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Abstract The line element-less method is an efficient approach for the ap-
proximate solution of the Laplace or biharmonic equation on a general bidi-
mensional domain. Introducing generalized harmonic polynomials as approx-
imation functions, we extend the line element-less method to the inhomoge-
neous Helmholtz equation and to the eigenvalue problem for the Helmholtz
equation. The obtained approximate solutions are critically discussed and ad-
vantages as well as limitations of the approach are pointed out.

1 Introduction

The line element-less method (LEM) is an innovative and efficient approach
for torsion and bending analysis of beams and plates. The basic idea of the
method is an expansion of the solution into harmonic polynomials and the de-
termination of the expansion coefficients by minimizing a path integral in order
to satisfy the boundary conditions. It can thus be considered as a Ritz method,
where the approximation functions satisfy the partial differential equation in
the interior of the domain. However, in contrast to boundary element methods,
it is not necessary to subdivide the boundary into elements. For this reason,
the solution can be very efficiently obtained by a semi-analytical procedure.
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In this context LEM has been proposed for solving beam under torsion and
shear [8,9,15] without any discretization and evaluating line integrals only,
even those used for performing the properties of cross-section as area, moment
of inertia [14]. Further, based on the analogy between plates bending under
edge moments and beams in torsion [13,12,5], recently the aforementioned
LEM has been employed for the bending problem of simply supported plates
subject to uniformly distributed edge moments [16] and to different types of
load [6].

Until now, the LEM is limited to problems that can be described by a
Laplace or a biharmonic equation, as the harmonic polynomials are solutions
of the Laplace equation. Thus, the LEM has been mainly applied in engineer-
ing to structural mechanics problems. In structural dynamics and acoustics,
however, the solution of the Helmholtz equation is of utmost importance.

In this contribution, we present a first extension of the LEM to dynamic
problems. To this end, we consider the application of the LEM to the Helmholtz
equation on a bidimensional domain with Dirichlet boundary conditions:

∆u+ k2u = q(x, y) on Ω, u = 0 on ∂Ω. (1)

We study two scenarios:

1. The computation of solutions for the inhomogeneous Helmholtz equation.
2. The eigenvalue problem for the homogeneous Helmholtz equation.

In order to apply the LEM to the Helmholtz equation, it is necessary to in-
troduce a new set of approximation functions. These approximation functions
are obtained by a transformation that maps solutions of the Laplace equation
to those of the Helmholtz equation. The new approximation functions can be
best represented in polar coordinates and involve products of harmonic func-
tions and Bessel functions of first kind. With these approximation functions,
it is then still possible to solve the Helmholtz equation by a semi-analytical
approach, without the necessity to subdivide the boundary into elements.

The new approach is presented and discussed with several examples, which
illustrate the efficiency of the method. Moreover, convergence studies are pre-
sented.

The paper is organized as follows: In the next section, the line element-
less method for the bidimensional Laplace equation is briefly described and
compared to other methods. After this, a general approach is introduced that
allows to obtain approximation functions for the Helmholtz equation and even
for general elliptic equations. These approximation functions are then com-
bined with the LEM in order to obtain approximate solutions for the inhomo-
geneous Helmholtz equation and in order to solve the eigenvalue problem for
the homogeneous Helmholtz equation on general bidimensional domains. The
obtained solutions are critically discussed. The last section contains conclu-
sions and an outlook on future applications of the LEM.
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2 Brief outline of the line element-less method

Consider the nonhomogeneous bidimensional Laplace equation on a simply
connected domain Ω:

∆u = q(x, y) on Ω, u(x, y) = 0 on ∂Ω. (2)

with Dirichlet boundary condition

u(x, y) = 0 on ∂Ω. (3)

For the LEM, the solution is expanded as follows [6]:

u(x, y) =

n∑
i=0

aiPi(x, y) +

n∑
j=1

bjQj(x, y) + up(x, y), (4)

where

Pi(x, y) = Re (x+ ıy)
i
,

Qj(x, y) = Im (x+ ıy)
j

(5)

are the harmonic polynomials and up(x, y) represents the particular solution.
The expansion coefficients are obtained from a variational formulation for the
boundary condition:

∂

∮
Γ

(u(x, y))
2

dΓ = 0, (6)

where Γ denotes the contour curve of Ω. The integrand is the square difference
between the solution u(x, y) and the boundary function given by eq. (3) and the
variation is thus carried out on all functions that satisfy the Laplace equation
(2). Inserting the series expansion (4) into the variational formulation (6) yields
the following equation

∂J(a,b) = 0, (7)

for the series expansion coefficients that are assembled in the vectors a, b.
Equation (7) leads to a linear algebraic problem for the expansion coefficients.

The LEM differs in the variational formulation eq. (7) from other methods
and it is this formulation that leads to a truly element-less approach. E.g in
the complex polynomial method [11], the expansion

u(x, y) =

n∑
i=0

(ai + ıbi) (x+ ıy)
i
+ up(x, y) (8)

is the same as in eq. (4), but the expansion coefficients are determined at n+1
points of the boundary, thus by collocation. In the interior of the domain, one
then finds

u(z) =
1

2πı

∮
Γ

u(ζ)

ζ − z
dΓ, (9)
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where z = x+ ıy. In the complex variable boundary element method [10,2,1,
4], a linear interpolant G(ζ) is constructed on the boundary. In the interior of
the domain, the solution is determined from

u(z) =
1

2πı

∮
Γ

G(ζ)

ζ − z
dΓ. (10)

In [3], the authors show how competitive the LEM is in comparison with
the complex polynomial method (CPM) and the complex variable boundary
method (CVBEM). Especially regarding the robustness of the method related
to the adivisability to capture exact solutions (when available) only retaining
a few series coefficients and exactly satisfying the boundary condition contin-
uously.

3 Generalized harmonic polynomials

Vekua [17] and Bergman [7] developed independently a theory to obtain solu-
tions for the generalized elliptic equation

∆u+ a(x, y)ux + b(x, y)uy + c(x, y)u = 0, (11)

where ux and uy denote the partial derivatives of u(x, y) with respect to the
first and second argument, by mapping holomorphic functions on solutions of
(11). Define

4A(z, ζ) = a

(
z + ζ

2
,
z − ζ

2ı

)
+ ıb

(
z + ζ

2
,
z − ζ

2ı

)
,

4B(z, ζ) = a

(
z + ζ

2
,
z − ζ

2ı

)
− ıb

(
z + ζ

2
,
z − ζ

2ı

)
,

4C(z, ζ) = c

(
z + ζ

2
,
z − ζ

2ı

)
.

(12)

The Riemann function G(z, ζ, t, τ) is given by

G(z, ζ, t, τ) = 1 +

∫ ζ

τ

A(z, η)G(z, η, t, τ)dη +

∫ z

t

B(ξ, ζ)G(ξ, ζ, t, τ)dξ

−
∫ z

t

∫ ζ

τ

C(ξ, η)G(ξ, η, t, τ)dξdη

(13)

and allows to represent the solution of eq. (11) for any holomorphic function
φ(z) by

u(x, y) = Re

(
G(z, z̄0, z, z̄)φ(z) +

∫ z

z0

φ(t)H(t, z̄0, z, z̄)dt

)
, (14)

where z0 fixed. The function H(z, ζ, t, τ) is given by

H(z, ζ, t, τ) = B(z, ζ)G(z, ζ, t, τ)− ∂G

∂z
(z, ζ, t, τ) (15)



Extension of the line element-less method to dynamic problems 5

and can thus be computed from B(z, ζ) and G(z, ζ, t, τ). The solution is thus
completely determined by the Riemann function G(z, ζ, t, τ) which is gov-
erned by a Volterra integral equation. For special cases of eq. (13), closed
form expressions for the Riemann function are available. E.g., for the Laplace
equation, one has G = 1 and for the Helmholtz equation G(z, ζ, t, τ) =

J0

(
k
√

(z − t)(ζ − τ)
)

.

In order to generate the approximation functions that satisfy the differen-
tial equation (11), we set φ(z) to the harmonic polynomials:

φ(z) = 1, z, ız, z2, ız2 . . . . (16)

Taking the real and imaginary part of (14) with φ(z) given by (16) and z0 = 0,
we obtain for the Helmholtz equation the families of approximation functions

Pi(x, y) = cos(iθ)Ji(kr),

Qi(x, y) = sin(iθ)Ji(kr),
(17)

where z = x+ ıy = r exp (iθ) and Ji(kr) is the Bessel function of first kind of
order i.

4 Line element-less method for the nonhomogeneous Helmholtz
equation

Consider the nonhomogeneous bidimensional Helmholtz equation on a simply
connected domain Ω with Dirichlet boundary conditions:

∆u+ k2u = q(x, y) on Ω, u = 0 on ∂Ω. (18)

Following the theory of Bergman and Vekua [7,17] on generalized harmonic
polynomials, the expansion for the LEM is now written as

u(x, y) =

n∑
i=0

aiPi(x, y) +

n∑
i=1

biQi(x, y) + up(x, y), (19)

where the approximation functions Pi(x, y), Qi(x, y), i = 1, ..., n, are given by
(17). As in the LEM for the Laplace equation, the expansion coefficients are
obtained from the variational formulation

∂

∮
Γ

(u(x, y))
2

dΓ = 0, (20)

that is discretized by inserting the series expansion (19) to

∂J(a,b) = 0, (21)

where a, b assemble the expansion coefficients.
Example 1: Consider the Helmholtz equation

∆u+ 4u = −16− 16(x2 + y2) on Ω, (22)
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a) b)

Fig. 1 a) Approximate solution u(x = 0, y) of the nonhomogeneous Helmholtz equation
on a triangular domain. b) Dependence of the root mean square error between the FEM
solution and the LEM solution on the approximation order n.

Table 1 Numerical results for u(x, y) at selected points (x, y) in the interior of the solution
domain.

Approximation order n x = 0., y = 0.5 x = 0., y = −1. x = 1., y = 0.5

2 -20.753 -9.7796 -7.3337

4 67.6100 33.2529 24.5642

6 72.1596 36.0978 26.9297

8 72.1596 36.0978 26.9297

10 72.1453 36.1187 26.9481

FEM 72.1346 36.1083 26.9371

where Ω is a triangular domain given by the vertices (x = 0., y = −2),
(x =

√
3, y = 1.), (x = −

√
3, y = 1.). Figure 1a) displays graphs of the

approximate solutions u(x = 0, y) for eq. (22) obtained with the finite element
method (FEM) and with LEM and approximation orders of n = 2, n = 4
and n = 6, respectively. The FEM solution has been obtained with a mesh of
320 linear traingular elements and 685 nodes. It can be seen that the LEM
solution converges quickly to the FEM solution. In fact, the FEM solution and
the LEM solution of order n = 6 cannot be distinguished. Moreover, Figure 1
b) demonstrates that the root mean square error between the FEM and the
LEM solution decreases exponentially with the approximation order n. This
finding is also confirmed from evaluations of the numerical solutions at selected
points, cf. Table 1. Starting with the approximation order n = 6, the solution
obtained with the LEM corresponds very well to the finite element solution;
moreover, there is no difference between approximation order 6 and 8 of the
LEM. For these pointwise evaluations, it can be seen from Table 1 that the
FEM solution is underestimated in some cases and overestimated in others.
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Table 2 First three eigenvalues computed with a direct formulation.

Approximation order n Mode k1 Mode k2 Mode k3

1 2.40482 3.8333 –

2 2.40482 3.8333 5.13561

3 2.40482 3.8333 5.13561

5 Line element-less method for the homogeneous Helmholtz
equation

Consider the homogeneous bidimensional Helmholtz equation on a simply con-
nected domain Ω with Dirichlet boundary conditions:

∆u+ k2u = 0 on Ω, u = 0 on ∂Ω. (23)

In order to compute the eigenvalue k by the LEM, a direct approximation of
the solution by

u(x, y) =

n∑
i=0

aiPi(x, y) +

n∑
i=1

biQi(x, y) (24)

with approximation functions Pi(x, y), Qi(x, y), i = 1, ..., n, given by (17) is
considered. In this case, the variational formulation eq. (21) for the Dirichlet
boundary condition leads to the linear algebraic system Akc = 0, with c =
[a b]T , from which the characteristic equation det (Ak) = 0 is obtained. Note
however, that this characteristic equation equation is not a polynomial in k.
In general, the nonlinear characteristic equation for the eigenvalue k can only
by solved by iterative methods.

Example 2: Consider the homogeneous Helmholtz equation eq. (23) on the
unit circle with Dirichlet boundary conditions. For this case, the first three
eigenvalues are obtained as roots of the Bessel functions of the first kind:
k1 = 2.40483, k2 = 3.83170, k3 = 5.13562. Table 2 summarizes the results
computed for three different aproximation orders (n = 1, n = 2, n = 3). As
the direct approximation is a linear combination of the eigenfunctions, the
approximation quality is in general very good and independent on the approx-
imation order. In fact, the deviations between the theoretical eigenvalues and
the obtained ones may be attributed to numerical errors. However, due to the
nonlinearity of the characteristic equation, it was not possible to obtain con-
vergence to all eigenvalues. In contrast, convergence to a specific eigenvalue
seems to depend on the approximation order. Moreover, many iterations were
necessary until convergence and spurious modes were found.

In order to overcome these difficulties, it is necessary to formulate the prob-
lem as a linear eigenvalue problem for which the numerical solution methods
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Table 3 First two eigenvalues computed with a power series expansion.

n N k1

1 1 1.41

1 2 2.

1 3 1.91

1 4 2.65

n N k1

2 1 –

2 2 2.

2 3 2.45

2 4 2.65

n N k1 k2

3 1 – –

3 2 – –

3 3 2.45 –

3 4 2.65 2.83

developed for matrix eigenvalue problems can be applied. To this end, a trun-
cated power series expansion of the approximation given by

u(x, y) =

n∑
i=0

aiPi(x, y) +

n∑
i=1

biQi(x, y) (25)

with

Pi(x, y) = cos(iθ)

N∑
m=0

(−1)
m
k2m+i

(
r
2

)2m+i

(i+m)!m!
,

Qi(x, y) = sin(iθ)

N∑
m=0

(−1)
m
k2m+i

(
r
2

)2m+i

(i+m)!m!

(26)

is considered. The variational formulation eq. (21) leads then to(
2N∑
m=0

kmAm

)
c = 0, (27)

where the coefficient matrix is now expressed in terms of powers of the eigen-
value k. Eq. (27) can be reformulated as the linear eigenvalue problem

A0 A1 A2 . . . A2N−1

0 I . . .
. . .

I




c
kc
...

k2N−1c

 = k


0 0 0 . . . −A2N

0 I . . .
. . .

I




c
kc
...

k2N−1c

 (28)

which can now be solved for the eigenvalues k by numerical methods for linear
eigenvalue problems.

Example 3: Consider again the homogeneous Helmholtz equation (23) on
the unit circle with Dirichlet boundary conditions. Table 3 summarizes the
results for three different approximation orders n and a power series expan-
sion up to fourth order. It can be seen that the approximation error is quite
large and that a very high expansion order is necessary in order to achieve
convergence.
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6 Conclusions

The LEM is a boundary Ritz method that does not require any discretiza-
tion. As shown in this study, the method can be applied not only to Laplace
and biharmonic equations, but also to general linear elliptic equations by an
appropriate choice of the approximation functions. However, in the more gen-
eral case, a numerical integration might be required in order to determine the
coefficient matrix of the linear system that governs the expansion coefficients.

While the results for the nonhomogeneous Helmholtz equation are quite
encouraging, the solution of the eigenvalue problem is challenging, since the
coefficient matrix is a nonlinear function of the free parameter. Neither the
direct formulation nor a power series expansion seem to be adequate for solving
the eigenvalue problem.

In summary, the LEM is an efficient solution method for elliptic equa-
tions on general bidimensional domains. In this regard, possible applications
comprise fast and efficient homogenization methods in continuum mechanics.
Regarding the eigenvalue problem, a combination of the direct formulation
and the series expansion as well as a computation of the gradient might help
to overcome the convergence problems.
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