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Bacterial strains responsible for antibiotic resistant infections are increasing in an alarming way and the evolution
of resistance mechanisms seems to be unstoppable. In the past decade, many efforts have been made in order to
counteract this phenomenon but very few compounds have reached clinical trials. The development of new classes
of antibiotics able to overcome the main bacterial drug resistance mechanisms is urgently required to counter the
imminent danger of a postantibiotic era [1].

Scientific research should be oriented toward the discovery of new antimicrobial agents with specific features,
including the capability to kill pathogens selectively without affecting the microbiota and to interfere with important
virulence factors such as the biofilms [2]. Therapeutic strategies targeting virulence factors without interfering with
microbial growth were recognized as a valuable alternative to conventional antibiotics as they should impose lower
selectivity pressure on the rise of antibiotic-resistance strains [3]. Despite the many advances that have been made in
this field, the lack of in vivo experiments to assess the clinical potential of the new antivirulence agents still remains
one of the main drawbacks.

Serious chronic infections, especially in hospital settings, are frequently caused by six bacterial pathogens known
with the acronym of their names, ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine-
tobacterbaumannii, Pseudomonas aeruginosa and Enterobacter spp.). Understanding the mechanisms of antimicrobial
resistance in these pathogens is crucial for identifying new strategies to treat drug-resistant infections.

The biochemical mechanisms of antibiotic resistance such as enzymatic resistance, which causes the inactivation
of the antibiotics and efflux pumps responsible for the extrusion of the drug from the bacterial cell, were considered
valuable drug targets for add-on treatment of bacterial infections.

The expression of the efflux pumps could be considered one of the main mechanisms of resistance against
antibiotics in both Gram-positive and Gram-negative pathogens.

In the past decade, many efforts have been made to develop new potent efflux pump inhibitors (EPIs). A
wide number of chemical compounds belonging to various chemical families, including quinolines, quinolones,
naphtene compounds, boronic acid derivatives, chalcones and indole derivatives, have been described for their
significant efflux pump inhibition activity. Representative examples of synthetic small molecules with EPI activity
are the naphtene derivatives, described by Thota et al. as 3-(3,4-dihydronaphthalen-2-yl)-propenoic acid isobutyl
and N,N-diisopropylamide amides, which act as NorA inhibitors reducing the minimum inhibitory concentration
(MIC) value of ciprofloxacin (CPX) from 8 to 0.5 μg/ml against NorA overexpressing S. aureus 1199B [4]. Among
boronic acids, Fontaine et al. identified 6-benzyloxypyridine-3-boronic acid and 4-benzyloxyphenyl boronic acid as
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new promising NorA inhibitors, which showed a significant synergistic activity with CPX against S. aureus 1199B
with MMC4 (minimum modulatory concentration of inhibitor to achieve a fourfold CPX MIC reduction) values
of 1 and 0.5 μg/ml, respectively [5].

Even though the combination of EPIs and antibiotics was associated with an improvement of the antibacterial
activity and the antimicrobial spectrum of antibiotics, no EPIs reached the clinic, despite a promising topical use
of such inhibitors. This is due to their high toxicity and low in vivo efficacy [6].

Moreover, an ideal candidate as a new antimicrobial agent should be active against the planktonic form of life, as
well as active against the biofilm phenotype. Biofilms are currently considered one of the most important bacterial
virulence factors, which are responsible for serious nosocomial infections resistant to conventional antibiotics [7].
Structurally, biofilms are microbial communities in which the bacterial cells are enclosed into a matrix constituted
of extracellular polymeric substance such as polysaccharides, proteins, lipids and extracellular DNA (e-DNA) [8].

Despite the growing knowledge of the biofilm organization and the important results obtained in the past decade
in this research field, the treatment of biofilm-associated infections remains an important challenge. Recently, many
compounds endowed with potent in vitro antibiofilm activity were described [9–11], but, unfortunately, no derivative
is close to clinical trials. This is generally due to the lack of in vivo experiments aimed to confirm their antivirulence
properties and their protective effects against infections caused by bacterial-resistant strains.

Three main mechanisms of action are identified as responsible for antibiofilm activity: the inhibition of the
bacterial adhesion to surfaces, which is the first step of bacterial pathogenesis, the disruption of the biofilm
architecture during its maturation process and the interference with the quorum sensing system [12,13].

The most relevant targets involved in the antibiofilm activity are: quorum sensing signalling molecules such
as N-acylhomoserine lactone in Gram-negative pathogens, the autoinducing peptides described in Gram-positive
bacteria and autoinducer-2 which was found in both Gram-negative and Gram-positive bacteria; nucleotide second
messenger signaling systems including cyclic dimeric guanosine monophosphate and the cyclic dimeric adenosine
monophosphate [14]; a modified nucleotide, tetra and pentaphosphate guanosine derivative of GTP and GDP known
as (p)ppGpp and finally, targets concerning the microbial attachment to the surfaces such as the transpeptidase
Sortase A for Gram-positive pathogens and type 1 fimbriae for Gram-negative strains [2].

Many classes of compounds were described in the past decade for their interesting antibiofilm properties,
including imidazole compounds, indoles, carbazoles, phenazine and quinoline derivatives. Of these, the imidazole
scaffold was the most investigated. The most significant contribution was given by Melander and coworkers who
synthesized several libraries of 2-aminoimidazole derivatives that are able to prevent biofilm formation or disperse
mature biofilms at low micromolar concentrations through mechanisms which do not affect microbial growth,
therefore showing a typical antivirulence profile [15].

Another relevant class of heterocyclic compounds was represented by indole derivatives, which are widely
described for their numerous biological activities, in particular, for the anticancer [16,17] and antibacterial [11]

properties. Indole 5-haloaldonitrones were described as NorA inhibitors with synergistic effect with CPX against SA-
1199B showing MIC values in the range 0.5–2 μg/ml in combination with subinhibitory (MIC/4) concentrations
of the antibiotic [18].

Despite important progress that has been made to counteract the antibiotic resistance, including the understand-
ing of the main molecular mechanisms at the base of the onset of resistant bacterial strains, we are still very far
from identifying an effective and safe strategy that can reach the clinical phase. Different aspects must be taken
into consideration to identify reliable candidates to fight multi-drug-resistant (MDR) strains. In the case of new
compounds interfering with the microbial viability, the studies on the spontaneous frequencies of resistance were
particularly relevant as they allow for the establishment of the capability of the compounds to promote antibiotic
resistance and their suitability to be developed into new antibacterial drug.

Antivirulence strategies can be considered a promising approach to overcome the global threat of antibiotic
resistance as this allows you to deprive the bacterium of its pathogenicity without interfering with its life cycle.
Among the virulence factors, bacterial biofilms certainly represent one of the most valuable targets. In vivo studies
aiming to validate new antibiofilm drugs are urgently needed for counteracting the emergence of chronic biofilm-
associated infections.
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