
this first metamorphic stage with a maximum pressure of 0.6-0.7 GPa. For the second
metamorphic stage, Si-rich phengite in the matrix of the rocks, in equilibrium with the garnet
rim, and the occurrence of chloritoid with a Fe/(Fe + Mg) ratio of about 0.8 gave P-T
conditions of about 0.8 GPa and 530 °C which are within the epidote-blueschist facies
conditions. More recently, however, Groppo et al. (2019) suggested notable different
metamorphic condition of this unit suggesting, similarly to th San Chiaffredo and Rocca

Solei units, a eclogite-facies metamorphism at T of about 500-520 °C and P of 2-2.4 GPa.

The Brossasco-Isasca UHP unit

The Brossasco-Isasca unit is the one in which Chopin (1984) firstly described the coesite
inclusions in garnet from phengite- and garnet-bearing whiteschists. It consists of a portion
of pre-Alpine continental crust (essentially paraschists) equilibrated under amphibolite-
facies conditions and intruded by Permian granitoids. During the Alpine event, with respect
to the other units, the Brossasco-Isasca reached the highest P and T conditions of re-
equilibration with a metamorphic climax within the coesite/diamond stability field (e.g.

Hermann, 2003) (see below).
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The Brossasco-Isasca unit, as other UHP units, is usually described as “tectonically
sandwiched” between the two lower-grade units Rocca Solei, at the top, and the Pinerolo, at
the bottom (Figure 3.3), that record lower P and T conditions during the Alpine re-

equilibration.

Brossasco-Isasca Unit

Polymetamorphic Complex
PamsdiﬂswmniddleTeduﬁnmﬁnubla
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Figure 3.3 Tectono-metamorphic sketch map of the southern part of Dora-Maira Massif
(modified from Castelli et al. 2007).

After the first paper by Chopin (1984), numerous structural and petrological studies have

been carried out to clarify the petrologic and tectonic evolutionary frame of this UHP unit
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(e.g. Michard et al. 1993; Compagnoni et al. 1994; Chopin and Schertl, 1999; Rubatto and

Hermann, 2001; Hermann, 2003; Ferrando et al. 2009; Gautiez-Putallaz et al., 2016).

The Brossasco-Isasca UHP Unit consists of two main lithostratigraphic complexes (e.g.
Compagnoni et al. 1995): (1) the Mono-metamorphic and (2) the Poly-metamorphic
complexes. The first one consists of orthogneiss with local relics of meta-granitoids, hosting
lens-shaped bodies and layers of pyrope-bearing whiteschist derived from metasomatic
reworking of Variscan granitoids during the Alpine orogeny (Gebauer et al., 1997).
Differently, the Poly-metamorphic complex consists of paragneiss and mica-schists with
intercalations of eclogite and marble deriving from the Alpine reworking of Variscan,
amphibolite-facies, metamorphic basement rocks, which therefore clearly retain the record
of two superposed orogenic cycles, Variscan and Alpine (e.g. Compagnoni et al., 1995). It
represents the metamorphic country-rock in which the granites, forming the
Monometamorphic complex intruded during the Permina age (Compagnoni et al., 2005).
Figure 3.3 reports a schematic geological map of the Brossasco-Isasca unit showing the

spatial distribution of the main rock formations.

The poly-metamorphic complex

This complex mainly includes paragneiss with marble and eclogite layers that locally
preserve relics of pre-Alpine parageneses and microstructures (Compagnoni et al. 1995;

Carswell et al., 2005).

The most frequent rock-type in this complex is a kyanite and almandine-bearing micaschist,
showing garnet crystals up to 2 cm in size. The main Alpine mineral association of these
rocks consists of phengite, kyanite, quartz, jadeite with abundant accessory rutile and minor

zircon and tourmaline (Compagnoni et al., 1995). Another generation of fine-grained
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acicular kyanite appears to replace previous sillimanite crystals, or former andalusite in
(meta-) hornfelses around the Permian (meta-)granitoid. Finally, a decompression event is
attested by the replacement of jadeite crystals by albite and paragonite and of the garnet

crystals by biotite and chlorite.

Porphyroblastic kyanite and garnet (almandine-rich in composition) bear plenty of solid
inclusions which, in some instances, define a local foliation within the host crystals
(Compagnoni et al. 1995). Garnet usually contains inclusions of chloritoid, rutile, staurolite,
kyanite, jadeite, quartz and coesite. While the kyanite inclusions are ubiquitous, staurolite,
quartz and chloritoid occur in the core and mantle of the garnet host only (Groppo et al.

2019). Coesite is also found only at the garnet rim (Compagnoni et al. 1995).

Ferraris et al. (2000) revealed the occurrence of nano-scale exsolutions of quartz + talc in
large phengite flakes, which they interprete as the result of exhumation into the quartz

stability field, producing a phengite increasingly depleted in celadonite component.

The eclogites within the poly-metamorphic complex form rare and small bodies likely
derived from boudinage of previous concordant mafic layers (Castelli et al. 2010). At the
contact with the country paragneiss, the eclogite often shows a thin garnetite layer. The
eclogite is fine-grained and the main mineral association is represented by garnet, omphacite,
phengite and quartz. Minor phases are zoisite, rutile, zircon and apatite. Omphacite and
phengite, different from quartz, that shows granoblastic textures, line along a peak
metamorphic foliation. However, the occurrence of coesite inclusions within omphacite
crystals suggest that the quartz aggregate derives from previous coesite. Retrograde
metamorphism of this eclogite is characterized by formation of fine-grained symplectitic
intergrowths of diopside, albite and green amphibole after omphacite and of biotite and

oligoclase after former phengite (Hermann, 2003; Groppo et al. 2007).
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The marbles of the poly-metamorphic complex consist of calcite and dolomite-rich layers
embedded within the paraschists. Marbles are locally associated with thin and discontinuous
films of micaschists and eclogite. Two major lenses occurring close to Costa Monforte
correspond to phengite-bearing calcite marbles. Locally, these lenses contain silicate-rich
domains showing a mineral assemblage of garnet, pyroxene, phengite, epidote and titanite.
These minerals display a preferred orientation within the marble that is parallel to the
regional UHP foliation (Castelli et al. 2007). Detailed microstructural, petrological and
crystallographic data suggest that the marbles underwent the same Alpine metamorphic

evolution as the country paragneiss (Ferraris et al., 2005; Castelli et al., 2007).

The mono-metamorphic complex

This complex prevalently consists of orthogneisses that locally preserve the relics of their
(meta)granitoid protolith: these rocks are associated with lenses of pyrope-bearing
whiteschists and with rare, dyke-shaped, bands of a garnet-jadeite-kyanite-quartz granofels
(Carswell et al., 2005). The orthogneiss constitutes over 90% of the Mono-metamorphic
complex; the field appearance, depending on the strain distribution within the rock, can
change from augen-gneiss textures into fine grained mylonites. Usually, the orthogneiss
shows greenschist-facies assemblages including quartz, albite, biotite, chlorite, phengite
with low celadonite content, epidote, titanite and other accessory minerals (see Carswell et
al., 2005 for a detailed review). However, this rock locally retains the evidence of a former
UHP event, as suggested by porphyroclastic, highly celadonitic, phengite and by aggregates

of titanite associated with grossular rich garnet; no coesite has been found in the orthogneiss.

The metagranitoids are interpreted as the products of a static Alpine metamorphic
transformation of Variscan protoliths (275 Ma), as suggested by zircon U/Pb dating
(Gebauer et al., 1997). The metagranitoids still preserve the original igneous structure and

are granitic to granodioritic in composition. They can locally include aplitic dykes together
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with microgranular enclaves and cm to m sized xenoliths of the country rocks (Carswell et
al., 2005). The static Alpine overprint of such metagranitoid occurs with development of
garnet + phengite coronas around igneous biotite and with replacement of igneous
plagioclase by symplectites of zoisite. Fine-grained sugary quartz aggregates after the
igneous quartz suggested to Compagnoni et al. (1995) the possible replacement of former
coesite. Evidence that this rock likely passed through UHP is provided by some coesite-

bearing mafic enclaves (personal communication of David R. Snoeyenbos to C. Chopin).

Chopin (1984) described the garnet-jadeite-kyanite-quartz (previous coesite) granofels as
“weathered bluish rock devoid of mica”. They occur within the pyrope-bearing whiteschists
as thin layers (from 10 to 20 cm in thickness and several meters long) and show UHP mineral
assemblages such as coesite included in kyanite and jadeite. Schreyer et al. (1987) and Sharp
et al. (1993) interpreted the origin of these rocks as the product of partial melting of the host
whiteschists protolith. However, convincing evidence for this interpretation is still lacking

(Hermann, 2003).

The pyrope-bearing whiteschists occur within the orthogneiss as lenses of variable size.
Peculiarity of these rocks is the size of the garnets ranging from few mm up to megablasts
25 cm across, often showing a sub-idiomorphic habitus. They present an almost pure pyrope
composition and most of them, especially the largest crystals, are quite homogeneous in
composition across the entire volume of the grains (e.g. Schertl et al. 1991). However,
Compagnoni and Hirajima (2001) reported the rare occurrence of super-zoned garnet in
these rocks, which has been related to a metasomatic process taking place during the
prograde path towards UHP conditions. Further detail on the pyrope-bearing whiteschists

are discussed in the next section.

Pyrope-bearing whiteschists and their origin
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At the outcrop scale, the whiteschists appear as a heterogeneous lenses with an apparent
thickness of 1 to about 30 m and up to about 50-100 m length. They occur within the
orthogneiss of the Mono-metamorphic complex. The contact with the surrounding rocks can
be either sharp or transitional, with the interposition of phengite-rich gneiss locally
presenting relics of K-feldspar. These contact layers can be of variable thickness, from few

centimetres to metres across (e.g. Schertl et al., 1991; Compagnoni and Hirajima, 2001).

In general, the mineral assemblage mainly consists of quartz (previous coesite) + phengite +
kyanite + garnet + talc (e.g. Chopin, 1984). The whiteschists can therefore be described as
garnet-bearing quartz-schist. Based on their bulk chemistry (Chopin, 1984; Hermann, 2003),
they are divided in two groups: SiO: saturated (or, in terms of possible protolith, chlorite
poor-) and SiO: under-saturated (or chlorite rich-) whiteschists. In SiO; under-saturated
domains, quartz hardly reaches 5-10 vol% and the rock contains larger amount of phengite,
garnet and kyanite (e.g. Gautiez-Putallaz et al. 2016). In the SiO; saturated variety, quartz
reaches up to 40-50 vol% while phengite and garnet are less abundant. In particular, garnet
changes slightly its composition and size as function of the bulk chemistry: it is larger (up
to 25 cm across) with almost pure and homogeneous pyrope composition in under-saturated
whiteschists, while in the SiO;-saturated domains it is smaller and richer in almandine
component (up to 15 wt% at the core). Compagnoni and Hirajima (2001) also documented
few examples of super-zoned garnets showing up to 60% of almandine component at the
core. Along with garnet, phengite is an important marker of the evolution of these rocks.
Based on the microstructure and mineral chemistry of mica, Hermann (2003) found up to 5
evolution stages in whiteschists starting from the peak assemblage (stage A) and proceeding
toward the retrograde processes (up to stage E) (Figure 3.4). The first recrystallization stage
A consists of garnet, large phengite crystals (Si up to 3.60 a.p.f.u.), kyanite and coesite (now

mainly quartz) with accessory rutile and zircon and represents the metamorphic climax of
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these rocks. During the second stage B, a phengite + kyanite + talc + quartz corona formed
at the contact between phengite and garnet. Phengite shows an average Si-content of about
3.55 a.p.fu., lower than phengite formed during stage A, locating this evolution stage at a
lower metamorphic grade. Stage C, characterized by an even more reduced grain size,
consists of biotite, phengite (Si ~3.39 a.p.f.u.) with minor talc and kyanite. In this stage,
biotite reaches up to 3.02 a.p.f.u. of Si content. Stage D, found in contact with the garnet
wall, consists of biotite (Si ~2.80 a.p.f.u.) and chlorite. Finally, stage E represents the garnet
breakdown along cracks, where it is mainly replaced by chlorite and by minor amounts of
biotite. In some cases, a retrograde overgrowth of pure muscovite on previous phengite has

been documented.
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Figure 3.4. Microphotograph (on top) and a sketch drawing (bottom) of a whiteschist
showing a multistage corona between peak metamorphic garnet and phengite with
highlighted the different evolution stages (taken by Hermann, 2003). Capital letters (4, B,
C, D and E) represent the different evolution stages as reported in the main text.
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Another key feature of these rocks is represented by the index mineral inclusions found
inside garnet and subordinately kyanite, that mainly correspond to rutile, zircon, kyanite (in
garnet), chlorite, talc, coesite, and other subordinate phases such as ellenbergerite and Mg-
dumortierite (e.g. Chopin, 1984). Chopin (1984) firstly described the occurrence of coesite
inclusions in garnet from these rocks, showing partially preserved coesite cores surrounded
by palisade quartz structures. Notably, these microstructures are often surrounded by radial
cracks of the adjacent garnet host that (Chopin, 1984) interpreted as the result of volume
increase during the coesite to quartz transition along the exhumation pathway of these rocks.
The discovery of coesite inclusions in this subducted slice of continental material (Chopin,
1984) demonstrated, for the first time, that such rocks reached minimum pressures of about
3 GPa. In terms of depth of subduction, using the hydrostatic approximation, such a value
would correspond to approximately 90 km. At the time of discovery, this evidence led the
scientific community to consider new geodynamic concepts, such as the possible depths
reached by subducted crustal materials, the processes driving the exhumation of eclogite
facies rocks, the extent of crustal recycling in the deep Earth; processes that, after all, are

still explored and debated nowadays.

The origin of whiteschist is still matter of debate. In his first paper, Chopin (1984) attributed
these rocks to metasomatism of previous meta-evaporitic rocks. Several subsequent oxygen
isotope studies demonstrated that the whiteschists represent a metasomatized granite (Schertl
and Schreyer 2008; Ferrando et al. 2009; Gautiez-Putallaz et al., 2016). However, the origin
and the tectonic context of this metasomatic event are still controversial. Several studies
attributed the metasomatic event to a prograde Alpine event. As an example, Compagnoni
and Hirajima (2001) attributed the metasomatic event to an early episode of fluid release

during partial dehydration of serpentinites located to lower levels of the slab during initial
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subduction. More recently, Gautiez-Putallaz et al. (2016) pointed out that such a scenario is
difficult to reconcile with the observation that the surrounding gneisses appear unaffected
by such a fluid influx. Therefore, they suggested, based on oxygen isotopes systematics
combined with zircon dating and thermodynamic modelling, that the whiteschists had
already acquired their Mg-rich and low 8'%0 signature before subduction, concluding that
the main metasomatic transformation took place before the HP and UHP metamorphism.
Alternatively, they proposed an oceanic environment for the origin of this metasomatic event
speculating that the continental sequence of the Dora-Maira could be a continental sliver that
was part of hyper-extended margin during the Jurassic rifting, in agreement with the

reconstruction given by Beltrando et al. (2010).

P-T path of the Brossasco-Isasca UHP unit

The oldest event, found within the Paraschist of the Polymetamorphic Complex, is the pre-
Alpine recrystallization in amphibolite facies conditions represented by pseudomorphs after
andalusite and sillimanite in association with pre-Alpine biotite and plagioclase which was
later substituted by jadeite quartz and zoisite. Further, the presence of metatects within the
paragneiss suggested an incipient melting during the Variscan HT metamorphism
(Compagnoni et al., 1995; Groppo et al., 2007). On the other hand, the prograde path of the
Brossasco-Isasca unit, during the Alpine orogeny, has been mainly constrained combining
P-T index mineral inclusions with classical thermobarometric methodologies. In this regard,
while there has been a general agreement in constraining the Alpine peak temperature around
730-750 °C since the first evaluations (e.g. Chopin 1984; Sharp et al. 1993), the peak
pressure value has been more debated. Chopin (1984; 1987) gave a P value of about 3.3 GPa.
Later, Schertl et al. (1991) found slightly higher P values around 3.7 GPa. Ferrando et al.

(2009), from the whiteschists, inferred three prograde Alpine stages corresponding to: about
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1.6 GPa at T lower than 600 °C the first, 2.1 GPa and 600 °C the second and about 2.8 GPa
at 650 °C for the last one. However, Hermann (2003), combining experimental results in
the KMASH system together with petrologic information, was the first to suggest that the
BIU unit reached the diamond stability field with a metamorphic climax of about 4.3 GPa at
730 °C. Later, similar conditions were found by Castelli et al. (2007) even if diamond has
never been recorded in these rocks. Finally, the retrograde path has been interpreted as a
significant decompression followed by cooling. The major evidences of this stage are
represented by symplectitic structures characterized by biotite (phlogopite-rich), kyanite and
talc assemblages in replacing the contact between UHP phengite and garnet (Chopin, 1984;
Schertl et al. 1991). Therefore, the whole Alpine evolution is defined by a clockwise path in
the P-T space with an extremely narrow loop consistent with a fast exhumation (see Figure

3.5).

Timing of UHP metamorphism in the Dora-Maira Massif

From the first 3*Ar-**Ar data (e.g. Monie & Chopin, 1991), the UHP metamorphism of the
Brossasco-Isasca unit was Cretaceous in age. However, later geochronological studies have
suggested different conclusions. For instance, Tilton et al. (1989) was the first to suggest a
Tertiary age for the UHP metamorphism. They proposed, by means of conventional U-Pb
and Sm-Nd systematics in zircon and garnet respectively that the growth of pyrope in the
UHP whiteschists occurred at 38—40 Ma. Later, Gebauer et al. (1997) further supported these
results constraining the age of the metamorphic zircon domains at 35.4 £ 1.0 Ma. This age
was also confirmed by Duchene et al. (1997), who reported a Lu—Hf age of 32.8 = 1.2 Ma,

obtained on a garnet—whole-rock pair from a pyrope whiteschist.

Rubatto & Hermann (2001) further refined the P-T—t path of the Brossasco-Isasca unit using

SHRIMP in situ dating on single growth zones of titanite crystals within calc-silicate nodules
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in marbles. Their results suggested a mean age for the UHP at 35.1 + 0.9 Ma with other two
retrograde processes, developed during exhumation, at 32.9 = 0.9 Ma, and at 31.8 = 0.5 Ma.
Combining these radiometric data with a zircon fission track age of about 30 Ma (Gebauer
et al., 1997), and with the assumption about the conversion of pressure to depth, they
estimated a maximum exhumation rate of 3.4 cm/year. This allowed the reconstruction of
one of the best-documented exhumation paths for UHP terrains. Furthermore, these rates
imply that exhumation acted at plate tectonic speeds similar to subduction, and was
significantly faster than erosion, thus suggesting that exhumation is driven by a combination

of tectonic processes involving buoyancy and normal faulting (Rubatto & Hermann, 2001).

Figure 3.5 reports selected Alpine and pre-Alpine (blue curve) P-T-t paths for the Brossasco-

Isasca unit.
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Figure 3.5. Selected P-T paths proposed for the Alpine and pre-Alpine (blue curve: pA)
events recorded in the Brossasco-Isasca unit and the metamorphic climax for the San
Chiaffredo (S.C.) and Pinerolo (P) units. Grey solid ellipses labelled A to E are the P-T
conditions of prograde, peak and retrograde stages by Ferrando et al. (2009) for the
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Brossasco-Isasca UHP unit, whereas grey dotted ellipses are those estimated by Hermann
(2003) for the same unit. The error bars of ages refer to the geochronologically dated P-T
estimates of Rubatto & Hermann (2001). Modified from Castelli et al., 2014.
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Chapter 4

Sample description and characterization

The pyrope- and coesite-bearing whiteschists outcrop in two different classic localities, one
next to Case Ramello, near Parigi at Martiniana Po, and the other one close to Case Tapina,
near Canova, in the Gilba valley. Hereafter, they will be referred as Martiniana and Gilba,
respectively. Figure 4.1 reports their position within the Brossasco-Isasca unit and two

representative pictures of the rocks.

Brossasco-lsasca Unit

Polymetamorphic Complex
Bmmmnrmmm

Emmm
Ewm

Monometamorphic Complex
.mmmmmmmm

Pinerolo Unit

£

Rocca Solei Unit

Figure 4.1. Tectono-metamorphic sketch map of the Brossasco-Isasca unit (modified from
Castelli et al. 2007). The two white stars indicate the Gilba (G) and Martiniana (M)

outcrops.

At a first glance, the main difference between them is the shape of the pyrope megablasts,
occurring as idiomorphic single crystals in Martiniana and as rounded ones in Gilba (Fig.

4.1, M and G pictures).
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The distinction between the two outcrops is maintained throughout the text and, even if this
is a qualitative discrimination, it is interesting that such a difference seems to be reflected

also by the microstructural features and by the abundance of solid inclusions.

4.1 Whiteschists: field occurrence and description

As described previously, the whiteschists occur as lenses within the country orthogneiss of
the Monometamorphic complex. In the field, they can be recognized due to their pale colour
with respect to the country rocks. The whiteschists display a discontinuous foliation defined
by the iso-orientation of large white mica flakes and kyanite crystals. Petrographically, these
rocks are garnet-bearing quartz-schists; the pyrope-rich garnet can be easily recognized at
the field scale because of the pink colour and the size, ranging from few millimetres up to
25 cm across (i.e. garnet neoblasts and garnet megablasts respectively). The modal
abundance of garnet is highly variable, suggesting local differences in the bulk chemistry of
the protolith (i.e. SiO:-saturated and SiO:-under-saturated whiteschists as described in the
previous chapter). Below a brief description of the main field-scale features of the two

outcrops is reported.

The Martiniana outcrop

The Martiniana whiteschists display the largest modal abundance of idiomorphic pyrope
megablasts. In some cases, for instance, it is possible to recognize the 4-fold axis (see Figure
4.2A). Locally, the modal amount of garnet megablasts can be as high as 80 % of the rock
volume forming impressive clusters. Garnet megablasts and neoblasts usually present a

greenish-to-yellowish external rim consisting of weathered chlorite and talc caused by partial
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retrogression. Mesoscale polished sections of the garnet megablasts show that this alteration

can be significantly developed, up to the complete replacement of garnet (Figure 4.2B).

Figure 4.2. (A) Single pyrope megablast with idiomorphic shape. (B) Quartz-schist bearing
a well shaped, partly chloritised pyrope megablast and anhedral centimetre-size very pale
pink pyrope crystals in the quartz-phengite-kyanite groundmass Martiniana outcrop.

On the other hand, the freshly preserved rocks consist of pink garnet, transparent quartz,
colourless kyanite and abundant white mica that, with talc, confers the rock the typical
whitish colour. The small-sized garnets display irregular shapes, varying from rounded to
slightly elongated crystals. Figure 4.2 B reports the cut mesoscopic section of a whiteschist

sample from this specific outcrop.

The high to ultrahigh pressure foliation structuring the whiteschists is apparently unaffected
by the strong greenschists mylonitization described by Henry et al. (1993) that brings
multiple folding and transposition of the UHP structures. In many places however, a
reconstruction of the structural patterns of whiteschists is hampered by the dense vegetation

and by the fact that these rocks occur as loose blocks of variable dimensions.
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The Gilba outcrop

The Gilba whiteschists are characterized by a slightly minor modal amount of garnet
megablasts that, also in this case, reach dimensions up to 15-20 cm across. Differently from
Martiniana, the Gilba garnet megablasts are usually rounded or irregular in shape. In general,
the Gilba whiteschists are better preserved. The garnet megablasts are pinkish in colour,
display a lower extent of retrograde reworking and are less affected by weathering. Figure
4.3 shows the mesoscopic section of a Gilba coarse-grained rock sample containing several
garnet megablasts overgrowing a continuous rutile and biotite foliation whose orientation

appears concordant with fracture systems inside the garnet megablasts.

The samples collected from this outcrop are from blocks that are not in place and a

comparison with the local foliation is meaningless.

Figure 4.3. Coarse-grained pyrope-bearing quartz-schist from the Gilba locality
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4.2 Petrography and chemistry of whiteschists

Whiteschists with garnet neoblasts (SiO2-saturated)

Under the optical microscope, the rock mesoscale foliation visible in the field is difficult to

follow (Figure 4.4 A).

Figure 4.4. (A) Thin section of a SiO:-saturated whiteschist under cross-polarized light.
Phengite, garnet and quartz are easily distinguished. Locally a slight iso-orientation of
phengite flakes is apparent along the NE-SW direction of the observation plane (high-lighted
by the red arrow). (B), granoblastic and elongated textures of quartz constituting the rock
matrix of SiO:z-saturated whiteschists. (C), retrogression corona around a garnet neoblast

in contact with phengite crystals.
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Quartz, the most abundant mineral in these rocks, display a granoblastic texture with triple
junctions. In some cases, however, close to the interface with other minerals, the quartz

appears stretched and elongated (Figure 4.4-B).

These particular textures resemble the coarse palisade structures developed around partially
preserved coesite inclusion at the contact with the garnet host; in previous studies (e.g.
Chopin,1984; Schertl et al., 1991) they have been interpreted as the retrograde products of
former coesite. Indeed, these particular textures have been taken as evidence that these rocks,

at metamorphic peak conditions, were coesite-schists that later retrogressed to quartz-schists.

In SiO:-saturated whiteschists the garnets are small and display irregular shapes. These

garnets are frequently replaced by retrograde assemblages.

Fresh garnet usually appears completely transparent, fractured and hosts different type of

solid inclusions such as kyanite, rutile, zircon, coesite.

Table 4.1: Representative chemical analyses of garnet neoblasts

Label Line 1 DM17- Line 2 DM17- Line 4 Line 5 DM17- Line 12 Line 14
8A2 8A2 DM17-8A2 8A2 DM17-8A2 DM17-8A2
note rim rim mantle mantle core core
SiO2 44.08 44.20 44.06 43.87 43.88 44.08
TiO2 0.00 0.03 0.00 0.00 0.00 0.00
AlOs 25.63 25.97 25.63 25.55 25.20 25.24
Cr203 0.01 0.04 0.00 0.00 0.00 0.00
MgO 28.86 28.63 27.58 27.62 26.85 27.26
FeO 1.35 1.06 1.88 1.78 3.34 3.21
MnO 0.00 0.01 0.00 0.02 0.00 0.01
CaO 0.08 0.05 0.78 0.75 0.33 0.20
Total 100.00 99.99 99.93 99.59 99.60 100.00
Recalculated formula
Si 2.98 2.98 2.99 2.98 3.00 3.00
Ti 0.00 0.00 0.00 0.00 0.00 0.00
Al 2.04 2.06 2.05 2.05 2.03 2.02
Cr 0.00 0.00 0.00 0.00 0.00 0.00
Mg 2.91 2.88 2.79 2.80 2.74 2.77
Fe2+ 0.08 0.06 0.11 0.10 0.19 0.18
Mn 0.00 0.00 0.00 0.00 0.00 0.00
Ca 0.01 0.00 0.06 0.05 0.02 0.01
Total 8.00 7.99 7.99 7.99 7.98 7.99
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Microprobe analyses of garnet show an almost pure pyrope composition. Element profiles
and element mapping reveal a slight Mg-Fe zonation of these crystals ranging from 90% to
98% in pyrope component from core to rim respectively. Table 4.1 reports representative

chemical analyses of garnet neoblasts while Figure 4.5 displays their chemical zonation.
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Figure 4.5 Chemical maps (top) and E-W measurements profiles (bottom) of MgO, FeO and
CaO concentrations in garnet neoblasts.

After quartz, white mica is the most abundant mineral in these rocks; it mainly appears as
large flakes that can reach several millimetres in size. The textural features suggest the
presence of at least three main generations of mica: (1) a first generation consisting of large
flakes defining the main rock foliation; (2) a second generation of tiny and randomly oriented
grains growing in between the contacts of granoblastic quartz crystals in the rock matrix; (3)
a third generation developed at contact with garnet crystals, where white mica develops

retrograde symplectitic coronas, as reported by Hermann (2003) (Figure 4.4-C).
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The chemical analysis of white mica (1) reveals high contents in celadonite component (Si
~3.48 a.p.f.u.) that decreases in the fine-grained mica (2). The fine-grained mica (3) consists
mainly of phengite (coexisting with biotite) with the lowest Si content. Table 4.2 reports

representative analyses of phengitic mica.

Table 4.2: Representative analyses of white mica

Stage 1 2 3
Mineral Phe Phe Phe
Si02 52.2 53.46 51.55
TiO2 0.08 0.28 0.1
Al203 25.61 24.8 28.94
FeO 0.13 0.12 0.12
MgO 533 5.09 4.21
CaO 0.12 0.06 0.06
Na20 0.54 0.15 0.71
K20 10.2 11.36 9.43
Total 94.21 95.32 95.12
Recalculated formula on 11 oxigens
Si 3.48 3.53 3.10
Ti 0.00 0.01 0.00
Al(TV+VI) 2.01 1.93 2.05
Fe?* 0.01 0.01 0.01
Mg 0.53 0.50 0.38
Ca 0.01 <0.01 <0.01
Na 0.07 0.02 0.08
K 0.87 0.95 0.72
Total 6.97 6.97 6.93

Kyanite is abundant in these rocks; it appears both as inclusion within garnet and as a free
crystal in the rock matrix. In both cases, however, these crystals present a lot of solid
inclusions (mainly talc, rutile and zircon) and stretched fluid inclusions that have not been

characterized in this study.

Whiteschists with garnet megablasts (SiOz-under-saturated)

These rock domains consist essentially of garnet megablasts mainly surrounded by large

phengite crystals, kyanite and rare granoblastic quartz.
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Phengite and quartz display the same textural and chemical features reported above. On the
other hand, garnet megablasts display, on average, tiny but significant differences with

respect to garnet neoblasts.

The garnet megablasts within silica undersaturated domains of the whiteschists host
numerous inclusions of kyanite, rutile, zircon, rare coesite (only at the garnet rim), biotite,
chlorite, tourmaline and subordinate rare phases like ellenbergerite and dumortierite (see
also Chopin, 1984 and Schertl et al., 1991). Some minerals found as inclusions, such as
biotite, have never been found in the rock matrix. In this regard, it is interesting to note that
garnet megablasts coming from the Gilba locality tends to be better preserved than those of
Martiniana and contain a large amount of rutile and zircon inclusions that in places are
grouped in clusters. The Gilba megablasts display a notable fracture system extending along
preferred direction within the crystal, a feature that is not shown by the Martiniana

megablasts.

Microprobe profiles along the equatorial section of garnets megablasts (about 15 cm across)
display little chemical variation from core to rim with an essentially pure pyrope
composition; a tiny Fe-Mg variation has been documented by means of laser-ablation
analysis. Appendix 1 and 2 report microprobe and trace elements analyses of garnet
megablasts while Figure 4.6 shows the variations in major and trace elements measured by

laser ablation transects.
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Figure 4.6 A) Ternary diagram showing the homogeneous chemical composition of pyrope
megablasts with respect to the garnet neoblasts. B) Representative chemical transects from
core (to the left) to rim (to the right) of a garnet megablast measured by means of laser
ablation (sample DM17-13).
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Moreover, the trace element analysis of garnet megablasts usually displays depletion in
HREE from core to rim. In some cases, however, HREE increase has been measured in the
Martiniana and Gilba garnets at the garnet external rim, probably as the result of partial

garnet resorption (Figure 4.7).
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Figure 4.7 Representative HREE variation from core to rim of a garnet megablast (sample
DM17-13)

Characterization, petrography and Raman spectra of the main solid inclusions

Index mineral inclusions have been of primary importance to reconstruct the P-T path of the
Dora-Maira whiteschists. The clearest evidence of UHP metamorphism has been inferred,
for the first time, by the discovery of coesite inclusions in garnet from these rocks (Chopin,
1984). In the present study the inclusions play a key role since they can be used for the
purposes of the elastic thermobarometry. The description and characterization of mineral

inclusions has been carried out by means of optical microscopy combined with Raman
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spectroscopy. In the following, a description of the main solid inclusions, in terms of

abundance and petrologic importance, and their Raman spectra is given.

Kyanite

Kyanite represents the largest inclusion type within the garnet megablasts; it ranges in size
from 100-200 micrometres to a maximum of several millimetres. Kyanite usually presents a
prismatic shape with twinned micro-structures. Kyanite inclusions often display a
pronounced cleavage and contain many solid inclusions, mainly talc, chlorite, rutile, zircon

and subordinated coesite (Figure 4.8).

Figure 4.8. Inclusion of kyanite within a garnet megablast showing small inclusions of
talc, white mica, rutile and zircon.

Figure 4.9 shows the Raman spectra and the wavenumbers of the main Raman peaks of a

kyanite inclusion in garnet.
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Figure 4.9 Raman spectra of a partially exposed kyanite inclusion

Rutile

Rutile inclusions are the most abundant inclusion in the Dora-Maira pyrope megablasts.
Their size can range from a few to several hundred micrometres; they usually appear as
single crystal although they can locally form inclusion clusters made of several grains. Most
of the rutile inclusions display brownish colour and rounded shape that in some cases can
appear as a strongly oblate ellipsoid (Figure 4.10 A). A few rutile inclusions show
idiomorphic or sub-idiomorphic (prismatic) shape and appear as transparent in colour
(Figure 4.10 B). Inside the garnet megablasts rutile can also occur as thin needles following
a specific arrangement along the crystallographic planes of garnet, that could suggest an

exsolution origin of TiO; lamellae (Figure 4.10 C).
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Figure 4.10. Rutile occurrences within garnet megablasts. (A) The most common occurrence
of rutile is in the form of brownish rounded inclusion. (B) Example of a rare transparent
sub-idiomorphic rutile inclusion. (C) Needles of rutile exsolution from the garnet structure.

Figure 4.11 reports the Raman spectra of a rutile inclusion within garnet with indicated the
wavenumbers of the main Raman peaks. Note that the peak broadening of rutile phonon
modes seems to be related to a strong phonon mode anharmonicity in rutile and to the

presence of impurity elements such as Nb (Lan et al., 2012).
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Figure 4.11 Raman spectrum of a partially exposed rutile inclusion. Note that the broad
peak around 250 cm-1 is a second order effect and not a proper phonon mode of the crystal
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Coesite

Coesite inclusions can be of different size, ranging from few to several hundreds of
micrometres in size. The small ones are, on average, best preserved and optically they can
appear as single pristine crystals. More frequently, large coesite inclusions display the

typical palisade texture associated with impressive radial cracks of the garnet host (Figure

4.12).

Figure 4.12. Example of coesite inclusions in garnet showing the typical palisade structure
and radial cracks in the surrounding host due to the volume expansion of the inclusion
during phase transition

In these domains, described for the first time in these rocks by Chopin (1984), coesite is
partially preserved at the core of the inclusion structure with a higher relief with respect to
the surrounding phase constituting the so-called palisade structure. Such palisade structures,
can be easily recognized at the optical microscope by the typical partitioning of the optical

extinction under cross-polarized light and consist of elongated quartz aggregates.

Coesite inclusions can be found mainly within the small garnets (i.e. garnet neoblasts) of the

SiOs-saturated whiteschists domains.
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Within the garnet megablasts, coesite is less abundant and occurs only at the garnet rim. The
best way to identify coesite is by means of Raman spectroscopic measurements. Figure 4.13

reports the Raman spectra of a coesite inclusion within a garnet.
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Figure 4.13 Raman spectrum of a partially exposed coesite inclusion

Raman spectroscopic measurements performed on single-crystal, apparently untransformed
coesite inclusions revealed, despite the optical aspect, an incipient transition and

retrogression from coesite to quartz of these crystals.

This interpretation is supported by the anomalous increase of the main Raman peak of quartz

near 464 cm’! along the rim and fractures of the inclusion (Figure 4.14).
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Figure 4.14. Single coesite inclusion, optically unperturbed, can show an anomalous
increase in the Raman peak near 464 cm™ along the rim and fractures probably due to the
incipient retrogression from coesite to quartz.

An important feature of coesite inclusions is the presence of anomalous birefringent haloes

in the adjacent surrounding host as shown in Figure 4.15.

Figure 4.15 Coesite inclusion showing birefringent haloe in the surrounding host.

These birefringent haloes are the result of the contrast in physical properties between the
host and the inclusion. At the optical microscope it appears in the form of a birefringent
rosette where the cross shaped extinction pattern is controlled by the orientation of the

microscope polarizers. These birefringent haloes have been largely used and characterized
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in the literature (e.g. Howell, 2012) since they can give complementary information on the
host-inclusion stress field and are used to identify potential inclusions to use for
thermobarometric applications. In this thesis they represent the subject of a new Raman
spectroscopy approach to determine and map strain fields in optically anomalous crystals,

which I describe in Chapter 7.

Zircon

Zircon inclusions, the second in order of abundance after rutile, are widespread across the
entire volume of both garnet megablasts and neoblasts; the inclusions range in size from a
few to 500 micrometres in diameter, showing a high relief and transparent colour. Zircon
inclusions display variable shape: from sphere-like to ellipsoidal and/or idiomorphic habits

with sharp edges and corners (Figure 4.16).

Figure 4.16. Zircon inclusions in garnet with different shape ranging from idiomorphic to
spherical (from A to D respectively).
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Most of them appear as single crystals, although clusters of inclusions in contact with each
other can also be found. Zircon inclusions can contain brownish rutile grains and other

inclusion phases such as coesite and layered silicates (see also Gautiez-Putallaz et al. 2016).

Figure 4.17 reports the Raman spectrum of a zircon inclusion. A detailed description of
zircon Raman spectra relative to its structural and chemical features is provided in Chapter
6 which also provides a new protocol for the selection of reliable zircon inclusions to use for

elastic thermobarometry applications.
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Figure 4.17 Raman spectrum of a partially exposed zircon inclusion

Also in this case, as seen for coesite inclusions, completely buried zircon inclusions display

an anomalous birefringent rosette in the adjacent surrounding host (Figure 4.18).
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Figure 4.18 Zircon inclusion showing birefringent haloe in the surrounding host.

4.3 Phase relations and main rock-forming reactions in whiteschists

In the following, a description of the main reactions and paragenesis of whiteschists are
described by thermodynamic modelling using pseudo-sections in the KFMASH system and
ternary diagrams in the reduced MAS system with fluid and phengite being considered as
excess phases. This computations are original and compared with petrographic observations
and published results. Figure 4.19 reports the stability fields of different mineral
assemblages for silica saturated and under-saturated whiteschists. Pseudo-sections have been
computed by means of Gibbs free-energy minimization implemented within the software
Perple_X (Connolly, 2005) with thermodynamic database from Holland and Powell (2002).
The bulk chemistries used are taken from Gautiez-Putallaz et al. (2016): SiO2 53 wt%, ALOs
26 wt%, FeO 3.5 wt%, MgO 14 wt% and K>O 6.6 wt% for silica undersaturated whiteschists
and SiOz 76 wt%, Al,O3 13 wt%, FeO 1.75 wt%, MgO 7 wt% and K>O 3 wt% for silica

saturated whiteschists. Water has been considered in excess in both cases.
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The main result is that in Si-rich whiteschists, quartz and / or coesite are ubiquitous over all
the considered P-T range while in Si-poor whiteschists quartz is completely consumed at

relatively low P and T to appear again in the form of coesite only at UHP conditions.

This is in agreement with the experimental results of Hermann (2003) and with the fact that
in garnet megablasts from Si-poor whiteschists no quartz inclusions have been found while
it is possible to find coesite inclusions only along their external rims. A coesite inclusion has
been found at the rim of a garnet megablast from the Martiniana outcrop. The absence of
quartz in garnet megablasts can be explained as the consequence of the difference in the

local bulk chemistry of the rocks.

This issue is clarified in the ternary MgO-Al>03-SiO> compatibility diagrams of Figure 4.20,
calculated here to explain the different parageneses (see Fig. 4.19) developed in whiteschists
as a function of their SiO;-saturated and undersaturated bulk compositions. In Figure 4.19
the mineral assemblages developed at about 16 kbar and 600 °C in both Si-rich and Si-poor
whiteschists consist of chlorite + kyanite + quartz (blue area in Figure 4.20). After this

stage, along the prograde P-T path, talc forms in both chemical systems.
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Figure 4.20. Indicative chemography in the simplified MASH system showing the
differences in the mineral assemblages due to two different starting bulk chemistry
(stars for Si-rich and Si-poor whiteschist). Dashed lines represent the minerals
involved in metamorphic reaction (in red the reaction products and in black the
reactants). Clin = clinochlore (chlorite).

The compatibility diagram (Figure 4.20 A) clearly displays that talc formation occurs

by the reaction:

quartz + chlorite 2 talc + kyanite (+ fluid in excess)

Schreyer (1988) described this reaction as the index reaction for the whiteschists
formation. In the Si-rich whiteschists (yellow star in Fig. 4.20) the reaction took place
until chlorite (the less abundant reactant) was fully consumed. Differently, in Si-poor
whiteschists (green star) the reaction took place until quartz was consumed. The
different bulk compositions thus led to formation of two parageneses: one
consiststing of quartz + talc + kyanite in the Si-rich whiteschists and another

consisting of talc + chlorite + kyanite in the Si-poor variety (Figure 4.20 A).

As a consequence, the garnet-forming reactions have been different in the Si-
rich and in the Si-poor whiteschists (Figure 4.20 B). In the first case, garnet enters

into the system by the forming reaction:
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kyanite + talc =2 pyrope + coesite (+ fluid in excess)

that proceeded until complete consumption of talc. Experimental results suggest that
in the MASH system this reaction takes place at UHP conditions (Schreyer, 1988;

Hermann, 2003) since talc and kyanite have a large stability field.

Nevertheless, following the proposed P-T path in the computed pseudo-sections
(KFMASH system), garnet starts growing at lower pressure. Note that the robust
formation of garnet (i.e. its modal amount) is restricted only at UHP conditions over
the quartz-coesite phase boundary. This could be a good point in interpreting the

origin of garnet neoblasts displaying inclusions of coesite also at the garnet-core.

The compatibility diagram for Si-poor whiteschists, suggests that the most likely

reaction forming the garnet megablasts was:

chlorite + kyanite + talc =2 pyrope (+ fluid in excess)

that proceeded until chlorite was fully consumed, leading to a kyanite + talc + pyrope
assemblage (delimited above by the green line in Figure 4.20 B). In this case the
reaction generated up to 15 vol% garnet below the quartz-coesite phase boundary (see
Figure 4.19-B) covering an important role at lower pressure with respect to the
reaction that occurred in the Si-rich whiteschists. It is interesting to note that once the
Si-poor whiteschists reached UHP conditions, talc was no longer stable with kyanite
and reacted with it to produce pyrope and coesite according to the same reaction
described above for the Si-rich whiteschists (see Figure 4.19-B and 4.20-B).
Therefore, in the MASH system, the garnet forming reactions in Si-poor whiteschists
are two rather than one. This evidence could explain formation of large amounts of

garnet during the prograde evolution of the Dora-Maira whiteschists resulting in the
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formation of impressive megablast clusters and also that, in the pyrope megablasts,

coesite inclusions only occur in the outer rim.

In general, the character of the reactions represent the process governing the chemical
zonation of garnet, mainly recorded in Si-rich whiteschists domains. As an indicative

example,

Si-poor whiteschists
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Figure 4.21. Pseudosection modelling of a Si-poor whiteschists with enriched Mg
composition. Black dashed line is the indicative P-T path by Gautiez-Putallaz et al.
(2016).

Figure 4.21 reports the effect of decreasing Fe content in the bulk chemistry of a Si-
poor whiteschist, resulting in an almost ideal KMASH system (i.e. MgO = 16 wt%

and FeO = 1.5 wt% respectively).
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The major effects of Fe-deficiency are a shift of the garnet stability field to higher
pressure conditions that is coupled with an even more significant increase in its modal
amount. Indeed, garnet passes through an indicative initial value of 6 vol% to a value
of about 30 vol% in a range of pressure between 30 to 36 kbar. The calculation of
garnet isopleths shows that this increment of garnet abundance corresponds to garnet

compositions close to pure pyrope (from 0.1 to 0.07% in almandine mole fraction).

A further difference between Si-rich and Si-poor whiteschists is represented by the
stability of biotite (Bio), highlighted in red in Figure 4.19. While in the Si-rich variety
biotite is not involved in the rock forming reactions, it can cover an important role in
Si-poor whiteschists, where its stability field expands across higher pressure

conditions intersecting the indicative P-T path followed by these rocks.

The biotite-forming reaction within the KFMASH system is:

Phengite + chlorite =2 biotite + talc + kyanite (+ fluid in excess)

These product minerals occur as solid inclusions within garnet megablasts. However,
at high pressure biotite is no longer stable and breaks down through the garnet-

forming reaction:

Biotite + talc + kyanite = phengite + garnet (+ fluid in excess)

in good agreement with natural occurrences where biotite has been found only within
core-mantle regions of garnet megablasts. No biotite inclusions appear along the
garnet rim (see also Hermann, 2003). In this regard, such results can be interpreted
as responsible for the large modal amount of rutile inclusions in garnet megablasts.

Indeed, biotite can be a good carrier of TiO; during metamorphism.
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Finally, it must be pointed out that the most important reaction in whiteschists is the
one involving the continuous exchange between celadonite and muscovite phase

components within phengite in equilibrium with garnet and coesite:
Kyanite + celadonite =2 coesite + muscovite + pyrope

This exchange-reaction occurs along a large P range and, different from the
dehydration reactions presented above, is a water-preserving reaction. Indeed the
major uncertainty in constraining the P-T position of dehydration univariant lines
arises from the difficulty in constraining the activity of water. However, this last
reaction occurs under fluid-absent conditions, thus making its application useful to
ascertain UHP conditions (See Hermann et al. 2003). In this regard, Hermann (2003)
provided by means of selected new experimental results a calibration of the phengite-
barometer using the Si content (i.e. celadonite molecule) of phengite solid solution as
a function of pressure. Coupling the experimental results with the composition of
natural phengite, Hermann (2003) firstly proposed diamond-facies conditions for the

metamorphic peak of the Dora-Maira whiteschists.

4.4 Sample preparation and inclusion selection for elastic

thermobarometry purposes

This section reports the specific methodology used for the selection of solid

inclusions to use for elastic thermobarometry applications.

Sample collection and preparation

Sample collection has been focused mainly on the garnet megablasts and neoblasts
of whiteschists from the UHP Brossasco-Isasca unit.
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Rock fragments and garnet megablasts, when possible, have been collected taking
into account their original orientation with respect the foliation of the rock.
Each collected garnet megablast has been cut in several slices each of which has been

carefully polished using diamond paste (Figure 4.22 A).

Figure 4.22 A) Garnet megablast cut in several slices. B) Selected portion from core
to rim of a garnet slice for thin section preparation.

Afterward, using a stereoscopic microscope, the selection of well-preserved portions
of garnet megablast has been performed. These portions show the lowest degree of
retrograde transformation and the lowest level of garnet fracturing. Indeed, one of the
main issue in the elastic thermobarometric method is the presence of fracture or any
other kind of discontinuity that can potentially influence the residual stress in the
inclusion (Zhang, 1998; Mazzucchelli et al., 2018). For each garnet megablast, the
selected portions have been chosen and carefully oriented in order to spatially cover
the entire volume of the garnet megablast along its equatorial plane from core to rim
(Figure 4.22 B).

Finally, at least one (in some cases also two or three) thick polished section was

prepared of each garnet portion. These sections were prepared starting from 200-250
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to 500 um thickness in order to obtain the largest possible of safely isolated

inclusions.

Inclusion selection

The selection of reliable solid inclusions has been carried out by means of optical
polarized microscopy and Raman spectroscopy.

The prerequisite for each inclusion is that, as stated above, it has to be isolated from
any kind of discontinuity (i.e. fractures, section surfaces, other inclusions). In more
quantitative terms (Zhang, 1998; Mazzucchelli et al., 2018), the inclusion must be
isolated from other surfaces by at least 3 times the inclusion radius (or the longer axis
for non-spherical inclusions). Furthermore, each selected inclusion must be single
crystal and well crystalline with a homogeneous composition across the entire grain
volume. For instance, inclusion such as pyroxenes, amphiboles or any other inclusion
that can display a large range of chemical substitution (i.e. solid solution) should be
avoided or carefully selected. This is because the position of Raman peaks,
representing the frequency of vibration of each phonon mode, expressed in
wavenumber, depend also on mineral composition. In the case of this study, solid
inclusions such as coesite, rutile, zircon and so on, usually, display a very short or
absent degree of chemical mixing with other isomorphous phases and then, the
change in the Raman shift due to this effect is negligible. The only available, and
largely used, inclusion presenting a usually small but significant degree of chemical
mixing is zircon. Hf replacing Zr in the dodecahedral site of the zircon structure is a
typical example. Chapter 6 discuss in detail this problem and shed light also on other
important factors that can strongly influence Raman spectra of zircon inclusions such
as metamictization and inherited structural heterogeneity, suggesting a protocol for

the selection of reliable zircon inclusion to use for elastic thermobarometric purposes.
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Table 4.3 reports, as a reference, the bulk moduli and thermal expansion coefficients

of the main mineral inclusions (taken from Holland and Powell, 2011).

Table 4.3

Mineral phase Ko (GPa) o (-10%)

coesite 97.9 0.12
zircon 230 0.12
kyanite 160 0.19

rutile 222 0.22
pyrope 174.3 0.24
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Chapter 5

How host-inclusion geometry and anisotropy

affects residual pressure estimates

This chapter reports the results and discussions from the published paper:

Campomenosi, N., Mazzucchelli, M. L., Mihailova, B., Scambelluri, M., Angel, R.
J., Nestola, F., Reali, A., Alvaro, M. (2018) How geometry and anisotropy affect
residual strain in host-inclusion systems: coupling experimental and numerical

approaches. American Mineralogist, 103, 2032-2035.

Original Abstract

Raman spectroscopy provides information on the residual strain state of host-inclusion
systems that, coupled with the elastic geobarometry theory, can be used to retrieve the P-T
conditions of inclusion entrapment. In-situ Raman measurements of zircon and coesite
inclusions in garnet from the Ultrahigh-pressure Dora Maira Massif show that rounded
inclusions exhibit constant Raman shifts throughout their entire volume. In contrast, we
demonstrate that Raman shifts can vary from the center to the edges and corners of faceted
inclusions. Step-by-step polishing of the garnet host show that the strain in both rounded and
prismatic inclusions is gradually released as the inclusion approaches the free surface of the
host. More importantly our experimental results coupled with selected numerical simulations
demonstrate that the magnitude and the rate of the strain release depends also on the contrast
in elastic properties between the host and the inclusion and on the inclusion crystallographic
orientation with respect to the external surface. These results allowed us to give new

methodological guidelines for determining the residual strain in host inclusion systems.
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5.1 Introduction and motivation

Models for elastic thermobarometry only apply to the simple case of elastically
isotropic host-inclusion pairs with a simple ideal geometry where a small spherical
inclusion is trapped within an infinite host (Angel et al., 2015). Recent numerical
models showed that any deviations from this idealized geometry can significantly
affect the estimation of “residual pressure” (Mazzucchelli et al., 2018). Indeed, strain
gradients in non-spherical inclusions have been already reported (e.g. Zhukov and
Korsakov, 2015; Murri et al., 2018). Moreover, several studies pointed out the effects
on the residual “pressure” determination of the inclusion size and its partial exposure
with respect to the mineral host surface (e.g. Rosenfeld and Chase, 1961; Enami et
al., 2007; Zhang, 1998; Mazzucchelli et al. 2018). Nevertheless, open questions still
remain, including:

1) what is the effect of the inclusion anisotropy on the residual strain release?

2) How much can the contrast in properties between the host and the inclusion and
their geometry influence the residual strain?

Therefore, as an alternative way to test the effect of the geometry of the host-inclusion
system on the Raman signal and on the calculated residual pressure, it is proposed to
collect spectra from selected inclusions with different shape, size and crystallographic
orientation, while performing several steps of polishing of the rock thick section to
bring the inclusion closer to the external surface of the host.

This Chapter reports the effects on the Raman spectra of rounded and elongated
zircon inclusions and a rounded coesite inclusion in pyrope from the ultrahigh-
pressure (UHP) unit of the Dora-Maira Massif measured before and after several
subsequent steps of polishing. The measured “residual pressures” are then compared

with the results of a selected set of Finite Element models following the approach of
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Mazzucchelli et al. (2018). This work provides new methodological guidelines and
examples of correction curves to adjust measurements carried out on faceted and

anisotropic inclusions and/or close to the host surface.

5.2 Specific methodology: the step-by-step polishing approach

As pointed out previously (Zhang, 1998; Mazzucchelli et al., 2018), only small
isolated inclusions far from any free surface of the garnet thick sections (e.g. distance
> 3 radii of the inclusion) do not suffer potential strain release. Therefore, for this
study, as described above, polished sections of 250-260 um thickness have been
prepared. Raman spectroscopic measurements were carried out only on inclusions at
the center of the section with a mean linear dimension smaller than 50 um, (i.e.
considerably less than the distance to the host surface). The selected inclusions all
show a characteristic birefringent halo (Figure 5.1) within the surrounding host which
is given by the stress field that the inclusion is transmitting to the host walls (see

Chapter 7 for more details).
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zrc in grt
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Figure 5.1. A polished pyrope megablast section with partial talc + chlorite
alteration along fractures and rims. The red square shows an example of a mm-sized
fracture-free garnet area selected for this study, in which zircon and coesite
crystalline inclusions exhibiting strain-induced birefringent haloes in the
surrounding host have been found.

Micro-Raman scattering measurements and processing were conducted as reported
in Chapter 2. Furthermore, in this case of study, for each inclusion, a series of spot
measurements were carried out along the equatorial plane of the inclusion.

Raman spectra were collected before and after polishing steps of the garnet hosts by
known amounts. The inclusion distance from the surface (i.e. the distance between
the equatorial plane of the inclusion and the host external surface) was estimated by
means of optical focus coupled with the controlled z-position motorized microscope
stage. The polishing and measuring cycle was repeated until the inclusion was half-

exposed. In this way, it was possible to observe the “real time” evolution of the strain

inside the inclusions in terms of changes in the Raman wavenumbers. This chapter
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reports the examples of single crystals of zircon: one rounded (~20 um radius) and
one prismatic (~80 um along the long axis), labelled S2 and S3, respectively and one
rounded single crystal of coesite (~15 um radius, sample S24) in the garnet
megablasts and neoblasts, respectively. No prismatic or idiomorphic coesite
inclusions have been found. Since these inclusions are elastically anisotropic, their
orientation with respect to the polishing surface is critical for the interpretation of the
results by means of numerical simulations. The idiomorphic zircon grain S3 has the
¢ axis inclined with respect to the polishing surface by approximately 20° (estimated
optically). Analysis of the peak intensities in the polarized Raman spectra suggests
that the rounded zircon grain S2 has its ¢ axis almost perpendicular to the surface.
The coesite crystal S24 was rounded and the absence of pronounced changes in the
Raman intensities measured in different scattering geometries makes it impossible to
determine its orientation and therefore it was not possible to perform numerical
simulations for this inclusion.

Finite element simulations have been carried out to support the measurements of
zircon inclusions S2 and S3 and to evaluate the effect of the proximity of the inclusion
to the external surface of the thick section on the residual strain of the inclusion
(technical details are given in Mazzucchelli et al., 2018). Elastic anisotropy has been
incorporated in the model for the zircon inclusions. We have used a commercially
available engineering package, Abaqus Standard v.2016 (Dassault Systémes, Simulia,
Providence), to create and analyze 3D finite-element models following the same
procedures outlined in Mazzucchelli et al. (2018). The models reproduce the
geometry and the crystallographic orientations of our zircon inclusions in pyrope
(samples S2 and S3), at several steps of distance of the inclusion from the external

surface of the host.
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All of our 3D models have at least one mirror plane, therefore only half of the selected
shape was created and the full model was obtained by reflection through that mirror
plane. Since the mirror plane of the model corresponds to the (1 0 0) crystallographic
plane, it does not restrict the deformation of zircon that is tetragonal. The resulting
model consisted of more than 400000 10-node quadratic tetrahedral elements
(element C3D10 in the Abaqus library). Material properties and boundary conditions
were assigned, and then a mesh convergence analysis was performed. The mesh was
refined in the areas with higher stress gradients until the calculated stress distribution
appeared smooth. To simulate the external pressure, face loads were applied to the
3D elements on the external boundaries of the host. Boundary conditions were placed
on the appropriate edges and faces of the models to avoid rigid body rotation and

translation in the x, y and z directions.

The constitutive equation used by Abaqus for anisotropic linear elasticity is:

0;j = Cijki€xr (5.1)

where g;; and €, are the stress and the strain tensor respectively, and C;j; are the

elastic stiffness moduli. For the zircon inclusion the elastic stiffness moduli at room
conditions reported by Ozkan et al. (1974) were used in FE analysis (Table 5.1). The
pyrope host was treated as isotropic because its universal anisotropic index
(Ranganathan and Ostoja-Starzewski, 2008) is only 9 x 10, essentially zero, based
on the elastic moduli reported by Sinogeikin and Bass (2002). The isothermal bulk
modulus at room conditions was derived from Milani et al. (2015) while the shear

modulus was obtained from the elastic moduli reported by Sinogeikin and Bass

(2002).
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Table 5.1. Elastic parameters at room conditions for zircon and pyrope used for
finite element calculations

) Zircpn ) Cl11 C33 C44 C66 C12 Cl13
(anisotropic elastic
properties) (GPa)
423.7 490 113.6 48.5 70.3 149.5
Pyrope Kor Gor
(isotropic elastic (GPa) (GPa)
properties) 163.7 94.0

The use of isotropic elastic properties for the host allows us to neglect the mutual
crystallographic orientation of the host and the inclusion. For the purposes of this
work, the only relevant orientation is that of the inclusion with respect to the surface

of the petrographic section.

5.3 Selection rules for phonon modes in zircon and coesite

Zircon has tetragonal symmetry with space group /41/amd. According to group theory
analysis, the optic phonons at the Brillouin-zone center of zircon are (Kroumova et

al., 2003):

The Aig, Big, B2g and E; modes are Raman-active and therefore a total of 12 Raman
peaks can be observed in the spectrum of a randomly oriented zircon.

According to previous experimental results (Knittle and Williams, 1993; Binvignat
et al., 2018) the Bi, mode near 1008 cm™!, the Ajg mode near 975 cm™! and the E,
mode near 357 cm™' are the most pressure-sensitive peaks. For this reason, our
discussion is mainly focused on these vibrational modes. Note that the B1; modes are
symmetry allowed in y(xx)y scattering geometry (Porto’s notation), Aig in y(xx)y
, ¥(zz)y, and zZ(xx)z, whereas E; in y(xz)y, with x, y, z along the a, b and ¢
crystallographic axes, respectively.
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Coesite is a monoclinic crystal with space group C2/c (unique axis b). The irreducible

representation of the optical vibrations is (Kroumova et al., 2003):

Topr = 16Ag + 18A, + 17B¢ + 18B,

The Ag and By modes are Raman-active and therefore a total of 33 Raman peaks can
be theoretically observed in the spectrum of a randomly-oriented coesite crystal.

Experimental results by Hemley (1987) suggest that the A, mode near 119 cm™!, near
183 cm™! and near 521 cm™! are the most pressure-sensitive Raman peaks and they
were used as our “sensors” for the polishing effect in coesite. However not all of the
peaks predicted by group theory were observed in our spectra because of their weak

intensities or because of partial overlap with the main garnet peaks.

5.4 Results and discussion

Both rounded and idiomorphic inclusions close to the center of the section display
Raman peak positions shifted toward higher wavenumbers compared to free
reference crystals. Within the instrumental precision (£0.35 cm™'), the rounded zircon
inclusion S2 and the rounded coesite inclusion S24 showed no spatial variation of the
Raman peak positions within the inclusions. On the other hand, for idiomorphic
crystals (zircon inclusion S3 with well-developed corners and edges) there is a steady
increase in the peak positions of about 1 cm™ from the center towards the edges of

the inclusions (Figure 5.2).
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Figure 5.2. Position of the Raman peak Aig~ 975 cm™ in a rounded (top) and an
idiomorphic (bottom) zircon crystal before and after the final step of polishing. The
solid lines in the plots are guides for the eye; the dashed line in (bottom) traces the
data points measured after two days of final exposure of the grain.
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This is a direct consequence of strain heterogeneity in the inclusion, which can be
caused by chemical zonation, zoned radiation-induced damage and/or an imposed
strain gradient. The substitution of elements such as Th, U, or Hf for Zr, may cause
expansion (U, Th) or contraction (Hf) of the zircon unit cell (Nasdala et al., 1998),
leading to a change in the phonon wavenumbers. However, compositional analysis
of the exposed grain performed after the final step of polishing did not reveal any
chemical zonation (see Table 5.2).

Radioactive decay of elements such as U and Th can induce structural damage,
leading to Raman peak broadening and a shift towards lower wavenumbers (e.g.
Binvignat et al., 2018). However, the full-width-at-half-maximum (FWHM) of a
given phonon mode for totally entrapped S3 remains the same throughout the entire
grain and within the instrumental spectral resolution and is equal to that of well
crystalline zircon (Binvignat et al., 2018), thus indicating a high degree of
crystallinity throughout the entire grain bulk. Since the zircon inclusion S3 is
chemically homogeneous (see Table 5.2) and well-crystalline, the variable Raman
shift in it is due to its faceted shape (Eshelby, 1957), because the edges and corners
act as stress concentrators (Zhang, 1998; Mazzucchelli et al., 2018). After polishing
the Raman spectra of S3 became homogeneous within the fully exposed part of the
sample (Figure 5.2 b), confirming that the variation in the peak position in a single
crystal for all bands was caused by the shape of the crystal (Table 5.3).

A decrease in the Raman wavenumbers was measured at the center of the inclusions
upon polishing for all the investigated samples of zircon and coesite. As an example,
Figure 5.3a shows the Biy mode near 1008 cm™ measured on zircon sample S3 at
three different steps of polishing. Strictly speaking, the phonon wavenumbers are

directly related to the strain, rather than to the applied pressure (Murri et al., 2018;
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Angel et al., 2018). Moreover, for elastically anisotropic materials the same relative
volume change can be obtained by different strains, for example as induced by
hydrostatic or deviatoric stress. Therefore, the commonly used direct proportionality
between the Raman peak positions and residual pressure is a strongly oversimplified

assumption (Murri et al., 2018). Nonetheless, if we assume that the change in Raman
I . . . .
wavenumber o is linear with mean stress P (i.e. £ is constant), we can introduce the

normalized change in the peak position Aw,,q,-m as a parameter to express the relative
release in “pressure” as the inclusion becomes closer to the external surface of the

host during polishing:

apP apP
((wl,d - wl,o) o (wz,oo - wl,o) %)

ap
(@10 = ®10) 345 (5.2)

Awporm =

_ (wl,d - wl,oo) _

- (wl,oo - wl,o) -

Where “ro is the wavenumber for a free crystal measured at ambient conditions,
@« and Pr.= arethe wavenumber and the corresponding pressure for an inclusion
in an infinitely large host (i.e. before the polishing, when the inclusion was far from
the surface of the host), while “1« and Pr.« are the wavenumber measured on the
inclusion and its pressure after each polishing step and associated to a specific
normalized distance d (i.e. the distance from the inclusion center to the host external

surface divided by the corresponding inclusion radius).
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Table 5.3. Raman shift heterogeneity inside one zircon single crystal

p. analysis* (5%91) FWHM (cm™) (3;91) FWHM (cm™) (ClrEng_1) FWHM (cm™)
p6 1011.90(1)  5.30(2)  978.51(8) 4.84(12) 360.07(1)  7.44(8)
p5 1012.09(2)  5.61(3) 977.66(9) 5.35(16) 358.90(2)  8.07(9)
pd 1011.60(2)  6.02(3) 977.56(9) 5.34(16) 358.77(2)  7.82(9)
p3 1011.18(2)  6.18(3)  978.10(7)  5.28(12) 359.65(2)  7.30(7)
p2 1011.26(2)  6.31(5)  978.41(7) 5.15(12) 359.98(2)  7.51(6)
p1 1012.18(2)  5.72(4)  978.34(7) 4.79(11)  360.08(2)  6.94(6)
p. analysist (C'?;a) FWHM (em?) 3:191) FWHM (cm) (C'rf:g) FWHM (cm™)
p6 1010.03(1)  5.71(3) 976.23(5) 4.86(8)  358.37(1)  7.50(2)
p5 1010.05(2)  6.38(3)  976.30(5)  5.50(8)  358.25(1)  7.77(3)
pd 1009.37(2)  5.86(3) 975.60(5) 4.97(9)  357.51(1)  7.36(2)
p3 1009.05(2)  6.63(4)  975.32(8) 5.39(16)  357.13(1)  8.08(3)
p2 1008.99(2)  6.23(4)  975.37(8)  5.23(15)  357.17(1)  7.68(4)
p1 1009.92(2) 5.92(4) 976.18(9) 4.77(14) 357.96(1) 6.78(4)
p. analysis§ (0?711?1) FWHM (cm-) (;‘1191) FWHM (cm-) (C|r5ng_1) FWHM (cm™)
p6 1009.58(2)  6.07(5) 976.40(5)  5.39(9)  358.23(2)  7.97(8)
p5 1009.53(1)  6.50(1)  975.86(3)  5.54(5)  357.18(1)  7.75(2)
pd 1009.01(1)  6.49(2)  975.61(4) 5.87(7)  357.31(1)  8.26(3)
p3 1008.94(1) 7.34(2) 975.39(4) 6.40(7) 357.09(1) 8.86(4)
p2 1008.85(1) 7.47(3) 975.33(5) 6.32(10) 356.60(9) 8.51(3)
(4) (4)

p1 1009.18(1)  7.25(2)  975.65(4)  6.07(7)  357.06(1)  8.14(4

Note: the errors in bracket are referred to the fit
*Value measured before polishing

1 Value mesured just after polishing

§ Value measured two days after polishing end
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Figure 5.3. (A) Raman scattering arising from the antisymmetric SiOy stretching (the
Big crystal phonon mode ~ 1008 cm™) measured when the grain S3 was fully
entrapped (red line), at an intermediate stage of polishing (yellow), and when the
inclusion was exposed at the final stage of polishing (green line). The numbers are
the measured Raman shifts. (B) Measured normalized wavenumber shifts Awnporm for
zircon S2 (green circles) and zircon S3 (blue squares) versus the normalized distance
d to the host surface along with gaussian fits to the corresponding data A~ 975 and
Big ~ 1008 cm™ data sets (solid lines) as well as the calculated geometrical factor I
(dashed lines) from the FE model; Awnorm(d) and I'(d) show the same trend within
uncertainties. (C) Measured Awnorm(d) (ved circles) and a Gaussian fit to Ajg ~ 119
and ~ 521 cm™ (solid line) for S24 coesite inclusion

Under these assumptions, equation (5.2) shows that Aw;,¢,-m becomes equivalent to

the geometrical factor I" defined by Mazzucchelli et al. (2018).
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As can be seen in Figure 5.3 b and c, the normalized change in the peak position
Aw,,orm decreases progressively towards -1 (i.e. the Raman shift becomes equal to
that of a free crystal), when the inclusion approaches the host surface (see also Table
5.4 for the two zircons and Table 5.5 for coesite). The trends of “pressure” release
estimated from the Raman spectra measured on our zircon samples show the same
pattern with those calculated from numerical simulations performed on similar
geometries and crystallographic orientations (e.g. see the dotted lines in Figure 5.3
b). However, the experimental data suggest a greater amount of stress release
compared to the numerical simulations. For example, at a normalized distance of 1
(inclusion just in contact with the external surface), the calculated stress release is
approximately 50%, whereas that obtained from experimental data is about 70%
(Figure 5.3 a).

There are at least two contributions to this discrepancy: (i) for non-cubic inclusions,
direct conversion of Raman shifts into pressures using a hydrostatic calibration is
incorrect; (i1) when the inclusion is close to the surface, strain gradients may be
relaxed through plasticity or micro-fractures that are not considered in our purely
elastic numerical models. Interestingly, our experiments show that even after partial
exposure of the inclusion (i.e. for normalized distances < 1) the Raman shift does not
record full strain release which means that the inclusion is not at ambient conditions!
In Figure 5.3 c, for example, the polished coesite inclusion still shows 40% of its
original residual strain. Finally, the difference in the strain release between zircon and
coesite inclusions is probably due to the different contrast in properties with respect
the host garnet. Indeed, since coesite is softer than zircon, the host garnet can still

retain a greater amount of its residual strain even if half of the inclusion is exposed.
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This implies the possibility to have thinner hosts for softer inclusions such as coesite or
quartz in garnet but, however, the possibility of fracturing during polishing is high (Enami

et al., 2007).

5.5 Implications

These results show that Raman shift is homogeneous only in rounded inclusions while it can
be non-homogeneous in faceted ones (Figure 5.2 a and b), in full agreement with numerical
calculations (Mazzucchelli et al. 2018) and theory (Eshelby, 1957). Therefore, multiple
Raman spectra collected on faceted inclusions should not be averaged if their differences are
larger than the instrumental peak precision. Instead, to avoid the effects of grain shape on
Raman peak positions, only Raman spectra measured at the center of the inclusions should
be used because there it is possible to apply the geometrical correction developed by
Mazzucchelli et al. (2018).

The results from polishing experiments confirm that the Raman shift of the inclusion
decreases as the inclusion gets closer to the external surface (Rosenfeld and Chase, 1961;
Zhang, 1998; Mazzucchelli et al., 2018). Therefore, only inclusions whose centers are distant
more than 4 radii (Figure 5.3 b) from the section surface and internal surfaces of the host
should be used. If the Raman peak positions vary from one inclusion to another, even when
the inclusions are properly selected, this indicates that some other factor is responsible, such
as chemical variation in the host or inclusions, or growth of the host and thus inclusion
entrapment under different conditions, such as along a prograde subduction path. More
importantly, our results, coupled with our FE numerical simulations, show how anisotropy
(i.e. crystallographic orientation of the inclusion with respect to the external surface) and the
contrast between the inclusion and host physical properties influences the strain release

during polishing. Furthermore, even when an inclusion is exposed at the surface of the host
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grain, it can still exhibit a variation in the peak position with respect to a free crystal, and
thus residual strains and stresses (Figure 5.3 c). Therefore, partially entrapped grains as a
strain-free standard should be avoided or chosen very carefully against which to measure the
Raman shifts of unexposed inclusions.

Finally, as an example, if we calculate from our experimental Raman shift values the strain
and then the mean stress in the inclusion after subsequent polishing steps, following the
approach given by Murri et al. (2018), the zircon S3 has an initial residual pressure (Pixc)
before polishing of 0.5 GPa. After 55 microns of polishing (1.5 of normalized distance in
Figure 5.3 b), when the inclusion is still buried in its garnet host, the P;,. drops to 0.2 GPa.
A value of 0.06 GPa is recorded when the inclusion is half exposed. For zircon S2 the initial
Pi.c was about 0.9 GPa and about 0.3 GPa when the inclusion was just touching the external
surface of the host. In the supplementary material a table showing the evolution of the Py
as function of the polishing for the two zircon inclusions is reported (Table 5.6). For coesite

no reliable data are available to give the strain state of the inclusion from the Raman peak

positions.
Table 5.6
RESIDUAL PRESSURES FOR THE ZIRCON S2
N. Distance  Aw 975 (cm- Aw 1008 e1-e2 es Pinc

1 (cm™) (GPa)
4.5 4.96000 4.63000 -1.162525 -0.44395 0.923
3.5 5.00000 4.60000 -1.1895 -0.40035 0.92645
3.0 4.56000 4.38000 -1.027 -0.4618 0.8386
2.0 4.08000 4.07000 -0.8892 -0.5382 0.7722
1.0 2.13000 2.04000 -0.4888 -0.21595 0.39785

RESIDUAL PRESSURE FOR THE ZIRCON S3

N. Distance  Aw 975 (cm Aw 1008 e1-e2 es Pinc

D) (cm™) (GPa)
5.0 2.78000 2.94017 -0.56355 -0.46095 0.52935
4.2 2.78000 2.81077 -0.5928 -0.3588 0.5148
2.7 2.46000 2.58099 -0.4992 -0.38205 0.46015
2.2 1.81000 2.00278 -0.3562 -0.3754 0.3626
1.5 1.16000 1.14690 -0.2717 -0.16445 0.23595
1.0 1.52000 1.52951 -0.3211 -0.19435 0.27885
0.7 0.44000 0.51245 -0.06435 -0.0789 0.0692
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Chapter 6

Establishing a protocol for the selection of zircon
inclusions in garnet for Raman thermobarometry

This chapter reports the results and discussions from the published paper:

Campomenosi, N., Rubatto, D., Hermann, J., Mihailova, B., Scambelluri, M., Alvaro, M.
(2020a) Establishing a protocol for the selection of zircon inclusions in garnet for Raman
thermobarometry. American Mineralogist, DOIL: 10.2138/am-2020-7246.

Original Abstract

The structural and chemical properties of zircon inclusions in garnet megablasts from the
Dora Maira Massif (Western Alps, Italy) were characterised in detail using Charge Contrast
imaging, Raman spectroscopy and Laser Ablation Inductively Coupled Plasma Mass
Spectrometry. The aim of this work is to determine to what extent the degree of
metamictization, metamorphic recrystallization, inherent structural heterogeneity, chemical
composition and zoning, along with the elastic stress imposed by the host mineral, can
influence the Raman peak position of the zircon inclusion and hence, the residual pressure
estimated via Raman geo-barometry. We show and confirm that metamictization and
inherent structural heterogeneity have a major influence in the Raman spectra of zircon in
terms of peak position and peak width. We suggest that for a spectral resolution of 2 cm’!
the peak width of the By mode near 1008 cm™ of reliable grains must be smaller than 5 cm
I The method can be applied to both inherited igneous and newly formed Alpine
metamorphic crystals. By coupling structural and chemical information, we demonstrate
that there are no significant differences between the Raman spectra of zircon with
oscillatory-zoned texture, formed during magmatic crystallization, and those formed by
fluid-induced Alpine (re)crystallization. The discrimination between magmatic and
metamorphic zircon based only on micro-textural constraints is therefore not robust.
Finally, our results allow a protocol to be established for the selection of reliable buried
zircon inclusions, relying only on Raman spectroscopic measurements, to use for elastic
thermobarometry applications.
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6.1 Introduction and motivation

Zircon is one of the most common accessory minerals in various igneous, sedimentary and
metamorphic rocks. Furthermore, due to its large stability field and its physical robustness,
zircon often hosts UHP metamorphic minerals such as coesite and diamond (Parkinson and
Katayama, 1999; Ye et al., 2000b; Hermann et al., 2001; Katayama and Maruyama, 2009).
In general, zircon can be used for a wide range of applications, including U-Pb
geochronology, and potential use as a host phase for the disposal of excess weapons-grade
Pu, because of its capacity to incorporate radioactive elements, (e.g. Ewing et al., 1995).
Further, radiation-damaged zircon has been successfully applied as a model system to
elucidate the behaviour of partially-ordered structures at high pressure and temperature
conditions (e.g. Colombo et al., 1999; Binvignat et al. 2018).

A recent development in zircon petrology is its exploitation as a mineral inclusion in the
frame of Raman elastic thermobarometry (Campomenosi et al., 2018; Zhong et al. 2019).
The main idea is that the geochemical and isotopic information that can be obtained from
zircon is complemented by elastic thermobarometry of zircon and its host in order to retrieve
P-T-time-fluid-deformation paths of metamorphic and igneous rocks. For this new
application, however, zircon composition and structural metamictization due to the decay of
radioactive elements such as U and Th within its crystal structure has to be taken into
account, because the radiation-induced structural changes can lead to large variations in the
Raman spectrum as well as the elastic properties (Binvignat et al., 2018). Indeed, the Raman
peaks of radiation-damaged crystals shift towards lower wavenumbers, while the peak width
increases with respect to pristine crystals taken as reference (Rios et al. 2000; Colombo et
al., 1999; Nasdala et al., 2001; Geisler and Pidgeon, 2002; Binvignat et al, 2018). In this
regard, useful diagrams such as peak width (I), in terms of full width at half maximum, vs

peak position of the major Raman peak near 1008 ¢cm (Biz phonon mode related to
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antisymmetric SiO4 stretching) can be exploited to recognize the zircon crystals whose
Raman spectra is unaffected by metamictization processes and that can be safely used for
elastic thermobarometry purposes (e.g. Zhong et al. 2019). However, even though the degree
of metamictization is the main factor affecting the Raman spectra of zircon, it is not the only
one. Cathodoluminescence (CL) studies of zircon internal zoning (e.g. Rubatto and Gebauer,
2000, Corfu et al. 2003) reveal that single crystals of zircon, particularly in metamorphic
rocks, commonly show a complex internal chemical and structural heterogeneity at the
micrometer-scale. Furthermore, variations in the Raman peak positions can be caused also
by chemical substitution: a typical example is Hf replacing Zr at the dodecahedral
crystallographic site (e.g. Hoskin and Rodgers, 1996).

To investigate these potential problems we have chosen a particularly well-known sample
suite from the Dora Maira UHP unit (Western Alps, Italy), where garnet megablasts host
abundant zircon inclusions. This work reports micrometre-scale structural and chemical
information of partially exposed zircon crystals studied by complementary Raman
spectroscopy, charge contrast (CC) imaging, and Laser Ablation Inductively Coupled
Plasma Mass Spectrometry (LA-ICP-MS). The purpose is (i) to determine quantitatively
how the structural and chemical heterogeneities of zircons can affect their Raman spectrum
and (i1) to propose a best-practice protocol for the selection of zircon inclusions suitable for

elastic thermobarometric estimations.

6.2 Specific sample description

The investigated samples come from the two major outcrops of the Brossasco-Isasca Unit
(e.g. Chopin, 1984): Vallone Gilba and Vallone Martiniana close to the Case Canova and
Case Parigi localities, respectively. Previous results on these localities (Gebauer et al., 1997;

Gautiez-Putallaz et al., 2016) suggested the existence of two main zircon generations that
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can coexist within the same crystal in these rocks. The first one records the crystallization of
the Permian protolith (~275 Ma), while the second domain is Eocene in age (35.1 £0.8 Ma)
and related to metamorphism during the Alpine subduction.

The selection of completely buried zircon inclusions follows the protocol given by
Campomenosi et al. (2018) for elastic barometry applications (see Chapter 4 and Chapter 5).
On the other hand, the selection of the exposed grains (about 60% of the total number of
zircon inclusions present in the samples) was based on criteria such as variable size of the
inclusion and of the surrounding intact host (the effective host), exposure degree of the
inclusions (optically estimated in terms of the ratio between the exposed and buried inclusion
surface) and presence of fractures or any other kind of discontinuity in both the host and the

inclusion.

6.3 Results

Partially exposed zircon inclusions

Charge Contrast (CC) imaging

CC imaging of 64 inclusions from samples DM17-13 and DM17-49 (Martiniana locality)
and 83 grains from samples DMG4-6 and DM17-35 (Gilba locality) showed a large
variability in zircon internal texture. By combining the data on various crystals, it was
possible to recognize at least 4 major domains (Figure 6.1): (i) a dark (i.e. low CC-emission)
domain, commonly corresponding to the crystal cores, (ii) an oscillatory-zoned domain
(medium-high CC emission), which usually corresponds to entire crystals or the core of
elongated crystals and are further subdivided into oscillatory-dark and oscillatory-bright
domains based on CC emission, (iii) a transition (or undefined) domain, whose appearance
is between the darker and a brighter domains and without a defined internal texture, and (iv)

a bright domain (i.e. high CC-emission), which usually belongs to the external rim of the
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crystals. About 70% of zircon inclusions from the Gilba locality show a more elongated
shape with a typical oscillatory-zoned core surrounded by 1 or 2 thin brighter rims. On the
other hand, about 80% zircon inclusions from the Martiniana locality present more sub-
idiomorphic shape and more homogeneous internal texture. Furthermore, as already reported
by Gautiez-Putallaz et al. (2016) for zircon hosted in Si-undersaturated whiteschists, some
of the analysed inclusions in Martiniana, where garnet is more abundant, display oscillatory
dark domains.

Raman spectroscopy

According to previous studies (Williams and Knittel, 1993; Nasdala et al., 2001; Binvignat
et al., 2018), both pressure and metamictization affect most strongly the Bi; mode near 1008
cm’!, originating from anti-symmetrical SiOs stretching. For this reason, our discussion is
mainly focused on this phonon mode. The Raman spectroscopic analysis is based on 250
spectra collected from 60 zircon inclusions in different CC domains. As an example, Figure
6.1 shows the variation of the internal SiO4 antisymmetric stretching mode (Big) near to
1008 cm™ of representative zircon inclusions exhibiting heterogeneous CC emission.
Generally, dark CC domains correspond to Raman peak broadening and shift towards lower
wavenumbers when compared to those collected across brighter or oscillatory-zoned
domains. Transition CC domains show transitional average features also for the Raman
spectra. A more quantitative evaluation of the structural state of zircon crystals can be
achieved by plotting the relationship between the phonon wavenumber ® and the
corresponding peak width I' (Geisler and Pidgeon 2002; Zhong et al. 2019). The data
measured on partially exposed zircon inclusions (Figure 6.2) show two different trends that

correlate with the four different zircon domains (bright, oscillatory-zoned, undefined and

dark) .
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Figure 6.2. I'vs Raman shift of the antisymmetric SiOy stretching B, mode near 1008 cm™
of partially exposed crystals with highlighted CC-emission domains.

- The first trend is characterized by w < 1008 cm™, 4.5 cm™ < T < 12 cm™!, and o(I")
with a negative slope (inverse correlation). The data points on this trend are mostly
from zircon domains with dark and oscillatory-dark CC emission.

- The second trend, at higher wavenumbers, is characterized by 1008 cm™ < o < 1011
em, 3.5 ecm! <T < 5.5 em™, and o(I") ~ constant. This trend is mostly defined by
zircon domains with bright and oscillatory(-brigh) CC emission.

Note that, on average, oscillatory-dark domains display the largest I' and lowest
wavenumber with respect to oscillatory-bright domains. On the other hand, undefined

domains are difficult to classify since they scatter over the entire field of the data.
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LA-ICP-MS

The different types of zircon domains also show differences in trace element composition.
Table 1a-b reports representative major, minor and trace elements composition of analysed
zircon crystal inclusions as determined by LA-ICP-MS with the associated CC-emission
domains. Hf concentration is usually around 11000 pg/g and only few analyses show higher
values up to 14000 pg/g. U content varies significantly between oscillatory-bright zoned,
oscillatory-dark and dark CC domains, with the last showing, usually, the highest
concentration (see for example DM17-35-3a-zrc10-pl and p2 or even DM17-35-3a-zrc14-
p3 and p2 in Table 1a). U contents vary from a few hundred pg/g in the bright domains in
crystal cores or rims to 5000 pg/g for the darker domains and generally show an inverse
relationship with CC emission, indicating that U suppresses luminescence (e.g. Rubatto and
Gebauer 2000).

In line with previous REE datasets (e.g. Gautiez-Putallaz et al. 2016), zircon cores with
oscillatory or convolute zoning have a steep HREE-enriched pattern with a pronounced
negative Eu anomaly (e.g. Figure 6.3-C p1). This REE pattern is characteristic of conditions
where plagioclase was present and garnet was absent, i.e during the crystallization of the

granitic protholith in Permian times (e.g. Gautiez-Putallaz et al. 2016).
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The rims and many crystals with oscillatory zoning have lower REE contents and a flat
HREE pattern with no or weak Eu-anomaly (e.g. Figure 6.3). This REE pattern is diagnostic
for zircons formed during prograde to peak metamorphism, where feldspar is no longer
stable (e.g. Gautiez-Putallaz et al. 2016). The variable slope of the HREE patterns ranging
from slightly positive to even negative (Figure 6.3-C) indicates zircon growth together with
garnet, as both minerals compete for the HREE. Therefore a first distinction between pre-
Alpine inherited igneous zircon and Alpine metamorphic zircon can be obtained from the
trace element analysis. Notably, a number of large crystals that display a fine oscillatory to
sector zoning, more or less surrounded by a dark or light rim, present a depletion in HREE
and remain rather constant across the entire grain (e.g. Figure 6.3-D, 6.3-E). This
demonstrates that oscillatory zoning occurs also in Alpine metamorphic zircon and is not
restricted to inherited igneous zircon, and that both CC and trace element analyses are
required for the correct classification of the zircons.

Previous analyses on zircons from the same locality demonstrated that inherited zircon cores
are ca. 275 Ma old and metamorphic rims are 35.1 + 0.8 Ma old (Gebauer et al., 1997,
Gauthiez-Putallaz et al. 2016). In our case, a rough estimate of the age can also be obtained
from the LA-ICP-MS data, even if proper age standardisation and correction for common
Pb have not been performed. The 2°°Pb/?*8U values estimated in such a way are in general
agreement with those obtained before on zircon from the same locality and correlate with
the distinction made from the REE patterns (Gauthiez-Putallaz et al. 2016). This rough age
estimate allows one to distinguish between Alpine domains (usually lower U content and
bright or oscillatory-bright CC domains) and pre-Alpine domains (higher U content and dark
or oscillatory-zoned CC domains at the zircon cores) especially in cases where REE patterns
might be ambiguous (see Table 6.2). Notably the large crystals with oscillatory-sector zoning

and low HREE content are of Alpine age.
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Assuming an age of 275 Ma for the pre-Alpine and 35 Ma for the Alpine domains (Gebauer
et al., 1997, Gauthiez-Putallaz et al. 2016) and using the measured U-Th composition of the
zircon domains, their accumulation radiation doses D, were calculated as follows (e.g.

Nasdala et al., 2001):

D — 0.9928 NACU71238 (62'238t _ 1) + 0.0072 NACU"l235 (612351: _ 1) + NACTh_Tl232 (62'2321: _ 1)
a 6 6 6
10°m,3g 10°m;35 10°my3,

(6.1)

where A, and mn are, respectively, the nuclear decay constant and mass of the corresponding
isotope (**®U, U and %*?Th) (Steiger and Jaeger; 1977), the coefficient n represents the
number of a decays per nucleus (n,33 =8, ny35 =7 and n,3, = 6) and Ny is the
Avogadro’s number ¢y and ¢, are the measured concentrations of U and Th respectively

and t the time.

Table 6.2. Indicative age and dose of partially exposed zircon inclusions (spots are referred to

Figure 6.3)
sample name CC domain Izzlﬁdicazgve Indicative D_alfa * Raman_ lshift FWHIM
Pb/~°U Age (g/events) (cm™) (cm™)
DM17-35-3A-zrc8-pl Osc. dark 0.04 Permian 8.3E+17 1007.6 5.6
DM17-35-3A-zrc8-p2 Osc. bright 0.08 Caledonian 2.2E+18 1008.0 3.4
DM17-35-3A-zrc10-pl Osc. bright 0.01 Alpine 5.3E+16 1007.9 39
DM17-35-3A-zrc10-p2 dark 0.01 Alpine 2.6E+17 1006.7 53
DM17-35-3A-zrc10-p3 bright 0.01 Alpine 1.2E+17 1007.9 3.6
DM17-35-5A-zrc2-pl Osc. bright 0.01 Alpine 4.9E+16 1009.1 3.6
DM17-35-5A-zrc2-p4 Osc. dark 0.01 Alpine 1.6E+17 1008.0 4.5
DM17-35-5A-zrc2-p5 bright 0.01 Alpine 1.4E+17 1008.9 3.5
DM17-35-1A-zrc6-p2 Osc. dark 0.01 Alpine 3.3E+17 1008.9 3.5
DM17-35-1A-zrc6-p3 dark 0.01 Alpine 3.9E+17 1006.6 6.2
DM17-35-1A-zrc3-p2 dark 0.01 Alpine 3.7E+17 1006.3 5.7
DM17-35-1A-zrc3-p3 Osc. bright 0.01 Alpine 4.1E+17 1007.7 42
DM17-13-b-zrc13-pl Osc. bright 0.01 Alpine 1.5E+17 1007.9 4.6
DM17-13-b-zrc13-p2 Osc. bright 0.01 Alpine 1.1E+17 1007.7 4.7
DM17-13-b-zrc15-p2 Osc bright 0.01 Alpine 8.6E+16 1008.3 4.5
DM17-13-b-zrc15-p3 Osc. bright 0.01 Alpine 4.7E+16 1008.3 4.0
DM17-13-b-zrc16-pl Osc. bright 0.01 Alpine 1.7E+17 1007.9 5.1
DM17-13-b-zrc16-p2 Osc. bright 0.01 Alpine 8.5E+16 1008.2 4.0
DM17-13-b-zrc16-p3 Osc. dark 0.01 Alpine 2.2E+17 1007.3 5.6
DM17-13-b-zrc16-p4 Osc. bright 0.01 Alpine 5.3E+16 1008.3 3.6
DM17-13-c-zrc7-pl Osc. bright 0.04 Permian 6.6E+17 1009.3 5.8
DM17-13-¢c-zrc7-p2 Osci. dark 0.01 Alpine 1.1E+17 1011.3 3.9
DM17-13-c-zrc7-p3 undefined 0.01 Alpine 1.3E+17 1010.2 43
DM17-13-c-zrc10-pl dark 0.01 Alpine 5.2E+17 1006.2 10.6
DM17-13-c-zrc10-p2 bright 0.01 Alpine 1.4E+17 1008.3 33
DM17-13-c-zrc10-p3 Osc. dark 0.01 Alpine 2.3E+17 1007.4 5.0
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Note that Equation 1 presumes a U isotopic composition of 99,28% 33U and 0.72% *°U.

The resulting D, values are reported in Table 6.2.

Completely buried zircon inclusions

Raman spectra collected on the completely buried zircon crystals have higher wavenumbers
(from 1010 cm™ up to 1013.5 cm™!) with respect to the partially exposed grains, with a I’
mostly between 3.5 and 5.5 cm™'. Only a few analyses reach values up to 6.5 cm™ (Figure

6.4). The overlap between the two sets of inclusions is limited to about 10% of the analyses.
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Figure 6.4. I"and Raman shift of partially exposed vs completely buried zircon inclusions

The data from the exposed and fully enclosed zircon inclusions can also be analysed in terms
of the wavenumber difference (Aw) between the Bi, mode near 1008 cm™ and the A1, mode
near 440 cm’! rather than the absolute wavenumber. In this way, since the data were collected
along different sessions of measurements, we can avoid any possible effects due to

instrumental drift. As shown previously by William and Khnittel (1992), and more recently
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by Binvignat et al. (2018), both phonon modes show an increase in the phonon wavenumber
as the hydrostatic pressure increases. However, as reported from the same authors, the Ajg
mode shows a weaker pressure dependence with respect to the Big mode and, therefore, to
an increase of the pressure acting on the crystal should correspond an increase in the value

of Aw (Figure 6.5).

12
partially exposed
e completely buried
10}
8t
5 6 °e °
- ~ .s ~. o o}'
— ° ® 9 o*
. '.. ..o L4 ..‘Q: A .o. e
o0
2t

Figure 6.5. Variation of peak width I of the Bige mode near 1008 cm™ as a function of
Ao = wios — w440 of partially exposed and selected completely-buried zircon inclusions.

6.4 Discussion

Effect of minor and trace elements on zircon Raman shift

A large number of non-formula elements can be incorporated in the zircon crystal structure,
however, most of them are usually far below 1 wt% (e.g. Hoskin and Schaltegger 2003),
with the notable exception of Hf. Raman data measured on the isomorphic series ZrSiO4 —
HfS104 suggest that even if as much as 25% of all Zr ions are replaced by Hf the frequency
variation of the main peaks does not exceed 3 cm' (Hoskin and Rodgers, 1996).
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Furthermore, Nasdala et al. (2002) suggested that positions and I" of the main peaks in
annealed, metamict gemstone-quality zircon, containing up to 6000 ppm of U and 16300
ppm of Hf, deviate less than 1 cm™! from the data of pure well-crystalline ZrSiOs. Therefore,
since the exposed zircon inclusions considered in this study contain impurities and trace
elements below these values (maximum U content is 5060 ppm and maximum Hf content is
14570 ppm, see Table 1), the effect of chemical variations on these Raman spectra is
negligible for this set of samples.

Zircon variation in HREE composition (i.e. depletion in the Alpine domains) has been
previously interpreted as the result of growth zoning during metamorphism in a fractionating
bulk composition where REE are largely incorporated in garnet (e.g. Gautiez-Putallaz et al.,
2016). Indeed, the garnet host shows a similar REE pattern along a core-to-rim line profile
(e.g. Gautiez-Putallaz et al. 2016), indicating equilibrium conditions with the associated
zircon grains. The qualitative 2°°Pb/?*8U measurements confirm that zircon crystals showing
a flat HREE pattern throughout the entire grain are completely metamorphic in origin. In
this regard, it is important to note that, although REE chemical zonation does not influence
the main Raman scattering features, such as peak broadening and position, it can give rise to
heterogeneous photoluminescence, and hence to different background levels of the Raman
spectra collected from zones. Besides, depending on the excitation laser wavelength,
additional photoluminescence peaks may be observed next to the fundamental Raman peaks

of zircon.

Metamorphic vs inherited zircon domains

Charge contrast or cathodoluminesce imaging of metamorphic and inherited zircons usually
show notable differences in terms of the corresponding internal texture (e.g. Rubatto and

Gebauer 2000, Corfu et al. 2003). Oscillatory-zoned grains have been chemically interpreted
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as the result of alternating depletion and enrichment in trace elements (i.e. U and Y) during
crystal growth at the crystal-melt interface. On the other hand, bright domains at the rim of
the crystals usually show higher and homogeneous CL-emission, presenting irregular shape
that often overgrows the pre-existing crystals whose texture can sometimes be evident as a
relic (Rubatto and Gebauer, 2000). Our results indicate that metamorphic zircon can also
include dark, bright, oscillatory and undefined CC domains. This observation warns against
using internal zircon zoning alone for distinguishing magmatic versus metamorphic zircon.

As portrayed in Figure 6.2, bright and oscillatory-bright domains (yellow and blue spots,
respectively), have the same Raman spectral features and define the “non-metamict” domain
in the diagram (see details below). Therefore, whether or not they are magmatic or
metamorphic in origin, from a structural point of view these two domains are effectively
equivalent and there will be no difference in the calculated residual stress even if the two
domains co-exist within the same crystal.

Finally, in a plot of T of the B1g mode near 1008 cm™ vs D,, most of our data for the Alpine
domains fall within the broad interpolation trend given by Nasdala et al. 2001 (Figure 6.6).
Nasdala et al. (2001) interpreted the data falling outside of this band as the possible effects
of thermal annealing in the crystal. Then, in this case, the few points outside the interpolation
band are interpreted as the result of possible partial annealing of inherited zircon cores

(Permian and Caledonian in age) during the Alpine metamorphism.

Effect of metamictization and annealing on Raman shift

Previous studies have established that partial metamictization can have a major influence on
zircon Raman spectra (e.g. Zhang et al., 2000; Geisler et al., 2001; Nasdala et al., 2001;
Binvignat et al. 2018). In general, depending on the degree of metamictization, zircon

crystals can show a
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Figure 6.6. FWHM of the By mode near 1008 cm™ as function of the effect of increasing
metamictization in terms of accumulated radiation dose.

significant Raman peak broadening and frequency shift toward lower wavenumbers with
respect to pristine samples taken as reference. Furthermore, Geisler et al. (2001) pointed out
the possible heterogeneous (step-evolution) effect that annealing could have on peak
broadening and position.

Based on these considerations, the relationship between the peak width and the Raman shift
(Figure 6.2) can be exploited as a discriminant between partially metamict/annealed crystals
and pristine crystals, even when they are completely buried within their mineral host (see
also Zhong et al. 2019). Indeed, differently to phonon wavenumber, variation in the I of a
Raman peak is independent of the level of the minor amounts of stress (Binvignat et al.,
2018) usually recorded in host-inclusion systems. It follows that, when considering zircon

inclusions, a buried partially metamict crystal should present a peak width I comparable to
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partially metamict crystals exposed at the surface, and the same is valid for well-crystalline
zircon grains. Therefore, in this case, the measurements with I" values greater than 5 cm™
showing an inverse relationship with the Raman shift, represent partially metamict/annealed
domains. On the other hand, lower I values (i.e. 3.5 — 5.0 cm™") with no correlation with the
Raman shift are associated with non-metamict domains. In this regard, it is worth noting that
Alpine zircons with high U contents fall into the metamict domain.
Geisler and Pidgeon (2002) pointed out that possible annealing processes may influence both
the Raman shift and the peak width, as well as the relationship between them during
secondary geological processes. However, from their results, it is evident that such effects
are critical for zircon with moderate to heavy levels of radiation damage (i.e. ® < 1004 cm’
U'and ' > than 11-12 cm™). In this study, the zircon inclusions displaying a negative
correlation betwen ® and T all have I' < 11 cm™ and @ > 1004 cm'. This correlation can be
tentatively interpreted as an indication that, as previously stated (e.g. Figure 6.6), annealing
effects were negligible or absent in most of the samples over the relatively short geological
evolution (280 or 35 Ma to present) and fast subduction metamorphism (Gebauer et al. 1997,
Rubatto and Hermann 2001, Gauthiez Putallaz et al. 2016).
However, it is difficult to make a rigorous prediction of the effect of metamictization on the
determination of the residual pressure of a buried inclusion. For zircon with I" larger than 5
cm’! there are at least two additional unknown variables:

- The reference wavenumber wo of an equally metamict free crystal;

- The phonon mode compressibility = [1/wo][d®w/dP]
Both variables are very sensitive to the accumulated radiation dose Do (e.g. Binvignat et al.,
2018). Unfortunately, the dispersion of the data in the established I — Dq trend is, in this
case, too large to give a reliable value of Do and consequently of wo and £ for the purposes

of Raman thermobarometry.
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Effect of zircon size on Raman shift for partially exposed inclusions

For completely unstressed pristine crystals, the phonon wavenumber usually is expected not
to exceed the values of 1008.5 — 1009 cm™! (see Binvignat et al., 2018; Geisler et al., 2001).
Nevertheless, our partially exposed grains, even considering only the non-metamict domain
in Figure 6.2, show a larger variation (up to 1011 cm™).

As reported by Campomenosi et al. (2018), partially exposed inclusions can still preserve a
notable stress state in terms of Raman peak shift as function of the inclusion exposition
degree and size. In order to better clarify this issue, Figure 6.7 shows a I vs A® diagram of
partially exposed inclusions discriminating between grains with different size (< and > 50
microns). Note that, in this case, we show only data from the exposed inclusions showing
bright and or oscillatory-bright domains at CC because only for such domains we can safely
exclude other effects described above. Data from inclusions of different size largely overlap.

However, about 20% of the smaller inclusions have a higher Aw than the larger one (with

one exclusion) and reach a Aw of 572 cm’! that are never observed in the larger inclusions.
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Figure 6.7. I'"of the Bz mode near 1008 cm™ vs Aw = w1008 — w440 comparing small (< 50
microns) and large (> 50 microns) partially exposed zircon inclusions. The spots refer only
to bright and oscillatory bright domains
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This is in agreement with theoretical predictions (Mazzucchelli et al., 2018) for which,
within the same host, small inclusions, when partially exposed, tend to retain more stress,
due to the larger surface-to-volume ratio, i.e. larger impact of the host upon relatively larger
surface of the inclusion. On the other hand, small inclusions should exhibit less dispersion
of the degree of exposure. Hence, the quite large spread of our data is most probably due to
the superposition of both effects related to the inclusion size: the surface-to-volume

ratio and the degree of exposure.

A new protocol for the selection of zircon inclusions in garnet for elastic

thermobarometry

Based on the above considerations, we propose a simple protocol for selecting zircon
inclusions to get reliable residual pressure estimates for elastic barometry.

- Buried crystals must be isolated from other inclusions, section surfaces, host
boundary, cracks and from any other kind of boundaries. This implies that thicker
sections (i.e. 300 microns) are better (see also Campomenosi et al. 2018).

- At least 2-3 measurement spots for each crystal moving from core to rim should be
performed: this enables detection of eventual structural heterogeneity within the
crystal. For this pourpose, it is better to use a spectrometer with a confocal optical
microscope in order to reach the best spatial resolution.

- An instrumental sepctral resolution equal or better than 2 cm™ should be used and
only those inclusions presenting a I' of the Bi; mode near 1008 cm™! smaller than 5
cm’! should be considered. Note that this value represents the summation of the
analytical uncertainty (i.e. instrumental spectral resolution) to the minimum value of
about 3 cm’' that has been measured on several grains by the two different

spectrometers (see Figure 6.4).
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Only inclusions in which the phonon wave number and the I" is constant across the
entire crystal volume should be selected.

If T is constant, but the phonon wavenumber changes across the crystal volume there
could be effects due to the shape of the inclusion (Campomenosi et al. 2018). In this
case it is recommended to consider the measurement collected at the centre of the
crystal to calculate the residual pressure of the inclusion.

Partially exposed crystals should not be used as reference to calculate residual stress
in the buried inclusions: they can be still under a notable residual stress state. It is
recommended using a completely free crystal or large exposed inclusions for which
the residual stress state and the metamictization effects are negligible (see for
example Figure 6.1-D).

Whenever possible, a statistically significant amount of partially exposed inclusions
should be selected in order to double check their textural complexity by CC or CL
imaging and their chemistry. As an alternative, imaging and chemical checks should
be performed on inclusions that have been exposed after the Raman measurements.
Chemical and age measurements should be considered as important corollary
information to reconstruct the petrogenesis of the zircon inclusions and the garnet

host.

6.5 Implications

Zircon inclusions are difficult to manage correctly for elastic thermobarometry applications

and a detailed characterization of the inclusions should be performed before extracting

barometric data. In this systematic study the combination of structural and chemical

information obtained by different analytical techniques on partially exposed zircon

inclusions, allows the structural state of buried crystals for Raman spectroscopic
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measurements to be determined reliably. These results provide a solid basis for the selection
of reliable zircon inclusions to use for elastic thermobarometry applications. These methods,
in combination with the already rich tool set that can be applied to zircon (e.g. Ti-in-zircon
thermometry (Watson et al., 2006), U-Pb geochronology, oxygen isotopes) will provide an
even more detailed characterization of P-T-t-fluid and deformation history of metamorphic

rocks.
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Chapter 7

Measuring strain and stress distribution in minerals
showing optical anomalies: a new Raman

spectroscopy approach

This chapter reports the results and discussions from the paper:

Campomenosi, N., Mazzucchelli, M. L., Mihailova, B., Angel, R. J., Alvaro, M. (2020)
Using polarized Raman spectroscopy to study the stress gradient in mineral systems with

anomalous  birefringence.  Contribution to Mineralogy and Petrology, DOI
:10.1007/s00410-019-1651-x.

Original abstract

Polarized Raman spectroscopy was applied to garnet hosts which exhibit anomalous
birefringence around inclusions of zircon and quartz, in order to elucidate the spatial
distribution of the anisotropic strain fields in the vicinity of the host-inclusion boundary. We
show that there is a direct relationship between the stress-induced birefringence and the
Raman scattering generated by the fully symmetrical phonon modes (the A1, modes in cubic
crystals). Our experimental results coupled with selected finite element models show that the
ratio between the measured Raman peak intensity collected in cross and parallel polarized
scattering geometries of totally symmetrical modes, represents a useful tool to constrain the
radial stress profile in the host around the inclusions. Further, we demonstrate how group-
theoretical considerations and tensor analysis of the morphic effect (external-field-induced
change of the symmetry) on the phonons and the optical properties of the host can help to
derive useful information on the symmetry of the stress field. Finally, we show
experimentally that, under the same amount of applied stress, this approach is more sensitive
than the commonly-used approach of measuring differences in phonon frequencies and
provides better opportunities to map the spatial variations of strain. This approach is an
alternative technique to study structural phenomena associated with anomalous
birefringence in host crystals surrounding stressed inclusions, and could be applied to other
systems in which similar optical effects are observed.
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7.1 Introduction and motivation

Anomalous birefringence in minerals is the result of strains imposed on crystals that break
their symmetry. Such strains can be generated by intra-crystalline processes during crystal
growth or mineral re-crystallization, and by inter-crystalline processes due to the constrained
interaction between mineral grains with different physical properties (see Shtukenberg and
Punin, 2007 for a comprehensive review of the subject). One simple example is host-
inclusion systems, in which an excess stress is developed in a soft mineral trapped inside a
stiff cubic garnet host, and this stress generates strains in the host that break its cubic
symmetry. As a consequence, an optical birefringence halo in a cubic host can be observed
in the vicinity of the host-inclusion boundary (e.g. Howell et al., 2010).

The study of the complex thermo-elastic interaction in host-inclusion systems is of
increasing interest in the petrology because of its potential to retrieve the pressure-
temperature (P-T) conditions in metamorphic rocks at the time of inclusion entrapment
(Rosenfeld and Chase, 1961; van der Molen and van Roermound, 1986; Izraeli et al., 1999;
Enami et al., 2007; Kohn, 2014; Angel et al., 2014; Zhukov and Korsakov, 2015; Anzolini
et al., 2018; Murri et al., 2018). However, while controversial issues related to the
application of elastic barometry to non-ideal cases have been addressed (e.g., Angel et al.,
2015; Mazzucchelli et al., 2018; Murri et al., 2018), the strain state in the host mineral is still
poorly understood. Howell et al. (2010) carried out a detailed description of the birefringence
induced in cubic host minerals by inclusions. In their work, the analysis of the induced
birefringence was treated in terms of a change in the shape and orientation of the optical
indicatrix of the host as a function of the stress field arising from the adjacent pressurized
inclusion. On the other hand, Izraeli et al. (1999) were the first to consider the change in the
Raman peak positions in a diamond host surrounding stressed inclusions while Nasdala et

al. (2003; 2005) applied 2D Raman mapping of the diamond peak position (near 1332 cm™)
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and peak width, in order to analyse the spatial distribution of the strain in the diamond host.
Nevertheless, the use of the shift in the Raman peak position measured in the host as a proxy
for the stress in the inclusion is still controversial. When an inclusion is under a residual
stress, the stress in the host close to the inclusion is not isotropic but a radial stress and two
tangential components are developed even for a spherical inclusion (see e.g. Zhang, 1998;
Mazzucchelli et al. 2016). As a consequence, the stress calculated by measuring the Raman
peak position in the host and applying a simple hydrostatic calibration cannot be equal to the
average pressure in the inclusion. Indeed, from simple arguments of force balance, we should
expect that only the radial components of the stress of the two minerals are equal to each
other (e.g. Zhang, 1998, Angel et al., 2015). These considerations explain why, usually,
different stress values were inferred between the host and the inclusion, when derived from
the Raman peak positions (Izraeli et al., 1999).

This study introduces an alternative approach for strain analysis in host-inclusion systems
that exploits the symmetry relationship between the optical indicatrix and the Raman
polarizability tensor of the fully-symmetric phonon modes, in order to relate the stress-
induced optical anomalies in host cubic crystals to changes in the intensities of the Raman
bands. This will be shown by theory supported by preliminary experimental results on

natural samples.

7.2 A bit of theory: the morphic effect in crystals and in their lattice

dynamics

In general, the term morphic effect’ refers to a reduction of the point symmetry of a crystal
caused by an applied external anisotropic force field (Nye, 1957). The Neumann-Curie
principle defines the way in which this modification takes place: a crystal under an external

force will exhibit only those point symmetry elements that are common to the unperturbed
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crystal and the applied force field (e.g. Nye, 1957; Schtukenberg and Punin, 2007). If this
perturbation extends over a discrete portion of a crystal, which exceeds the length scale of
short and intermediate range order, i.e. at least 10 unit cells, it will modify the crystal’s
macroscopic physical properties. An example is the anomalous birefringence haloes
observed under cross-polarized light in cubic crystals that surround pressurized inclusions
(e.g. Figure 7.1). Indeed, when the inclusion is strained due to the confined space, it exerts
a radial stress on the surrounding host that compresses the host in a radial direction, and at
the same time the host is expanded in the tangential directions (e.g. Angel et al., 2015). To
take a simple example, consider a point in a cubic host crystal adjacent to a soft over-
pressured inclusion, where the c-axis of the garnet is parallel to the radius. The compressive
radial stress will shorten the c-axis of the garnet, and the a- and b-axes that are tangential to
the inclusion wall will be expanded. Locally, the symmetry of the garnet at this point has
been reduced to tetragonal, and it is therefore expected to exhibit optical birefringence. Thus
the strains created by the inclusion lower the point symmetry of the host which in turn break
its optical extinction rules (Howell et al., 2010; Howell, 2012). In this particular case, the

anomalous birefringence represents the morphic effect (a symmetry reduction) due to the

external stress field imposed on the host by the host-inclusion boundary.

Figure 7.1. Zircon (S1 and S2) and quartz (S3 and S4) stressed inclusions in garnet host crystals
under cross-polarized light. Note that the typical cross-shaped extinction pattern is given by the
orientation of the microscope polarizers, and remains fixed in orientation upon rotation of the
microscope stage.
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In general, the occurrence of birefringence in a crystal is due to the difference between the
refractive indices along different directions and it is related to the shape of the optical
indicatrix.

In a tensorial form, this is represented by the symmetric 2"-rank matter tensor of relative
dielectric impermeability B. Then, if we do not consider the contribution of the wavelength
of the light, the intensity of the transmitted light at the optical microscope can be expressed
as function of the polarization vectors of the incident and transmitted light, eP°! and e
respectively, and of the dielectric impermeability tensor B as follows:

Ioc |eP? By e[ (7.1)

Note the use of Einstein’s summation convention in Eq. 1 and throughout this paper, which
means a summation over all the index values when an index variable appears twice in a
single term (see also Appendix). Under an external anisotropic force, such as an electric
field, magnetic field or a stress field, the values of the components B;; of the tensor will
change according to the symmetry of the applied force, which are phenomena called the
electro-optic, magneto-optic and piezo-optic effects respectively. In the case of piezo-optic
effect, the components B;; of the resulting tensor can be considered as composed of intrinsic

and force-field induced constituents:

dB;;
By = By +ABy; = BY + [(532L) ou| = BY + [myjucial. (72)

dog
dBj . . .
where 1, = ?;’l is the piezo-optic 4™-rank tensor (Nye, 1957).

On the other hand, the Raman effect is due to inelastic scattering of light by optical phonons.
Therefore, Raman activity is related to changes of the electrical polarizability of the crystal
during the atomic vibrations and is described by the Raman polarizability tensor a. This,
like the relative dielectric impermeability tensor B, is a second-rank symmetric tensor and
can be represented geometrically by an ellipsoid called the Raman polarizability ellipsoid.

Each Raman-active phonon mode m in a crystal will have its own Raman polarizability
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tensor a™. Therefore, in the same way that the intensity of light transmitted through a crystal
viewed between polarisers depends on the B tensor, the Raman intensity of any phonon mode
depends on the polarisation directions of the incident and scattered light, described by the
unit vectors e’ and e, and the Raman polarizability tensor:

I |e,‘;amklef|2 , (7.3)

Thus the intensity of the Raman scattering peak from the mode depends on the orientation
of the electric-field unit vectors e! and e® of both the incident and scattered light.
Experimentally, the directions of the electric-field vectors of the incident and scattered light
are defined by the polarisers placed in the incident and scattered beam paths, so e and e (in
the crystal) depend on the orientation of the crystal with respect to the polarisers in the
spectrometer system. Written out in the terms of the individual components of the tensors,
equation (3) becomes:

I « (e{amllef + e{amlzezs + e{am13e3s + e%amnef + e%amzzezs + e%ammeg +

eéam31ef + eéam32e25 + eéam33e3s)2

with a™; = a™; for first order Raman scattering.

Therefore, the experimentally-observed Raman intensity of a given mode depends on three
factors (i) the intrinsic symmetry constraints on the Raman polarizability tensor a@™; (ii) the
orientation of the crystal with respect to e’ and e®, and (iii) the mutual orientation of the

polarisation of the incident and scattered light beams e’ and e® which are experimentally
determined by the polarisers. In parallel polarized spectra (denoted here as HH spectra) e’ ||
e® and in cross polarized spectra (VH spectra) e’ | e".

As described above for the relative dielectric impermeability tensor, the Raman
polarizability tensor @™ will also change under anisotropic external forces. This change is
usually referred to as the morphic effect on the lattice dynamics (Anastassakis, 1980;
Gregora 2006) and generally, the force field can influence both the phonon mode energies
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(i.e. peak positions) and the atomic vector displacements (i.e. symmetry of the vibrational
mode). The latter is what determines the a™;; components, that is, the shape and orientation

of the polarizability ellipsoid. Therefore, in the case of an applied stress field we have

(Gregora, 2006):

da™;;
m. . — m, — mo ij _ mo
a™y; = amoy + A = a + [( o )Ukz] = ;" + [Tijou] ., (74

dajj . . .
where t; jkl=d—” is a 4"-rank tensor and will be referred hereafter as the piezo-phonon tensor.
Okl

Furthermore, in each crystal class the Raman polarizability tensor of the fully-symmetric
modes obeys the same symmetry constraints as any 2"%-rank property tensor, including B,
because all point-symmetry elements in the crystal equilibrium structure are preserved
during the atomic vibrations of a fully-symmetric mode. Consequently, T for the fully-
symmetric phonons will be subjected to the same symmetry constraints as the piezo-optic
tensor 1r. Then, we should expect a one-to-one correspondence between the anomalous
(symmetry-forbidden) cross-polarized (VH) Raman scattering of totally symmetric modes
and the anomalous occurrence of birefringence: for any stress-induced distortion of the
optical indicatrix a proportional stress-induced distortion of the Raman polarizability
ellipsoid should be expected. This will modify the Raman selection rules of a given phonon
mode resulting in Raman scattering, which appears anomalous with respect to the
undistorted structure of the mineral. Thus, by measuring the stress-induced depolarization
of the Raman signal one can go beyond a simple visual inspection and quantify the
micrometre-scale gradients of elastic stress and strain in mineral systems such as host-
inclusion systems or mineral grains exhibiting inhomogeneous birefringence (i.e. undulose

extinction).
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7.3 Specific methodology

The selection of suitable inclusions for this study was conducted by means of optical
microscopy. The garnet host surrounding the selected inclusions presents clear birefringence
haloes and is free of fracturing. The inclusions are entirely embedded in their host and
located approximately at the middle of the thin polished section (Figure 7.1), in order to
avoid any artificial effects from close proximity to the external surface of the host
(Campomenosi et al., 2018). For this study we selected two zircon inclusions, one elongated
(S1) and one rounded (S2) from coesite-bearing whiteschist rocks of the UHP Brossasco-
Isasca unit of the Dora-Maira massif (e.g. Chopin, 1984; Hermann, 2003) as well as two
quartz crystals S3 and S4, elongated and rounded respectively, from a diamond-grade
eclogite xenolith of the Mir Kimberlite pipe (Korsakov et al., 2009). All of these inclusions
are trapped in pyrope-rich garnet hosts. Peak metamorphic conditions for the whiteschist
rocks in Dora-Maira Massif were constrained between 3 and 4 GPa and 730 °C (e.g. Chopin
etal., 1991; Schertl et al., 1991; Hermann, 2003) while the estimated entrapment conditions
for the Mir Kimberlite pipe were 3 GPa and 850 °C (Alvaro et al., 2019). The analysis of the
Raman spectra from the zircon inclusions (e.g. Geisler et al., 2001; Nasdala et al., 2001; see
also Chapter 6) showed that they are not affected by radiation damage that would strongly
affect their physical properties (e.g. Binvignat et al., 2018) and thus the residual pressure
acting on the host wall.

Micro-Raman measurements were collected and processed in the same way as described in
Chapter 2. Point analyses have been conducted on the inclusions and the corresponding host
crystals across the induced birefringence haloes in both parallel (HH) and cross (VH)
polarized scattering geometries. As a strain-free standard of the host we simply selected a
spectrum from a birefringence-free area of the host well away from any inclusions. In order
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to determine the spatial distribution of the morphic effect around an inclusion, the point
analyses of the host were performed along radial trails with different orientations with
respect to both the inclusion and the polarization of the incident light, as shown in the scheme
in Figure 7.2.

Motivated by the ideas in equation (2), to detect the presence of morphic effects by Raman

spectroscopy, we have used the depolarization ratio of totally symmetric modes:

p="2, (7.5)

where I, is the measured intensity of a Raman peak in cross-polarized geometry (VH) and I
is the measured intensity of the same peak in parallel-polarized geometry (HH). In this way,
we can obtain information on the change in the magnitudes of the non-diagonal (from the
VH spectra) and diagonal components (from the HH spectra) of the Raman polarizability
tensor and thus the phonon symmetry properties. Indeed, this is a simple technique

commonly used to probe the symmetry of a phonon mode in a given crystal class (e.g.

Nakamoto, 2009).

L5

%,

Figure 7.2. Direction of analysis transects across birefringent domains in garnet. The three
ellipsoids correspond ideally to the three main possible strained domains of the host surrounding a
stressed inclusion as function of its shape. The lines oriented to 45 degrees (i.e. L1, L3 and L5) with
respect the polarizers were collected in both parallel (HH) and crossed (VH) scattering geometry
while the horizontal ones (i.e. L2 and L4) only in parallel scattering geometry.
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In our case, it can provide important information on how the phonon symmetry properties
change as function of the morphic effect. Hence, the angular dependence of the
depolarization ratio can be directly associated with the extinction angle of a crystal in cross-
polarized light when using an optical microscope.

Finally, the experimental depolarization ratio has been compared to the radial component of
the strain in the host computed with a Finite Elements (FE) analysis of a simplified 3D model
of the inclusion S2. To compute the strain field around the inclusion we first measured the
residual strain in our inclusion using the multiple-peak approach of Murri et al. (2018) (see
the Results section and Table 7.1). We applied the concept of the relaxation tensor
(Mazzucchelli et al., 2019) for the system zircon-in-pyrope to compute the unrelaxed strain
in the inclusion, i.e. the eigenstrain in the equivalent inclusion problem of Eshelby (1957).
In our FE model the geometry of the inclusion was reproduced as a 2:1:1 ellipsoid embedded
in a practically infinite matrix (i.e. the distance between the inclusion and the boundary of
the model is 100 times larger than the radius of the inclusion). The host-inclusion system
was discretized with a finer mesh in the region of the host closer to the inclusion where high
gradients in strain are expected. We assumed anisotropic elastic properties for both the
zircon inclusion (Ozkan et al., 1974) and the pyrope host (Sinogeikin and Bass, 2002). A
static finite element analysis was carried out starting from a prestress state applied to the
inhomogeneity, corresponding to the unrelaxed strain of our inclusion, and a zero-stress state
of the host. This is a non-equilibrium configuration since the tractions at the host-inclusion
interface are not balanced. Suitable Dirichlet boundary conditions are applied to the host to
prevent rigid body motions. From the FE analysis we obtained the final strain field in the
system at equilibrium. The strain in the region of the host surrounding the inclusion was

compared with the measured depolarization ratio. Because the strain and the experimental
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depolarization ratio have different magnitudes, in order to compare their trends we

normalised the experimental depolarization ratio by:

pp = 2 (1.6)

where p3 is the normalized depolarization ratio at distance x from the host-inclusion
boundary, p, is the measured depolarization ratio at the same position, p, is the measured
depolarization ratio of an unperturbed crystal domain (i.e. the reference point) and C is a
scale factor given by the ratio between the measured depolarization ratio and the value of

the radial component of the strain computed at the host-inclusion boundary.

7.4 Results

All Raman spectra collected from zircon and quartz inclusions, surrounded by anomalous
birefringent haloes of their host, show a shift in phonon wavenumbers toward higher values
with respect to free crystals taken as reference, indicating the presence of compressive elastic
strains in the inclusions. The residual strain of such inclusions can be estimated using the
multiple-peak approach by Murri et al. (2018) and the software stRAinMAN (Angel et al.,
2018). Table 7.1 reports the peaks used for both quartz and zircon inclusions, their
wavenumbers and the resulting strain. Residual pressures (defined as the negative of the
mean normal stress) for the zircon inclusions S1 and S2 are 0.5 and 0.6 GPa respectively
while for the quartz inclusions S3 and S4 are 0.9 and 1.2 GPa, respectively.

Table 7.1. Strain components and inclusion pressure derived from the corresponding Raman peak
position

zircon

sample Big (cm™) Aig (em™) Eg (cm™) g1 ten €33 Pinc (GPa)
Sl 1,011.39(03)  977.56(25)  359.13(02)  -0.00152(17)  -0.00070(16)  0.5(1)
s2 1,011.58(01)  978.39(02)  360.27(01)  -0.0026(4) -0.0002(4) 0.6(2)
ref  1,008.53(02)  974.85(05)  356.80(01)
quartz
sample E (cm™) A1 (cm™) E (cm?) g1+ en €33 Pinc (GP2)
S3 133.83(04)  473.59(43)  703.63(93)  -0.018(2) -0.0065(14) 0.9(1)
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sS4 135.28(08)  475.68(05)  707.51(06) -0.031(4) -0.004(2) 1.32)
ref 128.41(01)  465.18(01)  695.60(61)

Garnet are the surrounding host crystals for all of the measured inclusions. The garnet
structure is cubic, having a space-group symmetry la3d. Site-symmetry group analysis of
unstrained garnet shows that Raman-active modes at the Brillouin-zone centre belong to the
following irreducible representations (e.g. Kroumova et al., 2003):

Traman = 3 A1g+ 8Eg+ 14Ty, (7.7)

The Raman polarizability tensors of these vibrational modes in a matrix representation in a

conventional coordinate system are given in Table 7.2.

Table 7.2. A matrix representation of the Raman polarizability tensors of the Raman-active modes in garnet

a . . . . . . . C . c .
. b . . —V3b . . c .

' a . b . : V3b |\ c S

.  _9p . . ' . .

Which components of the Raman polarizability tensor are zero, and the constraints on the
values of the non-zero components, are defined by the symmetry of the mode and of the
crystal. As shown in Table 7.2, for the A1z modes in cubic crystals with point symmetry
m3m, a9, = a’9,, = a195;, and a9, = a?19,; = a’19,; =0, the same as the
constraints on the B tensor for optical birefringence. This is the reason why the behaviour of
the intensities of Aiz modes in cubic crystals under stress follows that of the optical

birefringence. And the expression for the intensity for Az mode in cubic crystals becomes:

. . . 2 A 2 . . .
A i, A S i A S i A s\ — 19 i,S L,S L,S
719 « (ela 9,.e1 teatd, e; +eza 193333) = (0(11 ) (ele1 +eze; + 3333) .

This equation shows that the symmetry of the Raman polarizability tensor of the Az modes

in cubic crystals means that the intensity is independent of the direction of propagation of
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light through the crystal, and depends only on the relative orientation of the two polarisers
to one another. We can now choose any convenient coordinate system for these polarisers
and the experiment. For this example, we choose the incident beam to be along the z-axis,
and the polarisation direction to be along the x-axis. Thus e! = [1 0 0]. If one makes
measurements in HH polarisation, the polarisation of the scattered beam is parallel to the
incident beam, so e’ = e, and equation above for the intensity becomes:

I o (amnei'ef)z = (af})?

By contrast, when the polarisations of the incident and scattered radiation are ‘crossed’, (i.e.
mutually perpendicular and denoted VH), then e® = [0 1 0] and the intensity will be zero.
Thus, in cubic crystals, A modes can be observed by polarised Raman spectroscopy with
HH polarisation, but are not observed with VH polarisation.

Because the symmetry of the Raman tensor of the A1z modes is the same as the B tensor, we
only discuss them. The complication with the Eg and T2g modes is that they are doubly and
triply degenerate modes (i.e. effectively two and three phonon modes with the same
frequency) in the cubic structure, but can split into 2 (or 3 for T2¢) modes when the cubic
symmetry is broken. Therefore the analysis of the evolution of their peak positions and
intensities in the strain halo around the inclusion is complex and is not expected to exactly
follow the optical birefringence. We further focus on the A, mode near 928 cm™! because
it has the highest intensity and is well-resolved from other Raman peaks from both the garnet
and the inclusion crystals.

Figure 7.3 shows the scattering behaviour of the Az mode near 928 cm!, for both parallel
and cross-polarized scattering geometry, in representative points located at different
distances from the inclusion and along transect with different orientation with respect to the
polarizers (Figure 7.3a and b). For any orientation of the crystal, Ajg modes (totally
symmetric modes in garnet) in cross-polarized scattering geometry (VH in Figure 7.3) should

be Raman inactive due to the polarization selection rules (see Appendix). However, this is
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true only for spectra collected well away from the areas exhibiting a birefringence halo (i.e.
unstrained in Figure 7.3) while Raman spectra collected closer to the inclusion (e.g. p1, p2
and p3 in Figure 7.3-a), within the areas having a birefringence halo, show a tiny but well-

resolved Raman activity in the cross polarized scattering geometry.

——p1=HH
—— p2-HH
—— p3-HH
—— p1-VH
—— p2-VH
—— p3-VH
unstrained

VH

850 900 050
Raman shift (cm™)
A —— pd-HH
——— p5-HH
—— p4-VH
—— p5-VH

unstrained

850 900 950 1000
Raman shift (cm™)

Figure 7.3 Anomalous Raman scattering of totally symmetric vibration A, near 928 cm™. VH and
HH spectra correspond to cross and parallel-polarized scattering geometry respectively.

The depolarization ratio p of this A1z mode calculated from these spectra shows a clear trend
with a maximum close to the inclusion (up to 0.06) and it drops to ~0.005 (i.e. effectively
zero allowing for experimental noise) outside the birefringence halo (Figure 7.4). Table 7.3-
a b reports the depolarization ratio values for all of the measured transects radially distributed

around both the zircon and quartz inclusions.
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Figure 7.4. Depolarization ratio versus distance of totally symmetric mode near 928 cm™ for garnet
surrounding zircon and quartz inclusions. Experimental results with associated errors computed on
fitted intensity are plotted as symbols, and the lines are the best fit of Equation 8. Colour coding
represents different directions (Figure 7.2).

It is important to point out that the maximum of stress-induced cross-polarized Raman
scattering is observed along transects oriented at 45 degrees with respect to the polarization
of the incident light €', (Figure 7.3) which corresponds exactly to the maximum interference
colour in crossed-polarised optical imaging. On the other hand, the stress-induced cross-
polarised Raman scattering is zero along transects that are parallel or perpendicular to &'
(which corresponds to a crystal grain in extinction in cross-polarised optical imaging). In
this case the variation in HH spectra still can be recorded and analysed, which is an advantage
over polarized-light optical microscopy. Note that all of the above observations are valid

also for the other two A1, modes of garnet, but because the one near to 928 cm™' shows the

strongest Raman intensity the effects are more evident.
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Each series of experimentally-determined depolarisation ratios along a radius away from an
inclusion can be fitted with the following analytical function:

p =a—bc* (7.8)

where x represents the distance from the host-inclusion surface boundary. Table 7.4 reports
the parameters of the fitting function and their uncertainties. Note that along some trails it
was possible to conduct only a few point analyses because the Raman signal was interfered
by a strong photoluminescence signal, which is most probably due to inhomogeneous

distribution of trace elements within the garnet host.

Table 7.4. Fitting parameters of equation 8

sample S1 L1 L3 L5
a 0.010 + 0.003 0.010 +0.001 0.004 + 0.001
b -0.040 + 0.006 -0.026 £ 0.001 -0.034 £ 0.007
c 0.940 + 0.024 0.875 +0.028 0.889 + 0.024
Reduced Chi-Sqr 1.63529 0.74791 1.88509
R-Square 0.90047 0.98567 0.84175
Adj. R-Square 0.85071 0.9809 0.78899
sample S2 L1 L3 L5
a 0.000 + 0.003 0.004 + 0.001 0.005 + 0.001
b -0.026+ 0.003 -0.032 £ 0.005 -0.044 +0.004
c 0.960 +0.011 0.858 +0.034 0.891 +£0.019
Reduced Chi-Sqr 0.22892 0.56303 0.47295
R-Square 0.97996 0.90366 0.96933
Adj. R-Square 0.9666 0.86513 0.95399
sample S3 L1 L3 LS
a 0.012+0.011 0.008 + 0.001 0.011 +0.002
b -0.032 £0.011 -0.026 + 0.002 -0.027 £ 0.003
c 0.930 + 0.056 0.929 +0.014 0.961 +£0.011
Reduced Chi-Sqr 25.25981 2.10941 2.99045
R-Square 0.81279 0.97084 0.96625
Adj. R-Square 0.68799 0.95626 0.94938
sample S4 L1 L3 L5
a 0.005 + 0.002 0.000 + 0.047 0.016 + 0.002
b -0.041 +0.002 -0.046 + 0.045 -0.040 £ 0.003
c 0.939 +0.007 0.961 + 0.064 0.902 £ 0.015
Reduced Chi-Sqr 0.25818 6.85203 2.02424
R-Square 0.99667 0.86353 0.97119
Adj. R-Square 0.99445 0.72706 0.95967
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A comparison of different transects around the inclusions measured under the same
scattering geometry (at 45 degrees with respect to '), shows no close relationship between
the depolarization ratio decay and the shape of the inclusion or its amount of stress. Note
also that, since the intensity decreases very quickly away from the inclusion, a few
micrometres of uncertainty in the distance from the inclusion can lead to large changes in
the depolarization ratio. However, the trend of decay of the depolarization ratio measured
experimentally is in good agreement with the trend of decay of the radial component of the

strain in the host calculated from FE simulations (Figure 7.5).
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Figure 7.5. Decay of strain and normalized depolarization ratio (Equation 6) from the host-inclusion
boundary. The reported radial strain (red solid line) is the direction L3 in Figure 7.2 that is parallel
to the c axis (elongated axis in the crystal) of zircon inclusion S1.

7.5 Discussion

Preliminary experimental results from this study show an identical spatial distribution
between the stress-induced birefringence and the intensity of the stress-induced cross-
polarized Raman scattering of fully symmetric modes. Furthermore, the direct correlation
between stress-induced birefringence and stress-induced Raman scattering found
experimentally suggests a direct proportionality between the piezo-optic and the piezo-
phonon tensors.
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Raman: polarizability ellipsoid Microscope: optical indicatrix
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Figure 7.6. Schematic representation of polarization selection rules for totally symmetric modes (to
the left) and optical birefringence in unstrained and cubic crystals under deviatoric stress. XYZ are
the instrumental reference frame while a, b, cand a’, b’, and ¢’ are the semi-axes of the polarizability
ellipsoid for an unstrained and strained crystal respectively. The same scheme is adopted for the
refractive indices nq, ngand n,in the optical indicatrix. Q. and Q- represent the normal coordinate
end-members from the equilibrium configuration Qy of the polarizability ellipsoid during vibration.
Note that for fully symmetrical modes Raman activity is given by the change in volume of the
polarizability ellipsoid during vibration (i.e. simultaneous and proportional change in the diagonal
components of the Raman polarizability tensor a). € and € represent the polarization direction of
the incident and scattered light respectively, €™ and €' the direction of light polarization in the
microscope. k' and k* represent the propagation direction of the incident and scattered light. See the
text for the discussion.

From equation 4 it is evident that a mode will be active as function of the applied stress if

(%) # 0 during the vibration where @ is the phonon normal coordinate (Figure 7.6).
kl Q-0

For fully-symmetric modes this is equivalent to a stress-induced change in the point

symmetry. Therefore, in the case of garnet, the shape of the polarizability ellipsoid will
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change from spherical to truly ellipsoidal, and the geometry is a function only of the applied
stress. Then the Raman polarization tensor will be modified according to the new symmetry
and a non-zero phonon-induced dipole moment will be detectable also in cross polarized
scattering geometry. This is exactly the same as the rules for the birefringence observed
under an optical microscope (see Figure 7.6). Note that in general, for centrosymmetric
crystals, strain/stress-induced Raman scattering is allowed only for even-parity modes
(Anastassakis, 1980; Gregora, 2006). A general way to obtain the matrix form of the piezo-
phonon tensor (T) was reported by Anastassakis (1980) and can be applied to all of the
symmetry modes. However, the symmetry constraints imposed by fully-symmetric modes
can simplify the treatment.

Let us consider as an example the effect of a stress on the totally symmetric phonon (Aig)
modes imposed by an anisotropic inclusion along the [100] direction of the host cubic
crystal. For cubic crystals, the symmetry constraints of the piezo-phonon tensor expressed

in Voigt notation are (Nye, 1985):

Taq
When the inclusion is uniaxial, such as for the case of quartz and zircon, and is elongated or
flattened along the unique axis, the stress field in the surrounding host is anisotropic with

normal components:

Then equation 3 takes the form:
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g

It is evident that the tensor Aa? in the host will also have three different normal components.
Note that such a symmetry would correspond to the intrinsic Raman scattering of the totally
symmetric phonon of an orthorhombic crystal. In general, if the stress is applied along an
arbitrary direction of a cubic host crystal, the corresponding tensor Aa® would correspond
to a biaxial crystal (orthorhombic, monoclinic or triclinic).

Then, once Aa? is obtained in this way, the total contribution in the electronic polarizability
becomes:

ad, . : Aafy

met= | ol |+ | . g . [(710)
a](?l . . Aagg

a
where the two superscripts i and o represent the contribution of intrinsic and stress-induced
Raman effects respectively. However, it is important to point out that since the piezo-phonon
tensor is of fourth-rank, the resulting morphic effect will depend on the crystallographic
orientation of the cubic crystal with respect to the applied stress. This means that, for a
correct interpretation of the experimental results, we need to know the mutual
crystallographic orientation of the host-inclusion pair because the orientation of the inclusion
determines the orientation of the stress field. Furthermore, the entire system must be
oriented with respect to the observation plane (i.e. the thin section surface) and then with

respect to the polarizers. Then, combining equations (2) and (9), the intensity of the stress-

induced Raman scattering is:
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I x |e,‘;(am°kl + Aa"kl)eﬂz = |e,‘;(am0kl + Tkmnlamn)eﬂz (7.11)

Hence, the observed Raman intensity is just proportional to the stress of the crystal and,
through Hooke Laws, to the strain, as shown in Figure 7.5.

One of the major advantages of this method is that the Raman peak intensity is more sensitive
to the applied stress than the vibrational frequency, as shown in Figure 7.3 where the peak
position (i.e. vibrational frequency) remains unchanged across the birefringence halo while
the difference in the intensity is well-defined. A stress-induced change in the phonon
wavenumber was only detected when using confocal optics and an objective 100x; the
measured wavenumber shift was already quite small (~2 cm™) very close to the host-
inclusion boundary and decayed away very quickly with increasing distance from the
boundary, making it impossible to use this to follow quantitatively the radial stress gradient.
To explain this, it is necessary to recall the nature of the two phenomena. Indeed, as seen in
equation (3) and (11), the peak intensity depends on the electrical polarizability of a crystal
and how it changes as function of the vibration, that is, the stress-induced Raman intensities
are related to the redistribution of the electron density of states, similar to the stress-induced
changes in the optical properties. On the other hand, the vibrational frequency of a Raman
peak depends on the atomic motions around their equilibrium positions in the crystal
structure. Since the electrons are much lighter than the atomic nuclei they are affected more
than the atomic nuclei by the same stress field.

In particular, the phonon frequency variation in a stressed crystal is directly related to its
strain state by the 2™ rank phonon-mode Grueneisen tensor y™ (e.g. Ziman, 1960) which
obeys the same symmetry constraints as any 2" rank property tensor. In a cubic mineral, for
example, changes in the wavenumber should only be related to a volume change of the
crystal in the probed area (e.g. Angel et al., 2018). However, as demonstrated above, the host
crystal is no longer cubic close to the inclusion. Then, the Grueneisen tensor will be

modified, as is the polarizability tensor, by the stress field acting on the crystal which will
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reduce its symmetry from cubic to a lower symmetry. For a spherical elastically-isotropic
inclusion the resulting symmetry is approximately uniaxial, otherwise for lower-symmetry
inclusions the resulting symmetry in the host is, as noted above, effectively biaxial. This is
what is seen in the observed stress-induced birefringence. As a consequence, changes in the
wavenumbers of Raman peaks are not solely a function of the volume but also of the
anisotropic strain. However, for the reasons given above, if the amount of stress is small, the
perturbation of the initial Grueneisen tensor components, which depends on the
redistribution of the heavy nuclei, will be very small and then the change in the Raman peak
position will be very small and difficult to detect.

Another advantage is that, with respect to the observations performed at the optical
microscope, in which the observed birefringence is the result of an integration of the signal
coming from the entire thickness of the thin section, with confocal Raman spectroscopy it is
possible to reduce the volume of the probed area down to a few cubic micrometres. Even in
a non-confocal configuration, assuming a refractive index of pure pyrope of about 1.7, using
the correction given by Everall (2000), for an inclusion sitting at about 80 um below the
sample surface (i.e. our cases) an objective N.A. of 0.5, the resulting (predicted) axial
resolution is approximately 14 pm over the 260 um of sample thickness.

Currently, we cannot provide a way to directly measure the strain and stress because the
absolute values of the piezo-phonon coefficients are unknown. They can in general be
derived from DFT calculations at 0 K but this would help only in the case of spherical
inclusions because the inclusion shape is quite important in determining the exact stress
tensor induced by the host-inclusion boundary. Nevertheless, the method gives the
opportunity to quantify the spatial distribution of the stress propagating in the host, that is,
the stress field acting in host-inclusion systems, directly from the depolarization ratio of the

cubic fully-symmetric modes.
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Finally, it is interesting to note that, with such an approach, it would be possible to
discriminate between compressive and tensile stress conditions acting on the host crystal by
anomalous Raman scattering. Indeed, coupling the above considerations with the
proportionality between the scattered intensity of a mode and its polarizability, the total

contribution in the measured intensity under parallel polarized scattering geometry (HH), can

be written as:

0 o 2
all . . Aall

I« Cooad L+ . Al : (7.12)
a?; . : Aad,

Then, from equation (12), it is evident that the sign of the stress-induced polarizability tensor
components, which depend on the sign of the acting stress, can give an increase or a decrease
in the total intensity of parallel polarized spectra when compared to those acquired in the
unperturbed reference domain which corresponds to just the first term in brackets. Finally,
from equation (12) it is also evident that we can potentially use mapping of peak intensity to
visualize strain gradients in the host surrounding stressed inclusions as shown in Figure 7.7.

16 x 10’ (counts) 0
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Figure 7.7. Intensity map of Aig mode near 928 cm™ in garnet under parallel polarized scattering
geometry (HH). The intensity variation (plotted here in terms of peak area) represents the changes
in the shape of the polarizability ellipsoid (i.e. changes in the polarizability tensor coefficients) as
result of the stress field acting on the garnet.
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7.6 Implications

In this Chapter, an alternative method to study the strain state acting on host crystals
surrounding pressurized inclusions has been presented. In particular, we pointed out the
anomalous scattering behaviour of totally symmetric phonons as a bridge between the stress-
induced Raman scattering and the observed stress-induced birefringence of a crystal. Indeed
both processes obey the same symmetry constraints and are directly proportional to each
other. Furthermore, because they depend upon the redistribution of the electron density of
states, they are much more sensitive to the stresses and strains than changes in phonon
frequencies or splitting of degenerate modes. Then, the depolarization ratio and intensity
maps of totally symmetric phonons represent a powerful tool to visualize strain gradients in
crystals. Finally, even if an absolute description of the strain state of the host is not yet
available because we still do not know the absolute value of the piezo-phonon coefficients,
theoretical considerations can be exploited to determine the stress-induced symmetry of the
crystal and an evaluation of the sense of the applied stress could be performed.

This new and complementary methodology sheds further light on the possibility in analysing
and quantifying stress gradients in optically anomalous crystals with an experimentally-
friendly technique such as Raman spectroscopy. For instance, its application to host-
inclusion systems is just one of many potential cases for study. One example, which is of
increasing interest in the petrological literature, is the analysis and quantification of stress
heterogeneity and distribution in reacting mineral parageneses (e.g. Tajcmanova et al.,
2014). At the moment, such quantifications are mainly performed by means of numerical
models. Our new technique could provide an opportunity for experimental validation when
optical anomalies due to symmetry breaking are present. Further, it is well known that the
study of anomalous optical birefringence in grossular-andradite garnet solid solutions

provides information on their origin and crystal growth (see Shtuckenberg and Punin, 2007;
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Cesare et al. 2019). And this technique can also provide, similarly to optical birefringence,
valuable and complementary information in studying high-pressure / temperature phase
transitions in minerals if, for example, the depolarization ratio is used as a Landau order
parameter. Finally, with hyper- spatial resolution spectrometers, another possible application
could be the study of strain fields due to coherency developed in exsolution processes around
exsolution lamellae, which, in turn, gives information on the enthalpy of mixing in solid

solutions (e.g. Putnis, 1992).
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Chapter 8

Application of the elastic thermobarometric method
to a natural case of study: the UHP Brossasco-Isasca

unit (Dora-Maira Massif, Western Alps)

8.1 Introduction and motivation

In the previous Chapters a correct methodological approach to the elastic thermobarometry
of anisotropic mineral inclusions has been defined by establishing the working procedures,
by selecting zircon inclusions possibly unaffected by metamictization. Therefore, the main
goal of the former Chapters was to provide the necessary analytical protocols to achieve
reliable P-T results from anisotropic zircon inclusions in garnet.

To the purpose of elastic thermobarometry, zircon is a common accessory mineral phase
having a large P-T stability field and frequently occurring as inclusion in metamorphic
garnet-bearing rocks. Besides, zircon can also provide age constraints on inclusion
entrapment and/or metamorphic recrystallization.

In this Chapter, zircon inclusions in three different garnet megablasts from the ultrahigh-
pressure (UHP) Brossasco-Isasca unit (Dora-Maira Massif, Western Alps) are analysed by
means of the elastic approach to retrieve their entrapment P-7 conditions and, if possible, to
gain information on the ambient stress conditions during zircon entrapment inside the
growing garnet host. The choice of the UHP Brossasco-Isasca unit mostly arises from the
historical relevance of the Dora-Maira Massif in the petrological community and in the
development of modern petro-tectonic models on subduction and exhumation of high- and

ultrahigh-pressure rocks. As described in Chapter 3, Dora-Maira is the place where Chopin
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(1984) showed for the first time continental subduction to depths greater than 90 km. Today,
while the presence of coesite inclusions is the indisputable record of the attainment of
ultrahigh pressures during metamorphism, the true depths of rock recrystallization are
strongly debated.

In the whole Dora-Maira Massif, the UHP continental rocks are confined to a small tectonic
sliver (Brossasco-Isasca is about 15 km wide and less than 2 km thick) recording peak
conditions up to 4.3 GPa and 730 °C (Hermann, 2003). The Brossasco-Isasca unit is
surrounded by other units recording much lower metamorphic conditions (1.5 GPa - 550 °C;
see Chapter 3 and reference therein). Moreover, it is interesting to note that subduction and
exhumation of the UHP Dora-Maira rocks probably went very fast and took place at plate
velocities of approximately 5 cm/yr (Rubatto and Hermann, 2001). To explain this evidence,
the following subduction and exhumation models have been proposed: (1) continuous return
flow in a subduction channel during syn-convergent exhumation (Butler et al., 2014); (2)
lithospheric-scale extension caused by slab roll-back (Beltrando et al., 2010); (3) upwards
flow of crustal rock at the rear of the accretionary wedge (Yamato et al., 2008). However,
other authors pointed out that such mechanisms are inconsistent with the geological data.
Malusa et al. (2015) suggested that the volume of rocks eroded after syn-convergent
exhumation should be at least one order of magnitude larger than the volume estimated from
geological records. Schmalholz et al. (2014), to explain the tectonic evolution of the Western
Alps, proposed an orogenic thrust model considering tectonic overpressures, viscous
shearing and shear heating as the major driving forces for UHP metamorphism.

In this Chapter, the Brossasco-Isasca garnet-bearing whiteschists are analysed by means of
the elastic thermobarometric method. It is worth mentioning that this approach not only
enables defining the inclusion entrapment conditions, but also to test the presence of
deviatoric stresses during entrapment (Alvaro et al., 2020). By integrating petrography with

experimental measurements and numerical models, here I show that the analysis of the
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residual strains of pressurised inclusions can shed light on the mechanisms of inclusion
entrapment and subsequent exhumation. A possible hypothesis arising from this study is that
deviatoric stresses might have been continuously active on the Dora-Maira UHP rocks

during garnet growth and inclusion entrapment.

8.2 Specific methodology and approach

Inclusion selection

The petrographic description provided in Chapter 4 suggests that zircon inclusions are the
best ones for the application of the elastic thermobarometry to the Brossasco-Isasca
whiteschists. The index mineral coesite, though present, in most cases is partially to fully
back-reacted to quartz, kyanite is too large with respect to the host garnet and usually
crowded of solid and fluid inclusions, while the rutile inclusions do not display residual
pressures at room conditions (Zaffiro et al. 2019). The last point has been also shown
experimentally by comparing the Raman spectra of completely buried rutile inclusions to a
free crystal taken as reference.

The selection of suitable zircon inclusions obeyed the following requirements:

1) Ideal crystals have to be chemically homogeneous across their volume and among
different grains. Eventual heterogeneities have to be negligible in terms of position
of the Raman peaks. This cannot be really detected by means of Raman spectroscopy
of buried inclusions, however, compositional analysis of several partially exposed
grains revealed a very limited compositional variability.

2) The crystals have to be unaffected by metamictization.

3) The crystals have to be isolated by at least 3 times their radius or major axis from
any kind of discontinuity (host surfaces, fractures) and from other inclusions.

Chapters 5 and 6 provide the guidelines able to address the above issues.
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Measuring residual pressure using the hydrostatic model

Translating the Raman shifts into residual pressures by means of the hydrostatic calibration
is an easy task vastly applied so far to all host-inclusion systems. The only limitation to this
approach is the availability of the calibration (i.e. peak position as function of P) for a given
crystal. Indeed, once the dependence of a Raman phonon mode from P and the difference
between the peak position of a buried crystal and a free reference crystal are known, the
calculation is straightforward. However, strictly speaking, such calibrations should be valid
only for host-inclusion pairs sharing are both pseudoisotropic in terms of elastic properties.
Indeed, if the zircon inclusion’s symmetry is lower than cubic and, even though the
surrounding host is isotropic, the stress field involved between the host and the inclusion
cannot be hydrostatic because the anisotropic inclusion, by definition, can be compressed in
different amounts along different crystallographic directions. Perfect hydrostatic conditions
should be only attained if a continuous fluid film surrounds the inclusions.

A way to check if the hydrostatic calibration can be used to determine residual pressure in
solid inclusions is plotting the resulting Pinc (i.e. residual pressure) obtained from different
Raman peaks. If the Pixc is the same for different peaks, then the hydrostatic calibration is a
good assumption. In this study, the comparison has been carried out cross-checking
information from four different phonon modes namely: the Bi; mode near 1008 cm™, the

A1z mode near 975 cm’!, the E; mode near to 357 cm™! and the A1, mode near to 440 cm™.

Measuring residual pressure using the anisotropic model

Murri et al. (2018) and Angel et al. (2018) introduced a more rigorous approach to calculate
residual pressure (Pinc) of inclusions buried inside the host using Raman spectroscopy. This
has been referred as the multi-phonon approach or as the phonon-mode Grueneisen tensor

approach. In this approach, as envisaged from the first name, to determine the residual
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pressure of anisotropic inclusions, more than one phonon mode must be used. The approach
exploits a relatively simple relation between the fractional change in the wavenumber w of

a given phonon mode m and the strain tensor € that was first defined by the famous physicist

Grueneisen:
—Aw™ _ .m.
o = y™ e (8.1)

in which the symbol “:” indicates a double scalar product between the two tensors and y™
is the Grueneisen tensor. Considering that both the strain and the Grueneisen tensors are of
the second rank and symmetric (i.e. &;; = €j; and y™,; ;= y™ i respectively) it is possible to
expand out eq. (8.1) as follows:

—Aw™

o Y1111 T V22822 + V3333 + 2V33823 + 2Y13613 + 2Y1%€12

(8.2)

In the simplified Voigt notation this assumes the form:

—Aw™
o S Yia e tyses tyites +yses +ve e

(8.3)

Note that the introduction of a factor of % into the strain vector components and not into the
Grueneisen ones avoids factors of 2 appearing for the terms with subscripts i =4, 5 and 6 in
equation (8.3). The value of y™ is different for different Raman peaks (i.e. phonon modes).
Since both the Grueneisen and strain properties are second rank tensors, they obey the same
symmetry constraints. This is an important point since it defines which strain components
can be determined using the change in the Raman shift. Table 8.1 reports the symmetry

constraints for the Grueneisen tensor (see Angel et al. 2019 for major details).
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Table 8.1 Grueneisen tensor symmetry constraints

Crystal system Independent values Symmetry constraints
Triclinic All components None
Monoclinic b-unique IR AN Z N Vit =ve =0
Monoclinic c-unique IZR AN Z N7 Vit =vs =0
Orthorhombic Ly vy yit=ylt=y"=0
Tetragonal/trigonal/hexagonal v vi= ]:m B ];im =0
Yi =72
Cubic m vir=vs =vs =0

=y =y

Assuming no symmetry breaking, from Table 8.1 it is evident that for uniaxial minerals,
such as zircon, the strain independent components that can be determined are two: &;and &5
with €, = &;. Now, in order to obtain the strain components, it is necessary to use the
fractional change of the Raman wavenumber from at least two different phonon modes. For
this purpose, however, the two phonon modes (i.e. Raman peaks) should have different
Y™ values one more sensitive to & and the other more sensitive to &3. Graphically, for
uniaxial crystals, the Grueneisen tensor (computed from ab-initio methods) represents the
slope of the lines indicating the equal values of Raman shift as function of the two
independent strain components €; and &3 (Figure 8.1). It turns out that, to define a point
within such a diagram (i.e. define the strain state of the mineral), two Raman peaks with
different slope (i.e. different Grueneisen coefficients) in the iso-shift lines are needed. Figure
8.1 reports the iso-shift lines plots for some of the phonon-modes in zircon as function of the
two independent strain components &; and &3 (Stangarone et al. 2018).

The Raman peaks used for calculating the residual pressure with the Grueneisen tensor
approach are the same used for the hydrostatic approach. Note that phonon modes such as

those near 224 cm™! and to 201 em™! have not been considered here because of their low
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sensitivity to strain fields and because of their small scattering intensity that, in some cases,
was difficult to detect.

Once the strain values have been obtained, it is possible to calculate the stress components
using the elastic constants at room conditions following the relation:

0ij = Cijki€ni (8.4)

Where Cjj; and o;; are the stiffness and the stress tensors respectively. Note that since no

variance-covariance matrix is available for the stiffness tensor of zircon, the uncertainties on

the stress tensor coefficients 8o;; have been estimated assuming an error on all the
Cijki components of 0.01. Then the uncertainty on the stress has been propagated in Voigt

notation using the following formalism (see Mazzucchelli 2019, PhD Thesis):

2 relyy 2 0.5
8(Cij) 8(g;™)
507 = zﬁzlu( o)’y (4] |c} 85)

J

Finally, the residual pressure can be calculated simply as the negative of the mean normal

stress.
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Figure 8.1 Contour maps of the calculated change of the wavenumbers of selected phonon
modes of zircon with non-symmetry-breaking strains &1 and &;. Contours were interpolated
on the calculated mode wavenumbers without any model. They are drawn with the same
interval of 2 cm™ in each map, and are labelled in cm™. The same colour scale is used for
all plots. The black dots in part (a) indicate the strain conditions at which DFT simulations
were performed. The blue line in part (b) is the isochor of the volume of the reference
structure. Note that the wavenumber of this mode changes significantly along an isochor
(From Stangarone et al., 2019). The A;; mode near 975 cm™, not reported here, presents
similar behaviour of the Bz mode near 1008 cm’!
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Chemical thermodynamics vs elasticity

Once the residual pressure is obtained, the resulting entrapment conditions, computed by
means of the elastic models, can be compared with previous petrological results and with
selected P-T pseudosections. Since the pyrope-zircon pair is the only host-inclusion system
available for the Dora-Maira whiteschist, an independent constraint on P and/or on 7 is
necessary to get a unique point in the P-T space. Consequently, in this case, the combination
with traditional thermobarometric calibrations is necessary to define a unique point in the P-
T space. This has been carried out by applying the Zr-in-rutile thermometer to the rutile
inclusions in garnet and by using garnet chemical zoning. Pseudosection modelling has been
carried out by means of Gibbs free energy minimization approach using the software
Perple X (Connolly, 2005) with the thermodynamic database of Holland and Powell (2002).

Bulk chemistry of Si-poor whiteschists has been taken from Gautiez-Putallaz et al. (2016).

Using numerical models to predict inclusion behaviour after entrapment

Another check is the analysis of the independent strain components of the inclusions at room
conditions. Numerical models predicting the anisotropic behaviour of a crystal as function
of T and P can provide important indications on the obtained experimental results
(Mazzucchelli et al., 2019). The validity and reliability of such models has been already
pointed out in the previous Chapters (see Chapters 5 and 7). Figure 8.2 shows the change in
the expected residual deviatoric strain (i.e. €3 — €1) of zircon inclusions as function of
different P-T conditions of entrapment. For example, a zircon inclusion entrapped in garnet
at 800 °C and about 2.7 GPa should exhibit at room conditions a residual deviatoric strain

0f 0.002.
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This contour-map diagram is based on the assumptions that (1) the host-inclusion system
behaves elastically during the entire P-T history and (2) that during inclusion entrapment the
P was hydrostatic and (3) the shape of the inclusion is spherical. It is important to note that
residual deviatoric strains computed this way are the result of the intrinsic anisotropy of the

inclusions.

€3 " € relaxed

0 1 2
el S '
5

200 400 600 800 1000
(°C)

1200
TTrap

Figure 8.2 Room condition deviatoric strain calculated for a zircon inclusion entrapped
within a garnet host as function of different P-T conditions. The developed deviatoric strain
is the results of the intrinsic anisotropy of zircon (from Mazzucchelli et al. 2019).

8.3 Results and Discussion

Raman shift in buried zircon inclusions
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Zircon inclusions entrapped from core to rim of three different garnet megablasts (samples
DM17-35 and DMG4-5 from Gilba and sample DM17-13 from Martiniana) have been
analysed by means of Raman spectroscopy. Figure 8.3 shows a polished slice of a garnet
megablast and reports a core to rim profile where numerous inclusions have been measured
in order to cover the entire range of garnet growth. Following the zircon selection protocol
presented in Chapter 6 (i.e. FWHM < 5 cm™), it is possible to rely on 34 zircon inclusions
(Figure 8.4). Figure 8.5 shows the experimental results in terms of Raman shift as function
of the garnet growth-zone. This has been defined as the shortest distance from the garnet

core to the visible rim (in mm).

Figure 8.3 Selection scheme of completely buried zircon inclusion in garnet.
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On average, there is a systematic decrease in the Raman shift wavenumber from core to rim
(Figure 8.5). In particular, this is more evident for the internal phonon modes which are the
Si-O symmetric (A1g) and antisymmetric (B1g) stretching modes. On the other hand, for the

external mode near to 357 cm™ (E, symmetry) the trends are less evident.

Furthermore, the inclusions in the garnet megablasts from Martiniana (DM17-13) show the
highest shift values (up to 1013.5 cm™ for the Bi; mode): their core-to-rim bell-shaped trends
in Raman shifts seem to be inconsistent with the linear trends recorded by the zircon

inclusions from Gilba.
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000 L
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S 400 |
L300 |
o200 |
100 F DMG4-5
0.00 L
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=6.00 g
G 5.00 ¢ = "R
S 400 | . i
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200 f
100 DM17-13
000 L

from core to rim

Figure 8.4 peak width (FWHM) of the Bi; mode near 1008 cm™ as function of the garnet
growth zone
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Figure 8.5 Raman shifts of selected zircon inclusions as function of the garnet growth zone.
Error bars referred to Aw corresponds to the instrumental uncertainty in determining the
peak position (0.35 cm™). Error bars referred to the distance from core to rim of the
inclusion is of 2.5 mm.

From Raman shift to residual pressure: the hydrostatic approach

As described above, a way to test if the hydrostatic calibration is applicable to inclusions is
to cross-check, for the same inclusion, the resulting hydrostatic residual pressure recorded
by different phonon modes (Figure 8.6). The Aw /AP relationships of zircon adopted for this
purpose are from Binvignat et al. (2018). The results suggest that the majority of inclusions
apparently records hydrostatic stress conditions (black dashed lines in Figure 8.6). However,
this is not always true if the A1z mode near 440 cm™ is considered due to the effect of the
low P sensitivity of this phonon mode. Indeed, for the peaks at 357 and 975 cm™!, more
sensitive to P, the data are more consistent. Table 8.2 reports the resulting residual pressure

and associated uncertainties for the zircon inclusions within the three different garnet
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megablasts. The estimated uncertainties on residual pressure values has been defined using

the standard error propagation formalism from the uncertainty in the peak position and in

the Aw/AP.
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Figure 8.6 Residual pressure (Pin) of zircon inclusions calculated by means of the
hydrostatic calibration of peak position as function of pressure.

From Raman shift to residual pressure: the anisotropic approach

For the anisotropic approach, the strain acting on zircon inclusions has been calculated with
the dedicated software StRAInMAN (Angel et al., 2019) using the same Raman peaks
reported above: Bi; mode near 1008 cm™!, the Aj; mode near 975 cm’!, the E, mode near

356 cm™! and the A, mode near 440 cm™.
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Table 8.3 reports the obtained results. Note that stress values have been derived from the
strains using equation 8.4. It is apparent that within the data uncertainty, residual pressures

obtained by means of the two different methods are equal to each other.
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Zircon residual pressure distribution within garnet

Figure 8.7 shows the distribution of the residual pressures of zircon inclusions from

different garnet growth zones with estimated error bars.
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Figure 8.7 Residual pressure distribution of zircon inclusions as function of the garnet
growth zone computed using the anisotropic approach.

The trends in the residual pressures follow exactly those reported in Figure 8.5 for the change
in the Raman wavenumbers. The data point out that higher residual pressures pertain to the
inclusions in the garnet core, whereas lower residual pressures pertain to the inclusions
entrapped at the garnet rim. In particular, the trend in measured pressures is in better

agreement with the trend recorded for the Raman shift of the B, mode near 1008 cm’'.

Zircon inclusions entrapped within the garnet megablasts DM17-35 and DMG4-5 from
Gilba show maximum residual pressures of 0.6 and 0.8 GPa respectively which gradually

decrease to about 0.2 and 0.4 GPa respectively.
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On the other hand, the zircon inclusions from the Martiniana garnet megablast DM17-13
show, on average, higher residual pressure values with a maximum of about 0.9 GPa.
Furthermore, in agreement with the trends in the Raman shift, this maximum value pertains

to the inclusions entrapped at garnet mantle (Figure 8.7).

Translating residual pressure in entrapment pressure: are chemistry and elasticity best

friends?

Detailed chemical analysis of the garnet megablasts together with trace elements of rutile
inclusions have been combined to better understand the conditions of garnet formation and
then zircon inclusion entrapment. This way, it is possible to compare the results from mineral
chemistry with those achieved from the residual pressures obtained from the zircon
inclusions. Figure 8.8 shows the change in the almandine mole fraction for the three analysed

garnet megablasts.
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Figure 8.8. Almandine mole fraction of the three garnet megablasts (DM17-35 and DMG4-
5 are from the Gilba locality while sample DM17-13 is from the Martiniana locality)

In general, the three crystals display pyrope-rich compositions. The samples DM17-13 and

DMG4-5 are characterized by slight but well resolved zonation with higher Fe content at the
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garnet core that decreases towards the rim. On the other hand, the sample DM17-35 does not

show a clear zonation and, in average, it has the lowest Fe content (around 0.08).

The analysis of the Zr content of rutile inclusions has been performed in order to cover the
entire range of garnet growth and to achieve temperature constraints (Zack, 2004; Watson et
al., 2006; Tomkins et al., 2007). In this case of study, the Zr content of more than 20
inclusions per garnet megablast remains constant across the entire garnet volume (Table 8.4).
The two Gilba garnet megablasts DM17-35 and DMG4 have comparable average Zr
concentration (220 and 216 ppm, respectively) while the rutile inclusions of the Martiniana

garnet megablast display lower Zr average concentration of 144 ppm.

Table 8.4 Zr-in-rutile inclusion within garnet megablasts.

Sample DM17-35 DMG4-5 DM17-13
average Zr conc. (ppm) 220 216 144
min - max values (ppm) 169-275 134-288 125-174

e.st.dev. (ppm) 35 58 9
n. of measurements 53 33 38

Figure 8.9a shows a calculated pseudosection for Si-poor whiteschists in which the chemical
composition of garnet (in terms of almandine mole-fraction), as computed from the
pseudosection, and the Zr-in-rutile isopleths are reported. The black dashed arrow in the
diagrams of Figure 8.9 indicates the prograde P-T path of these rocks proposed by Hermann
(2003). The Zr-in-rutile isopleths follow the thermometer calibration given by Tomkins et
al. (2007). Cross-checking the garnet compositional data with the Zr-in-rutile concentration,
it is evident that the core to rim depletion in the almandine component corresponds to an
increase in the P-T conditions during crystallization, that is in good agreement with the

previous published results on these rocks (see Chapter 3 and reference therein). In particular,
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the garnet isopleths and the Zr-in-rutile composition suggest that the garnet starts to grow at
the limit of the quartz stability field at about 2.8 GPa and 680 °C with a metamorphic peak
condition (i.e. garnet rim) at about 3.8 GPa and 720 °C with lower T values for the

Martiniana garnet megablast.

On the other hand, Figure 8.9b shows an alternative approach for constructing P-7 path of
the studied rocks. In this case, rather than using garnet isopleths (difficult to constrain in
terms of absolute values), the zircon-in-garnet isomekes, resulting from residual pressures
measured in zircon inclusions, have been used together with the Zr-in-rutile isopleths. In this
regard, it is important to emphasize that zircon and rutile inclusions are very common in
metamorphic rocks and the presence of both phases validate, at the same time, the possibility
to use the Zr-in-rutile thermometer (e.g. Tomkins et al. 2007). The slopes of the zircon-in-
garnet isomekes are different from those of the Zr-in-rutile isopleths, which make possible
their use to constrain a P-T path (see Figure 8.9b). Assuming a residual pressure uncertainty
of 0.05 GPa, the expected residual pressure of completely buried zircon inclusions should
range, for a Zr-in-rutile concentration of about 200-220 ppm, between 0.5-0.6 and 0.2-0.3
GPa from core to rim respectively. Note that such an uncertainty represents an average
uncertainty in the entrapment pressure of about 0.5 GPa. Therefore, by combining residual
pressure of zircon inclusions in garnet megablasts with Zr-in-rutile isopleths, it becomes
clear that the trend of decreasing residual pressure recorded by core-to-rim zircon inclusions
in the garnet megablasts is in good agreement with the core to rim increase of pressure during
garnet growth documented by the pseudo-sections and by the literature works (Chopin, 1984;

Hermann 2003).
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Furthermore, considering the absolute values of zircon residual pressures, there is also a very
good agreement between the data obtained from the garnet rim of the sample DM17-35 and
the theoretical prediction on the absolute P and T values of possible zircon entrapment
conditions. In Figure 8.9, the Zr-in-rutile isopleth of 220 ppm is high-lighted in red.
Combining this line with the measured residual pressures (ranging from 0.3 and 0.2 GPa for
this sample) it is possible to constrain the formation of garnet rims at about 720 °C and 4-
4.5 GPa (within the coesite stability field) which is consistent with the P-T conditions given

by Hermann (2003).

Nevertheless, the absolute values of residual pressure measured for the zircon inclusions
entrapped at the core of sample DM17-35 and most of the inclusions entrapped in the other
two garnet megablasts, (i.e. especially DM17-13) are too high and do not agree with the
numerical simulations. For instance, according to Figure 8.9b, residual pressures of 0.7 GPa
(lower right corner of the P-T plot) correspond to pressures and temperatures outside the
stability field of garnet if the known P-T path is considered. Consequently, residual pressures
larger than 0.7, like those documented in zircon inclusions from the garnets DMG4-5 and
DM17-13, cannot be explained in these terms. In the following section, therefore, a detailed
analysis of possible factors that might have determined such high residual pressure values is

provided.
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Factors influencing the entrapment pressure estimates for zircon inclusions

Zircon chemistry

As described in chapter 6 deviations in the peak position of zircon Raman spectra can be due
to the incorporation of other elements such as Hf, U and Th replacing Zr in the dodecahedral
site of the zircon crystal structure. In the case of Hf substitution the Big mode near 1008 cm”
!and the A1 mode near 975 cm™! shift toward higher wavenumbers while the E; mode near
357 cm™! goes toward lower wavenumbers. On the other hand, due to their mass, elements
such as U and Th shift all the peak positions towards lower wavenumbers (see Nasdala et
al., 2003 for a comprehensive review). As reported in detail in chapter 6, however, these
changes in the peak positions can be only appreciated for relatively large amount of chemical
impurities (e.g. 16000 ppm for Hf and 6000 ppm for U) that have never been found in any

exposed zircon inclusion analysed by laser ablation from the same rocks (see Chapter 6).

Instrumental artefacts

Changes of + 1°C in the room temperature of the spectrometer lab can create changes in the
Raman peak position of about 0.2 cm™. In this regard, air conditioning of the lab kept the T
constant for all the entire duration of the Raman measurement sessions. Furthermore, the
internal standard of a free zircon taken as reference has been analysed every 4 hours.
However, given the validity of the hydrostatic calibration of zircon residual pressure (see
above), there is a graphical way to point out eventual instrumental artefacts. As shown in
Table 8.2, the change in the Raman peak position that is more sensitive to pressure is the Big
mode near 1008 cm™ (Aw/AP = 5.54(5) cm™!/GPa). On the other hand, the Aj; mode near to
440 cm’' is much less sensitive to pressure (Aw/AP = 1.44(3) cm’!/GPa). In both cases

however, the change in their phonon wavenumber is positive with respect to an increase in
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the applied pressure. Consequently, for hydrostatic stress conditions in the inclusions, which
is the case reported here (see Table 8.2), an increase in the residual pressure of the inclusion
would correspond to an increase in the difference between the wavenumbers (i.e. A®100s-440)
of these two phonon modes. Therefore, plotting this difference as function of the garnet
growth zone, the trend in the residual pressure of the inclusions reported above should be

completely reflected. Figure 8.10 shows that this is exactly the case.
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Figure 8.10 Awio0s-440 as function of garnet growth zone. Error bars refer to the instrumental
uncertainty in defining peak position (i.e. 0.35 cm™)

Indeed the largest Awioos-440 values corresponds to those inclusions showing the largest value
in the residual pressure. Furthermore, it is also evident that the inclusions entrapped within
the Martiniana megablast (namely DM17-13) show systematically higher Awio08-440 with
respect to the inclusions entrapped in the other two garnet megablasts with the same
anomalous trend shown for the residual pressures. Therefore, instrumental artefacts can be

neglected in this case.
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Presence of fluids at the host-inclusion boundary

The presence of water at the host-inclusion boundary has been already pointed out in other
rocks (Nimis et al. 2016). Unpublished results from Angel (2019) suggest that the presence
of a free fluid phase (e.g. water) in the host-inclusion system can have a notable influence
on the resulting residual pressure of the inclusions mainly due to the change in the isomeke
slope in the P-T space. In such a case, the inclusion is composite and the resulting bulk
modulus is a mix between the one of water and the one of the inclusion. However, FTIR

mapping of the host-inclusion boundary has not revealed any evidence of free fluid.

Zircon metamictization: effects on the Equation of State

While metamictization effects on zircon Raman spectra are discussed in detail in Chapter 6,
the effect on the EoS parameters has not been taken into account yet. Zircon is a stiff mineral
and, therefore, it is difficult to determine the parameters of its equation of state (Zaffiro,
2019 PhD Thesis). Calculations of the entrapment isomekes show that the main parameter

affecting the inclusion residual pressure (i.e. Pinc) is the bulk modulus.

In general, radiation damage processes lower the density of zircon crystals and significantly
decreases their bulk modulus (e.g. Binvignat et al., 2018). Figure 8.11 shows calculations of
entrapment isomekes for zircon in garnet host-inclusion systems. The plotted residual
pressure of 0.2, 0.5 and 0.8 GPa are compared for different values of the bulk modulus K°

(250, 230, 188 and 175 GPa).
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Figure 8.11. Calculated entrapment isomekes for zircon in pyrope, with different values of
K? for zircon. The red line represents the approximate prograde path of the Dora-Maira
rocks and the range over which garnet might grow

For the expected peak metamorphic conditions of whiteschists (top end of the red line in
Figure 8.11) and a zircon bulk modulus of 230 GPa, the entrapment isomekes lie between
residual pressure values of 0.2 and 0.5 GPa. This is consistent with inclusion residual
pressure of 0.2-0.3 GPa measured at the garnet rim for the sample DM17-35. With
decreasing bulk modulus, the trend of the isomekes rotate anti-clockwise increasing their
slope. For a bulk modulus of 188 GPa, for example, the isomeke slope is parallel to the P-T
path followed by the garnet megablast during their growth. If this would be the case, then,
no trend in the inclusion residual pressure should be detected from core to rim of the garnet.
On the other hand, for a bulk modulus of 175 GPa, which is representative of a quite large
radiation dose in a zircon crystal (Binvignat et al., 2018), the trend in the inclusion residual
pressure is inverted: the residual pressures should increase from core to rim. Increasing the

bulk modulus to 250 GPa, the entrapment isomekes are flatter resulting in a general decrease
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in the residual pressure. The same conclusions apply also to any other process that modifies

the bulk modulus of the inclusion (i.e. incorporation of OH in the crystal structure of zircon).

Therefore, it becomes evident that only small degree of radiation damage could explain the
anomalous values of residual pressure. Preliminary calculations, (Angel, 2019 unpublished
results) suggest that an increase in the zircon volume, due to radiation damage, of just 0.2%
can be sufficient to change the residual pressure from 0.5 to 0.8 GPa. Since tiny radiation
damages in zircon are hard to detect even with high magnification techniques, and since no
strong constraints on the EoS of zircon are available, any consideration in such terms could
be risky and speculative and dealing with this type of features requires further years of
detailed and dedicated research. For instance, zircon inclusions have been already
successfully applied to other localities (e.g. Zhong et al., 2019) suggesting that small

(undetectable) volume changes would have, on the other hand, a negligible effect.

Zircon annealing

Let us consider a partially metamict crystal entrapped during the garnet growth. As stated
above, garnet grows along a prograde path. Consequently, the high T of metamorphic peak
conditions (around 750 °C) would potentially result in a recrystallization process of the
zircon inclusion. In a free crystal, this would result in a volume decrease. In an inclusion,
where the volume is constrained by the garnet host, this would result in a drop in the residual
pressure that was built up prior to the annealing process. Therefore, annealing of radiation
damaged crystals can generate lower residual pressures with respect to crystalline zircon
inclusion: therefore, this process cannot explain the residual pressure anomalies reported in
this study. Note that the same considerations are valid for annealing process acting during

the exhumation.
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Plastic flow in the inclusion and/or in the garnet host

Plastic flow has a strong influence on the elastic thermo-barometric approach (Angel et al.
2015). Plasticity has the effect of completely resetting the system and transforms the
entrapment conditions to those for which the system returns within the P-T field where the

elastic behaviour is dominant.

In this regard, theory and numerical models (e.g. Mazzucchelli et al., 2019) suggest that due
to the intrinsic anisotropy of uniaxial mineral inclusions, like zircon, a certain degree of
deviatoric strain is expected at room conditions if the behaviour of the entire host-inclusion
system has been elastic. The computed contour map reported in Figure 8.2, for example,
suggests that for the conditions of possible entrapment (i.e. garnet growth) the zircon

inclusions should display, from core to rim of their garnet host, a deviatoric strain (i.e. €3 —

e1) ranging from 0.0012 to 0.0024 respectively (indicated by the black line in Figure 8.12).

€5 - €, relaxed

200 400 600 800 1000 1200

TTrap [°C]

Figure 8.12 Computed contour map of residual deviatoric strain at room conditions for
zircon inclusions with different entrapment conditions
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The Grueneisen tensor approach, used to calculate the residual strain, provides information
on the strain independent components (i.e. €3 and & in zircon). Figure 8.13 shows the
independent strain components of the measured zircon inclusions as computed via the
Grueneisen tensor approach. In this case the data have been plotted in terms of the two
independent strain coefficients €3 against €1 which makes possible the direct comparison of
our experimental data with the numerical prediction of Mazzucchelli et al. (2019). The thick
solid black line represents the theoretically expected deviatoric strains as extrapolated from
Figure 8.12 for the known P-T path of the Dora-Maira massif. The blue and the green lines
represents the isotropic strain and the hydrostatic stress conditions of zircon inclusion
respectively while diagonal black dashed lines represent equal volume strain (isochores).

The inclusion residual pressure corresponding to each isochor is given as a reference in GPa.
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Figure 8.13. Experimentally determined deviatoric strains (in terms of &3 — &€1) in zircon
inclusions compared with the prediction from numerical models reported in Figure 8.12
(indicated by the yellow area).

The experimentally determined deviatoric strains, of selected zircon inclusions, actually
show large differences with respect to the theoretical predictions and, in general, tends to be
closer to the black line representing isotropic strain. This disagreement between the

experimental and predicted data could be due, in principle, to the effect of plastic flow in the
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inclusion that would reset eventual deviatoric strain components by means of local
dislocation in the crystal structure. In this regard, multiple Raman measurements along one
grain showed, in some cases, spatial variations in the relative intensity of the Raman peaks
arising from the Big modes with respect those generated by A1 modes (Figure 8.14). This
indicates a slight mismatch of the c axis orientation in different grain zones, due to different
degrees of point and extended defects, disturbing the periodicity on the level of several unit
cells. Therefore, Raman data in Figure 8.14 suggest more likely faults in translational
symmetry in the grain bulk (e.g. point p3) than in the periphery (point p4), which could be

caused by plastic deformation within a single crystal.

However, complementary EBSD analyses (Figure 8.15) on this zircon inclusion displays no
crystallographic distortion of the =zircon structure, which reveals that the slight
misorientation of the zircon ternary axis of symmetry occurs within spatial nano-regions
insufficiently large to be detected by Bragg diffraction. Nevertheless, to avoid any
uncertainties related to bulk-modulus reduction caused by periodic faults, buried inclusions

showing such anomalous variations in the relative intensities have been discarded when

calculating the residual pressure.
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Figure 8.15. EBSD measurements on the zircon inclusions reported in Figure 8.14 revealing
no crystallographic misorientation between different zircon domains. (A) scheme of EBSD
point analysis, (B) stereographic plot of the c-axis (001) of zircon.

On the other hand, plastic relaxation could also occur in the garnet host. However, the
advantage of considering cubic crystals has mineral host is the possibility to detect local

crystal deformation by observation of its optical extinction properties under polarized light.

Finally, it is important to point out that if any plastic deformation occurred it would have
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resected the inclusion residual pressure of all the crystals to a unique value corresponding to
the conditions of transition from the plastic to the elastic behaviour of the system. From the

features described above this does not appear to be the case.

Deviatoric stress during the entrapment

Another important assumption behind the contour map of 8.12 is that entrapment conditions
occurred under hydrostatic stress. Consequently, the divergence of measured strain values
from the predicted values of deviatoric strain (Figure 8.13) beyond estimated uncertainties
can be related, in principle, to small-scale local deviations from hydrostatic stress field
around the inclusions active while the entrapment is occurring along the prograde garnet

growth.

Moreover, as described in Chapter 4, garnet-forming reactions are always dehydration
reactions where, according to Gautiez-Putallaz et al. (2016) up to 10 modal % of water can
be produced during garnet growth. Because fluid cannot support deviatoric stresses, if the
available fluid would be able to create a continuous film around the inclusion, then this
would inhibit the development of deviatoric stresses. Nevertheless, in this scenario, for the
complex process of nucleation and growth of host-inclusion systems traces of trapped fluid
would be expected (e.g. Nimis et al. 2016). But, as stated previously, no fluid has been found
at the host-inclusion boundary in our samples. Fluid inclusions have been found in garnet
and kyanite only as retrograde product in the form of secondary trails. Therefore, in the
absence of a continuous film of fluid surrounding the inclusion, if no post-entrapment
process occurred (e.g. plastic/brittle deformation, radiation damage etc.) the level of
deviatoric strain (far smaller than those predicted) could be developed because of local

deviations in the hydrostatic stress field active right before inclusion isolation from the
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external environment. In this regard, it is interesting to note that Henry et al. (1993) described
the presence of internal S-shaped foliation within some garnet megablasts that, indeed,
would potentially suggest a crystal growth in the presence of a local stress field. However,
it appears to be difficult that, under a local deviatoric stress field, all the inclusion residual

strains cluster along the isotropic conditions.

8.4 Implications

- This work represents the first application of the elastic thermobarometric method to
the UHP unit of Dora-Maira Massif

- Measured zircon inclusions in three different garnet megablasts from the whiteschists
of the UHP Brossasco-Isasca unit show a decrease in the residual pressure moving
from core to rim of their garnet hosts.

- This evidence confirms the hypothesis of garnet growth during the prograde path of
the studied whiteschists, as extensively documented by previous published results
and thermodynamic modelling.

- Our thermodynamic modelling, together with the experimental results suggest that
zircon-in-garnet isomekes coupled with Zr-in-rutile isopleths (calculated from the
rutile inclusions within the same garnet), can be used to constrain the P-T conditions
of metamorphic crystallization of these rocks. Indeed, this approach works quite well
for a set of selected inclusions within a single garnet megablasts (sample DM 17-35).

- An interesting result is represented by the fact that the absolute residual pressure
values of numerous inclusions from the other garnet megablasts are too high with
respect the theoretical estimates.
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The detailed analysis of processes that might have influenced the mismatch between
the residual pressures measured experimentally and those predicted from modelling
indicates that:

1) Very low degrees of metamictization (undetectable with current instrumentations
having spectral resolution of 2 cm™") could increase the residual pressure of zircon
inclusions.

2) The high residual pressure of zircon inclusions might be attributed to local scale
deviatoric stresses during the entrapment conditions. However, this is still
difficult to prove since there is not yet smocking gun evidence of this process for
which further development of the elastic thermobarometric approach is needed

in the years to come.
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Chapter 9

General conclusions and perspectives

The main goal of this PhD Thesis has been the experimental development and the application
of elastic thermobarometry to natural case studies. The work is focused on two main aspects
of this new technique: setting up a methodological approach devoted to quantify the residual
strains and pressures developed by elastically anisotropic mineral inclusions, and apply this
approach to natural host-inclusion mineral systems from ultrahigh pressure (UHP)
metamorphic rocks.

The famous UHP witheschists from the Dora-Maira Massif have been taken as favourite
playground to apply this new approach for a couple of reasons. First, this rock unit is a
milestone in the development of the modern petrological concept of continental subduction
to depths in excess of 90-100 km (Chopin, 2003). Second, a preliminary petrographic check
of these rocks has shown the presence of zircon inclusions encased in garnet showing a

birefrigent halo around them (Figure 9.1).

Figure 9.1. Zircon (to the left) and coesite (to the right) inclusions showing anomalous
stress-induced birefringent haloes in the surrounding garnet host (scale bar of 20 um).
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The same has been shown to occur in diamonds hosting mineral inclusions as the result of
elastic deformation of the diamond around inclusions that experienced an increase in volume
and the built up of residual pressures during uplift (Howell et al., 2010; Howell, 2012).
This has been the starting evidence convincing me to investigate the zircon and garnet pairs
from Dora-Maira for elastic thermobarometry. Backbone of this work has been the analysis
of zircon inclusions within garnet. Zircon is a common accessory mineral in many
metamorphic rock types: it is important because it is stable under a large range of P-T
conditions and because it can be used for dating metamorphic processes. Therefore, zircon
inclusions potentially are very good candidates for the elastic thermobarometry method.
The first part of my PhD has been mainly dedicated to the re-evaluation of the Raman
spectroscopy method to determine, experimentally, the strain field still acting on the

inclusions at room conditions: the so-called residual pressure.

Part of the PhD Thesis has been developed to understand the experimental effects that the
intrinsic anisotropy and the geometry of crystals can have on the measured Raman peak
positions: this represents the starting point for determining the residual pressure in stressed
inclusions (Chapter 5). A major result of this analysis is that shape, corners and edges of an
idiomorphic crystal act as stress concentrators developing heterogeneous stress field in (and
around) the inclusions. Consequently, the peak position can change if measured in different
microdomains of the same crystal, yielding to different residual pressure values
(Campomenosi et al., 2018). Step-by-step polishing experiments demonstrated not only that
the residual pressure is released while the inclusion is approaching the external surface but
that such a stress release is a function of the crystallographic orientation of the inclusion (i.e.
intrinsic anisotropy of the inclusion). Furthermore, this showed that the common method of
using partially exposed inclusions as reference strain-free crystals, to determine the residual
pressure of buried inclusions, is dangerous since partially exposed inclusions can partially
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preserve notable amount of residual stress (Chapter 5). Overall, the results of this initial

methodological study are published on an international journal (Campomenosi et al., 2018).

Another important topic addressed during this PhD Thesis regards the proper selection of
zircon inclusions suitable for the application of the elastic thermobarometry. The great
advantage of zircon, behaving as a geochronometer as the result of its radioactive decay, can
also represent a strong limitation in using it for the elastic method. Radiation damage, due
to the alpha decay of radioactive elements (metamictization), produces significant changes
in the crystal physical properties that in turn affect the elastic properties of zircon and the
residual pressure estimates retrieved from this mineral. In order to address this problem, a
detailed study on partially exposed zircon inclusions by means of different techniques has
been carried out. Charge Contrast (CC) imaging coupled with Raman spectroscopy and laser
ablation ICP-MS revealed the presence of zircon crystals with notable inherited structural
heterogeneity. Our study demonstrates that, for an instrumental spectral resolution of about
2 cm’!, zircon crystals with peak width (in terms of full width at half maximum, FWHM)
larger than 5 cm™! can retain trace of partial metamictization. It is important to note, however,
that this threshold value is function of the instrumental setup, and represents the analytical
limitation in detecting metamictization degree that would change the peak width for values
lower than 2 cm’'. The results of this study are presented in a publication now available

online (Campomenosi et al., 2020a).

Another part of this PhD Thesis focused on the strain state of the garnet host crystal. Cubic
garnet can display characteristic anomalous birefringent haloes around stressed inclusions.
A first quantitative attempt in determining the strain state of the host, by means of Raman
spectroscopy, was performed using the change in the wavenumber of the Raman peaks of
the host crystal close to the host-inclusion boundary. Subsequently, the quantitative analysis

moved in exploiting the optical anomaly by means of the well known piezo-optic tensor (see

180



Chapter 7 and reference therein). In this Thesis, I present a new and alternative method to
determine the stress state of the host crystal showing optical anomalies; this method exploits
a similar approach of the piezo-optic tensor but translated for the Raman scattering effect.
Rather than using the changes in the phonon wavenumber, this methodology exploits the
changes in the Raman peak intensity and the depolarization ratio of fully symmetric phonon
modes. Indeed, the relationships between an applied stress and the change in the Raman
scattering are dictated by another property, called here the piezo-phonon tensor, which obeys
the same symmetry constraints of the piezo-optic tensor for these modes of vibrations. The
advantage of using this approach is that it is more sensitive with respect to the peak position
and even if the technique is semi-quantitative, since the absolute values of the piezo-phonon
tensor are still unknown, the theory developed to explain the qualitative observations opens
the avenue of more detailed stress analysis of crystals by means of Raman spectroscopy that
can go beyond the simple image analysis. The results of this study are now in press in an

international journal (Campomenosi et al., 2020b)

Finally, the last part of my PhD Thesis has been devoted to the first application of the elastic
thermobarometric method to the famous Brossasco-Isasca UHP unit in the Dora-Maira
Massif (Western Alps). In this study, the above mentioned for the methodological approach,
together with other methods developed by my colleagues in companion studies have been
applied. In particular, zircon inclusions have been selected in order to cover the entire range
of crystal growth of a garnet megablast host using the protocol developed in Chapters 5 and
6. Then, I compared and analysed the different methods in determining the residual pressure
in crystals (i.e. anisotropic and hydrostatic approaches). The measured trend of residual
pressure measured in zircon inclusions entrapped from core to rim of several Dora-Maira
pyrope megablasts are in agreement with a prograde (increasing P and T) path during garnet
crystallization, as stated in literature. However, the absolute values of residual pressures tend
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to be too high with respect to the theoretical expectations and, consequently, the entrapment
conditions are inconsistent with previous results. The detailed analysis of the possible
processes that might have affected the residual pressure estimates and hence the recalculated
entrapment conditions suggests two principal factors. The first one suggests that very low
degrees of zircon metamictization, although undetectable with a spectral resolution of 2 cm’
!, may be enough to modify the zircon bulk modulus to a sufficient amount to notably
increase the residual pressure (+ 0.3 GPa). On the other hand, a second intriguing possibility
is that the zircon inclusions grew and/or were trapped under non hydrostatic stress
conditions. This last point is quite interesting since it would be in agreement with previous
results obtained from numerical models on the Western Alps (see Chapter 8 and reference
therein) claiming the presence of certain amounts of tectonic overpressure during
metamorphic and deformation processes. In conclusion, even if further work would be
required to shed light on this great debate, this work represents the first attempt suggesting
the presence of deviatoric stresses during metamorphism based on experimental strain and

stress measurements on natural samples at UHP conditions.
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