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Abstract

Multi-armed bandit problems are receiving a great deal of attention because they
adequately formalize the exploration-exploitation trade-offs arising in several in-
dustrially relevant applications, such as online advertisement and, more generally,
recommendation systems. In many cases, however, these applications have a strong
social component, whose integration in the bandit algorithms could lead to a dra-
matic performance increase. For instance, we may want to serve content to a
group of users by taking advantage of an underlying network of social relation-
ships among them. The purpose of this thesis is to introduce novel and principled
algorithmic approaches to the solution of such networked bandit problems. Starting
from a global (Laplacian-based) strategy which allocates a bandit algorithm to each
network node (user), and allows it to “share” signals (contexts and payoffs) with
the neghboring nodes, our goal is to derive and experimentally test more scalable
approaches based on different ways of clustering the graph nodes. More impor-
tantly, we shall investigate the case when the graph structure is not given ahead of
time, and has to be inferred based on past user behavior. A general difficulty aris-
ing in such practical scenarios is that data sequences are typically nonstationary,
implying that traditional statistical inference methods should be used cautiously,
possibly replacing them with by more robust nonstochastic (e.g., game-theoretic)
inference methods.

In this thesis, we will firstly introduce the centralized clustering bandits. Then,
we propose the corresponding solution in decentralized scenario. After that, we
explain the generic collaborative clustering bandits. Finally, we extend and show-
case the state-of-the-art clustering bandits that we developed in the quantification
problem.

3



Contents

1 Introduction 10
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Centralized Clustering Bandits 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 More Plots . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.4 Reference Bounds . . . . . . . . . . . . . . . . . . . . . 48
2.5.5 Further Thoughts . . . . . . . . . . . . . . . . . . . . . . 50
2.5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Decentralized Clustering Bandits 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Linear Bandits and the DCB Algorithm . . . . . . . . . . . . . . 54

3.2.1 Results for DCB . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Clustering and the DCCB Algorithm . . . . . . . . . . . . . . . . 62

3.3.1 Results for DCCB . . . . . . . . . . . . . . . . . . . . . 65
3.4 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . 65
3.5 Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Pseudocode of the Algorithms CB and DCB . . . . . . . . 67

4



CONTENTS 5

3.5.2 More on Communication Complexity . . . . . . . . . . . 67
3.5.3 Proofs of Intermediary Results for DCB . . . . . . . . . . 68
3.5.4 Proof of Theorem 14 . . . . . . . . . . . . . . . . . . . . 71
3.5.5 Proofs of Intermediary Results for DCCB . . . . . . . . . 74

4 Collaborative Clustering Bandits 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Showcase in the Quantification Problem 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Performance Measures . . . . . . . . . . . . . . . . . . . 101
5.4 Stochastic Optimization Methods for Quantification . . . . . . . . 104

5.4.1 Nested Concave Performance Measures . . . . . . . . . . 105
5.4.2 Pseudo-concave Performance Measures . . . . . . . . . . 108

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.7 Deriving Updates for NEMSIS . . . . . . . . . . . . . . . . . . 117
5.8 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.9 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.10 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Figures

2.1 Pseudocode of the CLUB algorithm. The confidence functions
CBj,t−1 and C̃Bi,t−1 are simplified versions of their “theoretical”
counterparts TCBj,t−1 and T̃CBi,t−1, defined later on. The factors
α and α2 are used here as tunable parameters that bridge the sim-
plified versions to the theoretical ones. . . . . . . . . . . . . . . 20

2.2 A true underlying graph G = (V,E) made up of n = |V | = 11
nodes, and m = 4 true clusters V1 = {1, 2, 3}, V2 = {4, 5},
V3 = {6, 7, 8, 9}, and V4 = {10, 11}. There are mt = 2 current
clusters V̂1,t and V̂2,t. The black edges are the ones contained in
E, while the red edges are those contained in Et \ E. The two
current clusters also correspond to the two connected components
of graph Gt = (V,Et). Since aggregate vectors w̄j,t are build
based on current cluster membership, if for instance, it = 3, then
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Chapter 1

Introduction

1.1 Objective

The ability of a website to present personalized content recommendations is play-
ing an increasingly key role in achieving user satisfaction. Due to the occurrence
of new content, as well as to the ever-changing nature of content popularity, mod-
ern approaches to content recommendation are strongly adaptive, and attempt to
match as closely as possible users’ interests by repeatedly learning good mappings
between users and contents. These mappings are based on context information
(i.e., sets of features) which are typically extracted from both users and contents.
The need to focus on content that raises users’ interest, combined with the need
of exploring new content so as to globally improve users’ experience, generates a
well-known exploration-exploitation dilemma, which is commonly formalized as a
multi-armed bandit problem. In such scenarios, contextual bandit algorithms have
rapidly become a reference technique for implementing adaptive recommender
systems. Yet, in many cases, the users targeted by such systems form a social
network, whose structure may provide valuable information regarding user interest
affinities. Being able to exploit such affinities can lead to a dramatic increase in the
quality of recommendations.

The starting point of our investigation is to leverage user similarities repre-
sented as a graph, and running an instance of a contextual bandit algorithm at each
graph node. These instances are allowed to interact during the learning process,
sharing contexts and user feedbacks. Under the modeling assumption that user
similarities are properly reflected by the graph structure, interactions allow to effec-
tively speed up the learning process that takes place at each node. This mechanism
is implemented by running instances of a linear contextual bandit algorithm in a
specific Reproducing Kernel Hilbert Space (RKHS). The underlying kernel, previ-
ously used for solving online multitask classification problems, is defined in terms
of the Laplacian matrix of the graph. The Laplacian matrix provides the informa-
tion we rely upon to share user feedbacks from one node to the others, according to
the network structure. Since the Laplacian kernel is linear, the implementation in

10



CHAPTER 1. INTRODUCTION 11

kernel space is conceptually straightforward. Moreover, the existing performance
guarantees for the specific bandit algorithm we use can be directly lifted to the
RKHS, and expressed in terms of spectral properties of the user network.

Despite its crispness, the principled approach described above has two draw-
backs hindering its practical usage. First, running a network of linear contextual
bandit algorithms with a Laplacian-based feedback sharing mechanism may cause
significant scaling problems, even on small to medium-sized social networks. Sec-
ond, it is common wisdom in recommender system research that the social in-
formation provided by the network structure at hand need not be fully reliable in
accounting for user behavior similarities. Given the above state of affairs, we shall
consider methods that reduce “graph noise” by either removing edges in the net-
work of users and/or cluster the users (so as to reduce the graph size). We expect
both these two methods to achieve dramatic scalability improvements, but also to
have increased prediction performance under different market share conditions, the
edge removal strategy being more effective in the presence of many niche products,
the clustering strategy being more effective in the presence of few hit products.
More importantly, we shall consider methods where the graph information is in-
ferred adaptively from past user behavior. In this case, unlike many traditional
methods of user similarity modeling and prediction, we are not relying on low
rank factorization assumptions of the user-product matrix (which would again be
computationally prohibitive even on mid-sized networks of users), but rather on
clusterabilty assumptions of the users, the number of clusters setting the domain-
dependent trade-off between hits and niches. In this scenario, we shall develop
robust online learning methods which can suitably deal with the nonstationarity of
real data, e.g., due to a drift in user interests and/or social behavior.

Last but not least, a great deal of effort within this thesis will be devoted to
carrying out careful experimental investigations on real-world datasets of various
sizes, so as to compare our algorithms to state-of-the-art methods that do not lever-
age the graph information. Comparison will be in terms of both scalability prop-
erties (running time and space requirements) and prediction performance. In our
comparison, we shall also consider different methods for sharing contextual and
feedback information in a set of users, such as feature hashing techniques.

In short, we are aimed at:

• Developing algorithmic approaches to reducing the graph size in a social
network (by either removing edges or clustering nodes) so as to retain as
much information as possible on the underlying users and, at the same time,
obtain a dramatic reduction in the running time and storage requirements of
the involved graph-based contextual bandit algorithms;
• Developing scalable and principled algorithmic approaches to inferring the

graph structure from past user behavior based on clusterability assumptions
over the set of users;
• Carrying out a careful experimental comparison of the above methods on

small, medium and large datasets with state-of-the-art contextual bandit
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methods that do not exploit the network information, as well as to different
methods for sharing contextual and feedback information, such as feature
hashing techniques.

In all cases, our algorithms will be online learning algorithms designed to op-
erate on nonstationary data sequences.

1.2 Main Contributions

This thesis summarizes the major findings refer to chapter 2 to 5 correspondingly:

• We introduce a novel algorithmic approach to content recommendation
based on adaptive clustering of exploration-exploitation (“bandit”) strate-
gies. We provide a sharp regret analysis of this algorithm in a standard
stochastic noise setting, demonstrate its scalability properties, and prove its
effectiveness on a number of artificial and real-world datasets. Our exper-
iments show a significant increase in prediction performance over state-of-
the-art methods for bandit problems.
• We provide two distributed confidence ball algorithms for solving linear ban-

dit problems in peer to peer networks with limited communication capabil-
ities. For the first, we assume that all the peers are solving the same linear
bandit problem, and prove that our algorithm achieves the optimal asymp-
totic regret rate of any centralised algorithm that can instantly communicate
information between the peers. For the second, we assume that there are
clusters of peers solving the same bandit problem within each cluster, and we
prove that our algorithm discovers these clusters, while achieving the opti-
mal asymptotic regret rate within each one. Through experiments on several
real-world datasets, we demonstrate the performance of proposed algorithms
compared to the state-of-the-art.
• Classical collaborative filtering, and content-based filtering methods try to

learn a static recommendation model given training data. These approaches
are far from ideal in highly dynamic recommendation domains such as news
recommendation and computational advertisement, where the set of items
and users is very fluid. In this work, we investigate an adaptive cluster-
ing technique for content recommendation based on exploration-exploitation
strategies in contextual multi-armed bandit settings. Our algorithm takes into
account the collaborative effects that arise due to the interaction of the users
with the items, by dynamically grouping users based on the items under con-
sideration and, at the same time, grouping items based on the similarity of
the clusterings induced over the users. The resulting algorithm thus takes
advantage of preference patterns in the data in a way akin to collaborative
filtering methods. We provide an empirical analysis on medium-size real-
world datasets, showing scalability and increased prediction performance (as
measured by click-through rate) over state-of-the-art methods for clustering
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bandits. We also provide a regret analysis within a standard linear stochastic
noise setting.
• The estimation of class prevalence, i.e., the fraction of a population that be-

longs to a certain class, is a very useful tool in data analytics and learning,
and finds applications in many domains such as sentiment analysis, epidemi-
ology, etc. For example, in sentiment analysis, the objective is often not to
estimate whether a specific text conveys a positive or a negative sentiment,
but rather estimate the overall distribution of positive and negative senti-
ments during an event window. A popular way of performing the above task,
often dubbed quantification, is to use supervised learning to train a preva-
lence estimator from labeled data.
Contemporary literature cites several performance measures used to mea-
sure the success of such prevalence estimators. In this work we propose the
first online stochastic algorithms for directly optimizing these quantification-
specific performance measures. We also provide algorithms that optimize
hybrid performance measures that seek to balance quantification and classi-
fication performance. Our algorithms present a significant advancement in
the theory of multivariate optimization and we show, by a rigorous theoreti-
cal analysis, that they exhibit optimal convergence. We also report extensive
experiments on benchmark and real data sets which demonstrate that our
methods significantly outperform existing optimization techniques used for
these performance measures.

1.3 List of Publications

• “Collaborative Filtering Bandits”, Shuai Li, Alexandros Karatzoglou, and
Claudio Gentile, The 39th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Acceptance Rate: 18%,
(SIGIR 2016)
• “Distributed Clustering of Linear Bandits in Peer to Peer Networks”, Nathan

Korda, Balázs Szörényi, and Shuai Li, The 33rd International Conference on
Machine Learning, Journal of Machine Learning Research, New York, USA,
Acceptance Rate: 24%, (ICML 2016)
• “Online Optimization Methods for the Quantification Problem”, Purushot-

tam Kar, Shuai Li, Harikrishna Narasimhan, Sanjay Chawla and Fabrizio
Sebastiani, The 22nd ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, San Francisco, CA, USA, Acceptance Rate: 18%,
(SIGKDD 2016)
• “Mining λ-Maximal Cliques from a Fuzzy Graph”, Fei Hao, Doo-Soon Park,

Shuai Li, and HwaMin Lee, Journal of Advanced IT based Future Sustain-
able Computing, 2016
• “An Efficient Approach to Generating Location-Sensitive Recommendations
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in Ad-hoc Social Network Environments”, Fei Hao, Shuai Li, Geyong Min,
Hee-Cheol Kim, Stephen S. Yau, and Laurence T. Yang, IEEE Transactions
on Services Computing 2015
• “Online Clustering of Bandits”, Claudio Gentile, Shuai Li, and Giovanni

Zappella, The 31st International Conference on Machine Learning, Journal
of Machine Learning Research, Acceptance Rate: 25%, (ICML 2014)
• “Dynamic Fuzzy Logic Control of Genetic Algorithm Probabilities”, Hui-

juan Guo, Yi Feng, Fei Hao, Shentong Zhong, and Shuai Li, Journal of
Computers, DOI: 10.4304/JCP. 9.1.22-27, Vol. 9, No. 1, pp. 22-27, Jan.
2014



Chapter 2

Centralized Clustering Bandits

2.1 Introduction
Presenting personalized content to users is nowdays a crucial functionality for
many online recommendation services. Due to the ever-changing set of available
options, these services have to exhibit strong adaptation capabilities when trying
to match users’ preferences. Coarsely speaking, the underlying systems repeatedly
learn a mapping between available content and users, the mapping being based on
context information (that is, sets of features) which is typically extracted from both
users and contents. The need to focus on content that raises the users’ interest, com-
bined with the need of exploring new content so as to globally improve users’ ex-
perience, generates a well-known exploration-exploitation dilemma, which is com-
monly formalized as a multi-armed bandit problem (e.g., [66, 6, 4, 20]). In partic-
ular, the contextual bandit methods (e.g., [5, 67, 69, 25, 11, 1, 27, 64, 91, 106, 34],
and references therein) have rapidly become a reference algorithmic technique for
implementing adaptive recommender systems.

Within the above scenarios, the widespread adoption of online social networks,
where users are engaged in technology-mediated social interactions (making prod-
uct endorsement and word-of-mouth advertising a common practice), raises further
challenges and opportunities to content recommendation systems: On one hand,
because of the mutual influence among friends, acquaintances, business partners,
etc., users having strong ties are more likely to exhibit similar interests, and there-
fore similar behavior. On the other hand, the nature and scale of such interactions
calls for adaptive algorithmic solutions which are also computationally affordable.

Incorporating social components into bandit algorithms can lead to a dramatic
increase in the quality of recommendations. For instance, we may want to serve
content to a group of users by taking advantage of an underlying network of social
relationships among them. These social relationships can either be explicitly en-
coded in a graph, where adjacent nodes/users are deemed similar to one another, or
implicitly contained in the data, and given as the outcome of an inference process
that recognizes similarities across users based on their past behavior. Examples of

15
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the first approach are the recent works [15, 31, 41], where a social network struc-
ture over the users is assumed to be given that reflects actual interest similarities
among users – see also [19, 102] for recent usage of social information to tackle
the so-called “cold-start” problem. Examples of the second approach are the more
traditional collaborative-filtering (e.g., [90]), content-based filtering, and hybrid
approaches (e.g. [16]).

Both approaches have important drawbacks hindering their practical deploy-
ment. One obvious drawback of the “explicit network” approach is that the social
network information may be misleading (see, e.g., the experimental evidence re-
ported by [31]), or simply unavailable. Moreover, even in the case when this in-
formation is indeed available and useful, the algorithmic strategies to implement
the needed feedback sharing mechanisms might lead to severe scaling issues [41],
especially when the number of targeted users is large. A standard drawback of the
“implicit network” approach of traditional recommender systems is that in many
practically relevant scenarios (e.g., web-based), content universe and popularity
often undergo dramatic changes, making these approaches difficult to apply.

In such settings, most notably in the relevant case when the involved users are
many, it is often possible to identify a few subgroups or communities within which
users share similar interests [87, 17], thereby greatly facilitating the targeting of
users by means of group recommendations. Hence the system need not learn a
different model for each user of the service, but just a single model for each group.

In this paper, we carry out1 a theoretical and experimental investigation of
adaptive clustering algorithms for linear (contextual) bandits under the assumption
that we have to serve content to a set of n users organized into m << n groups
(or clusters) such that users within each group tend to provide similar feedback to
content recommendations. We give a O(

√
T ) regret analysis holding in a standard

stochastically linear setting for payoffs where, importantly, the hidden constants in
the big-oh depend on m, rather than n, as well as on the geometry of the user mod-
els within the different clusters. The main idea of our algorithm is to use confidence
balls of the users’ models to both estimate user similarity, and to share feedback
across (deemed similar) users. The algorithm adaptively interpolates between the
case when we have a single instance of a contextual bandit algorithm making the
same predictions for all users and the case when we have n-many instances pro-
viding fully personalized recommendations. We show that our algorithm can be
implemented efficiently (the large n scenario being of special concern here) by
means of off-the-shelf data-structures relying on random graphs. Finally, we test
our algorithm on medium-size synthetic and real-world datasets, often reporting a
significant increase in prediction performance over known state-of-the-art methods
for bandit problems.

1 We postpone the discussion of related work to the chapter 2’s supplementary material.
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2.2 Learning Model

We assume the user behavior similarity is encoded as an unknown clustering of the
users. Specifically, let V = {1, . . . , n} represent the set of n users. Then V can
be partitioned into a small number m of clusters V1, V2, . . . , Vm, with m << n,
such that users lying in the same cluster share similar behavior and users lying
in different clusters have different behavior. The actual partition of V (including
the number of clusters m) and the common user behavior within each cluster are
unknown to the learner, and have to be inferred on the fly.

Learning proceeds in a sequential fashion: At each round t = 1, 2, . . . , the
learner receives a user index it ∈ V together with a set of context vectors Cit =
{xt,1,xt,2, . . . ,xt,ct} ⊆ Rd. The learner then selects some x̄t = xt,kt ∈ Cit
to recommend to user it, and observes some payoff at ∈ R, which is a func-
tion of both it and the recommended x̄t. The following assumptions are made
on how index it, set Cit , and payoff at are generated in round t. Index it rep-
resents the user to be served by the system, and we assume it is selected uni-
formly at random2 from V . Once it is selected, the number of context vectors ct
in Cit is generated arbitrarily as a function of past indices i1, . . . , it−1, payoffs
a1, . . . , at−1, and sets Ci1 , . . . , Cit−1 , as well as the current index it. Then the
sequence xt,1,xt,2, . . . ,xt,ct of context vectors within Cit is generated i.i.d. (con-
ditioned on it, ct and all past indices i1, . . . , it−1, payoffs a1, . . . , at−1, and sets
Ci1 , . . . , Cit−1) from a random process on the surface of the unit sphere, whose
process matrix E[XX>] is full rank, with minimal eigenvalue λ > 0. Further as-
sumptions on the process matrix E[XX>] are made later on. Finally, payoffs are
generated by noisy versions of unknown linear functions of the context vectors.
That is, we assume each cluster Vj , j = 1, . . . ,m, hosts an unknown parameter
vector uj ∈ Rd which is common to each user i ∈ Vj . Then the payoff value ai(x)
associated with user i and context vector x ∈ Rd is given by the random variable

ai(x) = u>j(i)x+ εj(i)(x) ,

where j(i) ∈ {1, 2, . . . ,m} is the index of the cluster that node i be-
longs to, and εj(i)(x) is a conditionally zero-mean and bounded variance
noise term. Specifically, denoting by Et[ · ] the conditional expectation
E
[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1 , at−1), it

]
, we assume that for any fixed j ∈

{1, . . . ,m} and x ∈ Rd, the variable εj(x) is such that Et[εj(x)|x ] = 0 and
Vt
[
εj(x)|x

]
≤ σ2, where Vt[ · ] is a shorthand for the conditional variance

V
[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1 , at−1), it

]
of the variable at argument. So we

clearly have Et[ai(x)|x ] = u>j(i)x and Vt
[
ai(x)|x

]
≤ σ2. Therefore, u>j(i)x

is the expected payoff observed at user i for context vector x. In the special
case when the noise εj(i)(x) is a bounded random variable taking values in the
range [−1, 1], this implies σ2 ≤ 1. We will make throughout the assumption that

2 Any other distribution that insures a positive probability of visiting each node of V would suffice
here.
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ai(x) ∈ [−1, 1] for all i ∈ V and x. Notice that this implies −1 ≤ u>j(i)x ≤ 1 for
all i ∈ V and x. Finally, we assume well-separatedness among the clusters, in that
||uj − uj′ || ≥ γ > 0 for all j 6= j′. We define the regret rt of the learner at time t
as

rt =

(
max
x∈Cit

u>j(it)x

)
− u>j(it)x̄t .

We are aimed at bounding with high probability (over the variables it, xt,k, k =

1, . . . , ct, and the noise variables εj(it)) the cumulative regret
∑T

t=1 rt . The kind of
regret bound we would like to obtain (we call it the reference bound) is one where
the clustering structure of V (i.e., the partition of V into V1, . . . , Vm) is known to
the algorithm ahead of time, and we simply view each one of the m clusters as an
independent bandit problem. In this case, a standard contextual bandit analysis [5,
25, 1] shows that, as T grows large, the cumulative regret

∑T
t=1 rt can be bounded

with high probability as3

∑T
t=1 rt = Õ

(∑m
j=1

(
σ d+ ||uj ||

√
d
) √

T
)
.

For simplicity, we shall assume that ||uj || = 1 for all j = 1, . . . ,m. Now, a
more careful analysis exploiting our assumption about the randomness of it (see
the supplementary material) reveals that one can replace the

√
T term contributed

by each bandit j by a term of the form
√
T

(
1
m +

√
|Vj |
n

)
, so that under our

assumptions the reference bound becomes

T∑

t=1

rt = Õ

((
σ d+

√
d
)√

T
(

1 +
m∑

j=1

√
|Vj |
n

))
. (2.1)

Observe the dependence of this bound on the size of clusters Vj . The worst-case
scenario is when we have m clusters of the same size n

m , resulting in the bound

∑T
t=1 rt = Õ

((
σ d+

√
d
) √

mT
)
.

At the other extreme lies the easy case when we have a single big cluster and many
small ones. For instance, |V1| = n −m + 1, and |V2| = |V3| = . . . |Vm| = 1, for
m << n, gives

∑T
t=1 rt = Õ

((
σ d+

√
d
) √

T
(

1 + m√
n

))
.

A relevant geometric parameter of the set of uj is the sum of distances SD(uj)
of a given vector uj w.r.t. the set of vectors u1, . . . ,um, which we define as
SD(uj) =

∑m
`=1 ||uj−u`||. If it is known that SD(uj) is small for all j, one can

modify the abovementioned independent bandit algorithm, by letting the bandits
share signals, as is done, e.g., in [41]. This allows one to exploit the vicinity of

3 The Õ-notation hides logarithmic factors.
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the uj vectors, and roughly replace 1 +
∑m

j=1

√
|Vj |
n in (2.1) by a quantity also

depending on the mutual distances ||uj − uj′ || among cluster vectors. However,
this improvement is obtained at the cost of a substantial increase of running time
[41]. In our analysis (Theorem 1 in Section 4.4), we would like to leverage both
the geometry of the clusters, as encoded by vectors uj , and the relative size |Vj |
of the clusters, with no prior knowledge of m (or γ), and without too much extra
computational burden.

2.3 The Algorithm
Our algorithm, called Cluster of Bandits (CLUB), is described in Figure 2.1. In
order to describe the algorithm we find it convenient to re-parameterize the prob-
lem and introduce n parameter vectors u1,u2, . . . ,un, one per node, where nodes
within the same cluster Vj share the same vector. An illustrative example is given
in Figure 2.2.

The algorithm maintains at time t an estimatewi,t for vectorui associated with
user i ∈ V . Vectorswi,t are updated based on the payoff signals, similar to a stan-
dard linear bandit algorithm (e.g., [25]) operating on the context vectors contained
in Cit . Every user i in V hosts a linear bandit algorithm like the one described in
[41]. One can see that the prototype vector wi,t is the result of a standard linear
least-squares approximation to the corresponding unknown parameter vectorui. In
particular, wi,t−1 is defined through the inverse correlation matrix M−1

i,t−1, and the
additively-updated vector bi,t−1. Matrices Mi,t are initialized to the d× d identity
matrix, and vectors bi,t are initialized to the d-dimensional zero vector. In addition,
the algorithm maintains at time t an undirected graph Gt = (V,Et) whose nodes
are precisely the users in V . The algorithm starts off from the complete graph, and
progressively erases edges based on the evolution of vectors wi,t. The graph is
intended to encode the current partition of V by means of the connected compo-
nents of Gt. We denote by V̂1,t, V̂2,t, . . . , V̂mt,t the partition of V induced by the
connected components of Gt. Initially, we have m1 = 1 and V̂1,1 = V . The clus-
ters V̂1,1, V̂2,t, . . . , V̂mt,t (henceforth called the current clusters) are indeed meant
to estimate the underlying true partition V1, V2, . . . , Vm, henceforth called the un-
derlying or true clusters.

At each time t = 1, 2, . . . , the algorithm receives the index it of the user to
serve, and the associated context vectors xt,1, . . . ,xt,ct (the set Cit), and must
select one among them. In doing so, the algorithm first determines which cluster
(among V̂1,1, V̂2,t, . . . , V̂mt,t) node it belongs to, call this cluster V̂ĵt,t, then builds

the aggregate weight vector w̄ĵt,t−1 by taking prior x̄s, s < t, such that is ∈ V̂ĵt,t,
and computing the least squares approximation as if all nodes i ∈ V̂ĵt,t have been
collapsed into one. It is weight vector w̄ĵt,t−1 that the algorithm uses to select kt.
In particular,

kt = argmax
k=1,...,ct

(
w̄>
ĵt,t−1

xt,k + CBĵt,t−1(xt,k)
)
.
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Input: Exploration parameter α > 0; edge deletion parameter α2 > 0
Init:
• bi,0 = 0 ∈ Rd and Mi,0 = I ∈ Rd×d, i = 1, . . . n;

• Clusters V̂1,1 = V , number of clusters m1 = 1;
• Graph G1 = (V,E1), G1 is connected over V .

for t = 1, 2, . . . , T do
Set wi,t−1 = M−1i,t−1bi,t−1, i = 1, . . . , n;
Receive it ∈ V , and get context Cit = {xt,1, . . . ,xt,ct};
Determine ĵt ∈ {1, . . . ,mt} such that it ∈ V̂ĵt,t, and set

M̄ĵt,t−1 = I +
∑

i∈V̂ĵt,t

(Mi,t−1 − I),

b̄ĵt,t−1 =
∑

i∈V̂ĵt,t

bi,t−1,

w̄ĵt,t−1 = M̄−1
ĵt,t−1

b̄ĵt,t−1 ;

Set kt = argmax
k=1,...,ct

(
w̄>
ĵt,t−1xt,k + CBĵt,t−1(xt,k)

)
,

CBj,t−1(x) = α
√
x>M̄−1j,t−1x log(t+ 1),

M̄j,t−1 = I +
∑

i∈V̂j,t

(Mi,t−1 − I) , j = 1, . . . ,mt .

Observe payoff at ∈ [−1, 1];
Update weights:
• Mit,t = Mit,t−1 + x̄tx̄

>
t ,

• bit,t = bit,t−1 + atx̄t,
• Set Mi,t = Mi,t−1, bi,t = bi,t−1 for all i 6= it ;

Update clusters:
• Delete from Et all (it, `) such that

||wit,t−1 −w`,t−1|| > C̃Bit,t−1 + C̃B`,t−1 ,

C̃Bi,t−1 = α2

√
1 + log(1 + Ti,t−1)

1 + Ti,t−1
,

Ti,t−1 = |{s ≤ t− 1 : is = i}|, i ∈ V ;

• Let Et+1 be the resulting set of edges, set Gt+1 = (V,Et+1), and compute
associated clusters V̂1,t+1, V̂2,t+1, . . . , V̂mt+1,t+1 .

end for

Figure 2.1: Pseudocode of the CLUB algorithm. The confidence functions CBj,t−1

and C̃Bi,t−1 are simplified versions of their “theoretical” counterparts TCBj,t−1 and
T̃CBi,t−1, defined later on. The factorsα andα2 are used here as tunable parameters
that bridge the simplified versions to the theoretical ones.
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The quantity CBĵt,t−1(x) is a version of the upper confidence bound in the ap-

proximation of w̄ĵt,t−1 to a suitable combination of vectors ui, i ∈ V̂ĵt,t – see the
supplementary material for details.

Once this selection is done and the associated payoff at is observed, the al-
gorithm uses the selected vector x̄t for updating Mit,t−1 to Mit,t via a rank-one
adjustment, and for turning vector bit,t−1 to bit,t via an additive update whose
learning rate is precisely at. Notice that the update is only performed at node it,
since for all other i 6= it we have wi,t = wi,t−1. However, this update at it will
also implicitly update the aggregate weight vector w̄ĵt+1,t

associated with cluster

V̂ĵt+1,t+1 that node it will happen to belong to in the next round. Finally, the cluster
structure is possibly modified. At this point CLUB compares, for all existing edges
(it, `) ∈ Et, the distance ||wit,t−1 −w`,t−1|| between vectors wit,t−1 and w`,t−1

to the quantity C̃Bit,t−1 + C̃B`,t−1 . If the above distance is significantly large (and
wit,t−1 and w`,t−1 are good approximations to the respective underlying vectors
uit and u`), then this is a good indication that uit 6= u` (i.e., that node it and node
` cannot belong to the same true cluster), so that edge (it, `) gets deleted. The new
graphGt+1, and the induced partitioning clusters V̂1,t+1, V̂2,t+1, . . . , V̂mt+1,t+1, are
then computed, and a new round begins.

2.3.1 Implementation

In implementing the algorithm in Figure 2.1, the reader should bear in mind that
we are expecting n (the number of users) to be quite large, d (the number of fea-
tures of each item) to be relatively small, and m (the number of true clusters) to be
very small compared to n. With this in mind, the algorithm can be implemented
by storing a least-squares estimator wi,t−1 at each node i ∈ V , an aggregate least
squares estimator w̄ĵt,t−1 for each current cluster ĵt ∈ {1, . . . ,mt}, and an extra
data-structure which is able to perform decremental dynamic connectivity. Fast
implementations of such data-structures are those studied by [100, 55] (see also
the research thread referenced therein). One can show (see the supplementary ma-
terial) that in T rounds we have an overall (expected) running time

O
(
T
(
d2 +

|E1|
n

d
)

+m (nd2 + d3) + |E1|

+ min{n2, |E1| log n}+
√
n |E1| log2.5 n

)
. (2.2)

Notice that the above is n · poly(log n), if so is |E1|. In addition, if T is large
compared to n and d, the average running time per round becomes O(d2 + d ·
poly(log n)). As for memory requirements, this implementation takes O(nd2 +
md2 + |E1|) = O(nd2 + |E1|). Again, this is n · poly(log n) if so is |E1|.
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2.3.2 Regret Analysis

Our analysis relies on the high probability analysis contained in [1] (Theorems 1
and 2 therein). The analysis (Theorem 1 below) is carried out in the case when
the initial graph G1 is the complete graph. However, if the true clusters are suf-
ficiently large, then we can show (see Remark 4) that a formal statement can be
made even if we start off from sparser random graphs, with substantial time and
memory savings.

The analysis actually refers to a version of the algorithm where the confidence
bound functions CBj,t−1(·) and C̃Bi,t−1 in Figure 2.1 are replaced by their “theo-
retical” counterparts TCBj,t−1(·), and T̃CBi,t−1, respectively,4 which are defined as
follows. Set for brevity

Aλ(T, δ)=

(
λT

4
−8 log

(T + 3

δ

)
−2

√
T log

(T + 3

δ

))

+

where (x)+ = max{x, 0}, x ∈ R. Then, for j = 1, . . . ,mt,

TCBj,t−1(x) =
√
x>M̄−1

j,t−1x

(
σ

√
2 log

|M̄j,t−1|
δ/2

+ 1

)
, (2.3)

being | · | the determinant of the matrix at argument, and, for i ∈ V ,

T̃CBi,t−1 =
σ
√

2d log t+ 2 log(2/δ) + 1√
1 +Aλ(Ti,t−1, δ/(2nd))

. (2.4)

Recall the difference between true clusters V1, . . . , Vm and current clusters
V̂1,t, . . . , V̂mt,t maintained by the algorithm at time t. Consistent with this differ-
ence, we let G = (V,E) be the true underlying graph, made up of the m disjoint
cliques over the sets of nodes V1, . . . , Vm ⊆ V , and Gt = (V,Et) be the one
kept by the algorithm – see again Figure 2.2 for an illustration of how the algo-
rithm works. The following is the main theoretical result of this chapter,5 where
additional conditions are needed on the process X generating the context vectors.

Theorem 1. Let the CLUB algorithm of Figure 2.1 be run on the initial complete
graph G1 = (V,E1), whose nodes V = {1, . . . , n} can be partitioned into m
clusters V1, . . . , Vm where, for each j = 1, . . . ,m, nodes within cluster Vj host
the same vector uj , with ||uj || = 1 for j = 1, . . . ,m, and ||uj − uj′ || ≥ γ >
0 for any j 6= j′. Denote by vj = |Vj | the cardinality of cluster Vj . Let the
CBj,t(·) function in Figure 2.1 be replaced by the TCBj,t(·) function defined in
(2.3), and C̃Bi,t be replaced by T̃CBi,t defined in (2.4). In both TCBj,t and T̃CBi,t,

4Notice that, in all our notations, index i always ranges over nodes, while index j always ranges
over clusters. Accordingly, the quantities C̃Bi,t and T̃CBi,t are always associates with node i ∈ V ,
while the quantities CBj,t−1(·) and TCBj,t−1(·) are always associates with clusters j ∈ {1, . . . ,mt}.

5 The proof is provided in the supplementary material of chapter 2.
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Figure 2.2: A true underlying graph G = (V,E) made up of n = |V | = 11
nodes, and m = 4 true clusters V1 = {1, 2, 3}, V2 = {4, 5}, V3 = {6, 7, 8, 9}, and
V4 = {10, 11}. There are mt = 2 current clusters V̂1,t and V̂2,t. The black edges
are the ones contained in E, while the red edges are those contained in Et \E. The
two current clusters also correspond to the two connected components of graph
Gt = (V,Et). Since aggregate vectors w̄j,t are build based on current cluster
membership, if for instance, it = 3, then ĵt = 1, so M̄1,t−1 = I +

∑5
i=1(Mi,t−1−

I), b̄1,t−1 =
∑5

i=1 bi,t−1, and w̄1,t−1 = M̄−1
1,t−1b̄1,t−1.

let δ therein be replaced by δ/10.5. Let, at each round t, context vectors Cit =
{xt,1, . . . ,xt,ct} being generated i.i.d. (conditioned on it, ct and all past indices
i1, . . . , it−1, payoffs a1, . . . , at−1, and sets Ci1 , . . . , Cit−1) from a random process
X such that ||X|| = 1, E[XX>] is full rank, with minimal eigenvalue λ > 0.
Moreover, for any fixed unit vector z ∈ Rd, let the random variable (z>X)2 be
(conditionally) sub-Gaussian with variance parameter ν2 = Vt

[
(z>X)2 | ct

]
≤

λ2

8 log(4c) , with ct ≤ c for all t. Then with probability at least 1− δ the cumulative
regret satisfies

T∑

t=1

rt=Õ

(
(σ
√
d+ 1)

√
m

(
n

λ2
+
√
T
(

1 +
m∑

j=1

√
vj
λn

))

+

(
n

λ2
+
nσ2 d

λγ2

)
E[SD(uit)] +m

)

=Õ

(
(σ
√
d+ 1)

√
mT

(
1 +

m∑

j=1

√
vj
λn

))
, (2.5)

as T grows large. In the above, the Õ-notation hides log(1/δ), logm, log n, and
log T factors.

Remark 1. A close look at the cumulative regret bound presented in Theorem 1
reveals that this bound is made up of three main terms: The first term is of the form

(σ
√
dm+

√
m)

n

λ2
+m .

This term is constant with T , and essentially accounts for the transient regime due
to the convergence of the minimal eigenvalues of M̄j,t and Mi,t to the correspond-
ing minimal eigenvalue λ of E[XX>]. The second term is of the form
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( n
λ2

+
nσ2 d

λγ2

)
E[SD(uit)] .

This term is again constant with T , but it depends through E[SD(uit)] on the
geometric properties of the set of uj as well as on the way such uj interact with
the cluster sizes vj . Specifically,

E[SD(uit)] =
∑m

j=1
vj
n

∑m
j′=1 ||uj − uj′ || .

Hence this term is small if, say, among them clusters, a few of them together cover
almost all nodes in V (this is a typical situation in practice) and, in addition, the
corresponding uj are close to one another. This term accounts for the hardness
of learning the true underlying clustering through edge pruning. We also have an
inverse dependence on γ2, which is likely due to an artifact of our analysis. Recall
that γ is not known to our algorithm. Finally, the third term is the one charac-
terizing the asymptotic behavior of our algorithm as T → ∞, its form being just
(2.5). It is instructive to compare this term to the reference bound (2.1) obtained
by assuming prior knowledge of the cluster structure. Broadly speaking, (2.5) has

an extra
√
m factor,6 and replaces a factor

√
d in (2.1) by the larger factor

√
1
λ .

Remark 2. The reader should observe that a similar algorithm as CLUB can be
designed that starts off from the empty graph instead, and progressively draws
edges (thereby merging connected components and associated aggregate vectors)
as soon as two nodes host individual vectors wi,t which are close enough to one
another. This would have the advantage to lean on even faster data-structures for
maintaining disjoint sets (e.g., [26][Ch. 22]), but has also the significant drawback
of requiring prior knowledge of the separation parameter γ. In fact, it would not
be possible to connect two previously unconnected nodes without knowing some-
thing about this parameter. A regret analysis similar to the one in Theorem 1 exists,
though our current understanding is that the cumulative regret would depend lin-
early on

√
n instead of

√
m. Intuitively, this algorithm is biased towards a large

number of true clusters, rather than a small number.

Remark 3. A data-dependent variant of the CLUB algorithm can be designed and
analyzed which relies on data-dependent clusterability assumptions of the set of
users with respect to a set of context vectors. These data-dependent assumptions
allow us to work in a fixed design setting for the sequence of context vectors xt,k,
and remove the sub-Gaussian and full-rank hypotheses regarding E[XX>]. On the
other hand, they also require that the power of the adversary generating context
vectors be suitably restricted. See the supplementary material for details.

6 This extra factor could be eliminated at the cost of having a higher second term in the bound,
which does not leverage the geometry of the set of uj .
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Remark 4. Last but not least, we would like to stress that the same analysis con-
tained in Theorem 1 extends to the case when we start off from a p-random Erdos-
Renyi initial graph G1 = (V,E1), where p is the independent probability that two
nodes are connected by an edge in G1. Translated into our context, a classical
result on random graphs due to [58] reads as follows.

Lemma 2. Given V = {1, . . . , n}, let V1, . . . , Vm be a partition of V , where
|Vj | ≥ s for all j = 1, . . . ,m. Let G1 = (V,E1) be a p-random Erdos-Renyi
graph with p ≥ 12 log(6n2/δ)

s−1 . Then with probability at least 1 − δ (over the
random draw of edges), all m subgraphs induced by true clusters V1, . . . , Vm on
G1 are connected in G1.

For instance, if |Vj | = β n
m , j = 1, . . . ,m, for some constant β ∈ (0, 1), then it

suffices to have |E1| = O
(
mn log(n/δ)

β

)
. Under these assumptions, if the initial

graph G1 is such a random graph, it is easy to show that Theorem 1 still holds. As
mentioned in Section 2.3.1 (Eq. (2.2) therein), the striking advantage of beginning
with a sparser connected graph than the complete graph is computational, since we
need not handle anymore a (possibly huge) data-structure having n2-many items.
In our experiments, described next, we set p = 3 logn

n , so as to be reasonably
confident that G1 is (at the very least) connected.

2.4 Experiments

We tested our algorithm on both artificial and freely available real-world datasets
against standard bandit baselines.

2.4.1 Datasets

Artificial datasets. We firstly generated synthetic datasets, so as to have a more
controlled experimental setting. We tested the relative performance of the algo-
rithms along different axes: number of underlying clusters, balancedness of cluster
sizes, and amount of payoff noise. We set ct = 10 for all t = 1, . . . , T , with time
horizon T = 5, 000 + 50, 000, d = 25, and n = 500. For each cluster Vj of users,
we created a random unit norm vector uj ∈ Rd. All d-dimensional context vectors
xt,k have then been generated uniformly at random on the surface of the Euclidean
ball. The payoff value associated with cluster vector uj and context vector xt,k has
been generated by perturbing the inner product u>j xt,k through an additive white
noise term ε drawn uniformly at random across the interval [−σ, σ]. It is the value
of σ that determines the amount of payoff noise. The two remaining parameters
are the number of clusters m and the clusters’ relative size. We assigned to cluster
Vj a number of users |Vj | calculated as7 |Vj | = n j−z∑m

`=1 `
−z , j = 1, . . . ,m, with

7 We took the integer part in this formula, and reassigned the remaining fractionary parts of users
to the first cluster.
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z ∈ {0, 1, 2, 3}, so that z = 0 corresponds to equally-sized clusters, and z = 3
yields highly unbalanced cluster sizes. Finally, the sequence of served users it is
generated uniformly at random over the n users.

LastFM & Delicious datasets. These datasets are extracted from the music
streaming service Last.fm and the social bookmarking web service Delicious. The
LastFM dataset contains n = 1,892 nodes, and 17,632 items (artists). This dataset
contains information about the listened artists, and we used this information to cre-
ate payoffs: if a user listened to an artist at least once the payoff is 1, otherwise the
payoff is 0. Delicious is a dataset with n = 1,861 users, and 69,226 items (URLs).
The payoffs were created using the information about the bookmarked URLs for
each user: the payoff is 1 if the user bookmarked the URL, otherwise the payoff is
0.8 These two datasets are inherently different: on Delicious, payoffs depend on
users more strongly than on LastFM, that is, there are more popular artists whom
everybody listens to than popular websites which everybody bookmarks. LastFM
is a “few hits” scenario, while Delicious is a “many niches” scenario, making a big
difference in recommendation practice. Preprocessing was carried out by closely
following previous experimental settings, like the one in [41]. In particular, we
only retained the first 25 principal components of the context vectors resulting
from a tf-idf representation of the available items, so that on both datasets d = 25.
We generated random context sets Cit of size ct = 25 for all t by selecting index
it at random over the n users, then picking 24 vectors at random from the available
items, and one among those with nonzero payoff for user it.9 We repeated this
process T = 5, 000 + 50, 000 times for the two datasets.

Yahoo dataset. We extracted two datasets from the one adopted by the “ICML
2012 Exploration and Exploitation 3 Challenge”10 for news article recommenda-
tion. Each user is represented by a 136-dimensional binary feature vector, and we
took this feature vector as a proxy for the identity of the user. We operated on
the first week of data. After removing “empty” users,11 this gave rise to a dataset
of 8, 362, 905 records, corresponding to n = 713, 862 distinct users. The overall
number of distinct news items turned out to be 323, ct changing from round to
round, with a maximum of 51, and a median of 41. The news items have no fea-
tures, hence they have been represented as d-dimensional versors, with d = 323.
Payoff values at are either 0 or 1 depending on whether the logged web system
which these data refer to has observed a positive (click) or negative (no-click) feed-
back from the user in round t. We then extracted the two datasets “5k users” and
“18k users” by filtering out users that have occurred less than 100 times and less
than 50 times, respectively. Since the system’s recommendation need not coincide
with the recommendation issued by the algorithms we tested, we could only retain

8 Datasets and their full descriptions are available at www.grouplens.org/node/462.
9 This is done so as to avoid a meaningless comparison: With high probability, a purely random

selection would result in payoffs equal to zero for all the context vectors in Cit .
10 https://explochallenge.inria.fr/
11 Out of the 136 Boolean features, the first feature is always 1 throughout all records. We call

“empty” the users whose only nonzero feature is the first feature.
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the records on which the two recommendations were indeed the same. Because
records are discarded on the fly, the actual number of retained records changes
across algorithms, but it is about 50, 000 for the “5k users” version and about
70, 000 for the “18k users” version.

2.4.2 Algorithms

We compared CLUB with two main competitors: LinUCB-ONE and LinUCB-
IND. Both competitors are members of the LinUCB family of algorithms [5, 25,
69, 1, 41]. LinUCB-ONE allocates a single instance of LinUCB across all users
(thereby making the same prediction for all users), whereas LinUCB-IND (“Lin-
UCB INDependent”) allocates an independent instance of LinUCB to each user,
thereby making predictions in a fully personalised fashion. Moreover, on the
synthetic experiments, we added two idealized baselines: a GOBLIN-like algo-
rithm [41] fed with a Laplacian matrix encoding the true underlying graph G,
and a CLAIRVOYANT algorithm that knows the true clusters a priori, and runs
one instance of LinUCB per cluster. Notice that an experimental comparison to
multitask-like algorithms, like GOBLIN, or to the idealized algorithm that knows
all clusters beforehand, can only be done on the artificial datasets, not in the real-
world case where no cluster information is available. On the Yahoo dataset, we
tested the featureless version of the LinUCB-like algorithm in [41], which is essen-
tially a version of the UCB1 algorithm of [6]. The corresponding ONE and IND
versions are denoted by UCB-ONE and UCB-IND, respectively. On this dataset,
we also tried a single instance of UCB-V [4] across all users, the winner of the
abovementioned ICML Challenge. Finally, all algorithms have also been com-
pared to the trivial baseline (denoted by RAN) that picks the item within Cit fully
at random.

As for parameter tuning, CLUB was run with p = 3 logn
n , so as to be reasonably

confident that the initial graph is at least connected. In fact, after each generation
of the graph, we checked for its connectedness, and repeated the process until the
graph happened to be connected.12 All algorithms (but RAN) require parameter
tuning: an exploration-exploitation tradeoff parameter which is common to all al-
gorithms (in Figure 2.1, this is the α parameter), and the edge deletion parameter
α2 in CLUB. On the synthetic datasets, as well as on the LastFM and Delicious
datasets, we tuned these parameters by picking the best setting (as measured by
cumulative regret) after the first t0 = 5, 000 rounds, and then sticked to those val-
ues for the remaining T − t0 = 50, 000 rounds. It is these 50, 000 rounds that
our plots refer to. On the Yahoo dataset, this optimal tuning was done within the
first t0 = 100, 000 records, corresponding to a number of retained records between
4, 350 and 4, 450 across different algorithms.

12 Our results are averaged over 5 random initial graphs, but this randomness turned out to be a
minor source of variance.
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Figure 2.3: Results on synthetic datasets. Each plot displays the behavior of the
ratio of the current cumulative regret of the algorithm (“Alg”) to the current cu-
mulative regret of RAN, where “Alg” is either “CLUB” or “LinUCB-IND” or
“LinUCB-ONE” or “GOBLIN”or “CLAIRVOYANT”. In the top two plots cluster
sizes are balanced (z = 0), while in the bottom two they are unbalanced (z = 2).
2.4.3 Results

Our results are summarized in13 Figures 2.3, 2.4, and 4.5. On the synthetic datasets
(Figure 2.3) and the LastFM and Delicious datasets (Figure 2.4) we measured the
ratio of the cumulative regret of the algorithm to the cumulative regret of the ran-
dom predictor RAN (so that the lower the better). On the synthetic datasets, we did
so under combinations of number of clusters, payoff noise, and cluster size bal-
ancedness. On the Yahoo dataset (Figure 4.5), because the only available payoffs
are those associated with the items recommended in the logs, we instead measured
the Clickthrough Rate (CTR), i.e., the fraction of times we get at = 1 out of the
number of retained records so far (so the higher the better). This experimental
setting is in line with previous ones (e.g., [69]) and, by the way data have been pre-
pared, gives rise to a reliable estimation of actual CTR behavior under the tested
experimental conditions [70].

Based on the experimental results, some trends can be spotted: On the syn-
thetic datasets, CLUB always outperforms its uninformed competitors LinUCB-
IND and LinUCB-ONE, the gap getting larger as we either decrease the number
of underlying clusters or we make the clusters sizes more and more unbalanced.
Moreover, CLUB can clearly interpolate between these two competitors taking, in
a sense, the best of both. On the other hand (and unsurprisingly), the informed
competitors GOBLIN and CLEARVOYANT outperform all uninformed ones. On
the “few hits” scenario of LastFM, CLUB is again outperforming both of its com-
petitors. However, this is not happening in the “many niches” case delivered by

13Further plots can be found in the supplementary material.
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Figure 2.4: Results on the LastFM (left) and the Delicious (right) datasets. The
two plots display the behavior of the ratio of the current cumulative regret of the
algorithm (“Alg”) to the current cumulative regret of RAN, where “Alg” is either
“CLUB” or “LinUCB-IND” or “LinUCB-ONE”.
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Figure 2.5: Plots on the Yahoo datasets reporting Clickthrough Rate (CTR) over
time, i.e., the fraction of times the algorithm gets payoff one out of the number of
retained records so far.

the Delicious dataset, where CLUB is clearly outperformed by LinUCB-IND. The
proposed alternative of CLUB that starts from an empty graph (Remark 2) might
be an effective alternative in this case. On the Yahoo datasets we extracted, CLUB
tends to outperform its competitors, when measured by CTR curves, thereby show-
ing that clustering users solely based on past behavior can be beneficial. In general,
CLUB seems to benefit from situations where it is not immediately clear which
is the winner between the two extreme solutions (Lin)UCB-ONE and (Lin)UCB-
IND, and an adaptive interpolation between these two is needed.
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2.5 Supplementary

This supplementary material contains all proofs and technical details omitted from
the main text, along with ancillary comments, discussion about related work, and
extra experimental results.

2.5.1 Proof of Theorem 1

The following sequence of lemmas are of preliminary importance. The first one
needs extra variance conditions on the process X generating the context vectors.

We find it convenient to introduce the node counterpart to TCBj,t−1(x), and
the cluster counterpart to T̃CBi,t−1. Given round t, node i ∈ V , and cluster index
j ∈ {1, . . . ,mt}, we let

TCBi,t−1(x) =
√
x>M−1

i,t−1x

(
σ

√
2 log

|Mi,t−1|
δ/2

+ 1

)

T̃CBj,t−1 =
σ
√

2d log t+ 2 log(2/δ) + 1√
1 +Aλ(T̄j,t−1, δ/(2m+1d))

,

being
T̄j,t−1 =

∑

i∈V̂j,t

Ti,t−1 = |{s ≤ t− 1 : is ∈ V̂j,t}| ,

i.e., the number of past rounds where a node lying in cluster V̂j,t was served. From
a notational standpoint, notice the difference14 between T̃CBi,t−1 and TCBi,t−1(x),
both referring to a single node i ∈ V , and T̃CBj,t−1 and TCBj,t−1(x) which refer
to an aggregation (cluster) of nodes j among the available ones at time t.

Lemma 3. Let, at each round t, context vectors Cit = {xt,1, . . . ,xt,ct} being
generated i.i.d. (conditioned on it, ct and all past indices i1, . . . , it−1, rewards
a1, . . . , at−1, and sets Ci1 , . . . , Cit−1) from a random process X such that ||X|| =
1, E[XX>] is full rank, with minimal eigenvalue λ > 0. Let also, for any fixed
unit vector z ∈ Rd, the random variable (z>X)2 be (conditionally) sub-Gaussian
with variance parameter15

ν2 = Vt
[
(z>X)2 | ct

]
≤ λ2

8 log(4ct)
∀t .

Then
TCBi,t(x) ≤ T̃CBi,t

14 Also observe that 2nd has been replaced by 2m+1d inside the log’s.
15 Random variable (z>X)2 is conditionally sub-Gaussian with variance parameter σ2 > 0 when

Et
[
exp(γ (z>X)2)| ct

]
≤ exp

(
σ2 γ2/2

)
for all γ ∈ R. The sub-Gaussian assumption can be

removed here at the cost of assuming the conditional variance of (z>X)2 scales with ct like λ2

ct
,

instead of λ2

log(ct)
.
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holds with probability at least 1 − δ/2, uniformly over i ∈ V , t = 0, 1, 2 . . ., and
x ∈ Rd such that ||x|| = 1.

Proof. Fix node i ∈ V and round t. By the very way the algorithm in Figure 1 is
defined, we have

Mi,t = I +
∑

s≤t : is=i

x̄sx̄
>
s = I + Si,t .

First, notice that by standard arguments (e.g., [30]) we have

log |Mi,t| ≤ d log(1 + Ti,t/d) ≤ d log(1 + t) .

Moreover, denoting by λmax(·) and λmin(·) the maximal and the minimal eigen-
value of the matrix at argument we have that, for any fixed unit norm x ∈ Rd,

x>M−1
i,t x ≤ λmax(M−1

i,t ) =
1

1 + λmin(Si,t)
.

Hence, we want to show with probability at least 1− δ/(2n) that

λmin(Si,t) ≥ λTi,t/4− 8 log

(
Ti,t + 3

δ/(2nd)

)

− 2

√
Ti,t log

(
Ti,t + 3

δ/(2nd)

) (2.6)

holds for any fixed node i. To this end, fix a unit norm vector z ∈ Rd, a round
s ≤ t, and consider the variable

Vs = z>
(
x̄sx̄

>
s − Es[x̄sx̄>s | cs]

)
z

= (z>x̄s)
2 − Es[(z>x̄s)2 | cs] .

The sequence V1, V2, . . . , VTi,t is a martingale difference sequence, with optional
skipping, where Ti,t is a stopping time.16 Moreover, the following claim holds.

Claim 1. Under the assumption of this lemma,

Es[(z>x̄s)2 | cs] ≥ λ/4 .

Proof of claim. Let17 in round s the context vectors beCis = {xs,1, . . . ,xs,cs},
and consider the corresponding i.i.d. random variables Zi = (z>xs,i)

2 −
Es[(z>xs,i)2 | cs], i = 1, . . . , cs. Since by assumption these variables are (zero-
mean) sub-Gaussian, we have that (see, e.g., [77][Ch.2])

Ps (Zi < −a | ct) ≤ Ps (|Zi| > a | ct) ≤ 2e−a
2/2ν2

.

16 More precisely, we are implicitly considering the sequence ηi,1V1, ηi,2V2, . . . , ηi,tVt, where
ηi,s = 1 if is = i, and 0 otherwise, with Ti,t =

∑t
s=1 ηi,s.

17 This proof is based on standard arguments, and is reported here for the sake of completeness.
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holds for any i, where Ps(·) is the shorthand for the conditional probability

P
(
·
∣∣ (i1, Ci1 , a1), . . . , (is−1, Cis−1 , as−1), is

)
.

The above implies

Ps
(

min
i=1,...,cs

(z>xs,i)
2 ≥ λ− a

∣∣∣ ct
)

≥
(

1− 2e−a
2/2ν2

)cs
.

Therefore

Es[(z>x̄s)2 | cs] ≥ Es
[

min
i=1,...,cs

(z>xs,i)
2
∣∣∣ cs
]

≥ (λ− a)
(

1− 2e−a
2/2ν2

)cs
.

Since this holds for all a ∈ R, we set a =
√

2ν2 log(4cs) to get(
1− 2e−a

2/2ν2
)cs

= (1 − 1
2cs

)cs ≥ 1/2 (because cs ≥ 1), and λ − a ≥ λ/2

(because of the assumption on ν2). Putting together concludes the proof of the
claim.

We are now in a position to apply a Freedman-like inequality for matrix mar-
tingales due to [83, 101] to the (matrix) martingale difference sequence

E1[x̄1x̄
>
1 | c1]− x̄1x̄

>
1 , E2[x̄2x̄

>
2 | c2]− x̄2x̄

>
2 , . . .

with optional skipping. Setting for brevity Xs = x̄sx̄
>
s , and

Wt =
∑

s≤t : is=i

(
Es[X2

s | cs]− E2
s[Xs | cs]

)
,

Theorem 1.2 in [101] implies

P
(
∃t : λmin (Si,t) ≤ Ti,tλmin(E1[X1 | c1])− a, ||Wt|| ≤ σ2

)

≤ d e−
a2/2

σ2+2a/3 . (2.7)

where ||Wt|| denotes the operator norm of matrix Wt.
We apply Claim 1, so that λmin(E1[X1 | c1]) ≥ λ/4, and proceed as in, e.g.,

[22]. We set for brevity A(x, δ) = 2 log (x+1)(x+3)
δ , and f(A, r) = 2A +

√
Ar.
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We can write

P
(
∃t : λmin(Si,t) ≤ λminTi,t/4− f(A(||Wt||, δ), ||Wt||)

)

≤
∞∑

r=0

P
(
∃t : λmin(Si,t) ≤ λminTi,t/4− f(A(r, δ), r),

b||Wt||c = r
)

≤
∞∑

r=0

P
(
∃t : λmin (Si,t) ≤ λminTi,t/4− f(A(r, δ), r),

||Wt|| ≤ r + 1
)

≤ d
∞∑

r=0

e
− f2(A(r,δ),r)/2
r+1+2f(A(r,δ),r)/3 ,

the last inequality deriving from (2.7). Because f(A, r) satisfies f2(A, r) ≥
Ar + A+ 2

3f(A, r)A, we have that the exponent in the last exponential is at least
A(r, δ)/2, implying

∞∑

r=0

e−A(r,δ)/2 =
∞∑

r=0

δ

(r + 1)(r + 3)
< δ

which, in turn, yields

P
(
∃t : λmin(Si,t) ≤ Ti,tλmin/4

− f(A(||Wt||, δ/d), ||Wt||)
)

≤ δ .
Finally, observe that

||Wt|| ≤
∑

s≤t : is=i

||Es[X2
s | cs]||

=
∑

s≤t : is=i

||Es[Xs | cs]||

≤
∑

s≤t : is=i

Es[||Xs | cs||]

≤ Ti,t .
Therefore we conclude

P
(
∀t : λmin(Si,t) ≥ λminTi,t/4− f(A(Ti,t, δ/d), Ti,t)

)

≥ 1− δ .
Stratifying over i ∈ V , replacing δ by δ/(2n) in the last inequality, and overap-
proximating proves the lemma.
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Lemma 4. Under the same assumptions as in Lemma 3, we have

||ui −wi,t|| ≤ T̃CBi,t

holds with probability at least 1− δ, uniformly over i ∈ V , and t = 0, 1, 2, . . ..

Proof. From [1] it follows that

|u>i x−w>i,tx| ≤ TCBi,t(x)

holds with probability at least 1− δ/2, uniformly over i ∈ V , t = 0, 1, 2, . . .. and
x ∈ Rd. Hence,

||ui −wi,t|| ≤ max
x∈Rd : ||x||=1

|u>i x−w>i,tx|

≤ max
x∈Rd : ||x||=1

TCBi,t(x)

≤ T̃CBi,t ,

the last inequality holding with probability≥ 1−δ/2 by Lemma 3. This concludes
the proof.

Lemma 5. Under the same assumptions as in Lemma 3:

1. If ||ui − uj || ≥ γ and T̃CBi,t + T̃CBj,t < γ/2 then

||wi,t −wj,t|| > T̃CBi,t + T̃CBj,t

holds with probability at least 1 − δ, uniformly over i, j ∈ V and t =
0, 1, 2, . . .;

2. if ||wi,t −wj,t|| > T̃CBi,t + T̃CBj,t then

||ui − uj || ≥ γ

holds with probability at least 1 − δ, uniformly over i, j ∈ V and t =
0, 1, 2, . . ..

Proof. 1. We have

γ ≤ ||ui − uj ||
= ||ui −wi,t +wi,t −wj,t +wj,t − uj ||
≤ ||ui −wi,t||+ ||wi,t −wj,t||+ ||wj,t − uj ||
≤ T̃CBi,t + ||wi,t −wj,t||+ T̃CBj,t

(from Lemma 4)

≤ ||wi,t −wj,t||+ γ/2,

i.e., ||wi,t −wj,t|| ≥ γ/2 > T̃CBi,t + T̃CBj,t .
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2. Similarly, we have

T̃CBi,t + T̃CBj,t < ||wi,t −wj,t||
≤ ||ui −wi,t||+ ||ui − uj ||

+ ||wj,t − uj ||
≤ T̃CBi,t + ||ui − uj ||+ T̃CBj,t ,

implying ||ui − uj || > 0. By the well-separatedness assumption, it must be
the case that ||ui − uj || ≥ γ.

From Lemma 5, it follows that if any two nodes i and j belong to different true
clusters and the upper confidence bounds T̃CBi,t and T̃CBj,t are both small enough,
then it is very likely that edge (i, j) will get deleted by the algorithm (Lemma 5,
Item 1). Conversely, if the algorithm deletes an edge (i, j), then it is very likely that
the two involved nodes i and j belong to different true clusters (Lemma 5, Item 2).
Notice that, we have E ⊆ Et with high probability for all t. Because the clusters
V̂1,t, . . . , V̂mt,t are induced by the connected components of Gt = (V,Et), every
true cluster Vi must be entirely included (with high probability) in some cluster
V̂j,t. Said differently, for all rounds t, the partition of V produced by V1, . . . , Vm
is likely to be a refinement of the one produced by V̂1,t, . . . , V̂mt,t (in passing, this
also shows that, with high probability, mt ≤ m for all t). This is a key property to
all our analysis. See Figure 2 in the main text for reference.

Lemma 6. Under the same assumptions as in Lemma 3, if ĵt is the index of the
current cluster node it belongs to, then we have

TCBĵt,t−1(x) ≤ T̃CBĵt,t−1

holds with probability at least 1− δ/2, uniformly over all rounds t = 1, 2, . . ., and
x ∈ Rd such that ||x|| = 1.

Proof. The proof is the same as the one of Lemma 3, except that at the very end
we need to stratify over all possible shapes for cluster V̂ĵt,t, rather than over the

n nodes. Now, since with high probability (Lemma 5), V̂ĵt,t is the union of true
clusters, the set of all such unions is with the same probability upper bounded by
2m.

The next lemma is a generalization of Theorem 1 in [1], and shows a conver-
gence result for aggregate vector w̄j,t−1.

Lemma 7. Let t be any round, and assume the partition of V produced by true
clusters V1, . . . , Vm is a refinement of the one produced by the current clusters
V̂1,t, . . . , V̂mt,t. Let j = ĵt be the index of the current cluster node it belongs
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to. Let this cluster be the union of true clusters Vj1 , Vj2 , . . . , Vjk , associated with
(distinct) parameter vectors uj1 ,uj2 , . . . ,ujk , respectively. Define

ūt = M̄−1
j,t−1




k∑

`=1


1

k
I +

∑

i∈Vj`

(Mi,t−1 − I)


uj`


 .

Then:

1. Under the same assumptions as in Lemma 3,

||ūt − w̄j,t−1|| ≤
√

3m T̃CBj,t−1

holds with probability at least 1 − δ, uniformly over cluster indices j =
1, . . . ,mt, and rounds t = 1, 2, . . . .

2. For any fixed u ∈ Rd we have

||ūt − u|| ≤ 2

k∑

`=1

||uj` − u|| ≤ 2SD(u) .

Proof. Let X`,t−1 be the matrix whose columns are the d-dimensional vectors x̄s,
for all s < t : is ∈ Vj` , BA`,t−1 be the column vector collecting all payoffs as,
s < t : is ∈ Vj` , and η`,t−1 be the corresponding column vector of noise values.
We have

w̄j,t−1 = M̄−1
j,t−1b̄j,t−1 ,

with

b̄j,t−1 =
k∑

`=1

X`,t−1BA`,t−1

=

k∑

`=1

X`,t−1

(
X>`,t−1uj` + η`,t−1

)

=
k∑

`=1


∑

i∈Vj`

(Mi,t−1 − I)uj` +X`,t−1 η`,t−1


 .

Thus

w̄j,t−1 − ūt = M̄−1
j,t−1

(
k∑

`=1

(
X`,t−1 η`,t−1 −

1

k
uj`

))
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and, for any fixed x ∈ Rd : ||x|| = 1, we have

(
w̄>j,t−1x− ū>t x

)2

=



(

k∑

`=1

(
X`,t−1 η`,t−1 −

1

k
uj`

))>
M̄−1
j,t−1x




2

≤ x>M̄−1
j,t−1x

(
k∑

`=1

(
X`,t−1 η`,t−1 −

1

k
uj`

))>
M̄−1
j,t−1

×
(

k∑

`=1

(
X`,t−1 η`,t−1 −

1

k
uj`

))

≤ 2x>M̄−1
j,t−1x

×
(( k∑

`=1

X`,t−1 η`,t−1

)>
M̄−1
j,t−1

( k∑

`=1

X`,t−1 η`,t−1

)

+
1

k2

( k∑

`=1

uj`

)>
M̄−1
j,t−1

( k∑

`=1

uj`

))

(using (a+ b)2 ≤ 2a2 + 2b2) .

We focus on the two terms inside the big braces. Because V̂j,t is made up of
the union of true clusters, we can stratify over the set of all such unions (which
are at most 2m with high probability), and then apply the martingale result in [1]
(Theorem 1 therein), showing that

(
k∑

`=1

X`,t−1 η`,t−1

)>
M̄−1
j,t−1

(
k∑

`=1

X`,t−1 η`,t−1

)

≤ 2σ2

(
log
|M̄j,t−1|
δ/2m+1

)

holds with probability at least 1− δ/2. As for the second term, we simply write

1

k2

(
k∑

`=1

uj`

)>
M̄−1
j,t−1

(
k∑

`=1

uj`

)
≤ 1

k2

∣∣∣
∣∣∣
k∑

`=1

uj`

∣∣∣
∣∣∣
2
≤ 1 .

Putting together and overapproximating we conclude that

|w̄>j,t−1x− ū>t x| ≤
√

3m TCBj,t−1(x)

and, since this holds for all unit-norm x, Lemma 6 yields

||w̄j,t−1 − ūt|| ≤
√

3m T̃CBj,t−1 ,
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thereby concluding the proof of part 1.
As for part 2, because

M̄j,t−1 = I +

k∑

`=1

∑

i∈Vj`

(Mi,t−1 − I) ,

we can rewrite u as

u = M̄−1
j,t−1


u+

k∑

`=1

∑

i∈Vj`

(Mi,t−1 − I)u


 ,

so that

ūt − u = M̄−1
j,t−1

(
1

k

k∑

`=1

(uj` − u)

+

k∑

`=1

∑

i∈Vj`

(Mi,t−1 − I) (uj` − u)

)
.

Hence

||ūt − u|| ≤
1

k

∣∣∣
∣∣∣M̄−1

j,t−1

k∑

`=1

(uj` − u)
∣∣∣
∣∣∣

+

k∑

`=1

∣∣∣
∣∣∣M̄−1

j,t−1

∑

i∈Vj`

(Mi,t−1 − I) (uj` − u)
∣∣∣
∣∣∣

≤ 1

k

k∑

`=1

||uj` − u)||+
k∑

`=1

||uj` − u||

≤ 2
k∑

`=1

||uj` − u|| ,

as claimed.

The next lemma gives sufficient conditions on Ti,t (or on T̄j,t) to insure that
T̃CBi,t (or T̃CBj,t) is small. We state the lemma for T̃CBi,t, but the very same
statement clearly holds when we replace T̃CBi,t by T̃CBj,t, Ti,t by T̄j,t, and n by
2m.

Lemma 8. The following properties hold for upper confidence bound T̃CBi,t:

1. T̃CBi,t is nonincreasing in Ti,t;
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2. Let A = σ
√

2d log(1 + t) + 2 log(2/δ) + 1. Then

T̃CBi,t ≤
A√

1 + λTi,t/8

when

Ti,t ≥
2 · 322

λ2
log

(
2nd

δ

)
log

(
322

λ2
log

(
2nd

δ

))
;

3. We have
T̃CBi,t ≤ γ/4

when

Ti,t ≥
32

λ
max

{
A2

γ2
,
64

λ
log

(
2nd

δ

)

× log

(
322

λ2
log

(
2nd

δ

))}
.

Proof. The proof follows from simple but annoying calculations, and is therefore
omitted.

We are now ready to combine all previous lemmas into the proof of Theorem
1.

Proof. Let t be a generic round, ĵt be the index of the current cluster node it
belongs to, and jt be the index of the true cluster it belongs to. Also, let us define
the aggregate vector w̄jt,t−1 as follows :

w̄jt,t−1 = M̄−1
jt,t−1b̄jt,t−1,

M̄jt,t−1 = I +
∑

i∈Vjt

(Mi,t−1 − I),

b̄jt,t−1 =
∑

i∈Vjt

bi,t−1 .

Assume Lemma 5 holds, implying that the current cluster V̂ĵt,t is the (disjoint)
union of true clusters, and define the aggregate vector ūt accordingly, as in the
statement of Lemma 7. Notice that w̄jt,t−1 is the true cluster counterpart to
w̄ĵt,t−1, that is, w̄jt,t−1 = w̄ĵt,t−1 if Vjt = V̂ĵt,t. Also, observe that ūt = uit

when Vjt = V̂ĵt,t. Finally, set for brevity

x∗t = argmax
x∈Cit

u>itx
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We can rewrite the time-t regret rt as follows:

rt = u>itx
∗
t − u>it x̄t

= u>itx
∗
t − w̄>jt,t−1x

∗
t + w̄>jt,t−1x

∗
t − w̄>ĵt,t−1

x∗t

+ w̄>
ĵt,t−1

x∗t − w̄>jt,t−1x̄t + w̄>jt,t−1x̄t − u>it x̄t .

Combined with

w̄>
ĵt,t−1

x∗t + TCBĵt,t−1(x∗t ) ≤ w̄>ĵt,t−1
x̄t + TCBĵt,t−1(x̄t),

and rearranging gives

rt ≤ u>itx∗t − w̄>jt,t−1x
∗
t − TCBĵt,t−1(x∗t ) (2.8)

+ w̄>jt,t−1x̄t − u>it x̄t + TCBĵt,t−1(x̄t) (2.9)

+ (w̄jt,t−1 − w̄ĵt,t−1)>(x∗t − x̄t) . (2.10)

We continue by bounding with high probability the three terms (2.8), (2.9), and
(2.10).

As for (2.8), and (2.9), we simply observe that Lemma 4 allows18 us to write

u>itx
∗
t − w̄>jt,t−1x

∗
t ≤ ||uit − w̄jt,t−1|| ≤ T̃CBjt,t−1 ,

and
w̄>jt,t−1x̄t − u>it x̄t ≤ ||uit − w̄jt,t−1|| ≤ T̃CBjt,t−1 .

Moreover,

TCBĵt,t−1(x̄t) ≤ T̃CBĵt,t−1

(by Lemma 6)

≤ T̃CBjt,t−1

(by Lemma 5 and the definition of ĵt).

Hence,
(2.8) + (2.9) ≤ 3T̃CBjt,t−1 (2.11)

holds with probability at least 1− 2δ, uniformly over t.
As for (2.10), letting {·} be the indicator function of the predicate at argument,

18 This lemma applies here since, by definition, w̄jt,t−1 is built only from payoffs from nodes in
Vjt , sharing the common unknown vector uit .
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we can write

(w̄jt,t−1 − w̄ĵt,t−1)>(x∗t − x̄t)
= (w̄jt,t−1 − uit)>(x∗t − x̄t) + (uit − ūt)>(x∗t − x̄t)

+ (ūt − w̄ĵt,t−1)>(x∗t − x̄t)
≤ 2 T̃CBjt,t−1 + 2 ||uit − ūt||+ 2

√
3m T̃CBĵt,t−1

(using Lemma 4, ||x∗t − x̄t|| ≤ 2, and Lemma 7, part 1)

= 2 T̃CBjt,t−1 + 2 {Vjt 6= V̂ĵt,t} ||uit − ūt||
+ 2
√

3m T̃CBĵt,t−1

≤ 2(1 +
√

3m) T̃CBjt,t−1 + 4 {Vjt 6= V̂ĵt,t}SD(uit)

(by Lemma 5, and Lemma 7, part 2) .

Piecing together we have so far obtained

rt ≤ (5 + 2
√

3m) T̃CBjt,t−1

+ 4 {Vjt 6= V̂ĵt,t}SD(uit) . (2.12)

We continue by bounding {Vjt 6= V̂ĵt,t}. From Lemma 5, we clearly have

{Vjt 6= V̂ĵt,t}
≤ {∃i ∈ Vjt ,∃j /∈ Vjt : (i, j) ∈ Et}
≤
{
∃i ∈ Vjt ,∃j /∈ Vjt : ∀s < t

(
(is 6= i)

∨ (is = i, ||wi,s−1 +wj,s−1|| ≤ T̃CBi,s−1 + T̃CBj,s−1)
)}

≤ {∃i ∈ Vjt : ∀s < t is 6= i}
+
{
∃i ∈ Vjt ,∃j /∈ Vjt :

∀s < t ||wi,s−1 +wj,s−1|| ≤ T̃CBi,s−1 + T̃CBj,s−1

}

≤ {∃i ∈ Vjt : ∀s < t is 6= i}
+ {∃i ∈ Vjt ,∃j /∈ Vjt :

∀s < t T̃CBi,s−1 + T̃CBj,s−1 ≥ γ/2}
≤ {∃i ∈ Vjt : ∀s < t is 6= i}

+ {∃i ∈ V : ∀s < t T̃CBi,s−1 ≥ γ/4} .

At this point, we apply Lemma 8 to T̃CBi,t with

A2 =
(
σ
√

2d log(1 + T ) + 2 log(2/δ) + 1
)2

≤ 4σ2(d log(1 + T ) + log(2/δ)) + 2,
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and set for brevity

B =
32

λ
max

{
A2

γ2
,
64

λ
log

(
2nd

δ

)

× log

(
322

λ2
log

(
2nd

δ

))}
,

C =
2 · 322

λ2
log

(
2m+1d

δ

)
log

(
322

λ2
log

(
2m+1d

δ

))
.

We can write

{∃i ∈ V : ∀s < t T̃CBi,s−1 ≥ γ/4}
≤ {∃i ∈ V : T̃CBi,t−2 ≥ γ/4}
≤ {∃i ∈ V : Ti,t−2 ≤ B} .

Moreover,

{∃i ∈ Vjt : ∀s < t is 6= i}
≤ {∃i ∈ Vjt \ {it} : Ti,t−1 = 0}
≤ {∃i ∈ V : Ti,t−1 = 0} .

That is,

{Vjt 6= V̂ĵt,t} ≤ {∃i ∈ V : Ti,t−2 ≤ B}
+ {∃i ∈ V : Ti,t−1 = 0} .

Further, using again Lemma 8 (applied this time to T̃CBj,t) combined with the fact
that T̃CBj,t ≤ A for all j and t, we have

T̃CBjt,t−1 = A {T̄jt,t−1 < C}+
A√

1 + λ T̄jt,t−1/8
,

where
T̄jt,t−1 =

∑

i∈Vjt

Ti,t−1 = |{s ≤ t− 1 : is ∈ Vjt}| .

Putting together as in (2.12), and summing over t = 1, . . . , T , we have shown so
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far that with probability at least 1− 7δ/2,

T∑

t=1

rt ≤ (5 + 2
√

3m)A

T∑

t=1

{T̄jt,t−1 < C}

+ (5 + 2
√

3m)A

T∑

t=1

1√
1 + λ T̄jt,t−1/8

+ 4
T∑

t=1

SD(uit) {∃i ∈ V : Ti,t−2 ≤ B}

+ 4
T∑

t=1

SD(uit) {∃i ∈ V : Ti,t−1 = 0} ,

with Ti,t = 0 if t ≤ 0.
We continue by upper bounding with high probability the four terms in the

right-hand side of the last inequality. First, observe that for any fixed i and t,
Ti,t is a binomial random variable with parameters t and 1/n, and T̄jt,t−1 =∑

i∈Vjt
Ti,t−1 which, for fixed it, is again binomial with parameters t, and vjt

n ,
where vjt is the size of the true cluster it falls into. Moreover, for any fixed t, the
variables Ti,t, i ∈ V are indepedent.

To bound the third term, we use a standard Bernstein inequality twice: first,
we apply it to sequences of independent Bernoulli variables, whose sum Ti,t−2 has
average E[Ti,t−2] = t−2

n (for t ≥ 3), and then to the sequence of variables SD(uit)
whose average E[SD(uit)] = 1

n

∑
i∈V SD(ui) is over the random choice of it.

Setting for brevity

D(B) = 2n

(
B +

5

3
log(Tn/δ)

)
+ 2,

where B has been defined before, we can write

T∑

t=1

SD(uit) {∃i ∈ V : Ti,t−2 ≤ B}

=
∑

t≤D(B)

SD(uit) {∃i ∈ V : Ti,t−2 ≤ B}

+
∑

t>D(B)

SD(uit) {∃i ∈ V : Ti,t−2 ≤ B}

≤
∑

t≤D(B)

SD(uit)

+m
∑

t>D(B)

{∃i ∈ V : Ti,t−2 ≤ B} .
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Then from Bernstein’s inequality,

P (∃i ∈ V ∃t > D(B) : Ti,t−2 ≤ B) ≤ δ ,

and

P

( ∑

t≤D(B)

SD(uit) ≥
3

2
D(B)E[SD(uit)]

+
5

3
m log(1/δ)

)
≤ δ .

Thus with probability ≥ 1− 2δ

T∑

t=1

SD(uit) {∃i ∈ V : Ti,t−2 ≤ B}

≤ 3

2
D(B)E[SD(uit)] +

5

3
m log(1/δ) .

Similarly, to bound the fourth term we have, with probability ≥ 1− 2δ,

T∑

t=1

SD(uit) {∃i ∈ V : Ti,t−1 = 0}

≤ 3

2
D(0)E[SD(uit)] +

5

3
m log(1/δ) .

Next, we crudely upper bound the first term as

(5+2
√

3m)A
T∑

t=1

{T̄jt,t−1 < C}

≤ (5 + 2
√

3m)A
T∑

t=1

{Tit,t−1 < C} ,

and then apply a very similar argument as before to show that with probability
≥ 1− δ,

T∑

t=1

{Tit,t−1 < C} ≤ n
(
C +

5

3
log

(
T

δ

))
+ 1 .

Finally, we are left to bound the second term. The following is a simple prop-
erty of binomial random variables we be useful.

Claim 2. Let X be a binomial random variable with parameters n and p, and
λ ∈ (0, 1) be a constant. Then

E
[

1√
1 + λX

]
≤
{

3√
1+λn p

if np ≥ 10 ;

1 if np < 10 .
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Proof of claim. The second branch of the inequality is clearly trivial, so we
focus on the first one under the assumption np ≥ 10. Let then β ∈ (0, 1) be a
parameter that will be set later on. We have

E
[

1√
1 + λX

]
≤ P(X ≤ (1− β)n p)

+
1√

1 + λ (1− β)n p
P(X ≥ (1− β)n p)

≤ e−β2 n p/2 +
1√

1 + λ (1− β)n p
,

the last inequality following from the standard Chernoff bounds. Setting β =√
log(1+λn p)

n p gives

E
[

1√
1 + λX

]
≤ 1√

1 + λn p

+
1√

1 + λ (np−
√
np log(1 + λnp))

≤ 1√
1 + λn p

+
1√

1 + λn p/2

(using np ≥ 10)

≤ 3√
1 + λn p

,

i.e., the claimed inequality

Now,

Et−1


 1√

1 + λ T̄jt,t−1/8


 =

m∑

j=1

vj
n

1√
1 + λ T̄j,t−1/8

,

being T̄j,t−1 = |{s < t : is ∈ Vj}| a binomial variable with parameters t− 1 and
vj
n , where vj = |Vj |. By the standard Hoeffding-Azuma inequality

T∑

t=1

1√
1 + λ T̄jt,t−1/8

≤
T∑

t=1

m∑

j=1

vj
n

1√
1 + λ T̄j,t−1/8

+
√

2T log(1/δ)

holds with probability at least 1− δ, In turn, from Bernstein’s inequality, we have

P
(
∃t∃j : T̄j,t−1 ≤

t− 1

2n
vj −

5

3
log(Tm/δ)

)
≤ δ .
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Therefore, with probability at least 1− 2δ,
T∑

t=1

1√
1 + λ T̄jt,t−1/8

≤
T∑

t=1

m∑

j=1

vj
n

1√
1 + λ

8

(
t−1
2n vj − 5

3 log(Tm/δ)
)

+

+
√

2T log(1/δ)

≤
m∑

j=1

vj
n


4n

5

3
log(Tm/δ) + 1 +

T∑

t=1

1√
1 + λ

8
t−1
4n vj




+
√

2T log(1/δ)

= 4n
5

3
log(Tm/δ) + 1 +

m∑

j=1

vj
n

T∑

t=1

1√
1 + λ

8
t−1
4n vj

+
√

2T log(1/δ) .

If we set for brevity rj = λ
8
vj
4n , j = 1, . . . ,m, we have

T∑

t=1

1√
1 + λ

8
t−1
4n vj

≤
∫ T

0

dx√
1 + (x− 1)rj

=
2

rj

(√
1 + T rj − rj −

√
1− rj

)

≤ 2

√
T

rj
,

so that
T∑

t=1

1√
1 + λ T̄jt,t−1/8

≤ 4n
5

3
log(Tm/δ) + 1

+
√

2T log(1/δ) + 8

m∑

j=1

√
2Tvj
λn

.

Finally, we put all pieces together. In order for all claims to hold simultane-
ously with probability at least 1 − δ, we need to replace δ throughout by δ/10.5.
Then we switch to a Õ-notation, and overapproximate once more to conclude the
proof.

2.5.2 Implementation

As we said in the main text, in implementing the algorithm in Figure 1, the reader
should keep in mind that it is reasonable to expect n (the number of users) to be
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quite large, d (the number of features of each item) to be relatively small, and
m (the number of true clusters) to be very small compared to n. Then the al-
gorithm can be implemented by storing a least-squares estimator wi,t−1 at each
node i ∈ V , an aggregate least squares estimator w̄ĵt,t−1 for each current clus-

ter ĵt ∈ {1, . . . ,mt}, and an extra data-structure which is able to perform decre-
mental dynamic connectivity. Fast implementations of such data-structures are
those studied by [100, 55] (see also the research thread referenced therein). In
particular, in [100] (Theorem 1.1 therein) it is shown that a randomized con-
struction exists that maintains a spanning forerst which, given an initial undi-
rected graph G1 = (V,E1), is able to perform edge deletions and answer con-
nectivity queries of the form “Is node i connected to node j” in expected to-
tal time O

(
min{|V |2, |E1| log |V |}+

√
|V | |E1| log2.5 |V |

)
for |E1| deletions.

Connectivity queries and deletions can be interleaved, the former being performed
in constant time. Notice that when we start off from the full graph, we have
|E1| = O(|V |2), so that the expected amortized time per query becomes constant.
On the other hand, if our initial graph has |E1| = O(|V | log |V |) edges, then the
expected amortized time per query is O(log2 |V |). This becomes O(log2.5 |V |) if
the initial graph has |E1| = O(|V |). In addition, we maintain an n-dimensional
vector CLUSTERINDICES containing, for each node i ∈ V , the index j of the
current cluster i belongs to.

With these data-structures handy, we can implement our algorithm as follows.
After receiving it, computing jt is O(1) (just by accessing CLUSTERINDICES).
Then, computing kt can be done in time O(d2) (matrix-vector multiplication, ex-
ecuted ct times, assuming ct is a constant). Then the algorithm directly updates
bit,t−1 and b̄ĵt,t−1, as well as the inverses of matrices Mit,t−1 and M̄ĵt,t−1, which
is again O(d2), using standard formulas for rank-one adjustment of inverse ma-
trices. In order to prepare the ground for the subsequent edge deletion phase, it
is convenient that the algorithm also stores at each node i matrix Mi,t−1 (whose
time-t update is again O(d2)).

Let DELETE(i, `) and IS-CONNECTED(i, `) be the two operations delivered by
the decremental dynamic connectivity data-structure. Edge deletion at time t cor-
responds to cycling through all nodes ` such that (it, `) is an existing edge. The
number of such edges is on average equal to the average degree of node it, which is
O
(
|E1|
n

)
, where |E1| is the number of edges in the initial graph G1. Now, if (it, `)

has to be deleted (each the deletion test beingO(d)), then we invoke DELETE(it, `),
and then IS-CONNECTED(it, `). If IS-CONNECTED(it, `) = “no”, this means that
the current cluster V̂jt,t−1 has to split into two new clusters as a consequence of the
deletion of edge (it, `). The set of nodes contained in these two clusters correspond
to the two sets

{k ∈ V : IS-CONNECTED(it, k) = “yes”},
{k ∈ V : IS-CONNECTED(`, k) = “yes”}‘,
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whose expected amortized computation per node is O(1) to O(log2.5 n) (depend-
ing on the density of the initial graph G1). We modify the CLUSTERINDICES

vector accordingly, but also the aggregate least squares estimators. This is because
w̄ĵt,t−1 (represented through M̄−1

ĵt,t
and b̄ĵt,t) has to be spread over the two new-

born clusters. This operation can be performed by adding up all matrices Mi,t and
all bi,t, over all i belonging to each of the two new clusters (it is at this point that
we need to access Mi,t for each i), and then inverting the resulting aggregate ma-
trices. This operation takes O(nd2 + d3). However, as argued in the comments
following Lemma 5, with high probability the number of current clusters mt can
never exceed m, so that with the same probability this operation is only performed
at most m times throughout the learning process. Hence in T rounds we have an
overall (expected) running time

O

(
T

(
d2 +

|E1|
n

d

)
+m (nd2 + d3) + |E1|

+ min{n2, |E1| log n}+
√
n |E1| log2.5 n

)
.

Notice that the above is n · poly(log n), if so is |E1|. In addition, if T is large
compared to n and d, the average running time per round becomes O(d2 + d ·
poly(log n)).

As for memory requirements, we need to store two d × d matrices and one
d-dimensional vector at each node, one d× d matrix and one d-dimensional vector
for each current cluster, vector CLUSTERINDICES, and the data-structures allow-
ing for fast deletion and connectivity tests. Overall, these data-structures do not
require more than O(|E1|) memory to be stored, so that this implementation takes
O(nd2 +md2 + |E1|) = O(nd2 + |E1|), where we again relied upon themt ≤ m
condition. Again, this is n · poly(log n) if so is |E1|.

2.5.3 More Plots

This section contains a more thorough set of comparative plots on the synthetic
datasets described in the main text. See Figure 2.6 and Figure 2.7.

2.5.4 Reference Bounds

We now provide a proof sketch of the reference bounds mentioned in Section 2 of
the main text.

Let us start off from the single user bound for LINUCB (either ONE or IND)
one can extract from [1]. Let uj ∈ Rd be the profile vector of this user. Then, with
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Figure 2.6: Results on synthetic datasets. Each plot displays the behavior of the
ratio of the current cumulative regret of the algorithm (“Alg”) to the current cu-
mulative regret of RAN, where where “Alg” is either “CLUB” or “LinUCB-IND”
or “LinUCB-ONE” or “GOBLIN”or “CLAIRVOYANT”. The cluster sizes are bal-
anced (z = 0). From left to right, payoff noise steps from 0.1 to 0.3, and from top
to bottom the number of clusters jumps from 2 to 10.
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Figure 2.7: Results on synthetic datasets in the case of unbalanced (z = 2) cluster
sizes. The rest is the same as in Figure 2.6.

probability at least 1− δ, we have
T∑

t=1

rt = O

(√
T

(
σ2 d log T + σ2 log

1

δ
+ ||ui||2

)
d log T

)

= Õ

(√
T (σ2 d+ ||uj ||2) d

)

= Õ
(

(σ d+
√
d)
√
T
)
,
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the last line following from assuming ||uj || = 1.
Then, a straightforward way of turning this bound into a bound for the CLEAR-

VOYANT algorithm that knows all clusters V1, . . . , Vm ahead of time and runs one
instance of LINUCB per cluster is to sum the regret contributed by each cluster
throughout the T rounds. Letting Tj,T denote the set of rounds t such that it ∈ Vj ,
we can write

T∑

t=1

rt = Õ


(σ d+

√
d)

m∑

j=1

√
Tj,T


 .

However, because it is drawn uniformly at random over V , we also have E[Tj,T ] =

T
|Vj |
n , so that we essentially have with high probability

T∑

t=1

rt = Õ


(σ d+

√
d)
√
T


1 +

m∑

j=1

√
|Vj |
n




 ,

i.e., Eq. (1) in the main text.

2.5.5 Further Thoughts

As we said in Remark 3, a data-dependent variant of the CLUB algorithm can be
designed and analyzed which relies on data-dependent clusterability assumptions
of the set of users with respect to a set of context vectors. These data-dependent
assumptions allow us to work in a fixed design setting for the sequence of con-
text vectors xt,k, and remove the sub-Gaussian and full-rank hypotheses regard-
ing E[XX>]. To make this more precise, consider an adversary that generates
(unit norm) context vectors in a (possibly adaptive) way that for all x so gener-
ated |u>j x − u>j′x| ≥ γ , whenever j 6= j′. In words, the adversary’s power is
restricted in that it cannot generate two distict context vectors x and x′ such that
|u>j x−u>j′x| is small and |u>j x′−u>j′x′| is large. The two quantities must either
be both zero (when j = j′) or both bounded away from 0 (when j 6= j′). Under
this assumption, one can show that a modification to the TCBi,t(x) and TCBj,t(x)
functions exists that makes the CLUB algorithm in Figure 1 achieve a cumulative

regret bound similar to the one in (5), where the
√

1
λ factor therein is turned back

into
√
d, as in the reference bound (1), but with a worse dependence on the geom-

etry of the set of uj , as compared to E[SD(uit)]. The analysis goes along the very
same lines as the one of Theorem 1.

2.5.6 Related Work

The most closely related papers are [34, 7, 14, 76].
In [7], the authors define a transfer learning problem within a stochastic multi-

armed bandit setting, where a prior distribution is defined over the set of possible
models over the tasks. More similar in spirit to our paper is the recent work [14]
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that relies on clustering Markov Decision Processes based on their model param-
eter similarity. A paper sharing significant similarities with ours, in terms of both
setting and technical tools is the very recent paper [76] that came to our atten-
tion at the time of writing ours. In that paper, the authors analyze a noncontextual
stochastic bandit problem where model parameters can indeed be clustered in a
few (unknown) types, thereby requiring the algorithm to learn the clusters rather
than learning the parameters in isolation. Yet, the provided algorithmic solutions
are completely different from ours. Finally, in [34], the authors work under the as-
sumption that users are defined using a context vector, and try to learn a low-rank
subspace under the assumption that variation across users is low-rank. The paper
combines low-rank matrix recovery with high-dimensional Gaussian Process Ban-
dits, but it gives rise to algorithms which do not seem easy to use in large scale
practical scenarios.

2.5.7 Discussion

This work could be extended along several directions. First, we may rely on a softer
notion of clustering than the one we adopted here: a cluster is made up of nodes
where the “within distance” between associated profile vectors is smaller than their
“between distance”. Yet, this is likely to require prior knowledge of either the dis-
tance threshold or the number of underlying clusters, which are assumed to be
unknown in this paper. Second, it might be possible to handle partially overlap-
ping clusters. Third, CLUB can clearly be modified so as to cluster nodes through
off-the-shelf graph clustering techniques (mincut, spectral clustering, etc.). Clus-
tering via connected components has the twofold advantage of being computation-
ally faster and relatively easy to analyze. In fact, we do not know how to analyze
CLUB when combined with alternative clustering techniques, and we suspect that
Theorem 1 already delivers the sharpest results (as T → ∞) when clustering is
indeed based on connected components only. Fourth, from a practical standpoint,
it would be important to incorporate further side information, like must-link and
cannot-link constraints. Fifth, in recommender systems practice, it is often relevant
to provide recommendations to new users, even in the absence of past information
(the so-called “cold start” problem). In fact, there is a way of tackling this problem
through the machinery we developed here (the idea is to duplicate the newcomer’s
node as many times as the current clusters are, and then treat each copy as a sep-
arate user). This would potentially allow CLUB to work even in the presence of
(almost) idle users. We haven’t so far collected any experimental evidence on the
effectiveness of this strategy. Sixth, following the comments we made in Remark
3, we are trying to see if the i.i.d. and other statistical assumptions we made in
Theorem 1 could be removed.



Chapter 3

Decentralized Clustering Bandits

3.1 Introduction

Bandits are a class of classic optimisation problems that are fundamental to sev-
eral important application areas. The most prominent of these is recommendation
systems, and they can also arise more generally in networks (see, e.g., [74, 45]).

We consider settings where a network of agents are trying to solve collabora-
tive linear bandit problems. Sharing experience can improve the performance of
both the whole network and each agent simultaneously, while also increasing ro-
bustness. However, we want to avoid putting too much strain on communication
channels. Communicating every piece of information would just overload these
channels. The solution we propose is a gossip-based information sharing protocol
which allows information to diffuse across the network at a small cost, while also
providing robustness.

Such a set-up would benefit, for example, a small start-up that provides some
recommendation system service but has limited resources. Using an architecture
that enables the agents (the client’s devices) to exchange data between each other
directly and to do all the corresponding computations themselves could signifi-
cantly decrease the infrastructural costs for the company. At the same time, with-
out a central server, communicating all information instantly between agents would
demand a lot of bandwidth.

Multi-Agent Linear Bandits In the simplest setting we consider, all the agents
are trying to solve the same underlying linear bandit problem. In particular, we
have a set of nodes V , indexed by i, and representing a finite set of agents. At each
time, t:

• a set of actions (equivalently, the contexts) arrives for each agent i, Dit ⊂ D
and we assume the set D is a subset of the unit ball in Rd;
• each agent, i, chooses an action (context) xit ∈ Dit, and receives a reward

rit = (xit)
Tθ + ξit,

52
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where θ is some unknown coefficient vector, and ξit is some zero mean, R-
subGaussian noise;
• last, the agents can share information according to some protocol across a

communication channel.

We define the instantaneous regret at each node i, and, respectively, the cumulative
regret over the whole network to be:

ρit :=
(
xi,∗t

)T

θ − Erit, and Rt :=
t∑

k=1

|V |∑

i=1

ρit,

where xi,∗t := argmaxx∈Dit x
Tθ. The aim of the agents is to minimise the rate of

increase of cumulative regret. We also wish them to use a sharing protocol that
does not impose much strain on the information-sharing communication channel.

Gossip protocol In a gossip protocol (see, e.g., [61, 104, 49, 50]), in each
round, an overlay protocol assigns to every agent another agent, with which it
can share information. After sharing, the agents aggregate the information and,
based on that, they make their corresponding decisions in the next round. In many
areas of distributed learning and computation gossip protocols have offered a good
compromise between low-communication costs and algorithm performance. Using
such a protocol in the multi-agent bandit setting, one faces two major challenges.

First, information sharing is not perfect, since each agent acquires information
from only one other (randomly chosen) agent per round. This introduces a bias
through the unavoidable doubling of data points. The solution is to mitigate this by
using a delay (typically of O(log t)) on the time at which information gathered is
used. After this delay, the information is sufficiently mixed among the agents, and
the bias vanishes.

Second, in order to realize this delay, it is necessary to store information in a
buffer and only use it to make decisions after the delay has been passed. In [96] this
was achieved by introducing an epoch structure into their algorithm, and emptying
the buffers at the end of each epoch.

The Distributed Confidence Ball Algorithm (DCB) We use a gossip-based
information sharing protocol to produce a distributed variant of the generic Con-
fidence Ball (CB) algorithm, [1, 29, 69]. Our approach is similar to [96] where
the authors produced a distributed ε-greedy algorithm for the simpler multi-armed
bandit problem. However their results do not generalise easily, and thus significant
new analysis is needed. One reason is that the linear setting introduces serious com-
plications in the analysis of the delay effect mentioned in the previous paragraphs.
Additionally, their algorithm is epoch-based, whereas we are using a more natural
and simpler algorithmic structure. The downside is that the size of the buffers of
our algorithm grow with time. However, our analyses easily transfer to the epoch
approach too. As the rate of growth is logarithmic, our algorithm is still efficient
over a very long time-scale.

The simplifying assumption so far is that all agents are solving the same un-
derlying bandit problem, i.e. finding the same unknown θ-vector. This, however,
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is often unrealistic, and so we relax it in our next setup. While it may have uses in
special cases, DCB and its analysis can be considered as a base for providing an
algorithm in this more realistic setup, where some variation in θ is allowed across
the network.

Clustered Linear Bandits Proposed in [41, 71, 75], this has recently proved to
be a very successful model for recommendation problems with massive numbers of
users. It comprises a multi-agent linear bandit model agents’ θ-vectors are allowed
to vary across a clustering. This clustering presents an additional challenge to find
the groups of agents sharing the same underlying bandit problem before informa-
tion sharing can accelerate the learning process. Formally, let {Uk}k=1,...,M be a
clustering of V , assume some coefficient vector θk for each k, and let for agent
i ∈ Uk the reward of action xit be given by

rit = (xit)
Tθk + ξit.

Both clusters and coefficient vectors are assumed to be initially unknown, and so
need to be learnt on the fly.

The Distributed Clustering Confidence Ball Algorithm (DCCB) The paper
[41] proposes the initial centralised approach to the problem of clustering linear
bandits. Their approach is to begin with a single cluster, and then incrementally
prune edges when the available information suggests that two agents belong to
different clusters. We show how to use a gossip-based protocol to give a distributed
variant of this algorithm, which we call DCCB.

Our main contributions In Theorems 9 and 14 we show our algorithms DCB
and DCCB achieve, in the multi-agent and clustered setting, respectively, near-
optimal improvements in the regret rates. In particular, they are of order almost√
|V | better than applying CB without information sharing, while still keeping

communication cost low. And our findings are demonstrated by experiments on
real-world benchmark data.

3.2 Linear Bandits and the DCB Algorithm
The generic Confidence Ball (CB) algorithm is designed for a single agent lin-
ear bandit problem (i.e. |V | = 1). The algorithm maintains a confidence ball
Ct ⊂ Rd within which it believes the true parameter θ lies with high probability.
This confidence ball is computed from the observation pairs, (xk, rk)k=1,...,t (for
the sake of simplicity, we dropped the agent index, i). Typically, the covariance
matrix At =

∑t
k=1 xkx

T
k and b-vector, bt =

∑t
k=1 rkxk, are sufficient statistics

to characterise this confidence ball. Then, given its current action set, Dt, the
agent selects the optimistic action, assuming that the true parameter sits in Ct, i.e.
(xt,∼) = argmax(x,θ′)∈Dt×Ct{xTθ′}. Pseudo-code for CB is given in the Ap-
pendix 3.5.1.

Gossip Sharing Protocol for DCB We assume that the agents are sharing
across a peer to peer network, i.e. every agent can share information with every
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other agent, but that every agent can communicate with only one other agent per
round. In our algorithms, each agent, i, needs to maintain

(1) a buffer (an ordered set) Ait of covariance matrices and an active covariance
matrix Ãit,

(2) a buffer Bit of b-vectors and an active b-vector b̃it,

Initially, we set, for all i ∈ V , Ãi0 = I , b̃i0 = 0. These active objects are used
by the algorithm as sufficient statistics from which to calculate confidence balls,
and summarise only information gathered before or during time τ(t), where τ is
an arbitrary monotonically increasing function satisfying τ(t) < t. The buffers are
initially set to Ai0 = ∅, and Bi0 = ∅. For each t > 1, each agent, i, shares and
updates its buffers as follows:

(1) a random permutation, σ, of the numbers 1, . . . , |V | is chosen uniformly at
random in a decentralised manner among the agents,1

(2) the buffers of i are then updated by averaging its buffers with those of σ(i),
and then extending them using their current observations2

Ait+1 =
((

1
2(Ait +Aσ(i)

t )
)
◦
(
xit+1

(
xit+1

)T))
,

Bit+1 =
((

1
2(Bit + Bσ(i)

t )
)
◦
(
rit+1x

i
t+1

))
,

Ãit+1 = Ãit + Ã
σ(i)
t , and b̃it+1 = b̃it + b̃

σ(i)
t .

(3) if the length |Ait+1| exceeds t−τ(t), the first element ofAit+1 is added to Ãit+1

and deleted from Ait+1. Bit+1 and b̃it+1 are treated similarly.

In this way, each buffer remains of size at most t − τ(t), and contains only infor-
mation gathered after time τ(t). The result is that, after t rounds of sharing, the
current covariance matrices and b-vectors used by the algorithm to make decisions
have the form:

Ãit := I +

τ(t)∑

t′=1

|V |∑

i′=1

wi
′,t′

i,t x
i′
t′x

i′
t′

T
,

and b̃it :=

τ(t)∑

t′=1

|V |∑

i′=1

wi
′,t′

i,t r
i′
t′x

i′
t′ .

where the weights wi
′,t′

i,t are random variables which are unknown to the algorithm.
Importantly for our analysis, as a result of the overlay protocol’s uniformly random
choice of σ, they are identically distributed (i.d.) for each fixed pair (t, t′), and∑

i′∈V w
i′,t′

i,t = |V |. If information sharing was perfect at each time step, then the

1This can be achieved in a variety of ways.
2The ◦ symbol denotes the concatenation operation on two ordered sets: if x = (a, b, c) and

y = (d, e, f), then x ◦ y = (a, b, c, d, e, f), and y ◦ x = (d, e, f, a, b, c).
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current covariance matrix could be computed using all the information gathered by
all the agents, and would be:

At := I +

|V |∑

i′=1

t∑

t′=1

xi
′
t′

(
xi
′
t′

)T

. (3.1)

DCB algorithm The OFUL algorithm [1] is an improvement of the confi-
dence ball algorithm from [29], which assumes that the confidence balls Ct can
be characterised by At and bt. In the DCB algorithm, each agent i ∈ V main-
tains a confidence ball Cit for the unknown parameter θ as in the OFUL algo-
rithm, but calculated from Ãit and b̃it. It then chooses its action, xit, to satisfy
(xit, θ

i
t) = argmax(x,θ)∈Dit×Cit x

Tθ, and receives a reward rit. Finally, it shares its
information buffer according to the sharing protocol above. Pseudo-code for DCB
is given in Appendix 3.5.1, and in Algorithm 1.

3.2.1 Results for DCB

Theorem 9. Let τ(·) : t → 4 log(|V | 32 t). Then, with probability 1 − δ, the regret
of DCB is bounded by

Rt ≤ (N(δ)|V |+ ν(|V |, d, t)) ‖θ‖2

+ 4e2 (β(t) + 4R)

√
|V |t ln

(
(1 + |V |t/d)d

)
,

where ν(|V |, d, t) := (d + 1)d2(4|V | ln(|V | 32 t))3, N(δ) :=
√

3/((1 − 2−
1
4 )
√
δ),

and

β(t) := R

√√√√ln

(
(1 + |V |t/d)d

δ

)
+ ‖θ‖2. (3.2)

The term ν(t, |V |, d) describes the loss compared to the centralised algorithm
due to the delay in using information, while N(δ)|V | describes the loss due to the
incomplete mixing of the data across the network.

If the agents implement CB independently and do not share any information,
which we call CB-NoSharing, then it follows from the results in [1], the equivalent
regret bound would be

Rt ≤|V |β(t)
√
t ln ((1 + t/d)d) (3.3)

Comparing Theorem 9 with (3.3) tells us that, after an initial “burn in” period, the
gain in regret performance of DCB over CB-NoSharing is of order almost

√
|V |.
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Corollary 10. We can recover a bound in expectation from Theorem 9, by using
the value δ = 1/

√
|V |t:

E[Rt] ≤ O(t
1
4 ) +

√
|V |t‖θ‖2

+ 4e2

(
R

√
ln
(

(1 + |V |t/d)d
√
|V |t

)
+ ‖θ‖2 + 4R

)

×
√
|V |t ln ((1 + |V |t/d)d).

This shows that DCB exhibits asymptotically optimal regret performance, up
to log factors, in comparison with any algorithm that can share its information
perfectly between agents at each round.

Communication Complexity

If the agents communicate their information to each other at each round without a
central server, then every agent would need to communicate their chosen action and
reward to every other agent at each round, giving a communication cost of order
d|V |2 per-round. We call such an algorithm CB-InstSharing. Under the gossip
protocol we propose each agent requires at most O(log2(|V |t)d2|V |) bits to be
communicated per round. Therefore, a significant communication cost reduction
is gained when log(|V |t)d� |V |.

Using an epoch-based approach, as in [96], the per-round communication cost
of the gossip protocol becomes O(d2|V |). This improves efficiency over any hori-
zon, requiring only that d � |V |, and the proofs of the regret performance are
simple modifications of those for DCB. However, in comparison with growing
buffers this is only an issue after O(exp(|V |)) number of rounds, and typically |V |
is large.

While the DCB has a clear communication advantage over CB-InstSharing,
there are other potential approaches to this problem. For example, instead of ran-
domised neighbour sharing one can use a deterministic protocol such as Round-
Robin (RR), which can have the same low communication costs as DCB. However,
the regret bound for RR suffers from a naturally larger delay in the network than
DCB. Moreover, attempting to track potential doubling of data points when using a
gossip protocol, instead of employing a delay, leads back to a communication cost
of order |V |2 per round. More detail is included in Appendix 3.5.2.

Proof of Theorem 9

In the analysis we show that the bias introduced by imperfect information sharing
is mitigated by delaying the inclusion of the data in the estimation of the parameter
θ. The proof builds on the analysis in [1]. The emphasis here is to show how
to handle the extra difficulty stemming from imperfect information sharing, which
results in the influence of the various rewards at the various peers being unbalanced
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and appearing with a random delay. Proofs of the Lemmas 11 and 12, and of
Proposition 1 are crucial, but technical, and are deferred to Appendix 3.5.3.

Step 1: Define modified confidence ellipsoids. First we need a version of the
confidence ellipsoid theorem given in [1] that incorporates the bias introduced by
the random weights:

Proposition 1. Let δ > 0, θ̃it := (Ãit)
−1b̃it, W (τ) := max{wi′,t′i,t : t, t′ ≤ τ, i, i′ ∈

V }, and let

Cit :=

{
x ∈ Rd :‖θ̃it − x‖Ãit ≤ ‖θ‖2 (3.4)

+W (τ(t))R

√
2 log

(
det(Ãit)

1
2 /δ
)}

.

Then with probability 1− δ, θ ∈ Cit .
In the rest of the proof we assume that θ ∈ Cit .
Step 2: Instantaneous regret decomposition. Denote by (xit, θ

i
t) =

argmaxx∈Dit,y∈Cit x
Ty. Then we can decompose the instantaneous regret, follow-

ing a classic argument (see the proof of Theorem 3 in [1]):

ρit =
(
xi,∗t

)T

θ − (xit)
Tθ ≤

(
xit
)T
θit − (xit)

Tθ

=
(
xit
)T [(

θit − θ̃it
)

+
(
θ̃it − θ

)]

≤ ‖xit‖(Ãit)−1

[∥∥∥θit − θ̃it
∥∥∥
Ãit

+
∥∥∥θ̃it − θ

∥∥∥
Ãit

]
(3.5)

Step 3: Control the bias. The norm differences inside the square brackets of
the regret decomposition are bounded through (3.4) in terms of the matrices Ãit.
We would like, instead, to have the regret decomposition in terms of the matrix
At (which is defined in (3.1)). To this end, we give some lemmas showing that
using the matrices Ãit is almost the same as using At. These lemmas involve ele-
mentary matrix analysis, but are crucial for understanding the impact of imperfect
information sharing on the final regret bounds.

Step 3a: Control the bias coming from the weight imbalance.

Lemma 11 (Bound on the influence of general weights). For all i ∈ V and t > 0,

‖xit‖2(Ãit)−1 ≤ e
∑τ(t)

t′=1

∑|V |
i′=1

∣∣∣wi′,t′i,t −1
∣∣∣‖xit‖2(Aτ(t))

−1 ,

and det
(
Ãit

)
≤ e

∑τ(t)

t′=1

∑|V |
i′=1

∣∣∣wi′,t′i,t −1
∣∣∣
det
(
Aτ(t)

)
.

Using Lemma 4 in [96], by exploiting the random weights are identically dis-
tributed (i.d.) for each fixed pair (t, t′), and

∑
i′∈V w

i′,t′

i,t = |V | under our gossip
protocol, we can control the random exponential constant in Lemma 11, and the
upper bound W (T ) using the Chernoff-Hoeffding bound:
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Lemma 12 (Bound on the influence of weights under our sharing protocol). Fix
some constants 0 < δt′ < 1. Then with probability 1−∑τ(t)

t′=1 δt′

|V |∑

i′=1

τ(t)∑

t′=1

∣∣∣wi
′,t′

i,t − 1
∣∣∣ ≤ |V | 32

τ(t)∑

t′=1

(
2(t−t′)δt′

)− 1
2
,

and W (T ) ≤ 1 + max
1≤t′≤τ(t)

{
|V | 32

(
2(t−t′)δt′

)− 1
2

}
.

In particular, for any δ ∈ (0, 1), choosing δt′ = δ2
t′−t

2 , with probability 1 −
δ/(|V |3t2(1− 2−1/2)) we have

|V |∑

i′=1

τ(t)∑

t′=1

∣∣∣wi
′,t′

i,t − 1
∣∣∣ ≤ 1

(1− 2−
1
4 )t
√
δ
,

and W (τ(t)) ≤ 1 +
|V | 32
t
√
δ
. (3.6)

Thus Lemma 11 and 12 give us control over the bias introduced by the imperfect
information sharing. Combining them with Equations (3.4) and (3.5) we find that
with probability 1− δ/(|V |3t2(1− 2−1/2)):

ρit ≤2eC(t)‖xit‖(
Ai
τ(t)

)−1 (1 + C(t)) (3.7)

×
[
R

√
2 log

(
eC(t) det

(
Aτ(t)

) 1
2 δ−1

)
+ ‖θ‖

]

where C(t) := 1/(1− 2−1/4)t
√
δ

Step 3b: Control the bias coming from the delay. Next, we need to control
the bias introduced from leaving out the last 4 log(|V |3/2t) time steps from the
confidence ball estimation calculation:

Proposition 2. There can be at most

ν(k) := (4|V | log(|V |3/2k))3(d+ 1)d(tr(A0) + 1) (3.8)

pairs (i, k) ∈ 1, . . . , |V | × {1, . . . , t} for which one of

‖xik‖2A−1
τ(k)

≥ e‖xik‖2(Ak−1+
∑i−1
j=1 x

j
k(xjk)T)

−1 ,

or det
(
Aτ(k)

)
≥ e det


Ak−1 +

i−1∑

j=1

xjk(x
j
k)

T


 holds.

Step 4: Choose constants and sum the simple regret. Defining a constant

N(δ) :=
1

(1− 2−
1
4 )
√
δ
,
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we have, for all k ≥ N(δ), C(k) ≤ 1, and so, by (3.7) with probability 1 −
(|V |k)−2δ/(1− 2−1/2)

ρik ≤2e‖xik‖A−1
τ(k)

(3.9)

×


2R

√√√√√2 log


edet

(
Aτ(k)

) 1
2

δ


+ ‖θ‖2


 .

Now, first applying Cauchy-Schwarz, then step 3b from above together with
(3.9), and finally Lemma 11 from [1] yields that, with probability 1 −(
1 +

∑∞
t=1(|V |t)−2/(1− 2−1/2)

)
δ ≥ 1− 3δ,

Rt ≤N(δ)|V |‖θ‖2 +


|V |t

t∑

t′=N(δ)

|V |∑

i=1

(
ρit′
)2



1
2

≤ (N(δ)|V |+ ν(|V |, d, t)) ‖θ‖2

+ 4e2 (β(t) + 2R)

[
|V |t

t∑

t′=1

M∑

i=1

‖xit‖2(At)−1

] 1
2

≤ (N(δ)|V |+ ν(|V |, d, t)) ‖θ‖2
+ 4e2 (β(t) + 2R)

√
|V |t (2 log (det (At))),

where β(·) is as defined in (3.2). Replacing δ with δ/3 finishes the proof.

Proof of Proposition 2

This proof forms the major innovation in the proof of Theorem 9. Let (yk)k≥1

be any sequence of vectors such that ‖yk‖2 ≤ 1 for all k, and let Bn := B0 +∑n
k=1 yky

T
k, where B0 is some positive definite matrix.

Lemma 13. For all t > 0, and for any c ∈ (0, 1), we have
∣∣∣∣
{
k ∈ {1, 2, . . . } : ‖yk‖2B−1

k−1

> c

}∣∣∣∣
≤ (d+ c)d(tr(B−1

0 )− c)/c2,

Proof. We begin by showing that, for any c ∈ (0, 1)

‖yk‖2B−1
k−1

> c (3.10)

can be true for only 2dc−3 different k.
Indeed, let us suppose that (3.10) is true for some k. Let (e

(k−1)
i )1≤i≤d be the

orthonormal eigenbasis for Bk−1, and, therefore, also for B−1
k−1, and write yk =
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∑d
i=1 αiei. Let, also, (λ

(k−1)
i ) be the eigenvalues for Bk−1. Then,

c < yT
kB
−1
k−1yk =

d∑

i=1

α2
i

λ
(k−1)
i

≤ tr(B−1
k−1),

=⇒ ∃j ∈ {1, . . . , d} :
α2
j

λ
(k−1)
j

, 1

λ
(k−1)
j

> c
d ,

where we have used that α2
i < 1 for all i, since ‖yk‖2 < 1. Now,

tr(B−1
k−1)− tr(B−1

k )

= tr(B−1
k−1)− tr((Bk−1 + yky

T
k)−1)

> tr(B−1
k−1)− tr((Bk−1 + α2

jeje
T
j )
−1)

= 1

λ
(k−1)
j

− 1

λ
(k−1)
j +α2

j

=
α2
j

λ
(k−1)
j (λ

(k−1)
j +α2

j )

>
(
d2c−2 + dc−1

)−1
> c2

d(d+c)

So we have shown that (3.10) implies that

tr(B−1
k−1) > c and tr(B−1

k−1)− tr(B−1
k ) >

c2

d(d+ c)
.

Since tr(B−1
0 ) ≥ tr(B−1

k−1) ≥ tr(B−1
k ) ≥ 0 for all k, it follows that (3.10) can be

true for at most (d+ c)d(tr(B−1
0 )− c)c−2 different k.

Now, using an argument similar to the proof of Lemma 11, for all k < t

‖yk+1‖B−1
τ(k)
≤ e

∑k
s=τ(k)+1 ‖ys+1‖B−1

s ‖yk+1‖B−1
k
,

and det
(
Bτ(t)

)
≤ e

∑t
k=τ(t)+1 ‖yk‖2B−1

k det (Bt) .

Therefore,

‖yk+1‖B−1
τ(k)
≥ c‖yk+1‖B−1

k
or det(Bτ(k)) ≥ cdet(Bk)

=⇒
k−1∑

s=τ(k)

‖ys+1‖B−1
s
≥ ln(c)

However, according to Lemma 13, there can be at most

ν(t) :=
(
d+ ln(c)

∆(t)

)
d
(
tr
(
B−1

0

)
− ln(c)

∆(t)

)(
∆(t)
ln(c)

)2

times s ∈ {1, . . . , t}, such that ‖ys+1‖B−1
s
≥ ln(c)/∆(t), where ∆(t) :=

max1≤k≤t{k − τ(k)}. Hence
∑k

s=τ(j)+1 ‖ys+1‖−1
Bs
≥ ln(c) is true for at most

∆(t)ν(|V |, d, t) indices k ∈ {1, . . . , t}.
Finally, we finish by setting (yk)k≥1 = ◦t≥1(xit)

|V |
i=1.
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3.3 Clustering and the DCCB Algorithm

We now incorporate distributed clustering into the DCB algorithm. The analysis of
DCB forms the backbone of the analysis of DCCB.

Algorithm 1 Distributed Clustering Confidence Ball
Input: Size of network |V |, τ : t→ t− 4 log2 t, α, λ
Initialization: ∀i ∈ V , set Ãi0 = Id, b̃i0 = 0, Ai0 = Bi0 = ∅, and V i

0 = V .
for t = 0, . . .∞ do

Draw a random permutation σ of {1, . . . , V } respecting the current local
clusters
for i = 1, . . . , |V | do

Receive action set Dit and construct the confidence ball Cit using Ãit and b̃it
Choose action and receive reward:
Find (xit+1, ∗) = argmax

(x,θ̃)∈Dit×Cit
xTθ̃, and get reward rit+1 from

context xit+1.
Share and update information buffers:
if ‖θ̂ilocal − θ̂

j
local‖ > cthreshλ (t)

Update local cluster: V i
t+1 = V i

t \ {σ(i)}, V σ(i)
t+1 = V

σ(i)
t \ {i}, and reset

according to (3.13)

elseif V i
t = V

σ(i)
t

Set Ait+1 =
(

1
2(Ait +Aσ(i)

t )
)
◦ (xit+1

(
xit+1

)T
) and

Bit+1 =
(

1
2(Bit + Bσ(i)

t )
)
◦ (rit+1x

i
t+1)

else
Update: Set Ait+1 = Ait ◦ (xit+1

(
xit+1

)T
) and Bit+1 = Bit ◦ (rit+1x

i
t+1)

endif
Update local estimator: Ailocal,t+1 = Ailocal,t + xit+1

(
xit+1

)T, bilocal,t+1 =

bilocal,t + rit+1x
i
t+1, and θ̂local,t+1 =

(
Ailocal,t+1

)−1
bilocal,t+1

if |Ait+1| > t − τ(t) set Ãit+1 = Ãit +Ait+1(1), Ait+1 = Ait+1 \ Ait+1(1).
Similarly for Bit+1.

end for
end for

DCCB Pruning Protocol In order to run DCCB, each agent i must maintain
some local information buffers in addition to those used for DCB. These are:

(1) a local covariance matrix Ailocal = Ailocal,t, a local b-vector bilocal = bilocal,t,

(2) and a local neighbour set V i
t .
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The local covariance matrix and b-vector are updated as if the agent was applying
the generic (single agent) confidence ball algorithm: Ailocal,0 = A0, bilocal,0 = 0,

Ailocal,t = xit(x
i
t)

T +Ailocal,t−1,

and bilocal,t = ritx
i
t + bilocal,t−1.

DCCB Algorithm Each agent’s local neighbour set V i
t is initially set to V . At

each time step t, agent i contacts one other agent, j, at random from V i
t , and both

decide whether they do or do not belong to the same cluster. To do this they share
local estimates, θ̂it = Ailocal,t

−1
bilocal,t and θ̂jt = Ajlocal,t

−1
bjlocal,t, of the unknown

parameter of the bandit problem they are solving, and see if they are further apart
than a threshold function c = cthreshλ (t), so that if

‖θ̂it − θ̂jt‖2 ≥ cthreshλ (t), (3.11)

then V i
t+1 = V i

t \ {j} and V j
t+1 = V j

t \ {i}. Here λ is a parameter of an extra
assumption that is needed, as in [41], about the process generating the context sets
Dit:
(A) Each context set Dit = {xk}k is finite and contains i.i.d. random vectors such

that for all, k, ‖xk‖ ≤ 1 and E(xkx
T
k) is full rank, with minimal eigenvalue

λ > 0.

We define cthreshλ (t), as in [41], by

cthreshλ (t) :=
R
√

2d log(t) + 2 log(2/δ) + 1√
1 + max {Aλ(t, δ/(4d)), 0}

(3.12)

where Aλ(t, δ) := λt
δ − 8 log t+3

δ − 2
√
t log t+3

δ .

The DCCB algorithm is pretty much the same as the DCB algorithm, except
that it also applies the pruning protocol described. In particular, each agent, i, when
sharing its information with another, j, has three possible actions:
(1) if (3.11) is not satisfied and V i

t = V j
t , then the agents share simply as in the

DCB algorithm;
(2) if (3.11) is not satisfied but V i

t 6= V j
t , then no sharing or pruning occurs.

(3) if (3.11) is satisfied, then both agents remove each other from their neighbour
sets and reset their buffers and active matrices so that

Ai = (0, 0, . . . , Ailocal),Bi = (0, 0, . . . , bilocal),

and Ãi = Ailocal, b̃
i = bilocal, (3.13)

and similarly for agent j.
It is proved in the theorem below, that under this sharing and pruning mechanism,
in high probability after some finite time each agent i finds its true cluster, i.e.
V i
t = Uk. Moreover, since the algorithm resets to its local information each time
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a pruning occurs, once the true clusters have been identified, each cluster shares
only information gathered within that cluster, thus avoiding introducing a bias by
sharing information gathered from outside the cluster before the clustering has been
identified. Full pseudo-code for the DCCB algorithm is given in Algorithm 1, and
the differences with the DCB algorithm are highlighted in blue.

Distributed Clustering of Linear Bandits in Peer to Peer Networks

they share local estimates, ✓̂i
t = Ai

local,t
�1

bi
local,t and ✓̂j

t =

Aj
local,t

�1
bj
local,t, of the unknown parameter of the bandit

problem they are solving, and see if they are further apart
than a threshold function c = cthresh

� (t), so that if

k✓̂i
t � ✓̂j

tk2 � cthresh
� (t), (11)

then V i
t+1 = V i

t \ {j} and V j
t+1 = V j

t \ {i}. Here �
is a parameter of an extra assumption that is needed, as
in (Gentile et al., 2014), about the process generating the
context sets Di

t:

(A) Each context set Di
t = {xk}k is finite and contains

i.i.d. random vectors such that for all, k, kxkk  1
and E(xkxT

k) is full rank, with minimal eigenvalue
� > 0.

We define cthresh
� (t), as in (Gentile et al., 2014), by

cthresh
� (t) :=

R
p

2d log(t) + 2 log(2/�) + 1p
1 + max {A�(t, �/(4d)), 0}

(12)

where A�(t, �) := �t
� � 8 log t+3

� � 2
q

t log t+3
� .

The DCCB algorithm is pretty much the same as the DCB
algorithm, except that it also applies the pruning protocol
described. In particular, each agent, i, when sharing its
information with another, j, has three possible actions:

(1) if (11) is not satisfied and V i
t = V j

t , then the agents
share simply as in the DCB algorithm;

(2) if (11) is satisfied, then both agents remove each other
from their neighbour sets and reset their buffers and
active matrices so that

Ai = (0, 0, . . . , Ai
local), Bi = (0, 0, . . . , bi

local),

and Ãi = Ai
local, b̃

i = bi
local, (13)

and similarly for agent j.
(3) if (11) is not satisfied but V i

t 6= V j
t , then no sharing or

pruning occurs.

It is proved in the theorem below, that under this sharing
and pruning mechanism, in high probability after some fi-
nite time each agent i finds its true cluster, i.e. V i

t = Uk.
Moreover, since the algorithm resets to its local informa-
tion each time a pruning occurs, once the true clusters have
been identified, each cluster shares only information gath-
ered within that cluster, thus avoiding introducing a bias by
sharing information gathered from outside the cluster be-
fore the clustering has been identified. Full pseudo-code for
the DCCB algorithm is given in Algorithm 1, and the dif-
ferences with the DCB algorithm are highlighted in blue.
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Figure 1. Here we plot the performance of DCCB in comparison
to CLUB, CB-NoSharing and CB-InstSharing. The plots show
the ratio of cumulative rewards achieved by the algorithms to the
cumulative rewards achieved by the random algorithm.

Figure 3.1: Here we plot the performance of DCCB in comparison to CLUB, CB-
NoSharing and CB-InstSharing. The plots show the ratio of cumulative rewards
achieved by the algorithms to the cumulative rewards achieved by the random al-
gorithm.
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3.3.1 Results for DCCB

Theorem 14. Assume that (A) holds, and let γ denote the smallest distance be-
tween the bandit parameters θk. Then there exists a constant C = C(γ, |V |, λ, δ),
such that with probability 1 − δ the total cumulative regret of cluster k when the
agents employ DCCB is bounded by

Rt ≤
[

max
{√

2N(δ), C + 4 log2(|V | 32C)
}
|Uk|

+ ν(|Uk|, d, t)
]
‖θ‖2

+ 4e (β(t) + 3R)

√
|Uk|t ln

(
(1 + |Uk|t/d)

d
)
,

where N and ν are as defined in Theorem 9, and β(t) :=

R

√
2 ln

(
(1 + |Uk|t/d)

d
)

+ ‖θ‖2.

The constant C(γ, |V |, λ, δ) is the time that you have to wait for the true clus-
tering to have been identified,

The analysis follows the following scheme: When the true clusters have been
correctly identified by all nodes, within each cluster the algorithm, and thus the
analysis, reduces to the case of Section 3.2.1. We adapt results from [41] to show
how long it will be before the true clusters are identified, in high probability. The
proof is deferred to Appendices 3.5.4 and 3.5.5.

3.4 Experiments and Discussion

Experiments We closely implemented the experimental setting and dataset con-
struction principles used in [71, 75], and for a detailed description of this we re-
fer the reader to [71]. We evaluated DCCB on three real-world datasets against
its centralised counterpart CLUB, and against the benchmarks used therein, CB-
NoSharing, and CB-InstSharing. The LastFM dataset comprises of 91 users, each
of which appear at least 95 times. The Delicious dataset has 87 users, each of
which appear at least 95 times. The MovieLens dataset contains 100 users, each of
which appears at least 250 times. The performance was measured using the ratio
of cumulative reward of each algorithm to that of the predictor which chooses a
random action at each time step. This is plotted in in Figure 3.1. From the exper-
imental results it is clear that DCCB performs comparably to CLUB in practice,
and both outperform CB-NoSharing, and CB-InstSharing.

Relationship to existing literature There are several strands of research that
are relevant and complimentary to this work. First, there is a large literature on
single agent linear bandits, and other more, or less complicated bandit problem
settings. There is already work on distributed approaches to multi-agent, multi-
armed bandits, not least [96] which examines ε-greedy strategies over a peer to



CHAPTER 3. DECENTRALIZED CLUSTERING BANDITS 66

peer network, and provided an initial inspiration for this current work. The paper
[54] examines the extreme case when there is no communication channel across
which the agents can communicate, and all communication must be performed
through observation of action choices alone. Another approach to the multi-armed
bandit case, [81], directly incorporates the communication cost into the regret.

Second, there are several recent advances regarding the state-of-the-art meth-
ods for clustering of bandits. The work [71] is a faster variant of [41] which adopt
the strategy of boosted training stage. In [75] the authors not only cluster the users,
but also cluster the items under collaborative filtering case with a sharp regret anal-
ysis.

Finally, the paper [99] treats a setting similar to ours in which agents attempt
to solve contextual bandit problems in a distributed setting. They present two algo-
rithms, one of which is a distributed version of the approach taken in [94], and show
that they achieve at least as good asymptotic regret performance in the distributed
approach as the centralised algorithm achieves. However, rather than sharing in-
formation across a limited communication channel, they allow each agent only to
ask another agent to choose their action for them. This difference in our settings is
reflected worse regret bounds, which are of order Ω(T 2/3) at best.

Discussion Our analysis is tailored to adapt proofs from [1] about generic con-
fidence ball algorithms to a distributed setting. However many of the elements
of these proofs, including Propositions 1 and 2 could be reused to provide similar
asymptotic regret guarantees for the distributed versions of other bandit algorithms,
e.g., the Thompson sampling algorithms, [2, 59, 88].

Both DCB and DCCB are synchronous algorithms. The work on distributed
computation through gossip algorithms in [12] could alleviate this issue. The cur-
rent pruning algorithm for DCCB guarantees that techniques from [96] can be ap-
plied to our algorithms. However the results in [12] are more powerful, and could
be used even when the agents only identify a sub-network of the true clustering.

Furthermore, there are other existing interesting algorithms for performing
clustering of bandits for recommender systems, such as COFIBA in [75]. It would
be interesting to understand how general the techniques applied here to CLUB are.
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3.5 Supplementary

3.5.1 Pseudocode of the Algorithms CB and DCB

Algorithm 2 Confidence Ball
Initialization: Set A0 = I and b0 = 0.
for t = 0, . . .∞ do

Receive action set Dt
Construct the confidence ball Ct using At and bt
Choose action and receive reward:

Find (xt, ∗) = argmax
(x,θ̃)∈Dt×Ct x

Tθ̃

Get reward rit from context xit
Update At+1 = At + xtx

T
t and bt+1 = bt + rtxt

end for

Algorithm 3 Distributed Confidence Ball

Input: Network V of agents, the function τ : t→ t− 4 log2(|V | 32 t).
Initialization: For each i, set Ãi0 = Id and b̃i0 = 0, and the buffers Ai0 = ∅ and
Bi0 = ∅.
for t = 0, . . .∞ do

Draw a random permutation σ of {1, . . . , |V |}
for each agent i ∈ V do

Receive action set Dit and construct the confidence ball Cit using Ãit and b̃it
Choose action and receive reward:

Find (xit+1, ∗) = argmax
(x,θ̃)∈Dit×Cit

xTθ̃

Get reward rit+1 from context xit+1.
Share and update information buffers:

Set Ait+1 =
(

1
2(Ait +Aσ(i)

t )
)
◦ (xit+1

(
xit+1

)T
) and Bit+1 =

(
1
2(Bit + Bσ(i)

t )
)
◦ (rit+1x

i
t+1)

if |Ait+1| > t − τ(t) set Ãit+1 = Ãit + Ait+1(1) and Ait+1 = Ait+1 \
Ait+1(1). Similary for Bit+1.

end for
end for

3.5.2 More on Communication Complexity

First, recall that if the agents want to communicate their information to each other
at each round without a central server, then every agent would need to communi-
cate their chosen action and reward to every other agent at each round, giving a
communication cost of O(d|V |2) bits per-round. Under DCB each agent requires
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at most O(log2(|V |t)d2|V |) bits to be communicated per round. Therefore, a sig-
nificant communication cost reduction is gained when log(|V |t)d� |V |.

Recall also that using an epoch-based approach, as in [96], we reduce the per-
round communication cost of the gossip-based approach to O(d2|V |). This makes
the algorithm more efficient over any time horizon, requiring only that d � |V |,
and the proofs of the regret performance are simple modifications of the proofs for
DCB. In comparison with growing buffers this is only an issue after O(exp(|V |))
number of rounds, and typically |V | is large. This is why we choose to exhibit the
growing-buffer approach in this current work.

Instead of relying on the combination of the diffusion and a delay to handle the
potential doubling of data points under the randomised gossip protocol, we could
attempt to keep track which observations have been shared with which agents, and
thus simply stop the doubling from occurring. However, the per-round communi-
cation complexity of this is at least quadratic in |V |, whereas our approach is linear.
The reason for the former is that in order to be efficient, any agent j, when sending
information to an agent i, needs to know for each k which are the latest observa-
tions gathered by agent k that agent i already knows about. The communication
cost of this is of order |V |. Since every agent shares information with somebody
in each round, this gives per round communication complexity of order |V |2 in the
network.

A simple, alternative approach to the gossip protocol is a Round-Robin (RR)
protocol, in which each agent passes the information it has gathered in previous
rounds to the next agent in a pre-defined permutation. Implementing a RR pro-
tocol leads to the agents performing a distributed version of the CB-InstSharing
algorithm, but with a delay that is of size at least linear in |V |, rather than the
logarithmic dependence on this quantity that a gossip protocol achieves. Indeed,
at any time, each agent will be lacking |V |(|V | − 1)/2 observations. Using this
observation, a cumulative regret bound can be achieved using Proposition 2 which
arrives at the same asymptotic dependence on |V | as our gossip protocol, but with
an additive constant that is worse by a multiplicative factor of |V |. This makes a
difference to the performance of the network when |V | is very large. Moreover,
RR protocols do not offer the simple generalisability and robustness that gossip
protocols offer.

Note that the pruning protocol for DCCB only requires sharing the estimated
θ-vectors between agents, and adds at most O(d|V |) to the communication cost
of the algorithm. Hence the per-round communication cost of DCCB remains
O(log2(|V |t)d2|V |).

3.5.3 Proofs of Intermediary Results for DCB

Proof of Proposition 1. This follows the proof of Theorem 2 in [1], substituting
appropriately weighted quantities.
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Algorithm Regret Bound Per-Round Communication Complexity
CB-NoSharing O(|V |

√
t) 0

CB-InstSharing O(
√
|V |t) O(d|V |2)

DCB O(
√
|V |t) O(log2(|V |t)d2|V |)

DCCB O(
√
|Uk|t) O(log2(|V |t)d2|V |)

Figure 3.2: This table gives a summary of theoretical results for the multi-agent
linear bandit problem. Note that CB with no sharing cannot benefit from the fact
that all the agents are solving the same bandit problem, while CB with instant
sharing has a large communication-cost dependency on the size of the network.
DCB succesfully achieves near-optimal regret performance, while simultaneously
reducing communication complexity by an order of magnitude in the size of the
network. Moreover, DCCB generalises this regret performance at not extra cost in
the order of the communication complexity.

For ease of presentation, we define the shorthand

X̃ := (
√
w1y1, . . . ,

√
wnyn) and η̃ = (

√
w1η1, . . . ,

√
wnηn)T,

where the yi are vectors with norm less than 1, the ηi are R-subgaussian, zero
mean, random variables, and thewi are positive real numbers. Then, given samples
(
√
w1y1,

√
w1(θy1+η1)), . . . , (

√
wnyn,

√
wn(θyn+ηn)), the maximum likelihood

estimate of θ is

θ̃ : = (X̃X̃T + I)−1X̃(X̃Tθ + η̃)

= (X̃X̃T + I)−1X̃η̃ + (X̃X̃T + I)−1(X̃X̃T + I)θ − (X̃X̃T + I)−1θ

= (X̃X̃T + I)−1X̃η̃ + θ − (X̃X̃T + I)−1θ

So by Cauchy-Schwarz, we have, for any vector x,

xT(θ̃ − θ) = 〈x, X̃η̃〉
(X̃X̃T+I)−1 − 〈x, θ〉(X̃X̃T+I)−1 (3.14)

≤ ‖x‖
(X̃X̃T+I)−1

(
‖X̃η̃‖

(X̃X̃T+I)−1 + ‖θ‖
(X̃X̃T+I)−1

)
(3.15)

Now from Theorem 1 of [1], we know that with probability 1− δ

‖X̃η̃‖2
(X̃X̃T+I)−1 ≤W 2R22 log

√
det(X̃X̃T + I)

δ2
.

where W = maxi=1,...,nwi. So, setting x = (X̃X̃T + I)−1(θ̃ − θ), we obtain that
with probability 1− δ

‖θ̃ − θ‖
(X̃X̃T+I)−1 ≤WR


2 log

√
det(X̃X̃T + I)

δ2




1
2

+ ‖θ‖2
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since 3

‖x‖
(X̃X̃T+I)−1‖θ‖(X̃X̃T+I)−1 ≤ ‖x‖2λ−1

min(X̃X̃T + I)‖θ‖2λ−1
min(X̃X̃T + I)

≤ ‖x‖2‖θ‖2.

Conditioned on the values of the weights, the statement of Proposition 1 now fol-
lows by substituting appropriate quantities above, and taking the probability over
the distribution of the subGaussian random rewards. However, since this statement
holds uniformly for any values of the weights, it holds also when the probability is
taken over the distribution of the weights.

Proof of Lemma 11. Recall that Ãit is constructed from the contexts chosen from
the first τ(t) rounds, across all the agents. Let i′ and t′ be arbitrary indices in V
and {1, . . . , τ(t)}, respectively.

(i) We have

det
(
Ãit

)
= det

(
Ãit −

(
wi
′,t′

i,t − 1
)
xi
′
t′

(
xi
′
t′

)T

+
(
wi
′,t′

i,t − 1
)
xi
′
t′

(
xi
′
t′

)T)

= det
(
Ãit −

(
wi
′,t′

i,t − 1
)
xi
′
t′

(
xi
′
t′

)T)

.

(
1 +

(
wi
′,t′

i,t − 1
)
‖xi′t′‖(

Ãit−
(
wi
′,t′
i,t −1

)
xi
′
t′(x

i′
t′)

T
)−1

)

The second equality follows using the identity det(I + cB1/2xxTB1/2) =
(1 + c‖x‖B), for any matrix B, vector x, and scalar c. Now, we
repeat this process for all i′ ∈ V and t′ ∈ {1, . . . , τ(t)} as fol-
lows. Let (t1, i1), . . . , (t|V |τ(t), i|V |τ(t)) be an arbitrary enumeration of

V × {1, . . . , τ(t)}, let B0 = Ãit, and Bs = Bs−1 − (wis,tsi,t − 1)xists

(
xists

)T

for s = 1, . . . , |V |τ(t). Then B|V |τ(t) = Aτ(t), and by the calculation above
we have

det
(
Ãit

)
= det

(
Aτ(t)

) |V |τ(t)∏

s=1

(
1 +

(
wis,tsi,t − 1

)
‖xists‖(Bs)−1

)

≤det
(
Aτ(t)

)
exp



|V |τ(t)∑

s=1

(
wis,tsi,t − 1

)
‖xists‖(Bs)−1




≤ exp



τ(t)∑

t′=1

|V |∑

i′=1

∣∣∣wi
′,t′

i,t − 1
∣∣∣


 det

(
Aτ(t)

)

3λmin( · ) denotes the smallest eigenvalue of its argument.
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(ii) Note that for vectors x, y and a matrix B, by the Sherman-Morrison Lemma,
and Cauchy-Schwarz inequality we have that:

xT(B + yyT)−1x = xTB−1x− xTB−1yyTB−1x

1 + yTB−1y
≥ xTB−1x− xTB−1xyTB−1y

1 + yTB−1y

= xTB−1x(1 + yTB−1y)−1

(3.16)

Taking

B =
(
Ãit −

(
wi
′,t′

i,t − 1
)
xi
′
t′

(
xi
′
t′

)T)
and y =

√
wi
′,t′

i,t − 1xi
′
t′ ,

and using that yTB−1y ≤ λmin(B)−1yTy, by construction, we have that, for
any t′ ∈ {1, . . . , τ(t)} and i′ ∈ V ,

xT

(
Ãit

)−1
x ≥ xT

(
Ãit −

(
wi
′,t′

i,t − 1
)
xi
′
t′

(
xi
′
t′

)T)−1

x(1 + |wi′,t′i,t − 1|)−1.

Performing this for each i′ ∈ V and t′ ∈ {1, . . . , τ(t)}, taking the exponen-
tial of the logarithm and using that log(1+a) ≤ a like in the first part finishes
the proof.

3.5.4 Proof of Theorem 14

Throughout the proof let i denote the index of some arbitrary but fixed agent, and
k the index of its cluster.

Step 1: Show the true clustering is obtained in finite time. First we prove
that with probability 1 − δ, the number of times agents in different clusters share
information is bounded. Consider the statements

∀i, i′ ∈ V, ∀t,
(
‖θ̂ilocal,t − θ̂i

′
local,t‖ > cthreshλ (t)

)
=⇒ i′ /∈ Uk (3.17)

and,

∀t ≥ C(γ, λ, δ) = cthreshλ
−1
(γ

2

)
, i′ /∈ Uk, ‖θ̂ilocal,t − θ̂i

′
local,t‖ > cthreshλ (t).

(3.18)

where cthreshλ and Aλ are as defined in the main paper. Lemma 4 from [41] proves
that these two statements hold under the assumptions of the theorem with proba-
bility 1− δ/2.

Let i be an agent in cluster Uk. Suppose that (3.17) and (3.18) hold. Then
we know that at time t = dC(γ, λ, δ)e, Uk ⊂ V i

t . Moreover, since the sharing
protocol chooses an agent uniformly at random from V i

t independently from the
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history before time t, it follows that the time until V i
t = Uk can be upper bounded

by a constant C = C(|V |, δ) with probability 1 − δ/2. So it follows that there
exists a constant C = C(|V |, γ, λ, δ) such that the event

E := {(3.17) and (3.18) hold, and (t ≥ C(|V |, γ, λ, δ) =⇒ V i
t = Uk)}

holds with probability 1− δ.
Step 2: Consider the properties of the weights after clustering. On the

event E, we know that each cluster will be performing the algorithm DCB within
its own cluster for all t > C(γ, |V |). Therefore, we would like to directly apply
the analysis from the proof of Theorem 9 from this point. In order to do this we
need to show that the weights, wi

′,t′

i,t , have the same properties after time C =
C(γ, |V |, λ, δ) that are required for the proof of Theorem 9.

Lemma 15. Suppose that agent i is in cluster Uk. Then, on the event E,

(i) for all t > C(|V |, γ, λ, δ) and i′ ∈ V \ Uk, wi
′,t′

i,t = 0;

(ii) for all t′ ≥ C(|V |, γ, λ, δ) and i′ ∈ Uk,
∑

i∈Uk w
i′,t′

i,C(|V |,γ) = |Uk|;
(iii) for all t ≥ t′ ≥ C(|V |, γ, λ, δ) and i′ ∈ Uk, the weights wi

′,t′

i,t , i ∈ Uk, are
i.d..

Proof. See Appendix 3.5.5.

We must deal also with what happens to the information gathered before the
cluster has completely discovered itself. To this end, note that we can write, sup-
posing that τ(t) ≥ C(|V |, γ, λ, δ),

Ãit :=
∑

i′∈Uk

wi
′,C
i,t

|Uk| Ã
i′
C +

τ(t)∑

t′=C+1

∑

i′∈Uk
wi
′,t′

i,t x
i′
t′

(
xi
′
t′

)T

. (3.19)

Armed with this observation we show that the fact that sharing within the appro-
priate cluster only begins properly after time C = C(|V |, γ, λ, δ) the influence of
the bias is unchanged:

Lemma 16 (Bound on the influence of general weights). On the event E, for all
i ∈ V and t such that T (t) ≥ C(|V |, γ, λ, δ),

(i) det
(
Ãit

)
≤ exp

(
τ(t)∑
t′=C

∑
i′∈Uk

∣∣∣wi
′,t′

i,t − 1
∣∣∣
)

det
(
Akτ(t)

)
,

(ii) and ‖xit‖2(Ãit)−1 ≤ exp

(
τ(t)∑
t′=C

∑
i′∈Uk

∣∣∣wi
′,t′

i,t − 1
∣∣∣
)
‖xit‖2(

Ak
τ(t)

)−1 .

Proof. See Appendix 3.5.5.
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The final property of the weights required to prove Theorem 9 is that their
variance is diminishing geometrically with each iteration. For the analysis of DCB
this is provided by Lemma 4 of [96], and, using Lemma 15, we can prove the same
result for the weights after time C = C(|V |, γ, λ, δ):

Lemma 17. Suppose that agent i is in cluster Uk. Then, on the event E, for all
t ≥ C = C(|V |, γ, λ, δ) and t′ < t, we have

E
(

(wj,t
′

i,t − 1)2
)
≤ |Uk|

2t−max{t′,C} .

Proof. Given the properties proved in Lemma 15, the proof is identical to the proof
of Lemma 4 of [96].

Step 3: Apply the results from the analysis of DCB. We can now apply the
same argument as in Theorem 9 to bound the regret after time C = C(γ, |V |, λ, δ).
The regret before this time we simply upper bound by |Uk|C(|V |, γ, λ, δ)‖θ‖. We
include the modified sections bellow as needed.

Using Lemma 17, we can control the random exponential constant in Lemma
16, and the upper bound W (T ):

Lemma 18 (Bound in the influence of weights under our sharing protocol). Assume
that t ≥ C(γ, |V |, λδ). Then on the event E, for some constants 0 < δt′ < 1, with
probability 1−∑τ(t)

t′=1 δt′

τ(t)∑

t′=C

∑

i′∈Uk

∣∣∣wi
′,t′

i,t − 1
∣∣∣ ≤ |Uk| 32

τ(t)∑

t′=C

√
2−(t−max{t′,C})

δt′
,

and W (τ(t)) ≤ 1 + max
C≤t′≤τ(t)



|U

k| 32
√

2−(t−max{t′,C})

δt′



 .

In particular, for any 1 > δ > 0, choosing δt′ = δ2−(t−max{t′,C})/2, and τ(t) =
t− c1 log2 c2t we conclude that with probability 1− (c2t)

−c1/2δ/(1− 2−1/2), for
any t > C + c1 log2(c2C),

∑

i′∈Uk

τ(t)∑

t′=C

∣∣∣wi
′,t′

i,t − 1
∣∣∣ ≤ |U

k| 32 (c2t)
− c1

4

(1− 2−
1
4 )
√
δ
, and W (τ(t)) ≤ 1 +

|Uk| 32 (c2t)
− c1

4√
δ

.

(3.20)

Thus lemmas 16 and 18 give us control over the bias introduced by the imperfect
information sharing. Applying lemmas 16 and 18, we find that with probability
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1− (c2t)
−c1/2δ/(1− 2−1/2):

ρit ≤ 2 exp


 |Uk| 32

(1− 2−
1
4 )c

c1
4

2 t
c1
4

√
δ


 ‖xit‖(

Ai
τ(t)

)−1 (3.21)

.





1 +

|Uk| 32
(1− 2−

1
4 )c

c1
4

2 t
c1
4

√
δ





R

√√√√√2 log


exp


 |Uk| 32

(1− 2−
1
4 )c

c1
4

2 t
c1
4

√
δ


 det

(
Aτ(t)

) 1
2

δ


+ ‖θ‖





 .

Step 4: Choose constants and sum the simple regret. Choosing again c1 =

4, c2 = |V | 32 , and setting Nδ = 1

(1−2−
1
4 )
√
δ
, we have on the event E, for all

t ≥ max{Nδ, C + 4 log2(|V | 32C)}, with probability 1− (|V |t)−2δ/(1− 2−1/2)

ρit ≤ 4e‖xit‖(
Akt−1+

∑i−1
i′=1

xi
′
t (xi′t )

T
)−1

(
β(t) +R

√
2
)
,

where β(·) is as defined in the theorem statement. Now applying Cauchy-
Schwarz, and Lemma 11 from [1] yields that on the event E, with probability
1−

(
1 +

∑∞
t=1(|V |t)−2/(1− 2−1/2)

)
δ ≥ 1− 3δ,

Rt ≤
(

max{Nδ, C + 4 log2(|V | 32C)}+ 2 (4|V |d log (|V |t))3
)
‖θ‖2

+ 4e
(
β(t) +R

√
2
)√
|Uk|t

(
2 log

(
det
(
Akt
)))

.

Replacing δ with δ/6, and combining this result with Step 1 finishes the proof.

3.5.5 Proofs of Intermediary Results for DCCB

Proof of Lemma 15. Recall that whenever the pruning procedure cuts an edge,
both agents reset their buffers to their local information, scaled by the size of their
current neighbour sets. (It does not make a difference practically whether or not
they scale their buffers, as this effect is washed out in the computation of the con-
fidence bounds and the local estimates. However, it is convenient to assume that
they do so for the analysis.) Furthermore, according to the pruning procedure, no
agent will share information with another agent that does not have the same local
neighbour set.

On the eventE, there is a time for each agent, i, before timeC = C(γ, |V |, λδ)
when the agent resets its information to their local information, and their local
neighbour set becomes their local cluster, i.e. V i

t = Uk. After this time, this
agent will only share information with other agents that have also set their local
neighbour set to their local cluster. This proves the statement of part (i).

Furthermore, since on event E, after agent i has identified its local neighbour
set, i.e. when V i

t = Uk, the agent only shares with members of Uk, the statements
of parts (ii) and (iii) hold by construction of the sharing protocol.
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Proof of Lemma 16. The result follows the proof of Lemma 11. For the the itera-
tions until time C = C(γ, |V |, λδ) is reached, we apply the argument there. For
the final step we require two further inequalities.

First, to finish the proof of part (i) we note that,

det


(AkT −AkC) +

∑

i′∈Uk

w
i′,C(γ,|V |)
i,t

|Uk| Ãi
′
C


 = det


AkT +

∑

i′∈Uk

wi
′,C
i,t − 1

|Uk| Ãi
′
C




= det
(
AkT

)
det


I +

∑

i′∈Uk

wi
′,C
i,t − 1

|Uk| AkT
− 1

2 Ãi
′
CA

k
T
− 1

2




≤ det
(
AkT

)
det


I +


∑

i′∈Uk

∣∣∣wi
′,C
i,t − 1

∣∣∣


AkT

− 1
2
∑

i′∈Uk

Ãi
′
C

|Uk|A
k
T
− 1

2




≤ det
(
AkT

)

1 +

∑

i′∈Uk

∣∣∣wi
′,C
i,t − 1

∣∣∣


 .

For the first equality we have used that |Uk|AkC =
∑

i′∈Uk Ã
i′
C ; for the first inequal-

ity we have used a property of positive definite matrices; for the second inequality
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Second, to finish the proof of part (ii), we note that, for any vector x,
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The first inequality here follows from a property of positive definite matrices, and
the other steps follow similarly to those in the inequality that finished part (i) of the
proof.



Chapter 4

Collaborative Clustering Bandits

4.1 Introduction

Recommender Systems are an essential part of many successful on-line businesses,
from e-commerce to on-line streaming, and beyond [44, 46]. Moreover, Compu-
tational Advertising can be seen as a recommendation problem where the user
preferences highly depend on the current context. In fact, many recommendation
domains such as Youtube video recommendation or news recommendation do not
fit the classical description of a recommendation scenario, whereby a set of users
with essentially fixed preferences interact with a fixed set of items. In this classical
setting, the well-known cold-start problem, namely, the lack of accumulated inter-
actions by users on items, needs to be addressed, for instance, by turning to hybrid
recommendation methods (e.g., [45]). In practice, many relevant recommendation
domains are dynamic, in the sense that user preferences and the set of active users
change with time. Recommendation domains can be distinguished by how much
and how often user preferences and content universe change (e.g., [74]). In highly
dynamic recommendation domains, such as news, ads and videos, active users
and user preferences are fluid, hence classical collaborative filtering-type methods,
such as Matrix or Tensor-Factorization break down. In these settings, it is essential
for the recommendation method to adapt to the shifting preference patterns of the
users.

Exploration-exploitation methods, a.k.a. the multi-armed bandits, which have
been shown to be an excellent solution for these dynamic domains (see, e.g.,
[72, 73]). While effective, standard contextual bandits do not take collaborative
information into account, that is, users who have interacted with similar items in
the past will not be deemed to have similar taste based on this fact alone, while
items that have been chosen by the same group of users will also not be considered
as similar. It is this significant limitation in the current bandit methodology that
we try to address in this work. Past efforts on this problem were based on using
online clustering-like algorithms on the graph or network structure of the data in
conjunction with multi-armed bandit methods (see Section 4.3).

76



CHAPTER 4. COLLABORATIVE CLUSTERING BANDITS 77

Commercial large scale search engines and information retrieval systems are
examples of highly dynamic environments where users and items could be de-
scribed in terms of their membership in some preference cluster. For instance, in a
music recommendation scenario, we may have groups of listeners (the users) clus-
tered around music genres, with the clustering changing across different genres.
On the other hand, the individual songs (the items) could naturally be grouped by
sub-genre or performer based on the fact that they tend to be preferred by the same
group of users. Evidence has been collected which suggests that, at least in specific
recommendation scenarios, like movie recommendation, data are well modeled by
clustering at both user and item sides (e.g., [95]).

In this paper, we introduce a Collaborative Filtering based stochastic multi-
armed bandit method that allows for a flexible and generic integration of informa-
tion of users and items interaction data by alternatively clustering over both user
and item sides. Specifically, we describe and analyze an adaptive and efficient clus-
tering of bandit algorithm that can perform collaborative filtering, named COFIBA
(pronounced as “coffee bar”). Importantly enough, the clustering performed by our
algorithm relies on sparse graph representations, avoiding expensive matrix factor-
ization techniques. We adapt COFIBA to the standard setting of sequential content
recommendation known as (contextual) multi-armed bandits (e.g., [5]) for solving
the canonical exploration vs. exploitation dilemma.

Our algorithm works under the assumption that we have to serve content to
users in such a way that each content item determines a clustering over users made
up of relatively few groups (compared to the total number of users), within which
users tend to react similarly when that item gets recommended. However, the clus-
tering over users need not be the same across different items. Moreover, when the
universe of items is large, we also assume that the items might be clustered as a
function of the clustering they determine over users, in such a way that the num-
ber of distinct clusterings over users induced by the items is also relatively small
compared to the total number of available items.

Our method aims to exploit collaborative effects in a bandit setting in a way
akin to the way co-clustering techniques are used in batch collaborative filtering.
Bandit methods also represent one of the most promising approaches to the re-
search community of recommender systems, for instance in tackling the cold-start
problem (e.g., [97]), whereby the lack of data on new users leads to suboptimal
recommendations. An exploration approach in these cases seems very appropriate.

We demonstrate the efficacy of our dynamic clustering algorithm on three
benchmark and real-world datasets. Our algorithm is scalable and exhibits signif-
icant increased prediction performance over the state-of-the-art of clustering ban-
dits. We also provide a regret analysis of the

√
T -style holding with high probabil-

ity in a standard stochastically linear noise setting.
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4.2 Learning Model

We assume that the user behavior similarity is encoded by a family of clusterings
depending on the specific feature (or context, or item) vector x under consider-
ation. Specifically, we let U = {1, . . . , n} represent the set of n users. Then,
given x ∈ Rd, set U can be partitioned into a small number m(x) of clusters
U1(x), U2(x), . . . , Um(x)(x), where m(x) is upper bounded by a constant m, in-
dependent of x, with m being much smaller than n. (The assumption m << n is
not strictly required but it makes our algorithms more effective, and this is actu-
ally what we expect our datasets to comply with.) The clusters are such that users
belonging to the same cluster Uj(x) tend to have similar behavior w.r.t. feature
vector x (for instance, they both like or both dislike the item represented by x),
while users lying in different clusters have significantly different behavior. The
mapping x → {U1(x), U2(x), . . . , Um(x)(x)} specifying the actual partitioning
of the set of users U into the clusters determined by x (including the number of
clustersm(x) and its upper boundm), as well as the common user behavior within
each cluster are unknown to the learning system, and have to be inferred based on
user feedback.

For the sake of simplicity, this paper takes the simple viewpoint that clustering
over users is determined by linear functions x → u>i x, each one parameterized
by an unknown vector ui ∈ Rd hosted at user i ∈ U , in such a way that if users
i and i′ are in the same cluster w.r.t. x then u>i x = u>i′x, while if i and i′ are
in different clusters w.r.t. x then |u>i x − u>i′x| ≥ γ, for some (unknown) gap
parameter γ > 0, independent of x.1 As in the standard linear bandit setting (e.g.,
[5, 69, 25, 1, 27, 64, 91, 106, 34, 41], and references therein), the unknown vector
ui determines the (average) behavior of user i. More concretely, upon receiving
context vector x, user i “reacts” by delivering a payoff value

ai(x) = u>i x+ εi(x) ,

where εi(x) is a conditionally zero-mean and bounded variance noise term so that,
conditioned on the past, the quantity u>i x is indeed the expected payoff observed
at user i for context vector x. Notice that the unknown parameter vector ui we
associate with user i is supposed to be time invariant in this model.2

Since we are facing sequential decision settings where the learning system
needs to continuously adapt to the newly received information provided by users,
we assume that the learning process is broken up into a discrete sequence of rounds:
In round t = 1, 2, . . . , the learner receives a user index it ∈ U to serve content to,
hence the user to serve may change at every round, though the same user can re-
cur many times. We assume the sequence of users i1, i2, . . . is determined by an
exogenous process that places nonzero and independent probability to each user

1 As usual, this assumption may be relaxed by assuming the existence of two thresholds, one for
the within-cluster distance of u>i x to u>i′x, the other for the between-cluster distance.

2 It would in fact be possible to lift this whole machinery to time-drifting user preferences by
combining with known techniques (e.g., [21, 79]).
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being the next one to serve. Together with it, the system receives in round t a set
of feature vectors Cit = {xt,1,xt,2, . . . ,xt,ct} ⊆ Rd encoding the content which
is currently available for recommendation to user it. The learner is compelled to
pick some x̄t = xt,kt ∈ Cit to recommend to it, and then observes it’s feedback
in the form of payoff at ∈ R whose (conditional) expectation is u>it x̄t. The goal of
the learning system is to maximize its total payoff

∑T
t=1 at over T rounds. When

the user feedback at our disposal is only the click/no-click behavior, the payoff at
is naturally interpreted as a binary feedback, so that the quantity

∑T
t=1 at
T becomes

a clickthrough rate (CTR), where at = 1 if the recommended item was clicked by
user it, and at = 0, otherwise. CTR is the measure of performance adopted by our
comparative experiments in Section 4.5.

From a theoretical standpoint (Section 4.6), we are instead interested in bound-
ing the cumulative regret achieved by our algorithms. More precisely, let the regret
rt of the learner at time t be the extent to which the average payoff of the best
choice in hindsight at user it exceeds the average payoff of the algorithm’s choice,
i.e.,

rt =
(

max
x∈Cit

u>itx
)
−u>it x̄t .

We are aimed at bounding with high probability the cumulative regret
∑T

t=1 rt , the
probability being over the noise variables εit(x̄t), and any other possible source of
randomness, including it – see Section 4.6.

The kind of regret bound we would like to contrast to is one where the latent
clustering structure over U (w.r.t. the feature vectors x) is somehow known before-
hand (see Section 4.6 for details). When the content universe is large but known a
priori, as is frequent in many collaborative filtering applications, it is often desir-
able to also group the items into clusters based on similarity of user preferences,
i.e., two items are similar if they are preferred by many of the same users. This no-
tion of “two-sided” clustering is well known in the literature; when the clustering
process is simultaneously grouping users based on similarity at the item side and
items based on similarity at the user side, it goes under the name of “co-clustering”
(see, e.g., [32, 33]). Here, we consider a computationally more affordable notion
of collaborate filtering based on adaptive two-sided clustering.

Unlike previous existing clustering techniques on bandits (e.g., [41, 82]),
our clustering setting only applies to the case when the content universe
is large but known a priori (yet, see the end of Section 4.4). Specifi-
cally, let the content universe be I = {x1,x2, . . . ,x|I|}, and P (xh) =
{U1(xh), U2(xh), . . . , Um(xh)(xh)} be the partition into clusters over the set of
users U induced by item xh. Then items xh,xh′ ∈ I belong to the same cluster
(over the set of items I) if and only if they induce the same partition of the users,
i.e., if P (xh) = P (xh′). We denote by g the number of distinct partitions so in-
duced over U by the items in I, and work under the assumption that g is unknown
but significantly smaller than |I|. (Again, the assumption g << |I| is not strictly
needed, but it both makes our algorithms effective and is expected to be satisfied in
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relevant practical scenarios.)
Finally, in all of the above, an important special case is when the items to be

recommended do not possess specific features (or do not possess features having
significant predictive power). In this case, it is common to resort to the more clas-
sical non-contextual stochastic multiarmed bandit setting (e.g., [6, 4]), which is
recovered from the contextual framework by setting d = |I|, and assuming the
content universe I is made up of the d-dimensional vectors eh, h = 1, . . . , d, of
the canonical basis of Rd, As a consequence, the expected payoff of user i on item
h is simply the h-th component of vector ui, and two users i and i′ belong to the
same cluster w.r.t. to h if the h-th component of ui equals the h-th component of
ui′ . Because the lack of useful annotation on data was an issue with all datasets at
our disposal, it is this latter modeling assumption that motivates the algorithm we
actually implemented for the experiments reported in Section 4.5.

4.3 Related Work

Batch collaborative filtering neighborhood methods rely on finding similar groups
of users and items to the target user-item pair, e.g., [103], and thus in effect rely on a
dynamic form of grouping users and items. Collaborative Filtering-based methods
have also been integrated with co-clustering techniques, whereby preferences in
each co-cluster are modeled with simple statistics of the preference relations in the
co-cluster, e.g., rating averages [42].

Beyond the general connection to co-clustering (e.g., [32, 33]), our paper is
related to the research on multi-armed bandit algorithms for trading off explo-
ration and exploitation through dynamic clustering. We are not aware of any spe-
cific piece of work that combines bandits with co-clustering based on the scheme
of collaborative filtering; the papers which are most closely related to ours are
[34, 76, 82, 13, 65, 41, 63]. In [34], the authors work under the assumption that
users are defined using a feature vector, and try to learn a low-rank hidden subspace
assuming that variation across users is low-rank. The paper combines low-rank ma-
trix recovery with high-dimensional Gaussian Process Bandits, but it gives rise to
algorithms which do not seem practical for sizeable problems. In [76], the authors
analyze a non-contextual stochastic bandit problem where model parameters are
assumed to be clustered in a few (unknown) types. Yet, the provided solutions are
completely different from ours. The work [82] combines (k-means-like) online
clustering with a contextual bandit setting, but clustering is only made at the user
side. The paper [13] also relies on bandit clustering at the user side (as in [76, 82]),
with an emphasis on diversifying recommendations to the same user over time. In
[65], the authors propose cascading bandits of user behavior to identify the k most
attractive items, and formulate it as a stochastic combinatorial partial monitoring
problem. Finally, the algorithms in [41, 63, 71] can be seen as a special case of
COFIBA when clustering is done only at the user side, under centralized [41, 71]
or decentralized [63] environments.
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Similar in spirit are also [7, 14, 18, 60]: In [7], the authors define a trans-
fer learning problem within a stochastic multi-armed bandit setting, where a prior
distribution is defined over the set of possible models over the tasks; in [14], the
authors rely on clustering Markov Decision Processes based on their model pa-
rameter similarity. In [18], the authors discuss how to choose from n unknown
distributions the k ones whose means are largest by a certain metric; in [60] the
authors study particle Thompson sampling with Rao-Blackwellization for online
matrix factorization, exhibiting a regret bound in a very specific case of n × m
rank-1 matrices. Yet, in none of above cases did the authors make a specific ef-
fort towards item-dependent clustering models applied to stochastic multi-armed
bandits.

Further work includes [97, 98]. In [97], an ensemble of contextual bandits
is used to address the cold-start problem in recommender systems. A similar ap-
proach is used in [98] to deal with cold-start in recommender systems but based
on the probability matching paradigm in a parameter-free bandit strategy, which
employs online bootstrap to derive the distribution of the estimated models. In
contrast to our work, in neither [97] nor [98] are collaborative effects explicitly
taken into account.

4.4 The Algorithm

COFIBA, relies on upper-confidence-based tradeoffs between exploration and ex-
ploitation, combined with adaptive clustering procedures at both the user and the
item sides. COFIBA stores in round t an estimatewi,t of vector ui associated with
user i ∈ U . Vectorswi,t are updated based on the payoff feedback, as in a standard
linear least-squares approximation to the corresponding ui. Every user i ∈ U hosts
such an algorithm which operates as a linear bandit algorithm (e.g., [25, 1, 41]) on
the available content Cit . More specifically, wi,t−1 is determined by an inverse
correlation matrixM−1

i,t−1 subject to rank-one adjustments, and a vector bi,t−1 sub-
ject to additive updates. Matrices Mi,t are initialized to the d × d identity matrix,
and vectors bi,t are initialized to the d-dimensional zero vector. Matrix M−1

i,t−1 is
also used to define an upper confidence bound CBi,t−1(x) in the approximation
of wi,t−1 to ui along direction x. Based on the local information encoded in the
weight vectors wi,t−1 and the confidence bounds CBi,t−1(x), the algorithm also
maintains and updates a family of clusterings of the set of users U , and a single
clustering over the set of items I. On both sides, such clusterings are represented
through connected components of undirected graphs (this is in the same vein as
in [41]), where nodes are either users or items. A pseudocode description of our
algorithm is contained in Figures 4.1, 4.2, and 4.3, while Figure 4.4 illustrates the
algorithm’s behavior through a pictorial example.

At time t, COFIBA receives the index it of the current user to serve, along
with the available item vectors xt,1, . . . ,xt,ct , and must select one among them.
In order to do so, the algorithm computes the ct neighborhood sets Nk, one per
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Input:
• Set of users U = {1, . . . , n};
• set of items I = {x1, . . . ,x|I|} ⊆ Rd;
• exploration parameter α > 0, and edge deletion parameter α2 > 0.

Init:
• bi,0 = 0 ∈ Rd and Mi,0 = I ∈ Rd×d, i = 1, . . . n;
• User graph GU1,1 = (U , EU1,1), GU1,1 is connected over U ;
• Number of user graphs g1 = 1;
• No. of user clusters mU

1,1 = 1;
• Item clusters Î1,1 = I, no. of item clusters g1 = 1;
• Item graph GI1 = (I, EI1 ), GI1 is connected over I.

for t = 1, 2, . . . , T do
Set

wi,t−1 = M−1i,t−1bi,t−1, i = 1, . . . , n ;

Receive it ∈ U , and get items Cit = {xt,1, . . . ,xt,ct} ⊆ I;
For each k = 1, . . . , ct, determine which cluster (within the current user clustering
w.r.t. xt,k) user it belongs to, and denote this cluster by Nk;
Compute, for k = 1, . . . , ct, aggregate quantities

M̄Nk,t−1 = I +
∑

i∈Nk
(Mi,t−1 − I),

b̄Nk,t−1 =
∑

i∈Nk
bi,t−1,

w̄Nk,t−1 = M̄−1Nk,t−1b̄Nk,t−1 ;

Set kt = argmax
k=1,...,ct

(
w̄>Nk,t−1xt,k + CBNk,t−1(xt,k)

)
,

where CBNk,t−1(x) = α
√
x>M̄−1Nk,t−1x log(t+ 1) ;

Set for brevity x̄t = xt,kt ;
Observe payoff at ∈ R, and update weights Mi,t and bi,t as follows:
• Mit,t = Mit,t−1 + x̄tx̄

>
t ,

• bit,t = bit,t−1 + atx̄t,
• Set Mi,t = Mi,t−1, bi,t = bi,t−1 for all i 6= it ,

Determine ĥt ∈ {1, . . . , gt} such that kt ∈ Îĥt,t;
Update user clusters at graph GU

t,ĥt
= (U , EU

t,ĥt
) by performing the steps in Figure

4.2;
For all h 6= ĥt, set GUt+1,h = GUt,h;
Update item clusters at graph GIt = (I, EIt ) by performing the steps in Figure 4.3 .

end for

Figure 4.1: The COFIBA algorithm.
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item xt,k ∈ Cit based on the current aggregation of users (clusters “at the user
side”) w.r.t. item xt,k. Set Nk should be regarded as the current approximation to
the cluster (over the users) it belongs to when the clustering criterion is defined by
item xt,k. Each neighborhood set then defines a compound weight vector w̄Nk,t−1

(through the aggregation of the corresponding matrices Mi,t−1 and vectors bi,t−1)
which, in turn, determines a compound confidence bound3 CBNk,t−1(xt,k). Vector
w̄Nk,t−1 and confidence bound CBNk,t−1(xt,k) are combined through an upper-
confidence exploration-exploitation scheme so as to commit to the specific item
x̄t ∈ Cit for user it. Then, the payoff at is received, and the algorithm uses
x̄t to update Mit,t−1 to Mit,t and bit,t−1 to bit,t. Notice that the update is only
performed at user it, though this will affect the calculation of neighborhood sets
and compound vectors for other users in later rounds.

After receiving payoff at and computing Mit,t and bit,t, COFIBA updates the
clusterings at the user side and the (unique) clustering at the item side. In round t,
there are multiple graphsGUt,h = (U , EUt,h) at the user side (hence many clusterings
over U , indexed by h), and a single graph GIt = (I, EIt ) at the item side (hence a
single clustering over I). Each clustering at the user side corresponds to a single
cluster at the item side, so that we have gt clusters Î1,t, . . . , Îgt,t over items and gt
clusterings over users. See Figure 4.4 for an example where U = {1, . . . 6} and
I = {x1, . . . ,x8} (the items are depicted here as 1, 2, . . . , 8). (a) At the begin-
ning we have g1 = 1, with a single item cluster Î1,1 = I and, correspondingly,
a single (degenerate) clustering over U , made up of the unique cluster U . (b) In
round t we have the gt = 3 item clusters Î1,t = {x1,x2}, Î2,t = {x3,x4,x5},
Î3,t = {x6,x7,x8}. Corresponding to each one of them are the three clusterings
over U depicted on the left, so thatmU

t,1 = 3,mU
t,2 = 2, andmU

t,3 = 4. In this exam-
ple, it = 4, and x̄t = x5, hence ĥt = 2, and we focus on graphGUt,2, corresponding
to user clustering {{1, 2, 3}, {4, 5, 6}}. Suppose in GUt,2 the only neighbors of user
4 are 5 and 6. When updating such user clustering, the algorithm considers therein
edges (4, 5) and (4, 6) to be candidates for elimination. Suppose edge (4, 6) is
eliminated, so that the new clustering over U induced by the updated graph GUt+1,2

becomes {{1, 2, 3}, {4, 5}, {6}}. After user graph update, the algorithm considers
the item graph update. Suppose x5 is only connected to x4 and x3 in GIt , and
that x4 is not connected to x3, as depicted. Both edge (x5,x4) and edge (x5,x3)
are candidates for elimination. The algorithm computes the neighborhood N of
it = 4 according to GUt+1,2, and compares it to the the neighborhoods NU

`,t+1(it),
for ` = 3, 4. AssumeN 6= NU

3,t+1(it), because the two neighborhoods of user 4 are
now different, the algorithm deletes edge (x5,x3) from the item graph, splitting
the item cluster {x3,x4,x5} into the two clusters {x3} and {x4,x5}, hence allo-
cating a new cluster at the item side corresponding to a new degenerate clustering
{{1, 2, 3, 4, 5, 6}} at the user side. (c) The resulting clusterings at the beginning of

3 The one given in Figure 4.1 is the confidence bound we use in our experiments. In fact, the
theoretical counterpart to CB is significantly more involved, same efforts can also be found in order
to close the gap, e.g., in [4, 41].
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Update user clusters at graph GU
t,ĥt

as follows:

• Delete from EU
t,ĥt

all (it, j) such that

|w>it,tx̄t −w>j,tx̄t| > CBit,t(x̄t) + CBj,t(x̄t) ,

where CBi,t(x) = α2

√
x>M−1i,t x log(t+ 1) ;

• Let EU
t+1,ĥt

be the resulting set of edges, set GU
t+1,ĥt

= (U , EU
t+1,ĥt

), and

compute associated clusters Û1,t+1,ĥt
, Û2,t+1,ĥt

, . . . , ÛmU
t+1,ĥt

,t+1,ĥt
as the con-

nected components of GU
t+1,ĥt

.

Figure 4.2: User cluster update in the COFIBA

Update item clusters at graph GIt as follows:
• For all ` such that (x̄t,x`) ∈ EIt build neighborhood NU

`,t+1(it) as:

NU
`,t+1(it) =

{
j : j 6= it , |w>it,tx` −w>j,tx`|

≤ CBit,t(x`) + CBj,t(x`)
}

;

• Delete from EIt all (x̄t,x`) such that NU
`,t+1(it) 6= NU

kt,t+1(it), where
NU
kt,t+1(it) is the neighborhood of node it w.r.t. graph GU

t+1,ĥt
;

• LetEIt+1 be the resulting set of edges, setGIt+1 = (I, EIt+1), compute associated
item clusters Î1,t+1, Î2,t+1, . . . , Îgt+1,t+1 through the connected components of
GIt+1;

• For each new item cluster created, allocate a new connected graph over users
representing a single (degenerate) cluster U .

Figure 4.3: Item cluster update in the COFIBA

round t + 1 (In this picture it is assumed that edge (x5,x4) was not deleted from
the item graph at time t).
On both user and item sides, updates take the form of edge deletions. Updates at

the user side are only performed on the graph GU
t,ĥt

pointed to by the selected item
x̄t = xt,kt . Updates at the item side are only made if it is likely that the neighbor-
hoods of user it has significantly changed when considered w.r.t. two previously
deemed similar items. Specifically, if item xh was directly connected to item x̄t at
the beginning of round t and, as a consequence of edge deletion at the user side,
the set of users that are now likely to be close to it w.r.t. xh is no longer the same
as the set of users that are likely to be close to it w.r.t. x̄t, then this is taken as
a good indication that item xh is not inducing the same partition over users as x̄t
does, hence edge (x̄t,xh) gets deleted. Notice that this need not imply that, as a
result of this deletion, the two items are now belonging to different clusters over I,
since these two items may still be indirectly connected.

It is worth stressing that a naive implementation of COFIBA would require
memory allocation for maintaining |I|-many n-node graphs, i.e., O(n2 |I|). Be-
cause this would be prohibitive even for moderately large sets of users, we make
full usage of the approach of [41], where instead of starting off with complete
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Figure 4.4: Illustration example

graphs over users each time a new cluster over items is created, we randomly
sparsify the complete graph by drawing an Erdos-Renyi initial graph, still retain-
ing with high probability the underlying clusterings {U1(xh), . . . , Um(xh)(xh)},
h = 1, . . . , |I|, over users. This works under the assumption that the latent clus-
ters Ui(xh) are not too small – see the argument in [41], where it is shown that in
practice the initial graphs can have O(n log n) edges instead of O(n2). Moreover,
because we modify the item graph by edge deletions only, one can show that with
high probability (under the modeling assumptions of Section 4.2) the number gt of
clusters over items remains upper bounded by g throughout the run of COFIBA, so
that the actual storage required by the algorithm is indeed O(ng log n). This also
brings a substantial saving in running time, since updating connected components
scales with the number of edges of the involved graphs. It is this graph sparsifi-
cation techniques that we used and tested along the way in our experimentation
parts.

Finally, despite we have described in Section 4.2 a setting where I and U are
known a priori (the analysis in Section 4.6 currently holds only in this scenario),
nothing prevents in practice to adapt COFIBA to the case when new content or
new users show up. This essentially amounts to adding new nodes to the graphs at
either the item or the user side, by maintaining data-structures via dynamic memory
allocation. In fact, this is precisely how we implemented our algorithm in the case
of very big item or user sets (e.g., the Telefonica and the Avazu dataset in the next
section).
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4.5 Experiments

We compared our algorithm to standard bandit baselines on three real-world
datasets: one canonical benchmark dataset on news recommendations, one adver-
tising dataset from a living production system, and one publicly available adver-
tising dataset. In all cases, no features on the items have been used. We closely
followed the same experimental setting as in previous work [25, 41], thereby eval-
uating prediction performance by click-through rate.

4.5.1 Datasets

Yahoo!. The first dataset we use for the evaluation is the freely available bench-
mark dataset which was released in the “ICML 2012 Exploration & Exploitation
Challenge”4. The aim of the challenge was to build state-of-the-art news article
recommendation algorithms on Yahoo! data, by building an algorithm that learns
efficiently a policy to serve news articles on a web site. The dataset is made up of
random traffic records of user visits on the “Today Module” of Yahoo!, implying
that both the visitors and the recommended news article are selected randomly. The
available options (the items) correspond to a set of news articles available for rec-
ommendation, one being displayed in a small box on the visited web page. The aim
is to recommend an interesting article to the user, whose interest in a given piece
of news is asserted by a click on it. The data has 30 million visits over a two-week
time stretch. Out of the logged information contained in each record, we used the
user ID in the form of a 136-dimensional boolean vector containing his/her fea-
tures (index it), the set of relevant news articles that the system can recommend
from (set Cit); a randomly recommended article during the visit; a boolean value
indicating whether the recommended article was clicked by the visiting user or not
(payoff at). Because the displayed article is chosen uniformly at random from the
candidate article pool, one can use an unbiased off-line evaluation method to com-
pare bandit algorithms in a reliable way. We refer the reader to [41] for a more
detailed description of how this dataset was collected and extracted. We picked
the larger of the two datasets considered in [41], resulting in n ≈ 18K users, and
d = 323 distinct items. The number of records ended up being 2.8M , out of which
we took the first 300K for parameter tuning, and the rest for testing.

Telefonica. This dataset was obtained from Telefonica S.A., which is the num-
ber one Spanish broadband and telecommunications provider, with business units
in Europe and South America. This data contains clicks on ads displayed to user
on one of the websites that Telefonica operates on. The data were collected from
the back-end server logs, and consist of two files: the first file contains the ads in-
teractions (each record containing an impression timestamp, a user-ID, an action,
the ad type, the order item ID, and the click timestamp); the second file contains
the ads metadata as item-ID, type-ID, type, order-ID, creative type, mask, cost,
creator-ID, transaction key, cap type. Overall, the number n of users was in the

4https://explochallenge.inria.fr/category/challenge
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scale of millions, while the number d of items was approximately 300. The data
contains 15M records, out of which we took the first 1, 5M for parameter tun-
ing, and the rest for testing. Again, the only available payoffs are those associated
with the items served by the system. Hence, in order to make the procedure be
an effective estimator in a sequential decision process (e.g., [27, 36, 41, 69]), we
simulated random choices by the system by generating the available item sets Cit
as follows: At each round t, we stored the ad served to the current user it and the
associated payoff value at (1 =“clicked”, 0 =“not clicked”). Then we created Cit
by including the served ad along with 9 extra items (hence ct = 10 ∀t) which were
drawn uniformly at random in such a way that, for any item eh ∈ I, if eh occurs
in some set Cit , this item will be the one served by the system 1/10 of the times.
The random selection was done independent of the available payoff values at. All
our experiments on this dataset were run on a machine with 64GB RAM and 32
Intel Xeon cores.

Avazu. This dataset was prepared by Avazu Inc,5 which is a leading multina-
tional corporation in the digital advertising business. The data was provided for the
challenge to predict the click-through rate of impressions on mobile devices, i.e.,
whether a mobile ad will be clicked or not. The number of samples was around
40M , out of which we took the first 4M for parameter tuning, and the remaining
for testing. Each line in the data file represents the event of an ad impression on
the site or in a mobile application (app), along with additional context information.
Again, payoff at is binary. The variables contained in the dataset for each sam-
ple are the following: ad-ID; timestamp (date and hour); click (boolean variable);
device-ID; device IP; connection type; device type; ID of visited App/Website;
category of visited App/Website; connection domain of visited App/Website; ban-
ner position; anonymized categorical fields (C1, C14-C21). We pre-processed the
dataset as follows: we cleaned up the data by filtering out the records having miss-
ing feature values, and removed outliers. We identified the user with device-ID, if
it is not null. The number of users on this dataset is in the scale of millions. Similar
to the Telefonica dataset, we generated recommendation lists of length ct = 20 for
each distinct timestamp. We used the first 4M records for tuning parameters, and
the remaining 36M for testing. All data were transferred to Amazon S3, and all
jobs were run through the Amazon EC2 Web Service.

4.5.2 Algorithms

We compared COFIBA to a number of state-of-the-art bandit algorithms:

• LINUCB-ONE is a single instance of the UCB1 [6] algorithm, which is a
very popular and established algorithm that has received a lot of attention in
the research community over the past years;
• DYNUCB is the dynamic UCB algorithm of [82]. This algorithm adopts

a “K-means”-like clustering technique so as to dynamically re-assign the
5https://www.kaggle.com/c/avazu-ctr-prediction
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clusters on the fly based on the changing contexts and user preferences over
time;
• LINUCB-IND [41] is a set of independent UCB1 instances, one per user,

which provides a fully personalized recommendation for each user;
• CLUB [41] is the state-of-the-art online clustering of bandits algorithm that

dynamically cluster users based on the confidence ellipsoids of their models;

• LINUCB-V [4] is also a single instance of UCB1, but with a more sophis-
ticated confidence bound; this algorithm turned out to be the winner of the
“ICML 2012 Challenge” where the Yahoo! dataset originates from.

We tuned the optimal parameters in the training set with a standard grid search as
indicated in [27, 41], and used the test set to evaluate the predictive performance
of the algorithms. Since the system’s recommendation need not coincide with the
recommendation issued by the algorithms we tested, we only retained the records
on which the two recommendations were indeed the same. Because records are
discarded on the fly, the actual number T of retained records (“Rounds” in the plots
of the next subsection) changes slightly across algorithms; T was around 70K for
the Yahoo! data, 350K for the Telefonica data, and 900K for the Avazu data. All
experimental results we report were averaged over 3 runs (but in fact the variance
we observed across these runs was fairly small).

4.5.3 Results

Our results are summarized in Figures 4.5, 4.6, and 4.7. Further evidence is con-
tained in Figure 4.8. In Figures 4.5–4.7, we plotted click-through rate (“CTR”) vs.
retained records so far (“Rounds”). All these experiments are aimed at testing the
performance of the various bandit algorithms in terms of prediction performance,
also in cold-start regimes (i.e., the first relatively small fraction of the time horizon
in the x-axis). Our experimental setting is in line with previous ones (e.g., [25, 41])
and, by the way the data have been prepared, gives rise to a reliable estimation of
actual CTR behavior under the same experimental conditions as in [25, 41]. Figure
4.8 is aimed at supporting the theoretical model of Section 4.2, by providing some
evidence on the kind of clustering statistics produced by COFIBA at the end of its
run.

Whereas the three datasets we took into consideration are all generated by real
online web applications, it is worth pointing out that these datasets are indeed dif-
ferent in the way customers consume the associated content. Generally speaking,
the longer the lifecycle of one item the fewer the items, the higher the chance that
users with similar preferences will consume it, and hence the bigger the collab-
orative effects contained in the data. It is therefore reasonable to expect that our
algorithm will be more effective in datasets where the collaborative effects are in-
deed strong.
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Figure 4.5: Results on the Yahoo dataset.

The users in the Yahoo! data (Figure 4.5), are likely to span a wide range of
demographic characteristics; on top of this, this dataset is derived from the con-
sumption of news that are often interesting for large portions of these users and,
as such, do not create strong polarization into subcommunities. This implies that
more often than not, there are quite a few specific hot news that all users might
express interest in, and it is natural to expect that these pieces of news are intended
to reach a wide audience of consumers. Given this state of affairs, it is not sur-
prising that on the Yahoo! dataset both LINUCB-ONE and LINUCB-V (serving
the same news to all users) are already performing quite well, thereby making the
clustering-of-users effort somewhat less useful. This also explains the poor per-
formance of LINUCB-IND, which is not performing any clustering at all. Yet,
even in this non-trivial case, COFIBA can still achieve a significant increased pre-
diction accuracy compared, e.g., to CLUB, thereby suggesting that simultaneous
clustering at both the user and the item (the news) sides might be an even more
effective strategy to earn clicks in news recommendation systems.
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Figure 4.6: Results on the Telefonica dataset.

Most of the users in the Telefonica data are from a diverse sample of people
in Spain, and it is easy to imagine that this dataset spans a large number of com-
munities across its population. Thus we can assume that collaborative effects will
be much more evident, and that COFIBA will be able to leverage these effects
efficiently. In this dataset, CLUB performs well in general, while DYNUCB de-
teriorates in the initial stage and catches-up later on. COFIBA seems to surpass
all other algorithms, especially in the cold-start regime, all other algorithms be-
ing in the same ballpark as CLUB. Finally, the Avazu data is furnished from its
professional digital advertising solution platform, where the customers click the
ad impressions via the iOS/Android mobile apps or through websites, serving ei-
ther the publisher or the advertiser which leads to a daily high volume internet
traffic. In this dataset, neither LINUCB-ONE nor LINUCB-IND displayed a
competitive cold-start performance. DYNUCB is underperforming throughout,
while LINUCB-V demonstrates a relatively high CTR. CLUB is strong at the
beginning, but then its CTR performance degrades. On the other hand, COFIBA
seems to work extremely well during the cold-start, and comparatively best in all
later stages.

In Figure 4.8 we give a typical distribution of cluster sizes produced by
COFIBA after at the end of its run.6 The emerging pattern is always the same:

6 Without loss of generality, we take the first Yahoo dataset to provide statistics, for similar shapes
of the bar plots can be established for the remaining ones.
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Figure 4.7: Results on the Avazu dataset.

we have few clusters over the items with very unbalanced sizes and, corresponding
to each item cluster, we have few clusters over the users, again with very unbal-
anced sizes. This recurring pattern is in fact the motivation behind our theoretical
assumptions (Section 4.2), and a property of data that the COFIBA algorithm can
provably take advantage of (Section 4.6). These bar plots, combined with the com-
paratively good performance of COFIBA, suggest that our datasets do actually
possess clusterability properties at both sides.

To summarize, despite the differences in the three datasets, the experimen-
tal evidence we collected on them is quite consistent, in that in all the three cases
COFIBA significantly outperforms all other competing methods we tested. This is
especially noticeable during the cold-start period, but the same relative behavior es-
sentially shows up during the whole time window of our experiments. COFIBA is
a bit involved to implement, as contrasted to its competitors, and is also somewhat
slower to run (unsurprisingly slower than, say, LINUCB-ONE and LINUCB-
IND). On the other hand, COFIBA is far more effective in exploiting the collabo-
rative effects embedded in the data, and still amenable to be run on large datasets.
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Figure 4.8: A typical distribution of cluster sizes over users for the Yahoo dataset.
Each bar plot corresponds to a cluster at the item side. We have 5 plots since this is
the number of clusters over the items that COFIBA ended up with after sweeping
once over this dataset in the run at hand. Each bar represents the fraction of users
contained in the corresponding cluster. For instance, the first cluster over the items
generated 16 clusters over the users (bar plot on top), with relative sizes 31%, 15%,
12%, etc. The second cluster over the items generated 10 clusters over the users
(second bar plot from top) with relative sizes 61%, 12%, 9%, etc. The relative
size of the 5 clusters over the items is as follows: 83%, 10%, 4%, 2%, and 1%, so
that the clustering pattern depicted in the top plot applies to 83% of the items, the
second one to 10% of the items, and so on.
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4.6 Regret Analysis

The following theorem is the theoretical guarantee of COFIBA, where we relate
the cumulative regret of COFIBA to the clustering structure of users U w.r.t. items
I. For simplicity of presentation, we formulate our result in the one-hot encoding
case, where ui ∈ Rd, i = 1, . . . , n, and I = {e1, . . . , ed}. In fact, a more
general statement can be proven which holds in the case when I is a generic set of
feature vectors I = {x1, . . . ,x|I|}, and the regret bound depends on the geometric
properties of such vectors.7

In order to obtain a provable advantage from our clusterability assumptions,
extra conditions are needed on the way it and Cit are generated. The clusterability
assumptions we can naturally take advantage of are those where, for most partitions
P (eh), the relative sizes of clusters over users are highly unbalanced. Translated
into more practical terms, cluster unbalancedness amounts to saying that the uni-
verse of items I tends to influence users so as to determine a small number of
major common behaviors (which need neither be the same nor involve the same
users across items), along with a number of minor ones. As we saw in our experi-
ments, this seems like a frequent behavior of users in some practical scenarios.

Theorem 19. Let the COFIBA algorithm of Figure 4.1 be run on a set of users
U = {1, . . . , n} with associated profile vectors u1, . . . ,un ∈ Rd, and set of items
I = {e1, . . . , ed} such that the h-th induced partition P (eh) over U is made up
of mh clusters of cardinality vh,1, vh,2, . . . , vh,mh , respectively. Moreover, let g
be the number of distinct partitions so obtained. At each round t, let it be gen-
erated uniformly at random8 from U . Once it is selected, the number ct of items
in Cit is generated arbitrarily as a function of past indices i1, . . . , it−1, payoffs
a1, . . . , at−1, and sets Ci1 , . . . , Cit−1 , as well as the current index it. Then the se-
quence of items in Cit is generated i.i.d. (conditioned on it, ct and all past indices
i1, . . . , it−1, payoffs a1, . . . , at−1, and sets Ci1 , . . . , Cit−1) according to a given
but unknown distribution D over I. Let payoff at lie in the interval [−1, 1], and
be generated as described in Section 4.2 so that, conditioned on history, the ex-
pectation of at is u>it x̄t. Finally, let parameters α and α2 be suitable functions of
log(1/δ). If ct ≤ c ∀t then, as T grows large, with probability at least 1 − δ the
cumulative regret satisfies9

T∑

t=1

rt = Õ
((

E[S] +

√
c
√
mn VAR(S) + 1

)√
d T

n

)
,

where S = S(h) =
∑mh

j=1
√
vh,j , h is a random index such that eh ∼ D, and

E[·] and VAR(·) denote, respectively, the expectation and the variance w.r.t. this
random index.

7 In addition, the function CB should be modified so as to incorporate these properties.
8 Any distribution having positive probability on each i ∈ U would suffice here.
9 The Õ-notation hides logarithmic factors in n, m, g, T , d, 1/δ, as well as terms which are

independent of T .
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To get a feeling of how big (or small) E[S] and VAR[S] can be, let us consider
the case where each partition over users has a single big cluster and a number of
small ones. To make it clear, consider the extreme scenario where each P (eh) has
one cluster of size vh,1 = n − (m − 1), and m − 1 clusters of size vh,j = 1,
with m <

√
n. Then it is easy to see that E[S] =

√
n− (m− 1) + m − 1,

and VAR(S) = 0, so that the resulting regret bound essentially becomes Õ(
√
dT ),

which is the standard regret bound one achieves for learning a single d-dimensional
user (aka, the standard noncontextual bandit bound with d actions and no gap as-
sumptions among them). At the other extreme lies the case when each partition
P (eh) has n-many clusters, so that E[S] = n, VAR(S) = 0, and the result-
ing bound is Õ(

√
dnT ). Looser upper bounds can be achieved in the case when

VAR(S) > 0, where also the interplay with c starts becoming relevant. Finally, ob-
serve that the number g of distinct partitions influences the bound only indirectly
through VAR(S). Yet, it is worth repeating here that g plays a crucial role in the
computational (both time and space) complexity of the whole procedure.

Proof of Theorem 19. The proof sketch builds on the analysis in [41]. Let the true
underlying clusters over the users be Vh,1, Vh,2, . . . , Vh,mh , with |Vh,j | = vh,j . In
[41], the authors show that, because each user i has probability 1/n to be the one
served in round t, we have, with high probability, wi,t → ui for all i, as t grows
large. Moreover, because of the gap assumption involving parameter γ, all edges
connecting users belonging to different clusters at the user side will eventually be
deleted (again, with high probability), after each user i is served at least O( 1

γ2 )
times. By the way edges are disconnected at the item side, the above is essentially
independent (up to log factors due to union bounds) of which graph at the user
side we are referring to. In turn, this entails that the current user clusters encoded
by the connected components of graph GUt,h will eventually converge to the mh

true user clusters (again, independent of h, up to log factors), so that the aggregate
weight vectors w̄Nk,t−1 computed by the algorithm for trading off exploration vs.
exploitation in round t will essentially converge to uit at a rate of the form10

E

[
1√

1 + Tht,jt,t−1/d

]
, (4.1)

where ht is the index of the true cluster over items that x̄t belongs to, jt is the
index of the true cluster over users that it belongs to (according to the partition of
U determined by ht), Tht,jt,t−1 is the number of rounds so far where we happened
to “hit” cluster Vht,jt , i.e.,

Tht,jt,t−1 = |{s ≤ t− 1 : is ∈ Vht,jt}| ,
10 Because I = {e1, . . . , ed}, the minimal eigenvalue λ of the process correlation matrix

E[XX>] in [41] is here 1/d. Moreover, compared to [41], we do not strive to capture the geometry
of the user vectors ui in the regret bound, hence we do not have the extra

√
m factor occurring in

their bound.
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and the expectation is w.r.t. both the (uniform) distribution of it, and distributionD
generating the items in Cit , conditioned on all past events. Since, by the Azuma-
Hoeffding inequality, Tht,jt,t−1 concentrates as

Tht,jt,t−1 ≈
t− 1

n
vht,jt ,

we have
(4.1) ≈ ED



mht∑

j=1

vht,j
n

1√
1 + t−1

dn vht,j


 .

It is the latter expression that rules the cumulative regret of COFIBA in that, up to
log factors:

T∑

t=1

rt ≈
T∑

t=1

ED



mht∑

j=1

vht,j
n

1√
1 + t−1

dn vht,j


 . (4.2)

Eq. (4.2) is essentially (up to log factors and omitted additive terms) the regret
bound one would obtain by knowning beforehand the latent clustering structure
over U .

Because ht ∈ Cit is itself a function of the items in Cit , we can eliminate
the dependence on ht by the following simple stratification argument. First of all,
notice that

mht∑

j=1

vht,j
n

1√
1 + t−1

dn vht,j

≈
√

d

nt

mht∑

j=1

√
vht,j .

Then, we set for brevity S(h) =
∑mh

j=1
√
vh,j , and let ht,k be the index of the true

cluster over items that xt,k belongs to (recall that ht,k is a random variable since
so is xt,k). Since S(ht,k) ≤

√
mn, a standard argument shows that

ED [S(ht)] ≤ ED
[

max
k=1,...,ct

S(ht,k)

]

≤ ED[S(ht,1)] +
√
c
√
mn VARD(S(ht,1)) + 1 ,

so that, after some overapproximations, we conclude that
∑T

t=1 rt is upper
bounded with high probability by

Õ
((

ED[S(h)] +

√
c
√
mn VARD(S(h)) + 1

)√
d T

n

)
,

the expectation and the variance being over the random index h such that eh ∼
D.
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4.7 Conclusions

We have initiated an investigation of collaborative filtering bandit algorithms oper-
ating in relevant scenarios where multiple users can be grouped by behavior simi-
larity in different ways w.r.t. items and, in turn, the universe of items can possibly
be grouped by the similarity of clusterings they induce over users. We carried out
an extensive experimental comparison with very encouraging results, and have also
given a regret analysis which operates in a simplified scenario. Our algorithm can
in principle be modified so as to be combined with any standard clustering (or co-
clustering) technique. However, one advantage of encoding clusters as connected
components of graphs (at least at the user side) is that we are quite effective in tack-
ling the so-called cold start problem, for the newly served users are more likely to
be connected to the old ones, which makes COFIBA in a position to automatically
propagate information from the old users to the new ones through the aggregate
vectors w̄Nk,t. In fact, so far we have not seen any other way of adaptively cluster-
ing users and items which is computationally affordable on sizeable datasets and, at
the same time, amenable to a regret analysis that takes advantage of the clustering
assumption.

All our experiments have been conducted in the setup of one-hot encoding,
since the datasets at our disposal did not come with reliable/useful annotations
on data. Yet, the algorithm we presented can clearly work when the items are
accompanied by (numerical) features. One direction of our future research is to
compensate for the lack of features in the data by first inferring features during an
initial training phase through standard matrix factorization techniques, and subse-
quently applying our algorithm to a universe of items I described through such
inferred features. Another line of experimental research would be to combine dif-
ferent bandit algorithms (possibly at different stages of the learning process) so
as to roughly get the best of all of them in all stages. This would be somewhat
similar to the meta-bandit construction described in [97]. Another one would be to
combine with matrix factorization techniques as in, e.g., [60].



Chapter 5

Showcase in the Quantification
Problem

5.1 Introduction

Quantification [39] is defined as the task of estimating the prevalence (i.e., rela-
tive frequency) of the classes of interest in an unlabeled set, given a training set
of items labeled according to the same classes. Quantification finds its natural
application in contexts characterized by distribution drift, i.e., contexts where the
training data may not exhibit the same class prevalence pattern as the test data. This
phenomenon may be due to different reasons, including the inherent non-stationary
character of the context, or class bias that affects the selection of the training data.

A naı̈ve way to tackle quantification is via the “classify and count” (CC) ap-
proach, i.e., to classify each unlabeled item independently and compute the frac-
tion of the unlabeled items that have been attributed to each class. However, a
good classifier does not necessarily lead to a good quantifier: assuming the bi-
nary case, even if the sum (FP + FN) of the false positives and false negatives is
comparatively small, bad quantification accuracy might result if FP and FN are sig-
nificantly different (since perfect quantification coincides with the case FP = FN).
This has led researchers to study quantification as a task in its own right, rather
than as a byproduct of classification.

The fact that quantification is not just classification in disguise can also be seen
by the fact that evaluation measures different from those for classification (e.g.,
F1, AUC) need to be employed. Quantification actually amounts to computing
how well an estimated class distribution p̂ fits an actual class distribution p (where
for any class c ∈ C, p(c) and p̂(c) respectively denote its true and estimated preva-
lence); as such, the natural way to evaluate the quality of this fit is via a function
from the class of f -divergences [28], and a natural choice from this class (if only
for the fact that it is the best known f -divergence) is the Kullback-Leibler Diver-
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gence (KLD), defined as

KLD(p, p̂) =
∑

c∈C
p(c) log

p(c)

p̂(c)
(5.1)

Indeed, KLD is the most frequently used measure for evaluating quantification
(see e.g., [9, 38, 39, 40]). Note that KLD is non-decomposable, i.e., the error we
make by estimating p via p̂ cannot be broken down into item-level errors. This is
not just a feature of KLD, but an inherent feature of any measure for evaluating
quantification. In fact, how the error made on a given unlabeled item impacts the
overall quantification error depends on how the other items have been classified1;
e.g., if FP > FN for the other unlabeled items, then generating an additional false
negative is actually beneficial to the overall quantification accuracy, be it measured
via KLD or via any other function.

The fact that KLD is the measure of choice for quantification and that it is non-
decomposable, has lead to the use of structured output learners, such as SVMperf

[51], that allow a direct optimization of non-decomposable functions; the approach
of Esuli and Sebastiani [37, 38] is indeed based on optimizing KLD using SVMperf.
However, that minimizing KLD (or |FP − FN|, or any “pure” quantification mea-
sure) should be the only objective for quantification regardless of the value of
FP + FN (or any other classification measure), is fairly paradoxical. Some au-
thors [9, 78] have observed that this might lead to the generation of unreliable
quantifiers (i.e., systems with good quantification accuracy but bad or very bad
classification accuracy), and have, as a result, championed the idea of optimizing
“multi-objective” measures that combine quantification accuracy with classifica-
tion accuracy. Using a decision-tree-like approach, [78] minimizes |FP2 − FN2|,
which is the product of |FN−FP|, a measure of quantification error, and (FN+FP),
a measure of classification error; [9] also optimizes (using SVMperf) a measure that
combines quantification and classification accuracy.

While SVMperf does provide a recipe for optimizing general performance mea-
sures, it has serious limitations. SVMperf is not designed to directly handle appli-
cations where large streaming data sets are the norm. SVMperf also does not scale
well to multi-class settings, and the time required by the method is exponential in
the number of classes.

In this paper we develop stochastic methods for optimizing a large family of
popular quantification performance measures. Our methods can effortlessly work
with streaming data and scale to very large datasets, offering training times up to
an order of magnitude faster than other approaches such as SVMperf.

1For the sake of simplicity, we assume here that quantification is to be tackled in an aggregative
way, i.e., the classification of individual items is a necessary intermediate step for the estimation of
class prevalences. Note however that this is not necessary; non-aggregative approaches to quantifi-
cation may be found in [43, 62].
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5.2 Related Work

Quantification methods. The quantification methods that have been proposed
over the years can be broadly classified into two classes, namely aggregative and
non-aggregative methods. While aggregative approaches perform quantification
by first classifying individual items as an intermediate step, non-aggregative ap-
proaches do not require this step, and estimate class prevalences holistically. Most
methods, such as those of [9, 10, 38, 39, 78], fall in the former class, while the
latter class has few representatives [43, 62].

Within the class of aggregative methods, a further distinction can be made
between methods, such as those of [10, 39], that first use general-purpose learning
algorithms and then post-process their prevalence estimates to account for their
estimation biases, and methods (which we have already hinted at in Section
5.1) that instead use learning algorithms explicitly devised for quantification
[9, 38, 78]. In this paper we focus the latter class of methods.

Applications of quantification. From an application perspective, quantification is
especially useful in fields (such as social science, political science, market research,
and epidemiology) which are inherently interested in aggregate data, and care little
about individual cases. Aside from applications in these fields [48, 62], quantifica-
tion has also been used in contexts as diverse as natural language processing [24],
resource allocation [39], tweet sentiment analysis [40], and the veterinary sciences
[43]. Quantification has independently been studied within statistics [48, 62], ma-
chine learning [8, 35, 89], and data mining [38, 39]. Unsurprisingly, given this
varied literature, quantification also goes under different names, such as counting
[68], class probability re-estimation [3], class prior estimation [24], and learning
of class balance [35].

In some applications of quantification, the estimation of class prevalences
is not an end in itself, but is rather used to improve the accuracy of other tasks
such as classification. For instance, Balikas et al. [8] use quantification for model
selection in supervised learning, by tuning hyperparameters that yield the best
quantification accuracy on validation data; this allows hyperparameter tuning
to be performed without incurring the costs inherent to k-fold cross-validation.
Saerens et al. [89], followed by other authors [3, 105, 108], apply quantification
to customize a trained classifier to the class prevalence exhibited in the test set,
with the goal of improving classification accuracy on unlabeled data exhibiting a
class distribution different from that of the training set. The work of Chan and Ng
[24] may be seen as a direct application of this notion, as they use quantification to
tune a word sense disambiguator to the estimated sense priors of the test set. Their
work can also be seen as an instance of transfer learning (see e.g., [84]), since
their goal is to adapt a word sense disambiguation algorithm to a domain different
from the one the algorithm was trained upon.

Stochastic optimization. As discussed in Section 5.1, our goal in this paper is to
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perform quantification by directly optimizing, in an online stochastic setting, spe-
cific performance measures for the quantification problem. While recent advances
have seen much progress in efficient methods for online learning and optimization
in full information and bandit settings [23, 41, 47, 92], these works frequently as-
sume that the optimization objective, or the notion of regret being considered is
decomposable and can be written as a sum or expectation of losses or penalties on
individual data points. However, performance measures for quantification have a
multivariate and complex structure, and do not have this form.

There has been some recent progress [56, 80] towards developing stochastic
optimization methods for such non-decomposable measures. However, these ap-
proaches do not satisfy the needs of our problem. The work of Kar et al. [56] ad-
dresses the problem of optimizing structured SVMperf-style objectives in a stream-
ing fashion, but requires the maintenance of large buffers and, as a result, offers
poor convergence. The work of Narasimhan et al. [80] presents online stochastic
methods for optimizing performance measures that are concave or pseudo-linear in
the canonical confusion matrix of the predictor. However, their method requires the
computation of gradients of the Fenchel dual of the performance measures, which
is difficult for the quantification performance measures that we study, that have a
nested structure. Our methods extend the work of [80] and provide convenient rou-
tines for optimizing the more complex performance measures used for evaluating
quantification.

5.3 Problem Setting

For the sake of simplicity, in this paper we will restrict our analysis to binary clas-
sification problems and linear models. We will denote the space of feature vectors
by X ⊂ Rd and the label set by Y = {−1,+1}. We shall assume that data points
are generated according to some fixed but unknown distributionD over X ×Y . We
will denote the proportion of positives in the population by p := Pr

(x,y)∼D
[y = +1].

Our algorithms, at training time, will receive a set of T training points sampled
from D, which we will denote by T = {(x1, y1), . . . , (xT , yT )}.

As mentioned above, we will present our algorithms and analyses for learning
a linear model over X . We will denote the model space by W ⊆ Rd and let RX
and RW denote the radii of domain X and model spaceW , respectively. However,
we note that our algorithms and analyses can be extended to learning non-linear
models by use of kernels, as well as to multi-class quantification problems. How-
ever, we postpone a discussion of these extensions to an expanded version of this
paper.

Our focus in this work shall be the optimization of quantification-specific per-
formance measures in online stochastic settings. We will concentrate on perfor-
mance measures that can be represented as functions of the confusion matrix of the
classifier. In the binary setting, the confusion matrix can be completely described
in terms of the true positive rate (TPR) and the true negative rate (TNR) of the clas-
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sifier. However, initially we will develop algorithms that use reward functions as
surrogates of the TPR and TNR values. This is done to ease algorithm design and
analysis, since the TPR and TNR values are count-based and form non-concave
and non-differentiable estimators. The surrogates we will use will be concave and
almost-everywhere differentiable. More formally, we will use a reward function r
that assigns a reward r(ŷ, y) to a prediction ŷ ∈ R for a data point, when the true
label for that data point is y ∈ Y . Given a reward function r, a model w ∈ W , and
a data point (x, y) ∈ X × Y , we will use

r+(w;x, y) =
1

p
· r(w>x, y) · 1(y = 1)

r−(w;x, y) =
1

1− p · r(w
>x, y) · 1(y = −1)

to calculate rewards on positive and negative points. The average or expected
value of these rewards will be treated as surrogates of TPR and TNR respec-
tively. Note that since E

(x,y)
Jr+(w; x, y)K = E

(x,y)

q
r(w>x, y)|y = 1

y
, setting

r to r0-1(ŷ, y) = I [y · ŷ > 0], i.e. the classification accuracy function, yields
E

(x,y)
Jr+(w; x, y)K = TPR(w). Here I [·] denotes the indicator function.

For the sake of convenience we will use P (w) = E
(x,y)

Jr+(w;x, y)K and

N(w) = E
(x,y)

Jr−(w;x, y)K to denote population averages of the reward func-

tions. We shall assume that our reward function r is concave, Lr-Lipschitz, and
takes values in a bounded range [−Br, Br].

Examples of Surrogate Reward Functions Some examples of reward functions
that are surrogates for the classification accuracy indicator function I [yŷ > 0] are
the inverted hinge loss function

rhinge(ŷ, y) = max {1, y · ŷ}

and the inverted logistic regression function

rlogit(ŷ, y) = 1− ln(1 + exp(−y · ŷ))

We will also experiment with non-surrogate (dubbed NS) versions of our algo-
rithms which use TPR and TNR values directly. These will be discussed in Sec-
tion 5.5.

5.3.1 Performance Measures

The task of quantification requires estimating the distribution of unlabeled items
across a set C of available classes, with |C| = 2 in the binary setting. In our
work we will target quantification performance measures as well as “hybrid”
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classification-quantification performance measures. We discuss them in turn.

KLD: Kullback-Leibler Divergence In recent years this performance measure
has become a standard in the quantification literature, in the evaluation of both
binary and multiclass quantification [9, 38, 40]. We redefine KLD below for con-
venience.

KLD(p, p̂) =
∑

c∈C
p(c) log

p(c)

p̂(c)
(5.2)

For distributions p, p′ over C, the values KLD(p, p′) can range between 0 (perfect
quantification) and +∞.2. Note that since KLD is a distance function and all
our algorithms will be driven by reward maximization, for uniformity we will,
instead of trying to minimize KLD, try to maximize −KLD; we will call this latter
NegKLD.

NSS: Normalized Squared Score This measure of quantification accuracy was
introduced in [9], and is defined as NSS = 1 − ( FN−FP

max{p,(1−p)}|S|)
2. Ignoring

normalization constants, this performance measure attempts to reduce |FN− FP|,
a direct measure of quantification error.

We recall from Section 5.1 that several works have advocated the use of
hybrid, “multi-objective” performance measures, that try to balance quantification
and classification performance. These measures typically take a quantification
performance measure such as KLD or NSS, and combine it with a classifi-
cation performance measure. Typically, a classification performance measure
that is sensitive to class imbalance [80] is chosen, such as Balanced Accuracy
BA = 1

2(TPR + TNR) [9], F-measure, or G-mean [80]. Two such hybrid
performance measures that are discussed in literature are presented below.

CQB: Classification-Quantification Balancing The work of [78] introduced this
performance measure in an attempt to compromise between classification and

2KLD is not a particularly well-behaved performance measure, since it is capable of taking un-
bounded values within the compact domain of the unit simplex. This poses a problem for optimiza-
tion algorithms from the point of view of convergence, as well as numerical stability. To solve this
problem, while computing KLD for two distributions p and p̂, we can perform an additive smoothing
of both p(c) and p̂(c) by computing

ps(c) =
ε+ p(c)

ε|C|+
∑
c∈C

p(c)

where ps(c) denotes the smoothed version of p(c). The denominator here is just a normalizing
factor. The quantity ε = 1

2|S| is often used as a smoothing factor, and is the one we adopt here. The
smoothed versions of p(c) and p̂(c) are then used in place of the non-smoothed versions in Equation
5.1. We can show that, as a result, KLD is always bounded by KLD(ps, p̂s) ≤ O

(
log 1

ε

)
However,

we note that the smoothed KLD still returns a value of 0 when p and p̂ are identical distributions.
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quantification accuracy. As discussed in Section 5.1, this performance measure
is defined as

CQB = |FP2 − FN2| = |FP− FN| · (FP + FN),

i.e. a product of |FN − FP|, a measure of quantification error, and (FN + FP), a
measure of classification error.

QMeasure The work of Barranquero et al. [9] introduced a generic scheme for
constructing hybrid performance measures, using the so-called Q-measure defined
as

Qβ = (1 + β2) · Pclass · Pquant

β2Pclass + Pquant
, (5.3)

that is, a weighted combination of a measure of classification accuracy Pclass and
a measure of quantification accuracy Pquant. For the sake of simplicity, in our
experiments we will adopt BA = 1

2(TPR + TNR) as our Pclass and NSS as our
Pquant. However, we stress that our methods can be suitably adapted to work with
other choices of Pclass and Pquant.

We also introduce three new hybrid performance measures in this paper as a
way of testing our optimization algorithms. We define these below and refer the
reader to Tables 5.1 and 5.2 for details.

BAKLD This hybrid performance measure takes a weighted average of BA and
NegKLD; i.e. BAKLD = C · BA + (1 − C) · (−KLD). This performance
measure gives the user a strong handle on how much emphasis should be placed on
quantification and how much on classification performance. We will use BAKLD
in our experiments to show that our methods offer an attractive tradeoff between
the two.

We now define two hybrid performance measures that are constructed by
taking the ratio of a classification and a quantification performance measures. The
aim of this exercise is to obtain performance measures that mimic the F-measure,
which is also a pseudolinear performance measure [80]. The ability of our methods
to directly optimize such complex performance measures will be indicative of
their utility in terms of the freedom they allow the user to design objectives in a
data- and task-specific manner.

CQReward and BKReward These hybrid performance measures are defined as
CQReward = BA

2−NSS and BKReward = BA
1+KLD . Notice that both performance

measures are optimized when the numerator i.e. BA is large, and the denominator
is small which translates to NSS being large for CQReward and KLD being small
for BKReward. Clearly, both performance measures encourage good performance
with respect to both classification and quantification and penalize a predictor
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which either neglects quantification to get better classification performance, or the
other way round.

The past section has seen us introduce a wide variety of quantification and hy-
brid performance measures. Of these, the NegKLD, NSS, and Q-measure were
already prevalent in quantification literature and we introduced BAKLD, CQRe-
ward and BKReward. As discussed before, the aim of exploring such a large va-
riety of performance measures is to both demonstrate the utility of our methods
with respect to the quantification problem, and present newer ways of designing
hybrid performance measures that give the user more expressivity in tailoring the
performance measure to the task at hand.

We also note that these performance measures have extremely diverse and
complex structures. We can show that NegKLD, Q-measure, and BAKLD are
nested concave functions, more specifically, concave functions of functions that
are themselves concave in the confusion matrix of the predictor. On the other
hand, CQReward and BKReward turn out to be pseudo-concave functions of
the confusion matrix. Thus, we are working with two very different families of
performance measures here, each of which has different properties and requires
different optimization techniques.

In the following section, we introduce two novel methods to optimize these two
families of performance measures.

5.4 Stochastic Optimization Methods for Quantification

The previous discussion in Sections 5.1 and 5.2 clarifies two aspects of efforts
in the quantification literature. Firstly, specific performance measures have been
developed and adopted for evaluating quantification performance including KLD,
NSS, Q-measure etc. Secondly, algorithms that directly optimize these perfor-
mance measures are desirable, as is evidenced by recent works [9, 37, 38, 78].

The works mentioned above make use of tools from optimization literature to
learn linear (e.g. [38]) and non-linear (e.g. [78]) models to perform quantifica-
tion. The state of the art efforts in this direction have adopted the structural SVM
approach for optimizing these performance measures with great success [9, 38].
However, this approach comes with severe drawbacks.

The structural SVM [51], although a significant tool that allows optimization
of arbitrary performance measures, suffers from two key drawbacks. Firstly, the
structural SVM surrogate is not necessarily a tight surrogate for all performance
measures, something that has been demonstrated in past literature [57, 80], which
can lead to poor training. But more importantly, optimizing the structural SVM
surrogate requires the use of expensive cutting plane methods which are known
to scale poorly with the amount of training data, as well as are unable to handle
streaming data.



CHAPTER 5. SHOWCASE IN THE QUANTIFICATION PROBLEM 105

Table 5.1: A list of nested concave performance measures and their canonical ex-
pressions in terms of the confusion matrix Ψ(P,N) where P and N denote the
TPR, TNR values and p and n denote the proportion of positives and negatives in
the population. The 4th, 6th and 8th columns give the closed form updates used in
steps 15-17 in Algorithm 4.

Name Expression Ψ(x, y) γ(q) ζ1(P,N) α(r) ζ2(P,N) β(r)
NegKLD [9, 38] −KLD(p,p̂) p·x+n·y (p,n) log(pP+n(1−N))

(
1
r1
, 1
r2

)
log(nN+p(1−P ))

(
1
r1
, 1
r2

)
QMeasureβ[9] (1+β2)·BA·NSS

β2·BA+NSS
(1+β2)·x·y
β2·x+y

(1+β2)·
(
z2,

(1−z)2

β2

)
z=

q2
β2q1+q2

P+N
2 ( 1

2 ,
1
2 ) 1−(p(1−P )−n(1−N))2 2(z,−z)

z=r2−r1

BAKLD C·BA+(1−C)·(−KLD) C·x+(1−C)·y (C,1−C) P+N
2 ( 1

2 ,
1
2 ) −KLD(P,N) see above

To alleviate these problems, we propose stochastic optimization algorithms that
directly optimize a large family of quantification performance measures. Our meth-
ods come with sound theoretical convergence guarantees, are able to operate with
streaming data sets and, as our experiments will demonstrate, offer much faster and
accurate quantification performance on a variety of data sets.

Our optimization techniques introduce crucial advancements in the field of
stochastic optimization of multivariate performance measures and address the two
families of performance measures discussed while concluding Section 5.3 – 1)
nested concave performance measures and 2) pseudo-concave performance mea-
sures. We describe these in turn below.

5.4.1 Nested Concave Performance Measures

The first class of performance measures that we deal with are concave combina-
tions of concave performance measures. More formally, given three concave func-
tions Ψ, ζ1, ζ2 : R2 → R, we can define a performance measure

P(Ψ,ζ1,ζ2)(w) = Ψ(ζ1(w), ζ2(w)),

where we have

ζ1(w) = ζ1(P (w), N(w))

ζ2(w) = ζ2(P (w), N(w)),

where P (w) and N(w) can respectively denote, either the TPR and TNR values
or surrogate reward functions therefor. Examples of such performance measures
include the negative KLD performance measure and the QMeasure which are de-
scribed in Section 5.3.1. Table 5.1 describes these performance measures in canon-
ical form i.e. their expressions in terms of TPR and TNR values.

Before describing our algorithm for nested concave measures, we recall the no-
tion of concave Fenchel conjugate of concave functions. For any concave function
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f : R2 → R and any (u, v) ∈ R2, the (concave) Fenchel conjugate of f is defined
as

f∗(u, v) = inf
(x,y)∈R2

{ux+ vy − f(x, y)} .

Clearly, f∗ is concave. Moreover, it follows from the concavity of f that for any
(x, y) ∈ R2,

f(x, y) = inf
(u,v)∈R2

{xu+ yv − f∗(u, v)} .

Below we state the properties of strong concavity and smoothness. These will
be crucial in our convergence analysis.

Definition 1 (Strong Concavity and Smoothness). A function f : Rd → R is said
to be α-strongly concave and γ-smooth if for all x,y ∈ Rd, we have

−γ
2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y),x− y〉 ≤ −α

2
‖x− y‖22 .

We will assume that the functions Ψ, ζ1, and ζ2 defining our performance mea-
sures are γ-smooth for some constant γ > 0. This is true of all functions, save
the log function which is used in the definition of the KLD quantification measure.
However, if we carry out the smoothing step pointed out in Section 5.3.1 with some
ε > 0, then it can be shown that the KLD function does become O

(
1
ε2

)
-smooth.

An important property of smooth functions, that would be crucial in our analyses,
is a close relationship between smooth and strongly convex functions

Theorem 2 ([107]). A closed, concave function f is β smooth iff its (concave)
Fenchel conjugate f∗ is 1

β -strongly concave.

We are now in a position to present our algorithm NEMSIS for stochastic op-
timization of nested concave functions. Algorithm 4 gives an outline of the tech-
nique. We note that a direct application of traditional stochastic optimization tech-
niques [93] to such nested performance measures as those considered here is not
possible as discussed before. NEMSIS, overcomes these challenges by exploit-
ing the nested dual structure of the performance measure by carefully balancing
updates at the inner and outer levels.

At every time step, NEMSIS performs four very cheap updates. The first up-
date is a primal ascent update to the model vector which takes a weighted stochas-
tic gradient descent step. Note that this step involves a projection step to the set of
model vectorsW denoted by ΠW(·). In our experimentsW was defined to be the
set of all Euclidean norm-bounded vectors so that projection could be effected us-
ing Euclidean normalization which can be done in O (d) time if the model vectors
are d-dimensional.

The weights of the descent step are decided by the dual parameters of the func-
tions Ψ, ζ1, and ζ2. Then NEMSIS updates the dual variables in three simple steps.
In fact line numbers 15-17 can be executed in closed form (see Table 5.1) for all
the performance measures we see here which allows for very rapid updates. See
Appendix 5.7 for the simple derivations.
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Algorithm 4 NEMSIS: NEsted priMal-dual StochastIc updateS
Require: Outer wrapper function Ψ, inner performance measures ζ1, ζ2, step sizes ηt,

feasible setsW,A
Ensure: Classifier w ∈ W

1: w0 ← 0, t← 0, {r0,q0,α0,β0,γ0} ← (0, 0)
2: while data stream has points do
3: Receive data point (xt, yt)
4: // Perform primal ascent
5: if yt > 0 then
6: wt+1 ← ΠW (wt + ηt(γt,1αt,1 + γt,2βt,1)∇wr

+(wt;xt, yt))
7: qt+1 ← t · qt + (αt,1, βt,1) · r+(wt;xt, yt)
8: else
9: wt+1 ← ΠW (wt + ηt(γt,1αt,2 + γt,2βt,2)∇wr

−(wt;xt, yt))
10: qt+1 ← t · qt + (αt,2, βt,2) · r−(wt;xt, yt)
11: end if
12: rt+1 ← (t+ 1)−1 (t · rt + (r+(wt;xt, yt), r

−(wt;xt, yt)))
13: qt+1 ← (t+ 1)−1 (qt+1 − (ζ∗1 (αt), ζ

∗
2 (βt)))

14: // Perform dual updates
15: αt+1 = arg min

α
{α · rt+1 − ζ∗1 (α)}

16: βt+1 = arg min
β

{β · rt+1 − ζ∗2 (β)}
17: γt+1 = arg min

γ
{γ · qt+1 −Ψ∗(γ)}

18: t← t+ 1
19: end while
20: return w = 1

t

∑t
τ=1 wτ

Below we state the convergence proof for NEMSIS. We note that despite the
complicated nature of the performance measures being tackled, NEMSIS is still
able to recover the optimal rate of convergence known for stochastic optimization
routines. We refer the reader to Appendix 5.8 for a proof of this theorem. The
proof requires a careful analysis of the primal and dual update steps at different
levels and tying the updates together by taking into account the nesting structure of
the performance measure.

Theorem 3. Suppose we are given a stream of random samples
(x1, y1), . . . , (xT , yT ) drawn from a distribution D over X × Y . Let Algo-
rithm 4 be executed with step sizes ηt = Θ(1/

√
t) with a nested concave

performance measure Ψ(ζ1(·), ζ2(·)). Then, for some universal constant C, the
average model w = 1

T

∑T
t=1 wt output by the algorithm satisfies, with probability

at least 1− δ,

P(Ψ,ζ1,ζ2)(w) ≥ sup
w∗∈W

P(Ψ,ζ1,ζ2)(w
∗)− CΨ,ζ1,ζ2,r ·

(
log 1

δ√
T

)
,

where CΨ,ζ1,ζ2,r = C(LΨ(Lr + Br)(Lζ1 + Lζ2)) for a universal constant C and
Lg denotes the Lipschitz constant of the function g.
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Table 5.2: List of pseudo-concave performance measures and their canonical ex-
pressions in terms of the confusion matrix Ψ(P,N). Note that p and n denote the
proportion of positives and negatives in the population.

Name Expression Pquant(P,N) Pclass(P,N)

CQReward BA
2−NSS 1+(p(1−P )−n(1−N))2

P+N
2

BKReward BA
1+KLD KLD: see Table 5.1 P+N

2

Related work of Narasimhan et al : Narasimhan et al [80] proposed an algo-
rithm SPADE which offered stochastic optimization of concave performance mea-
sures. We note that although the performance measures considered here are indeed
concave, it is difficult to apply SPADE to them directly since SPADE requires
computation of gradients of the Fenchel dual of the function P(Ψ,ζ1,ζ2) which are
difficult to compute given the nested structure of this function. NEMSIS, on the
other hand, only requires the duals of the individual functions Ψ, ζ1, and ζ2 which
are much more accessible. Moreover, NEMSIS uses a much simpler dual update
which does not involve any parameters and, in fact, has a closed form solution
in all our cases. SPADE, on the other hand, performs dual gradient descent which
requires a fine tuning of yet another step length parameter. A third benefit of NEM-
SIS is that it achieves a logarithmic regret with respect to its dual updates (see the
proof of Theorem 3) whereas SPADE incurs a polynomial regret due to its gradient
descent-style dual update.

5.4.2 Pseudo-concave Performance Measures

The next class of performance measures we consider can be expressed as a ratio
of a quantification and a classification performance measure. More formally, given
a convex quantification performance measure Pquant and a concave classification
performance measure Pclass, we can define a performance measure

P(Pquant,Pclass)(w) =
Pclass(w)

Pquant(w)
,

We assume that both the performance measures, Pquant and Pclass, are positive val-
ued. Such performance measures can be very useful in allowing a system designer
to balance classification and quantification performance. Moreover, the form of
the measure allows an enormous amount of freedom in choosing the quantification
and classification performance measures. Examples of such performance measures
include the CQReward and the BKReward measures. These were introduced in
Section 5.3.1 and are represented in their canonical forms in Table 5.2.

Performance measures, constructed the way described above, with a ratio of
a concave over a convex measures, are called pseudo-concave measures. This is
because, although these functions are not concave, their level sets are still convex
which makes it possible to optimize them efficiently. To see the intuition behind
this, we need to introduce the notion of the valuation function corresponding to
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Algorithm 5 CAN: Concave AlternatioN
Require: Objective P(Pquant,Pclass), model spaceW , tolerance ε
Ensure: An ε-optimal classifier w ∈ W

1: Construct the valuation function V
2: w0 ← 0, t← 1
3: while vt > vt−1 + ε do
4: wt+1 ← arg maxw∈W V (w, vt)
5: vt+1 ← arg maxv>0 v such that V (wt+1, v) ≥ v
6: t← t+ 1
7: end while
8: return wt

the performance measure. As a passing note, we remark that because of the non-
concavity of these performance measures, NEMSIS cannot be applied here.

Definition 4 (Valuation Function). The valuation of a pseudo-concave perfor-
mance measure P(Pquant,Pclass)(w) = Pclass(w)

Pquant(w) at any level v > 0, is defined as

V (w, v) = Pclass(w)− v · Pquant(w)

It can be seen that the valuation function defines the level sets of the perfor-
mance measure. To see this, notice that due to the positivity of the functions Pquant
and Pclass, we can have P(Pquant,Pclass)(w) ≥ v iff V (w, v) ≥ 0. However, since
Pclass is concave, Pquant is convex, and v > 0, V (w, v) is a concave function of w.

This close connection between the level sets and notions of valuation functions
have been exploited before to give optimization algorithms for pseudo-linear per-
formance measures such as the F-measure [80, 85]. These approaches treat the
valuation function as some form of proxy or surrogate for the original performance
measure and optimize it in hopes of making progress with respect to the original
measure.

Taking this approach with our performance measures yields a very natural al-
gorithm for optimizing pseudo-concave measures which we outline in the CAN
algorithm Algorithm 5. CAN repeatedly trains models to optimize their valuations
at the current level, then upgrades the level itself. Notice that step 4 in the algo-
rithm is a concave maximization problem over a convex set, something that can be
done using a variety of methods – in the following we will see how NEMSIS can
be used to implement this step. Also notice that step 5 can, by the definition of the
valuation function, be carried out by simply setting vt+1 = P(Pquant,Pclass)(wt+1).

It turns out that CAN has a linear rate of convergence for well-behaved perfor-
mance measures. The next result formalizes this statement. We note that this result
is similar to the one arrived by [80] but only for pseudo-linear functions.

Theorem 5. Suppose we execute Algorithm 5 with a pseudo-concave perfor-
mance measure P(Pquant,Pclass) such that the quantification performance measure
always takes values in the range [m,M ], where M > m > 0. Let P∗ :=
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supw∈W P(Pquant,Pclass)(w) be the optimal performance level and ∆t = P∗ −
P(Pquant,Pclass)(wt) be the excess error for the model wt generated at time t. Then,

for every t > 0, we have ∆t ≤ ∆0 ·
(
1− m

M

)t.

We refer the reader to Appendix 5.9 for a proof of this theorem. This theorem
generalizes the result of [80] to the more general case of pseudo-concave functions.
Note that for the pseudo-concave functions defined in Table 5.2, care is taken to
ensure that the quantification performance measure satisfies m > 0.

A drawback of CAN is that it cannot operate in streaming data settings and
requires a concave optimization oracle. However, we notice that for the perfor-
mance measures in Table 5.2, the valuation function is always at least a nested
concave function. This motivates us to use NEMSIS to solve the inner optimiza-
tion problems in an online fashion. Combining this with an online technique to
approximately execute step 5 of of the CAN and gives us the SCAN algorithm,
outlined in Algorithm 6.

Thoerem 6 shows that SCAN enjoys a convergence rate similar to that of
NEMSIS. Indeed, SCAN is able to guarantee an ε-approximate solution after wit-
nessing Õ

(
1/ε2

)
samples which is equivalent to a convergence rate of Õ

(
1/
√
T
)

.
The proof of this result is obtained by showing that CAN is robust to approximate
solutions to the inner optimization problems. We refer the reader to Appendix 5.10
for a proof of this theorem.

Theorem 6. Suppose we execute Algorithm 6 with a pseudo-concave performance
measure P(Pquant,Pclass) such that Pquant always takes values in the range [m,M ]

with m > 0, with epoch lengths se, s′e =
CΨ,ζ1,ζ2,r

m2

(
M

M−m

)2e
following a geo-

metric rate of increase, where the constant CΨ,ζ1,ζ2,r is the effective constant for
the NEMSIS analysis (Theorem 3) for the inner invocations of NEMSIS in SCAN.
Also let the excess error for the model we generated after e epochs be denoted
by ∆e = P∗ − P(Pquant,Pclass)(we). Then after e = O

(
log
(

1
ε log2 1

ε

))
epochs,

we can ensure with probability at least 1 − δ that ∆e ≤ ε. Moreover, the num-
ber of samples consumed till this point, ignoring universal constants, is at most
C2

Ψ,ζ1,ζ2,r

ε2

(
log log 1

ε + log 1
δ

)
log4 1

ε .

Related work of Narasimhan et al : Narasimhan et al [80] also proposed two
algorithms AMP and STAMP which seek to optimize pseudo-linear performance
measures. However, neither those algorithms nor their analyses transfer directly
to the pseudo-concave setting. This is because, by exploiting the pseudo-linearity
of the performance measure, AMP and STAMP are able to convert their problem
to a sequence of cost-weighted optimization problems which are very simple to
solve. This convenience is absent here and as mentioned above, even after creation
of the valuation function, SCAN still has to solve a possibly nested concave mini-
mization problem which it does by invoking the NEMSIS procedure on this inner
problem. The proof technique used in [80] for analyzing AMP also makes heavy
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Algorithm 6 SCAN: Stochastic Concave AlternatioN
Require: Objective P(Pquant,Pclass), model spaceW , step sizes ηt, epoch lengths se, s′e
Ensure: Classifier w ∈ W

1: v0 ← 0, t← 0, e← 0,w0 ← 0
2: repeat
3: // Learning phase
4: w̃← we

5: while t < se do
6: Receive sample (x, y)
7: // NEMSIS update with V (·, ve) at time t
8: wt+1 ← NEMSIS (V (·, ve),wt, (x, y), t)
9: t← t+ 1

10: end while
11: t← 0, e← e+ 1,we+1 ← w̃
12: // Level estimation phase
13: v+ ← 0, v− ← 0
14: while t < s′e do
15: Receive sample (x, y)
16: vy ← vy + ry(we;x, y) // Collect rewards
17: t← t+ 1
18: end while
19: t← 0, ve ← Pclass(v+,v−)

Pquant(v+,v−)

20: until stream is exhausted
21: return we

use of pseudo-linearity. The convergence proof of CAN, on the other hand, is more
general and yet guarantees a linear convergence rate.

5.5 Experimental Results

We carried out an extensive set of experiments on diverse set of benchmark and
real-world data to compare our proposed methods with other state-of-the-art
approaches.

Data sets: We used the following benchmark data sets from the UCI machine
learning repository : a) IJCNN, b) Covertype, c) Adult, d) Letters, and e) Cod-
RNA. We also used the following three real-world data sets: a) Cheminformatics,
a drug discovery data set from [53], b) 2008 KDD Cup challenge data set on breast
cancer detection, and c) a data set pertaining to a protein-protein interaction (PPI)
prediction task [86]. In each case, we used 70% of the data for training and the
remaining for testing.

Methods: We compares our proposed NEMSIS and SCAN algorithms3

against the state-of-the-art one-pass mini-batch stochastic gradient method
3We will make code for our methods available publicly.
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Table 5.3: Statistics of data sets used.
Data Set Data Points Features Positives

KDDCup08 102,294 117 0.61%
PPI 240,249 85 1.19%

CoverType 581,012 54 1.63%
ChemInfo 2142 55 2.33%

Letter 20,000 16 3.92%
IJCNN-1 141,691 22 9.57%

Adult 48,842 123 23.93%
Cod-RNA 488,565 8 33.3%

(1PMB) of [56] and the SVMperf technique of [52]. Both these techniques are ca-
pable of optimizing structural SVM surrogates of arbitrary performance measures
and we modified their implementations to suitably adapt them to the performance
measures considered here. The NEMSIS and SCAN implementations used the
hinge-based concave surrogate.

Non-surrogate NS Approaches: We also experimented with a variant of the
NEMSIS and SCAN algorithms, where the dual updates were computed using
original count based TPR and TNR values, rather than surrogate reward functions.
We refer to this version as NEMSIS-NS. We also developed a similar version
of SCAN called SCAN-NS where the level estimation was performed using 0-1
TPR/TNR values. We empirically observed these non-surrogate versions of the al-
gorithms to offer superior and more stable performance than the surrogate versions.
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Figure 5.1: Experiments with NEMSIS on NegKLD: Plot of NegKLD as a func-
tion of training time.

0 0.2 0.4 0.6 0.8 1
−3

−0.1

−0.05

0

N
eg

at
iv

e 
K

LD

CWeight
0 0.2 0.4 0.6 0.8 1

−3

0

0.5

1

B
A

(a) Adult

0 0.2 0.4 0.6 0.8 1
−3

−0.03

−0.02

−0.01

0

N
eg

at
iv

e 
K

LD

CWeight
0 0.2 0.4 0.6 0.8 1

−3

0.4

0.6

0.8

1

B
A

(b) Cod-RNA

0 0.2 0.4 0.6 0.8 1
−3

−0.4

−0.2

0

N
eg

at
iv

e 
K

LD

CWeight
0 0.2 0.4 0.6 0.8 1

−3

0

0.5

1

B
A

(c) Covtype

Figure 5.2: Experiments on NEMSIS with BAKLD: Plots of quantification and
classification performance as CWeight is varied.
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Figure 5.3: A comparison of the KLD performance of various methods on data sets
with varying class proportions (see Table 5.4.2).
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Figure 5.4: A comparison of the KLD performance of various methods when dis-
tribution drift is introduced in the test sets.
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Figure 5.5: Experiments with NEMSIS on Q-measure: Plot of Q-measure perfor-
mance as a function of time.

10
−4

10
−3

10
−2

10
−1

10
0

0.7

0.8

0.9

1

Training time (secs)

C
Q

R
ew

ar
d

 

 
SCAN−NS
1PMB

(a) Adult

10
−4

10
−3

10
−2

10
−1

10
0

0.7

0.8

0.9

1

Training time (secs)

C
Q

R
ew

ar
d

 

 

SCAN−NS
1PMB

(b) Cod-RNA

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

Training time (secs)

C
Q

R
ew

ar
d

 

 
SCAN−NS
1PMB

(c) CovType

10
−4

10
−3

10
−2

10
−1

10
0

0.5

0.6

0.7

0.8

0.9

1

Training time (secs)

C
Q

R
ew

ar
d

 

 

SCAN−NS
1PMB

(d) IJCNN1

Figure 5.6: Experiments with SCAN on CQreward: Plot of CQreward performance
as a function of time.

Parameters: All parameters including step sizes, upper bounds on reward
functions, regularization parameters, and projection radii were tuned from the val-
ues {10−4, 10−3, . . . , 103, 104} using a held-out portion of the training set treated
as a validation set. For step sizes, the base step length η0 was tuned from the above
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set and the step lengths were set to ηt = η0/
√
t. In 1PMB, we mimic the pa-

rameter setting in [56], setting the buffer size to 500 and the number of passes to 25.

Comparison on NegKLD: We first compare NEMSIS-NS and NEMSIS
against the baselines 1PMB and SVMperf on several data sets on the negative
KLD measure. The results are presented in Figure 5.1. It is clear that the
proposed algorithms have comparable performance with significantly faster rate
of convergence. Since SVMperf is a batch/off-line method, it is important to clarify
how it was compared against the other online methods. In this case, timers were
embedded inside the SVMperf code, and at regular intervals, the performance of
the current model vector was evaluated. It is clear that SVMperf is significantly
slower and its behavior is quite erratic. The proposed methods are often faster
than 1PMB. On three of the four data sets NEMSIS-NS achieves a faster rate of
convergence compared to NEMSIS.

Comparison on BAKLD: We also used the BAKLD performance measure
to evaluate the trade-off NEMSIS offers between quantification and classification
performance. The weighting parameter C in BAKLD (see Table 5.1), denoted
here by CWeight to avoid confusion, was varied from 0 to 1 across a fine grid; for
each value, NEMSIS was used to optimize BAKLD and its performance on BA
and KLD were noted separately. In the results presented in Figure 5.2 for three
data sets, notice that there is a sweet spot where the two tasks, i.e. quantification
and classification simultaneously have good performance.

Comparison under varying class proportions: We next evaluated the ro-
bustness of the algorithms across data sets with varying different class proportions
(see Table 5.4.2 for the dataset label proportions). In Figure 5.3, we plot positive
KLD (smaller values are better) for the proposed and baseline methods for these
diverse datasets. Again, it is clear that the NEMSIS family of algorithms of has
better KLD performance compared to the baselines, demonstrating their versatility
across a range of class distributions.

Comparison under varying drift: Next, we test the performance of the
NEMSIS family of methods when there are drifts in class proportions between the
train and test sets. In each case, we retain the original class proportion in the train
set, and vary the class proportions in the test set, by suitably sampling from the
original set of positive and negative test instances.4 We have not included SVMperf

4More formally, we consider a setting where both the train and test sets are generated using the
same conditional class distribution P(Y = 1 |X), but with different marginal distributions over
instances P(X), and thus, have different class proportions. Further, in these experiments, we made
a simplistic assumption that there is no label noise; hence for any instance x, P(Y = 1 |X =
x) = 1 or 0. Thus, we generated our test set with class proportion p′ by simply setting P(X = x)
to the following distribution: with probability p′, sample a point uniformly from all points with
P(Y = 1 |X = x) = 1, and with probability 1− p′, sample a point uniformly from all points with
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in these experiments as it took an inordinately long time to complete. As seen in
Figure 5.4, on the Adult and Letter data set the NEMSIS family is fairly robust
to small class drifts. As expected, when the class proportions change by a large
amount in the test set (over 100 percent), all algorithms perform poorly.

Comparison on hybrid performance measures: Finally, we tested our meth-
ods in optimizing composite performance measures that strike a more nuanced
trade-off between quantification and classification performance. Figures 5.5 con-
tains results for the NEMSIS methods while optimizing Q-measure (see Table 5.1),
and Figure 5.6 contains results for SCAN-NS while optimizing CQReward (see
Table 5.2). The proposed methods are often significantly better than the baseline
1PMB in terms of both accuracy and running time.

5.6 Conclusion

Quantification, the task of estimating class prevalence in problem settings subject
to distribution drift, has emerged as an important problem in machine learning
and data mining. Our discussion justified the necessity to design algorithms that
exclusively solve the quantification task, with a special emphasis on performance
measures such as the Kullback-Leibler divergence that is considered a de facto
standard in the literature.

In this paper we proposed a family of algorithms NEMSIS, CAN, SCAN,
and their non-surrogate versions, to address the online quantification problem. By
abstracting NegKLD and other hybrid performance measures as nested concave or
pseudo concave functions we designed provably correct and efficient algorithms
for optimizing these performance measures in an online stochastic setting.

We validated our algorithms on several data sets under varying conditions, in-
cluding class imbalance and distribution drift. The proposed algorithms demon-
strate the ability to jointly optimize both quantification and classification tasks. To
the best of our knowledge this is the first work which directly addresses the online
quantification problem and as such, opens up novel application areas.

5.7 Deriving Updates for NEMSIS

The derivation of the closed form updates for steps 15-17 in the NEMSIS algo-
rithm (see Algorithm 4) starts with the observation that in all the nested concave
performance measures considered here, the outer and the inner concave functions,
namely Ψ, ζ1, ζ2 are concave, continuous, and differentiable. The logarithm func-
tion is non-differentiable at 0 but the smoothing step (see Section refformulation)
ensures that we will never approach 0 in our analyses or the execution of the al-
gorithm. The derivations hinge on the following basic result from convex analysis
[107]:

P(Y = 1 |X = x) = 0.
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Lemma 7. Let f be a closed, differentiable and concave function and f∗ be its
concave Fenchel dual. Then ∇f∗ = (∇f)−1 i.e. for any x ∈ X and u ∈ X ∗ (the
space of all linear functionals over X ), we have∇f∗(u) = x iff ∇f(x) = u.

Using this result, we show how to derive the updates for γ. The updates for β
and α follow similarly. We have

γt = arg min
γ

{γ · qt −Ψ∗(γ)}

By first order optimality conditions, we get that γt can minimize the function
h(γ) = γ · qt − Ψ∗(γ) only if qt = ∇Ψ∗(γt). Using Lemma 7, we get
γt = ∇Ψ(qt). Using this technique, all the closed form expressions can be readily
derived.

For the derivations of α, β for NegKLD, and the derivation of β for Q-measure,
the derivations follow when we work with definitions of these performance mea-
sures with the TP and TN counts or cumulative surrogate reward values, rather than
the TPR and TNR values and the average surrogate rewards.

5.8 Proof of Theorem 3

We begin by observing the following general lemma regarding the follow the leader
algorithm for strongly convex losses. This will be useful since steps 15-17 of
Algorithm 4 are essentially executing follow the leader steps to decide the best
value for the dual variables.

Lemma 8. Suppose we have an action space X and execute the follow the leader
algorithm on a sequence of loss functions `t : X → R, each of which is α-strongly
convex and L-Lipschitz, then we have

T∑

t=1

`t(xt)− inf
x∈X

T∑

t=1

`t(x) ≤ L2 log T

α
,

where xt+1 = arg min
x∈X

∑t
τ=1 `τ (x) are the FTL plays.

Proof. By the standard forward regret analysis, we get
T∑

t=1

`t(xt)− inf
x∈X

T∑

t=1

`t(x) ≤
T∑

t=1

`t(xt)−
T∑

t=1

`t(xt+1)

Now, by using the strong convexity of the loss functions, and the fact that the strong
convexity property is additive, we get

t−1∑

τ=1

`τ (xt+1) ≥
t−1∑

τ=1

`τ (xt) +
α(t− 1)

2
‖xt − xt+1‖22

t∑

τ=1

`τ (xt) ≥
t∑

τ=1

`τ (xt+1) +
αt

2
‖xt − xt+1‖22 ,
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which gives us

`t(xt)− `t(xt+1) ≥ α

2
(2t− 1) · ‖xt − xt+1‖22 .

However, we get `t(xt)− `t(xt+1) ≤ L · ‖xt − xt+1‖2 by invoking Lipschitz-ness
of the loss functions. This gives us

‖xt − xt+1‖2 ≤
2L

α(2t− 1)
.

This, upon applying Lipschitz-ness again, gives us

`t(xt)− `t(xt+1) ≤ 2L2

α(2t− 1)
.

Summing over all the time steps gives us the desired result.

For the rest of the proof, we shall use the shorthand notation that we used in
Algorithm 4, i.e.

αt = (αt,1, αt,2), (the dual variables for ζ1)

βt = (βt,1, βt,2), (the dual variables for ζ2)

γt = (γt,1, γt,2), (the dual variables for Ψ)

We will also use additional notation

st = (r+(wt;xt, yt), r
−(wt;xt, yt)),

pt =
(
α>t st − ζ∗1 (αt),β

>
t st − ζ∗2 (βt)

)
,

`t(w) = (r+(w;xt, yt), r
−(w;xt, yt))

R(w) = (P (w), N(w))

Note that `t(wt) = st. We now define a quantity that we shall be analyzing to
obtain the convergence bound

(A) =
T∑

t=1

(γ>t pt −Ψ∗(γt))

Now, since Ψ is βΨ-smooth and concave, by Theorem 2, we know that Ψ∗ is
1
β -strongly concave. However that means that the loss function gt(γ) := γ>pt −
Ψ∗(γ) is 1

β -strongly convex. Now Algorithm 4 (step 17) implements

γt = arg min
γ

{γ · qt −Ψ∗(γ)} ,

where qt = 1
t

∑t
τ=1 pτ (see steps 7, 10, 13 that update qt). Notice that this is

identical to the FTL algorithm with the losses gt(γ) = pt · γ − Ψ∗(γ) which are
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strongly convex, and can be shown to be (Br(Lζ1 + Lζ2))-Lipschitz, neglecting
universal constants. Thus, by an application of Lemma 8, we get, upto universal
constants

(A) ≤ inf
γ

{
T∑

t=1

(γ>pt −Ψ∗(γ))

}
+ βΨ(Br(Lζ1 + Lζ2))2 log T

The same technique, along with the observation that steps 15 and 16 of Algorithm 4
also implement the FTL algorithm, can be used to get the following results upto
universal constants

T∑

t=1

(α>t st − ζ∗1 (αt)) ≤ inf
α

{
T∑

t=1

(α>st − ζ∗1 (α))

}
+ βζ1(BrLζ1)2 log T,

and

T∑

t=1

(β>t st − ζ∗2 (βt)) ≤ inf
β

{
T∑

t=1

(β>st − ζ∗2 (β))

}
+ βζ2(BrLζ2)2 log T.

This gives us, for

∆1 = βΨ(Br(Lζ1 + Lζ2))2 + βζ1(BrLζ1)2 + βζ2(BrLζ2)2,

(A) ≤ inf
γ

{
T∑

t=1

(γ>pt −Ψ∗(γ))

}
+ ∆1 log T

= inf
γ

{
γ1

T∑

t=1

(α>t st − ζ∗1 (αt)) + γ2

T∑

t=1

(β>t st − ζ∗2 (βt))−Ψ∗(γ)

}
+ ∆1 log T

≤ inf
γ,α,β

{
γ1

T∑

t=1

(α>st − ζ∗1 (α)) + γ2

T∑

t=1

(β>st − ζ∗2 (β))−Ψ∗(γ)

}
+ ∆1 log T

Now, because of the stochastic nature of the samples, we have

Est| {(xτ , yτ )}t−1
τ=1 = E`t(wt)| {(xτ , yτ )}t−1

τ=1 = R(wt)
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(A)

T
≤ inf

γ

{
γ1 inf

α

{
α>

(
1

T

T∑

t=1

R(wt)

)
− ζ∗1 (α)

}

+

{
γ2 inf

β

{
β>

(
1

T

T∑

t=1

R(wt)

)
− ζ∗2 (β)

}
−Ψ∗(γ)

}

+
∆1

T

(
log T + log

1

δ

)

= inf
γ

(
γ1ζ1

(
1

T

T∑

t=1

R(wt)

)
+ γ2ζ2

(
1

T

T∑

t=1

R(wt)

)
−Ψ∗(γ)

)

+
∆1

T

(
log T + log

1

δ

)

≤ inf
γ

(γ1ζ1(R(w)) + γ2ζ2(R(w))−Ψ∗(γ)) +
∆1 log T

δ

T

= Ψ(ζ1(R(w)), ζ2(R(w))) +
∆1 log T

δ

T
,

where the second last step follows from the Jensen’s inequality, the concavity of
the functions P (w) and N(w), and the assumption that ζ1 and ζ2 are increasing
functions of both their arguments. Thus, we have, with probability at least 1− δ,

(A) ≤ T ·Ψ(ζ1(R(w)), ζ2(R(w))) + ∆1 log
T

δ

Note that this is a much stronger bound than what Narasimhan et al [80] obtain
for their gradient descent based dual updates. This, in some sense, establishes the
superiority of the follow-the-leader type algorithms used by NEMSIS.

ht(w) = γt,1(α>t `t(w)− ζ∗1 (αt)) + γt,2(β>t `t(w)− ζ∗2 (βt))−Ψ∗(γt)

Since the functions ht(·) are concave and (LΨLr(Lζ1 + Lζ2))-Lipschitz (due
to assumptions on the smoothness and values of the reward functions), the standard
regret analysis for online gradient ascent (for example [109]) gives us the following
bound on (A), ignoring universal constants

(A) =
T∑

t=1

ht(wt)

=
T∑

t=1

γt,1(α>t `t(wt)− ζ∗1 (αt)) + γt,2(β>t `t(wt)− ζ∗2 (βt))−Ψ∗(γt)

≥
T∑

t=1

γt,1(α>t `t(w
∗)− ζ∗1 (αt)) + γt,2(β>t `t(w

∗)− ζ∗2 (βt))

−Ψ∗(γt)−∆2

√
T ,
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where ∆2 = (LΨLr(Lζ1 + Lζ2)). Note that the above results hold since we used
step lengths ηt = Θ(1/

√
t). To achieve the above bounds precisely, ηt will have to

be tuned to the Lipschitz constant of the functions ht(·) and for sake of simplicity
we assume that the step lengths are indeed tuned so. We also assume, to get the
above result , without loss of generality of course, that the model space W is the
unit norm ball in Rd. Applying a standard online-to-batch conversion bound (for
example [23]), then gives us, with probability at least 1− δ,

(A)

T
≥ 1

T

T∑

t=1

γt,1(α>t R(w∗)− ζ∗1 (αt))

︸ ︷︷ ︸
(B)

+
1

T

T∑

t=1

γt,2(β>t R(w∗)− ζ∗2 (βt))

︸ ︷︷ ︸
(C)

− 1

T

T∑

t=1

Ψ∗(γt)−∆3
log 1

δ√
T
,

where ∆3 = ∆2 + LΨBr(Lζ1 + Lζ2). Analyzing the expression (B) gives us

(B) =
1

T

T∑

t=1

γt,1(α>t R(w∗)− ζ∗1 (αt))

=

∑T
t=1 γt,1
T



(

T∑

t=1

γt,1αt∑T
t=1 γt,1

)>
R(w∗)−

T∑

t=1

γt,1∑T
t=1 γt,1

ζ∗1 (αt)




≥
∑T

t=1 γt,1
T



(

T∑

t=1

γt,1αt∑T
t=1 γt,1

)>
R(w∗)− ζ∗1

(
T∑

t=1

γt,1αt∑T
t=1 γt,1

)


≥
∑T

t=1 γt,1
T

min
α

{
α>R(w∗)− ζ∗1 (α)

}

= γ̄1 min
α

{
α>R(w∗)− ζ∗1 (α)

}
= γ̄1ζ1(R(w∗))

A similar analysis for (C) follows and we get, ignoring universal constants,

(A)

T
≥ γ̄1ζ1(R(w∗)) + γ̄2ζ2(R(w∗))− 1

T

T∑

t=1

Ψ∗(γt)−∆3
log 1

δ√
T

≥ γ̄1ζ1(R(w∗)) + γ̄2ζ2(R(w∗))−Ψ∗(γ̄)−∆3
log 1

δ√
T

≥ min
γ
{γ1ζ1(R(w∗)) + γ1ζ2(R(w∗))−Ψ∗(γ)} −∆3

log 1
δ√
T

= Ψ(ζ1(R(w∗)), ζ2(R(w∗)))−∆3
log 1

δ√
T
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Thus, we have with probability at least 1− δ,

(A) ≥ T ·Ψ(ζ1(R(w∗)), ζ2(R(w∗)))−∆3log
1

δ

√
T

Combining the upper and lower bounds on (A) finishes the proof since ∆3log 1
δ

√
T

overwhelms the term ∆1 log T
δ .

5.9 Proof of Theorem 5

We will prove the result by proving a sequence of claims. The first claim ensures
that the distance to the optimum performance value is bounded by the performance
value we obtain in terms of the valuation function at any step. For notational sim-
plicity, we will use the shorthand P(w) := P(Pquant,Pclass)(w) .

Claim 9. P∗ := supw∈W P(w) be the optimal performance level. Also, define
et = V (wt+1, vt). Then, for any t, we have

P∗ − P(wt) ≤
et
m

Proof. We will prove the result by contradiction. SupposeP∗ > P(wt)+ et
m . Then

there must exist some w̃ ∈ W such that

P(w̃) =
et
m

+ P(wt) + e′ =
et
m

+ vt + e′ =: v′,

where e′ > 0. Note that the above uses the fact that we set vt = P(wt). Then we
have

V (w̃, vt)− et = Pclass(w̃)− vt · Pquant(w̃)− et.
Now since P(w̃) = v′, we have Pclass(w̃)− v′ · Pquant(w̃) = 0 which gives us

V (w̃, vt)− et =
( et
m

+ e′
)
Pquant(w̃)− et ≥

( et
m

+ e′
)
m− et > 0.

But this contradicts the fact that maxw∈W V (w, vt) = et which is ensured by step
4 of Algorithm 5. This completes the proof.

The second claim then establishes that in case we do get a large performance
value in terms of the valuation function at any time step, the next iterate will have
a large leap in performance in terms of the original performance function P .

Claim 10. For any time instant t we have

P(wt+1) ≥ P(wt) +
et
M
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Proof. By our definition, we have V (wt+1, vt) = et. This gives us

Pclass(wt+1)

Pquant(wt+1)
−
(
vt +

et
M

)
≥ Pclass(wt+1)

Pquant(wt+1)
−
(
vt +

et
Pquant(wt+1)

)

=
vt · Pquant(wt+1)

Pquant(wt+1)
− vt = 0,

which proves the result.

We are now ready to establish the convergence proof. Let ∆t = P∗ − P(wt).
Then we have, by Claim 9

et ≥ m ·∆t,

and also
P(wt+1) ≥ P(wt) +

et
M
,

by Claim 10. Subtracting both sides of the above equation from P∗ gives us

∆t+1 = ∆t −
et
M

≤ ∆t −
m

M
·∆t =

(
1− m

M

)
·∆t,

which concludes the convergence proof.

5.10 Proof of Theorem 6

To prove this theorem, we will first show that the CAN algorithm is robust to
imprecise updates. More precisely, we will assume that Algorithm 5 only ensures
that in step 4 we have

V (wt+1, vt) = max
w∈W

V (w, vt)− εt,

where εt > 0 and step 5 only ensures that

vt = P(wt) + δt,

where δt may be positive or negative. For this section, we will redefine

et = max
w∈W

V (w, vt)

since we can no longer assume that V (wt+1, vt) = et. Note that if vt is an unre-
alizable value, i.e. for no predictor w ∈ W is P(w) ≥ vt, then we have et < 0.
Having this we establish the following results:

Lemma 11. Given the previous assumptions on the imprecise execution of Algo-
rithm 5, the following is true
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1. If δt ≤ 0 then et ≥ 0

2. If δt > 0 then et ≥ −δt ·M
3. We have P∗ < vt iff et < 0

4. If et ≥ 0 then et ≥ m(P∗ − vt)
5. If et < 0 then et ≥M(P∗ − vt)
6. If V (w, v) = e for e ≥ 0 then P(w) ≥ v + e

M

7. If V (w, v) = e for e < 0 then P(w) ≥ v + e
m

Proof. We prove the parts separately below

1. Since δt < 0, there exists some w ∈ W such that P(w) > vt. The result
then follows.

2. If vt = P(wt) + δt then V (wt, vt) ≥ −δt ·M .The result then follows.
3. Had et ≥ 0 been the case, we would have had, for some w ∈ W , V (w, vt) ≥

0 which would have implied P(w) ≥ vt which contradicts P∗ < vt. For the
other direction, suppose P∗ = P(w∗) = vt + e′ with e′ > 0. Then we have
et = V (w∗, vt) > 0 which contradicts et < 0.

4. Observe that the proof of Claim 9 suffices, by simply replacing P(wt) with
vt in the statement.

5. Assume the contrapositive that for some w ∈ W , we haveP(w) = vt+
et
M +

e′ where e′ > 0. We can then show that V (w, vt) =
(
et
M + e′

)
Pquant(w) ≥

et+e
′ ·Pquant(w) > et which contradicts the definition of et. Note that since

et < 0, we have et
M ≥ et

Pquant(w) and we have Pquant(w) ≥ m > 0.

6. Observe that the proof of Claim 10 suffices, by simply replacing P(wt) with
vt in the statement.

7. We have Pclass(w)−v ·Pquant(w) = e. Dividing throughout by Pquant(w) >
0 and using e

Pquant(w) ≥ e
m since e < 0 gives us the result.

This finishes the proofs.

Using these results, we can now make the following claim on the progress
made by CAN with imprecise updates.

Lemma 12. Even if CAN is executed with noisy updates, at any time step t, we
have

∆t+1 ≤
(

1− m

M

)
∆t +

M

m
· |δt|+

εt
m
.

Proof. We analyze time steps when δt ≤ 0 separately from time steps when δt < 0.

Case 1: δt ≤ 0 In these time steps, the method underestimates the performance of
the current predictor but gives a legal i.e. realizable value of vt. We first deduce that
for these time steps, using Lemma 11 part 1, we have et ≥ 0 and then using part 4,
we have et ≥ m(P∗ − vt). This combined with the identity P∗ − vt = ∆t − δt,
gives us

et ≥ m(∆t − δt)
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Now we have, by definition, V (wt+1, vt) = et− εt (note that both et, ε ≥ 0 in this
case). The next steps depend on whether this quantity is positive or negative. If
εt ≤ et, we apply Lemma 11 part 6 to get

P(wt+1) ≥ vt +
et − εt
M

,

which gives us upon using P∗ − vt = ∆t − δt and et ≥ m(∆t − δt),

∆t+1 ≤
(

1− m

M

)
∆t −

(
1− m

M

)
δt +

εt
M

Otherwise if εt > et then we have actually made negative progress at this time step
since V (wt+1, vt) < 0. To safeguard us against how much we go back in terms of
progress, we us Lemma 11 part 7 to guarantee

P(wt+1) ≥ vt +
et − εt
m

,

which gives us upon using P∗ − vt = ∆t − δt and et ≥ m(∆t − δt),

∆t+1 ≤
εt
m
,

Note however, that we are bound by εt > et in the above statement. We now move
on to analyze the second case.

Case 2: δt > 0 In these time steps, the method is overestimating the performance
of the current predictor and runs a risk of giving a value of vt that is unrealizable.
We cannot hope to make much progress in these time steps. The following analysis
simply safeguards us against too much deterioration. There are two subcases we
explore here: first we look at the case where vt ≤ P∗ i.e. vt is still a legal,
realizable performance value. In this case we continue to have et ≥ 0 and the
analysis of the previous case (i.e. δt ≤ 0) continues to apply.

However, if vt > P∗, we are setting an unrealizable value of vt. Using
Lemma 11 part 3 gives us et < 0 which, upon using part 5 of the lemma gives
us

et ≥M(P∗ − vt).
In this case, we have V (wt+1, vt) = et − εt < 0 since et < 0 and εt > 0. Thus,
using Lemma 11 part 7 gives us

P(wt+1) ≥ vt +
et − εt
m

which upon manipulation, as before, gives us

∆t+1 ≤
(

1− M

m

)
∆t +

(
M

m
− 1

)
δt +

εt
m
≤
(
M

m
− 1

)
δt +

εt
m
,
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where the last step uses the fact that ∆t ≥ 0 and M ≥ m. Putting all these cases
together and using the fact that the quantities ∆t, εt, |δt| are always positive gives
us

∆t+1 ≤
(

1− m

M

)
∆t +

(
M2 −m2

mM

)
|δt|+

εt
m

≤
(

1− m

M

)
∆t +

M

m
· |δt|+

εt
m
,

which finishes the proof.

From hereon simple manipulations similar to those used to analyze the STAMP
algorithm in [80] can be used, along with the guarantees provided by Theorem 3
for the NEMSIS analysis to finish the proof of the result. We basically have to use
the fact that the NEMSIS invocations in SCAN (Algorithm 6 line 8), as well as the
performance estimation steps (Algorithm 6 lines 14-19) can be seen as executing
noisy updates for the original CAN algorithm.
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[9] José Barranquero, Jorge Dı́ez, and Juan José del Coz. Quantification-
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[23] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the gener-
alization ability of on-line learning algorithms. In Proceedings of the 15th
Annual Conference on Neural Information Processing Systems (NIPS 2001),
pages 359–366, Vancouver, USA, 2001.



BIBLIOGRAPHY 130

[24] Yee Seng Chan and Hwee Tou Ng. Estimating class priors in domain
adaptation for word sense disambiguation. In Proceedings of the 44th An-
nual Meeting of the Association for Computational Linguistics (ACL 2006),
pages 89–96, Sydney, AU, 2006.

[25] W. Chu, L. Li, L. Reyzin, and R. E Schapire. Contextual bandits with linear
payoff functions. In Proc. AISTATS, 2011.

[26] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
McGraw Hill, 1990.

[27] K. Crammer and C. Gentile. Multiclass classification with bandit feedback
using adaptive regularization. In Proc. ICML, 2011.

[28] Imre Csiszár and Paul C. Shields. Information theory and statistics: A tuto-
rial. Foundations and Trends in Communications and Information Theory,
1(4):417–528, 2004.

[29] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear
optimization under bandit feedback. In COLT, pages 355–366, 2008.

[30] O. Dekel, C. Gentile, and K. Sridharan. Robust selective sampling from
single and multiple teachers. In COLT, pages 346–358, 2010.

[31] J. Delporte, A. Karatzoglou, T. Matuszczyk, and S. Canu. Socially enabled
preference learning from implicit feedback data. In Proc. ECML/PKDD,
pages 145–160, 2013.

[32] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spec-
tral graph partitioning. In Proc. 7th KDD, pages 269–274. ACM, 2001.

[33] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.
Information-theoretic co-clustering. In Proc. 9th KDD, pages 89–98, New
York, NY, USA, 2003. ACM.

[34] J. Djolonga, A. Krause, and V. Cevher. High-dimensional gaussian process
bandits. In NIPS, pages 1025–1033, 2013.

[35] Marthinus C. du Plessis and Masashi Sugiyama. Semi-supervised learning
of class balance under class-prior change by distribution matching. In Pro-
ceedings of the 29th International Conference on Machine Learning (ICML
2012), Edinburgh, UK, 2012.

[36] M. Dudik, D. Erhan, J. Langford, and L. Li. Sample-efficient nonstationary-
policy evaluation for contextual bandits. In UAI, 2012.

[37] Andrea Esuli and Fabrizio Sebastiani. Sentiment quantification. IEEE In-
telligent Systems, 25(4):72–75, 2010.



BIBLIOGRAPHY 131

[38] Andrea Esuli and Fabrizio Sebastiani. Optimizing text quantifiers for mul-
tivariate loss functions. ACM Transactions on Knowledge Discovery and
Data, 9(4):Article 27, 2015.

[39] George Forman. Quantifying counts and costs via classification. Data Min-
ing and Knowledge Discovery, 17(2):164–206, 2008.

[40] Wei Gao and Fabrizio Sebastiani. Tweet sentiment: From classification to
quantification. In Proceedings of the 7th International Conference on Ad-
vances in Social Network Analysis and Mining (ASONAM 2015), pages 97–
104, Paris, FR, 2015.

[41] Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of
bandits. In Proceedings of the 31st International Conference on Machine
Learning (ICML 2014), Bejing, CN, 2014.

[42] Thomas George and Srujana Merugu. A scalable collaborative filtering
framework based on co-clustering. In Proc. 5th ICDM, pages 625–628.
IEEE Computer Society, 2005.

[43] Vı́ctor González-Castro, Rocı́o Alaiz-Rodrı́guez, and Enrique Alegre. Class
distribution estimation based on the Hellinger distance. Information Sci-
ences, 218:146–164, 2013.

[44] Huijuan Guo, Yi Feng, Fei Hao, Shentong Zhong, and Shuai Li. Dynamic
fuzzy logic control of genetic algorithm probabilities. Journal of Computers,
9(1):22–27, 2014.

[45] Fei Hao, Shuai Li, Geyong Min, Hee-Cheol Kim, Stephen Yau, and Lau-
rence Yang. An efficient approach to generating location-sensitive recom-
mendations in ad-hoc social network environments. IEEE Transactions on
Services Computing, 8(3):520–533, 2015.

[46] Fei Hao, Doo-Soon Park, Shuai Li, and Hwa Min Lee. Mining -maximal
cliques from a fuzzy graph. Journal of Sustainability, 8(6):553, 2016.

[47] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic
Regret Algorithms for Online Convex Optimization. In Proceedings of the
19th Annual Conference on Learning Theory (COLT 2006), pages 499–513,
Pittsburgh, USA, 2006.

[48] Daniel J. Hopkins and Gary King. A method of automated nonparametric
content analysis for social science. American Journal of Political Science,
54(1):229–247, 2010.

[49] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in
large dynamic networks. ACM Trans. on Computer Systems, 23(3):219–252,
August 2005.



BIBLIOGRAPHY 132

[50] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
Gossip-based peer sampling. ACM Transactions on Computer Systems,
25(3):8, 2007.

[51] Thorsten Joachims. A support vector method for multivariate performance
measures. In Proceedings of the 22nd International Conference on Machine
Learning (ICML 2005), pages 377–384, Bonn, DE, 2005.

[52] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane
training of structural SVMs. Machine Learning, 77(1):27–59, 2009.

[53] Robert N. Jorissen and Michael K. Gilson. Virtual screening of molecular
databases using a support vector machine. Jounal of Chemical Information
Modelling, 45(3):549–561, 2005.

[54] Dileep Kalathil, Naumaan Nayyar, and Rahul Jain. Decentralized learn-
ing for multiplayer multiarmed bandits. IEEE Transactions on Information
Theory, 60(4):2331–2345, 2014.

[55] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connec-
tivity in polylogarithmic worst case time. In Proc. SODA, pages 1131–1142,
2013.

[56] Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. Online and
stochastic gradient methods for non-decomposable loss functions. In Pro-
ceedings of the 28th Annual Conference on Neural Information Processing
Systems (NIPS 2014), pages 694–702, Montreal, USA, 2014.

[57] Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. Surrogate
functions for maximizing precision at the top. In Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML 2015), pages 189–198,
Lille, FR, 2015.

[58] D. R. Karger. Random sampling in cut, flow, and network design problems.
In Proc. STOC, 1994.

[59] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling:
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