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Abbreviations 

 

5-FU: 5-Fluoracil 

6-MP: 6-Mercaptopurine 

A549: Human lung carcinoma cell line 

ACN: Acetonitrile 

ACPP: Active cell penetrating peptide 

ADC: Antibody-drug conjugate 

ADCC: Antibody-dependent cellular 
cytotoxicity 

AKt/PKB: Protein kinase B 

Ala: Alanine 

ALL: Acute lymphoblastic leukemia 

AMAS: N-(α-maleimidoacetoxy) succinimide 
ester 

AML: Acute myeloid leukemia  

APN: Aminopeptidase N 

aq.: Aqueous solution 

Bn: Benzyl 

Boc: tert-Butyloxycarbonyl 

CAIX: Carbonic anhydrase IX 

CCRF-CEM: human leukemic lymphoblasts  

CDC: Complement dependent cytotoxicity 

Cit: Citrulline 

CPT: Camptothecin 

CuAAC: Copper (I) catalyzed alkyne-azide 
cycloaddition 

DAR: Drug-antibody ratio 

DAVBH: Desacetyl vinblastine hydrazide 

DCC: N,N'-Dicyclohexylcarbodiimide 

DCM: Dichloromethane 

DIC: N,N'-Diisopropylcarbodiimide 

DIPEA: N,N-Diisopropylethylamine 

DKP Diketopiperazine 

DM1: N2'-deacetyl-N2'-(3-mercapto-1-
oxopropyl)-maytansine 

DMAP: 4-Dimethylaminopyridine 

DMF: N,N-Dimethylformamide 

DMSO: Dimethyl sulfoxide 

DNA: Deoxyribonucleic acid 

DOX: Doxorubicin 

DOXSF: Doxsaliform 

DUPA: 2-[3-(1,3-dicarboxypropyl)ureido] 
pentanedioic acid 

ECM: Extracellular matrix 

EDC: N-(3-Dimethylaminopropyl)-Nʹ-
ethylcarbodiimide hydrochloride 

EDT: ethanedithiol  

EEDQ: N-Ethoxycarbonyl-2-ethoxy-1,2-
dihydroquinoline 

EGFR: Epithelial growth factor receptor 

Ep-CAM: Epithelial cell adhesion molecule 

eq.: equivalents 

ESI Electrospray ionization 

EtOAc: Ethyl acetate 

FACS: Fluorescence-activated cell sorting  

FAK: Focal adhesion kinases 

FDA: US Food and Drug Administration 

FL: Follicular lymphoma  

Fmoc: 9-Fluorenylmethoxycarbonyl 

FN: Fibronectin 

FR: Folate receptor 

GI: Gastrointestinal 

GM: Glioblastoma multiforme 

HAMA: Human anti-mouse antibodies 

HATU: O-(7-azabenzotriazol-1-yl)-
tetramethyl-uronium hexafluorophosphate 

HOAt 1-Hydroxy-7-azabenzotriazole 

HPLC: High performance liquid 
chromatography 

HT29: Human colon cancer 

HUVEC: Human umbilical endothelial cells 
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IC50: Maximum half inhibitory concentration 

ICAM 1: (Intercellular Adhesion Molecule 1 

IgG: Immunoglobulin G 

IL-8: Interleukin 8 

iPr: Isopropyl 
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LTT: Ligand-targeted therapeutics 
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MS: Mass spectroscopy 

mCRC: metastatic colorectal cancer 

MCRPC: Metastatic castration-resistant 
prostate cancer 

MDA-MB-468: Human breast cancer cell 
line 

MED: Minimum effective dose 
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MIDAS: Metal ion-dependent adhesion site 

MMAE: Monomethyl auristatin E 

MMAF: Monomethyl auristatin F 

MMP: Matrix metalloproteinase  

MTD: Maximum tolerated dose 

Mtr: 4-methoxy-2,3,6-trimethyl benzene 
sulphonyl 

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide 

MW Molecular weight 

NaHCO3: Sodium bicarbonate 

NGR: Asparagine-Glycine-Arginine 

NHL: Non-Hodgkin’s lymphoma 

NHS: N-Hydroxysuccinimide 

NMR: Nuclear Magnetic Resonance 

NSCLC: Non-small-cell lung cancer 

OATP: organic anion transporting 
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PaCa2: human pancreatic duct 
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rt.: room temperature  
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SMDC: Small molecule-drug conjugate 
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TMS Tetramethylsilane 

TNF: Tumor necrosis factor 

tR: Retention time 
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VEGF: Vascular endothelial growth factor 
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Project overview  

 

The lack of selectivity is one of the main limitations of traditional chemotherapy 

because of the severe side effects associated to high drug dosages. Targeted drug 

delivery is therefore a growing-interest field in cancer therapy as a strategy for 

overcoming the systemic cytotoxicity. This approach is inspired by the “magic-bullet” 

concept of Paul Ehrlich, awarded with the Medicine Nobel Prize in 1908 for his work in 

immunotherapy, concept applied to cancer therapy nowadays to propose the use of 

drug-delivery vehicles (monoclonal antibodies, peptides, nanoparticles, polymers) 

targeting a specific antigen or receptor to liberate the payload at the tumor site without 

affecting the healthy tissue.  

The antibody-drug conjugates (ADCs) and the small molecule-drug conjugates (SMDC) 

belong to this new generation of therapeutics. In ADCs, the targeting agent is a 

monoclonal antibody (mAb) while in SMDCs the targeting is performed by a low 

molecular weight ligand (peptide, vitamin or peptidomimetic). In both cases the 

targeting moiety is connected to a potent warhead by means of a stable linker and they 

are expected to efficiently deliver the cytotoxic agent to the tumor cells preferentially 

via receptor-mediated endocytosis. Currently, four ADCs: Mylotarg, Kadcyla, Adcetris 

and Besponsa, have been approved by the US FDA for the treatment of different 

cancers. Despite this success, ACDs present some drawbacks related to the use of mAbs 

such as high manufacturing costs, unfavorable pharmacokinetics (low tissue diffusion 

and low accumulation rate) and possible immune response, for this reason smaller 

formats like SMDCs have become an interesting alternative for the selective delivery of 

drugs into tumors.   

Our research group has developed during the last decade a number of cyclic 

peptidomimetic ligands containing the tripeptide RGD or isoDGR sequences and the 

bifunctional diketopiperazine (DKP) scaffold. These ligands are recognized by the 

integrin receptor αVβ3, which is widely expressed on the blood vessels of several human 
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cancers (e.g. breast cancer, glioblastoma, pancreatic tumor, prostate carcinoma) but 

not on the vasculature of healthy tissues, constituting a suitable therapeutic target. In 

particular, the cyclo[DKP-isoDGR] integrin ligand has shown not only a high binding 

affinity and selectivity for the purified receptor αVβ3 but also an integrin antagonist 

activity, becoming a promising ligand for the preparation of SMDCs. 

This PhD thesis describes the synthesis and biological evaluation of SMDCs containing 

the functionalized cyclo[DKP-isoDGR] integrin ligand and potent cytotoxic drugs (α-

amanitin, MMAE and MMAF) combined via different linkers and spacers. The purpose 

of this project is to study the efficacy of the cyclo[DKP-isoDGR] integrin ligand 

developed by our research group as a vector for targeted drug delivery. The work is 

divided in three chapters: the Chapter 1 introduces the definition of SMDC as part of 

the new targeted therapies strategies; the Chapter 2 presents the characteristics of the 

integrin receptors family, previous work on targeted drug-delivery via integrin ligands 

and the synthesis of the functionalized cyclo[DKP-isoDGR] integrin ligand; and the 

Chapter 3 presents the synthesis of the SMDCs containing the cyclo[DKP-isoDGR] 

integrin ligand and different cytotoxic agents, along with the discussion of the in vitro 

results, including binding affinity tests towards the isolated αVβ3 integrin receptor and 

antiproliferative activity assays in cancer cell lines with different levels of αVβ3 

expression.  

Finally, the experimental procedures and in vitro test protocols are detailed in the 

Experimental Section, together with the spectroscopic and analytical data of the new 

products.  
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Chapter 1. Targeted drug delivery for tumor therapy 

 

1.1. Targeted cancer therapies 

Cancer has a major impact on society as it represents one of the main causes of death 

worldwide. Statistics from the World Health Organization indicate that 8.8 million 

people died of cancer in 2015 and, approximately 1 in 6 deaths globally is related to this 

desease.1 

Among the anticancer therapies developed during the last decades, chemotherapy 

remains the most employed together with radiation therapy and surgery. Traditional 

chemotherapy uses low-molecular weight drugs (Figure 1) that modify or interrupt the 

cell cycle at different stages.2,3 These cytotoxic drugs can be classified by their 

mechanism of action in: 

- Antimetabolites 

These drugs can alter essential biological pathways by mimic nitrogenous bases or 

inhibiting enzymes involved in the synthesis of nucleic acids. 5-Fluoracil (5-FU) and 

6-mercaptopurine (6-MP), analogues of pyrimidine and purine respectively, are 

examples of antimetabolite drugs. The incorporation of these analogues during the 

phase S of cell cycle interrupts the replication of DNA and leads to apoptosis. 

Another example of this group is methotrexate, an antifolate that blocks the 

synthesis of nucleotides by inhibition of the dihydrofolate reductase.4 

- DNA damaging agents 

- Alkylating agents: They act by alkylating DNA on purine bases blocking replication. 

Nitrogen mustards derivatives (e.g. cyclophosphamide, chlorambucil, melphalan); 

nitrosoureas (e.g. carmustine, lomustine, semustine); triazenes (e.g. dacarbazine, 
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temozolomide) and natural products like mitomycin C and streptozotocin belong to 

this group.4,5 

- Cross-linking agents: Some alkylating agents can also bind DNA causing inter-strand 

crosslink (DNA crosslink on opposite strands of the double helix), with subsequent 

double toxic effect in cells.  Platinum complexes and derivates (e.g. cisplatin, 

carboplatin, oxaliplatin) can form intra-strand crosslinks when forming adducts with 

adjacent bases on the same DNA strand. Both inter-strand and intra-strand 

crosslinks lead to apoptosis by interruption of DNA replication.5 

- Intercalating agents: Bind between base pairs of nucleic acids preventing 

replication. Examples of this group of drugs are the anthracyclines doxorubicin, 

daunorubicin, epirubicin, mitoxantrone and antinomycin-D.4,5 

- Toposisomerase poisons: Topoisomerases are enzymes responsible for the 

cleavage, annealing and topological state of DNA double helix. Toposisomerase I 

inhibitors (e.g. camptothecin, irinotecan, topotecan) and toposisomerase II 

inhibitors (etoposide, anthracyclines) trap the DNA-enzyme complex inhibiting 

replication fork progression.6 

- Antitubulin agents 

Tubulin is a globular protein that plays an essential role in cellular replication. 

Antitubulin agents, also known as mitotic inhibitors, alter the microtubule 

polymerization dynamics (coexistence of tubulin assembly and disassembly) blocking 

the division of the nucleus and leading cell to apoptosis. There exist two groups of 

antitubulin agents: microtubules stabilizers (e.g. Paclitaxel, docetaxel, epothilones) and 

microtubule inhibitors (e.g. vincristine, vinblastine, dolastatin 10, colchicine).7  
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Figure 1. Molecular structures and use of common anticancer drugs8 

The cytotoxic agents described above are expected to attack preferentially the tumor 

cells, as these undergo much more rapid proliferation than normal cells. Unfortunately, 

these drugs can also kill normal dividing cells in the body (e.g. hair, bone marrow, 

gastrointestinal track) and accumulate in other organs rather than tumor area (Figure 

2), displaying severe side effects. Due to the systemic cytotoxicity, the administrated 

dose is often reduced to suboptimal level with poor benefit for the patient.3,9,10 

 

Figure 2. Biodistribution of 11C-docetaxel in male patient with metastatic malignant pleural 
mesothelioma. PET scans at different time points (0–6, 8–19, 23–39 and 42–63 min) display low drug 
uptake in the affected region (pleural mesothelium) but high accumulation in the liver and intestine. 
Adapted with permission from A.A.M. van der Veldt, N.H. Hendrikse, E.F. Smit et al. Eur. J. Nucl. Med. 

Mol. Imaging 2010, 37, 1950–1958. Copyright © 2010.11 
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With the purpose of improving the therapeutic index (maximum tolerated 

dose/minimum effective dose) of anticancer drugs, modern strategies are oriented 

towards targeted therapies. These are based on the concept of “magic-bullet”, 

envisaged by Paul Ehrlich (Medicine Nobel Prize, 1908) who coined the term referring 

to a therapeutic agent that could attack the bacteria responsible of diseases without 

hurting the host.12  

 

Figure 3. Targeted chemotherapy approach. Adapted with permission from Siler Panowski, Sunil Bhakta, 
Helga Raab, Paul Polakis and Jagath R. Junutula; mAbs, 2014, 6 (1), 34-45. Copyright © 2014 Landes 
Bioscience 

Nowadays, targeted cancer therapies aim at selectively killing cancer cells by interfering 

with essential pathways involved in tumor growth (e.g. signal-transduction pathways) or 

by efficiently delivering the cytotoxic agents to the tumor without compromising the 

healthy cells. Most common targets are molecular markers or antigens that play an 

important role in cell proliferation (e.g. cell surface proteins, glycoproteins, or 

carbohydrates) and that are over-expressed in tumor cells compared with normal 

tissues.3,13  

Three main approaches can be identified in this field: small molecules tyrosine kinase 

inhibitors designed to prevent the activation of signaling pathways dysregulated in 

tumor cells (e.g. imatinib – Gleevec®, sunitinib)14–16; monoclonal antibodies (mAbs) 

targeting specific antigens displayed in tumor cells; and ligand-targeted therapeutics 

(LTT) where a drug-delivery vehicle (e.g. monoclonal antibody, small ligand, peptide, 

nanoparticle, polymer) is used to target specific antigens or receptors and liberate the 

payload at the tumor site.17,18 Antibody-drug conjugates (ADCs) and small molecule-
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drug conjugates (SMDCs) belong to this last category and will be described in the next 

sections. 

1.2. Monoclonal antibodies  

Antibodies, also known as immunoglobulins (Ig), are a group of glycoproteins produced 

by the immune system that detect and selectively bind antigens displayed in abnormal 

cells, prompting an immune attack that destroys the cell expressing the antigen.19 In 

1975, Köhler and Milstein developed the hybridoma technology,20 where antibodies 

produced by B lymphocytes of mice were isolated and fused with immortal myeloma 

cell lines to obtain clonal cells known as hybridomas. Hybridomas can be cultured to 

produce large amounts of identical antibodies specific for an antigen, these are called 

monoclonal antibodies (mAbs). 

 

Figure 4. Structure and classification of monoclonal antibodies (mAbs).21 Fab: fragment antigen-binding; 
Fc: fragment crystallizable; CDR: complementary determining region; A) murine antibody; B) Chimeric 
antibody: murine variable regions and human constant regions; C) Humanized antibody: human variable 
and constant region, murine CDRs; D) Fully human antibody. Adapted with permission from K. R. 
Rodgers and R. C. Chou. Biotechnol. Adv. 2016, 34 (6), 1149–1158. Copyright © 2016 Elsevier Inc. 

The therapeutic potential of mouse mAbs (Figure 4A) was restricted by the response of 

patients’ immune system, which recognized the antibodies as foreign entities and 

generated human anti-mouse antibodies (HAMA), resulting in rapid clearance of the 

mAb from circulation. Further advances in recombinant DNA technology led to the 

production of chimeric mAbs (Figure 4B) where the constant regions of the murine 

antibody were replaced by human constant regions sequences, retaining the murine 

variable domains responsible for antigen binding. Later, it was also possible to replace 

the variable sequences of mouse mAbs with human sequences to obtain humanized 

mAbs with less than 10% mouse protein. More recently, the phage display technology 
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and the use of transgenic mice have made possible the generation of fully human mAbs, 

significantly reducing the immune response reported for the first mAbs.3,21,22 

The antitumoral activity of monoclonal antibodies can be attributed to different cell-

killing mechanisms.23 Among them we can summarize:  

- Direct action of the antibody: by binding the targeted receptor and displaying an 

antagonist activity, blocking the dimerization, kinase activation and downstream 

signaling, inhibiting proliferation and inducing apoptosis. 

- Immune-mediated cell killing: induction of phagocytosis, complement dependent 

cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) or regulation of 

T-cell function. 

- Effect of the antibody on tumor vasculature and stroma: vasculature receptor 

antagonism, stromal cell inhibition. 

These mechanisms have been validated in the clinic, leading to the approval of more 

than 24 mAbs targeting 16 different antigens, that are currently available in the market 

for the treatment of an increasing number of cancers.24 Some examples include the 

chimeric mAb Rituximab (the first mAb approved by the FDA for cancer treatment in 

1997), that binds the CD20 antigen expressed on the surface of B cells, indicated for the 

treatment of follicular lymphoma (FL) and low-grade non-Hodgkin’s lymphoma (NHL);25 

Alemtuzumab, a humanized mAb that targets CD52 antigen overexpressed on 

malignant lymphocytes, approved for therapy of resistant lymphocytic leukemia;26 

Bevacizumab, another humanized mAb that binds to the vascular endothelial growth 

factor receptor (VEGF) on cancer cells, inhibiting the formation and growth of tumor 

blood vessels, used in the treatment of metastatic colon and kidney cancer, non-small 

cell lung cancer and glioblastoma;27 the human mAb panitumumab, indicated for the 

treatment of metastatic colorectal cancer (mCRC) expressing the epithelial growth 

factor receptor (EGFR);28 and the humanized mAb trastuzumab (Herceptin®), that 

targets the human epidermal growth factor receptor 2 (HER2) overexpressed in 20-30% 

of breast cancers and some metastatic gastrointestinal (GI) cancers.29,30  
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1.3. Antibody-drug conjugates (ADC) 

The high specificity of monoclonal antibodies and the positive results obtained from the 

combination of mAbs with chemotherapy led to the idea of developing new conjugated 

entities where the mAbs were covalently bound to cytotoxic drugs. The so-called 

antibody-drug conjugates (ADCs) consist of a monoclonal antibody connected to a 

potent cytotoxic drug via a chemically stable linker to prevent the premature release of 

the payload in the blood circulation. Ideally, an ADC should liberate the cytotoxic agent 

at the tumor site after selectively binding its target, expressed on tumor cells surface, 

leaving the healthy cells unharmed.13,31  

The first generation of ADCs, based on chimeric or humanized mAbs and regular-

potency cytotoxic payloads (e.g. doxorubicin, methotrexate), faced several problems in 

clinical trials because of immunogenicity, limited potency and insufficient selectivity.32 

Learning from the early results, scientists optimized the ADCs design by selecting more 

specific targets, replacing chimeric mAbs by humanized or fully human mAbs to prevent 

immunogenicity, and using ultra-potent cytotoxic drugs (100-1000 times more potent). 

The drug-antibody ratio (DAR) in the second-generation ADCs is around 4:1, resulting in 

more efficient cytotoxicity.33,34 Currently, a new generation of ADCs is being developed 

with the incorporation of bispecific antibodies and site-specific conjugation of the drug 

that allows a better control of the DAR.35 

At present, four ADCs have received FDA approval and more than 60 are being 

evaluated at different stages of clinical trials (Figure 5). The first ADC commercialized 

was gemtuzumab ozogamicin (Mylotarg®, Wyeth-Pfizer), a first-generation ADC 

approved in 2000 for the treatment of CD33-positive acute myeloid leukemia (AML). It 

was voluntarily withdrawn from the US market in June 2010 and reintroduced in 

September 2017. The other three are second-generation ADCs: brentuximab vedotin 

(Adcetris®, Seattle Genetics) approved in 2011 for the treatment of anaplastic large cell 

lymphoma and Hodgkin lymphoma; ado-trastuzumab emtansine (Kadcyla®, Genentech), 

approved in 2013 for the treatment of HER2-positive breast cancer and  inotuzumab 

ozogamicin (Besponsa®, Pfizer) approved in 2017 for the treatment of adults with 

relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL).31,36  
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Figure 5. Structure and classification of three ADCs approved by FDA.35 A) The first-generation ADC 
gemtuzumab ozogamicin (Mylotarg®) contains a humanized mAb (IgG4) specific for CD33 antigen 
conjugated to 2–3 calicheamicin moieties which are attached via cleavable hydrazone linkers to random 
lysine residues; B) The second-generation ADC trastuzumab emtansine (Kadcyla ®) contains a humanized 
mAb (IgG1) specific for human epidermal growth factor receptor 2 (HER2) and 3–4 DM1 moieties 
attached via non-cleavable thioether linkers to random lysine residues; C) The second-generation ADC 
brentuximab vedotin (Adcetris®) contains a chimeric mAb (IgG1) specific for CD30 antigen and 4 
monomethyl auristatin E (MMAE) moieties attached to the hinge region through a protease-cleavable 
Val-Cit linker. Adapted with permission from A. Beck; L. Goetsch; C. Dumontet; N. Corvaïa. Nat. Rev. 

Drug Discov. 2017, 16 (5), 315–337. Copyright © 2016 Elsevier Inc. 

1.3.1. Design and mechanism of action of ADCs 

Among the factors to consider for the development of efficient ADCs, the most 

determinant are the choice of the target, the binding affinity and immunogenicity of the 

antibody, the nature of the linker and the potency of the cytotoxic drug.31 Most ADCs 

are designed to kill cancer cells in a target-dependent mechanism that involves the 

internalization of the ADC via a receptor-mediated endocytosis pathway (Figure 6).37,38  

The first step in this process is the binding of the antibody to its antigen, localized 

preferentially on the cell surface of tumor cells. Once the ADC-antigen complex is 

formed, it is internalized into endosomes that subsequently mature and fuse with 

lysosomes. In the lysosomes, the drug is released via cleavage of the linker by specific 

proteases such as cathepsin B or by degradation of the ADC, then the free drug reaches 

its target in cytoplasm leading to cell death. The cell-killing mechanism depends of the 

class of cytotoxic drug used (e.g. tubulin polymerization inhibition by maytansines and 

auristatins, DNA damage by calcheamicins and duocarmycins).34,38 Neighboring cancer 
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cells can also be killed when the free drug crosses the plasma membrane and access the 

extracellular environment in a process known as the bystander killing effect.39,40 

 

Figure 6. Design of ADCs and cell-killing mechanism. A) General structure of ADCs and factors to be 
consider for the design. B) Receptor-mediated endocytosis pathway: 1) the antibody moiety binds to its 
cell-surface antigen receptor target and form an ADC-antigen complex; 2) the complex is internalized 
into endosome that fuse with lysosomes; 3) the internalized complex undergoes lysosomal processing; 
4) the cytotoxic payload is released inside the cytosol; 5) the payload reaches its target leading to cell 
death. Adapted with permission from Siler Panowski, Sunil Bhakta, Helga Raab, Paul Polakis and Jagath 
R. Junutula; mAbs, 2014, 6 (1), 34-45. Copyright © 2014 Landes Bioscience 

Recent approaches in the design of ADCs have questioned the internalization 

requirement for ADC efficiency. In effect, potent activity in tumor preclinical models has 

been reported for non-internalizing ADCs directed against splice isoforms of fibronectin 

and tenascin-C, both  expressed on the extracellular matrix of tumor blood vessels.41–43 

In this case, the release of the cytotoxic drug is triggered by the glutathione or 

proteases present in the extracellular space upon tumor cell death, followed by the 

passive diffusion of the drug, which should be lipophilic enough to guarantee a 

homogeneous drug delivery to the tumor. 

1.3.2. Limitations of ADCs 

Despite the successful approval of four ADCs and the remarkable progress achieved in 

this field, there remain some limitations concerning the immunogenicity of the 

antibody, the stability of the linker, the antigen targeting and the heterogeneity of the 

antigen expression in the tumor.44,45 Specifically, in the case of solid tumors, the 

number of targeted receptors that ensure the internalization is relatively limited, and 
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contrary to hematologic tumors, the targets are overexpressed in a small portion of the 

patient populations (e.g. only 20% of breast cancer express HER2 and is eligible for the 

treatment with Kadcyla). Also, due to its large size antibodies do not extravasate and 

diffuse efficiently into tissue, once they reach the blood vessels they are trapped by the 

antigens located on perivascular tumor cells, preventing the targeting on the integrity of 

the tumor area. This is known as the “antigen-barrier” effect.9,46 

 

Figure 7. Various sizes antibody formats and alternative scaffolds for drug delivery.47 A) Engineered 
antibody formats: (a) Immunoglobulin-G, (b) Small immune protein SIP, (c) diabody, (d) Fab fragment, 
(e) single chain Fv (scFv), (f) domain antibody (dAb); B) Protein scaffolds: (g) Designed ankyrin repeat 
protein (DARPin), (h) Adnectin,(monobody) (i) affibody, (j) knottin peptide, (k) bicyclic peptide. Adapted 
with permission from M. Deonarain; G. Yahioglu; I. Stamati et al. Antibodies 2018, 7 (2), 16. 

Current strategies in ADC technology seek to overcome the pharmacokinetic limitations 

by using smaller formats such as antibody fragments, diabodies, mini-antibodies or 

small immune proteins (SIP) (Figure 7). Even though immunoglobulins (IgG) have a 

longer circulation half-life that allows maximal accumulation at the tumor site, recent 

studies support the concept that smaller formats have higher diffusion and 

extravasation coefficients, hence they can penetrate better the solid tumors.48,49 Lower 

plasma exposure also reduces the risk of premature release of the payload and the lack 

of a Fc domain in mAb fragments can minimize cross-reactivity with Fc-receptors on 

various normal cells, reducing off-target cytotoxicity.35,47 
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1.4. Small molecule-drug conjugates (SMDCs) 

The search for smaller vehicles for targeted drug delivery generated a new class of 

ligand-targeted cytotoxic agents where the targeting moiety is a low-molecular weight 

ligand (e.g. peptide, vitamin, peptidomimetic) with potentially favorable 

pharmacokinetic properties and that can be easily accessed by chemical synthesis. The 

so called small-molecule drug conjugates (SMDC) are similar to ADCs in structure and 

mechanism of action. They contain a linker system that connects the ligand to the 

cytotoxic drug and are expected to deliver the payload at its intracellular target in the 

tumor by receptor-mediated endocytosis (Figure 8). The considerations for the design 

of efficient ADCs are also valid for the SMDCs, being most determinant the choice of the 

target, the ligand, the nature of the linker and the potency of the payload.9,18,50  

 

Figure 8. General structure and mechanism of action of SMDCs. A) General structure of SMDCs. B) 
Receptor-mediated endocytosis pathway: (a) the targeting moiety binds to its cell-surface receptor 
target and form a SMDC-receptor complex; (b) the complex is internalized into endosomes that fuse 
with lysosomes; (c) the internalized complex undergoes lysosomal processing; the linker is cleaved and 
the cytotoxic drug is released to reaches its intracellular target; (d) the receptor is recycled to cell 
surface. Adapted from https://endocyte.com/. 

1.4.1. Target selection 

One of the most important aspects for the choice of a suitable target is the receptor 

expression profile. This includes the expression of the targeted receptor in tumor cells 

vs normal tissues and the absolute level of receptor’s isoforms expression in tumor 

cells. Ideally, the targeted receptor must be sufficiently overexpressed in tumor cells 

compared to normal to avoid off-target cytotoxicity; some studies have stablished as 

acceptable a 3-fold or higher magnitude of receptor overexpression in cancer cells.51,52 

For example, the expression of the folate receptor type α (FRα) is about 2.8 million 
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receptors per cancer cell53 and the prostate-specific membrane antigen (PSMA) is 

expressed in 1 million excess by LNCaP prostate cancer cell line54. Other receptors 

overexpressed in a variety of cancer cells are the somatostatin receptor 2 (SSTR2), the 

sigma non-opioid intracellular receptor (SIGMAR1 and 2), cell-adhesion proteins ICAM1, 

LFA1 and CD24 and certain integrins.9,13 

Most targeted receptors are expressed on the surface of cancer cells, allowing a better 

accessibility for the targeting ligand. In general, once the ligand binds the cell-surface 

receptor, forms the SMDC-receptor complex that is internalized via endocytosis to an 

intracellular compartment (recycling endosome or a lysosome) where the complex is 

dissociated, allowing the receptor to be either degraded or recycled to the cell surface 

(Figure 8B). As the availability of empty receptors on the targeted tumor cell depends 

on the rate of return of unoccupied receptors, an ideal receptor will be frequently 

recycled or resynthesized following degradation.9,50  

1.4.2. Choice of the ligand  

The binding affinity and specificity of the small ligand for the targeted receptor are basic 

for the optimal performance of SMDCs. A high binding affinity allowing the access to the 

targeted receptor and rapid extravasation, can increase the accumulation ratio 

tumor:blood, tumor:organ of the drug, avoiding the fast clearance often associated to 

the use of small molecules.13,18 The specificity is also very important, especially when 

there are other members of the receptor family that can be recognized by the ligand, 

compromising the tumor targeting. Some of the ligands currently used in SMDCs 

include PSMA ligands,50,55 folic acid analogues56 and carbonic anhydrase IX (CAIX) 

ligands (Figure 9).57,58 



 
 

21 
 

 

Figure 9. Small ligands targeting PSMA, folate receptor and CAIX 

 

Another important aspect is the derivatizability of the ligand. In order to be conjugated 

to the linker (or to the connecting spacer) the targeting ligand should preferably have a 

derivatizable functional group (e.g. carboxylic acid, amine, alcohol, thiol) that enable the 

coupling to further entities via simple chemistry (e.g. formation of amides, carbamates, 

oximes, esters, carbonates or disulphides). One advantage of the use of small molecule 

ligands is that they can be prepared by chemical synthesis and optimized through 

structure-activity relationship (SAR) studies to identify the sites where modification will 

not interfere with receptor binding.50,59 

1.4.3. Linker design 

The design of the linker system is a key factor in the optimization of the SMDCs because 

it has direct influence in the pharmacokinetic profile. As most SMDCs are designed to be 

cleaved or degraded intracellularly, the linker should be stable at physiological 

conditions but assure an efficient release of the payload after receptor-mediated 

internalization. In general, linkers can be divided in: 

- Acid-sensitive linkers: functional groups (e.g. esters or hydrazone) that remain 

stable in blood circulation (pH 7.5) and get hydrolyzed in acidic tumor micro-

environment (lysosomal pH 4.8 and endosomal pH 5–6). The hydrazone linker has 

been used in conjugates containing doxorubicin,60–62 paclitaxel63 and Pt agents.64,65 
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This linker is applicable for conjugating drugs or their derivatives containing a 

chemical moiety (e.g. ketone or aldehyde) that can be coupled to a hydrazine-

terminated linker (Figure 10).66 

 

Figure 10. Structures of hydrazone-based linker types as applied for doxorubicin conjugation: (a) acyl 
hydrazone, (b) alkoxycarbonyl hydrazone, (c) sulfonyl hydrazone. Doxorubicin release occurs primarily in 
acidic compartments such as endosomes and lysosomes as a result of acid-catalyzed hydrolysis of the 
hydrazone linker. Adapted with permission from P. T. Wong and S. K. Choi; Chem. Rev. 2015, 115, 3388-
3432. Copyright © 2015 American Chemical Society. 

- Disulfide linkers: disulfide bonds can be reduced inside cytoplasm by endogenous 

thiol molecules (e.g. cysteine, glutathione). Glutathione is a low molecular weight 

thiol present in the cytoplasm (0.5–10 mM) and the extracellular environment in 

minor scale (2–20 µM in plasma). Tumor cells present elevated levels of glutathione 

(10-20 mM) due to stress conditions such as hypoxia.67,68 This higher expression 

serves as a mechanism for the controlled release of the drug into the targeted cells 

(Figure 11). 
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Figure 11. Mechanism of drug release of self-immolative disulfide linkers. (a) when reduced by 
glutathione, a self-immolative cleavage of the disulfide bond leads to release of a free drug with the 
formation of stable byproducts (a) CO2 + a thiirane, (b) CO2 + thiolactone, (c) CO2 + thioquinone 
methide. GSH = glutathione; X = O or NH. Adapted with permission from: M. Srinivasarao and P. S. Low; 
Chem. Rev.  2017, 117, 12133-12164. Copyright © 2017 American Chemical Society 

- Enzymatically-cleavable linkers: these linkers are generally constituted by short 

peptide sequences (e.g. Val-Ala, Val-Cit) designed to be cleaved by enzymes 

upregulated or activated inside the tumor cells, such as the lysosomal protease 

cathepsin B. In serum conditions (pH 7.5) these proteases are inactivated due to the 

presence of different protease inhibitors, for this reason the peptide linker is stable 

in systemic circulation and it is only cleaved upon internalization in tumors. In 2011, 

the FDA approved the ADC Adcetris® containing a Val-Cit linker connected to the 

self-immolative p-aminobenzylcarbamate-monomethyl auristatin E and an anti-

CD30-mAb.34,69 

 

Figure 12. Enzymatic cleavage and drug release of paclitaxel prodrug containing the peptide linker 
[D]-Ala–Phe–Lys. Prodrug [D]-Ala-Phe-Lys-PABC-PTX a undergoes enzymatic cleavage giving b, 1,6-
elimination of self-immolative p-aminobenzylcarbamate moiety gives the metabolite c. Finally, 
intramolecular cyclization allows the release of the paclitaxel.70 Adapted with permission from A. dal 
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Corso; M. Caruso; L. Belvisi et al. Chem. - A Eur. J. 2015, 21 (18), 6921–6929. Copyright © 2015 John 
Wiley and Sons. 

- Non-cleavable linkers: alkyl or polymeric moieties that liberate the payload only 

after lysosomal degradation of the conjugate inside the cell. Their main advantage is 

the increased plasma stability compared to cleavable linkers71 and the specificity of 

the drug release mechanism. This type of linker has been successfully used in ADCs, 

notably in trastuzumab emtansine (Kadcyla®), that contains a non-reducible 

thioether, N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC 

or MC after conjugation), that connects the antibody with the maytansinoid DM1.72  

1.4.4. Payload selection 

The choice of the cytotoxic drug depends on the molecular target and the chemical 

structure of the conjugate. The drug is expected to exert a potent cytotoxic activity 

after internalization via receptor-mediated endocytosis, which means that a good 

membrane permeability is needed to diffuse across the endosomal membranes and 

some organelles (e.g. mitochondrion or nucleus). In addition, its chemical properties 

must afford an easy conjugation to the linker or self immolative moiety, for example 

through functional groups like hydroxyl, carboxyl, amines, carbonyls or thiols. In some 

cases it is also necessary to regulate the hydrophobicity of the payload to improve the 

conjugate’s pharmacokinetics, this can be achieved by introducing hydrophilic PEG 

spacers.18,50  

Among the cytotoxic drugs used in SMDC currently in clinical trials there are antimitotic 

agents such as paclitaxel, docetaxel, tubulysin B and desacetyl vinblastine hydrazide; 

and DNA damaging agents like ifosfamide and mitomycin C (Figure 13).50 However, 

promising cytotoxic agents with higher potency (IC50 < 10-9 M) are also being evaluated 

as payloads for SMDCs. This is the case of the tubulin polymerization inhibitors 

monomethyl auristatin E (MMAE),58,73 cryptophycins74 and maytansinoids (e.g. 

DM1),57,75 and the intercalating agent PNU-159682.73 
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Figure 13. Cytotoxic drugs used in SMDCs 

1.4.5. SMDCs in clinical trials 

At present there are nine SMDCs in different stages of clinical trials (Table 1).47,50 Most 

of these conjugates target the vitamin folate receptor alpha (FRα) overexpressed in a 

variety of human tumors (e.g. ovary, lung, kidney, endometrium, colon and breast) and 

have been developed by Endocyte. Their lead candidate EC145, also known as 

vintafolide, contains the vitamin folic acid conjugated to desacetyl vinblastine 

monohydrazide (DAVBH) via a dithiol cleavable linker. It is currently  in Phase II testing 

against non-small-cell lung carcinoma and solid tumors.76  

Table 1. Small molecule-drug conjugates in clinical trials50,77 

Conjugate Target Ligand Cytotoxic agent State 

Glufosfamide Glut1 β-D-glucose Ifosfamide 

Phase 3: metastatic 
pancreatic cancer 

Phase 2: GM, 
pancreatic cancer 
and soft tissue 
sarcoma 

Phase 1: pancreatic 
neoplasm 
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NGR-TNF APN NGR TNF-α 

Phase 2: metastatic 
ovarian cancer, 
metastatic SCLC, 
adult soft tissue 
carcinoma, 
metastatic HCC, 
colorectal cancer 

Phase 1: advanced 
solid tumors 

GRN1005 LRP1 Angiopep2 Paclitaxel 

Phase 2: brain 
cancer, glioma, 
metastatic breast 
cancer 

BIND 014 PSMA DUPA 
Liposomal 
docetaxel 

Phase 2: prostate 
cancer, NSCLC 

EC1169 PSMA DUPA Tubulysin 
Phase 1: recurrent 
MCRPC 

EC145 FR Folic acid 

Desacetyl 
vinblastine 
hydrazide 
(DAVBH) 

Phase 2: solid 
tumors, ovarian 
and endometrial 
cancer, NSCLC, 
lung 
adenocarcinoma 

Phase 1: recurrent 
or refractory solid 
tumors 

EC0225 FR Folic acid 
DAVBH and 
mitomycin C 

Phase 1: refractory 
or metastatic solid 
tumors 

EC0489 FR Folic acid DAVBH 
Phase 1: refractory 
or metastatic solid 
tumors 

EC1456 FR Folic acid tubulysin 
Phase 1: solid 
tumors, NSCLC, 
ovarian cancer 

Glut1 = glucose transporter 1, TNF = tumor necrosis factor, APN = aminopeptidase N, LRP1 = low-density lipoprotein 
receptor-related protein 1, PSMA = prostate-specific membrane antigen, DUPA = 2-[3-(1,3-
dicarboxypropyl)ureido]pentanedioic acid, DAVBH = desacetylvinblastine hydrazide, GM = glioblastoma multiforme, 
SCLC = small-cell lung cancer, NSCLC = nonsmall-cell lung cancer, HCC = hepatocellular carcinoma, FR = folate receptor, 
MCRPC = metastatic castration-resistant prostate cancer. 
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Endocyte has also developed a SMDC targeting the prostate specific membrane antigen 

(PSMA). EC1169 is constituted by the ligand DUPA and tubulysin B hydrazide as a 

payload, and it is currently in Phase I clinical trials for recurrent metastatic castration-

resistance prostate cancer (MCRPC) patients.78,79 Another SMDC targeting the PSMA is 

BIND 014, developed by Bind Therapeutics. This conjugate containing DUPA and a 

docetaxel-based nanoparticle payload, has recently shown acceptable safety in phase II 

with MCRPC patients.80 

NGR-TNFα is a SMDC developed by Corti and coworkers81 that targets the 

aminopeptidase-N (APN), overexpressed on the vasculature of several human cancers. 

It contains a small peptide ligand formed by the sequence Asn-Gly-Arg, conjugated to 

the tumor necrosis factor α (TNFα), a multifunctional cytokine that plays a key role in 

apoptosis and cell survival, as well as in inflammation and immunity.82 This compound 

has shown promising activity in Phase I clinical trials in combination with doxorubicin for 

treatments of solid tumors.81 Other peptide-drug conjugate in clinical evaluation is GRN 

1005 (or ANG 1005), developed by Angiochem and containing three molecules of 

paclitaxel bound to the 19-aminocid sequence angiopep2 that targets the low-density 

lipoprotein receptor-related protein 1 (LRP-1).83 This conjugate has been recently tested 

in non-small cell lung cancer patients with brain metastasis (GRABM-L). 

The progress of SMDCs in the pipeline of new therapeutics reassures the validity of this 

approach. Furthermore, the increasing diversity of ligands, spacers, linkers and payloads 

now available makes possible the design of novel and more efficient conjugates with 

improved affinity for their specific targets and better control of drug delivery and 

release.9,50    
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Chapter 2. Tumor targeting with integrin ligands 

 

2.1. Role of integrins in cancer  

Integrins are cell surface receptors constituted by α and β subunits associated in a non-

covalent manner. Both subunits are type I transmembrane glycoproteins that contain 

an extracellular domain, a single transmembrane domain and a short intracellular tail. In 

vertebrates, 18 α subunits and eight β subunits form 24 integrin αβ heterodimers 

expressed in different tissues.84,85 Each integrin exhibits a distinct binding affinity to 

particular ligands determined mostly by the α subunit (Figure 14), defining integrin 

subfamilies with specificity for Arg-Gly-Asp (RGD) motifs (αIIb, αV, α5, α8), intercellular 

adhesion molecules and inflammatory ligands (α4, αL, αM, αX, and αD), collagens (α1, α2, 

α10, α11) and laminins (α3, α6, α7).86 

 

Figure 14. Schematic representation of two integrins subunits and the 24 members of integrin family86 

Integrins play an important role in cell adhesion (cell-cell, cell-ECM), migration, survival 

and growth. After binding to ECM proteins (e.g. fibronectin and vitronectin) or cell 

surface immunoglobulin proteins (e.g. ICAM-1 and VCAM-1), integrins initiate a 

signaling cascade that can include tyrosine phosphorylation of focal adhesion kinases 

(FAK) and interaction with growth factors receptors (GFRs).87,88 They mediate a 

bidirectional “outside-in” and “inside-out” signaling  across the cell membrane, 



 
 

29 
 

exchanging information between the ECM and intracellular molecules.89,90 These 

complex signaling pathways allow the control of cell polarity, mobility, ECM remodeling 

and assembly that results in cell survival and proliferation.91 During the last two 

decades, integrins have gained increasing attention in pharmacological research since 

some integrins, notably αVβ3, α5β1 and αVβ6, are overexpressed in a variety of cancers 

contributing to progression and metastasis (Table 2).92,93   

Table 2. Integrins in cancer progression92 

Tumor Type Integrin expressed 

Melanoma αVβ3, α5β1 

Breast αVβ3, α6β4 

Prostate αVβ3 

Pancreatic αVβ3 

Ovarian αVβ3, α4β1 

Cervical αVβ3, αVβ6 

Glioblastoma αVβ3, αVβ5 

Non-small-cell lung carcinoma α5β1 

Colon αVβ6 

The integrin receptor αVβ3, first identified by Ruoslahti and coworkers,94
 is widely 

expressed on blood vessels of tumor cells (e.g. breast, glioblastoma, ovarian, prostate 

cancer) but not on vessels of normal tissue.95 Integrin αVβ3 is upregulated during tumor 

angiogenesis due to the stimuli of angiogenic growth factors such as fibroblast growth 

factor-2 (FGF-2), tumor necrosis factor α (TNF-α) and interleukin 8 (IL-8) present at 

wounds and inflammation sites. This is a critical step in tumor progression and 

metastasis because it provides oxygen and nutrients to the cells.96,97 Moreover, the 

activation of αVβ3 also facilitates tumor cell migration by regulation of the matrix-

degrading protease MMP2 on the surface of angiogenic blood vessels, resulting in 

collagen degradation and  ECM modification.87,98  

Because its implication in biological functions determinant for cancer progression and 

its high expression in tumor tissues, αVβ3 has been largely studied and validated as a 

therapeutic target. 
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2.2. Integrin ligands targeting the αVβ3 receptor 

2.2.1. RGD integrin ligands 

2.2.1.1. RGD recognition motif 

In 1987, Ruoslahti reported the tripeptide sequence RGD (Figure 15) as the basic motif 

present in many natural ligands of the αVβ3 receptor such as fibronectin and other cell 

adhesion proteins (e.g. vitronectin, osteopontin, collagen).99 

 

Figure 15. RGD sequence 

The complete understanding of the interactions between RGD and αVβ3, however, was 

only possible in 2002 when Xiong and coworkers100 reported the crystal structure of the 

extracellular segment of the αVβ3 integrin receptor complexed with the αVβ3 integrin 

binder Cilengitide (Figure 16).  

 
Figure 16. Cilengitide–integrin V 3 interaction. A) Surface representation of the RGD ligand-binding 
site; (B) Crystal structure of the V 3 -Cilengitide complex. (ADMIDAS and MIDAS regions are shown in 
violet and cyan respectively; Cilengitide is represented in yellow; αV and β3 residues are labelled in blue 
and red, respectively; O and N atoms are represented in red and blue respectively. Hydrogen bonds and 
salt bridges are represented with dotted lines). Adapted with permission from Jian-Ping Xiong, Thilo 
Stehle et al.; Science. 2002, 296 (5565), 151–155. Copyright © 2002 The American Association for the 
Advancement of Science. 
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The crystal structure showed an extended conformation of the RGD sequence in the 

binding pocket, with a distance of 9 Å between the Cβ atoms of the Arg and Asp 

residues. This folding allows the guanidine group of Arg to interact with two anionic 

aspartic acid residues in the α-subunit (Asp 218 and Asp150), whereas the aspartic acid 

binds to Mn2+ divalent cation in the metal ion-dependent adhesion site (MIDAS) region 

of the β-subunit. The glycine residue, at the interface between both subunits, presents 

weak hydrophobic interactions with the carbonyl group of Arg216, same than the 

aromatic group of the ligand with Tyr122.100,101 All these integrin-ligand interactions, 

also known as “electrostatic clamp”, suggested structural requirements that constituted 

the starting point for the development of high affinity synthetic αVβ3 integrin ligands. 

2.2.1.2. Cyclic RGD integrin ligands 

Several small molecules, peptides and peptidomimetics containing the RGD sequence  

have been designed to target the integrin ανβ3 either as antagonists or as vehicles for 

selective delivery of drugs and imaging probes to tumors.102,103   

First synthetic RGD ligands were linear peptides that included the RGD-motif and other 

amino acids added to the sequence (e.g. RGD, RGDS, GRGD, GRGDS, GRGDSP, 

GRGDSPK). Whereas linear ligands showed good binding affinity for the ανβ3 receptor, 

also presented low stability regarding enzymatic degradation, resulting in limited 

applicability for in vivo studies.104,105 This led to the use of different strategies including 

cyclization, modification of the stereochemical configuration of the constituent amino 

acids and N-methylation to improve the biological activity of RGD ligands.106,107 

In 1991, Kessler and coworkers developed the cyclic pentapeptide cyclo(RGDfV) (Figure 

17a) which displayed high binding affinity towards ανβ3 (IC50 ανβ3 = 1.54 ± 0.12 nM) 

while retaining selectivity against other integrins (e.g. αIIbβ3, ανβ5, ανβ8).108,109 This base 

structure was later modified to produce new ligands with improved activity and 

selectivity profiles.110 Among them, cyclo[RGDf-(NMe)V] (Cilengitide, Figure 17b) 

showed outstanding binding affinity for ανβ3 (IC50 ανβ3 = 0.61 ± 0.06 nM) and ανβ5 (IC50 

ανβ5 = 8.4 ± 2.1 nM) as well as subnanomolar antagonistic activity for the ανβ3 

receptor.111,112 Cilengitide became the first integrin antagonist to be tested in clinical 

trials and it is currently undergoing phase II studies for the treatment of different 
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tumors113–115 despite its failure in phase III trial for the treatment of patients with newly 

diagnosed glioblastoma.116  

 

Figure 17. Structure of cyclic RGD ligands c(RGDfV) and c[RGDf-(NMe)V] 

Other RGD ligands reported by the same group are cyclo(RGDfK), cyclo(RGDyK), 

cyclo(RGDfC) (Figure 18, a-c) and RGD4C (Figure 18, d).95,103 The amino group of the 

lysine residue of cyclo(RGDfK) and cyclo(RGDyK) allows further chemical conjugation, 

similarly in the case of cyclo(RGDfC), the thiol group of the cysteine residue is often 

used in the conjugation to maleimide-functionalized linkers via Michael addition. For 

these reason, the mentioned ligands are commonly used as vectors for the delivery of 

therapeutic agents.95,117,118 In 1995, Ruoslahti and coworkers reported the discovery by 

phage display technology of the undecapeptide RGD4C (ACDCRGDCFCG)119, which is 

structurally constrained by two disulfide bonds. RGD4C has been used delivery systems 

by conjugation at its N- or C-terminals.120–123 Furthermore, it can be expressed by 

recombinant methods into proteins and viruses, as in the case of the RGD4C-TNF fusion 

protein,124 used for the targeted delivery of TNF to ανβ3 expressing tumors. 

 

Figure 18. RGD ligands used in delivery systems95 
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2.2.1.3. Cyclo[DKP-RGD] integrin ligands 

In 2009 our research group reported the synthesis of low-nanomolar peptidomimetics 

where the RGD sequence was cyclized by means of a bifunctional diketopiperazine 

(DKP) scaffold containing a carboxylic and an amino function.125,126  In 2012, a small 

library of different cyclo[DKP-RGD] ligands was reported, differing in the configuration 

at the two DKP stereocenters (position 3 and 6) and in the substituents at the DKP 

nitrogen atoms (Figure 19). The introduction of the DKP scaffold confers metabolic 

stability and conformational rigidity to the ligand, facilitating the interactions needed to 

fit into the RGD pocket of ανβ3 receptor.127,128 In particular, the RGD peptidomimetics 2-

7 derived from trans-DKP scaffolds (DKP2-DKP7) showed a preferential binding affinity 

towards integrin αVβ3, inhibiting the binding of biotinylated vitronectin, a natural 

integrin ligand, to the purified αVβ3 at low-nanomolar IC50 values in a competition 

binding assay (Table 3).127 

 

Figure 19. Library of cyclo[DKP-RGD] integrin ligands 

Table 3. Inhibition of biotinylated vitronectin binding to ανβ3 and ανβ5 receptors126,127 

Compound N° Structure 
ανβ3 IC50  

[nM] 
ανβ5 IC50  

[nM] 

1 cyclo[DKP1-RGD] 3898 ± 418 >104 

2 cyclo[DKP2-RGD] 3.2 ± 2.7 114 ± 99 

3 cyclo[DKP3-RGD] 4.5 ± 1.1 149 ± 25 

4 cyclo[DKP4-RGD] 7.6 ± 4.3 216 ± 5 

5 cyclo[DKP5-RGD] 12.2 ± 5.0 131 ± 29 

6 cyclo[DKP6-RGD] 2.1 ± 0.6 79 ± 3 

7* cyclo[DKP7-RGD] 
a) 220.2 ± 82.3 

b) 0.2 ± 0.09 

a) >104 
b) 109 ± 15 

8 cyclo[DKP8-RGD] 7.5 ± 0.0 >103 
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- cyclo(RGDfV) 3.2 ± 1.3 7.5 ± 4.8 

[a]IC50 values are calculated as the concentration of compound required for 50% inhibition of 
biotinylated vitronectin binding. * Two diastereoisomers detected. 

NMR characterization and conformational studies performed on the cyclo[DKP-RGD] 

ligands 1-8 revealed that the ligands with highest affinity values (trans configuration) 

displayed well-defined preferential conformations with an average distance of 8.8Å 

between Cβ(Arg) and Cβ(Asp) consistent with an extended arrangement of the RGD 

sequence (Figure 20).127   

 

Figure 20. Structures obtained by restrained MC/SD simulations based on NOESY spectra distance 
information127 

Docking studies were performed based on the representative conformations obtained 

from the MC/SD simulations. During these studies the ligand cyclo[DKP3-RGD] 3, 

produced top-ranked poses displaying all the important interactions RGD- αVβ3 integrin, 

taking as a reference the crystal structure of the extracellular segment of the αVβ3 

integrin receptor complexed with the peptide binder Cilengitide.127 



 
 

35 
 

 

Figure 21. Best pose of compound cyclo[DKP3-RGD] into the crystal structure of avb3 integrin overlaid on 
Cilengitide (green tube representation). 

 

In further biological evaluation, the c[DKP3-RGD] ligand 3 was tested for its effect on 

cell viability, proliferation, migration and capillary network formation; mRNA expression 

of αV, β3 and β5 subunits and Akt phosphorylation in human umbilical vein endothelial 

cells (HUVEC). Results showed that cyclo[DKP3-RGD] significantly inhibit the cell 

adhesion and angiogenesis induced by growth factors (VEGF, EGF, IGF-I, FGF2 and IL-8) 

as well as the phosphorylation of Akt, a protein kinase important in the regulation of 

vascular homeostasis and angiogenesis.129 Recent studies demonstrated that c[DKP3-

RGD] was able to inhibit also the FAK/Akt integrin-activated transduction signaling 

pathway and integrin-mediated cell infiltration process in U373 human glioblastoma cell 

line, reinforcing  its condition of true integrin αvβ3 antagonist.130 

The former results increased the interest in cyclo[DKP3-RGD] 3 as a potential vehicle for 

the delivery of cytotoxic agents. For this purpose the DKP3 scaffold was modified by 

substituting one amine proton with a benzylamine moiety, obtaining the functionalized 

c[DKP-f3-RGD] ligand (9, Figure 22)131 that has been used in the preparation of SMDCs 

targeting the αvβ3 receptor.70,132,133 

 

Figure 22. Cyclo[DKP-f3-RGD] (c[DKP-RGD]-CH2NH2) integrin ligand (9) 
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2.2.1.4. RGD integrin ligands in SMDCs 

The recognition of integrins as potential targets for cancer treatment has led to the 

development of drug delivery systems based on RGD integrin ligands that can 

selectively target the tumor cells overexpressing the ανβ3 receptor and release the 

cytotoxic agent into the cell after internalization via receptor-mediated endocytosis.134 

Some examples of RGD-drug conjugates are presented in this section, including the 

work developed by our research group in the field. (An extended review about RGD 

conjugates used in drug delivery and theranostics can be found in references 

95,102,117,135–137. 

- RGD-Doxorubicin conjugates 

Two conjugates containing the doxorubicin prodrug doxsaliform (DOXSF) and RGD 

ligands were reported by Burhart and co-workers in 2004.138 The linker in this case was 

the N-Mannich base of doxsaliform that released DOX upon hydrolysis. The conjugates, 

DOXSF-acyclicRGD4C and DOXSF-c[RGDf(N-Me)V] (Figure 23, a-b), displayed good 

binding affinity values in a vitronectin cell adhesion assay (IC50 = 5 nM and 10 nM 

respectively) and resulted slightly more toxic compared than the free DOX in a cell 

viability assay carried out in MDA MB-435 cell line. Later, Ryppa and co-workers139 

reported the synthesis of two DOX-E[c(RGDfK)]2 conjugates. In one of them DOX was 

attached to the ligand through an amide bond (Figure 23, c) while in the second one the 

linker used was a MMP2/MMP9 cleavable octapeptide (Figure 23, d). The conjugate 

bearing the protease cleavable linker demonstrated to be more efficient in the HUVEC 

antiproliferative, however, it displayed a moderate antitumor activity compared to free 

DOX in vivo.  
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Figure 23. RGD-DOX conjugates 

- RGD-MMAE conjugates 

In 2014, Tsien’s group developed the cyclic RGD conjugate RGD-PLGC(Me)AGMMAE-

ACPP (Figure 24),140 a dual targeting conjugate containing the potent tubulin 

polymerization inhibitor MMAE, an activable cell penetrating peptide (ACPP) targeting 

the MMP2, a far-red fluorescent dye (Cy5) and the cyclic(RGDfC) integrin ligand, for 

theranostic applications. The drug is connected to the ACPP via a maleimide-Val-Cit-PAB 

cleavable linker, whereas the cyclic RGD and Cy5 are connected to ACPP through PEG 

and maleimide linkers.  The conjugate showed better cellular uptake compared with 

cyclic-RAD-PLGC(Me)AG-MMAE-ACPP, the negative control for αvβ3 targeting, in 

U87MG cell line. During in vivo experiments, the conjugate reduced tumor volume in 

40% compared to the control group in MDA-MB-231 orthotopic human breast tumor 

and inhibit tumor growth in syngeneic Py230 murine breast tumors.  
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Figure 24. Cyclic RGD-PLGC(Me)AG-MMAE-ACPP conjugate 

- RGD-camptothecin conjugates 

In 2010 Dal Pozzo and co-workers presented the synthesis of five camptothecin (CPT) 

conjugates with c(RGDfV) analogues, bearing an uncleavable amide (Figure 25, a-c) or 

an hydrazone linker (Figure 25, d-e). All the conjugates showed good binding affinity for 

the αvβ3 receptor, but only the conjugates containing the hydrazone acid labile linker 

displayed a cytotoxicity superior to free CPT in A2780 ovarian carcinoma, A498 renal 

carcinoma and PC3 prostate carcinoma cell lines. However, the acid labile conjugates 

showed poor solubility and stability even at pH 7.4, which suggests the high cytotoxicity 

was due to the premature release of CPT in the medium.141 



 
 

39 
 

 

Figure 25. RGD-CPT conjugates 

Recently, Gennari’s group reported the synthesis and in vitro evaluation of two 

theranostic RGD-camptothecin conjugates (Figure 25, f-g), conformed by cyclo(RGDfK) 

or c[DKP-RGD]-CH2NH2 9 and a fluorescent naphthalimide moiety bound to CPT via a 

disulfide linker. Both conjugates exhibited a good binding affinity for integrin αvβ3, 

inhibiting the binding of biotinylated vitronectin to the purified receptor at nanomolar 

concentrations (IC50 5-21 nM). Nevertheless, in cell viability assays carried out in U87 

(αvβ3+) cell line and αvβ3 non- expressing clone U87 β3-KO the conjugates showed an 

antiproliferative activity similar to the free CPT and not dependent on the αvβ3 

expression. These results were consistent with confocal microscopy and 

immunofluorescence internalization studies where it was not observed a correlation 

between the internalization and the expression of αvβ3.132 

- RGD-Paclitaxel conjugates 

In 2012, the synthesis and biological evaluation of SMDC based on the c[DKP-RGD]-

CH2NH2 9 and paclitaxel connected by an acid-labile ester linker was reported by the 

groups of Gennari and Piarulli. The conjugate c[DKP-RGD]-CH2NH2-PTX (Figure 26, a) 

displayed a binding affinity for the αvβ3 receptor comparable to the ligand non-

functionalized c[DKP3-RGD] 3 (IC50 αvβ3: 5.2 and 4.5 nM respectively) and a selectivity 

towards integrin αvβ3 compared to αvβ5 (IC50 αvβ5: 219 nM). Cell viability tests 

performed on a panel of human tumor cell lines (i.e. IGROV-1, IGROV-1/Pt1, U2-OS, 
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SKOV3, PANC-1 and MIA-PaCa2) showed that the conjugate exert a cytotoxicity similar 

to the free PTX. However, in vivo studies carried out on IGROV-1/Pt1 carcinoma 

xenotransplanted in nude mice showed that the conjugate c[DKP-RGD]-CH2NH2-PTX was 

more effective than PTX, inhibiting tumor growth at 15 mg/kg-mouse doses. Moreover, 

the histopathological analysis of tumors from treated mice revealed the existence of 

aberrant mitotic cells, which is consistent with PTX mechanism of action.131  

 

Figure 26.cyclo[DKP-RGD]-PTX conjugates 

The same groups developed in 2015 two c[DKP-RGD]-PTX conjugates containing the 

ligand 9 bound to PTX through lysosomally cleavable dipeptide linkers: Val-Ala and Phe-

Lys (Figure 26, b-c). Additionally, a c[DKP-RGD]-PTX conjugate containing an 

‘uncleavable’ nonpeptide linker was synthetized as a negative control of the linker 

efficacy (Figure 26, d). In the competitive binding assay, the three conjugates displayed 

slightly lower binding affinity than the unconjugated ligand 9, remaining in the low 

nanomolar range and conserving the selectivity towards αvβ3 compared to αvβ5. The 

conjugates bearing the dipeptide linkers were stable at different pH conditions and 

showed an efficient linker cleavage and release of the drug after treatment with 

lysosomal extract. The antiproliferative activity of the conjugates was evaluated on two 

isogenic cell lines expressing different levels of αvβ3: acute lymphoblastic leukemia cell 

line CCRF-CEM (αvβ3-) and its sub-clone CCRF-CEM (αvβ3+). The conjugate bearing the 

uncleavable linker showed no cytotoxicity, whereas the conjugates bearing the 
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dipeptide cleavable linkers displayed an antiproliferative activity similar to free PTX with 

an increased potency in CCRF-CEM (αvβ3+) compared to the negative cell line. These 

results suggested an integrin-targeting effect presented by the conjugates.70  

2.2.2. isoDGR integrin ligands 

2.2.2.1. IsoDGR sequence: a new αVβ3 recognition motif 

In 2006 Corti and co-workers identified the isoAsp-Gly-Arg sequence (Figure 27) 

resulting from the spontaneous transformation of the NGR (Asn-Gly-Arg) portion of 

fibronectin, as a new binding motif recognized by the αVβ3 receptor.142   

 

Figure 27. isoDGR sequence 

 

In effect, the asparagine residue of NGR can undergo a non-enzymatic deamidation at 

physiological pH, passing through the formation of a succinimide intermediate that 

generates isoDGR and DGR tripeptides mostly in L-configuration after hydrolysis (Figure 

28). In the fifth type I fibronectin (FN-I5), the NGR deamidation of Asn263 was 

associated to the increase of cell-adhesion after an accelerated aging process (heat-

induced treatment). The gain of function in cell adhesion indicated αVβ3 integrin binding 

that could be attributed to isoDGR or DGR motif, however, competitive binding tests 

performed on synthetic peptides containing the isoDGR, DGR and iso-dGR (D-isoDGR) 

sequences showed a superior binding affinity of isoDGR for the αVβ3 receptor (in the 

sub-micromolar range). These results led to the conclusion that isoDGR is a αVβ3 binding 

motif.142,143   
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Figure 28. Schematic representation of the NGR deamidation reaction 

In order to determine if the interaction of the isoDGR motif with the αVβ3 integrin 

receptor occurred at the binding site of the RGD sequence, a competitive binding test 

was carried out with the cyclopeptides RGD-2C (CRGDCGVRY) and isoDGR-2C 

(CisoDGRCGVRY), in presence of a known αVβ3 integrin binder: ACDCRGDCFC-TNF. 

Results showed that both ligands, RGD-2C and isoDGR-2C, were able to inhibit the 

binding of ACDCRGDCFC-TNF to αVβ3, displaying similar binding affinity values (Kd RGD = 

0.41 µM, Kd isoDGR = 0.57 µM) suggesting that the isoDGR motif binds to αVβ3 at the 

site of RGD. The same study demonstrated that isoDGR can also bind the integrin αVβ5 

at the binding site of RGD but with less affinity than in the case of αVβ3.142 

In addition to biological evaluation, structural NMR analysis and docking studies 

performed on RGD-2C and isoDGR-2C confirmed that isoDGR binds the integrin αVβ3 

fitting into the RGD pocket.144 The model of the ligands in complex with αVβ3 (Figure 29) 

showed that isoDGR-2C displays a reversed orientation compared to RGD-2C, 

preserving all the interactions previously described for RGD: isoAsp residue coordinates 

with the metal ion of the MIDAS region of the β domain through its carboxylate and 

forms hydrogen bonds with Asn215, Tyr122 and Arg214, whereas Arg residue forms a 

bidentate salt bridge with Asp218 and an hydrogen bond with Asp150 and Gln180 at 

the α subunit. Interestingly, the isoDGR motif established additional interactions such as 

an hydrogen bond between the amide proton of the glycine residue and the carbonyl 

group of Arg216 that contributes to the ligand recognition.144,145 
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Figure 29. Model for the interaction for isoDGR and RGD at integrin αvβ3 binding site.  Representation of 
the αvβ3-binding pocket in complex with CisoDGRC (left) or CRGDC (right). αv and β3 subunits are 
represented in pink and pale cyan respectively; RGD and isoDGR motifs are shown in green; cystine in 
gray; N, O and S atoms in blue, red and yellow respectively; Ca2+ of MIDAS region is represented by a red 
sphere; hydrogen bonds are represented by dotted lines. Adapted with permission from A. Spitaleri; S. 
Mari; F. Curnis et al. J. Biol. Chem. 2008, 283, 19757–19768 Copyright © 2008 The American Society for 
Biochemistry and Molecular Biology, Inc. 

The finding of isoDGR as an alternative motif for integrin recognition encouraged the 

research for new αVβ3 ligands based on this motif. The group of Corti developed in 2010 

a small library of isoDGR ligands conformed by: acisoDGR-2C, a derivate of the isoDGR-

2C with an acetyl group linked to the α-amino group of the cysteine residue (Figure 30); 

isoDGR-2G and the respective acisoDGR-2G. Competitive binding tests performed on the 

four compounds showed that isoDGR-2C presented 10–100-fold higher binding affinity 

values for  αVβ3 than for other integrins (i.e. αvβ5, αvβ6, αvβ8, α5β1) while isoDGR-2G 

displayed a weak binding affinity for αVβ6 and no binding affinity for αVβ3. The 

acetylated compounds presented an increased binding affinity for all integrins with loss 

of selectivity. These results suggested that flanking residues had an influence on the 

binding affinity and selectivity of the ligands.146  

 

Figure 30. Integrin ligand isoDGR-2C (CisoDGRCGVRY) and its derivate acisoDGR-2C (acCisoDGRCGVRY)  

Further computational and biochemical studies performed on isoDGR-2C and acisoDGR-

2C showed they could block the ligand binding site inhibiting receptor allosteric 
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activation, acting as true αvβ3 antagonists.147 In 2013 the same group reported the 

synthesis of a cyclic hexapeptide containing the isoDGR sequence, cyclo(CGisoDGRG),148 

that showed preferential binding affinity for αvβ3 compared to αvβ5 and α5β1, and was 

used for the preparation of peptide-HSA (human serum albumin) conjugates with 

potential application in drug delivery. Moreover, recent studies have demonstrated that 

the antagonist condition is an inherent property of the isoDGR ligands, independent of 

the scaffold or chemical entities accompanying the tripeptide sequence.149 This 

characteristic constitutes a main advantage of isoDGR integrin ligands over their RGD 

pairs, considering adverse effects (e.g. angiogenesis, tumor growth) associated to a 

partial agonist-like activity detected for some RGD-based peptidomimetics.150   

2.2.2.2. Cyclo[DKP-isoDGR] integrin ligands 

Based on the cyclo[DKP-RGD] library previously reported, our research group produced 

a small library of four cyclo[DKP-isoDGR] integrin ligands (Figure 31).130,151  

 

Figure 31. Cyclo[DKP-isoDGR] integrin ligands 

The ligands 10-13 were evaluated for their ability to inhibit the binding of biotinylated 

vitronectin to isolated αvβ3 and αvβ5 receptors in a competitive binding assay (Table 4). 

The compound 11, structural analogue of c[DKP3-RGD] (3), displayed a preferential 

binding affinity for αvβ3 than for the αvβ5 receptor. Also, it showed better affinity values 

(low-nanomolar IC50) than the other c[DKP-isoDGR] ligands and the cyclopentapeptide 

c[GisoDGRphg],152 resulting comparable to c[DKP3-RGD] and Cilengitide. 
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Table 4. Inhibition of biotinylated vitronectin binding to ανβ3 and ανβ5 receptors130 

Compound  Structure 
ανβ3 IC50 [a] 

[nM] 
ανβ5 IC50 [a] 

[nM] 

10 c[DKP2-isoDGR] 46.7±18.2 220±84 

11 c[DKP3-isoDGR] 9.2±1.1 312±21 

12 c[DKP5-isoDGR] 490±77 9100±800 

13 c[DKP7-isoDGR] 255±140 5100±400 

3 c[DKP3-RGD] 4.5±1.1 149±25 

 c[RGDfV] 3.2±1.3 7.5±4.8 

 c[GisoDGRphg] 89 ± 19* n.d. 

 Cilengitide 0.6±0.1 11.7±1.5 

[a]IC50 values are calculated as the concentration of compound required for 50% inhibition of 
biotinylated vitronectin binding. *determined by a solid phase binding assay by using supported 
vitronectin, soluble αvβ3 integrin, specific primary and secondary antibodies.152 n.d. = non determined 

To get a better understanding of the interactions responsible for integrin binding 

affinity of c[DKP3-isoDGR] (11), conformational NMR spectroscopy and docking 

experiments were performed.151 NMR data and MC/SD simulations indicated the 

existence of two preferred conformations for 11: a distorted β-turn at Gly-Arg and a 

pseudo-β-turn at DKP-isoAsp (Figure 32). About 80% of the simulations adopted an 

extended arrangement of the isoDGR sequence (pseudo-β-turn), with an average 

distance Cβ(Arg)-Cβ(Asp) of 10.8 Å. 

 

Figure 32. NMR conformational studies on 11. I) Preferred intramolecular hydrogen-bonded pattern 
proposed from NMR data, NOE contacts are indicated by an arrow: a) β-turn at Gly-Arg; b) pseudo-β-
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turn at DKP-isoAsp; II) MC/SD simulations based on experimental distance information after energy 
minimization: a) Distorted β-turn (10% of the simulations), distance Cβ(Arg)-Cβ(Asp) = 10.7 Å; b) pseudo-
β-turn, (80% of the simulations), distance Cβ(Arg)-Cβ(Asp) = 10.8 Å.151 Adapted with permission from M. 
Mingozzi; A. Dal Corso; M. Marchini et al. Chem. - A Eur. J. 2013, 19, 3563–3567. Copyright © 2013 
WILEY-VCH Verlag GmbH & Co. 

Docking studies were performed based on the conformations of 11 obtained from the 

MC/SD simulations and taking as a reference the crystal structure of the extracellular 

segment of the αVβ3 integrin receptor complexed with the peptide binder Cilengitide for 

the ligand-protein interactions. In the case of the distorted β-turn Gly-Arg 

conformation, it conserved main electrostatic interactions corresponding to RGD 

binding model, but it lacked the hydrogen bond interactions with the β3 subunit. 

Instead, the pseudo-β-turn DKP-isoAsp conformation presented all the interactions 

described for the X-ray complex of integrin-Cilengitide (Figure 33) including the 

interaction of the guanidium group with the carboxylates of Asp218 and Asp150 in the 

α unit, the coordination of a carboxylate oxygen of the ligand to the metal cation of the 

MIDAS region of the β subunit, the hydrophobic interactions with Asn215 and Tyr122 of 

the β unit, and additional hydrogen bond between the amide proton of the Gly residue 

and the carbonyl group of Arg216 of the β subunit.151 

 

Figure 33. Best pose of c[DKP3-isoDGR] (11) pseudo-β-turn conformation into the crystal structure of 
the extracellular domain of αvβ3 integrin (α unit in pink and β unit in blue), overlaid on the bound 
conformation of Cilengitide (green tube representation). The metal ion in the MIDAS region is 
represented by a magenta sphere. Adapted with permission from M. Mingozzi; A. Dal Corso; M. 
Marchini et al. Chem. - A Eur. J. 2013, 19, 3563–3567. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. 

Recently, our research group carried out a series of biological studies to evaluate the 

antiangiogenic and integrin antagonist activity of the ligands c[DKP3-isoDGR] (11) and 

c[DKP3-RGD] (3), similar in terms of structure and binding affinity for integrin αVβ3.130  
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MTS cell viability tests performed in U373 glioblastoma cell line indicated no cytotoxicity 

of the compounds 3 and 11, as expected for integrin antagonists.129,153 In fact, ELISA 

nucleosome assays showed a significant increase of nucleosome content after 72 hours 

treatment, suggesting that both ligands could induce cell apoptosis (Figure 34). 

 

Figure 34. ELISA nucleosome assay. Nucleosome content after 72h treatment with A: c[DKP3-RGD] (3) 
and B: c[DKP3-isoDGR] (11). ** calculated probability value P>0.005.130 Adapted with permission from S. 
Panzeri; S. Zanella; D. Arosio et al. Chem. - A Eur. J. 2015, 21, 6265–6271. © 2015 WILEY-VCH Verlag 

GmbH & Co. 

Infiltration assays conducted on U373 cell line showed a marked inhibitory effect on cell 

migration and cell infiltration processes for ligand 3 and 11 at 10 µM concentration, 

remaining basically unchanged at 25 µM (Figure 35). 

 

Figure 35. Infiltration assay. A: c[DKP3-RGD] (3); B: c[DKP3-isoDGR] (11); *** calculated probability value 
P>0.001.130 Adapted with permission from S. Panzeri; S. Zanella; D. Arosio et al. Chem. - A Eur. J. 2015, 
21, 6265–6271. © 2015 WILEY-VCH Verlag GmbH & Co. 

Compounds 3 and 11 were also tested for their ability to inhibit FAK and Akt 

phosphorylation in U373 cell lines. FAK is a cytoplasmic tyrosine kinase involved in cell 

motility, survival and proliferation. The activation of FAK signaling cascade is regulated 

by integrin-ECM interactions and it plays a key role in tumor cell growth, progression, 

and metastasis.154 Integrin activation of FAK derives in the activation of Akt signaling 

cascade which is involved in the regulation of vascular homeostasis and angiogenesis. 

For this reason, the inhibition of the Akt cascade becomes a suitable control of the 
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ligand mediated integrin activation129. In the case of the tested compounds, both 

ligands demonstrated to inhibit the FAK and Akt phosphorylation after 24h treatment 

(Figure 36). 

 

Figure 36. FAK and Akt phosphorylation inhibition. A: c[DKP3-RGD] (3); B: c[DKP3-isoDGR] (11); 
*calculated probability value P>0.5, **calculated probability value P>0.005, ***calculated probability 
value P>0.001. Adapted with permission from S. Panzeri; S. Zanella; D. Arosio et al. Chem. - A Eur. J. 
2015, 21, 6265–6271. © 2015 WILEY-VCH Verlag GmbH & Co. 

These results indicate that c[DKP3-isoDGR] (11), same as its analog c[DKP3-RGD] (3),  

displays an integrin antagonist activity which is consistent with previous studies 

reporting that cyclic isoDGR peptide ligands are true αVβ3 antagonists.147  

This feature together with the high binding affinity and selectivity of c[DKP3-isoDGR] 

towards integrin αVβ3 makes this ligand a suitable candidate for its use in targeted drug 

delivery via SMDCs.   

2.3. Synthesis of a functionalized cyclo[DKP-isoDGR] integrin ligand 

Based on the biological results of cyclo[DKP3-isoDGR] 11 and the work realized with the 

functionalized integrin ligand cyclo[DKP-f3-RGD] 9 (see Section 2.2.1.4), our research 

group reported in 2017 the synthesis of a SMDC bearing a functionalized cyclo[DKP-

isoDGR] integrin ligand (14, Figure 37), a cleavable Val-Ala linker and Paclitaxel as a 

payload.155 The antiproliferative activity of this conjugate was evaluated in vitro on 

isogenic αVβ3-expressing and αVβ3-non expressing cell lines. The cyclo[DKP-isoDGR]-Val-

Ala-PTX conjugate showed higher selectivity towards the αvβ3-expressing cell line 

(targeting index = 9.9) compared to the related cyclo[DKP-RGD]-Val-Ala-PTX conjugate 

(targeting index = 2.4).155  
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Figure 37. Cyclo[DKP-f3-isoDGR] (c[DKP-isoDGR]-CH2NH2) integrin ligand (14) 

Prompted by these promising results we decided to investigate the efficacy of the 

cyclo[DKP-isoDGR] integrin ligand as a vector in the preparation of SMDCs bearing 

different cytotoxic agents. The first part of my PhD project consisted then in scaling up 

the synthesis of the isoDGR ligand 14 containing the benzylamine handle that allows its 

conjugation to other chemical entities.  

2.3.1. Synthesis of DKP-f3 scaffold 

The synthesis of the functionalized DKP-f3 scaffold was achieved as presented in 

Scheme 1, starting from commercially available D-aspartic acid and L-serine methyl 

ester131. 

 

Scheme 1. Synthesis of DKP-f3 scaffold: (a) Allyl alcohol, acetyl chloride; (b) Boc2O, TEA, dioxane, water, 
79% over two steps; (c) NaBH(OAc)3, THF, 3 h, rt.; (d) HATU, HOAT, DIPEA, DMF, 3 h, 0 °C to rt.; (e) 
TFA/DCM 1:2, 3 h, 0 °C to rt.; (f) DIPEA, iPrOH, overnight, rt., 89% over two steps; (g) HN3·Tol, DIAD, 
Ph3P, DCM/Toluene 1:2, 4 h, −20 °C; (h) Me3P, BOC-ON, THF, 3 h, −20 °C to rt.  

The side chain of the aspartic acid was protected with an allyl group before N-Boc 

protection to give the compound 15. On the other hand, the aldehyde 16 undergoes a 

reductive amination with L-serine methyl ester using sodium triacetoxyborohydride to 

obtain the functionalized serine 17.  The intermediates 15 and 17 reacted under direct 
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coupling conditions (HATU, HOAt, DIPEA) to afford the isopeptide 18 in high yield (84%). 

The selective acylation of the unprotected β-hydroxy group of the functionalized serine 

occurs instead of the expected peptide bond formation, this was reported also in the 

synthesis of DKP1-3.127,156 Next, the Boc protecting group of 18 was cleaved, then O,N-

acyl migration and subsequent ring closure were prompted by treatment with DIPEA in 

isopropyl alcohol156, giving the DKP-f3-OH 19 (89% over two steps). The hydroxyl group 

of 19 was substituted by an azide group via a Mitsunobu reaction using HN3 as 

nucleophile, affording the DKP-f3-N3 20 in satisfactory yield (66%). The reaction was 

carried out at low temperature (-20°C) to avoid the formation of the elimination 

product. The final step was a one-pot Staudinger reduction−Boc protection, allowing to 

reduce the azide under mild conditions and directly react with the 2-(t-butoxy-carbonyl-

oxyimino)-2-phenylacetonitrile (Boc-ON) present in the medium, affording the DKP-f3-

NHBoc 21 in good yield (88%). 

2.3.2. Synthesis of cyclo[DKP-isoDGR] integrin ligand 14 

Once the compound 21 was obtained in gram scale, the synthesis of cyclo[DKP-isoDGR]-

CH2-NH2 (14) continued as indicated in the Scheme 2. Differently from the synthesis of 

cyclo[DKP-isoDGR] 10-13 carried out in solid phase,151 this strategy was entirely 

performed in solution allowing to synthesize the isoDGR ligand in a larger scale. 
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Scheme 2. Synthesis of c[DKP-f3-isoDGR] (14): (a) TFA, DCM, r.t., 2h; (b) Cbz-Arg(Mtr)-OH; HATU, HOAt, 
DIPEA, DMF, 0 °C to rt., overnight; (c) [Pd(PPh3)4], N-methylaniline, DCM, 0 °C, 1 h; (d) HATU, HOAt, 
DIPEA, DMF, 0 °C to rt., overnight; e) piperidine, DMF, 3 h, rt.; (f) HATU, HOAt, DIPEA, DMF, 0 °C to rt., 
overnight; (g) H2, 10% Pd/C, THF/water 1:1, rt., overnight; (h) HATU, HOAt, DIPEA, DMF (1.4 mM), 0 °C to 
rt., overnight; (i) TFA/TMSBr/thioanisole/EDT/phenol 70:14:10:5:1. 

The DKP-f3-NHBoc 21 was Boc-deprotected and reacted with Cbz-Arg(Mtr)-OH under 

coupling conditions (HATU, HOAt, DIPEA) to give the compound 22 in high yield (85% 

over two steps), then the allyl protecting group was cleaved in presence of N-

methylaniline and [Pd(PPh3)4] to obtain the Arg-DKP fragment 23 (72%). The dipeptide, 

isoAsp-Gly 26, was achieved by regular coupling of Fmoc-L-Asp(OH)-OtBu with glycine 

benzyl ester, followed by cleavage of Fmoc group to afford 26 (80% yield over 2 steps).  

Intermediates 23 and 26 were attached under coupling conditions (HATU, HOAt and 

DIPEA) to give the linear protected compound 27 (83%). Afterwards, the benzyl and Cbz 

protecting groups were removed by palladium catalyzed hydrogenation in water/THF 

1:1 giving the compound 28 in good yield (90%). The linear peptidomimetic was then 

treated with coupling agents (HATU, HOAt, DIPEA) under high dilution conditions (1.4 

mM in 1:1 DCM/DMF) to promote an intramolecular cyclization, giving the cyclic 

intermediate 29 in reasonable yield (68%). Finally, the 4-methoxy-2,3,6-

trimethylbenzenesulphonyl (Mtr) and tert-butyl protecting groups were removed by 

using TFA in presence of scavengers thioanisol, phenol, EDT and trimethylsilyl bromide 
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to afford cyclo[DKP-isoDGR]-CH2-NH2 14 as a TFA salt with a yield of 58% after 

purification by reversed-phase HPLC and freeze-drying from water. 

The preparation of the new SMDCs containing the integrin ligand cyclo[DKP-isoDGR]-

CH2-NH2 14 as the targeting moiety is described in the Chapter 3.  
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Chapter 3. Synthesis of SMDCs based on the functionalized 

cyclo[DKP-isoDGR] integrin ligand 

 

Part of the work described in this Chapter has been published in the following article:157 

- Bodero, L.; López Rivas, P.; Korsak, B.; Hechler, T.; Pahl, A.; Müller, C.; Arosio, D.; 
Pignataro, L.; Gennari, C.; Piarulli, U. Synthesis and Biological Evaluation of RGD and 
IsoDGR Peptidomimetic-α-Amanitin Conjugates for Tumor-Targeting. Beilstein J. 

Org. Chem. 2018, 14 (1), 407–415. 

 

3.1. Synthesis and biological evaluation of isoDGR-α-amanitin conjugates 

3.1.1. α-Amanitin in targeted therapy 

α-Amanitin is the main amatoxin found in the death cap mushroom, Amanita Phalloides 

(Figure 38). Amatoxins are bicyclic octapeptides that present a high thermostability and 

water solubility, besides a resistance to enzyme and acid degradation. For these 

reasons, they can traverse the gastrointestinal tract without suffering any alteration, 

reaching and accumulating in the liver where they display a lethal toxicity, leading to 

hepatic failure after 6-8 days.158,159 In the case of α-amanitin, the LD50 value is 0.1  

mg/kg of bodyweight in humans.160  

 

Figure 38. α-amanitin structure and Amanita Phalloides (Death cap) 
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The mechanism of action of α-amanitin consists in the inhibition of the RNA polymerase 

II, an enzyme present in the nuclei of eukaryotic cells and responsible for the 

transcription of DNA to mRNA.158,161 In effect, α-amanitin binds the RNA polymerase II 

forming a tight complex (Figure 39), causing the inhibition of the elongation step and 

subsequent blocking of the DNA transcription process, resulting finally in cell 

death.159,162,163 However, due to its hydrophilicity and poor membrane permeability, 

cellular uptake of α-amanitin takes place only when it is mediated by a transport 

system, such as the  transporting protein OATP1B3 present on the surface of human 

hepatocytes. For other mammalian cells α-amanitin displays a micromolar cytotoxicity 

associated to poor cellular uptake.161,164 

 

Figure 39. Transport and main toxic mechanism of α-amanitin in hepatocytes. Accumulation of α-
amanitin occurs in the liver upon uptake via the organic anion transporting polypeptide OATP1B3 
located in the sinusoidal membrane of hepatocytes. Once inside the hepatocyte, α-amanitin binds to 
RNA polymerase II causing inhibition of its activity. Adapted with permission from Juliana Garcia, Vera 
M. Costa et al.; Food and Chemical Toxicology, 2015, 86, 41–55. DOI: 10.1016/j.fct.2015.09. Copyright © 
2015 Elsevier Ltd.165 

Because of the strong and specific cytotoxicity achieved upon internalization by 

endocytosis mediators, α-amanitin has become a promising payload for targeted drug 

delivery systems such as ADCs or SMDCs where the monoclonal antibody or the small 

ligand facilitate a receptor-mediated endocytosis and intracellular release of the drug. 

In 1981, Davis and Preston reported the synthesis of an ADC containing an azo-

functionalized α-amanitin (α-amanitinyl-azobenzoyl-N-glycyl-glycine) conjugated to the 

anti-Thy 1.2 immunoglobulin (anti-Thy 1.2 IgG). The conjugate displayed 277-fold and 

47-fold greater toxicity than the unconjugated α-amanitin in the murine T lymphoma 

S49.1 cell line after 1 and 48 hours incubation respectively.166 In 2012, the ADC α-
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amanitin-glutarate-chiHEA125 (chiHEA125-Ama), containing a chimeric anti-EpCAM 

(epithelial cell-adhesion molecule) monoclonal antibody, was reported by Moldenhauer 

and coworkers.167 The cytotoxic activity of  this conjugate was tested in different cancer 

cell lines overexpressing EpCAM (i.e. human pancreatic BxPc-3 and Capan-1, colorectal 

Colo205, breast MCF-7 and bile duct OZ) obtaining IC50 values from 2.5 x 10-10 to 5.4 x 

10-12 M, which represented in all cases; an increase of the cytotoxicity compared to 

unconjugated α-amanitin (IC50 2.0 x 10-7 to 5.8 x 10-8 M). Further in vivo studies 

performed in mice bearing BxPc-3 pancreatic xenograft tumors showed complete tumor 

regression in 90% of the mice treated with two injections of chiHEA125-Ama at dose of 

100 μg/kg. The treatment also proved to stop the development of recurrent tumors for 

a 3-4 weeks period without induce systemic toxicity. These two examples of α-amanitin-

based ADCs confirmed the validity of the targeted approach in terms of potency and 

selectivity in comparison to the unconjugated drug. 

Regarding the SMDCs containing α-amanitin as a payload, Reshetnyak and coworkers 

investigated in 2013 three α-amanitin-pHLIP (pH low insertion peptide) conjugates 

bearing different cross-linkers (i.e. cleavable: SPDP, sulfo-Lc-SMPT and non-cleavable 

AMAS).168 In this case, the drug delivery mechanism is the pHLIP mediated direct 

translocation across the cell membrane. The results of antiproliferative tests in human 

cervix adenocarcinoma HeLa-GFP cell line showed an increased cytotoxicity for the 

pHLIP-SPDP-amanitin conjugate at pH 6 compared to pH 7, inducing apoptosis in 48 

hours. On the other hand, the conjugate bearing the uncleavable linker, pHLIP-AMAS-

amanitin, did not display cellular toxicity, which suggested that the activity of the 

conjugates is conditioned to the release of the free amanitin after linker cleavage.  

More recently, Perrin and co-workers reported the synthesis of an amanitin analog 

functionalized with a N-propargyl-asparagine and its conjugation to cyclo(RGDfK) 

through azide-linkers, using a copper-catalyzed azide-alkyne cycloaddition (CuAAC).169 

The antiproliferative activity of the conjugates was evaluated in U87 (αvβ3
+) 

glioblastoma cell line, showing only a modest enhancement in the cytotoxicity of the 

conjugates  over α-amanitin. 
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3.1.2. Synthesis of cyclo[DKP-isoDGR]-α-amanitin conjugates 

Three cyclo[DKP-isoDGR]-α-amanitin conjugates were prepared in collaboration with 

Heidelberg Pharma AG, by joining the functionalized ligand c[DKP-isoDGR]-CH2-NH2 (14) 

to α-amanitin via an ether group at the 6’-hydroxyindole, using two different linkers: an 

“uncleavable” six carbon aliphatic chain (Figure 40, compound 31) and a lysosomally 

cleavable Val-Ala linker connected to a self-immolative spacer (Figure 40, compounds 

32 and 33).157  

 
Figure 40. Structure of cyclo[DKP-isoDGR]-α-amanitin conjugates 

Compound 31 bearing the uncleavable aminohexyl linker was synthetized as described 

in the Scheme 3. The α-Amanitin 6’-aminohexyl ether (34) provided by Heidelberg 

Pharma AG170,171 reacted with the commercial di-N-succinimidyl glutarate in presence of 

DIPEA to give the pre-activated hemiglutarate-aminohexyl-α-amanitin (35) in high yield 

(90%). For this reaction the activated di-N-succinimidyl glutarate was used in 1.2 

equivalents in order to avoid an undesired substitution of the other hydroxy groups 

present in α-amanitin. In addition, this procedure allowed us to introduce the glutarate 
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spacer already activated as NHS ester in one step, differently from the 2-step procedure 

used in the synthesis of the RGD analogs.157 The resulting intermediate 35 was then 

conjugated to the ligand cyclo[DKP-isoDGR]-CH2NH2 (14) via pH-controlled coupling 

where the pH was maintained in a range of 7.3-7.6 with the addition of small aliquots of 

NaOH 0.2 M to prevent the hydrolysis of the NHS ester that can compete with the 

formation of the amide bond at pH > 7.6, and also because at this pH range the 

guanidinium group of the arginine residue is still largely protonated and does not 

compete with the primary benzylic amine of compound 14. The resulting conjugate 31 

was obtained with 45% yield after HPLC purification and freeze-drying from ACN:H2O 

1/1.  

 

Scheme 3. Synthesis of cyclo[DKP-isoDGR]-uncleavable-α-amanitin (31). Reagents and conditions: a) di-
N-succinimidyl glutarate, DIPEA, DMF, 6 hours, Y: 90%; b) cyclo[DKP-isoDGR]-CH2-NH2 (14), PBS (pH 7.5), 
overnight, Y: 45%. 

The synthesis of the compound 32, containing the lysosomally cleavable Val-Ala linker 

was carried out with the strategy used for conjugate 31 as described in the Scheme 4.  

NH2-Val-Ala-PAB-α-amanitin (36) provided by Heidelberg Pharma AG,170,171 reacted with 

di-N-succinimidyl glutarate in presence of DIPEA to give the hemiglutarate-Val-Ala-PAB-

α-amanitin activated as an NHS ester (37) with 71% yield. Then 37 was conjugated to 

the ligand cyclo[DKP-isoDGR]-CH2NH2 (14) by pH-controlled coupling at pH range of 7.3-

7.6, affording the conjugate 32 in good yield (62%) after HPLC purification and freeze-

drying from water: acetonitrile 1/1. Differently from the “uncleavable” conjugate 31, 
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cyclo[DKP-isoDGR]-Val-Ala-PAB-α-amanitin (32) is expected to release the unchanged α-

amanitin after intracellular cleavage of the dipeptide linker (mediated by cathepsin B or 

other enzymes) and 1,6-elimination of the PAB self immolative spacer.  

 

 

Scheme 4. Synthesis of cyclo[DKP-isoDGR]-Val-Ala-PAB-α-amanitin (32). Reagents and conditions: a) di-
N-succinimidyl glutarate, DIPEA, DMF, 6 hours, Y: 71%; b) cyclo[DKP-isoDGR]-CH2-NH2 (14), PBS (pH 7.5), 
overnight, Y: 62%. 

For the synthesis of conjugate 33 containing the cleavable Val-Ala linker and the PEG 

spacer, two intermediates were prepared as indicated in the Scheme 5. Val-Ala-PAB-α-

amanitin (36) reacted with 4-pentynoic acid-NHS-ester (39) to give 4-pentynoic acid-Val-

Ala-PAB-α-amanitin (38) with 88% yield. On the other hand, cyclo[DKP-isoDGR]-CH2NH-

PEG-4-N3 (41) was prepared by pH-controlled coupling between the isoDGR ligand 14 

and commercial COOH-PEG-4-azido pre-activated as NHS ester (40). The final step was a 

click reaction, the copper catalyzed alkyne-azide cycloaddition (CuAAC) between the 

azido group of 41 and the alkyne moiety of 38 under inert atmosphere, that gave 

conjugate 33 with 62% yield after HPLC purification and freeze-drying from 

water/acetonitrile 1/1. In this case, the introduction of the PEG chain between the 

linker and the ligand is expected to increase the stability of the conjugate at 

physiological conditions and to give more flexibility to the ligand, facilitating the 

targeting at the αvβ3 surface receptor. 
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Scheme 5. Synthesis of cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin (33). Reagents and conditions: a) 4-
pentynoic acid-NHS ester (39), DIPEA, DMF, overnight, Y: 88 %; b) PBS (pH 7.5), overnight, Y: 46 %. c) 
Sodium ascorbate, CuSO4.5H2O, DMF/H2O 1:1, overnight, Y: 62%. 

3.1.3. In vitro studies 

3.1.3.1. Binding affinity assays 

The isoDGR-α-amanitin conjugates 31-33, as well as the RGD analogs of 31 and 32 

(Figure 41) synthesized by Paula Lopez Rivas (University of Milano), containing the 

cyclo[DKP-RGD]-CH2NH2 integrin ligand 9, were tested in collaboration with the Institute 

of Molecular Science and  Technology of the Italian National Research Council in Milano, 

for their binding affinity towards the integrin αvβ3 in a competitive binding assay that 

measured their ability to inhibit the binding of biotinylated vitronectin to the purified 

αvβ3 receptor.  
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Figure 41. Structure of cyclo[DKP-RGD]-α-amanitin conjugates 

The assays were performed by incubating the immobilized αvβ3 integrin receptor with 

solutions of the conjugates cyclo[DKP-RGD]-α-amanitin (42-43) and cyclo[DKP-isoDGR]-

α-amanitin conjugates (31-33) at increasing concentrations (10-12-10-5 M) in the 

presence of biotinylated vitronectin (1 µg mL-1) and measuring bound vitronectin. The 

calculated half-maximal inhibitory concentrations (IC50) are listed in Table 5. 

Table 5. Inhibition of biotinylated vitronectin binding to αvβ3 receptor 

Compound Structure IC50 (nM) [a] αVβ3 

42 cyclo[DKP-RGD]-uncleavable-α-amanitin 11.6 ± 2.4 

31 cyclo[DKP-isoDGR]-uncleavable-α-amanitin 6.8 ± 4.3 

43 cyclo[DKP-RGD]-Val-Ala-α-amanitin 14.7 ± 6.6 

32 cyclo[DKP-isoDGR]-Val-Ala-α-amanitin 6.4 ± 1.9 

33 cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin 3.8 ± 0.3 

[a] IC50 values were calculated as the concentration of compound required for 50% 
inhibition of biotinylated vitronectin binding as estimated by GraphPad Prism software. All 
values are the arithmetic mean ± the standard deviation (SD) of triplicate determinations.  

These results indicate that the cyclo[DKP-RGD]-α-amanitin conjugates (42-43) and the 

cyclo[DKP-isoDGR]-α-amanitin conjugates (31-33) retain good binding affinity for the 

integrin αvβ3, notwithstanding the conjugation of the integrin ligand to the linker system 

and the α-amanitin.  The binding affinity values displayed by the conjugates were in the 
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low-nanomolar range, similar to the original integrin ligands cyclo[DKP-3-RGD] 3 and 

cyclo[DKP-3-isoDGR] 11 (IC50 αvβ3 = 4.5 and 9.2 nM respectively, cf. Table 4).  

3.1.3.2. Cell viability assays 

In order to study the selectivity of the integrin ligand-α-amanitin conjugates targeting 

the αvβ3 receptor, as well as their activity with respect to free α-amanitin, cell viability 

assays were performed in three cell lines expressing different levels of integrin αVβ3: 

human glioblastoma U87 cells line (αVβ3+), human lung carcinoma A549 cell line (αVβ3-) 

and breast adenocarcinoma MDA-MB-468 (αVβ3-). The expression of αVβ3 integrin on 

the cell membrane of the three cell lines was assessed by flow cytometry (Figure 42), 

confirming the information found in the literature for U87 (αVβ3 expressing) and A549 

(αVβ3 non-expressing).172–174 In the case of MDA-MB-468, FACS analyse did not detect 

αVβ3 expression, although the presence of the β3 integrin subunit in this cell line is a 

matter of discussion175,176 and a positive interaction with RGD ligands has been reported 

in the literature.177  

 

Figure 42. Flow cytometry analysis of integrin αVβ3 expression in cancer cell lines. U87-MG: integrin αVβ3 
overexpressed; A549 and MDA-MB 468: integrin αVβ3 negative. 

The cells were treated with different concentrations of the free α-amanitin and the 

conjugates 42-43, 31-33 for 96 hours. Cell viability was measured in a CellTiterGlo 2.0 
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assay with triplicated samples. IC50 values representing the concentration of compound 

required for 50% inhibition of cell viability were calculated from the viability curves 

using GraphPad Prism and are shown in Table 6.  

Table 6. Evaluation of anti-proliferative activity of integrin ligand-α-amanitin conjugates 42-43, 31-33 
in U-87, MDA-MB-468 and A549 

Entry Structure IC50 (nM)[a] 

  
U87  

(αVβ3 +) 
MDA-MB-468 

(αVβ3 -) 
A549 

(αVβ3 -) 

1 α-amanitin (30) 347 ± 132.5[b] 185 ± 49.6[b] 518 ± 305[b] 

2 
cyclo[DKP-RGD]-uncleavable-α-

amanitin (42) 
2552 ± 37.6 1111 ± 228.4 n.d.[c] 

3 
cyclo[DKP-isoDGR]-uncleavable-α-

amanitin (31) 
3355 ± 19.1 2200 ± 96.2 n.d.[c] 

4 
cyclo[DKP-RGD]-Val-Ala-α-amanitin 

(43) 
1446 ± 83.9 202 ± 10.3 2160 ± 23.3 

5 
cyclo[DKP-isoDGR]-Val-Ala-α-

amanitin (32) 
143 ± 33.8 59 ± 23.4 217 ± 98.3 

6 
cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-

amanitin (33) 
165 ± 4.0 66 ± 24.1 720 ± 98.1 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. All 
cell lines were treated with different concentrations of α-amanitin and compounds 42-43, 31-33 for 96 hours. The 
samples were measured in triplicates. [b] Average values from three replicates. [c] n.d.: The IC50 could not be 
determined. 

The cyclo[DKP-isoDGR]-α-amanitin conjugate bearing the lysosomally cleavable Val-Ala 

linker 32 showed an enhanced cytotoxicity compared to the free α-amanitin in the αVβ3 

expressing U87 cell line, as well as in the αVβ3 non-expressing A549 and MDA-MB-468 

cell lines (2.4-3.1 times more potent cf. entry 5 and 1 in Table 6). Conversely, cyclo[DKP-

RGD]-Val-Ala-α-amanitin (43) the RGD analog of 32, resulted less toxic than α-amanitin 

in the three cell lines, which indicates an influence of the isoDGR sequence in the 

efficacy of the conjugates. In the case of the cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PAB-α-

amanitin 33, the cytotoxic activity was slightly higher compared to free α-amanitin in 

U87 (αVβ3+) and MDA-MB-468 (αVβ3-) cell lines (2.1-2.8 times more, cf. entry 6 and 1 in 

Table 6) but it turned out to be less potent than the free drug in A549 (αVβ3-) cell line 

(1.4 times less).  
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The uncleavable conjugates cyclo[DKP-RGD]-uncleavable-α-amanitin (42) and 

cyclo[DKP-isoDGR]-uncleavable-α-amanitin (31) were less cytotoxic than α-amanitin and 

the conjugates bearing the cleavable linker Val-Ala (43, 32, 33) in the three cell lines. 

This can be attributed to a more efficient drug release mechanism displayed by the 

dipeptide cleavable linker and the self immolative moiety. 

In summary, the results of the antiproliferative assays revealed that the use of dipeptide 

cleavable linkers can improve the activity of the α-amanitin conjugates in comparison to 

the “uncleavable” systems, as in the case of conjugates 43, 32 and 33. It was also 

observed that the cleavable conjugates 32 and 33, containing the isoDGR motif, 

afforded better cytotoxic activity than the cleavable RGD conjugate 43, showing also a 

modest improvement compared to the activity the free α-amanitin. Nevertheless, a 

selective cytotoxicity of the integrin ligand-α-amanitin conjugates towards the αvβ3-

expressing cell line U87 was not observed. 

With the aim of determining if the cytotoxicity of the cyclo[DKP-isoDGR]-α-amanitin 

conjugates 32 and 33 was associated to an integrin-mediated binding and 

internalization process, a competition experiment178 was performed on U87 (αVβ3+, 

αVβ5+, αVβ6-, α5β1+) and MDA-MB-468 (αVβ3-, αVβ5+, αVβ6+, α5β1-)173,174 cell lines, testing 

the antiproliferative activity of the conjugates in the presence of a 50-fold excess of the 

integrin ligand Cilengitide (cyclo[RGDf-(NMe)V], see also Chapter 2). Indeed, if the 

release of α-amanitin occurs upon integrin-mediated endocytosis, a drop in the activity 

of the conjugates would be expected when blocking the cell surface integrins with the 

competitor Cilengitide. The results of this experiment are shown in the Table 7. 

Table 7. Competition experiment of conjugates 10 and 11 in the presence of a 50-fold excess of 
Cilengitide in U-87 and MDA-MB-468. 

Entry Compound 

IC50 (nM)[a] 

U87 

(αVβ3 +, αVβ5 +, 
αVβ6 -, α5β1 +) 

MDA-MB-468 

(αVβ3 -, αVβ5 +, 
αVβ6 +, α5β1 -) 

1 
Cyclo[DKP-isoDGR]-Val-Ala-α-amanitin 32 

Compound 32 + 50-fold excess of Cilengitide 

107 ± 26.8 

106 ± 11.6 

47 ± 21.1 

259 ± 55.2 

2 Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin 33 91 ± 30.6 65 ± 17.6 
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Compound 33 + 50-fold excess of Cilengitide 143 ± 59.3 340 ± 210.3 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. Both 
cell lines were treated with different concentrations compounds 10 and 11 in the presence of a 50-fold excess of 
Cilengitide for 96 hours. The samples were measured in triplicates.  

In the case of U87 cell line, the activity of the conjugate 32 was not altered with the 

excess of Cilengitide (Table 7, entry 1), whereas the conjugate 33 registered a modest 

decrease of its cytotoxic activity: IC50 value increased from 91 nM to 143 nM with 

excess of Cilengitide (Table 7, entry 2). In the MDA-MB-468 cell line, the loss of activity 

was more pronounced for both conjugates: in presence of Cilengitide the IC50 of 

conjugate 32 increased from 47 nM to 259 nM and the IC50 of conjugate 33 increased 

from 65 nM to 340 nM (Table 7, entry 2).  

The results from the competition experiment showed no correlation between the 

expression of integrin αVβ3 and the cytotoxicity of the isoDGR- α-amanitin conjugates 32 

and 33. Nevertheless, since the cell lines used overexpress different integrins (α5β1 in 

U87, αVβ6 in MDA-MB-468, and αVβ5 in both), the increase of the IC50 values of 

conjugates 32 and 33 (up to 5.5 times) may be caused by the blocking of other integrins 

with excess of Cilengitide, which binds efficiently integrin αVβ3 (IC50 = 0.6 nM) but also 

αVβ5 (IC50 = 8.4 nM), α5β1 (IC50 = 14.9 nM)103 and αVβ6 (IC50 = 82.8 nM).179 

3.1.4. Conclusions 

Three cyclo[DKP-isoDGR]-α-amanitin conjugates 31-33 were synthesized by joining the 

functionalized cyclo[DKP-isoDGR]-CH2NH2 integrin ligand 14 to α-amanitin via cleavable 

and uncleavable linkers and different spacers. The conjugates were tested in a 

competitive binding assay, retaining good binding affinity for the purified αvβ3 receptor 

in the low nanomolar range as the free ligand cyclo[DKP-3-isoDGR] 11 and the RGD-α-

amanitin conjugates 42 and 43.  

The cell viability assays performed on U87 (αVβ3+), A549 (αVβ3-) and MDA-MB-468 

(αVβ3-) cancer cell lines showed that the conjugates bearing the lysosomally cleavable 

linker Val-Ala were more potent than the “uncleavable” conjugates on the three cell 

lines. Furthermore, cyclo[DKP-isoDGR]-α-amanitin conjugates 32 and 33 displayed a 

better cytotoxic activity than the RGD cleavable conjugate 43 and were found slightly 

more potent than free α-amanitin in U87, MDA-MB-468 and partly in A549 cell lines. 
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However, contrary to what expected from the binding affinity tests, it was not observed 

a correlation between the cytotoxicity of the conjugates and the expression of integrin 

αVβ3. 

The competition experiments carried out with the isoDGR conjugates 32 and 33 in U87 

(αVβ3+, αVβ5+, αVβ6-, α5β1+) and MDA-MB-468 (αVβ3-, αVβ5+, αVβ6+, α5β1-) in presence of 

50-fold excess of the integrin binder Cilengitide, showed a more pronounced effect of 

the integrin blocking when using the αVβ3-non expressing MDA-MB-468 cell line (IC50 of 

conjugates increased up to 5.5-fold). Since Cilengitide is known to strongly bind not only 

αVβ3, but also αVβ5, αVβ6, and α5β1, these results suggest that the internalization of the 

cyclo[DKP-isoDGR]-α-amanitin conjugates 32 and 33 is possibly mediated by other 

integrins different from αVβ3. 
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3.2. Synthesis and biological evaluation of isoDGR-MMAE and isoDGR-

MMAF conjugates 

3.2.1. Monomethyl auristatin E and F 

Monomethyl auristatin E and monomethyl auristatin F (Figure 43) are synthetic analogs 

of dolastatin 10, a natural pseudopeptide isolated from the sea hare Dolabella 

auricularia.180 Dolastatin 10 is highly cytotoxic at very low concentrations (average IC50 < 

1 nM), acting as a potent inhibitor of tubulin polymerization leading to the arrest of cell 

cycle at G2/M phase and cell death.181,182  

 

Figure 43. Dolabella auricularia and chemical structures of dolastatin 10 derivatives monomethyl 
auristatin E and monomethyl auristatin F 

MMAE and MMAF were developed by Seattle Genetics for its use as payloads in 

ADCs.183,184 MMAE is the cytotoxic agent of the FDA approved Adcetris®, where it is 

linked to an anti-CD30 mAb via the protease cleavable Val-Cit dipeptide linker with 

average DAR of 4.185 Due to its high cytotoxicity (IC50 ≈ 1 nM in pancreatic cell lines)186 

MMAE has been used in conjugation with several targeting agents besides monoclonal 

antibodies, for example: aptamers,187 HLIPS,188 and small ligands.140,189,190  

Differently from MMAE, free MMAF possesses a carboxylic acid at the C- terminus that 

is charged at physiological pH, thus increasing the hydrophilicity and limiting the cell 

permeability of the drug. Nevertheless, MMAF is designed to display a high cytotoxicity 

when delivered inside the tumor cells in conjugation to a monoclonal antibody. This 

feature was demonstrated by Doronina and co-workers, who studied the cytotoxic 

activity of ADCs based on MMAF and the anti-CD30 mAb cAC10, reporting a significant 
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increase of the cytotoxicity of the conjugates (2200-fold more potent) compared to the 

free drug in vitro and in vivo.184 Further studies carried out by the same group, 

compared the activity of cAC10vc-MMAF conjugate with its MMAE analogs in CD30 

lymphoma cell lines. While free MMAE displayed 50-200-fold higher activity than 

MMAF, the cAC10vc-MMAF conjugate was up to 3-fold times more potent that 

cAC10vc-MMAE in CD30 positive cell lines, confirming the efficacy of MMAF as a 

payload for targeted therapy.191  

These studies also proved the importance of the protease cleavable dipeptide linker 

Val-Cit for the effective intracellular delivery, lysosomal cleavage and drug release since 

both MMAE and MMAF, execute their mechanism of action in the cytosol.191,192 In 

addition, their physicochemical properties have an influence in the killing efficacy: cell-

permeable MMAE is able to diffuse through neighbor cells, extending its toxic activity 

(bystander-killing effect)39,40 while MMAF is retained inside the cell due to its poor 

membrane permeability, resulting in increased drug accumulation.193 

3.2.2. Synthesis of cyclo[DKP-isoDGR]-MMAE and cyclo[DKP-isoDGR]-MMAF conjugates 

The properties of MMAE and MMAF, and the results from the investigations previously 

cited, raised our interest and we decided to evaluate the efficacy of SMDCs containing 

MMAE or MMAF and the integrin ligand cyclo[DKP-isoDGR]-CH2NH2 14. For this, we 

planned to synthesize two cyclo[DKP-isoDGR]-MMAE and two cyclo[DKP-isoDGR]-MMAF 

conjugates (Figure 43), in collaboration with the University of Milan, by connecting the 

isoDGR ligand 14 containing a PEG-4 spacer to MMAE or MMAF via the lysosomally 

cleavable Val-Ala linker (46-47) or by direct peptidic conjugation (48-49).  
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Figure 44. Structure of cyclo[DKP-isoDGR]-MMAE and cyclo[DKP-isoDGR]-MMAF conjugates  

The preparation of the isoDGR ligand (41) containing the PEG spacer, was carried out as 

indicated in Scheme 6.194,195 Commercial tetraethylenglycol was activated with 0.2 

equivalents of p-toluenesulfonyl chloride (to avoid a double substitution) and NaOH in 

THF to obtain PEG-4-OTs 50-a (96% yield). The tosyl group was then substituted using 

sodium azide as a nucleophilic agent, giving the PEG-4-N3 50-b (70% yield). The next 

step was the alkylation of 50-b with bromoacetic acid and excess of NaH to give the 14-

azido-3,6,9,12-tetraoxatetradecanoic acid 51 (73% yield), which was activated with 

EDC.HCl and NHS to obtain intermediate 40 (99% yield) that was coupled to the ligand 

cyclo[DKP-isoDGR]-CH2NH2 14, via pH-controlled reaction (pH 7.3-7.6) in PBS pH 

7/MeCN 1:1 to afford 41 in good yield (65%). 
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Scheme 6. Synthesis of cyclo[DKP-isoDGR]-CH2NH-PEG-4-N3 (41). a) TosCl, NaOH, THF, 0° C, 2 h, Y: 96%; 
b) NaN3, MeCN, reflux, overnight, Y: 70%; c) NaH, THF, 0°C to rt. 4 h, Y: 73%; d) EDC.HCl., NHS, DCM, rt. 
overnight, Y: 99%; e) cyclo[DKP-isoDGR]-CH2-NH2 (14), PBS/MeCN 1:1, pH 7.3-7.6, rt. overnight, Y: 65%. 

The protease cleavable linker Val-Ala containing the p-aminobenzyl alcohol (PABA) self-

immolative spacer was prepared following the procedure of Kratz and coworkers,196 as 

described in Scheme 7.  The peptidic synthesis was carried out in solution, allowing to 

obtain the linker in grams scale. Commercial Fmoc-Val was activated with NHS and DCC 

(1:1) in THF and then coupled to alanine (free amino acid) using NaHCO3 as a base in a 

mixture water/THF/diethyl to obtain Fmoc-Val-Ala-OH (52) with 74% yield. P-

aminobenzyl alcohol reacted with the dipeptide 52 in a mixture of DCM/MeOH 2:1, 

using EEDQ as coupling agent to avoid racemization, giving Fmoc-Val-Ala-PABOH 53 

(58%). Finally, the hydroxy group of 53 was activated with p-nitrophenyl chloroformate 

in THF, using pyridine as HCl scavenger, to afford the activated linker Fmoc-Val-PAB-PNP 

54 with 62% yield. 

 

Scheme 7. Synthesis of Val-Ala-PAB-PNP 54. a) DCC, NHS, THF, 0°C to rt. overnight; b) Alanine, NaHCO3, 
THF/diethyl ether/water 1:1:1, rt., 4 days; c) p-aminobenzyl alcohol, EEDQ, DCM/MeOH 2:1, rt. 48 h; d) 
p-nitrophenyl chloroformate, pyridine, THF, 0°C to rt., 4h. 

The conjugates bearing the lysosomally cleavable linker Val-Ala were prepared as 

described in the Scheme 6. The Fmoc-protected Val-Ala-PAB-PNP linker (54) was 

coupled to the secondary amine of commercial MMAE or MMAF in presence of DIPEA 
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and a catalytic amount of HATU, giving Val-Ala-PABC-MMAE/MMAF (55 or 56) after 

removal of the Fmoc group (62-65% yield over 2 steps). The intermediates were reacted 

with 4-pentynoic acid activated as NHS ester (39) to obtain 4-pentynoic acid-Val-Ala-

PABC-MMAE/MMAF (57 or 58). Finally, a copper catalyzed alkyne-azide cycloaddition 

(CuAAC) between these intermediates and cyclo[DKP-isoDGR]-CH2NH-PEG-4-N3 (41), 

followed by HPLC purification and freeze-drying form H2O/ACN afforded the cleavable 

conjugates cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAE/MMAF 46 and 47 (yield: 66 

and 42% respectively). 

 

Scheme 8. Synthesis of lysosomally cleavable cyclo[DKP-isoDGR]-MMAE and cyclo[DKP-isoDGR]-MMAF 
conjugates. a) MMAE or MMAF, DIPEA, HOAt, DMF, rt., overnight; b) piperidine, DMF, rt., 2h; c) 4-
pentynoic acid-NHS activated (39), DIPEA, DMF, rt., overnight; d) cyclo[DKP-isoDGR]-CH2NH2-PEG-4-N3 
(41), sodium ascorbate, CuSO4·5H2O, H2O:DMF 1/1, rt., overnight. 

The “uncleavable” conjugates 48 and 49 were synthetized as described in the Scheme 7. 

The commercial MMAE or MMAF reacted directly with 4-pentynoic acid-NHS ester (39) 

to give 4-pentynoic acid-MMAE/MMAF (59 or 60) in good yields (69-73%). These 

intermediates underwent a copper catalyzed alkyne-azide cycloaddition (CuAAC) with 

the azide functionalized ligand 41 to obtain the conjugates cyclo[DKP-isoDGR]-PEG-4-

MMAE/MMAF 48 and 49 (yield: 67 and 40% respectively). 
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Scheme 9. Synthesis of “uncleavable” cyclo[DKP-isoDGR]-MMAE and cyclo[DKP-isoDGR]-MMAF 
conjugates. a) 4-pentynoic acid-NHS activated (39), DIPEA, DMF, rt., overnight; b) cyclo[DKP-isoDGR]-
CH2NH2-PEG-4-N3 (41), sodium ascorbate, CuSO4·5H2O, H2O:DMF 1/1, rt., overnight. 

During the synthesis of the conjugates, the formation of side products containing the 

drug connected to the linker and the PEG spacer but not containing the integrin ligand 

was detected. This was originated by the contamination of ligand 41 by hydrolyzed 

COOH-PEG-4-N3 51, which reacted via CuAAC reaction with the intermediates 

containing the pentynoic moiety. This contamination could be avoided reducing the 

flow from 15 mL/min to 9 mL/min during the HPLC purification of cyclo[DKP-isoDGR]-

CH2NH2-PEG-4-N3 (41), improving in this way the separation from the hydrolysis 

product. The side products of the click reaction between 41 and the MMAE 

intermediates 57 and 59, were isolated to be used as a control for the targeting activity 

in the cell viability assays (61 and 62, Figure 45). 

 

Figure 45. Side products from the click reaction of MMAE conjugates 
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3.2.3. In vitro studies and discussion 

3.2.3.1. Binding affinity assays 

The conjugates isoDGR-MMAE and isoDGR-MMAF 46-49 were evaluated for their ability 

to inhibit the binding of biotinylated vitronectin to the purified αvβ3 receptor in a 

competitive binding assay. The immobilized integrin receptor was incubated with 

solutions of the conjugates 46-49 at different concentrations in presence of biotinylated 

vitronectin (1 µg mL-1), then the bound vitronectin was measured. The half-maximal 

inhibitory concentrations (IC50) are presented in the Table 8. 

Table 8. Inhibition of biotinylated vitronectin binding to αvβ3 receptor 

Compound Structure IC50 (nM) [a] αVβ3 

46 c[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAE 36.2 ± 0.2 

47 c[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAF 43.9 ± 2.1 

48 c[DKP-isoDGR]-PEG-4-MMAE 14.5 ± 0.6 

49 c[DKP-isoDGR]-PEG-4-MMAF 10.7 ± 2.8 

[a] IC50 values were calculated as the concentration of compound required for 50% 
inhibition of biotinylated vitronectin binding as estimated by GraphPad Prism 
software. All values are the arithmetic mean ± the standard deviation (SD) of 
duplicated determinations 

The four conjugates 46-49 retained a good binding affinity for the αvβ3 receptor with 

IC50 values in the nanomolar range. It was observed though, a slight increase of the IC50 

of the conjugates compared to the free ligand cyclo[DKP-3-isoDGR] 11 (αvβ3 IC50 9.2 nM, 

cf. Table 4), differently from what observed for the cleavable isoDGR-α-amanitin 

conjugates. These result suggest that the conformational modifications resulting from 

the conjugation to the linker and the drug might have a moderate effect on the binding 

affinity of the isoDGR ligand to the αvβ3 receptor. 

3.2.3.2. Cell viability assays 

The isoDGR conjugates 46-49, together with their RGD analogs (Figure 45, compounds 

63-66) synthetized by André Dias (University of Milano), were evaluated for their ability 

to selectively target αvβ3-expressing tumor cells in cell viability assays on U87 human 

glioblastoma cell line, that is known to express the αVβ3 integrin receptor,173,174 and in 
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HT29 (human colon cancer) cell line, which was selected as αVβ3 negative.173 

Compounds 61 and 62, containing the PEG spacer, the linker and MMAE but not the 

integrin ligand, were tested as a negative control for the αvβ3 targeting. 

 

Figure 46. Structure of cyclo[DKP-RGD]-MMAE and cyclo[DKP-RGD]-MMAF conjugates 

U87 and HT29 cells were treated with different concentrations of the free drug MMAE 

or MMAF and the conjugates for 72 hours with or without washout. For the washout 

experiments, the cells were washed after 6 hours of incubation, the media was replaced 

and then the cells were incubated for other 66 hours. This procedure has been 

previously used by our research group,70 intending to simulate the in vivo conditions 

where the administered prodrug is rapidly cleared from the tumor extracellular 

environment. In this way the conjugates degraded or unbound to the integrin receptors 

are removed from the medium, minimizing the effect of metabolites produced by 

extracellular cleavage of the linker. The cell viability was quantified by MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The IC50 values presented 

in Table 9 and Table 10 were calculated using GraphPad Prism 6.  
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Table 9. Antiproliferative activity of RGD-MMAE and isoDGR-MMAE conjugates in human glioblastoma 
U87-MG cell line after 72 h incubation with and without washout after 6h, and in human colon cancer 

HT29 after 72 h incubation without washout.  

Entry Structure 

IC50 (nM) U87-MG (αvβ3+) [a] 

IC50 (nM) HT29 
(αVβ3 -, αVβ5+, 

αVβ6+) [a] 

WO 6h + 66h 72h no WO 72h no WO 

1 MMAE (44) 0.144 ± 0.06 0.076 ± 0.08 0.030 ± 0.04 

2 COOH-PEG-4-Val-Ala-PABC-MMAE (61) 128.6 ± 0.16 75.72 ± 0.07 298.5 ± 0.08 

3 
c[DKP-RGD]-PEG-4-Val-Ala-PABC-MMAE 

(63) 
363.9 ± 0.04 38.99 ± 0.11 51.20 ± 0.08 

4 
c[DKP-isoDGR]-PEG-4-Val-Ala-PABC-

MMAE (46) 
83.54 ± 0.04 11.5 ± 0.13 27.71 ± 0.04 

5 COOH-PEG-4-MMAE (62) n.d. n.d. >10000 

6 c[DKP-RGD]-PEG-4-MMAE (65) 738.8 ± 34.3 1228 ± 0.21 464.2 ± 0.08 

7 c[DKP-isoDGR]-PEG-4-MMAE (48) n.d. [b] 685.5 382 ± 0.08 

[a]Cells were treated with different concentrations of free MMAE, conjugates 46, 48, 63, 65 and compounds 
61 and 62 for 72 hours, with washout (WO) after 6h and without washout (no WO). IC50 values were 
calculated as the concentration of compound required for 50% inhibition of cell viability. [b] IC50 could not be 
determined.  

As can be appreciated in Table 9, the MMAE conjugates 63 and 46 bearing the cleavable 

Val-Ala linker displayed nanomolar IC50 values in the experiment at 72 hours incubation 

without washout in U87 cell line (IC50 = 38.99 and 11.5 nM, entry 3 and 4 in Table 9), 

proving to be more cytotoxic than the “uncleavable” conjugates 65 and 48 and the non-

targeting compound 61, even if much less potent (150-500 times less) than free MMAE 

that displays picomolar activity. In particular, the conjugate cyclo[DKP-isoDGR]-PEG-4-

Val-Ala-PABC-MMAE (46) resulted 60 fold-more toxic than uncleavable cyclo[DKP-

isoDGR]-PEG-4-MMAE (48), 6.6-fold more toxic than the non-targeting COOH-PEG-4-

Val-Ala-PABC-MMAE (61) and 3.4-times more potent than its RGD analog cyclo[DKP-

RGD]-PEG-4-MMAE (63).  

In the experiment with washout after 6 hours, both MMAE and the conjugates were, as 

expected, less cytotoxic, and also in this case, the MMAE conjugates displayed a 
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reduced cytotoxicity with respect to free MMAE, being the “uncleavable” conjugates 65 

and 48 the least cytotoxic. In particular, the loss of activity of conjugates 63 and 46, 

containing the cleavable linker, compared to free MMAE is increased by a factor of 4-5 

in the experiment with washout, as can be calculated comparing the ratio 63/MMAE 

and 46/MMAE in both experiments (cf. entry 3 and 4 with entry 1 in Table 9). These 

results suggest that the activity observed for the MMAE conjugates is not completely 

consistent with an αvβ3 integrin-mediated internalization process. In fact, the 

differences observed in both experiments, notably in the cytotoxicity of the cleavable 

conjugates 63 and 46, could be attributed to the early release and diffusion of MMAE 

after extracellular cleavage of the Val-Ala linker by serine proteases present in the 

cellular environment or by cathepsin B released upon cell dead and degradation after 

72 hours.42,197,198  

The antiproliferative activity of the MMAE conjugates in HT29 (αVβ3 negative) cell line, 

indicate a loss of potency respect to the unconjugated MMAE, similar to what observed 

in the experiment with U87 (αVβ3 positive) cell line, as well as an increase in the 

cytotoxicity of the conjugates compared to the non-targeting compounds (61 and 62), 

up to 10.7-fold times in the case of the cleavable MMAE conjugate cyclo[DKP-isoDGR]-

PEG-4-Val-Ala-PABC-MMAE 46 (cf. entry 4 with entry 2 in Table 9).  Interestingly,  for 

the cleavable MMAE conjugates 46 and 63, the loss in the cytotoxicity compared to free 

MMAE was more pronounced in HT29 than in U87 cell line: cyclo[DKP-RGD]-PEG-4-Val-

Ala-PABC-MMAE (63) was 500 less toxic than MMAE in U87 (αVβ3+) and 1700 times less 

toxic than MMAE in HT29 (αVβ3-) cell line (cf. entry 3 with entry 1 in Table 9), whereas 

cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAE (46) was 150 times less toxic than MMAE 

in U87 (αVβ3+) and 920 times less toxic than MMAE in HT29 (αVβ3-) (cf. entry 4 with 

entry 1 in Table 9). These results show a moderate targeting index, TI = 6.1 and 3.3 for 

MMAE cleavable conjugates 46 and 63 respectively (Table 10), suggesting that the 

activity of the conjugates is possibly associated to other integrins different from αVβ3 in 

both cell lines (i.e. αVβ5 in U87 and αVβ5, αVβ6 in HT29). 
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Table 10. Targeting index of cleavable MMAE conjugates 63 and 46 

Entry Structure 

IC50 (nM)[a] 

S[b] TI[c] 
U87-MG 
(αvβ3+) 

HT29 (αvβ3-) 

1 MMAE (44) 0.076 ± 0.08 0.030 ± 0.04 0.39 1 

2 
c[DKP-RGD]-PEG-4-Val-Ala-PABC-

MMAE (63) 
38.99 ± 0.11 51.20 ± 0.08 1.31 3.3 

3 
c[DKP-isoDGR]-PEG-4-Val-Ala-

PABC-MMAE (46) 
11.5 ± 0.13 27.71 ± 0.04 2.4 6.1 

[a]IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. [b] 
IC50 could not be determined; [b] Selectivity (S): IC50 (αvβ3

-) / IC50 (αvβ3
+); [c] Targeting index (TI): S conjugate / S free 

MMAE 

The antiproliferative activity of the MMAF conjugates in U87 and HT29 cell line is shown 

in Table 11. In the experiment with U87 cell line at 72 hours incubation without 

washout, free MMAF was, as expected, less toxic than MMAE due to the charged 

carboxylic group that limits its capacity to diffuse through the cell membrane.199,200 The 

conjugates 64 and 47, bearing the cleavable Val-Ala linker, presented cytotoxic activity 

values in the sub-micromolar range, 1.7-3.4 times less potent than the activity 

registered for MMAF (cf. entry 2 and 3 with entry 1 in Table 11). Also, like in the 

previous experiments, the “uncleavable” conjugates proved the least cytotoxic, with 

IC50 values > 10 µM in the case of cyclo[DKP-RGD]-PEG-4-MMAF (66). The experiment 

with washout after 6 hours was also run but, in this case, no cytotoxic activity was 

determined for free MMAF or the MMAF conjugates, with exception of cyclo[DKP-

isoDGR]-PEG-4-Val-Ala-PABC-MMAF (47) that displayed micromolar cytotoxicity (IC50 = 

3358 nM, entry 3 in Table 11). These data indicate that the conjugation to cyclo[DKP-

RGD] or cyclo[DKP-isoDGR] integrin ligands does not significantly improve the cellular 

uptake of MMAF, and the activity displayed by the cleavable MMAF conjugates is mainly 

due to a poor cell membrane diffusion rather than an integrin-mediated endocytosis.  
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Table 11. Antiproliferative activity of RGD-MMAF and isoDGR-MMAF conjugates in human glioblastoma 
U87-MG cell line after 72 h incubation with and without washout after 6h 

Entry Structure 

IC50 (nM) U87-MG (αvβ3+) [a] 

IC50 (nM) 
HT29 (αVβ3 -, 
αVβ5+, αVβ6+) 

[a] 

WO 6h + 66h 72h no WO 72h no WO 

1 MMAF (45) n.d.[b] 94.4 ± 0.06 52.16 ± 0.06 

2 c[DKP-RGD]-PEG-4-Val-Ala-PABC-MMAF (64) n.d.[b] 331.9 ± 0.10 719.2 ± 0.07 

3 c[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAF (47) 3358 165.9 ± 0.06 511 ± 0.04 

4 c[DKP-RGD]-PEG-4-MMAF (66) n.d.[b] > 10000 >10000 

5 c[DKP-isoDGR]-PEG-4-MMAF (49) n.d. 763.7 ± 0.08 1197 ± 0.07 

[a]Cells were treated with different concentrations of free MMAF, conjugates 47, 49, 64, and 67 for 72 hours, with 
washout (WO) after 6h and without washout (no WO). IC50 values were calculated as the concentration of compound 
required for 50% inhibition of cell viability. [b]Non-determined. 

In the experiment with HT29 (αVβ3-) cell line, MMAF conjugates presented a loss of 

potency regarding the activity of free drug MMAF more pronounced that in the 

experiment with U87 (αVβ3-) cell line: cyclo[DKP-RGD]-PEG-4-Val-Ala-PABC-MMAF (64) 

was 3.5 less toxic than MMAF in U87 (αVβ3+) and 14 times less toxic than MMAF in 

HT29 (αVβ3-) (cf. entry 2 with entry 1 in Table 10), cyclo[DKP-isoDGR]-PEG-4-Val-Ala-

PABC-MMAF (47) was 1.7 times less toxic than MMAF in U87 (αVβ3+) and 10 times less 

toxic than MMAF in HT29 (αVβ3-) (cf. entry 3 with entry 1 in Table 10), and cyclo[DKP-

isoDGR]-PEG-4-MMAF (49) was 8 times less toxic than MMAF in U87 (αVβ3+) and 23 

times less toxic than MMAF in HT29 (αVβ3-) (cf. entry 5 with entry 1 in Table 10). These 

results indicate once more, a moderate targeting index, TI = 5.6 and 3.9 for MMAF 

cleavable conjugates 47 and 64 respectively (Table 12). Apparently, the activity of the 

MMAF conjugates could be associated to other integrins different from αVβ3, present in 

both cell lines. 
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Table 12. Targeting index of cleavable MMAF conjugates 64 and 47 

Entry Structure 

IC50 (nM)[a] 

S[b] TI[c] 
U87-MG 
(αvβ3+) 

HT29 (αvβ3-) 

1 MMAF (45) 94.4 ± 0.06 52.16 ± 0.06 0.55 1 

2 
c[DKP-RGD]-PEG-4-Val-Ala-PABC-

MMAF (63) 
331.9 ± 0.10 719.2 ± 0.07 2.2 3.9 

3 
c[DKP-isoDGR]-PEG-4-Val-Ala-

PABC-MMAF (47) 
165.9 ± 0.06 511 ± 0.04 3.1 5.6 

[a]IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. [b] 
IC50 could not be determined; [b] Selectivity (S): IC50 (αvβ3-) / IC50 (αvβ3+); [c] Targeting index (TI): S conjugate / S free 

MMAF 

 

3.2.4. Conclusions 

A small library of four SMDC containing the functionalized integrin ligand cyclo[DKP-

isoDGR]-CH2NH2 (14) and the dolastatin derivatives MMAE or MMAF as payloads has 

been synthetized. The conjugates were obtained via copper (I) catalyzed alkyne-azide 

cycloaddition (CuAAC) between the integrin ligand functionalized with a PEG4-azide 

spacer and an alkyne moiety directly attached to MMAE or MMAF (conjugates 48 and 

49 respectively) or to the dipeptide Val-Ala linker bearing the PABC self-immolative 

spacer connected to MMAE or MMAF (conjugates 46 and 47). 

The four isoDGR conjugates were tested in a competitive binding assay, retaining good 

binding affinity for the purified αvβ3 receptor in the nanomolar range, although a slight 

increase in the αvβ3 IC50 was detected for the cleavable conjugates 46 and 47 in contrast 

to the free integrin ligand cyclo[DKP-3-isoDGR] 11. This revealed a moderate effect of 

the conjugation in the binding affinity towards the αvβ3 receptor non-observed before 

for the isoDGR conjugates. 

The antiproliferative activity of the isoDGR-MMAE and isoDGR-MMAF conjugates (46-

49), and their RGD analogs (63-66) was evaluated in a first set of cell viability assays 

carried out in U87 (αVβ3 expressing) cell line at 72 hours incubation time with and 

without washout after 6 hours. The results obtained during these tests showed in 
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general, a drop of cytotoxicity for the conjugates compared to the free MMAE or 

MMAF, especially for the uncleavable conjugates. The conjugates bearing the Val-Ala 

cleavable linker displayed better cytotoxic activity values, particularly the cleavable 

isoDGR-MMAE conjugate 46 that resulted 6.6-fold more toxic than the non-targeting 

compound COOH-PEG-4-Val-Ala-PABC-MMAE 61 and 3.4-times more toxic than its RGD 

analog cyclo[DKP-RGD]-PEG-4-MMAE 63 in the experiment without washout. 

Nevertheless, the washout experiment involving the MMAF conjugates revealed that 

the conjugation to the integrin ligands has a poor contribution to the cellular uptake of 

MMAF. 

The cell viability assays carried out in HT29 (αVβ3-, αVβ5+, αVβ6+) cell line with 72 hours 

incubation time, confirmed the loss of cytotoxicity of the conjugates compared to free 

MMAE and MMAF, nonetheless, this loss of potency was more pronounced in the αVβ3-

negative cell line HT29. In fact, the targeting index obtained for the cleavable MMAE 

and MMAF conjugates (6.1-3.3 and 5.6-3.9 respectively) indicate a moderate selectivity 

towards the αVβ3 receptor, even though the activity of the conjugates might also be 

governed by other integrins different from αVβ3 (e.g. αVβ5 in U87 and αVβ5, αVβ6 in 

HT29). 

Overall, the results from the in vitro tests demonstrate that despite the high binding 

affinity towards the αVβ3 receptor, the conjugates are not necessarily internalized by 

integrin-mediated endocytosis. This becomes clearer in the case of the MMAF 

conjugates, whose cytotoxic activity is similar to the free MMAF, which is known to 

poorly penetrate the cell membrane due to its charged phenylalanine residue. In the 

case of the MMAE conjugates, the cytotoxic activity is boosted by the picomolar 

potency of the drug and its ability to diffuse through the cell membrane once it is 

released upon extracellular cleavage, as reported in the literature.42,197,198 In effect, the 

conjugates containing the protease cleavable linker Val-Ala display higher cytotoxicity 

than the uncleavable conjugates because they allow the effective release of the payload 

when cleaved by extracellular proteases. Importantly, the increased cytotoxicity 

registered for the cleavable MMAE conjugates 46 and 63 compared to the non-

targeting compounds 61 and 62 in U87 (αVβ3+, αVβ5+, αVβ6-) and HT29 (αVβ3-, αVβ5+, 
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αVβ6+) cell lines suggests, if not an αVβ3 integrin-mediated internalization, a possible 

interaction with other integrins that facilitates the delivery of the payload to the cells.  



 
 

81 
 

 

Experimental section 

Material and methods 

All manipulations requiring anhydrous conditions were carried out in flame-dried 

glassware, with magnetic stirring and under a nitrogen atmosphere. All commercially 

available reagents were used as received. Anhydrous solvents were purchased from 

commercial sources and withdrawn from the container by syringe, under a slight 

positive pressure of nitrogen. The reactions were monitored by analytical thin-layer 

chromatography (TLC) using Macherey-Nagel 0.20 mm silica gel 60 with fluorescent 

indicator pre-coated polyester sheets (40 × 80 mm). Visualization was accomplished by 

irradiation with a UV lamp and/or staining with Cerium/Molibdate reagent, ninhydrin or 

cinnamaldehyde. Flash column chromatography was performed according to the 

method of Still and co-workers201 using Chromagel 60 ACC (40-63 µm) silica gel. Proton 

NMR spectra were recorded on a spectrometer operating at 400.16 MHz. Proton 

chemical shifts are reported in ppm (δ) with the solvent reference relative to 

tetramethylsilane (TMS) employed as the internal standard (D2O δ = 4.79 ppm). The 

following abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet, bs = broad signal, dd = doublet of doublet, ddd = 

doublet of doublet of doublet, ddt = doublet of doublet of triplet, td= triplet of doublet. 

Carbon NMR spectra were recorded on a spectrometer operating at 100.63 MHz, with 

complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to 

TMS with the respective solvent resonance as the internal standard. ESI-MS spectra 

were recorded on the ion trap mass spectrometer Finnigan LCQ Advantage or Micro 

Waters Q-Tof (ESI source) and on Thermo Fisher linear ion trap LTQ XL mass 

spectrometer. 

HPLC purifications and HPLC traces of final products were performed on Dionex 

Ultimate 3000 equipped with Dionex RS Variable Wavelenght Detector (column: Atlantis 

Prep T3 OBDTM 5 µm 19 × 100 mm; flow 15 mL/min unless stated otherwise). The crude 

reaction mixture was dissolved in H2O, acetonitrile/water 1:1 or by adding a small 
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quantity of DMF to the aqueous solution if the compound was insoluble (an ultrasonic 

bath was used to assist the dissolution). The solution obtained was filtered 

(polypropylene, 0.45 μm, 13 mm ø, PK/100) and injected in the HPLC, affording purified 

products. Purity analyses were carried on a Dionex Ultimate 3000 instrument equipped 

with a Dionex RS Variable Wavelenght detector (column: Atlantis® Prep T3 OBDTM 5 

μm 19 × 100 mm). 1 mg of analyte was dissolved in 1 mL of H2O and was injected using 

the same gradient used in the purification step. The analysis of the integrals and the 

relative percentage of purity was performed with the software Cromeleon 6.80 SR11 

Build 3161. Also, preparative HPLC LaPrep∑ equipped with autosampler AS3950 and a 

Phenomenex Luna C-18(2) column, 10 µm, 250 × 21.2 mm, with precolumn at 30 

mL/min flow rate and analytical HPLC performed on Hitachi Chromaster (column oven 

Chromaster 5310, pump Chromaster 5110, autosampler Chromaster 5210, DAD 

Chromaster 5430) equipped with a Phenomenex Luna C-18(2) column, 10 µm, 250 × 4.6 

mm, with precolumn at 1.4 mL/min flow rate were used. 

Freeze-drying: The product was dissolved in water or water/ acetonitrile 1:1 and frozen 

with dry ice. The freeze-drying was carried out at least for 48 h at -50 °C using the 

instrument 5Pascal Lio5P DGT. 

Biological assays 

Solid Phase Receptor Binding Assays 

Recombinant human integrin V 3 (R&D Systems, Minneapolis, MN, USA) was diluted to 

0.5 g/mL in coating buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM 

MnCl2, 2 mM CaCl2, and 1 mM MgCl2. 100 Microliters of the diluted receptor (100 

L/well) were added to 96-well microtiter plates (Nunc MaxiSorp) and incubated 

overnight at 4 °C. The plates were treated for additional 2 h at room temperature with 

blocking solution (coating buffer plus 1% bovine serum albumin) to block nonspecific 

binding, and washed 2 times with the same solution. Different concentrations (10-5–10-

12 M) of the test compounds in the presence of 1 g/mL biotinylated vitronectin were 

added to the plates, which were shaken for 3 h at room temperature. Vitronectin, 

(Molecular Innovations, Novi, MI, USA) was biotinylated using an EZ-Link Sulfo-NHS-

Biotinylation kit (Pierce, Rockford, IL, USA). The plates were washed 3 times, and 
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incubated with shaking for 1 h, at room temperature, with streptavidin-biotinylated 

peroxidase complex (Amersham Biosciences, Uppsala, Sweden). The plates were again 

washed 3 times with blocking solution, and 100 L/well of Substrate Reagent Solution 

(R&D Systems, Minneapolis, MN, USA) were added before shaking in the dark for 30 

min and stopping the reaction with the addition of 50 L/well 2 N H2SO4. Absorbance at 

415 nm was read in a SynergyTM HT Multi-Detection Microplate Reader (BioTek 

Instruments, Inc.). Each data point represents the average of triplicate wells; data 

analysis was carried out by nonlinear regression analysis with GraphPad Prism software. 

Each experiment was repeated in triplicate or duplicate. 

Determination of integrin αVβ3 expression by flow cytometry 

The expression of integrin αVβ3 in U87-MG, A549 and MDA-MB 468 cells was 

determined by flow cytometry on a FACSCalibur device (Becton Dickinson). Before 

staining, cells were fixed with fixation solution (0.5% PFA in PBS). 5 × 105 cells per 

sample were stained in staining medium (PBS, 25 mM HEPES, 3% FCS, 0.02% Na-Azide) 

with an anti-human integrin αVβ3 antibody conjugated to Alexa Fluor 488 (R&D Systems) 

or isotype control conjugated to Alexa Fluor 488 (Thermo Fischer) at a concentration of 

4µg/mL for 45 min at room temperature. Cells were washed with PBS and the mean 

fluorescence intensity was measured for 10.000 gated events. Data were analyzed using 

flow cytometry and associated software (BD Biosciences)  

Cell culture for cell viability assays of integrin ligand-α-amanitin conjugates 

All cell culture reagents were purchased at PAN-Biotech GmbH unless otherwise stated. 

Cell lines were obtained from CLS (U87-MG, MDA-MB 468 and A549). Cell lines were 

authenticated using Multiplex Cell Authentication by Multiplexion (Heidelberg, 

Germany) as described in the literature.202 The SNP profiles matched known profiles or 

were unique. The purity of cell lines was validated using the Multiplex cell 

Contamination Test by Multiplexion (Heidelberg, Germany) as described in the 

literature.203 No Mycoplasma, SMRV or interspecies contamination was detected. U87-

MG, MDA-MB 468 and A549 cells were cultivated continuously for not more than 3 

months in MEM Eagle´s, DMEM or Ham´s F12 medium, respectively supplemented with 
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10% heat inactivated fetus calf serum, L-glutamine and antibiotics. Cell lines were 

maintained at 37°C and 5% CO2 in a high humidity atmosphere. 

 

Cell therapy and viability assays of integrin ligand-α-amanitin conjugates 

Cell viability assays were performed in U87-MG, A549 and MDA-MB 468 cell lines 

according to the following procedure: 2 × 103 cells/well were plated in 96-well black 

clear bottom plates (Perkin Elmer) and incubated overnight. 1:5 serial dilutions of 

compounds 31-33 and 42-43 were prepared in cell culture media. Compounds were 

added to cell culture and incubated for additional 96 h. Starting concentration of 

compounds 31-33 and 42-43 in the wells was 1 × 10-5 M and cell viability was 

determined with the CellTiterGlo 2.0 assay (Promega) in accordance to manufacturer’s 

instructions. Cell viability was calculated in relation to the non-treated controls for each 

cell line. All samples were measured in triplicate. Data analysis was carried out using 

software Graph Pad Prism (Graph Pad Software Inc., La Jolla, CA, USA).  

Competition experiment for conjugates 32 and 33 

The competition experiments were performed in U87-MG and MDA-MB 468 cell lines 

according to the following procedure: 2 × 103 cells/well were plated in 96-well black 

clear bottom plates (Perkin Elmer) and incubated overnight. A solution containing 1 × 

10-4 M of the conjugate (32 or 33) and 5 × 10-3 M of Cilengitide (50-fold excess of ligand 

in comparison to the conjugate) was prepared in the growth medium and 1:5 serial 

dilutions were prepared in cell culture media. The compounds were added to cell 

culture and incubated for 96 h. Starting concentration of the compounds in the wells 

was 0.01 mM whereas that of Cilengitide was 0.5 mM. Cell viability was determined with 

the CellTiterGlo 2.0 assay (Promega) in accordance to manufacturer’s instructions. Cell 

viability was calculated in relation to the non-treated controls for each cell line. All 

samples were measured in triplicate. Data analysis was carried out using software 

Graph Pad Prism (Graph Pad Software Inc., La Jolla, CA, USA).  
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Cell therapy and viability assays of integrin ligand-MMAE/MMAF conjugates 

Cell viability assays were performed in U-87 MG glioblastoma and H29 colon 

adenocarcinoma cells obtained from American Type Culture Collection (ATCC, 

Bethesda, MD, USA) were used. Cell viability was quantified by MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Briefly, cells in EMEM 

supplemented with 10% FBS, 1% L-glutamine and 1% penicillin/streptomycin, were 

seeded in 96-well culture plates (5×104 cells/well) and incubated in a humidified, 37°C, 

5% CO2 atmosphere overnight to allow adherence. The following day cells were treated 

with serial dilutions of each compound starting at 500 nM for MMAE and 5000 nM for 

each one of the conjugates, or 0.1% DMSO as a control, and incubated as described for 

72h. For the washout experiment, cells were washed once, and media replaced after 6h 

of incubation. At the end of treatment, 5 µL of MTT (5 mg/mL in dH2O, Sigma #M5655) 

was added to each well. The cells were incubated for another 2 hours, 100 μL of lysis 

buffer (10% SDS, 10 mM HCl) were added, and then the cells were placed in the 

incubator overnight for the formazan crystal solubilization. Absorbance at 540 nm was 

measured and the growth inhibition ratio was calculated. Blank controls detecting cell-

free media absorbance were performed in parallel. Three experimental replicates were 

used. The half-maximal inhibitory concentration values (IC50) were obtained from 

viability curves using GraphPad Prism 6. The cell viability was expressed as percentage 

relative to the respective control conditions (0.1% of DMSO). 

Synthesis of the DKP-f3 scaffold 

4-((4-methoxy-2,3,6-trimethyl-phenyl-sulfonyl)aminomethyl)benzaldehyde 16 

 

(4-aminomethyl-phenyl)methanol (2.6 g, 19 mmol, 1 eq.) was dissolved in 150 mL of dry 

THF under nitrogen atmosphere, DIPEA (6.5 mL, 38 mmol, 2 eq.) was added and the 

solution was cooled to 0 °C. A solution of 4-methoxy-2,3,6-trimethylbenzene-1-sulfonyl 

chloride (5.2 g, 21 mmol, 1.1 eq.) in 50 mL of dry THF was added dropwise and the 
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mixture was stirred at 0°C for 30 min, then at room temperature overnight. The white 

precipitate formed was separated by filtration over celite and the filtrate was 

concentrated under reduced pressure, re-dissolved in 5 mL of dry DCM (5 mL) and 

sonicated for few minutes until the formation of a white precipitate. The precipitate 

was collected by filtration, washed with cold DCM and cold Et2O and dried under 

vacuum to obtain the 4-((4-methoxy-2,3,6-trimethyl-phenyl-sulfonyl)aminomethyl) 

benzylic alcohol as a pale-yellow powder (4.98 g, 72% yield).  

The protected alcohol (4.8 g, 13.7 mmol, 1 eq.) was dissolved in 150 mL of dry THF 

under nitrogen atmosphere, then activated MnO2 (18 g, 0.2 mol, 15 eq.) was added, 

and the mixture was stirred overnight at room temperature. The suspension was 

filtered over celite and the filtrate was concentrated under reduced pressure to obtain 

16 as a white solid. (4.76 g, 99% yield).  

Rf=0.76 (Hexane/EtOAc 1:1); 1H NMR (400 MHz, acetone-d6) δ 9.96 (s, 1H), 7.75 (d, 2H, 

J = 8.2 Hz), 7.42 (d, 2H, J = 8.1 Hz), 6.92 (t, 1H, J = 6.3 Hz), 6.72 (s, 1H), 4.19 (d, 2H, J = 

6.5 Hz), 3.83 (s, 3H), 2.62 (s, 3H), 2.53 (s, 3H). 

(S)-methyl-3-hydroxy-2-((4-((4-methoxy-2,3,6-trimethyl-phenyl-sulfonamido)methyl) 

benzyl) amino)propanoate 17 

 

To a suspension of L-serine methyl ester hydrochloride (1.0 g, 6.5 mmol, 1.25 eq.) and 

aldehyde 16 (1.8 g, 5.1 mmol, 1 eq.) in 100 mL of dry THF, was added triethylamine (1.1 

mL, 7.6 mmol, 1.5 eq.) under nitrogen atmosphere. Then, NaBH(OAc)3 (3.1 g, 14.3 

mmol, 2.8 eq.) was added in small portions and the mixture was stirred at room 

temperature for 4 h. A saturated solution of NaHCO3 was added to the suspension till 

pH > 7 and it was extracted with EtOAc (3 × 60 mL). The combined organic phases were 

washed with brine (3 × 40 mL), dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by flash chromatography on silica gel (100 % 

EtOAc) affording the compound 17 as a white solid (1.5 g, 66%). 
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Rf=0.56 (EtOAc 100%); 1H NMR (400 MHz, CD2Cl2) δ 7.21 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 

7.9 Hz, 2H), 6.62 (s, 1H), 4.90 (t, J = 6.1 Hz, 1H), 4.02 (d, J = 6.2 Hz, 2H), 3.85 (s, 3H), 3.82 

(d, J = 12.8 Hz, 1H), 3.73 – 3.69 (m, 4H), 3.64 (d, J = 13.2 Hz, 1H), 3.59-3.55 (dd, J = 10.8, 

6.2 Hz, 1H), 3.36 (m, 1H), 2.65 (s, 3H), 2.51 (s, 3H), 2.11 (s, 3H). 

 

(R)-4-(allyloxy)-2-((tert-butoxycarbonyl)amino)-4-oxobutanoic acid 15 

 

Acetyl chloride (10.7 mL, 15 mmol, 4 eq.) was added dropwise to 75 mL of ice-cold allyl 

alcohol. The solution was stirred at 0°C for 15 minutes and at room temperature for 1 

hour, then D-aspartic acid (5 g, 37 mmol, 1 eq.) was added in single portion and the 

suspension was stirred overnight. The mixture was poured into 250 mL of ice-cold Et2O 

and stirred for 1 hour, observing the formation of a white precipitate. The solid was 

collected by filtration and washed with cold Et2O to give allyl aspartic acid hydrochloride 

(6.7 g, 82% yield).  

D-allyl aspartic acid hydrochloride (6.7 g, 32 mmol, 1 eq.) was dissolved in dioxane/water 

1:1 (80 mL) under nitrogen atmosphere, Boc2O (8.3 g, 38 mmol, 1.2 eq.) was added and 

the mixture was cooled to 0 °C. Et3N (13.3 mL, 95 mmol, 3 eq.) was added dropwise and 

the mixture was stirred at room temperature overnight. The solution was diluted in 150 

mL of EtOAc, washed with KHSO4 1 M (3 × 50 mL) and brine (1 × 50 mL), the organic 

phase was dried over Na2SO4 and concentrated under reduced pressure affording the 

product 15 as a colorless oil (5.2 g, 79%). 

(R)-4-allyl-1-((S)-3-methoxy-2-((4-((4-methoxy-2,3,6-trimethylphenylsulfonamido) 

methyl)benzyl)amino)-3-oxopropyl) 2-((tert-butoxycarbonyl)amino)succinate 18 
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To a solution of 15 (1.2 g, 4.3 mmol, 1.3 eq.) in 15 mL of dry DMF at 0°C, HATU (1.6 g, 

4.3 mmol, 1.3 eq.), HOAt (0.589 mg, 4.3 mmol, 1.3 eq.) and DIPEA (1.2 mL, 6.6 mmol, 

2.0 eq.) were added, and the mixture was stirred for 30 minutes at 0 °C. A solution of 17 

(1.5 g, 3.3 mmol) in DMF (10 mL) was added to the previous mixture and the reaction 

was stirred 1 h at 0°C and then at room temperature for 4 hours. The mixture was 

diluted with EtOAc (150 mL) and washed with KHSO4 1 M (3 × 30 mL), NaHCO3 (2 × 30 

mL) and brine (1 × 30 mL), the organic phase was dried over Na2SO4 and concentrated 

under reduced pressure to give the crude product as a pale-yellow oil (3 g) that was 

used in the next step without further purification. Rf=0.37 (Hexane/EtOAc 1:1) 

OH-(3S-6R)-DKP-f3-COOAllyl 19 

 

Boc-isopeptide 18 (2.3 g, 3.3 mmol, 1 eq.) was Boc-deprotected in a solution of 

CH2Cl2/TFA 2:1 (25 mL), stirring for 2 hours at room temperature. Volatiles were 

removed under reduced pressure by adding toluene (2 x 15 mL) and Et2O (1 x 15 mL) to 

remove the excess of TFA. The corresponding trifluoroacetate salt was dried under 

vacuum and re-dissolved in iPrOH (54 mL). DIPEA (2.3 mL, 13.2 mmol, 4 eq.) was added, 

and the mixture was stirred at room temperature overnight. The solution was 

concentrated under reduced pressure and the residue was purified by flash 

chromatography on silica gel (Hexane/EtOAc, from 70% EtOAc to 100%) affording the 

product 19 as a white foam (1.7 g, 89%). 
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Rf=0.27 (EtOAc 100%); 1H NMR (400 MHz, CDCl3) δ 7.19 (m, 4H), 6.74 (s, 1H), 6.65 (s, 

1H), 5.95 (m, 1H), 5.39-5.33 (m, 2H), 5.27,  (dq, J = 10.4, 1.3 Hz, 1H), 5.15 (d, J = 15.2 Hz, 

1H), 4.98 (t, J = 6.3 Hz, 1H), 4.64 (dt, J = 5.7, 1.3 Hz, 2H), 4.61 (dd, J = 8.7, 3.6 Hz, 1H),  

4.13 (d, J = 15.5 Hz, 1H), 4.04 (d, J = 6.3, 2H), 3.99 (d, J = 11.8 Hz, 1H), 3.88 – 3.84 (m, 

4H), 3.79 (t, J = 2.6 Hz, 1H), 3.23 (dd, J = 17.4, 3.7 Hz, 1H), 2.76 (dd, J = 17.6, 8.3 Hz, 1H), 

2.67 (s, 3H), 2.56 (s, 3H), 2.16 (s, 3H). 

N3-(3S, 6R)-DKP-f3-COOAllyl 20 

 

OH-(3S, 6R)-DKP-f3-COOAllyl 19 (1.68 g, 2.9 mmol, 1 eq.) was dissolved in 50 mL of a 

mixture of CH2Cl2/toluene 4:6 under nitrogen atmosphere. The mixture was cooled to -

20°C and triphenylphosphine (1.0 g, 3.8 mmol, 1.3 eq.) was added. Once the dissolution 

was completed, hydrazoic acid (1 M in toluene, 19 mL, 19 mmol, 6.5 eq.) was added, 

followed by dropwise addition of DIAD (0.8 mL, 4.1 mmol, 1.4 eq.). The reaction was 

stirred at -20 °C for 5 hours, then the mixture was directly purified (without evaporating 

the solvent) by flash chromatography (EtOAc/Hexane from 1:1 to 70% EtOAc) affording 

the product 20 as a white foam (1.15 g, 66% yield). 

Rf=0.6 (EtOAc/Hexane 8:2); 1H NMR (400 MHz, CDCl3) δ 7.18 (s, 4H), 6.76 (s, 1H), 6.59 

(s, 1H), 5.91 (ddt, J = 16.4, 11.1, 5.8 Hz, 1H), 5.34 (d, J = 18.1, 1H), 5.27 (d, J = 10.4, 1H), 

5.09 (d, J = 15.1 Hz, 1H), 4.64 (d, J = 5.8 Hz, 2H), 4.60 (dd, J = 9.1, 3.1 Hz, 1H), 4.19 (d, J = 

15.1 Hz, 1H), 4.05 (s, 2H), 3.90 – 3.83 (m, 6H), 3.63 (dd, J = 12.4, 2.9 Hz, 1H), 3.28 (dd, J 

= 17.5, 3.3 Hz, 1H), 2.80 (dd, J = 17.5, 9.1 Hz, 1H), 2.68 (s, 3H), 2.57 (s, 3H), 2.14 (s, 3H). 

Boc-(3S,6R)-DKP-f3-COOAllyl 21 
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N3-(3S, 6R)-DKP-f3-COOAllyl 20 (1.56 g, 2.6 mmol, 1 eq.) was dissolved in 64 mL of THF 

under nitrogen atmosphere and cooled down to -20 °C. Trimethylphosphine (1 M 

solution in THF, 6.5 mL, 6.5 mmol, 2.5 eq.) and Boc-ON (1.6 g, 6.5 mmol, 2.5 eq.) were 

sequentially added and the reaction was stirred at room temperature for 3h. The 

mixture was diluted in 300 mL of CH2Cl2 and the organic phase was washed with water 

(3×100 mL) and brine (1×100 mL), dried over Na2SO4 and concentrated under reduced 

pressure. The crude residue was purified by flash chromatography on silica gel 

(CH2Cl2/MeOH from 100% CH2Cl2 to 9:1) affording the product 21 as a white foam (1.55 

g, 88% yield).  

Rf=0.24 (CH2Cl2/MeOH 97:3); 1H NMR (400 MHz, CDCl3) δ 7.18 – 7.13 (m, 4H), 6.79 (s, 

1H), 6.59 (s, 1H), 5.90 (ddt, J = 17.2, 10.6, 5.8 Hz, 1H), 5.42 (d, J = 15.2 Hz, 1H), 5.33 (d, J 

= 17.2 Hz, 1H), 5.26 (d, J = 10.3 Hz, 1H), 4.97 (bs, 1H), 4.63 (d, J = 5.5 Hz, 2H), 4.44 (dd, J 

= 9.0, 2.5 Hz, 1H), 4.03 (s, 3H), 3.86 (s, 3H), 3.74 – 3.68 (m, 2H), 3.50 (d, J = 15.3 Hz, 1H), 

3.29 (d, J = 17.6 Hz, 1H), 2.76 (dd, J = 17.5, 9.2 Hz, 1H), 2.68 (s, 3H), 2.56 (s, 3H), 2.14 (s, 

3H), 1.43 (s, 9H). 

Synthesis of cyclo[DKP-isoDGR]-CH2NH2 integrin ligand 

Mtr-Arg-(3S,6R)-DKP-f3-COOAllyl 22 

 



 
 

91 
 

Cbz-Arg-Mtr-OH -CHA (cyclohexylamine salt) (0.595 g, 0.96 mmol, 1.2 eq.) was 

suspended in 40 mL of DCM. The organic phase was washed 3 times with KHSO4, dried 

over Na2SO4 and concentrated under reduced pressure to give Cbz-Arg-Mtr-OH free as 

a white foam (quantitative). The foam was dissolved in 7 mL of DMF under nitrogen 

atmosphere and cooled to 0°C, then HATU (0.380 g, 0.96 mmol, 1.2 eq.), HOAt (0.130 g, 

0.96 mmol, 1.2 eq.) and DIPEA (0.42 mL, 2.4 mmol, 3 eq.). The mixture was stirred at 0 

°C for 30 minutes.  

Boc-(3S,6R)-DKP-f3-COOAllyl 21 (0.523 g, 0,8 mmol, 1 eq.) was deprotected in a solution 

of 9 mL CH2Cl2/TFA 2:1 at room temperature. After 2 hours the solvent was evaporated, 

the excess of TFA was removed by adding toluene (2 × 5 mL) followed of evaporation. 

Diethyl ether (1 x 5) was also added and evaporated to afford the corresponding TFA 

salt, which was re-dissolved in DMF (9 mL) and DIPEA (0.13 mL, 0.8 mmol, 1 eq.) and 

incorporated to the reaction containing Cbz-Arg-Mtr-OH. The mixture was stirred for 1 

hour at 0°C and the at room temperature overnight.  

The mixture was then diluted in 150 mL of EtOAc. The organic phase was washed with 

KHSO4 1 M (3×45 mL), NaHCO3 sat (3×45 mL) and brine (1×50 mL), then dried over 

Na2SO4 and concentrated under reduced pressure. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH from 100% CH2Cl2 to 9:1) affording the 

product 22 as a white foam (0.730 g, 85% yield).  

Rf=0.5 (CH2Cl2/MeOH 9:1); 1H NMR (400 MHz, MeOD-d4) δ 7.40 – 7.25 (m, 5H), 7.13 

(dd, J = 34.5, 8.1 Hz, 4H), 6.67 (s, 1H), 6.64 (s, 1H), 5.95-5.85 (m, 1H), 5.35 – 5.28 (m, 

2H), 5.20 (dd, J = 10.5, 1.3 Hz, 1H), 5.08 (q, J = 12.5 Hz, 2H), 4.64 – 4.50 (m, 3H), 4.09 

(m, 1H),  4.05 – 3.98 (m, 3H), 3.90 – 3.83 (m, 4H), 3.81 (s, 3H), 3.77 – 3.74 (m, 1H), 3.59 

(dd, J = 13.8, 2.4 Hz, 1H), 3.21 (bs, 1H), 3.15 – 3.11 (m, 1H), 3.07 (dd, J = 17.7, 4.6 Hz, 

1H), 2.88 (dd, J = 17.6, 4.8 Hz, 1H), 2.66 (s, 3H), 2.60 (s, 6H), 2.48 (s, 3H), 2.11 (s, 3H), 

2.07 (s, 3H), 1.79 – 1.67 (m, 1H), 1.62 – 1.44 (m, 3H); 13C NMR (101 MHz, MeOD-d4) δ 

171.32, 168.73, 168.22, 160.68, 159.88, 158.44, 139.87, 139.52, 138.56, 137.89, 

135.98, 134.77, 133.47, 130.99, 129.52, 129.35, 129.21, 129.07, 128.92, 126.06, 

125.71, 118.56, 113.15, 112.79, 67.82, 66.50, 60.36, 56.16, 56.00, 51.94, 49.00, 47.70, 

46.91, 40.11, 36.91, 30.16, 24.47, 24.35, 18.84, 18.20, 12.10. 

Mtr-Arg-(3S,6R)-DKP-f3-COOH 23 
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Mtr-Arg-(3S,6R)-DKP-f3-COOAllyl 22 (0.537 g, 0.5 mmol, 1 eq.) was dissolved in 20 mL of 

dry DCM under nitrogen atmosphere at 0 °C. [Pd(PPh3)4] (cat.) and N-methylaniline 

(0.23 mL, 2 mmol, 4 eq.) were added, the reaction mixture was stirred 5 min at 0 °C and 

then 2 hours at room temperature. The mixture was diluted in 70 mL of DCM and 

washed with KHSO4 1 M (3×20 mL). The organic phase was dried over Na2SO4, volatiles 

were removed under reduced pressure and the residue was purified by flash 

chromatography DCM/MeOH from 98/2 to 8/2 affording 23 as a pale-yellow foam 

(0.373 g, 72%).  

Rf=0.2 (CH2Cl2/MeOH 95:5); 1H NMR (400 MHz, MeOD-d4) δ 7.36 – 7.20 (m, 5H), 7.13 – 

7.08 (m, 4H), 6.66 (s, 1H), 6.61 s, 1H), 5.24 (d, J = 15.2 Hz, 1H), 5.06 (m, 2H), 4.51 – 4.45 

(m, 3H), 4.10 (m, 1H), 4.04 – 3.98 (m, 3H), 3.91 – 3.82 (m, 4H), 3.81 – 3.73 (m, 4H), 3.53 

(d, J = 13.5 Hz, 1H), 3.26 – 3.07 (m, 2H), 2.96 (d, J = 14.1.7 Hz, 1H), 2.66 (s, 3H), 2.60 (s, 

6H), 2.47 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 1.77 – 1.67 (m, 1H), 1.62 – 1.40 (m, 3H); 13C 

NMR (101 MHz, MeOD-d4) δ 168.44, 160.37, 159.50, 157.95, 157.78, 139.68, 139.29, 

138.22, 137.54, 135.83, 134.39, 130.18, 129.28, 129.19, 128.85, 128.67, 125.95, 

125.59, 112.95, 112.58, 67.70, 56.08, 55.94, 54.16, 49.64, 49.43, 49.21, 49.00, 48.79, 

48.57, 48.36, 46.63, 24.54, 24.39, 18.81, 18.20, 12.15. 

(S)-tert-butyl 2-amino-4-((2-(benzyloxy)-2-oxo-ethyl)amino)-4-oxobutanoate 26 

 

To a solution of Fmoc-L-Asp(OH)-OtBu (1.15 g, 2.80 mmol, 1.2 eq.) in DMF (15 mL), at 0 

°C and under nitrogen atmosphere, HATU (1.06 g, 2.80 mmol, 1.2 eq.), HOAt (380 mg, 

2.80 mmol, 1.2 eq.) and DIPEA (0.8 mL, 4.6 mmol, 2.0 eq.) were added, and the reaction 
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was stirred at 0 °C for 30 min. A solution of H2N-Gly-OBn·HCl (465 mg, 2.3 mmol, 1 eq.) 

in 15 mL of DMF and DIPEA (1.2 mL, 6.9 mmol, 3 eq.) was added dropwise and the 

mixture was stirred at 0 °C for 1 h and at room temperature overnight. The mixture was 

diluted in500 mL of EtOAc and washed with KHSO4 1 M (3 × 100 mL), saturated aqueous 

NaHCO3 (3 × 100 mL) and brine (1 × 100 mL). The organic phase was dried over Na2SO4, 

concentrated under reduced pressure, and the residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH from CH2Cl2 100% to 9:1, solid load) 

affording Fmoc-L.Asp-Gly-OBn as a white foam (0.985 g, 81%). The protected dipeptide 

(0.98 g, 1.8 mmol, 1 eq) in DMF (47 mL), at 0 °C under nitrogen atmosphere, piperidine 

(1.1.5 mL, 11.16 mmol, 5 eq) was added and the reaction mixture was stirred at 0 °C for 

10 min and at room temperature for 3 h. The mixture was diluted with AcOEt (400 mL) 

and washed with H2O (4×100 mL). The organic phase was dried over Na2SO4 and 

volatiles were removed under reduced pressure. The residue was purified by a Grace 

Reveleris system (column: Reveleris Silica 40 g; liquid load; flow rate: 33 mLmin-1; 

gradient: from DCM/MeOH 98/2 to 8/2 in 35 min) affording the desired product 41 as a 

white foam (600 mg, quant., 80% yield over 2 steps). 

Rf=0.35 (CH2Cl2/MeOH 95:5); 1H NMR (400 MHz, CDCl3) δ 7.99 (bs, J = 5.2 Hz, 1H), 7.29 

(m, 5H), 5.10 (s, 2H), 4.01 (m, J = 18.1, 5.2 Hz, 2H), 3.66 (m, J = 9.0, 3.2 Hz, 1H), 2.65 (dd, 

J = 15.4, 3.2 Hz, 1H), 2.44 (dd, J = 15.4, 9.0 Hz, 1H), 2.21 (bs, 2H), 1.40 (s, 9H). 

Mtr-Arg-(3S,6R)-DKP-f3-COO-isoAsp-Gly-OBn 27 

 

Mtr-Arg-(3S,6R)-DKP-f3-COOH 23 (0.509 g, 0.5 mmol, 1 eq.) was dissolved in 6 ml of 

DMF under nitrogen atmosphere and cooled to 0°C. HATU (0.228 g, 0.6 mmol, 1.2 eq.), 

HOAt (0.081 g, 0.6 mmol, 1.2 eq.) and DIPEA (0.3 mL, 1.5 mmol, 3 eq.) were added and 
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the reaction mixture was stirred at 0 °C for 30 min. The dipeptide isoAsp-Gly 26 (0.202 

g, 0.6 mmol, 1.2 eq.), dissolved in 6 mL of DMF, was added and the mixture was stirred 

for 1 hour at 0 °C and then at room temperature overnight. The mixture was diluted in 

100 mL of CH2Cl2 and washed with KHSO4 1 M (3×40 mL), NaHCO3 (3×40 mL) and brine 

(1×25 mL). The organic phase was dried over Na2SO4, concentrated under reduced 

pressure and purified by flash chromatography DCM/MeOH from 100% DCM to 8/2 

affording the product 27 as a pale-yellow foam (0.560 g, 83%). 

Rf= 0.48 (CH2Cl2/MeOH  95:5); 1H NMR (400 MHz, Acetone) δ 7.83 (m, 1H), 7.71 (m, 

1H), 7.64 (d, J = 8.1 Hz, 1H), 7.51 (s, 1H), 7.38-7.29 (m, 10 H), 7.22-7.15 (dd, J = 18.4, 8.0 

Hz, 4H), 6.76 (s, 1H), 6.72 (t, J = 6.3 Hz, 1H), 6.66 (s, 1H), 6.58 (bs, 1H), 6.53 (d, J = 8.0 

Hz, 1H), 5.30 (d, J = 15.3 Hz, 1H), 5.14 (s, 2H), 5.11 – 5.02 (dd, J = 18.8, 12.8 Hz, 2H), 

4.75-4.70 (m, 1H), 4.64 (s, 1H), 4.28-4.23 (m, 1H), 4.05 (dd, J = 16.6, 10.7 Hz, 5H), 3.95 

(dd, J = 19.1, 5.7 Hz, 2H), 3.88 (s, 3H), 3.82 (s, 3H), 3.79 (m, 1H), 3.51-3.48 (d, J = 13.5 

Hz, 1H), 3.30 (bs, 1H), 3.16-3.07 (m, 2H), 3.03-3.02 (m, 1H), 2.80-2.73 (m, 3H), 2.67 (s, 

3H), 2.63 (s, 3H), 2.62 (s, 3H), 2.55 (s, 3H), 2.09 (m, 6H), 1.82 (m, 1H), 1.58 (m, 3H), 1.43 

(s, 9H); 13C NMR (101 MHz, Acetone) δ 174.10, 170.95, 170.89, 170.51, 167.33, 159.95, 

158.90, 157.57, 139.44, 139.28, 139.16, 138.17, 138.09, 137.07, 136.96, 136.33, 

129.34, 129.22, 129.02, 129.00, 128.76, 128.68, 128.65, 125.44, 124.83, 113.00, 

112.47, 82.20, 67.20, 67.17, 66.92, 60.03, 56.08, 55.85, 55.70, 55.34, 52.34, 50.81, 

47.27, 46.69, 41.78, 40.23, 39.75, 38.08, 30.42, 30.22, 30.03, 29.84, 29.65, 29.46, 29.26, 

28.10, 27.92, 24.42, 24.31, 18.70, 18.15, 12.13, 12.11. 

Mtr-Arg-(3S,6R)-DKP-f3-COO-isoAsp-Gly 28 
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Mtr-Arg-(3S,6R)-DKP-f3-COO-isoAsp-Gly-OBn 27 (0.765 g, 0.56 mmol,1eq.) was 

dissolved in 50 mL of a solution THF/water 1:1. A catalytic amount of Pd/C 10 % was 

added, and the mixture was purged under stirring with 3 cycles of vacuum/H2 

atmosphere. The reaction was stirred overnight under H2 atmosphere at room 

temperature. The mixture was filtered on a celite pad and rinsed with methanol. The 

filtrate was collected and concentrated under reduced pressure, affording the product 

28 as a white solid (0.613 g, 90% yield). 

 

 

Cyclo[(3S,6R)-DKP-f3-isoDGR]-Mtr 29 

 

Mtr-Arg-(3S,6R)-DKP-f3-COO-isoAsp-Gly 28 (200 mg, 0.17 mmol, 1 eq.) was dissolved in 

120 mL of DMF/CH2Cl2 1:1 (1.4 mM solution) under nitrogen atmosphere, the mixture 

was cooled to at 0 °C and HATU (266 mg, 0.7 mmol, 4 eq.), HOAt (95 mg, 0,7 mmol, 4 

eq.) and DIPEA (0.2 mL, 1.0 mmol, 6 eq.) were added.  the reaction was stirred at 0 °C 

for 1 hour and then at room temperature overnight. The mixture was concentrated 

under reduced pressure, the residue was diluted in 250 mL of EtOAc and washed with 

KHSO4 1 M (4 × 60 mL). The organic phase was dried over Na2SO4, concentrated under 

reduced pressure and the residue was purified by flash chromatography CH2Cl2/MeOH 

from 100% CH2Cl2 to 8/2 affording the product 29 as a pale-yellow solid (130 mg, 68%). 

Rf=0.4 (CH2Cl2/MeOH 9:1); 1H NMR (400 MHz, DMSO-d6) δ 8.59 (d, J = 9.0 Hz, 1H), 8.29 

(t, J = 6.2 Hz, 1H), 8.16 (d, J = 6.8 Hz, 1H), 7.87 (t, J = 6.0 Hz, 1H), 7.63 (dd, J = 6.8, 3.7 Hz, 

1H), 7.50 (s, 1H), 7.16 – 7.08 (m, 4H), 6.75 (s, 1H), 6.68 (s, 1H), 6.43 (s, 1H), 5.19 (dd, J = 
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15.2, 7.1 Hz, 1H), 4.79 – 4.68 (m, 1H), 4.34 (d, J = 11.5 Hz, 1H), 4.16 (dd, J = 16.9, 7.3 Hz, 

1H), 4.04 (dd, J = 13.2, 7.3 Hz, 1H), 3.92-3.87 (m, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.63 – 

3.57 (m, 2H), 3.49 (m, 3H), 3.03 (m, 3H), 2.60 – 2.51 (m, 11H), 2.44 (m, 3H), 2.12 (d, J = 

12.9 Hz, 1H), 2.05 (m, 6H), 1.65-1.52 (m, 1H), 1.45-1.39 (m, 12H) ; 13C NMR (101 MHz, 

DMSO) δ 172.75, 170.65, 169.75, 168.92, 168.66, 166.07, 165.86, 158.48, 157.47, 

156.21, 147.59, 139.35, 138.21, 137.79, 137.65, 137.23, 135.63, 135.22, 134.47, 

129.99, 127.89, 127.58, 124.03, 123.55, 119.11, 112.24, 111.73, 81.36, 55.66, 55.51, 

48.62, 45.11, 41.27, 38.37, 37.72, 36.40, 27.58, 23.86, 23.66, 18.06, 17.68, 11.79, 11.77. 

 

cyclo[(3S,6R)-DKP-f3-isoDGR] 14 

 

Cyclo[(3S,6R)-DKP-f3-isoDGR]-Mtr 29 (109 mg, 0.1 mmol) was treated with TFA (11 mL) 

in the presence of ion scavengers thioanisole (1.6 mL), ethanedithiol (0.8 mL) and 

phenol (175 mg). The mixture was cooled to 0 °C and flushed with N2, then 

trimethylsilylbromide (2.2 mL) was added and the flask was opened. The mixture was 

allowed to reach room temperature and stirred for 2 h. Volatiles were removed under 

reduced pressure and the crude was dissolved in 30 mL of a mixture of 

water/diisopropyl ether 1:1. The aqueous phase was washed several times with 

diisopropyl ether and then concentrated under reduced pressure to give the crude 

compound, which was purified by semipreparative HPLC (gradient: 97% H2O + 0.05% 

TFA/ 3% ACN + 0.05% TFA for 2 min, then to 80% H2O + 0.05% TFA / 20% ACN + 0.05% 

TFA in 9 min, tR product = 7 min) to afford the product 14 (50 mg, 58% yield). 

1H NMR (500 MHz, D2O) δ 7.49-7.39 (m, 4H), 5.30 (d, J = 15.7 Hz, 1H), 5.07 (dd, J = 11.5, 

3.8 Hz, 1H), 4.48 (dd, J = 11.6, 2.2 Hz, 1H), 4.33 – 4.22 (m, 3H), 4.21 (s, 2H), 4.18 (d, J = 

4.0 Hz, 1H), 4.05 (m, 1H), 3.84 (d, J = 17.2 Hz, 1H), 3.72 (d, J = 14.6 Hz, 1H), 3.24 (t, J = 
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6.7 Hz, 2H), 3.18 (dd, J = 13.7, 2.7 Hz, 1H), 3.11 (dd, J = 15.2, 3.9 Hz, 1H), 2.79 (dd, J = 

15.1, 11.6 Hz, 1H), 2.46 – 2.38 (m, 1H), 1.93 – 1.82 (m, 1H), 1.77 – 1.63 (m, 2H); 13C 

NMR (101 MHz, D2O) δ 176.00, 174.05, 172.21, 172.10, 171.33, 167.85, 167.00, 156.78, 

136.11, 132.34, 129.38, 128.31, 128.16, 59.63, 54.17, 51.16, 49.10, 47.43, 42.70, 41.50, 

40.43, 39.26, 38.26, 37.38, 28.06, 24.49. MS (ESI) m/z calcd. for [C27H39N10O8]+: 631.29 

[M + H]+; found: 631.33. 

 

 

Synthesis of cyclo[DKP-isoDGR]-α-amanitin conjugates 31-33 

14-Azido-3,6,9,12-tetraoxatetradecanoic acid -NHS ester 40 

 

100 µL (0.05 mmol, 1 eq.) of a 0.5 M solution of 14-azido-3,6,9,12-

tetraoxatetradecanoic acid (0.5 M in tert-butyl methyl ether) were diluted in 100 µL of 

dry DCM under argon and cooled to 0 °C. EDC.HCl (12,5 mg, 0.065 mmol, 1.3 eq.) and 

NHS (7.5 mg, 0.065 mmol, 1.3 eq.) were sequentially added to the solution and the 

reaction mixture was stirred overnight at room temperature. The mixture was diluted in 

10 mL of DCM and the organic phase was washed with water (3 × 3 mL), dried over 

MgSO4, filtrated and concentrated under reduced pressure to give the product as a 

transparent oil (18.2 mg, 97% yield). The crude product was used in next step without 

further modifications. 

Rf= 0.35 (DCM/MeOH 95:5); 1H NMR (400 MHz, CDCl3): δ 4.52 (s, 2H), 3.81–3.79 (m, 

2H), 3.68-3.65 (m, 12H), 3.39 (t, J = 5.0 Hz, 2H), 2.85 (s, 4H). 

N3-PEG-4-cyclo[DKP- isoDGR] 41 
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To a solution of compound 40 (9.2 mg, 24 µmol, 2 eq.) in 500 µL of ACN was added 

cyclo[DKP-isoDGR]-CH2NH2 14 (10.5 mg, 12 µmol, 1 eq.) dissolved in 500 µL of PBS pH 7. 

The pH was adjusted to 7.4 with a solution of NaOH 0.2 M and the reaction was stirred 

overnight at room temperature. The mixture was filtered into a 3 mL vial, centrifuged 

and purified by preparative HPLC (gradient: from 95% (H2O + 0.05 % CF3COOH)/5% 

CH3CN) to 60% (H2O + 0.05 % CF3COOH)/40% CH3CN in 14.5 mins, tR product = 8.3 min). 

The collected fraction was concentrated under reduced pressure and freeze-dried from 

1:1 water/CH3CN to afford the product as a white solid (5.5 mg, 46% yield).  

1H NMR (400 MHz, D2O) δ 7.34 (dd, J = 15.6, 8.4 Hz, 4H), 5.27 (d, J = 15.5 Hz, 1H), 5.08 

(dd, J = 11.5, 3.9 Hz, 1H), 4.50 – 4.43 (m, 3H), 4.32 – 4.17 (m, 3H), 4.15 (s, 2H), 4.12 (d, J 

= 4.1 Hz, 1H), 3.99 (dd, J = 14.8, 4.6 Hz, 1H), 3.83 (d, J = 17.2 Hz, 1H), 3.77 (m, 2H), 3.75 

– 3.70 (m, 3H), 3.69 – 3.58 (m, 10H), 3.47 – 3.42 (m, 2H), 3.19 (m, 3H), 3.09 (dd, J = 

15.1, 3.8 Hz, 1H), 2.78 (dd, J = 15.1, 11.6 Hz, 1H), 2.39 (dd, J = 13.4, 12.1 Hz, 1H), 1.89 – 

1.75 (m, 1H), 1.72 – 1.59 (m, 2H); 13C NMR (101 MHz, D2O) δ 175.93, 173.99, 172.70, 

172.19, 172.10, 171.27, 167.90, 166.91, 156.77, 137.64, 128.03, 127.79, 70.49, 70.12, 

69.63, 69.56, 69.53, 69.19, 67.63, 59.39, 54.11, 51.12, 50.14, 49.09, 47.34, 42.15, 41.51, 

40.42, 39.20, 38.14, 37.44, 28.04, 24.47. MS (ESI+): m/z calculated for [C37H56N13O13]+= 

890.41 [M + H]+, found: 890.96. 

Glutarate NHS ester-aminohexyl-α-amanitin 35 
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α-amanitin 6’-aminohexyl ether 34 (11 mg, 10.9 µmol, 1 eq.) was dissolved in 150 µL of 

dry DMF under nitrogen atmosphere. The solution was cooled to 0 °C, then commercial 

di-N-succinimidyl glutarate (4 mg, 12 µmol. 1.1 eq.) and DIPEA (2 µL, 12 µmol, 1.1 eq.) 

were added and the mixture was stirred at room temperature for 6 hours. The reaction 

was monitored by TLC (CHCl3/MeOH/water 65/25/4, cinnamaldehyde staining). The 

crude was poured into 10 mL precooled MTBE placed in a 10 mL centrifugal tube (the 

reaction flask was rinsed with 3 × 50 µL of DMF and each rinsing solution was 

transferred to the MTBE tube). The tube was sealed, vortexed and placed in ice for 10 

min. The tube was spun for 3 min at 4500 RPM in a pre-cooled centrifuge. The 

supernatant was transferred to a 50 mL flask. The pellet was suspended again into 10 

mL of MTBE by vortexing and sonication. The tube was placed in ice for 10 mins and the 

centrifugation was repeated, then the pellet was dried in vacuo. The combined MTBE 

phases were concentrated under reduced pressure and checked for remaining product 

by TLC and HPLC. The dried pellet was used in next step without further purification (12 

mg, 90% yield).  

Cyclo[DKP-isoDGR]-uncleavable-α-amanitin 31 

 

A solution of cyclo[DKP-isoDGR]-CH2NH2 14 (5.0 mg, 5.8 µmol, 1 eq.) in 150 µL of PBS 

was added to a solution of 35 (12 mg, 10 µmol, 1.7 eq.) in 150 µL of DMF at 0 °C. The pH 

was adjusted to 7.3-7.6 by adding small aliquots of aqueous NaOH (0.2 M) during the 

first hours of reaction, until a stable value was observed, and then the reaction mixture 

was stirred overnight at room temperature.  

The solution was directly filtered into a 3 mL vial and purified by preparative HPLC 

(gradient: from 95% (H2O + 0.05 % CF3COOH)/5% CH3CN to 60% (H2O + 0.05 % 
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CF3COOH)/40% CH3CN in 14.5 mins), tR (product): 8.8 min. The purified product was 

freeze-dried to give the final product as a white solid (4.5 mg, 45% yield). MS (ESI+): m/z 

calcd. for [C77H110N21O24S]+ = 1744.77 [M + H]+, found: 1745,67. 

Glutarate NHS ester-Val-Ala- α-amanitin 37 

 

Val-Ala-PAB-α-amanitin 36 (10 mg, 8.3 µmol, 1 eq.) was dissolved in 150 µL of dry DMF 

under nitrogen atmosphere. The solution was cooled to 0 °C, then commercial di-N-

succinimidyl glutarate (3.2 mg, 9.9 µmol, 1.2 eq.) and DIPEA (1.6 µL, 9.1 µmol, 1.1 eq.) 

were added and the mixture was stirred at room temperature for 6 hours. The reaction 

was monitored by TLC (CHCl3/MeOH/water 65/25/4, cinnamaldehyde staining). The 

crude was poured into 10 mL pre-cooled MTBE placed in a 10 mL centrifugal tube (the 

reaction flask was rinsed with 3 × 50 µL of DMF and each rinsing solution was 

transferred to the MTBE tube).  The tube was sealed, vortexed and placed in ice for 10 

mins. The tube was spun for 3 mins at 4500 RPM in a precooled centrifuge. The 

supernatant was transferred to a 50 mL flask. The pellet was suspended again into 10 

mL of MTBE by vortexing and sonication. The tube was placed on ice for 10 mins and 

the centrifugation was repeated. Then the pellet was dried in vacuo. The combined 

MTBE phases were concentrated under reduced pressure and checked for remaining 

product by TLC and HPLC. The dried pellet was used in next step without further 

purification (8.3 mg, 71% yield).  

Cyclo[DKP-isoDGR]-Val-Ala-α-amanitin 32 
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A solution of cyclo[DKP-isoDGR]-CH2NH2 14 (3.4 mg, 3.9 µmol, 1 eq.) in 150 µL of PBS 

was added to a solution of 37 (8.3 mg, 5.9 µmol, 1.5 eq.) in 150 µL of DMF at 0 °C. The 

pH was adjusted to 7.3-7.6 by adding small aliquots of aqueous NaOH (0.2 M) during the 

first hours of reaction (until a stable value was observed), then the reaction mixture was 

stirred overnight at room temperature. The solution was directly filtered into a 3 mL vial 

and purified by preparative HPLC (gradient: from 95% (H2O + 0.05 % CF3COOH)/5% 

CH3CN to 60% (H2O + 0.05 % CF3COOH)/40% CH3CN in 14.5 mins), tR (product): 9.2 min. 

The purified product was freeze-dried to give the final product as a white solid (4.8 mg, 

62% yield). MS (ESI+): m/z calculated for [C86H118N23O26S]+= 1921.05 [M + H]+, found: 

1921.75. 

4-Pentynoic acid NHS ester 39 

 

4-Pentynoic acid (10 mg, 0.100 mmol, 1 eq.) was dissolved in 2 mL of dry DCM under 

argon and cooled to 0 °C. EDC.HCl (23 mg, 0.120 mmol, 1.2 eq.) and NHS (14 mg, 0.120 

mmol, 1.2 eq.) were sequentially added to the solution and the reaction mixture was 

stirred overnight at room temperature. The mixture was diluted in 20 mL of DCM and 

the organic phase was washed with water (3 × 7 mL), dried over MgSO4, filtrated and 

concentrated under reduced pressure to give the product as a yellowish oil that was 

used in next step without further modifications. 

4-Pentynoic acid-Val-Ala-α-amanitin 38 
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Under argon, DIPEA (1 µL, 6.3 µmol, 1.5 eq.) and compound 39 dissolved in DCM (200 

µL) were added to a solution of compound 36 (5.0 mg, 4.2 µmol, 1 eq.) in 200 µL of 

DMF kept at 0 °C. The reaction mixture was stirred overnight at room temperature. 

Volatiles were evaporated under reduced pressure and the crude was dissolved in 500 

µL of MeOH and then purified by preparative HPLC (gradient: from 95% (H2O + 0.05% 

CF3COOH) / 5% (CH3CN) to 0% (H2O + 0.05% CF3COOH)/100% (CH3CN) in 15 mins), tR 

product = 7.97 min. The collected fraction was concentrated under reduced pressure 

and freeze-dried from water/ACN 1/1 to afford the product as a white solid (4.7 mg, 

88% yield). MS (ESI+): m/z calculated for [C59H80N13O17S]+ = 1273.54 [M + H]+, found: 

1274.55. 

Cyclo[DKP-isoDGR]-PEG-4-Val-Ala- α-amanitin 33 

 

To a solution of 39 (2.9 mg, 2.3 µmol) in 1 mL of DMF at 0 °C, compound 41 (2.7 mg, 2,7 

µmol) dissolved 1 mL of water, sodium ascorbate (0.2 mg, 0.88 µmol) and CuSO4·5 H2O 

(0.07 mg, 0.44 µmol) were sequentially added. The solution, which turned light yellow, 

was stirred overnight at room temperature until the color changed to light blue. 

Volatiles were evaporated under reduced pressure and the crude was re-dissolved in 

400 µL of MeOH, filtered and purified by preparative HPLC (gradient: from 95% (H2O + 

0.05% CF3COOH) / 5% (CH3CN + 0.05% CF3COOH) to 0% (H2O + 0.05% CF3COOH)/100% 
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(CH3CN + 0.05% CF3COOH) in 15 min, tR product = 7.2 min). The collected fraction was 

concentrated under reduced pressure and freeze-dried from 1:1 water/CH3CN to afford 

the product as a white solid (3.33 mg, 62% yield). MS (ESI+): m/z calculated for 

[C96H136N26O30S2]2+= 1082.48 [M + 2H]2+, found: 1082.92. 

 

Synthesis of cyclo[DKP-isoDGR]-MMAE/MMAF conjugates 46-49 

14-Hydroxy-3,6,9,12-tetraoxatetradecyl-4'-methylbenzolsulfonate 50-a  

 

PEG-4 (8.7 mL, 50 mmol, 5 eq.) was dissolved in 2.5 mL of THF. Sodium hydroxide (640 

mg, 16 mmol, 1.6 eq.) in 2.5 mL of H2O was added and the mixture was cooled down to 

0 °C. A solution of p-toluenesulfonyl chloride (1.9 g, 10 mmol, 1 eq.) in 7.5 mL of THF 

was slowly added and the mixture was stirred for 2 hours at 0 °C. The mixture was 

poured into water (40 mL), and the layers were separated. The aqueous phase was 

extracted with DCM (4 × 15 mL) and the combined organic phases were washed with 

water (3 × 15 mL), dried over Na2SO4 and concentrated under reduced pressure to yield 

the product as a colorless oil (3.33 g, 96% yield) which was used in the next step 

without further purification. 

Rf= 0.7 (DCM/MeOH 95:5); 1H NMR (400 MHz, CDCl3): δ 7.79–7.77 (d, J = 8.0 Hz, 2H), 

7.34-7.32 (d, J = 7.9, 1.0 Hz, 2H), 4.16–4.13 (m, 2H), 3.73–3.55 (m, 14H), 2.43 (s, 4H). 

2-(2-(2-(2-Azidoethoxy) ethoxy) ethoxy) ethan-1-ol 50-b  

 

To a solution of 50-a (3.18 g, 9.1mmol, 1 eq.) in 25 mL of ACN, was added sodium azide 

(0.975 g, 15 mmol, 1.6 eq.) and the mixture was heated to reflux with stirring for 8 h. 

The solution was allowed to cool down to room temperature then diluted in 25 mL of 

water and the aqueous phase was extracted with DCM (3 × 25 mL). The combined 

organic portions were dried over Na2SO4, filtered, and concentrated under reduced 
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pressure to give the product as a pale-yellow oil. The crude product was purified by 

flash chromatography on silica gel (CH2Cl2/MeOH from 100% CH2Cl2 to 95:5) affording 

the desired product 50-b as a pale-yellow oil (1.46 g, 70% yield).  

Rf= 0.6 (DCM/MeOH 95:5); 1H NMR (400 MHz, CDCl3): δ 3.73–3.60 (m, 14H), 3.40 (m, 

2H), 2.18 (s, 1H).  

14-Azido-3,6,9,12-tetraoxatetradecanoic acid 51  

 

A solution of 50-b (100 mg, 0.4 mmol, 1 eq.) in 2.5 mL of dry THF was added dropwise 

to a stirred suspension of NaH (67 mg, 2.8 mmol, 7 eq.) in 2.5 mL of dry THF under N2 at 

0°C. The mixture was stirred for 1 h at room temperature. A solution of bromoacetic 

acid (111 mg, 0.8 mmol, 2 eq.) in 50 mL of dry THF was added dropwise and the mixture 

was stirred overnight at room temperature. Once the reaction was completed, the 

excess of NaH was quenched by carefully adding cold water and the solvent was 

evaporated under reduced pressure. The remaining aqueous solution was diluted in 5 

mL of water, acidified with HCI 1 M solution until pH < 5 and extracted with DCM (3 x 10 

mL). The organic extracts were combined, washed with water, dried over Na2SO4 and 

evaporated under reduced pressure, affording a dense oil. The crude residue was 

purified by flash chromatography on silica gel (CH2Cl2/MeOH from 100% CH2Cl2 to 8:2) 

to afford the product as a colorless oil (81 mg, 73%, yield). 

Rf= 0.15 (DCM/MeOH 9:1); 1H NMR (400 MHz, CDCl3): δ 4.16 (s, 2H), 3.78–3.76 (m, 2H), 

3.71-3.65 (m, 12H), 3.40 (t, J = 5.0 Hz, 2H). 

Fmoc-Val-Ala-OH 52 

 

Fmoc-Val-OH (1.5 g, 4.4 mmol, 1 eq.) and NHS (0.560 g, 4.8 mmol, 1.1 eq.) were 

dissolved in 16 ml of dry THF under N2. The solution was cooled to 0° C to add DCC 

(0.907 g, 4.4 mmol, 1 eq.) and then the mixture was stirred overnight at room 
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temperature. The suspension was filtered over cotton to separate the N,N'-

dicyclohexylurea and the filtrate was concentrated under reduced pressure to afford 

the Fmoc-Val-O-succinimide as a white foam.  

The activated amino acid was suspended in a mixture of THF/diethyl ether 1:1 and an 

aqueous solution of alanine (0.428 g, 4.8 mmol, 1.1 eq.) and NaHCO3 (0.403 g, 4.8 

mmol, 1.1 eq.) dissolved in 15 mL of water was added. The suspension was diluted with 

THF (5 mL approx..) till obtaining a clear solution that was stirred at room temperature 

for 4 days. The solvents were removed under reduced pressure, the residue was diluted 

in 30 mL of citric acid (15% w/v) and 50 mL ethyl acetate, and the mixture was stirred 

one hour at room temperature. The aqueous phase was extracted with EtOAc (3 x 30 

mL), the combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure to give the crude product, that was purified by flash chromatography 

on silica gel (CH2Cl2/MeOH from 100% CH2Cl2 to 9:1 + 0.1% acetic acid) to afford the 

product as a white solid (1.3 g, 74%, yield). 

Rf= 0.45 (DCM/MeOH 10:1); 1H NMR (DMSO-d6): δ 12.44 (bs., 1H), 8.20 (d, 1H, J = 6.7 

Hz), 7.89 (d, 2H, J = 7.5 Hz), 7.75 (t, 2H, J = 6.5 Hz), 7.43-7.38 (m, 3H), 7.36-7.30 (m, 2H), 

4.31-4.17 (m, 4H), 3.90 (t, 1H, J = 7.2 Hz), 2.0-1.95 (m, 1H), 1.27 (d, 3H, J = 7.3 Hz), 0.90 

(d, 3H, J = 6.8 Hz), 0.87 (d, 3H, J = 6.8 Hz).  

Fmoc-Val-Ala-PABOH 53 

 

Fmoc-Val-Ala-OH 52 (180 mg, 0.43 mmol, 1 eq.), 4-aminobenzyl alcohol (65 mg, 0.52 

mmol, 1.2 eq.) and EEDQ (165 mg, 0.64 mmol, 1.5 eq.) were suspended in 30 mL of dry 

DCM under nitrogen atmosphere. The mixture was treated with methanol (12 mL 

approx.) until a clear solution resulted and was stirred for 48 hours at room 

temperature. Once the reaction was completed, volatiles were evaporated at 

rotavapor, 10 mL of diethyl ether were added, and the mixture was sonicated for 15 

mins. The precipitate formed after sonication was washed with cold diethyl ether and 
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filtered under reduce pressure. This operation was repeated twice, obtaining the Fmoc-

Val-Ala-PABOH 53 as pale-yellow solid (129 mg, 58%). 

1H NMR (DMSO-d6): δ 9.91 (bs., 1H), 8.16 (d, 1H, J = 6.8 Hz), 7.90 (d, 2H, J = 7.2 Hz), 7.74 

(m, 2H), 7.54 (d, 2H, J = 8.1 Hz), 7.47-7.40 (m, 3H), 7.32 (m, 2H), 7.24 (d, 2H, J = 8.0 Hz), 

5.08 (s, 1H), 4.43-4.40 (s, 3H), 4.30-4.22 (m, 3H) 3.91 (t, 1H, J = 7.6 Hz), 2.0-1.98 (m, 1H), 

1.31 (d, 3H, J = 6.5 Hz), 0.90 (m, 6H).  

Fmoc-Val-Ala-PAB-PNP 54 

 

Fmoc-Val-Ala-PABOH 53 (166 mg, 0.32 mmol, 1eq.) was dissolved in 5 mL of dry THF 

under N2, pyridine (64 µL, 0.8 mmol, 2.5 eq.) was added and the solution was cooled 

down to 0°C. 4-nitrophenyl chloroformate (97 mg, 0.48 mmol, 1.5 eq.) was added to the 

reaction and it was stirred at room temperature for 4 hours. The mixture was diluted in 

35 mL of EtOAc and washed with KHSO4 1M (2 x 7 mL) and brine (2 x 7 mL), then the 

organic phase was dried over Na2SO4 and concentrated under reduced pressure. The 

crude residue was purified by flash chromatography on silica gel (Hexane/EtOAc from 

5:5 to 20% hexane/80% EtOAc) affording the product as a white solid (135 mg, 62%, 

yield). 

1H NMR (DMSO-d6): δ 10.07 (s, 1H), 8.32-8.30 (d, J = 9.0 Hz, 2H), 8.20-8.18 (d, J = 6.8 Hz, 

1H), 7.90-7.88 (d, J = 7.5 Hz, 2H), 7.76-7.72 (t, J = 6.8 Hz, 2H), 7.65-7.62 (d, J = 8.3 Hz, 

2H), 7.58-7.56 (d, J = 9.0 Hz, 2H),  7.42-7.40 (m, 5H), 7.34-7.30 (t, J = 7.2 Hz, 2H), 5.24 (s, 

2H), 4.43 (m, 1H), 4.30-4.22 (m, 3H), 3.92 (t, 1H, J = 7.6 Hz), 2.0-1.97 (m, 1H), 1.32 (d, J = 

7.0 Hz, 3H), 0.90-0.86 (m, 6H). 

Val-Ala-PABC-MMAE 55 
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Monomethyl auristatin E (10 mg, 14 µmol, 1 eq.) was dissolved in dry DMF (300 μL) 

under nitrogen atmosphere. Fmoc-Val-Ala-PAB-PNP 54 (10 mg, 14 µmol, 1 eq.), HOAt (1 

mg, 7 µmol, 0.5 eq.) and DIPEA (12 μL, 70 µmol, 5.0 eq.) were added subsequently and 

the mixture was stirred at room temperature overnight. Piperidine (8 µL, 70 µmol, 5 

eq.) was added to the reaction and this was stirred for 2 additional hours at room 

temperature. The mixture was then diluted with 5mL of EtOAc, the organic phase was 

washed with NaHCO3 sat (3 x 1 mL), dried and concentrated under reduced pressure. 

The crude product was purified by semipreparative HPLC (gradient: from 95% (H2O + 

0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% 

(CH3CN + 0.1% CF3COOH) in 17 min, tR product = 11 min). The collected fractions were 

concentrated under reduced pressure and freeze-dried from 1:1 water/CH3CN to afford 

the product as a white solid (9.3 mg, 64% yield). MS (ESI+): m/z calculated for 

[C55H89N8O11]+= 1038.66 [M + H]+, found: 1038.65. 

Val-Ala-PABC-MMAF 56 

 

Monomethyl auristatin F (10 mg, 13.6 µmol, 1 eq.) was dissolved in dry DMF (100 μL) 

under nitrogen atmosphere. Fmoc-Val-Ala-PAB-PNP 54 (11 mg, 16.3 µmol, 1.2 eq.), 

HOAt (2 mg, 7 µmol, 0.5 eq.) and DIPEA (12 μL, 68 µmol, 5.0 eq.) were added 

subsequently and the mixture was stirred at room temperature overnight. Piperidine (7 

µL, 68 µmol, 5 eq.) was added to the reaction and the mixture was stirred for 2 hours at 

room temperature. The solvent was removed reduced pressure and the crude product 

was purified by semipreparative HPLC (gradient: from 95% (H2O + 0.1% CF3COOH) / 5% 

(CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 0.1% 

CF3COOH) in 17 min, tR product = 12 min). The collected fractions were concentrated 

under reduced pressure and freeze-dried from 1:1 water/CH3CN to afford the product 

as a white solid (8.8 mg, 62% yield). MS (ESI+): m/z calculated for [C55H87N8O12]+= 

1052.65 [M + H]+, found: 1052.38. 

4-pentynoic acid-Val-Ala-PABC-MMAE 57 
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Val-Ala-PABC-MMAE 55 (9.3 mg, 9 µmol, 1 eq.) was dissolved in 100 µL of dry DMF 

under nitrogen atmosphere. 4-pentynoic acid-NHS ester 39 (4 mg, 18 µmol, 2 eq.) in 

100 µL of dry DMF, and DIPEA (3 µL, 18 µmol, 2 eq.) were added and the mixture was 

stirred overnight at room temperature. The solvent was removed under reduced 

pressure and the crude residue was purified by semipreparative HPLC (gradient: from 

95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% 

CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR product = 14 min). The 

collected fractions were concentrated under reduced pressure and freeze-dried from 

1:1 water/CH3CN to afford the product as a white solid (7.5 mg, 75% yield). MS (ESI+): 

m/z calculated for [C60H93N8O12]+= 1117.68 [M + H]+, found: 1117.70. 

 

 

 

4-pentynoic acid-Val-Ala-PABC-MMAF 58 

 

Val-Ala-PABC-MMAF 56 (8.8 mg, 8 µmol, 1 eq.) was dissolved in 100 µL of dry DMF 

under nitrogen atmosphere. 4-pentynoic acid-NHS ester 39 (3 mg, 16 µmol, 2 eq.) in 

100 µL of dry DMF, and DIPEA (3 µL, 16 µmol, 2 eq.) were added and the mixture was 

stirred overnight at room temperature. The solvent was removed under reduced 

pressure and the crude residue was purified by semipreparative HPLC (gradient: from 

95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% 

CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR product = 14 min). The 

collected fractions were concentrated under reduced pressure and freeze-dried from 
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1:1 water/CH3CN to afford the product as a white solid (5.6 mg, 62% yield). MS (ESI-): 

m/z calculated for [C60H89N8O13]-= 1130.66 [M - H]-, found: 1130.37. 

Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAE 46 

 

4-pentynoic acid-Val-Ala-PABC-MMAE 57 (3 mg, 2.7 µmol, 1 eq.) was dissolved in 500 µL 

of dry DMF and added to a solution of cyclo[DKP-isoDGR]-PEG-4 41 (4 mg, 4 µmol, 1.5 

eq.) in 500 µL of degassed water, under nitrogen atmosphere. Sodium ascorbate (0.3 

mg, 1.4 µmol, 0.5 eq.) and CuSO4.5H2O (0.2 mg, 0.8 µmol, 0.3 eq.) were added to the 

solution and the mixture was stirred overnight at room temperature. Volatiles were 

removed under reduced pressure and the residue was purified by semipreparative HPLC 

(gradient: from 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O 

+ 0.1% CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR product = 11.3 min). The 

collected fractions were concentrated under reduced pressure and freeze-dried from 

1:1 water/CH3CN to afford the product as a white solid (4.2 mg, 66% yield). MS (ESI+): 

m/z calculated for [C97H149N21O25]2+ = 1005.17 [M + 2H]2+, found: 1005.08.  

Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAF 47 

 

4-pentynoic acid-Val-Ala-PABC-MMAF 58 (3.5 mg, 3 µmol, 1 eq.) was dissolved in 500 µL 

of dry DMF and added to a solution of cyclo[DKP-isoDGR]-PEG-4 41 (4.5 mg, 4.5 µmol, 

1.5 eq.) in 500 µL of degassed water, under nitrogen atmosphere. Sodium ascorbate 
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(0.3 mg, 1.5 µmol, 0.5 eq.) and CuSO4.5H2O (0.3 mg, 1 µmol, 0.3 eq.) were added to the 

solution and the mixture was stirred overnight at room temperature. Volatiles were 

removed under reduced pressure and the residue was purified by semipreparative HPLC 

(gradient: from 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O 

+ 0.1% CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR product = 11.5 min). The 

collected fractions were concentrated under reduced pressure and freeze-dried from 

1:1 water/CH3CN to afford the product as a white solid (2.8 mg, 45% yield). MS (ESI+): 

m/z calculated for [C97H147N21O26]2+ = 1011.54 [M + 2H]2+, found: 1011.96  

4-pentynoic acid-MMAE 59 

 

MMAE (7 mg, 9.7 µmol, 1 eq.) was dissolved in 100 µL of dry DMF. 4-pentynoic acid-

NHS ester 39 (3 mg, 15 µmol, 1.5 eq.) in 100 µL of dry DMF, and DIPEA (3 µL, 15 µmol, 

1.5 eq.) were added and the mixture was stirred overnight at room temperature. The 

solvent was removed under reduced pressure and the residue was purified by 

semipreparative HPLC (gradient: from 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% 

CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR 

product = 14 min). The collected fractions were concentrated under reduced pressure 

and freeze-dried from 1:1 water/CH3CN to afford the product as a white solid (5.5 mg, 

73% yield). MS (ESI+): m/z calculated for [C44H72N5O8]+= 799.54 [M + H]+, found: 799.23. 

4-pentynoic acid-MMAF 60 

 

MMAF (6 mg, 8 µmol, 1 eq.) was dissolved in 100 µL of dry DMF. 4-pentynoic acid-NHS 

ester 39 (2.5 mg, 12 µmol, 1.5 eq.) in 100 µL of dry DMF, and DIPEA (3 µL, 12 µmol, 1.5 

eq.) were added and the mixture was stirred overnight at room temperature. The 
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solvent was removed under reduced pressure and the residue was purified by 

semipreparative HPLC (gradient: from 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% 

CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR 

product = 13.8 min). The collected fractions were concentrated under reduced pressure 

and freeze-dried from 1:1 water/CH3CN to afford the product as a white solid (5.5 mg, 

73% yield). MS (ESI+): m/z calculated for [C44H70N5O9]+= 813.52 [M + H]+, found: 813.11. 

Cyclo[DKP-isoDGR]-PEG-4-MMAE 48 

 

4-pentynoic acid-MMAE 59 (3 mg, 3.8 µmol, 1 eq.) was dissolved in 500 µL of dry DMF 

and added to a solution of cyclo[DKP-isoDGR]-PEG-4 41 (6 mg, 6 µmol, 1.5 eq.) in 500 µL 

of degassed water, under nitrogen atmosphere. Sodium ascorbate (0.4 mg, 2 µmol, 0.5 

eq.) and CuSO4.5H2O (0.3 mg, 1.2 µmol, 0.3 eq.) were added to the solution and the 

mixture was stirred overnight at room temperature. Volatiles were removed under 

reduced pressure and the residue was purified by semipreparative HPLC (gradient: from 

95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% 

CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR product = 9.7 min). The 

collected fractions were concentrated under reduced pressure and freeze-dried from 

1:1 water/CH3CN to afford the product as a white solid (4.2 mg, 66% yield). MS (ESI+): 

m/z calculated for [C81H128N18O21]2+ = 845.48 [M + 2H]2+, found: 845.31.  

Cyclo[DKP-isoDGR]-PEG-4-MMAF 49 
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4-pentynoic acid-MMAF 60 (4.5 mg, 5.5 µmol, 1 eq.) was dissolved in 500 µL of dry DMF 

and added to a solution of cyclo[DKP-isoDGR]-PEG-4 41 (8 mg, 8 µmol, 1.5 eq.) in 500 µL 

of degassed water, under nitrogen atmosphere. Sodium ascorbate (0.6 mg, 2.8 µmol, 

0.5 eq.) and CuSO4.5H2O (0.4 mg, 1.2 µmol, 0.3 eq.) were added to the solution and the 

mixture was stirred overnight at room temperature. Volatiles were removed under 

reduced pressure and the residue was purified by semipreparative HPLC (gradient: from 

95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% 

CF3COOH) / 80% (CH3CN + 0.1% CF3COOH) in 17 min, tR product = 10.2 min). The 

collected fractions were concentrated under reduced pressure and freeze-dried from 

1:1 water/CH3CN to afford the product as a white solid (4.2 mg, 66% yield). MS (ESI+): 

m/z calculated for [C81H126N18O22]2+ = 852.47 [M + 2H]2+, found: 852.33.  

 

 

 

HPLC traces of the final compounds 

Cyclo[DKP-isoDGR]-uncleavable-α-amanitin 31 

Phenomenex Luna C-18(2) column 10 µm, 250 × 21.2 mm, with precolumn at 30 

mL/min flow rate; gradient: 95% (H2O + 0.05 % CF3COOH)/5% CH3CN to 60% (H2O + 

0.05 % CF3COOH)/40% CH3CN in 14.5 mins, tR product: 8.8 min 

Purity: 96.2% 
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Cyclo[DKP-isoDGR]-Val-Ala-α-amanitin 32 

Phenomenex Luna C-18(2) column 10 µm, 250 × 21.2 mm, with precolumn at 30 

mL/min flow rate; gradient: 95% (H2O + 0.05 % CF3COOH)/5% CH3CN to 60% (H2O + 

0.05 % CF3COOH)/40% CH3CN in 14.5 mins, tR product: 9.2 min 

Purity: 100%. 

 

Cyclo[DKP-isoDGR]-PEG-4-Val-Ala- α-amanitin 33 

Phenomenex Luna C-18(2) column 10 µm, 250 × 21.2 mm, with precolumn at 30 

mL/min flow rate; gradient: 95% (H2O + 0.05 % CF3COOH)/5% CH3CN to 100% CH3CN in 

15 mins, tR product: 7.2 min 

Purity: 89.9% 

 

Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAE 46 

Waters Atlantis 21 mm × 10 cm column; flow: 15 mL/min, gradient: 95% (H2O + 0.1% 

CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 

0.1% CF3COOH) in 17 min, tR product: 11.3 min 

Purity: 99.3% 
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Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAF 47 

Waters Atlantis 21 mm × 10 cm column; flow: 15 mL/min, gradient: 95% (H2O + 0.1% 

CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 

0.1% CF3COOH) in 17 min, tR product: 11.5 min 

Purity: 95.5% 

 

Cyclo[DKP-isoDGR]-PEG-4-MMAE 48 

Waters Atlantis 21 mm × 10 cm column; flow: 15 mL/min, gradient: 95% (H2O + 0.1% 

CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 

0.1% CF3COOH) in 17 min, tR product: 9.7 min 

Purity: 98.6% 

 

Cyclo[DKP-isoDGR]-PEG-4-MMAF 49 

Waters Atlantis 21 mm × 10 cm column; flow: 15 mL/min, gradient: 95% (H2O + 0.1% 

CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 20% (H2O + 0.1% CF3COOH) / 80% (CH3CN + 

0.1% CF3COOH) in 17 min, tR product: 10.2 min 
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Purity: 94.4% 

 

 

ESI-MS Spectra 

 

Cyclo[(3S,6R)-DKP-f3-isoDGR] 14 

 

 

 

 

 

N3-PEG-4-cyclo[DKP- isoDGR] 41 
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Cyclo[DKP-isoDGR]-uncleavable-α-amanitin 31 

 

 

 

 

 

 

Cyclo[DKP-isoDGR]-Val-Ala-α-amanitin 32 
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Cyclo[DKP-isoDGR]-PEG-4-Val-Ala- α-amanitin 33 

 

 

 

 

 

Val-Ala-PABC-MMAE 55 
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Val-Ala-PABC-MMAF 56 

 

 

 

4-pentynoic acid-Val-Ala-PABC-MMAE 57 
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4-pentynoic acid-Val-Ala-PABC-MMAF 58 
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Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAE 46 

 

Cyclo[DKP-isoDGR]-PEG-4-Val-Ala-PABC-MMAF 47 
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4-pentynoic acid-MMAE 59 

 

4-pentynoic acid-MMAF 60 
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Cyclo[DKP-isoDGR]-PEG-4-MMAE 48 

 

Cyclo[DKP-isoDGR]-PEG-4-MMAF 49 
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Appendix of NMR data  

 

4-((4-methoxy-2,3,6-trimethylphenylsulfonyl)aminomethyl)benzaldehyde 16 

1H NMR (400 MHz, acetone-d6) 
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(S)-methyl-3-hydroxy-2-((4-((4-methoxy-2,3,6-trimethyl-phenylsulfonamido)methyl) 

benzyl)amino)propanoate 17 

1H NMR (400 MHz, CD2Cl2) 
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OH-(3S-6R)-DKP-f3-COOAllyl 19 

1H NMR (400 MHz, CDCl3) 

 

N3-(3S-6R)-DKP-f3-COOAllyl 20 

1H NMR (400 MHz, CDCl3) 
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Boc-(3S-6R)-DKP-f3-COOAllyl 21 

1H NMR (400 MHz, CDCl3) 
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Mtr-Arg-(3S-6R)-DKP-f3-COOAllyl 22 

1H NMR (400 MHz, MeOD-d4) 

 
1H NMR (101 MHz, MeOD-d4) 
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Mtr-Arg-(3S-6R)-DKP-f3-COOH 23 

1H NMR (400 MHz, MeOD-d4) 

 
 

13C NMR (101 MHz, MeOD-d4) 
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(S)-tert-butyl 2-amino-4-((2-(benzyloxy)-2-oxo-ethyl)amino)-4-oxobutanoate 26 

1H NMR (400 MHz, CDCl3) 
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Mtr-Arg-(3S,6R)-DKP-f3-COO-isoAsp-Gly-OBn 27 

1H NMR (400 MHz, acetone) 

 
13C NMR (101 MHz, acetone) 
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cyclo[(3S,6R)-DKP-f3-isoDGR]-Mtr 29 

13C NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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cyclo[(3S,6R)-DKP-f3-isoDGR] 14 

1H NMR (400 MHz, D2O) 

 
13C NMR (101 MHz, D2O) 
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14-Hydroxy-3,6,9,12-tetraoxatetradecyl-4'-methylbenzolsulfonate 50-a  

1H NMR (400 MHz, CDCl3) 

 

2-(2-(2-(2-Azidoethoxy) ethoxy) ethoxy) ethan-1-ol 50-b  

1H NMR (400 MHz, CDCl3) 
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14-Azido-3,6,9,12-tetraoxatetradecanoic acid 51  

1H NMR (400 MHz, CDCl3) 

 

14-Azido-3,6,9,12-tetraoxatetradecanoic acid -NHS ester 40 

1H NMR (400 MHz, CDCl3) 
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N3-PEG-4-cyclo[DKP- isoDGR] 41 

1H NMR (400 MHz, D2O) 

 
13C NMR (101 MHz, D2O) 

 

 



 
 

136 
 

Fmoc-Val-Ala-OH 52 

1H NMR (400 MHz, DMSO-d6) 

 

Fmoc-Val-Ala-PABOH 53 

1H NMR (400 MHz, DMSO-d6) 
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Fmoc-Val-Ala-PAB-PNP 54 

1H NMR (400 MHz, DMSO-d6) 
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Synthesis of novel conjugates based on a functionalized 

cyclo[DKP-isoDGR] integrin ligand and potent cytotoxic agents 

Abstract: Targeted drug delivery is a growing-interest field in cancer therapy as 

a strategy for overcoming the systemic cytotoxicity associated to traditional 

chemotherapy. One important approach in this research area is represented by 

the small molecule-drug conjugates (SMDCs), where the drug-targeting is 

performed by a low molecular weight ligand (peptide, vitamin or peptidomimetic) 

connected to a potent warhead through a stable linker. This PhD thesis 

describes the synthesis and biological evaluation of novel SMDCs containing 

the functionalized cyclo[DKP-isoDGR] integrin ligand developed by our research 

group and potent cytotoxic drugs (α-amanitin, MMAE and MMAF) combined via 

different linkers and spacers. The conjugates were evaluated for their binding 

affinity to the isolated αvβ3 receptor and for their antiproliferative activity on 

cancer cell lines with different levels of αVβ3 expression in order to study the 

efficacy of the cyclo[DKP-isoDGR] integrin ligand as a vector for tumor drug-

delivery. 

Keywords: cancer, drug delivery, integrins, peptidomimetics, isoDGR, SMDC 

 

 

 

 

 


