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Ill-posed inverse problems arise in many fields of science and engineering. The ill-conditioning
and the big dimension make the task of numerically solving this kind of problems very chal-
lenging.

In this thesis we construct several algorithms for solving ill-posed inverse problems. Start-
ing from the classical Tikhonov regularization method we develop iterative methods that
enhance the performances of the originating method.

In order to ensure the accuracy of the constructed algorithms we insert a priori knowledge
on the exact solution and empower the regularization term, thus keeping under control the
ill-conditioning of the problems. By exploiting the structure of the problem we are also able
to achieve fast computation even when the size of the problem becomes very big.

The methods we developed, in order to be usable for real-world data, need to be as free of pa-
rameters as possible. For most of the proposed algorithms we provide efficient strategies for
the choice of the regularization parameters, which, most of the times, rely on the knowledge
of the norm of the noise that corrupts the data.

We construct algorithms that enforce constraint on the reconstruction, like nonnegativity or
flux conservation and exploit enhanced version of the Euclidian norm using a regularization
operator and different semi-norms, like the Total Variaton, for the regularization term.

For each method we analyze the theoretical properties, like, convergence, stability, and reg-
ularization. Depending on the method we are going to consider the finite dimensional case
or the more general case of Hilbert spaces.

Numerical examples prove the good performances of the algorithms proposed in term of
both accuracy and efficiency. We consider different kinds of mono-dimensional and two-
dimensional problems, with a particular attention to the restoration of blurred and noisy
images.
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Chapter 1

Introduction

In this thesis we deal with ill-posed inverse problems. This kind of problems arises in many
scientific fields from mathematics to physics and engineering. Solving these problems can
be very difficult, but they present interesting challenges from both the theoretical and com-
putational point of view; see [61] for more details about inverse problems.

There is no formal definition of inverse problems. Intuitively we are dealing with an inverse
problem when we want to recover an object from some measured data knowing the process
that generated the latter from the first.

We mainly consider problems that, when discretized, lead to linear system of equations. Be-
cause the original problem is ill-posed the resulting linear system is severely ill-conditioned.
In real applications, it is impossible to avoid the presence of noise in the data, i.e., the right-
hand side of the system, so direct inversion leads to very poor reconstructions. These prob-
lems usually have very large dimensions making the work at hand even more complicated.
Moreover, to enhance the quality of the computed solution, we enforce constraints, like non-
negativity, furtherly complicating the numerical methods involved in the solution of the
problem.

Consider the case in which the operator to be inverted is compact. It is well known that the
inverse of such an operator is unbounded. In particular, when the data is noise affected, the
inversion process will amplify the noise to the point of corrupting the entire reconstruction
making it completely useless.

In order to recover useful solutions, we need to resort to regularization methods, see e.g.
[61, 78, 80]. Regularization methods substitute the original ill-conditioned problem with a
well-conditioned one whose solution is a good approximation of the original. The accuracy
of the recovered solution depends, at least in part, on how much information is available on
the true solution and how this knowledge is inserted inside the algorithm itself.

The goal of this thesis is to develop several regularization methods for solving ill-posed
inverse problems. For each of the algorithm proposed we give a theoretical analysis of their
properties and show the performances on synthetic data.

The keystone of the methods we are going to develop is Tikhonov regularization which is
described in Section 2.2. We are going to use the basic idea of Tikhonov regularization in
order to formulate new and accurate iterative methods. The regularization effect will be
obtained either by the knowledge of the limit point of such iterations or by the early stop of
these by means of a suitable stopping criterion.

We are also going to consider strategies for achieving fast computations, either by exploiting
the structure of the problem or by using linear algebra techniques, like Krylov methods, to
compress the dimension of the problem without losing any relevant information.



2 Chapter 1. Introduction

The formulation of these new methods will be obtained by using the available knowledge
on the exact solution and by improving the effectiveness of the regularization terms.

For testing the quality of our methods we will consider both one and two dimensional prob-
lems. In particular, for most of this thesis, we are going to consider the case of image deblur-
ring.

The task of recovering an image from a blurred version of itself is a classical application in the
framework of inverse problems. The blurring phenomenon can be modeled as a Fredholm
integral of the first kind where the kernel is compact and possibly smooth. This operator re-
duces itself to a convolution operator when the blur is assumed to be spatially invariant, i.e.,
when the blur does not depend on the location. In the spatially invariant case the discretized
operator can be represented by a highly structured matrix. In real case scenarios it is possible
to have knowledge only over a finite region, the so called Field of View (FOV). In order to
avoid underdetermined linear system it is necessary to make assumption on what is outside
the FOV by means of the boundary conditions, see [84] for more details. The structure of the
blurring operator is determined by the boundary conditions, but the basic structure is that
of two level Toeplitz, i.e, a block Toeplitz with Toeplitz block matrix, where we recall that
a Toeplitz matrix is a matrix whose entries are constant along the diagonals. This structure
gives us the possibility ti exploit the Fast Fourier transform (FFT) to lower the computational
effort of the algorithms. Moreover, Toeplitz matrices have been widely studied and thus we
have a very deep knowledge of their properties.

In many situations it is known that the exact solution of the problem lies in some set. It might
then be helpful to constrain the reconstructions to lie inside this set. In the case of image
deblurring, for example, it is well known that the solution cannot attain negative value,
so constraining the reconstruction to belong to the nonnegative cone can greatly improve
the quality of the reconstruction. We are going to see that inserting this kind of knowledge
inside the algorithms can enhance the quality of the reconstruction while having a very small
impact on the computational cost.

This thesis is structured as follows

Chapter 2. Background In this chapter we give an insight on the basic concept of ill-posed
problems. We formally introduce the image deblurring problem and explore some of his
aspects, like the boundary conditions. We then describe the Tikhonov regularization method
in both its standard and general form, where the regularization term is measured with a
semi-norm usually defined by the discretization of a differential operator. Finally, we derive
the iterated Tikhonov (IT) method as a refinement technique solving the error equation by
Tikhonov regularization.

Chapter 3. Constrained Tikhonov Minimization As stated above, the introduction of a
constraint inside the regularization can improve the quality of the reconstruction. In this
chapter we analyze the case of nonnegatively constrained Tikhonov regularization. We re-
formulate the problem at hand in a suitable way in order to be able to apply the Modulus
Method (MM). This method let us compute the solution of the constrained problem. In order
to reduce the computational effort, we use the Golub-Kahan bidiagonalization technique to
project the problem into a Krylov subspace of fairly small dimension. In this way we are able
to obtain a very fast method without losing anything in term of quality of the reconstruction.
The contents of this chapter are based on [8].
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Chapter 4. Iterated Tikhonov with general penalty term The theory of the IT method
has been developed only in the case where Tikhonov in its standard form is considered. In
this chapter we develop a theory for the IT algorithm where Tikhonov is considered in its
general form. We consider both the stationary and nonstationary version of the algorithm.
We analyze its convergence in the noise-free case and show that in the noisy case, if equipped
with a suitable stopping criterion, this method is a regularization method. Comparison with
the classical IT algorithm shows how much the usage of the general form helps in improving
the quality of the provided reconstruction. This chapter is related to the paper [30].

Chapter 5. Fractional and Weighted Iterated Tikhonov In two recent works [86, 95] two
extensions of the classical Tikhonov regularization method were introduced. We provide
saturation and converse results on their convergence rate. We formulate, using a refinement
technique, the related iterative method both in stationary and nonstationary version. We
show that these iterated methods are of optimal order and overcome the previous saturation
results. Furthermore, for nonstationary iterated fractional Tikhonov regularization methods,
we establish their convergence rate under general conditions on the iteration parameters.
Numerical results confirm the improvements obtained against the classical IT algorithm.
The contents of this chapter are based on [14].

Chapter 6. Approximated Iterated Tikhonov: some extensions The nonstationary precon-
ditioned iteration proposed in the recent work [49] can be seen as an approximated iterated
Tikhonov method. Starting from this observation in this chapter we extend the previous
iteration in two directions: the usage of Tikhonov in its general form, as suggested by Chap-
ter 4, and the projection into a convex set (e.g., the nonnegative cone as suggested by the
results in Chapter 3). Depending on the application both generalizations can lead to an
improvement in the quality of the computed approximations. Convergence results and reg-
ularization properties of the proposed iterations are proved. Finally, the new methods are
applied to image deblurring problems and compared with the iteration in the original work
and other methods with similar properties recently proposed in the literature. The contents
of this chapter are taken from [26].

Chapter 7. Multigrid iterative regularization method Multigrid methods have been suc-
cessfully used for solving linear systems coming from the discretization of PDEs for many
years. It has been only in recent years that they have been considered for ill-posed prob-
lems. Their regularization power has been discussed for the first time in [56]. In this chap-
ter we construct a multigrid algorithm for image deblurring that combines both linear and
non-linear methods. The grid transfer operator used for this method is able to preserve
the structure of the operator across the levels making possible to achieve fast computations.
We combine one of the algorithms described in Chapter 6 with Linear Framelet Denoising
to regularize the problem while preserving the details of the image without amplifying the
noise. We study the convergence of the algorithm under some restrictive, but reasonable,
hypothesis and prove that, if provided with the suitable stopping criterion, it is a regular-
ization method. The comparison with other methods from the literature proves that it is a
very powerful method able to restore with high accuracy blurred image without having to
estimate any parameter. The contents of this chapter are taken from [27].

Chapter 8. Weakly Constrained Lucy-Richardson Lucy-Richardson (LR) is a classical it-
erative regularization method largely used for the restoration of nonnegative solutions. LR
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finds applications in many physical problems, such as the inversion of light scattering data.
In these problems, there are often additional information on the true solution that are usu-
ally ignored by many restoration methods because these quantities are likely to be affected
by non negligible noise. In this chapter we propose a novel Weakly Constrained Lucy-
Richardson (WCLR) method in which we add a weak constraint to the classical LR by in-
troducing a penalization term, whose strength can be varied over a very large range. The
WCLR method is simple and robust as the standard LR, but offers the great advantage of
widely stretching the domain range over which the solution can be reliably recovered. Some
selected numerical examples prove the performances of the proposed algorithm. The con-
tents of this chapter are taken from [28].

Chapter 9. A semi-blind regularization algorithm In many inverse problems the operator
to be inverted depends on a parameter which is not known precisely. In this chapter, follow-
ing the idea from [17, 18], we propose a Tikhonov-type functional that involves as variables
both the solution of the problem and the parameter on which the operator depends. We
first prove that the non-convex functional admits a global minimum and that its minimiza-
tion naturally leads to a regularization method. Then, using the popular Alternating Direc-
tion Multiplier Method (ADMM), we describe an algorithm to identify a stationary point of
the functional. The introduction of the ADMM algorithm let us easily introduce some con-
straints on the reconstructions like nonnegativity and flux conservation. Since the functional
is non-convex a proof of convergence of the method is given. Numerical examples prove the
validity of the proposed approach. The contents of this chapter are taken from [29].

We conclude this introduction by remarking that the theoretical analysis in Chapters 3, 4, 7,
and 8 is performed in the finite dimensional space Rn whereas in Chapters 5, 6, and 9 we
study the problems at hand in the more general framework of infinite dimensional spaces.

In Figure 1.1 we propose a scheme of the structure of the thesis. We show the dependency
between the chapters and the papers that correspond to each of it.
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Chapter 2

Background

In this chapter we describe the type of problem we are interested in, moreover, we give some
insight on Tikhonov regularization. This method is the keystone of all this thesis from which
most of the work was derived.

2.1 Ill-posed problems

Definition 2.1. We say that a mathematical problem is well-posed if

(i) a solution exists;

(ii) the solution is unique;

(iii) the solution depends continuously on the data.

We say that a mathematical problem is ill-posed if at least one of the conditions above does not hold.

See [61] for a discussion on inverse problems.

An example of ill-posed problem are Fredholm integrals of the first kind

g(t) =

∫

Ω
k(t, s)f(s)dt, (2.1)

here g denotes the available data, k is the integral kernel with compact support, and f is the
signal we would like to recover.

Since k has compact support equation (2.1) is ill-posed. In fact, the solution does not depend
continuously on the data.

When we discretize (2.1) we obtain a linear system

Ax = b,

where A is of ill-determined rank, i.e., its singular values decay gradually to zero without a
significant gap. Least-squares problems with a matrix of this kind are commonly referred to
as discrete ill-posed problems, see [61, 82] for discussions on ill-posed and discrete ill-posed
problems.

The process of discretization, along with measurements errors and other factors, introduces
noise inside the data b, so that we have only access to bδ such that

∥∥∥b− bδ
∥∥∥ ≤ δ, (2.2)
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where ‖·‖ is the Euclidean norm and δ > 0.

We can then formulate a linear least-squares problem of the form

min
x∈Rn

‖Ax− bδ‖, A ∈ Rm×n, bδ ∈ Rm. (2.3)

Consider now the singular value decomposition (SVD) of A

A = UΣV t,

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices, Σ ∈ Rm×n is a diagonal matrix whose
diagonal entries σj are nonnegative and ordered in a decreasing way, and by At we denote
the transpose of A. A is severely ill-conditioned and thus the singular values σj decreases to
0 very fast and with no gap.

The minimum norm solution of (2.3) can be obtained using the Moore-Penrose pseudo-
inverse

A† = V Σ†U t,

where by Σ† we denote the n×m diagonal matrix whose diagonal elements are 1
σj

for σj 6= 0

and zero otherwise.

Computing explicitly the solution of (2.3), assuming without loss of generality that m > n,
we have

xnaive = A†bδ =

n∑

j=1

ut
jb

δ

σj
vj .

Calling η = bδ − b, we get

xnaive =

n∑

j=1

ut
jb

σj
vj +

n∑

j=1

ut
jη

σj
vj .

Assuming that b ∈ R(A), we have that

ut
jb

σj
vj =

ut
jAx

σj
vj =

ujUΣV tx

σj
vj =

σjV
tx

σj
vj = V txvj,

which does not depend on σj .

On the other hand, η /∈ R(A) and can be assumed as random. The singular vectors with big
indexes are related to high frequencies and η will have non trivial components in this space.
Since 1

σj
becomes very large for j big enough the noise is amplified and completely corrupts

the reconstruction.

This shows us that it is impossible to recover the original signal from bδ, our task will be to
formulate numerical methods that are able to provide good approximation of the true signal.

In Figure 2.1 we can see an example of ill-posed inverse problem. This is the shaw problem
taken from the toolbox [83]. We have set n = m = 1000 and have added white Gaussian
noise to the right-hand side such that δ = 0.01 ‖b‖. We can see that singular values of A
decreases very fast with no gap and that the naive reconstruction is completely useless.
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FIGURE 2.1: Shaw test problem (n = m = 1000): (a) True signal, (b) Singu-
lar values, (c) Right-hand side bδ with δ = 0.01 ‖b‖, (d) Naive reconstruction

xnaive = A†bδ .

2.1.1 Image Deblurring

We now move to describe one of the main ill-posed problem we are going to deal with: image
deblurring. For a discussion on inverse problems in imaging refer to [13].

This inverse problem consists in recovering an image from a blurred and noisy version of
itself. The blurring phenomenon can be modeled as a Fredholm integral of the first kind

g(s, t) =

∫

Ω
k(s, u, t, v)f(u, v)dudv, (2.4)

where f is the true image, g is the measured data, and k is the blurring kernel. Usually
we refer to k as to Point Spread Function (PSF) since it models how a single point is spread
across its neighborhood.

We assume that the PSF has compact support, i.e., the blur in a point depends only on some
pixels around it. The function k has nonnegative values and it holds

∫

Ω
k(s, u, t, v)dsdudtdv = 1,

which means that it does neither create nor destroy information.

From this assumption on the PSF it is easy to see that
∫

Ω
f(s, t)dsdt =

∫

Ω
g(s, t)dsdt,

i.e., the total mass (or, in this case, intensity of light), is preserved.

When the blur does not depend on the location, i.e., the PSF is the same in all the areas of the
image, equation (2.4) reduces to

g(s, t) =

∫

Ω
k(s− u, t− v)f(u, v)dudv = k ∗ f, (2.5)

which is a convolution.

We have to discretize (2.5). When doing so we need to keep into account that we may not
have access to all the domain Ω, but only to a small portion of it: the FOV. What is outside the
FOV, however, has an impact on the blurred data we measure, but we do not have complete
information on it. In other words, not knowing what is outside the FOV, we have to deal
with an under-determined system, i.e., n > m.
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There is, however, another possibility which then lead to a square n × n system, which are:
boundary conditions, see [84].

Boundary Conditions

By boundary conditions we mean that we make assumptions on what is outside the FOV
using the information that we already have inside. This assumptions have an effect on the
structure of the matrix which can then be exploited to achieve fast computations.

We denote by X the true image inside the FOV, which is a matrix.

Zero The zero boundary condition is obtained by assuming that outside the FOV the image
is 0 everywhere 


0 0 0

0 X 0

0 0 0


 .

This assumption is useful when dealing with astronomical images, since most of the time it
is possible to assume that the outside the FOV the image is black, i.e., 0.

This choice leads to a blurring matrix Awhich is a block Toeplitz with Toeplitz block (BTTB).
Unfortunately there are no fast transformation to diagonalize a general matrix of this form.
We remind that a Toeplitz matrix is a matrix that is constant on the diagonals.

Periodic Another boundary condition is the periodic. We suppose that outside the FOV the
image repeats itself in all directions




X X X

X X X

X X X


 .

This boundary condition does not ensure continuity on the boundaries and often leads to
poor reconstructions.

In this case the blurring matrix A is block circulant with circulant blocks (BCCB) and it is di-
agonalized by the two dimensional Fourier matrix F that is constructed as follows. Consider
the one dimensional Fourier matrix F1 ∈ Cn×n defined as

(F1)j,k = e−2(j−1)(k−1)iπ/n, i2 = −1. (2.6)

The two dimensional Fourier matrix F is then defined as

F = F1 ⊗ F1, (2.7)

where ⊗ denotes the Kronecker product.
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Reflective In the reflective case we assume that the image is reflected (like in a mirror) out-
side the FOV so that the image is continuous on the boundaries




Xx Xud Xx

Xlr X Xlr

Xx Xud Xx


 ,

where Xud is obtained by flipping the rows of X, Xlr is obtained by flipping the columns of
X and Xx is obtained by flipping both the columns and the rows of X. Reflective boundary
conditions where introduced in [105].

The resulting matrix A is a BTTB+BTHB+BHTB+BHHB matrix where by BTHB we denote a
block Toeplitz with Hankel blocks, by BHTB we denote a block Hankel with Toeplitz blocks,
and by BHHB we denote a block Hankel with Hankel blocks. We recall that a Hankel is a
matrix which is constant on the anti-diagonals. This type of matrices can be diagonalized by
the discrete cosine transform if the PSF is quadrantally symmetric, i.e., if the PSF is symmetric
with regard to both the horizontal and vertical axes

Antireflective When we use the antireflective boundary conditions we are ensuring that on
the boundary the image is not only continuous but is continuous also its normal derivative.
In this case we antireflect the image outside the FOV. Indexing X inside the FOV as (X)i,j =
Xi,j i, j = 1, . . . , n the extended image Xe by i, j = 1 − p, . . . , n + p, where p = n −m. We
obtain for the edges

Xe(1− i, j) = 2X(1, j) −X(i+ 1, j), 1 ≤ p, 1 ≤ j ≤ n;

Xe(i, 1 − j) = 2X(i, 1) −X(i, j + 1), 1 ≤ n, 1 ≤ j ≤ p;

Xe(n+ 1, j) = 2X(n, j) −X(n− 1, j), 1 ≤ p, 1 ≤ j ≤ n;

Xe(i, n + j) = 2X(i, n) −X(i, n − j), 1 ≤ n, 1 ≤ j ≤ p,

for the corners, i.e., when 1 ≤ i, j ≤ p,

Xe(1− i, 1 − j) = 4X(1, 1) − 2X(1, j + 1)− 2X(i+ 1, 1) +X(i+ 1, j + 1);

Xe(1− i, n + j) = 4X(1, n) − 2X(1, n − j)− 2X(i+ 1, n) +X(i+ 1, n − j);

Xe(n+ i, 1 − j) = 4X(n, 1) − 2X(n, j + 1)− 2X(n − i, 1) +X(n− i, j + 1);

Xe(n+ i, n+ j) = 4X(n, n)− 2X(n, n − j)− 2X(n− i, n) +X(n− i, n − j).

The structure of the resulting matrix A is quite complicated however, if the PSF is quadran-
tally symmetric, it can be diagonalized by a modification of the discrete sine transform [5, 47,
119].

In Figure 2.2 we show an example of the above described boundary conditions.

2.2 Tikhonov Regularization

Since directly solving an ill-posed problem is not possible, we have to resort to regularization
methods. The regularized version of an ill-posed problem is a well-posed problem whose
solution is an approximation of the desired solution

x† = A†b.
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(a) (b) (c) (d)

FIGURE 2.2: Examples of boundary conditions, the red box delimits the FOV:
(a) zero, (b) periodic, (c) reflective, (d) antireflective.

One of the most popular regularization method is Tikhonov regularization.

xα = arg min
x∈Rn

∥∥∥Ax− bδ
∥∥∥
2
+ α ‖Lx‖2 , (2.8)

where α > 0 is the regularization parameter and L ∈ Rq×n is the regularization operator,
for a discussion on Tikhonov regularization, see [53, 61, 68, 75, 80, 82, 112]. Tikhonov reg-
ularization in (2.8) is called in general form. In order to have a unique solution we assume
that

N (A) ∩ N (L) = {0}, (2.9)

so that the solution of (2.8) can be computed by

xα =
(
AtA+ αLtL

)−1
Atbδ.

When we set L = I we obtain Tikhonov regularization in standard form

xα = arg min
x∈Rn

∥∥∥Ax− bδ
∥∥∥
2
+ α ‖x‖2 , (2.10)

note that in this case the condition (2.9) is trivially satisfied. The normal equations related to
(2.10) are

xα = (AtA+ αI)−1Atbδ. (2.11)

The first term of Tikhonov regularization is a data fitting term and ensures that the recon-
struction xα fits the measured data bδ. The second term is called penalty term and requires
that xα is smooth. The regularization operator L weights the norm in the penalty term so
that some features of x are enhanced while other are penalized. Finally, the regularization
parameter α balances the trade-off between the two terms. The determination of a good α is
very important and can be tricky. If α is chosen too small, then the first term will prevail and
the noise will corrupt the reconstruction. Instead, if α is too big, the second term will have
more importance and the obtained approximation will be over-smoothed.

Many strategies have been proposed for the choice of both L and α [46, 52, 53, 64, 111]. One
of the most popular rule for the choice of α, when δ is known, is the discrepancy principle. The
parameter α is chosen so that ∥∥∥bδ −Axα

∥∥∥ = τδ, (2.12)
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Method Optimal α RRE
Tikhonov in standard form 0.012742 0.10061
Tikhonov in general form 0.023357 0.077164

TABLE 2.1: Peppers test problem RRE comparison. In bold we highlight the
best error.

where τ > 1 is a constant. This criterion is based on the following observation: if b ∈ R(A),
then it holds ∥∥∥bδ −Ax†

∥∥∥ =
∥∥∥bδ − b

∥∥∥ ≤ δ.

2.2.1 Tikhonov in general form

As we stated above, usually, the quality of the reconstruction can be improved by switching
from the standard form to the general form. Before analyzing the theoretical properties of
Tikhonov regularization in general form we want to give an example. We consider an image
deblurring test case. We start with the peppers image in Figure 2.3(a) and we blur it using
the motion PSF in Figure 2.3(b). In this way we are simulating the effect obtained when a
picture is taken with a camera that is moving. We then add white Gaussian noise such that
δ = 0.02 ‖b‖ and obtain the resulting blurred and noisy image in Figure 2.3(c) We refer to the
ratio

ξ =
‖η‖
‖b‖ , (2.13)

as noise level. For the sake of simplicity in this example we are not considering the limited
FOV and we are assuming that the true image is periodic.

We then reconstruct with Tikhonov in standard and general form. For the general form we
use as regularization operator the discretization of the two dimensional divergence operator.
Let L1 be the finite difference discretization of the one dimensional derivative with periodic
boundary conditions, i.e.,

L1 =




−1 1
−1 1

. . . . . .
−1 1

1 −1



,

we define L as
L = L1 ⊗ I + I ⊗ L1, (2.14)

By choosing the optimal α, i.e., the one that minimizes the error, we obtain the reconstruction
in Figure 2.4. For the comparison of the two methods we consider the Relative Reconstruc-
tion Error (RRE) defined as

RRE(x) =

∥∥x− x†∥∥
‖x†‖ (2.15)

In Table 2.1 we show the RRE obtained with the different methods. We can see that the
introduction of the L is able to increase the accuracy of the method. Moreover, from the
visual inspection of the reconstructions in Figure 2.4 we can see that Tikhonov in general
form provides better restorations and in particular is able to lessen the so called ringing
effect.
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(a) (b) (c)

FIGURE 2.3: Peppers test problem: (a) True image (512×512 pixels), (b) motion
PSF (23× 23 pixels), (c) blurred and noisy image (ξ = 0.02).

(a) (b)

FIGURE 2.4: Peppers test problem reconstruction: (a) Tikhonov in standard
form, (b) Tikhonov in general form. For both method the optimal α has been

chosen.

We can now move to the theoretical analysis of (2.8). In particular, we want to see how it is
possible to reduce the problem (2.8) in standard form (2.10).

If L is invertible, then the minimization problem (2.8) becomes

min
x=Lx

∥∥∥AL−1x− bδ
∥∥∥
2
+ α ‖x‖2 . (2.16)

Solving (2.16) leads to xα from which we can retrieve the solution xα of (2.8) by multiplying
times L−1:

xα = L−1xα.

When L is not invertible, we follow [59]. Let A : X → Y and L : X → X be two linear
operators between Hilbert spaces, the A−weighted pseudo-inverse of L is

L†
A = (I − (A(I − L†L))†A)L†. (2.17)

We define the vectors 



x = Lx

x(0) = (A(I − L†L))†bδ

b
δ
= bδ −Ax(0)

and consider the problem

x̄α = argmin
x

∥∥∥AL†
Ax− bδ

∥∥∥
2
+ α ‖x‖2 . (2.18)



2.2. Tikhonov Regularization 15

The solution xα of (2.10) is obtained from the solution xα of (2.18) by

xα = L†
Axα + x(0).

2.2.2 Iterated Tikhonov

In order to furtherly improve the quality of the solution provided by Tikhonov regulariza-
tion, it is possible to use a refinement technique and formulate an iterative algorithm.

The general idea behind refinement techniques is the following. Given the approximation xk

of x†. Call
ek = x† − xk,

the approximation error of xk, if we had access to ek we could easily obtain x† form xk, since

x† = xk + ek.

We can compute ek from the so called error equation

Aek = A
(
x† − xk

)
= Ax† −Axk = b−Axk.

However, the computation of ek is not trivial. We have to consider that A is severely ill-
conditioned and that we do not know b, but only bδ. In other words we only have access to
the system

Aek ≈ rk = bδ −Axk.

Therefore, letting hk be an approximation of ek, we can refine xk by

xk+1 = xk + hk.

We still have to resort to regularization methods to obtain a good approximation of ek, i.e.,
hk. We then use Tikhonov regularization in standard form to compute this approximation

hk = argmin
h

‖Ah− rk‖2 + α ‖h‖2 .

Summarizing we have
Algorithm 2.1 (Iterated Tikhonov (IT)). Consider the linear system (2.3). Let x0 be an initial guess
for x† and let α > 0 be a constant.

for k = 1, 2, . . .

rk = bδ −Axk

xk+1 = xk +
(
AtA+ αI

)−1
Atrk

end

In Algorithm 2.1 the parameter α is chosen once and for all. The main issue with this ap-
proach is that the choice of α is, again, crucial and may be difficult.

A more stable algorithm is obtained when the parameter α is changed at each iteration.
In order to have convergence, however, the sequence of the parameter should meet some
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conditions. A sufficient condition is that
∞∑

k=0

α−1
k = ∞, ∀k αk > 0.

We can formulate then the following
Algorithm 2.2 (Nonstationary Iterated Tikhonov (ITNS)). Consider the linear system (2.3). Let
x0 be an initial guess for x† and let {αk}k be a sequence such that ∀k αk > 0 and

∑∞
k=0 α

−1
k = ∞.

for k = 1, 2, . . .

rk = bδ −Axk

xk+1 = xk +
(
AtA+ αkI

)−1
Atrk

end

The convergence of both algorithm is assured by
Theorem 2.2 ([25]). Consider the linear system (2.3). Let {αk}k be a sequence such that ∀k αk > 0
and

∑∞
k=0 α

−1
k = ∞. Then the iterates generated by ITNS converges to the solution of (2.3) which is

nearest to x0. In particular, if x0 = 0, then xk → A†bδ as k → ∞.

The regularization inside both IT and ITNS is obtained by stopping the iteration before con-
vergence. In particular we can still apply the discrepancy principle, but in this case we use
it as a stopping criterion, i.e., we continue the iterations until we reach the first iteration k∗

such that
‖rk∗‖ ≥ τδ and ‖rk‖ < τδ for k = 0, 1, . . . , k∗ − 1, (2.19)

with τ > 1.

The choice of the parameter αk is very important. A possible and popular solution is the
geometric sequence

αk = α0q
k, (2.20)

where α0 > 0 and 0 < q < 1. Note that this sequence satisfies the hypothesis of Theorem 2.2.
This choice is studied in [25, 79].

We would like to stress that for both algorithms we have used the standard form of Tikhonov
regularization, i.e., we have set L = I . We will see in Chapter 4 how to analyze the case of
stationary and nonstationary iterated Tikhonov when a general L is used.
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Chapter 3

Constrained Tikhonov Minimization

As we said above, due to the fact that many singular values of the matrix A cluster at the
origin, the least-squares problem (2.3) may be numerically rank-deficient. Therefore, it is
generally beneficial to impose constraints on the computed solution that the desired solution
x† is known to satisfy.

For instance, in image restoration problems the entries of the vector x† represent pixel values
of the image. Pixel values are nonnegative and, therefore, it is generally meaningful to solve
the constraint minimization problem

x+
α = argmin

x≥0

∥∥∥Ax− bδ
∥∥∥
2
+ α ‖x‖2 (3.1)

instead of (2.10). Here x ≥ 0 is intended component-wise. In this chapter we are going to
consider only Tikhonov regularization in standard form. A closed form of the solution x+

α

generally is not available.

Let Ω denote the nonnegative cone, i.e.,

Ω = {x ∈ Rn : (x)i ≥ 0 1 ≤ i ≤ n} , (3.2)

and let PΩ be the orthogonal projector from Rn to Ω. Thus, we determine PΩ(z) for z ∈ Rn

by setting all negative entries of z to zero. An approximation of x+
α is furnished by

xΩ
α = PΩ(xα) = PΩ

((
AtA+ αI

)−1
Atbδ

)
. (3.3)

When x† ≥ 0, the vector xΩ
α generally is a better approximation of x† than xα. However,

typically x+
α is a much more accurate approximation of x† than xΩ

α .

We want now to discuss the solution of the constrained Tikhonov regularization problem
(3.1) by the modulus-based iterative method described in [122]. In [122] is discussed the
application of this kind of method to the solution of nonnegative constrained least-squares
(NNLS) problems,

min
x≥0

∥∥∥Ax− bδ
∥∥∥ (3.4)

with a matrix A ∈ Rm×n that is either well-conditioned or ill-conditioned. Since we are
considering the case in which the singular values of A cluster at the origin we are able to
determine accurate approximate solutions of (3.1) in a Krylov subspace of, generally, fairly
small dimension. This observation reduces the computational effort considerably.
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We also consider the situation when A is a BCCB matrix. Modulus-based iterative methods
for the NNLS problem (3.4) with a matrix with this type of structure can be solved efficiently
by application of FFT.

We first review results about modulus-based iterative methods discussed in [7, 57, 76, 122].
We then apply a modulus-based iterative method to the solution of large-scale constrained
Tikhonov regularization problems (3.1). These problems are reduced to small size by a
Krylov subspace method. This reduction lessens the computational effort required for the
solution of the constrained Tikhonov regularization problem considerably.

We now give some comments on related work on the computation of nonnegative approx-
imate solutions of problem (3.4) with a large matrix A whose singular values cluster at the
origin. The importance of being able to solve this kind of problem has spurred the develop-
ment of a variety of methods. In [102] is described a curtailed steepest descent method that
determines nonnegative solutions. Active set methods based on Tikhonov regularization are
developed in [98, 101] and barrier methods for Tikhonov regularization are discussed in [35,
99, 115]. A discussion of many optimization methods, including active set and barrier meth-
ods, is provided in [106]. In our experience, it is beneficial to use methods that exploit special
properties or structure of the matrix A. The fact that the matrix A can be approximated well
by a matrix of low rank makes our Krylov subspace modulus-based method competitive
with available Krylov subspace methods, because it only requires the computation of one
Krylov subspace of modest dimension. This subspace then is used repeatedly. When A is a
BCCB matrix, fast solution methods are based on the fact that matrix-vector products withA
and the (pseudo-)inverse of A can be computed in only O(n log n) arithmetic floating point
operations (flops) with the aid of the FFT.

This chapter is organized as follows: Section 3.1 reviews results about modulus-based iter-
ative methods discussed in [7, 57, 76, 122]. We apply a modulus-based iterative method to
the solution of large-scale constrained Tikhonov regularization problem (3.1). These prob-
lems are reduced to small size by a Krylov subspace method. This reduction lessens the
computational effort required for the solution of the constrained Tikhonov regularization
problem considerably. In Section 3.3 we briefly discuss the Golub-Kahan bidiagonalization
technique. Section 3.4 describes our Krylov subspace-based method for the solution of (3.1)
and Section 3.5 contains a few computed examples. The latter section also illustrates how
the BCCB structure of the matrix A can be exploited.

3.1 Reformulation of the problem

This section summarizes results discussed in [57, 76, 122] of interest for the solution methods
of the present chapter. Other recent discussions on modulus-based iterative methods can be
found in [7, 10] and references therein.

We reduce the constrained least-squares problem (3.4) to a linear complementarity problem,
which we will solve by a modulus-based iterative method. The following result can be found
in [42, Page 5, Definition 3.3.1 and Theorem 3.3.7]. It is also shown in [122, Theorem 2.1].
Theorem 3.1. Let M be a symmetric positive semidefinite matrix. Then the nonnegative constrained
quadratic programming problem,

min
x≥0

(
1

2
xtMx+ ctx

)
,
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denoted by NNQP(M, c), is equivalent to the linear complementarity problem,

x ≥ 0, Mx+ c ≥ 0, and xt (Mx+ c) = 0,

denoted by LCP(M, c).

The results below, shown in [57, 76, 122], are consequences of the above theorem.
Corollary 3.2. Let M ∈ Rn×n be symmetric and positive definite and let c ∈ Rn. Then the problems
NNQP(M, c) and LCP(M, c) have the same unique solution.
Corollary 3.3. The NNLS problem (3.4) is equivalent to LCP(AtA,−Atb),

x ≥ 0, r = AtAx−Atb ≥ 0, and xtr = 0.

It has a unique solution when A is of full column rank.
Theorem 3.4. Let D be a positive definite diagonal matrix and define for y = [y1, y2, . . . , yn]

t ∈ Rn

the vector |y| = [|y1|, |y2|, . . . , |yn|]t ∈ Rn.

(i) If (x, r) is a solution of LCP(AtA,−Atb), then y = (x−D−1r)/2 satisfies

(
D +AtA

)
y =

(
D −AtA

)
|y|+Atb. (3.5)

(ii) If y satisfies (3.5), then
x = |y|+ y and r = D(|y| − y)

is a solution of LCP(AtA,−Atb).

Proof. The results can be shown using [7, Theorem 2.1].

From here on we will assume that the matrix A has full column rank. This requirement is
satisfied by the matrix Ã used in the following; see(3.16).

3.2 Modulus Method

Theorem 3.4, and in particular equation (3.5), suggest the fixed-point iteration

(D +AtA)yk+1 = (D −AtA) |yk|+Atb, (3.6)

which is the basis for the following algorithm.
Algorithm 3.1 (Modulus Method (MM)). Let y0 ∈ Rn be an initial approximate solution of (3.5)
and let D be a positive definite diagonal matrix.

x0 = y0 + |y0|
for k = 0, 1, 2, . . .

yk+1 = (D +AtA)−1
(
(D −AtA) |yk|+Atb

)

xk+1 = yk+1 + |yk+1|
end

This algorithm is a special case of the modulus-based matrix splitting iterative methods pro-
posed in [7]. Its convergence was investigated in [122] based on the analysis for HSS methods
[9]. The case of interest to us is when D = µIn with µ > 0. This iterative method is analyzed
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in [57, 76]. We discuss the convergence of the iterates yk for completeness. Let y∗ denote the
solution of (3.5) for D = µIn, Then

yk+1 − y∗ = (µIn +AtA)−1(µIn −AtA)(|yk| − |y∗|)

and we obtain

‖yk+1 − y∗‖ ≤
∥∥(µIn +AtA)−1(µIn −AtA)

∥∥ ‖|yk| − |y∗|‖
≤
∥∥(µIn +AtA)−1(µIn −AtA)

∥∥ ‖yk − y∗‖ .

The matrix (µIn +AtA)−1(µIn −AtA) is symmetric. Therefore,

∥∥(µIn +AtA)−1(µIn −AtA)
∥∥ = max

λj∈λ(AtA)

∣∣∣∣
µ− λj
µ+ λj

∣∣∣∣ , (3.7)

where λ(AtA) denotes the spectrum of AtA. Since A is of full rank, λj > 0 for all j and,
therefore, ∣∣∣∣

µ− λj
µ+ λj

∣∣∣∣ < 1 ∀j.

Hence, ∥∥(µIn +AtA)−1(µIn −AtA)
∥∥ < 1,

which shows convergence of the iterations (3.6) for D = µIn with µ > 0. The rate of con-
vergence generally increases when (3.7) decreases. Replacing λ(AtA) in the right-hand side
of (3.7) by its convex hull gives an optimization problem whose solution can be easily deter-
mined,

µ∗ = argmin
µ∈R

{
max

µmin≤µ≤µmax

∣∣∣∣
µ− λ

µ+ λ

∣∣∣∣
}

=
√
λminλmax. (3.8)

Here λmin and λmax denote the smallest and largest eigenvalues of AtA, respectively. Thus,
the relaxation parameter µ∗ gives a near-optimal rate of convergence.

3.3 Golub-Kahan bidiagonalization

Before formulating our algorithm, we are going to recall some basic facts on Golub-Kahan
bidiagonalization.

Golub-Kahan bidiagonalization algorithm applied to the matrix C ∈ Rm×n produces the
following factorization

V tCU = B, (3.9)

where V ∈ Rm×m and U ∈ Rn×n are orthogonal matrices and B ∈ Rm×n is a bidiagonal ma-
trix. For the moment we follow [73, Section 10.4.1] and so B is going to be upper bidiagonal.
Assume, without loss of generality, that m > n, we write B as

B =




α1 β1 . . . . . . 0
0 α2 β2 . . . 0
...

. . . . . . . . .
...

... 0 αn−1 βn−1

0 . . . . . . 0 αn

0
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It is possible to show that a factorization of the form (3.9) exists if C is of full column rank
(see [73, Section 5.4.8]). Moreover, since C and B are orthogonally related, they have the
same singular values.

From (3.9) it follows that
CU = V B and CtV = UBt.

Writing V,U in terms of their columns

V = [v1| . . . |vm] U = [u1| . . . |un]

yields to

Cuj = αjvj + βj−1vj−1,

Ctvj = αjuj + βjuj+1

(3.10)
(3.11)

for 1 ≤ j ≤ n, with the notation β0v0 ≡ 0 and βnun+1 ≡ 0. Define

rj = Auj − βj−1vj−1,

pj = Atvj − αjuj .

(3.12)
(3.13)

Combining (3.10), (3.12) and the orthonormality of the vectors vj we get

αj = ±‖rj‖ ,
vj = rj/αj , (αj 6= 0).

Similarly from (3.11), (3.13) we have

βj = ±‖pj‖ ,
uj+1 = pj/βj , (βj 6= 0).

Using this relation we get the following
Algorithm 3.2 (Golub-Kahan upper bidiagonalization). Let C ∈ Rm×n with full column rank.
Let u0 ∈ Rn be a vector of unitary norm. The following procedure computes the factorization (3.9).

k = 0, p0 = u0, β0 = 1, v0 = 0

While βj 6= 0

uj+1 = pj/βj

k = k + 1

rj = Cuj − βj−1vj−1

αj = ‖rj‖
vj = rj/αj

pj = Ctvj − αjuj

βj = ‖pj‖
end

The above algorithm can be stopped after ℓ steps for C that are not of full column rank as
long as ℓ is small enough.

It can be shown that
span{u1, . . . ,uℓ} = Kℓ(C

tC,u0)

span{v1, . . . ,vℓ} = Kℓ(CC
t, Cu0)
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where by Kℓ(C,y) we denote the Krylov subspace of dimension ℓ related to the pair {C,y},
defined as

Kℓ(C,y) = span{y, Cy, . . . , Cℓ−1y}.
By applying Algorithm 3.2 to Ct we obtain the factorization

V tCtU = B,

equivalently

U tCV = Bt, (3.14)

where U, V are orthonormal matrices and Bt is lower bidiagonal.
Algorithm 3.3 (Golub-Kahan lower bidiagonalization). Let C ∈ Rm×n with full column rank.
Let u0 ∈ Rn be a vector of unitary norm. The following procedure computes the factorization (3.14).

k = 0, p0 = u0, β0 = 1, v0 = 0

While βj 6= 0

uj+1 = pj/βj

k = k + 1

rj = Ctuj − βj−1vj−1

αj = ‖rj‖
vj = rj/αj

pj = Cvj − αjuj

βj = ‖pj‖
end

It then follows that
span{u1, . . . ,uℓ} = Kℓ(CC

t,u0)

span{v1, . . . ,vℓ} = Kℓ(C
tC,Ctu0)

3.4 Krylov subspace methods for nonnegative Tikhonov regular-

ization

We now combine the MM algorithm described in Section 3.2 with the Golub-Kahan lower
bidiagonalization in Section 3.3. We describe the application of the modulus-based iterative
method to Tikhonov regularization with nonnegativity constraint (3.1). We discuss how the
computational effort for large-scale problems can be reduced by using a Krylov subspace
method with a fixed Krylov subspace. Finally, we comment on how to exploit the BCCB
structure of A in image deblurring applications.

Application of ℓ ≪ min{m,n} steps of Golub-Kahan lower bidiagonalization, i.e., of Algo-
rithm 3.3, to A with initial vector u0 = bδ/‖bδ‖ gives the decompositions

AVℓ = Uℓ+1Bℓ+1,ℓ, AtUℓ = VℓB
t
ℓ,ℓ, (3.15)

where Uℓ+1 = [u1,u2, . . . , uℓ+1] ∈ Rm×(ℓ+1) and Vℓ = [v1,v2, . . . ,vℓ] ∈ Rn×ℓ have orthonor-
mal columns, Uℓ ∈ Rm×ℓ is made up of the first ℓ columns of Uℓ+1, Bℓ+1,ℓ ∈ R(ℓ+1)×ℓ is
lower bidiagonal with positive diagonal and subdiagonal entries, andBℓ,ℓ is the leading ℓ×ℓ
submatrix of Bℓ+1,ℓ.
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We assume for now that ℓ is chosen small enough so that the decompositions (3.15) with the
stated properties exist. As stated in the previous Section we note that the columns of Vℓ span
the Krylov subspace Kℓ(A

tA,Atbδ).

We first rewrite the minimization problem (3.1)

min
x≥0

{∥∥∥Ax− bδ
∥∥∥
2
+ α ‖x‖2

}

= min
x≥0

∥∥∥∥
(

A√
αIn

)
x−

(
bδ

0

)∥∥∥∥
2

= min
x≥0

∥∥∥Ãx− b̃δ
∥∥∥
2
, (3.16)

where we assume that α > 0. Then the matrix Ã ∈ R(m+n)×n is of full column rank and
the minimization problem (3.16) satisfies the conditions in Section 3.2. Therefore, the iterates
determined by Algorithm 3.1 will converge.

When the matrix A is large and without exploitable structure, the computations with Algo-
rithm 3.1 with D = µIn may be expensive. In particular, factoring the matrix µIn + ÃtÃ in
order to solve the linear systems of equations with this matrix required by Algorithm 3.1 may
be unattractive or infeasible. We are interested in trying to reduce the computational effort
required for solving these linear systems of equations. One way to achieve this is to solve
them by the conjugate gradient method. It is convenient to use the CGLS implementation
[16]. This solution approach is discussed in [122] and also illustrated in Section 3.5.

We now describe an alternative way to reduce the computational effort. We first determine
an initial reduction of A to a small bidiagonal matrix with the aid of Golub-Kahan lower
bidiagonalization. The Krylov solution subspace generated by this reduction method then is
reused for all linear systems of equations with the matrix µIn + ÃtÃ that have to be solved.

Substituting x = Vℓy, y ∈ Rℓ, into (2.10) and determining an approximate solution by a
Galerkin method gives the equation

V t
ℓ (A

tA+ αIn)Vℓy = V t
ℓ A

tbδ,

which, with the aid of the decompositions (3.15), can be expressed as

(Bt
ℓ+1,ℓBℓ+1,ℓ + αIℓ)y = e1

∥∥∥Atbδ
∥∥∥ . (3.17)

Here and below ej denotes the jth column of an identity matrix of appropriate order. The re-
duced Tikhonov equations (3.17) are the normal equations associated with the least-squares
problem

min
y∈Rℓ

∥∥∥∥
(
Bℓ+1,ℓ√
αIℓ

)
y−√

αeℓ+2

∥∥∥Atbδ
∥∥∥
∥∥∥∥ . (3.18)

We solve the latter instead of (3.17) for y = yα for reasons of numerical stability. For each
fixed α > 0 the least-squares problem (3.18) can be solved in only O(ℓ) arithmetic floating-
point operations [60] for details on the solution of least-squares problems of the form (3.18).

We turn to the determination of α > 0 by the discrepancy principle. Substituting xα = Vℓy
into (2.12) and using (3.15) gives the reduced problem

‖Bℓ+1,ℓy − e1‖bδ‖ ‖ = τδ, (3.19)
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where y solves (3.18).
Proposition 3.5. Introduce the function

φℓ(α) = ‖bδ‖2e t1(α−1Bℓ+1,ℓB
t
ℓ+1,ℓ + Iℓ+1)

−2e1. (3.20)

Then the solution α > 0 of

φℓ(α) = τ2δ2 (3.21)

determines a solution y = yα of (3.18) that solves (3.19). The vector xα,ℓ = Vℓyα satisfies (2.12).

Proof. It follows from (3.15) that

Atbδ = AtUℓe11‖bδ‖ = v1 et1B
t
ℓ+1,ℓe1‖bδ‖.

Substituting this expression and the solution of (3.17) into the left-hand side of (3.19) gives

‖Bℓ+1,ℓ(B
t
ℓ+1,ℓBℓ+1,ℓ + αIℓ)

−1e1‖Atbδ‖ − e1‖bδ‖ ‖2

= ‖Bℓ+1,ℓ(B
t
ℓ+1,ℓBℓ+1,ℓ + αIℓ)

−1Bt
ℓ+1,ℓe1 − e1‖2 ‖bδ‖2. (3.22)

The identity

Bℓ+1,ℓ(B
t
ℓ+1,ℓBℓ+1,ℓ + αIℓ)

−1Bt
ℓ+1,ℓ − Iℓ+1 = −(α−1Bℓ+1,ℓB

t
ℓ+1,ℓ + Iℓ+1)

−1

can be shown, e.g., by multiplication by Bℓ+1,ℓB
t
ℓ+1,ℓ + αIℓ+1 from the right-hand side. Sub-

stitution into (3.22) gives

‖Bℓ+1,ℓyα − e1‖bδ‖ ‖2 = ‖bδ‖2e t1(α−1Bℓ+1,ℓB
t
ℓ+1,ℓ + Iℓ+1)

−2e1,

This shows (3.20). The fact that the vector xµ,ℓ satisfies (2.12) follows from (3.15) and (3.19).

Proposition 3.6. Let φℓ(α) be defined by (3.20). Then the function ν → φℓ(1/ν) is strictly decreas-
ing and convex for ν > 0. Moreover,

lim
α→∞

φℓ(α) = ‖bδ‖2.

In particular, Newton’s method applied to the solution of the equation φℓ(1/ν) = τ2δ2 with initial
approximate solution ν0 to the left of the solution converges monotonically and quadratically.

Proof. The decrease, convexity, and limit follows from the representation

φℓ(1/ν) = ‖bδ‖2e t1(νBℓ+1,ℓB
t
ℓ+1,ℓ + Iℓ+1)

−2e1.

Newton’s method converges monotonically and quadratically for decreasing convex func-
tions when the initial iterate is smaller than the solution. The initial iterate ν0 can be chosen
to be zero with

lim
νց0

φℓ(1/ν) = ‖bδ‖2, lim
νց0

d

dν
φℓ(1/ν) = −2‖bδ‖2‖Bt

ℓ+1,ℓe1‖2.

In actual computations it typically suffices to choose ℓ ≪ min{m,n}. We apply MM Algo-
rithm 3.1 to the reduced Tikhonov minimization problem (3.17). Thus, we replace AtA in the
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algorithm by

Tℓ,α = Bt
ℓ+1,ℓBℓ+1,ℓ + αIℓ. (3.23)

Since the matrix Bℓ+1,ℓ is small, we can easily determine its largest singular value σmax. Typ-
ically, zero is a quite sharp lower bound for the smallest singular value. The largest eigen-
value of Tℓ,α is σ2max + µ and the smallest eigenvalue is bounded below by, and is generally
close to, α. Hence, we will use the relaxation parameter

µ =
√

(σ2max + α)α (3.24)

for the algorithm; cf. (3.8). This yields the following scheme.
Algorithm 3.4 (Krylov subspace Modulus Method). Choose the number of Golub-Kahan lower
bidiagonal steps, ℓ, and compute the decompositions (3.15). Determine a regularization parameter α
that satisfies (3.21) as described in Proposition 3.6. Compute the solution y = yα of (3.18) and define
the initial approximate solution x0 = PΩ(Vℓyα) of (3.1). Determine the largest singular value of the
matrix Bℓ+1,ℓ and define the relaxation parameter (3.24). Let Tℓ,α be given by (3.23).

b̂δ = e1
∥∥Atbδ

∥∥
y0 = V t

ℓ x0

ỹ0 = V t
ℓ |Vℓy0|

for k = 0, 1, 2, . . . until convergence

yk+1 = (µIℓ + Tℓ,α)
−1
(
(µIℓ − Tℓ,α)ỹk + b̂δ

)

ỹk+1 = V t
ℓ |Vℓyk+1|

end
x = Vℓỹk+1 + |Vℓỹk+1|

The above algorithm computes the magnitude of every entry of an n-vector at each step.
Therefore, a transformation from the ℓ-dimensional subspace, where the vectors yk live, to
Rn is required. Every step demands the solution of a linear system of equations of the form

(µIℓ + Tℓ,α) z = d

for some vector d. The solution z can be computed by solving a least-squares problem anal-
ogous to (3.18).

We remark that the Krylov subspace K(AtA,Atbδ) is invariant under shifts of AtA by a mul-
tiple of the identity, i.e.,

Kℓ(A
tA,Atbδ) = Kℓ(A

tA+ µIn, A
tbδ).

It follows that the shifted matrix µIℓ+Tℓ,α in Algorithm 3.4 corresponds to the shifted matrix
µIn +

(
AtA+ αIn

)
.

We described above how to determine the regularization parameter α by first reducing equa-
tion (2.12) to an equation with a small matrix (3.19). When restoring images, we sometimes
may impose periodic boundary conditions without affecting the quality of the computed
restoration significantly. This yields a BCCB blurring matrix A ∈ Rn×n, which can be diago-
nalized by the unitary Fourier matrix F defined in (2.7),

A = F ∗ΣF. (3.25)
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Here the matrix Σ is diagonal, possibly with complex entries, and the superscript ∗ de-
notes transposition and complex conjugation; see, e.g., [84] for details. We can transform the
Tikhonov minimization problem (2.10) to a minimization problem with a diagonal matrix,
and we also can transform (2.12) to an equation with a diagonal matrix. These transforma-
tions allow easy computation of the regularization parameter α > 0 such that the solution
(2.10) satisfies (2.12) by Newton’s method analogously as described above. Moreover, Algo-
rithm 3.1 with D = µIn can be executed efficiently when A has the factorization (3.25). This
is illustrated in the following section.

3.5 Numerical examples

This section presents a few numerical examples that illustrate the performance of the algo-
rithms described. An example in one-dimensional space from the REGULARIZATION TOOLS

MATLAB package [83] and examples in two-dimensional space obtained with the RESTORE

TOOLS MATLAB package [12] will be discussed. We compare four methods: classical un-
constrained Tikhonov regularization (2.10), projected Tikhonov regularization (3.3), and Al-
gorithms 3.1 and 3.4. In Algorithm 3.1, we solve linear systems of equations with the matrix
D +AtA by the CGLS method; see [16]. In all examples, D = µIn with µ > 0. Algorithm 3.5
below illustrates how the availability of a factorization of the form (3.25) can be exploited.

At step k of Algorithm 3.1, we have to solve the linear system of equations

(AtA+ αIn + µIn)yk+1 = (µIn −AtA− αIn)|yk|+Atbδ, (3.26)

which is equivalent to the least-squares problem

yk+1 = argmin
y

∥∥∥∥∥∥




A√
αIn√
µIn


y −




bδ −A|yk|
−√

α|yk|√
µ|yk|



∥∥∥∥∥∥

2

= argmin
y

∥∥Āy − ȳk

∥∥

for a suitably defined matrixĀ ∈ R(m+2n)×n and vector ȳk ∈ R(m+2n). We terminate the
iterations with the CGLS method at iteration k of Algorithm 3.1 as soon as

∥∥Āt(Āy − ȳk)
∥∥ < 10−2

k

∥∥Ātȳk

∥∥ , for k = 0, 1, . . ..

This stopping criterion takes the scalings of A and bδ into account. Both execution times
and accuracy of the methods in our comparison are tabulated. The accuracy of a computed
approximation x of x† is measured by the RRE defined in (2.15).

The iterations with Algorithms 3.1 and 3.4 are terminated when two consecutive iterates yk

and yk+1 are close enough, i.e., as soon as

‖yk+1 − yk‖
‖yk‖

< s,

where s is a user-supplied constant. We set s = 10−4 in all examples.

The regularization parameter α is determined by the discrepancy principle, i.e., α is chosen
such that (2.12) holds, with τ = 1.01.
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FIGURE 3.1: Shaw test problem: (a) desired solution x† (solid curve) and error-
contaminated data vector bδ (dashed curve), (b) computed solutions obtained
with classical Tikhonov xα (dashed gray curve), projected Tikhonov xΩα (solid
gray curve), Algorithm 3.1 (dashed black curve), and Algorithm 3.4 (solid

black curve).

Determination of a near-optimal relaxation parameter µ for Algorithms 3.4 is straightfor-
ward, see the discussion preceding (3.24).

We turn to Algorithm 3.1. This algorithm requires the estimation of the largest and smallest
eigenvalues of the matrix AtA + αIn; see (3.26). We briefly comment on how these eigen-
values can be computed when the matrix A is large. Let A be scaled to have norm about
unity. Since A stems from the discretization of an ill-posed problem, it has many singular
values close to the origin. It follows that an accurate estimate of the smallest eigenvalue of
the matrix AtA+ αIn is given by α. An estimate of the largest eigenvalue of this matrix can
be determined by computing an estimate of the largest singular value of A. This can be done
quite inexpensively with the implicitly restarted Golub-Kahan bidiagonalization algorithm
irbla described in [6]. The dominant computational work with this algorithm consists of
the evaluation of a few matrix-vector products with the matrices A and At. The discussion
and computed examples presented in [107] indicate that the irbla algorithm typically only
requires the evaluation of a few of these matrix-vector products to determine the largest sin-
gular value of a matrix of a linear discrete ill-posed problem (2.3). The computation of an
estimate of the largest singular value of A, and hence of the largest eigenvalue of AtA+αIn,
therefore is quite inexpensive.

In image restoration problems A is a blurring matrix. For a typical row j, blurring matrices
satisfy etjA1 = 1, where 1 = [1, 1, . . . , 1]t. However, both e tjA1 and e tjA

tA1 may differ from
one for certain j. In particular, e tjA

tA1 may be significantly larger than one for some j values.
The size of max1≤j≤n |e tjAtA1| depends on the boundary conditions used; see, e.g., [50] for a
discussion. We conclude that for some image restoration problems, the largest singular value
of A is close to unity and does not have to be computed. However, certain image restoration
problems, in particular problems with antireflective boundary conditions, may require that
the largest singular value of the blurring matrix be computed as described above.

All the computations for this section were carried out in MATLAB version 9.0.0.341360 (R2016a)
on a laptop computer with an Intel i7-6700HQ @ 2.60 Ghz CPU and 8 GB of RAM. The com-
putations were done with about 15 significant decimal digits.
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Method RRE CPU time Iterations
Tikhonov 0.073600 0.39441 –
Projected Tikhonov 0.052816 0.40583 –
Algorithm 3.1 0.029923 0.61289 36
Algorithm 3.4 0.024316 0.062824 37

TABLE 3.1: Shaw test problem: relative errors (RRE) and CPU times in sec-
onds for standard Tikhonov (2.10), projected Tikhonov (3.3), Algorithm 3.1,
and Algorithm 3.4. For the last two methods also the number of iterations is

displayed. The smallest error is shown in boldface.

Shaw We consider a modified version of the shaw example in [83]. To show the effec-
tiveness of our method, we use the discretized integral operator from shaw and the exact
solution x† from the phillips example, also from [83]. We choose this solution vector
because it is nonnegative with many vanishing components. The discretized operator is rep-
resented by a matrix A ∈ R1024×1024. Thus, x† ∈ R1024 represents the desired solution and
the noise-free data vector is given by b = Ax†. We add 5% white Gaussian noise to b, i.e.,
we set ξ = 0.05 in (2.13), to obtain the noise-contaminated vector bδ in (2.3).

Figure 3.1(a) shows the vectors x† and bδ. For Algorithm 3.4, we use a Krylov subspace of
dimension ℓ = 30. Table 3.1 displays CPU times as well as the relative errors in the com-
puted approximations of x† determined by the different methods. Algorithm 3.4 is seen to
require fewer iterations and less CPU time than the other methods. The standard Tikhonov
method is implemented by first computing the singular value decomposition of A. We re-
mark that Algorithm 3.4 performs particularly well for discrete ill-posed problems (2.3) with
a matrix A whose singular values decay to zero fairly quickly, because in this situation the
dimension ℓ of the Krylov subspace can be chosen fairly small. When the singular values de-
cay slowly and, therefore, ℓ has to be chosen rather large, Algorithm 3.1 may be competitive
with Algorithm 3.4.

We now compare Algorithm 3.4 with an active set method designed for the solution of non-
negatively constrained linear discrete ill-posed problems (3.4). Our comparison is with the
method described in [101]. The performances of this active set method and the one discussed
in [98] are quite similar. We therefore only compare with the former. It is based on repeat-
edly reducing the large problem (2.3) to a problem of small size with the aid of a few steps
of Golub-Kahan bidiagonalization of the matrix A or of a matrix AD. Here D is a diagonal
matrix with diagonal entries one or zero. The diagonal entries are zero if the corresponding
variable is in the active set. The reduction ofA orAD by Golub-Kahan bidiagonalization pro-
ceeds until an approximate solution that satisfies the discrepancy principle has been found.
If the computed approximate solution satisfies the constraints, then we are done; otherwise
those variables that violate the constraint are projected into the feasible set and the active
set is updated. This means that the matrix D is updated. If the projected solution satisfies
the discrepancy principle then we also are done; otherwise a partial Golub-Kahan bidiag-
onalization of the new matrix AD is computed. The computations proceed in this manner
until a feasible approximate solution of (3.4) that satisfies the discrepancy principle has been
found. Updating the active set only when the discrepancy principle holds gives a much
faster method than if the active set were updated as soon as a constraint is violated. How-
ever, this updating strategy may allow “cycling”. It is discussed in [98] how cycling can be
detected and avoided. Computed examples in [98, 101] show that the active set methods to
perform well when the noise level is not small. However, for small noise levels many partial
Golub-Kahan bidiagonalizations may have to be computed. This requires the evaluation of
many matrix-vector products (MvPs) and can make the methods slow. We remark that the
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Noise Level Method RRE MvPs

0.1%
Active set method 0.018188 36
Algorithm 3.4 0.013495 30 (ℓ = 15)

0.05%
Active set method 0.0093832 47
Algorithm 3.4 0.013320 30 (ℓ = 15)

TABLE 3.2: Shaw test problem: relative errors (RRE) and number of MvPs for
the active set method [98] and for Algorithm 3.4. Results are shown for two

noise levels. The smallest error is shown in boldface.

evaluation of these MvPs is the dominating work for large-scale problems.

Table 3.2 illustrates that, differently from the active set method [101], Algorithm 3.4 does
not require more computational effort when the noise level is reduced. We compare Algo-
rithm 3.4 in terms of accuracy of the computed restoration and in terms of the number of
MvPs evaluations required. For Algorithm 3.4 the number of MvPs needed depends only on
the dimension of the Krylov solution subspace used. Since we use Golub-Kahan bidiagonal-
ization, the computation of a solution subspace of dimension ℓ requires the evaluation of 2ℓ
MvPs. Table 3.2 displays results for two noise levels. The table shows that when the noise
level decreases the number of MvPs evaluations required by the active set method [101] in-
creases, while it does not for Algorithm 3.4. In fact, it may be possible to choose a Krylov
subspace of smaller dimension for Algorithm 3.4 for small noise levels and this would reduce
the number of MvPs evaluations required.

Grain We turn to image deblurring in two-dimensional space. We blur the true image
Grain from [12] using a non-symmetric PSF and add 10% white Gaussian noise; see Fig-
ure 3.2. Antireflective boundary conditions are imposed; see [48, 54, 119] for details. There
is no fast transformation that can be applied to diagonalize the blurring matrix A. There-
fore, we use Algorithm 3.4 to compute a restoration. We compare this algorithm to standard
and projected Tikhonov regularization (2.10) and (3.3), respectively, and to Algorithm 3.1,
in which the inner linear systems of equations are solved by the CGLS method; cf. the dis-
cussion at the beginning of Section 3.5. In Algorithm 3.4, we apply a Krylov subspace of
dimension ℓ = 100. Table 3.3 displays CPU times and the errors in the computed restorations
determined by these methods. We see that Algorithm 3.1 requires about the same comput-
ing time as standard and projected Tikhonov regularization, and that Algorithm 3.4 is much
faster than Algorithm 3.1. Moreover, Algorithm 3.4 gives the most accurate restoration. This
is confirmed by visual inspection of Figure 3.3.

In this and the following examples, Tikhonov regularization (2.11) is implemented by solving
the least-squares problem

min
y∈Rn

∥∥∥∥
(

A√
αIn

)
y −

(
bδ

0

)∥∥∥∥ ,

by the CGLS method. Here 0 ∈ Rn denotes the zero vector. The α-value is determined as
follows. Let C denote the blurring matrix obtained by using periodic boundary conditions.
We compute α that satisfies (3.21), where we substitute the matrix Bℓ+1,ℓ in (3.20) by C and
exploit the factorization (3.25). Proceeding in this way yields a suitable value of the regular-
ization parameter α in a computationally efficient manner. We remark that we are primarily
interested in the errors in the solutions determined by the different methods. Therefore, it is
not necessary to implement the standard Tikhonov method as a black box method.
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(a) (b) (c)

FIGURE 3.2: Grain test problem: (a) true image (238 × 238 pixels), (b) non-
symmetric PSF (17× 17 pixels), (c) blurred and noisy image.

Method RRE CPU time Iterations
Tikhonov 0.33043 9.2475 –
Projected Tikhonov 0.30239 9.2726 –
Algorithm 3.1 0.27633 8.1002 24
Algorithm 3.4 0.27491 4.7601 18

TABLE 3.3: Grain test problem: relative errors (RRE) and CPU times in sec-
onds for standard Tikhonov (2.10), projected Tikhonov (3.3), Algorithm 3.1,
and Algorithm 3.4. For the last two methods also the number of iterations is

displayed. The smallest error is shown in boldface.

(a) (b) (c) (d)

FIGURE 3.3: Grain test problem reconstructions: (a) standard Tikhonov, (b)
projected Tikhonov, (c) Algorithm 3.1, (d) Algorithm 3.4.
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(a) (b) (c)

FIGURE 3.4: Peppers test problem: (a) true image (496×496 pixels), (b) motion
PSF (21× 21 pixels), (c) blurred and noisy image.

Method RRE CPU time Iterations
Tikhonov 0.31718 39.667 –
Projected Tikhonov 0.28645 44.192 –
Algorithm 3.1 0.16160 1.1621 × 103 55
Algorithm 3.4 0.095639 33.573 32

TABLE 3.4: Peppers test problem: relative errors (RRE) and CPU times in sec-
onds for standard Tikhonov (2.10), projected Tikhonov (3.3), Algorithm 3.1,
and Algorithm 3.4. For the last two methods also the number of iterations is

displayed. The smallest error is shown in boldface.

Peppers We now present an example with a larger image. This example illustrates that
Algorithm 3.4 may require much less CPU time than Algorithm 3.1. Figure 3.4 displays the
true image, the motion PSF used for blurring, and the blurred and noise-contaminated im-
age. The noise is 3% and white Gaussian. Since the image is generic, we impose antireflective
boundary conditions.

Similarly as above, we compare standard Tikhonov regularization (2.10), the projected ver-
sion (3.3), and Algorithms 3.1 and 3.4. We set ℓ = 100 in the latter algorithm. Table 3.4 pro-
vides the relative errors of the computed restorations and the CPU times for the methods.
Algorithm 3.4 can be seen to outperform all the other methods both with respect to accuracy
in the computed restoration and computing time. In particular, while Algorithm 3.1 yields a
restoration of high quality, it requires too much CPU time to be attractive. Figure 3.5 displays
the restorations. The imposition of the nonnegativity constraint during the computations can
be seen to give a restoration of higher quality than standard and projected Tikhonov regu-
larization (2.10) and (3.3).

(a) (b) (c) (d)

FIGURE 3.5: Peppers test problem reconstructions: (a) standard Tikhonov, (b)
projected Tikhonov, (c) Algorithm 3.1, (d) Algorithm 3.4.
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Method RRE CPU time Iterations
Tikhonov 0.28354 4.4644 –
Projected Tikhonov 0.26822 4.4766 –
Algorithm 3.1 0.22901 98.349 131
Algorithm 3.5 0.22757 1.4647 109

TABLE 3.5: Atmospheric blur test problem: relative errors (RRE) and CPU
times in seconds for standard Tikhonov (2.10), projected Tikhonov (3.3), and
Algorithm 3.5. For the last method also the number of iterations is displayed.

Atmospheric Blur Our last example considers the test data AtmoshpericBlur50 from
[12]. Figure 3.6 shows the true image, the PSF, and the observed image. Using the knowledge
of the true image, we are able to determine an approximation of the noise level in the data,
which turns out to be a little more than 1%. Due to the large black area near the boundary, we
may impose periodic boundary conditions on the matrix A without significantly reducing
the quality of the computed restoration. This makes A a BCCB matrix and matrix-vector
products with matrices of the form A + cIn, where c is a scalar, can be computed in only
O(n log(n)) flops with the aid of the FFT. The FFT also can be applied to solve linear systems
of equations with a matrix of the formA+cIn in only O(n log(n)) flops. We remark that when
the available contaminated image is represented by q × q pixels, each circulant matrix that
makes up A is of size q × q, and A has q circulant blocks along the diagonal. Thus, A ∈ Rn×n

with n = q2.

The spectral factorization (3.25) ofA can be computed in O(n log(n)) flops. This factorization
allows the solution of (2.12) for α > 0 by Newton’s method with each iteration requiring only
O(n log(n)) flops. Using (3.25), we obtain

AtA+ αI = F ∗(|Σ|2 + αIn)F.

The following algorithm is a modification of Algorithm 3.1 that exploits the BCCB structure
of A. It uses the matrix

Sα = |Σ|2 + αIn.

Algorithm 3.5 (Fast Fourier Transform Modulus Method). Compute the decomposition (3.25)
and determine a regularization parameter α that satisfies (3.21) as outlined above. Determine the
relaxation parameter (3.24) and an initial approximate solution x0 of (3.1).

b̂δ = ΣFbδ

y0 = Fx0

ỹ0 = F |F ∗y0|
for k = 0, 1, 2, . . . until convergence

yk+1 = (µIn + Sα)
−1
(
(µIn − Sα) ỹk + b̂δ

)

ỹk+1 = F |F ∗yk+1|
end
x = F ∗ỹk+1 + |F ∗ỹk+1|

Table 3.5 compares the CPU time required and accuracy achieved with Algorithm 3.5 to
those for standard and projected Tikhonov regularization (2.10) and (3.3), respectively, and
to those for Algorithm 3.1. Algorithm 3.5 imposes periodic boundary conditions, while the
other methods are implemented with zero Dirichlet boundary conditions. The table shows
Algorithm 3.5 to be the fastest and the one that gives the most accurate restoration. The
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(a) (b) (c)

FIGURE 3.6: Atmospheric blur test problem from [12]: (a) true image (256×256
pixels), (b) PSF defined by atmospheric blur (256× 256 pixels), (c) blurred and

noisy image (256× 256 pixels).

(a) (b) (c) (d)

FIGURE 3.7: Atmospheric blur test problem reconstructions: (a) Tikhonov, (b)
projected Tikhonov, (c) Algorithm 3.1, (d) Algorithm 3.5.

superior quality of the restoration delivered by Algorithm 3.5 is confirmed by Figure 3.7,
which displays the restorations. Algorithm 3.5 can be seen to yield a restoration with a more
homogeneous black background than the other methods. Figure 3.8 displays a detail of the
lower right corner of the restored images in a different color map.

We do not compare with Algorithm 3.4 in this example, because Algorithm 3.5 yields a more
accurate restoration faster than the former. While Algorithm 3.4 performs well for many
linear discrete ill-posed problems, Algorithm 3.5 gives superior restorations when the im-
age is such that periodic boundary conditions can be imposed without creating significant
boundary artifacts.

Algorithms analogous to Algorithm 3.5 can be developed for reflective and antireflective
boundary conditions when the PSF is quadrantally symmetric. For reflective boundary con-
ditions the algorithm can be based on the discrete cosine transform [105] and for antireflec-
tive boundary conditions on the antireflective transform (related to the discrete sine trans-
form) [5, 47].
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(a) (b) (c) (d)

FIGURE 3.8: Atmospheric blur test problem reconstructions detail (lower right
corner) by (a) Tikhonov, (b) projected Tikhonov, (c) Algorithm 3.1 (d) Algo-

rithm 3.5.
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Chapter 4

Iterated Tikhonov with general
penalty term

It is often possible to improve the quality of the approximation of x† determined by Tikhonov
regularization by replacing the Tikhonov minimization problem (2.10) by (2.8), i.e., with

min
x∈Rn

{∥∥∥Ax− bδ
∥∥∥
2
+ α ‖L(x− x0)‖2

}
,

where L ∈ Rq×n is a suitable regularization matrix and x0 a given approximation of x†.
Recall that, as we saw in (2.9), in order to have a unique solution we need that

N (L) ∩N (A) = {0}.

Like in Section 2.2.2, applying a refinement technique lead to the IT algorithm, cf. Algo-
rithm 2.1. However, available analyses of iterated Tikhonov regularization only treat the
case when L is the identity [14, 25, 46, 79]. Computed results reported in [89, 90] show that
iterative application of (2.8) with L 6= I can give better approximations of x†. To the best of
our knowledge the only detailed analysis available of iterated Tikhonov regularization

xk+1 = xk + (AtA+ αkL
tL)−1At(bδ −Axk), k = 0, 1, . . . , (4.1)

with L a fairly general regularization matrix which satisfies (2.9) is the one proposed in [30].
It is the aim of this chapter to illustrate such an analysis and to show that, for suitable choices
of L, the iteration (4.1) can give approximations of x† of significantly higher quality than the
IT iterations. We show that (4.1) defines a regularization method when the iterations are
terminated with the discrepancy principle (2.12). Our analysis is first carried out for the sta-
tionary IT method with A and L square matrices, and subsequently extended to rectangular
matrices and nonstationary iterated Tikhonov regularization.

This chapter is organized as follows: Section 4.1 uses the generalized singular value decom-
position of the matrix pair {A,L} to derive some results which are needed in the following.
The iterated Tikhonov method with a general regularization matrix L is discussed in Sec-
tion 4.2. We describe the algorithm and discuss properties of the iterates generated. A few
computed examples that illustrate the performance of iterated Tikhonov regularization are
presented in Section 4.3.
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4.1 Standard Tikhonov regularization in general form

Assume that A and L are square matrices, i.e., m = n = q = d, and introduce the generalized
singular value decomposition (GSVD) of the matrix pair {A,L},

A = UΣY t, L = V ΛY t, (4.2)

whereU, V ∈ Rd×d are orthogonal matrices, Σ = diag[σ1, . . . , σd] ∈ Rd×d and Λ = diag[λ1, . . . , λd] ∈
Rd×d are diagonal matrices, and the matrix Y ∈ Rd×d is non-singular. It follows from (2.9)
that

σj = 0 ⇒ λj 6= 0 and λj = 0 ⇒ σj 6= 0. (4.3)

Due to (2.9) the minimization problem

min
x∈Rd

∥∥∥Ax− bδ
∥∥∥
2
+ α ‖Lx‖2

has the unique solution

xα =
(
AtA+ αLtL

)−1
Atbδ. (4.4)

Substituting the factorizations (4.2) into (4.4), we get

xα =
(
Y ΣU tUΣY t + αY ΛV tV ΛY t

)−1
Y ΣU tbδ

= Y −t
(
Σ2 + αΛ2

)−1
ΣU tb

= Y −t
(
Σ2 + αΛ2

)−1
Σb̂,

where b̂ = [b̂1, . . . , b̂d]
t = U tbδ. Assume that λj = 0 for 1 ≤ j ≤ l, and λj 6= 0 for l < j ≤ d.

Note that, due to (4.3), the ratios 1
σj
, 1 ≤ j ≤ l, are well defined.

xα =

d∑

j=1

ỹj
σj

σ2j + αλ2j
b̂j

=

l∑

j=1

ỹj
1

σj
b̂j +

d∑

j=l+1

ỹj
σj

σ2j + αλ2j
b̂j

=

l∑

j=1

ỹj
1

σj
b̂j +

d∑

j=l+1

ỹj
σj/λj

(σj/λj)
2 + α

1

λj
b̂j. (4.5)

Let us give some definitions that are going to be useful in the following. Introduce the matrix

A−1
N (L) = Y −t




1/σ1
1/σ2

. . .
1/σr

0
. . .

0




U t = Y −tΣ†(I − Λ†Λ)U t, (4.6)
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where r = min{l, rank(A)} and

Λ† =




0
. . .

0
1/λl+1

. . .
1/λd




is the pseudo-inverse of Λ. Also define

L̄ = Y −tΛ†V t. (4.7)

Let Γ = diag[γ1, . . . , γd] with γj = 0 for 1 ≤ j ≤ l and γj =
σj

λj
for l < j ≤ d. Introduce

C = UΓV t, (4.8)

Since the matrices U and V are orthogonal, it follows that (4.8) is the singular value decom-
position of C , possibly with the entries of Γ ordered in a non-standard fashion,i.e., it is not
assured that γj ≥ γj+1 for all γ as in the standard SVD. Combining (4.6)–(4.8) with (4.5), we
now can express the solution of (2.8) as

xα = A−1
N (L)b

δ + L̄
(
CtC + αI

)−1
Ctbδ.

4.2 Iterated Tikhonov regularization with a general penalty term

The following algorithm extends iterated Tikhonov regularization with L = I in the station-
ary case, i.e., with αk = α for all k, by allowing a fairly general regularization matrix L. The
algorithm does not require the matrices A and L to be square.
Algorithm 4.1 (Iterated Tikhonov with general penalty term (GIT)). Let A ∈ Rm×n and bδ ∈
Rm, and let the regularization matrix L ∈ Rq×n satisfy (2.9). Assume that δ > 0 is large enough so
that (2.2) holds and fix τ > 1 independently of δ. Let α > 0 and let x0 ∈ Rn be an available initial
approximation of x†. Compute

for k = 0, 1, . . .

rk = bδ −Axk

if ‖rk‖ < τδ exit

xk+1 = xk +
(
AtA+ αLtL

)−1
Atrk

end

In the special case when L is the identity matrix, Algorithm 4.1 simplifies to the IT iterations
terminated by the discrepancy principle (2.12). In our analysis of Algorithm 4.1, we first
consider the situation when A and L are square matrices. Later, in Subsection 4.2.2, we ex-
tend the analysis to more general matrices A and L. Finally, in Subsection 4.2.3, we consider
nonstationary sequences of regularization parameters α0, α1, α2, . . . .
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4.2.1 Convergence analysis for square matrices A and L

Let d = m = n = q. In this subsection we will show that the iterates xk determined by
Algorithm 4.1 without termination by the discrepancy principle converge to a solution of
(2.3). However, as we pointed out in Chapter 2, the solutions of (2.3) are contaminated by
propagated error and therefore generally not useful. Typically, a much better approximation
of x† can be determined by the aid of the discrepancy principle as in Algorithm 4.1. We will
show that Algorithm 4.1 is an iterative regularization method.

To show convergence and the regularization property of Algorithm 4.1, we employ a divide
et impera approach. We set x0 = 0 in order to simplify the proofs. Consider the iterates

{
x0 = 0,
xk+1 = xk + (AtA+ αLtL)−1Atrk,

where rk = bδ −Axk is the residual at step k. Using the expression (4.5), we get that

xk+1 = xk +A−1
N (L)rk + L̄

(
CtC + αI

)−1
Ctrk

=

k∑

i=0

A−1
N (L)ri +

k∑

i=0

L̄
(
CtC + αI

)−1
Ctri.

We will show convergence of the two sums

x
(0)
k+1 =

k∑

i=0

A−1
N (L)ri,

x⊥
k+1 = L̄

k∑

i=0

(
CtC + αI

)−1
Ctri,

(4.9)

(4.10)

for increasing k separately.
Proposition 4.1. Assume d = m = n = q, let x

(0)
k be defined in (4.9), and set x0 = 0. Then

x
(0)
k = A−1

N (L)b
δ for k ≥ 1.

Proof. Since x0 = 0, we immediately have that

x
(0)
1 = A−1

N (L)b
δ.

It remains to be shown that x(0)
k = A−1

N (L)b
δ for all k ≥ 2. We proceed by induction. Let k ≥ 1

and suppose that x(0)
k = A−1

N (L)b
δ. Then we need to show that x(0)

k+1 = A−1
N (L)b

δ. We have

x
(0)
k+1 = x

(0)
k +A−1

N (L)(b
δ −Axk)

= A−1
N (L)b

δ +A−1
N (L)(b

δ −A(x
(0)
k + x⊥

k ))

= A−1
N (L)b

δ +A−1
N (L)(b

δ −AA−1
N (L)b

δ −Ax⊥
k ).
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If we show that A−1
N (L)(b

δ − AA−1
N (L)b

δ) = A−1
N (L)Ax

⊥
k = 0, then the proposition follows. We

have that

A−1
N (L)(b

δ −AA−1
N (L)b

δ) = (A−1
N (L) −A−1

N (L)AA
−1
N (L))b

δ

= (Y −tΣ†(I − Λ†Λ)U t − Y −tΣ†(I − Λ†Λ)U tUΣY tY −tΣ†(I − Λ†Λ)U t)bδ

= Y −t(Σ†(I − Λ†Λ)− Σ†(I − Λ†Λ)ΣΣ†(I − Λ†Λ))U tbδ

= Y −t(Σ†(I − Λ†Λ)− Σ†ΣΣ†(I − Λ†Λ)(I − Λ†Λ))U tbδ

= Y −t(Σ†(I − Λ†Λ)− Σ†(I − Λ†Λ))U tbδ

= 0,

where we have used the facts that diagonal matrices commute, that Σ†ΣΣ† = Σ†, and that
(I − Λ†Λ)(I − Λ†Λ) = (I − Λ†Λ), since (I − Λ†Λ) is an orthogonal projector.

Turning to A−1
N (L)Ax

⊥
k , we prove that A−1

N (L)AL̄ = 0. We get

A−1
N (L)AL̄ = Y −tΣ†(I − Λ†Λ)U tUΣY tY −tΛ†V t

= Y −tΣ†Σ(I − Λ†Λ)Λ†V t

= Y −tΣ†Σ(Λ† − Λ†ΛΛ†)V t

= Y −tΣ†Σ(Λ† − Λ†)V t

= 0.

It follows that A−1
N (L)Ax

⊥
k = 0 by induction because

A−1
N (L)Ax

⊥
k = A−1

N (L)Ax
⊥
k−1 +A−1

N (L)AL̄(C
tC + αI)−1Ct(b−Axk),

which concludes the proof.

Proposition 4.2. Let d = m = n = q and assume that (2.9) holds. Let xδ
k be defined in (4.10) and

set x0 = 0. Then
x⊥
k → L̄C†b̄δ as k → ∞,

where

b̄δ = UΛ†ΛU tbδ.

Proof. Consider the sequence
{
x⊥
k

}∞
k=1

. We would like to show that this sequence can be de-
termined by application of standard iterated Tikhonov regularization to some linear system
of equations. The convergence then will follow from available results for iterative Tikhonov
regularization with regularization matrix L = I . First recall the expression for x⊥

k+1,

x⊥
k+1 = x⊥

k + L̄(CtC + αI)−1Ct(bδ −Axk).

To transform this iteration to (standard) iterated Tikhonov iterations, we introduce

h̃k = (CtC + αI)−1Ct(bδ −Axk), (4.11)

such that
x⊥
k+1 = x⊥

k + L̄h̃k. (4.12)

Inserting the factorizations (4.2) and (4.8) of A and C into (4.11) yields

h̃k = V (Γ2 + αI)−1ΓU t(bδ − UΣY txk) = V (Γ2 + αI)−1Γ(U tbδ − ΣY txk).
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We have
ΓΣ = ΓΓΛ,

because both the left-hand and right-hand sides are diagonal matrices whose first l compo-
nents vanish, and the remaining components are of the form σ2j/λj for l < j ≤ d. Thus, we
obtain

h̃k = V (Γ2 + αI)−1Γ(U tb− ΓΛY txk).

Define
b̄δ = UΛ†ΛU tbδ

and
x̄k = Lxk,

and consider
h̄k = (CtC + αI)−1Ct(b̄δ − Cx̄k).

We will show that h̄k = h̃k. Substituting the factorizations (4.8) and (4.2) of C and L into the
above expression, we get

h̄k = V (Γ2 + αI)−1V tV ΓU t(UΛ†ΛU tbδ − UΓV tV ΛY txk)

= V (Γ2 + αI)−1Γ(U tbδ − ΓΛY txk)

= h̃k,

where in the last step we have used the fact that ΓΛ†Λ = Γ. Replacing h̃k by h̄k in (4.12), we
obtain

x⊥
k+1 = x⊥

k + L̄h̄k = x⊥
k + L̄(CtC + αI)−1Ct(b̄δ − CLxk).

Since x0 = 0, we have

x⊥
k+1 = L̄

k∑

i=0

(CtC + αI)−1Ct(b̄δ − CLxi).

We now show that the sum in the right-hand side, namely

x̃k+1 =
k∑

i=0

(CtC + αI)−1Ct(b̄δ − CLxi)

is the approximate solution computed by k + 1 iterations of standard iterated Tikhonov iter-
ation applied to the linear system of equations

Cx = b̄δ. (4.13)

We have
x̃k+1 = x̃k + (CtC + αI)−1Ct(b̄δ − CLxk).

Therefore, if we establish that Lxk = x̃k for all k, then we are done. We show this result by
induction. For k = 0 it is trivial since x0 = 0. Suppose that x̃k = Lxk. We would like to show
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that x̃k+1 = Lxk+1. Applying L to xk+1 yields

Lxk+1 = Lxk + LA−1
N (L)rk + LL̄(CtC + αI)−1Ct(bδ −Axk)

(a)
= x̃k + 0+ LL̄(CtC + αI)−1Ct(bδ −Axk)

(b)
= x̃k + LL̄(CtC + αI)−1Ct(b̄δ −CLxk)

= x̃k + V Λ†Y tY −tΛV tV (Γ2 + αI)−1ΓU t(b̄δ − CLxk)

= x̃k + V Λ†Λ(Γ2 + αI)−1ΓU t(b̄δ − CLxk)

(c)
= x̃k + V (Γ2 + αI)−1ΓU t(b̄δ − CLxk)

= x̃k + (CtC + αI)−1Ct(b̄δ − CLxk)

= x̃k+1,

where equality (a) is due to the fact that A−1
N (L) annihilates the component of rk = bδ −Axk

in the complement of N (L), (b) is obtained by using the fact, shown above, that h̃k = h̄k,
and (c) follows from Λ†ΛΓ = Γ.

We have shown that the x̃k are iterates determined by the (standard) iterated Tikhonov
method applied to the linear system of equations (4.13) and thus it follows that

x̃k → C†b̄δ as k → ∞,

due to the convergence of the iterated Tikhonov method [61]. By continuity of L̄, we have
that

x⊥
k → L̄C†b̄δ as k → ∞,

which concludes the proof.

Introduce the matrix
A(†) = Y −tΣ†U t.

Theorem 4.3 (Convergence). Let d = m = n = q and assume that (2.9) holds. Let x0 = 0.
Then the iterates determined by Algorithm 4.1 converge to A(†)bδ. Moreover, if bδ ∈ R(A), then
AA(†)bδ = bδ.

Proof. From Propositions 4.1 and 4.2, we have

xk = x
(0)
k + x⊥

k → A−1
N (L)b

δ + L̄C†b̄δ = x∞ as k → ∞.

Using the definitions (4.6), (4.7), and (4.8), we obtain

x∞ = Y −tΣ†(I − Λ†Λ)U tbδ + Y −tΛ†V tV Γ†U tUΛ†ΛU tbδ

= Y −t
(
Σ†(I − Λ†Λ) + Λ†Γ†Λ†Λ

)
U tbδ

= Y −t
(
Σ†(I − Λ†Λ) + Λ†Γ†

)
U tbδ

= Y −t
(
Σ†(I − Λ†Λ) + Λ†ΛΣ†

)
U tbδ

= Y −tΣ†U tbδ,

where we have used the fact that diagonal matrices commute and Λ†Γ† = Λ†ΛΣ†.
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What is left to prove is that if bδ ∈ R(A), then AA(†)bδ = bδ, which is straightforward. Since
bδ ∈ R(A), there exists y ∈ Rd such that bδ = Ay thus

AA(†)bδ = AA(†)Ay

= UΣY tY −tΣ†U tUΣY ty

= UΣΣ†ΣY ty

= UΣY ty = Ay = bδ,

which concludes the proof.

Remark 4.4. We note that x∞ = A(†)bδ might not be the minimum norm solution of the system
(2.3), because x∞ may have a component in N (A).

Theorem 4.3 shows that the iterates determined by Algorithm 4.1 converge to a solution of
(2.3), when A is a square matrix, for any fixed regularization parameter α > 0. This result
is useful when the vector bδ is error-free, i.e., when δ = 0 in (2.2). However, as already
mentioned, when bδ is error-contaminated, the minimum norm solution A†bδ typically is
severely contaminated by propagated error stemming from the error in bδ and, therefore,
is not useful. Moreover, the solution A(†)bδ typically is not useful either. A meaningful
approximation of x† can be determined by terminating the iterations sufficiently early. We
will show that the discrepancy principle can be applied to determine when to terminate the
iterations. This requires the following auxiliary result.
Lemma 4.5. Assume that d = m = n = q and that (2.9) holds. Let δ > 0, b ∈ R(A), and x0 = 0.
Then Algorithm 4.1 terminates after finitely many steps.

Proof. Consider the residual at the limit point

rk → r∞ = bδ −AA(†)bδ =
(
I −AA(†)

)
(b+ η) =

(
I −AA(†)

)
η,

where we have called η = bδ − b and in the last step we have used that b ∈ R(A). Now, by
(2.2), we have

‖r∞‖ =
∥∥∥
(
I −AA(†)

)
η

∥∥∥
(a)

≤ ‖η‖ ≤ δ,

where the inequality (a) follows from the fact that I − AA(†) is an orthogonal projector; we
have

I −AA(†) = I − UΣY tY −tΣ†U t = U(I − ΣΣ†)U t,

where U is an orthogonal matrix.

Let τ > 1 be a constant independent of δ. Then there is a constant kτ < ∞ such that for all
k > kτ , it holds

‖rk‖ < τδ.

We are now able to prove the regularization property of Algorithm 4.1.
Theorem 4.6 (Regularization). Let b ∈ R(A). Then, under the assumptions of Theorem 4.3 and
Lemma 4.5, Algorithm 4.1 terminates as soon as a residual vector rk = bδ−Axk satisfies ‖rk‖ ≤ τδ.
This stopping criterion is satisfied after finitely many steps k = kδ. Denote the iterate xkδ simply by
xδ. Then

lim sup
δց0

∥∥∥x(†) − xδ
∥∥∥ = 0,
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where x(†) = A(†)b.

Proof. It follows from Lemma 4.5 that if δ > 0, then the iterations with Algorithm 4.1 are ter-
minated after finitely many, k, steps. Since x0 = 0, the iterates determined by the algorithm
can be expressed as

xk =

k−1∑

j=0

hj,

where
hj = A−1

N (L)rj + L̄(CtC + αI)−1Ctrj.

We first show that
A(†)Axδ = xδ.

Consider

A(†)Ahj = A(†)A(A−1
N (L) + L̄(CtC + αI)−1Ct)rj

= Y −tΣ†ΣY t(Y −tΣ†(I − Λ†Λ)U t + Y −tΛ†(Γ2 + αI)−1ΓtU t)rj

= (Y −tΣ†ΣΣ†(I − Λ†Λ)U t + Y −tΣ†ΣΛ†(Γ2 + αI)−1ΓtU t)rj

= (Y −tΣ†(I − Λ†Λ)U t + Y −tΛ†(Γ2 + αI)−1ΓtU t)rj

= hj .

Thus, we obtain

A(†)Axδ =

kδ−1∑

j=0

A(†)Ahj =

kδ−1∑

j=0

hj = xδ.

Therefore,
lim sup

δց0

∥∥∥x(†) − xδ
∥∥∥ = lim sup

δց0

∥∥∥A(†)A
(
x(†) − xδ

)∥∥∥

≤
∥∥∥A(†)

∥∥∥ lim sup
δց0

∥∥∥A
(
x(†) − xδ

)∥∥∥

=
∥∥∥A(†)

∥∥∥ lim sup
δց0

∥∥∥
(
b− bδ

)
+
(
bδ −Axδ

)∥∥∥

≤
∥∥∥A(†)

∥∥∥ lim sup
δց0

(1 + τ) δ

= 0,

where in the last step we have used that xδ is determined by the discrepancy principle.

Remark 4.7. As already mentioned, A(†)b might not be a minimum norm solution with respect to
the Euclidean vector norm. Instead, it is a minimum norm solution with respect to a vector norm
induced by the matrix Y . We have

∥∥∥A(†)b
∥∥∥ =

∥∥Y −tΣU tb
∥∥ =

∥∥ΣU tb
∥∥
Y −t ,

where we define the norm induced by an invertible matrix M ∈ Rd×d as ‖y‖M = ‖My‖; see, e.g,
[88, eq. (5.6.2)]. The norm in the right-hand side is determined by Y −1, which, in turn, is defined by
the GSVD of the matrix pair {A,L}.
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4.2.2 Extension of the convergence analysis to rectangular matrices A and L

We show how the analysis of the previous subsection for square matrices A and L can be
extended to rectangular matrices. First consider the case when A ∈ Rm×n with m < n. We
then pad A and bδ with n−m zero rows to obtain

Â =

[
A
O

]
∈ Rn×n, b̂δ =

[
bδ

0

]
∈ Rn,

and replace A and bδ in (2.3) by Â and b̂δ, respectively. This replacement does not change
the solution of the minimization problem (2.3).

The situation when A ∈ Rm×n with m > n can be handled by padding A with m − n zero
columns and the solution x with m− n zero rows. We obtain

Â = [A 0] ∈ Rm×m, x̂ =

[
x

0

]
∈ Rm,

and replace A and x in (2.3) by Â and x̂. Only the n first entries of the computed solution are
of interest.

The case when L ∈ Rq×n with q < n can be treated similarly as when A has fewer rows than
columns. Thus, we pad L with n− q zero rows to obtain

L̂ =

[
L
O

]
∈ Rn×n,

and replace L in (2.8) by L̂. This replacement does not affect the computed solution.

Finally, when L ∈ Rq×n with q > n, we compute the QR factorization

L = QR,

where Q ∈ Rq×n has orthonormal columns and R ∈ Rn×n is upper triangular. We then
replace L in (2.8) by R. The computed solution is not affected by this replacement.

4.2.3 The nonstationary iterated Tikhonov method with a general L

This section extends the analysis of the stationary iterated Tikhonov regularization method
described in Subsection 4.2.1 and implemented by Algorithm 4.1 to nonstationary iterated
Tikhonov regularization. This extension can be carried out in a fairly straightforward man-
ner. We therefore only state the results and give sketches of proofs.

Consider the iterations

xk+1 = xk +
(
AtA+ αkL

tL
)−1

Atrk, k = 0, 1, . . . ,

where as usual rk denotes the residual vector. We assume that (2.9) holds and that the regu-
larization parameters αk > 0 satisfy

∞∑

k=0

α−1
k = ∞. (4.14)
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Analyses of this iteration method when L = I are presented in [25, 79]. The following
algorithm outlines the computations with the discrepancy principle as stopping criterion.
Algorithm 4.2 (GITNS). Let A ∈ Rm×n, bδ ∈ Rm, and x ∈ Rn. Assume that the regularization
matrix L ∈ Rq×n satisfies (2.9) and that the regularization parameters αk > 0 satisfy (4.14). Let δ be
defined in (2.2) and fix τ > 1 independently of δ. Let x0 ∈ Rn be an available initial approximation
of x†. Compute

for k = 0, 1, . . .

rk = bδ −Axk

if ‖rk‖ < τδ exit.

xk+1 = xk +
(
AtA+ αkL

tL
)−1

Atrk

end.

We would like to show that, under the assumption (4.14), the iterates determined by the
above algorithm without the stopping criterion converge to A(†)bδ, and that the algorithm
with stopping criterion defines a regularization method. In the remainder of this section,
we only consider square matrices A and L. Extensions to rectangular matrices follow as
described in Subsection 4.2.2.
Theorem 4.8 (Convergence). Assume that m = n = q and that (2.9) holds. Let the regularization
parameters αk > 0 satisfy (4.14). Then the iterates determined by Algorithm 4.2 without stopping
criterion converge to the solution A(†)bδ of the linear system of equations Ax = bδ.

Proof. The result can be shown in a similar fashion as Theorem 4.3. We therefore only outline
the proof. Similarly as in the proof of Propositions 4.1 and 4.2, we split the iterates as

xk = x
(0)
k + x⊥

k .

Using the GSVD (4.2) we can show that

x
(0)
k → A−1

N (L)b
δ as k → ∞,

x⊥
k → L̄C†b̄δ as k → ∞.

(4.15)

(4.16)

Similarly as in Proposition 4.1, one can show that x(0)
k = A−1

N (L)b
δ for all k. For the x⊥

k it holds
that

x⊥
k+1 = L̄x̃k+1 =

k∑

i=0

(CtC + αiI)
−1Ct(b̄δ − Cx̃i).

Using the assumption (4.14) and [25, Theorem 1.4 p. 21], it follows that

x̃k → C†b̄δ as k → ∞.

By continuity of L̄, we obtain
x⊥
k → L̄C†b̄δ as k → ∞.

Combining (4.15) and (4.16) shows the theorem.

The following result follows similarly as Theorem 4.6. We therefore omit the proof.
Theorem 4.9 (Regularization). Let the assumptions of Theorem 4.8 and Lemma 4.5 hold. Then
Algorithm 4.2 (with stopping criterion) terminates when a residual vector rk = bδ − Axk satisfies
‖rk‖ ≤ τδ. This stopping criterion is satisfied after finitely many steps k = kδ. Denote the iterate
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xkδ simply by xδ. Then

lim sup
δց0

∥∥∥x(†) − xδ
∥∥∥ = 0.

4.3 Numerical examples

This section presents some computed examples where we illustrate the performances of
both stationary and nonstationary iterated Tikhonov method with general penalty term, re-
ferred to as GIT and GITNS , respectively. We first consider three test problems in one space-
dimension. These problems are taken from REGULARIZATION TOOLS [83]. Subsequently an
image restoration example in two-dimensional space is considered.

The n× n bidiagonal and tridiagonal matrices

L1 =




−1 1
. . . . . .

−1 1
0


 , L2 =




0 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 0



.

are scaled discretizations of the first and second derivative operators at equidistant points in
one space-dimension. Their null spaces are

L1 = span








1
...
1







, L2 = span








1
...
1


 ,




1
2
...
n







.

The matrix L1 preserves sampling of constant functions, while L2 also preserves uniform
sampling of linear functions; see [53].

We apply the GITNS algorithm using the geometric sequence of regularization parameters
(2.20). They satisfy

∞∑

k=0

α−1
k =

1

α0

∞∑

k=0

1

qk
= ∞,

which shows that the hypothesis on the regularization parameters of Theorems 4.8 and 4.9
hold. We fix q = 0.8, while the choice of α0 will depend on L. The relative reconstruction
error of the computed solution xk is measured by means of the RRE.

We compare the GIT and GITNS methods to classical iterated Tikhonov methods with sta-
tionary and non-stationary sequences of regularization parameters, referred to as IT and
ITNS , respectively. We recall that IT and ITNS can be obtained as special cases of GIT and
GITNS , respectively, by choosing L = I . All problems in one space-dimension have square
matrices A ∈ R1000×1000. The matrices A and error-free vectors b are determined by MAT-
LAB functions in [83]. We define the error-contaminated vector bδ by adding white Gaussian
noise to b with a user-chosen noise level ξ.

The iterations with all methods in our comparison are terminated with the discrepancy prin-
ciple (2.19) with τ = 1.01.
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FIGURE 4.1: Stationary iterated Tikhonov regularization: RRE for the iterate
determined by the discrepancy principle for different values of α. (a) Baart
test problem, (b) Deriv2 test problem, (c) Gravity test problem, (d) Peppers test
problem. The dashed curves are for L = I , the solid gray curves for L = L1,

and the solid black curves for L = L2.

As stated in Remark 4.7, the computed solution may have a component in N (A). The size of
this component depends on the matrix Y in (4.2). We will tabulate the norm of this compo-
nent for the examples in one space-dimension. The orthogonal projector PN (A) onto N (A)
is computed with the aid of the SVD of A. We set all singular values smaller than machine
epsilon to zero and compute ∥∥PN (A)x

δ
∥∥

‖xδ‖ ,

for the nonstationary algorithms for both the IT and GIT.

Baart We consider the example baart and fix ξ = 0.01. Figure 4.2(a) shows the desired
solution x†, a uniform sampling of sin(t) with t ∈ [0, π], and the right-hand side bδ. Con-
sider first stationary iterated Tikhonov. Figure 4.1(a) shows the RRE for computed solutions
determined by the discrepancy principle for L = I , L = L1, and L = L2. The regularization
parameter α > 0 has to be chosen differently for the different regularization matrices. For
instance, α has to be chosen much larger for L = L2 than for L = I . This is due to the fact that
x† has a large component in N (L2). Therefore, α has to be fairly large to make the penalty
term α ‖L2x‖ effective. We remark that Algorithm 4.1 converges for any α > 0, but the rate
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FIGURE 4.2: Baart test problem: (a) desired solution x† (dashed curve) and
error-contaminated data vector bδ (solid curve), (b) Reconstructions obtained
with the nonstationary iterated Tikhonov method with L = I (dashed curve),
with L = L1 (solid gray curve), and with L = L2 (solid black curve). The

dotted curve shows the desired solution x†.

of convergence is affected by the choice of α. Choosing α in a proper range, we observe a
substantial reduction of the RRE when using GIT with L1 and, in particular with L2, when
compared with L = I . We set the maximum number of iterations to 104. Large values of α
did not result in accurate approximations of x† within this number of iterations.

For the sake of completeness, we show the number of iterations needed for each tested value
of α in Figure 4.3(a). We see that the number of iterations needed to satisfy the discrepancy
principle increases with α. For α sufficiently large, Algorithm 4.1 terminates because the
maximum number of iterations, 104, has been reached. For the regularization matrix L2,
a large value of α is required for the regularization term α ‖Lx‖2 to be effective (see Fig-
ure 4.1(a)). Therefore, the tested α values are not large enough to show a significant increase
in the number of iterations.

We would like to mention that the qualitative behavior of the curves in Figure 4.1 does not
depend on the noise level. For instance, consider the baart example with noise level ξ =
0.05 and apply the GIT algorithm with L ∈ {I, L1, L2} for α values in the range [10−7, 107].
Figure 4.3(b) displays the RRE in the approximated solutions determined by Algorithm 4.1
for the α. Comparing Figure 4.1(a) and 4.3(b) shows the errors in the computed approximate
solution to differ for ξ = 0.01 and ξ = 0.05; the computed approximate solutions determined
for ξ = 0.01 are more accurate. However, the qualitative behavior of the curves is similar.

In the following examples we will not show plots analogous to those of Figure 4.3 because
are quite similar.

We turn to the nonstationary iterations. Comparing the RREs in Table 4.1, we can see that
both L = L1 and L = L2 yield more accurate approximations of x† than L = I . This is also
confirmed by visual inspection of the computed solutions in Figure 4.2(b). Table 4.1 shows
that the components of the computed solutions in N (A) are small for the GITNS methods.
Their size depends on the matrix L. This is to be expected since the presence of a compo-
nent N (A) is due to L. We obtain a much smaller component in N (A) for L1 than for L2.
Nevertheless, the latter regularization matrix gives a more accurate approximation of x†.

We remark that the dimension of the numerical null space of A is very large, about 990. This
may contribute to the fact that the computed solutions do not have negligible components



4.3. Numerical examples 49

10-7 10-4 1 104 107
2

16

141

1244

11000

(a)

10-7 10-4 1 104 107
0.1121

0.1995

0.3550

0.6317

1.1240

2

(b)

FIGURE 4.3: Baart test problem: (a) Number of iterations prescribed by the
discrepancy principle using GIT with ξ = 0.01 as a function of α, (b) RRE for
the iterates determined by the discrepancy principle using GIT with ξ = 0.05
for different values of α. The dashed curves are for L = I , the solid gray curves

for L = L1, and the solid black curves for L = L2.

Method α0 RRE Iterations ‖PN (A)x
δ‖

‖xδ‖
ITNS 10−2 0.17131 4 1.7815 × 10−15

GITNS L1 102 0.12331 3 9.1999 × 10−15

GITNS L2 106 0.04290 2 0.0027300

TABLE 4.1: Baart test problem: RRE, number of iterations, and relative mag-
nitude of PN (A)x

δ for the nonstationary iterated Tikhonov method with L = I
(ITNS), and with L = L1 and L2 (GITNS). The sequence of αk is defined by
(2.20) with α0 shown in the table and q = 0.8 for all methods. The smallest

error is shown in boldface.

in N (A). The matrices A in the following examples in one-space dimension have numerical
null spaces of much smaller dimension, and the computed approximate solutions have a
much smaller component in N (A). We finally note that the ITNS method yields a negligible
component in N (A).

Deriv2 We now consider the example deriv2with ξ = 0.05. Figure 4.4(a) displays the de-
sired solution x† and the data vector bδ. The vector x† is a uniform sampling of the function
et with t ∈ [0, 1].

Figure 4.1(b) shows results for the stationary iterated Tikhonov method. The results are com-
parable to those of the previous example, but the range of α-values that yield reasonably fast
convergence is smaller. A proper estimation of α can be avoided by using nonstationary
iterated Tikhonov methods. For the latter methods L = L1 and L = L2 yield approximate
solutions of higher quality than L = I ; see Table 4.2 as well as Figure 4.4(b). The regular-
ization matrix L2 gives the best result. Table 4.2 shows that for all methods the computed
approximate solutions have a negligible component in N (A).

Gravity The last example in one space-dimension is gravity. We add white Gaussian
noise to the error-free data vector b to determine an error-contaminated data vector bδ with
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FIGURE 4.4: Deriv2 test problem: (a) desired solution x† (dashed curve) and
error-contaminated data vector bδ (solid curve), (b) Reconstructions obtained
with the nonstationary iterated Tikhonov method with L = I (dashed curve),
with L = L1 (solid gray curve), and with L = L2 (solid black curve). The

dotted curve shows the desired solution x†.
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FIGURE 4.5: Gravity test problem: (a) desired solution x† (dashed curve) and
error-contaminated data vector bδ (solid curve), (b) Reconstructions obtained
with the nonstationary iterated Tikhonov method with L = I (dashed curve),
with L = L1 (solid gray curve), and with L = L2 (solid black curve). The

dotted curve shows the desired solution x†.

Method α0 RRE Iterations ‖PN (A)x
δ‖

‖xδ‖
ITNS 10−2 0.32502 18 2.9408 × 10−15

GITNS L1 102 0.07138 5 2.8801 × 10−15

GITNS L2 106 0.02748 2 2.8411 × 10−15

TABLE 4.2: Deriv2 test problem: RRE, number of iterations, and relative mag-
nitude of PN (A)x

δ for the nonstationary iterated Tikhonov method with L = I
(ITNS), and with L = L1 and L2 (GITNS). The sequence of αk is defined by
(2.20) with α0 shown in the table and q = 0.8 for all methods. The smallest

error is shown in boldface.
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(a) (b) (c)

FIGURE 4.6: Peppers test problem: (a) Uncontaminated image (512× 512 pix-
els), (b) PSF (25×25 pixels), (c) blur- and noise-contaminated image (ξ = 0.03).

Method α0 RRE Iterations ‖PN (A)x
δ‖

‖xδ‖
ITNS 10−2 0.17001 2 4.1708 × 10−15

GITNS L1 102 0.10165 2 1.4004 × 10−9

GITNS L2 106 0.081483 2 6.4620 × 10−10

TABLE 4.3: Gravity test problem: RRE, number of iterations, and relative
magnitude of PN (A)x

δ for the nonstationary iterated Tikhonov method with
L = I (ITNS), and with L = L1 and L2 (GITNS). The sequence of αk is defined
by (2.20) with α0 shown in the table and q = 0.8 for all methods. The smallest

error is shown in boldface.

ξ = 0.1. The desired solution, x†, is a uniform sampling of sin(πt) + 1
2 sin(2πt) with t ∈ [0, 1].

Both x† and bδ are displayed in Figure 4.5(a).

Figure 4.1(c) shows the RRE values at termination for different α-values for stationary it-
erated Tikhonov methods. The graphs are similar as for the previous examples. Table 4.3
compares RREs obtained for nonstationary iterated Tikhonov methods. We observe that all
nonstationary methods in our comparison converge in only 2 iterations. This is due to the
large amount of noise in bδ. The more error in bδ, the faster the discrepancy principle is sat-
isfied. Similarly as in the previous examples, we see that the use of a regularization matrix
different from the identity is beneficial; see Figure 4.5(b). In particular, the approximations of
x† obtained with GITNS are smooth despite the high noise level. Looking at the component
of the solution in N (A), we can see that is very small.

Peppers Our last example illustrates the application of Algorithm 4.2 to an image deblur-
ring problem. The peppers image in Figure 4.6(a) represents the blur- and noise-free image.
The blurred image is constructed by blurring the exact image by motion blur defined by
the point-spread function (PSF) shown in Figure 4.6(b). We add white Gaussian noise such
that ξ = 0.03 to the blurred image. This gives the blur- and noise-contaminated image in
Figure 4.6(c). We ignore boundary effects and use convolution with periodic boundary con-
ditions to define A.

We use regularization matrices that are a scaled discretizations of periodic divergence L1

defined in (2.14) or a scaled discretization of the periodic Laplacian L2. We define

L2 = L1
2 ⊗ I + I ⊗ L1

2, (4.17)
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(a) (b) (c)

FIGURE 4.7: Peppers test problem reconstructions determined by the nonsta-
tionary iterated Tikhonov method with (a) L = I , (b) L = L1, and (c) L = L2.

Method RRE Iterations
ITNS 0.10743 7
GITNS L1 0.09368 4
GITNS L2 0.08516 3

TABLE 4.4: Peppers test problem: RRE and number of iterations for the non-
stationary iterated Tikhonov method with L = I (ITNS), and with L = L1 and
L2 (GITNS). The sequence of αk is defined by (2.20) with α0 = 1 and q = 0.8

for all methods. The smallest error is shown in boldface.

where

L1
2 =




2 −1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 −1 2




denotes the discretization of the second derivative in one space-dimension with periodic
boundary conditions. Both L1 and L2 are BCCB (block circulant with circulant block) matri-
ces and therefore can be diagonalized using the 2D discrete Fourier transform.

We first consider the stationary iterated Tikhonov method. Figure 4.1(d) displays the RRE of
the approximate solution determined by using the discrepancy principle for different values
of α. We get stagnation for large α-values. Moreover, for every α > 0, the stationary iterated
Tikhonov method with L given by (2.14) or (4.17) gives better results than with L = I for the
same α-value.

Turning to the nonstationary iterated Tikhonov method, Table 4.4 illustrates that the use
of the regularization matrices L1 and L2 give smaller errors in the computed approximate
solutions than when the identity matrix is used as regularization matrix. Figure 4.7 shows
that the regularization matrices L1 and L2 give restorations with less “ringing” and with
sharper edges than when using the identity as regularization matrix.
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Chapter 5

Fractional and Weighted Iterated
Tikhonov

In this and in the next chapter we consider the more general framework of linear operator
equations of the form

Ax = b , (5.1)

where A : X → Y is a compact linear operator between Hilbert spaces X and Y . We assume
b to be attainable, i.e., that problem (5.1) has a solution x† = A†b of minimal norm. A† is
unbounded because A is compact, with infinite dimensional range. Hence problem (5.1) is
ill-posed and has to be regularized.

Like before only an approximation bδ of b is available with

‖bδ − b‖ ≤ δ. (5.2)

As in the finite dimensional case A†bδ is not a good approximation of x†, thus we approx-
imate x† with xδα := Rαb

δ where {Rα} is a family of continuous operators depending on a
parameter α that will be defined later. In this setting the standard Tikhonov regularization is
defined by Rα = (A∗A+ αI)−1A∗.

Using the singular values expansion of A, filter based regularization methods are defined in
terms of filters of the singular values, cf. Proposition 5.3. This is a useful tool for the anal-
ysis of regularization techniques [79], both for direct and iterative regularization methods
[80, 84]. Furthermore, new regularization methods can be defined investigating new classes
of filters. We are going to consider two different variants of standard Tikhonov regulariza-
tion stemming from this interpretation. The first has been proposed in [95] and it is called
fractional Tikhonov method. The authors obtain a new class of filtering regularization meth-
ods adding an exponent, depending on a parameter, to the filter of the standard Tikhonov
method. They provide a detailed analysis of the filtering properties and the optimal order
of the method in terms of such further parameter. The second and different generalization
of the standard Tikhonov method we are going to consider has been recently proposed in
[86] with a detailed filtering analysis. Both generalizations are called “fractional Tikhonov
regularization” in the literature and they are compared in [69], where the optimal order of
the method in [86] is provided as well. To distinguish the two proposals in [95] and [86], we
will refer in the following as “fractional Tikhonov regularization” and “weighted Tikhonov
regularization”, respectively. These variants of the Tikhonov method have been introduced
to compute accurate approximations of non-smooth solutions, since it is well known that the
Tikhonov method provides over-smoothed solutions.
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In this chapter, we firstly provide a saturation result similar to the well-known saturation
result for Tikhonov regularization [61]: indeed, Tikhonov regularization under suitable a-
priori assumption and a-priori choice rule, α = α (δ) ∼ c (δ)2/3, is of optimal order and the
best possible convergence rate obtainable is

‖xδα − x†‖ = O
(
δ

2
3

)
.

On the other hand, let R (A) be the range of A and let Q be the orthogonal projector onto
R (A), if

sup
{
‖xδα − x†‖ : ‖Q

(
b− bδ

)
‖ ≤ δ

}
= o

(
δ

2
3

)
,

then x† = 0, as long as R (A) is not closed, and this shows how Tikhonov regularization for
an ill-posed problem with compact operator never yields a convergence rate which is faster
than O

(
δ

2
3

)
, since it saturates at this rate. Such result motivated us to introduce the iter-

ated version of fractional and weighted Tikhonov in the same spirit of the iterated Tikhonov
method, see Section 2.2.2. We prove that those iterated methods can overcome the previous
saturation results. Afterwards, inspired by the works [25, 79] we introduce the nonstationary
variants of our iterated methods. Differently from the nonstationary iterated Tikhonov, we
have two nonstationary sequences of parameters. In the noise free case, we give sufficient
conditions on these sequences to guarantee the convergence providing also the correspond-
ing convergence rates. In the noise case, we show the stability of the proposed iterative
schemes proving that they are regularization methods. Finally, a few selected examples con-
firm the previous theoretical analysis, showing that a proper choice of the nonstationary
sequences of parameters can provide better restorations compared to the classical iterated
Tikhonov with a geometric sequence of regularization parameter according to [25].

This chapter is structured as follows: in Section 5.1 we first recall the basic definition of fil-
ter based regularization methods and of optimal order of a regularization method. Then in
Section 5.2 Fractional Tikhonov regularization with optimal order and converse results are
studied and we provide saturation results for both. We then introduce, in Section 5.3 new
iterated fractional Tikhonov regularization methods are introduced, where the analysis of
their convergence rate shows that they are able to overcome the previous saturation results.
A nonstationary iterated weighted Tikhonov regularization and a similar nonstationary iter-
ated fractional Tikhonov regularization are then investigated in detail in Section 5.4. Finally,
we give some numerical examples in Section 5.5.

5.1 Preliminaries

As described above, we consider a compact linear operator A : X → Y between Hilbert
spaces X and Y (over the field R or C) with given inner products 〈·, ·〉X and 〈·, ·〉Y , respec-
tively. Hereafter we will omit the subscript for the inner product as it will be clear in the
context. If A∗ : Y → X denotes the adjoint of A (i.e., 〈Ax, y〉 = 〈x,A∗y〉), then we indi-
cate with (σj; vj , uj)n∈N the singular value expansion of A, where {vj}j∈N and {uj}j∈N are
a complete orthonormal system of eigenvectors for A∗A and AA∗, respectively, and σj > 0
are written in decreasing order, with 0 being the only accumulating point for the sequence
{σj}j∈N when dim R (A) = ∞. If X is not finite dimensional, then 0 ∈ λ (A∗A), the spectrum
of A∗A, namely λ (A∗A) = {0} ∪ ⋃∞

j=1{σ2j }. Finally, σ (A) denotes the closure of
⋃∞

j=1{σj},
i.e., σ (A) = {0} ∪⋃∞

j=1{σj}.
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Let now {Eσ2}σ2∈λ(A∗A) be the spectral decomposition of the self-adjoint operatorA∗A. Then
from well-known facts from functional analysis [116] we can write f (A∗A) :=

∫
f
(
σ2
)
dEσ2 ,

where f : λ (A∗A) ⊂ R → C is a bounded Borel measurable function and 〈Ex1, x2〉 is a
regular complex Borel measure for every x1, x2 ∈ X . The following equalities hold

Ax =
+∞∑

l=1

σl〈x, vl〉ul, x ∈ X ,

A∗b =
+∞∑

l=1

σl〈b, ul〉vl, b ∈ Y,

f (A∗A) x :=

∫

λ(A∗A)
f
(
σ2
)
dEσ2x =

∞∑

l=1

f
(
σ2l
)
〈x, vl〉vl,

〈f (A∗A)x1, x2〉 =
∫

λ(A∗A)
f
(
σ2
)
d〈Eσ2x1, x2〉 =

∞∑

l=1

f
(
σ2l
)
〈b, vl〉〈x, vl〉,

‖f (A∗A) ‖ = sup{|f
(
σ2
)
| : σ2 ∈ λ (A∗A)},

(5.3)

(5.4)

where the series (5.3) and (5.4) converge in the L2 norms induced by the scalar products of
X and Y , respectively.
Definition 5.1. We define the generalized inverse A† : D

(
A†) ⊆ Y → X of a compact linear

operator A : X → Y as

A†b =
∑

l:σl>0

σ−1
l 〈b, ul〉vl, b ∈ D

(
A†
)
, (5.5)

where

D
(
A†
)
=



b ∈ Y :

∑

l:σl>0

σ−2
l |〈b, ul〉|2 <∞



 .

With respect to problem (5.1), we consider the case where only an approximation bδ of b
satisfying the condition (5.2) is available. Therefore x† = A†b, b ∈ D

(
A†), cannot be approx-

imated by A†bδ, due to the unboundedness of A†, and hence in practice the problem (5.1) is
approximated by a family of neighboring well-posed problems [61].
Definition 5.2. By a regularization method for A† we call any family of operators

{Rα}α∈(0,α0) : Y → X , α0 ∈ (0,+∞] ,

with the following properties:

(i) Rα : Y → X is a bounded operator for every α.

(ii) For every b ∈ D
(
A†) there exists a mapping (rule choice) α : R+ × Y → (0, α0) ∈ R,

α = α
(
δ, bδ

)
, such that

lim sup
δ→0

{
α
(
δ, bδ

)
: bδ ∈ Y, ‖b− bδ‖ ≤ δ

}
= 0,

and
lim sup

δ→0

{
‖Rα(δ,bδ)b

δ −A†b‖ : bδ ∈ Y, ‖b− bδ‖ ≤ δ
}
= 0.

Throughout this chapter c is a constant which can change from one instance to the next.
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For the sake of clarity, if more than one constant will appear in the same equation we will
distinguish them by means of a subscript.
Proposition 5.3. Let A : X → Y be a compact linear operator and A† its generalized inverse. Let
Rα : Y → X be a family of operators defined for every α ∈ (0, α0) as

Rαb :=
∑

l: σl>0

Fα (σl)σ
−1
l 〈b, ul〉vl, (5.6)

where Fα : [0, σ1] ⊃ σ (A) → R is a Borel function such that

sup
l:σl>0

|Fα (σl)σ
−1
l | = c (α) <∞,

|Fα (σl) | ≤ c <∞, where c does not depend on (α, l) ,

lim
α→0

Fα (σl) = 1 point-wise in σl.

(5.7)

(5.8)
(5.9)

Then Rα is a regularization method, with ‖Rα‖ = c (α), and it is called filter based regularization
method.

Proof. See [96] and [61].

For the sake of notational brevity, we fix the following notation

xα := Rαb, b ∈ D
(
A†
)
,

xδα := Rαb
δ, bδ ∈ Y.

(5.10)

(5.11)

We report hereafter the definition of optimal order, under the same a-priori assumption given
in [61].
Definition 5.4. For every given ν, ρ > 0, let

Xν,ρ :=
{
x ∈ X : ∃ω ∈ X , ‖ω‖ ≤ ρ, x = (A∗A)

ν
2 ω
}
⊂ X .

A regularization method Rα is said to be of optimal order under the a-priori assumption x† ∈ Xν,ρ if

∆(δ,Xν,ρ, Rα) ≤ cδ
ν

ν+1 ρ
1

ν+1 , (5.12)

where for any general set M ⊆ X, δ > 0 and for a regularization method Rα, we define

∆(δ,M,Rα) := sup
{
‖x† − xδα‖ : x† ∈M, ‖b− bδ‖ ≤ δ

}
.

If ρ is not known, as it will be usually the case, then we relax the definition introducing the set

Xν :=
⋃

ρ>0

Xν,ρ

and saying that a regularization method Rα is called of optimal order under the a-priori assumption
x† ∈ Xν if

∆(δ,Xν , Rα) ≤ cδ
ν

ν+1 . (5.13)

Remark 5.5. Since we are concerned with the rate with which ‖x†−xδα‖ converges to zero as δ → 0,
the a-priori assumption x† ∈ Xν is usually sufficient for the optimal order analysis, requiring that
(5.13) is satisfied.
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Hereafter we cite a theorem which states sufficient conditions for order optimality, when
filtering methods are employed, see [96, Proposition 3.4.3, pag. 58].
Theorem 5.6. [96] Let A : X → Y be a compact linear operator, ν and ρ > 0, and let Rα : Y → X
be a filter based regularization method. If there exists a fixed β > 0 such that

sup
0<σ≤σ1

|Fα (σ) σ−1| ≤ cα−β , (5.14a)

sup
0≤σ≤σ1

| (1− Fα (σ)) σν | ≤ cνα
βν , (5.14b)

then Rα is of optimal order, under the a-priori assumption x† ∈ Xν,ρ, with the choice rule

α = α (δ, ρ) = η

(
δ

ρ

) 1
β(ν+1)

, 0 < η =

(
c

νcν

) 1
β(ν+1)

.

If we are concerned just about the rate of convergence with respect to only δ, the preceding
theorem can be applied under the a-priori assumption x† ∈ Xν , fitting the proof to the latter
case without any effort. On the contrary, below we present a converse result.
Theorem 5.7. Let A be a compact linear operator with infinite dimensional range and let Rα be a
filter based regularization method with filter function Fα : [0, σ1] ⊃ σ (A) → R. If there exist ν and
β > 0 such that

(1− Fα (σ))σ
ν ≥ cαβν for σ ∈ [c′αβ , σ1] (5.15)

and

‖x† − xα‖ = O
(
αβν

)
, (5.16)

then x† ∈ Xν .

Proof. By (5.5) and (5.6), it holds

‖x† − xα‖2 =
∑

σl>0

(1− Fα (σl))
2 σ−2

l |〈b, ul〉|2

=
∑

σl>0

(1− Fα (σl))
2 |〈x†, vl〉|2

=
∑

σl>0

[(1− Fα (σl)) σ
ν
l ]

2 σ−2ν
l |〈x†, vl〉|2

≥
(
cαβν

)2 ∑

σl≥c′αβ

σ−2ν
l |〈x†, vl〉|2,

thanks to the assumption (5.15). From (5.16) we deduce that

lim
αβ→0

∑

σl≥c′αβ

σ−2ν
l |〈x†, vl〉|2 < +∞.

Finally, if we define ω :=
∑

σl>0 σ
−ν〈x†, vl〉vl, then ω is well defined and (A∗A)ν/2 ω = x†,

i.e., x† ∈ Xν .
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5.2 Fractional variants of Tikhonov regularization

In this section we discuss two recent types of regularization methods that generalize the
classical Tikhonov method and that were first introduced and studied in [86] and [95].

5.2.1 Weighted Tikhonov regularization

Definition 5.8 ([86]). We call Weighted Tikhonov method the filter based method

Rα,rb :=
∑

l: σl>0

Fα,r (σl) σ
−1
l 〈b, ul〉vl,

where the filter function is

Fα,r (σ) =
σr+1

σr+1 + α
, (5.17)

for α > 0 and r ≥ 0.

According to (5.10) and (5.11), we fix the following notation

xα,r := Rα,rb, b ∈ D
(
A†
)
,

xδα,r := Rα,rb
δ, bδ ∈ Y.

(5.18)

(5.19)

Remark 5.9. The Weighted Tikhonov method can also be defined as the unique minimizer of the
following functional,

Rα,rb := argminx∈X
{
‖Ax− b‖2W + α‖x‖2

}
, (5.20)

where the semi-norm ‖ · ‖W is induced by the operator W := (AA∗)
r−1
2 . For 0 ≤ r < 1, W is to be

intended as the Moore-Penrose (pseudo) inverse. Developing the calculations, it follows that

Rα,rb =
[
(A∗A)

r+1
2 + αI

]−1
(A∗A)

r−1
2 A∗b. (5.21)

That is the reason that motivated us to rename the original method that appeared in [86], as weighted
Tikhonov method. In this way it would be easier to distinguish it from the fractional Tikhonov
method introduced in [95].

The optimal order of the weighted Tikhonov regularization was proved in [69]. The fol-
lowing proposition restates such result, putting in evidence the dependence on r of ν, and
provides a converse result.
Proposition 5.10. Let A be a compact linear operator with infinite dimensional range. For every
given r ≥ 0 the weighted Tikhonov method, Rα,r, is a regularization method of optimal order, under
the a-priori assumption x† ∈ Xν,ρ, with 0 < ν ≤ r + 1. The best possible rate of convergence with

respect to δ is ‖x† − xδα,r‖ = O
(
δ

r+1
r+2

)
, that is obtained for α =

(
δ
ρ

) r+1
ν+1

with ν = r + 1. On the

other hand, if ‖x† − xα,r‖ = O (α) then x† ∈ Xr+1.

Proof. For weighted Tikhonov the left-hand side of condition (5.14a) becomes

sup
0<σ≤σ1

∣∣∣∣
σr

σr+1 + α

∣∣∣∣ .
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By derivation, if r > 0 then it is straightforward to see that the quantity above is bounded by
α−β , with β = 1/ (r + 1). Similarly, the left-hand side of condition (5.14b) takes the form

sup
0≤σ≤σ1

∣∣∣∣
ασν

σr+1 + α

∣∣∣∣ ,

and it is easy to check that it is bounded by αβν if and only if 0 < ν ≤ r+1. From Theorem 5.6,
as long as 0 < ν ≤ r + 1, with r > 0, if x† ∈ Xν,ρ then we find order optimality (5.12) and the

best possible rate of convergence obtainable with respect to δ is O
(
δ

r+1
ν+1

)
, for ν = r + 1.

On the contrary, with β = 1/ (r + 1) and ν = r + 1, we deduce that

|(1− Fα,r (σ))σ
ν | = ασν

σr+1 + α
≥ 1

2
α, for σ ∈ [αβ , σ1].

Therefore, if ‖x† − xα,r‖ = O (α) then x† ∈ Xν by Theorem 5.7.

The following proposition deals with a saturation result similar to a well known result for
classic Tikhonov, cf. [61, Proposition 5.3].
Proposition 5.11 (Saturation for weighted Tikhonov regularization). Let A : X → Y be a
compact linear operator with infinite dimensional range and Rα,r be the corresponding family of
weighted Tikhonov regularization operators in Definition 5.8. Let α = α

(
δ, bδ

)
be any parameter

choice rule. If

sup
{
‖xδα,r − x†‖ : ‖Q

(
b− bδ

)
‖ ≤ δ

}
= o

(
δ

r+1
r+2

)
, (5.22)

then x† = 0, where Q denotes the orthogonal projector onto R (A).

Proof. Define

δl := σr+2
l , bδl := b+ δlul so that ‖b− bδl ‖ ≤ δl,

αl := α
(
δl, b

δ
l

)
, xl := xαl,r, xδl := xδlαl,r

.

By the assumption that A has not finite dimensional range, we deduce that liml→∞ σl = 0.
According to Remark 5.9, from equation (5.21) we have

xδl − x† = Rαl,rb
δ
l − x† = Rαl,rb+ δlRαl,rul − x† = xl − x† + δlFαl,r (σl) σ

−1
l vl

and hence by (5.17)

‖xδl − x†‖2 = ‖xl − x†‖2 + 2
δlσ

r
l

σr+1
l + αl

Re〈xl − x†, vl〉+
(

δlσ
r
l

σr+1
l + αl

)2

.

From the choice of δl := σr+2
l follows that

(
δ
− r+1

r+2

l ‖xδl − x†‖
)2

≥ 2

δ
r+1
r+2

l + αl

Re〈xl − x†, vl〉+


 δ

r+1
r+2

l

δ
r+1
r+2

l + αl




2

=
2

1 + δ
− r+1

r+2

l αl

δ
− r+1

r+2

l Re〈xl − x†, vl〉+


 1

1 + δ
− r+1

r+2

l αl




2

. (5.23)
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By (5.21),
(
(A∗A)

r+1
2 + αlI

)(
x† − xδl

)
= (A∗A)

r+1
2 x† + αlx

† − (A∗A)
r−1
2 A∗bδl

= αlx
† − δl (A

∗A)
r−1
2 A∗ul,

so that
αl‖x†‖ = O

(
δl + ‖x† − xδl ‖

)
. (5.24)

Since, by assumption, ‖x† − xδl ‖ = o

(
δ

r+1
r+2

l

)
, it follows from (5.24) that if x† 6= 0, then

lim
l→∞

αlδ
− r+1

r+2

l = 0. (5.25)

Hence, the second term in the right-hand side of (5.23) tends to 1. Since, by assumption, the
left-hand side of (5.23) tends to 0, we obtain

0 ≥ lim sup
l→∞

2

1 + δ
− r+1

r+2

l αl

δ
− r+1

r+2

l Re〈xl − x†, vl〉+ 1.

Now, by assumption (5.22), also ‖xl − x†‖ = o
(
δ

r+1
r+2

)
, so that, if x† 6= 0, from (5.25) applied

to the preceding inequality, we obtain the contradiction 0 ≥ 1. Hence, x† = 0.

Note that for r = 1 (classical Tikhonov) the previous proposition gives exactly Proposition 5.3
in [61]. On the other hand, taking a large r, it is possible to overcome the saturation result of
classical Tikhonov obtaining a convergence rate arbitrary close to O (δ).

5.2.2 Fractional Tikhonov regularization

Here we introduce the fractional Tikhonov method defined and discussed in [95].
Definition 5.12 ([95]). We call Fractional Tikhonov method the filter based method

Rα,γb :=
∑

l: σl>0

Fα,γ (σl)σ
−1
l 〈b, ul〉vl,

where the filter function is

Fα,γ (σ) =
σ2γ

(σ2 + α)γ
,

for α > 0 and γ ≥ 1/2.

Note that Fα,γ is well-defined also for 0 < γ < 1/2, but the condition (5.7) requires γ ≥ 1/2
to guarantee that Fα,γ is a filter function.

We use the notation for xα,γ and xδα,γ like in equations (5.18) and (5.19), respectively. The op-
timal order of the fractional Tikhonov regularization was proved in [95, Proposition 3.2]. The
following proposition restates such result including also γ = 1/2 and provides a converse
result.
Proposition 5.13. The extended fractional Tikhonov filter method is a regularization method of op-
timal order, under the a-priori assumption x† ∈ Xν,ρ, for every γ ≥ 1/2 and 0 < ν ≤ 2. The
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best possible rate of convergence with respect to δ is ‖x† − xδα,γ‖ = O
(
δ

2
3

)
, that is obtained for

α =
(
δ
ρ

) 2
ν+1

with ν = 2. On the other hand, if ‖x† − xα,γ‖ = O (α) then x† ∈ X2.

Proof. Condition (5.7) is verified for γ ≥ 1/2 and the same holds for conditions (5.8) and
(5.9). Deriving the filter function, it is immediate to see that equation (5.14a) is verified for
γ ≥ 1/2, with β = 1/2. It remains to check equation (5.14b):

(1− Fα,γ (σ)) σ
ν =

(
σ2 + α

)γ − σ2γ

(σ2 + α)γ
σν

=

(
σ2

α + 1
)γ

−
(
σ2

α

)γ

(
σ2

α + 1
)γ−1 · ασν

σ2 + α

= h

(
σ2

α

)
· (1− Fα,1 (σ))σ

ν ,

where h (x) = (x+1)γ−xγ

(x+1)γ−1 is monotone, h (0) = 1 for every γ, and limx→∞ h (x) = γ. Namely
h (x) ∈ (γ, 1] for 0 ≤ γ ≤ 1 and h (x) ∈ [1, γ) for γ ≥ 1. Therefore we deduce that

γ (1− Fα,1 (σ)) ≤ (1− Fα,γ (σ)) ≤ (1− Fα,1 (σ)) , for 0 ≤ γ ≤ 1,

(1− Fα,1 (σ)) ≤ (1− Fα,γ (σ)) ≤ γ (1− Fα,1 (σ)) , for γ ≥ 1,

(5.26)
(5.27)

from which we infer that

sup
σ∈[0,σ1]

|(1− Fα,γ (σ))σ
ν | ≤ max{1, γ} sup

σ∈[0,σ1 ]
|(1− Fα,1 (σ)) σ

ν | ≤ cα
ν
2 ,

since Fα,1 (σ) is standard Tikhonov, that is of optimal order, with β = 1/2 and for every
0 < ν ≤ 2, see [61]. On the contrary, with β = 1/2 and ν = 2, and by equations (5.26) and
(5.27), we deduce that

(1− Fα,γ (σ)) σ
2 ≥ min{1, γ} (1− Fα,1 (σ)) σ

2 ≥ 1

2
α, for σ ∈ [α

1
2 , σ1].

Therefore, if ‖x† − xα,r‖ = O (α) then x† ∈ X2 by Theorem 5.7.

A similar saturation result to Proposition 5.11 can be proved also for the fractional Tikhonov
regularization.
Proposition 5.14 (Saturation for fractional Tikhonov regularization). Let A : X → Y be a
compact linear operator with infinite dimensional range and let Rα,γ be the corresponding family of
fractional Tikhonov regularization operators in Definition 5.12, with fixed γ ≥ 1/2. Let α = α

(
δ, bδ

)

be any parameter choice rule. If

sup
{
‖xδα,γ − x†‖ : ‖Q

(
y − bδ

)
‖ ≤ δ

}
= o

(
δ

2
3

)
, (5.28)

then x† = 0, where we indicated with Q the orthogonal projector onto R (A).
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Proof. If γ = 1, the thesis follows from the saturation result for standard Tikhonov [61, Propo-
sition 5.3]. For γ 6= 1, recalling that

xα,γ − x† =
∑

σl>0

(Fα,γ (σl)− 1) σ−1
l 〈b, ul〉vl,

by equations (5.26) and (5.27), we obtain

‖xα,γ − x†‖ > c‖xα,1 − x†‖,

where c = min{1, γ} and xα,1 is standard Tikhonov. Let us define

φγ (b) := ‖xα,γ − x†‖.

Then, by the continuity of φγ , there exists δ > 0 such that, for every bδ ∈ Bδ (b), we find

φγ

(
bδ
)
> c · φ1

(
bδ
)
,

with Bδ (b) being the closure of the ball of center b and radius δ. Passing to the sup we obtain
that

sup
{
‖xδα,γ − x†‖ : ‖Q

(
b− bδ

)
‖ ≤ δ

}
≥ c · sup

{
‖xδα,1 − x†‖ : ‖Q

(
b− bδ

)
‖ ≤ δ

}
.

Therefore, using relation (5.28), we deduce

sup
{
‖xδα,1 − x†‖ : ‖b− bδ‖ ≤ δ

}
= o

(
δ

2
3

)
,

and the thesis follows again from the saturation result for standard Tikhonov, cf. [61, Propo-
sition 5.3].

Differently from the weighted Tikhonov regularization, for the fractional Tikhonov method,
it is not possible to overcome the saturation result of classical Tikhonov, even for a large γ.

5.3 Stationary iterated regularization

We define new iterated regularization methods based on weighed and fractional Tikhonov
regularization using the same iterative refinement strategy of iterated Tikhonov regulariza-
tion, see Section 2.2.2. We will show that the iterated methods go beyond the saturation
results proved in the previous section. In this section the regularization parameter will still
be α with the iteration step, k, assumed to be fixed. On the contrary, in Section 5.4.1, we
will analyze the nonstationary counterpart of this iterative method, in which α will be re-
placed by a pre-fixed sequence {αk} and we will be concerned on the rate of convergence
with respect to the index k.

5.3.1 Iterated weighted Tikhonov regularization

We propose now an iterated regularization method based on weighted Tikhonov
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Definition 5.15 (Stationary iterated weighted Tikhonov). We define the stationary iterated
weighted Tikhonov method (SIWT) as

{
x0α,r := 0;(
(A∗A)

r+1
2 + αI

)
xkα,r := (A∗A)

r−1
2 A∗b+ αxk−1

α,r ,
(5.29)

with α > 0 and r ≥ 0, or equivalently

{
x0α,r := 0

xkα,r := argminx∈X
{
‖Ax− b‖2W + α‖x− xk−1

α,r ‖2
}
,

where ‖ · ‖W is the semi-norm introduced in (5.20). We define xk,δα,r as the k-th iteration of weighted
Tikhonov if b = bδ.
Proposition 5.16. For any given k ∈ N and r > 0, the SIWT in (5.29) is a filter based regularization
method, with filter function

F (k)
α,r (σ) =

(
σr+1 + α

)k − αk

(σr+1 + α)k
.

Moreover, the method is of optimal order, under the a-priori assumption x† ∈ Xν,ρ, for r > 0 and

0 < ν ≤ k (r + 1), with best convergence rate ‖x† − xk,δα,r‖ = O

(
δ

k(r+1)
1+k(r+1)

)
, that is obtained for

α =
(
δ
ρ

) k(r+1)
1+ν

, with ν = k (r + 1). On the other hand, if ‖x†−xkα,r‖ = O
(
αk
)
, then x† ∈ Xk(r+1).

Proof. Multiplying both sides of (5.29) by
(
(A∗A)

r+1
2 + αI

)k−1
and iterating the process, we

get
(
(A∗A)

r+1
2 + αI

)k
xkα,r =





n−1∑

j=0

αj
(
(A∗A)

r+1
2 + αI

)k−1−j



 (A∗A)

r−1
2 A∗b

=

[(
(A∗A)

r+1
2 + αI

)k
− αkI

]
(A∗A)−1A∗b.

Therefore, the filter function in (5.6) is equal to

F (k)
α,r (σ) =

(
σr+1 + α

)k − αk

(σr+1 + α)k
,

as we stated. Condition (5.9) is straightforward to verify. Moreover, note that

F (k)
α,r (σ) =

(
σr+1 + α

)k − αk

(σr+1 + α)k

=
σr+1

σr+1 + α
·

(∑k−1
j=0 α

j
(
σr+1 + α

)k−1−j
)

(σr+1 + α)k−1

= Fα,r (σ) ·
(
1 +

(
α

σr+1 + α

)
+ · · ·+

(
α

σr+1 + α

)k−1
)
,

from which it follows that

Fα,r (σ) ≤ F (k)
α,r (σ) ≤ kFα,r (σ) .
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Therefore, conditions (5.7), (5.8) and (5.14a) follows immediately by the regularity of the
weighted Tikhonov filter method for r > 0 and by the order optimality for r > 0. Finally,
condition (5.14b) becomes

sup
σ∈[0,σ1]

∣∣∣∣∣
αkσν

(σr+1 + α)k

∣∣∣∣∣ ,

and deriving one checks that it is bounded by αβν , with β = 1/ (r + 1), if and only if 0 < ν ≤
k (r + 1). Applying now Proposition 5.6 the rest of the thesis follows.

On the contrary, if we define β = 1/ (r + 1) and ν = k (r + 1), then we deduce that

(
1− F (k)

α,r (σ)
)
σν =

αkσν

(σr+1 + α)k
≥ 1

2k
αk for σ ∈ [αβ , σ1].

Therefore, if ‖x† − xnα,r‖ = O
(
αk
)
, then by Theorem 5.7 it follows that x† ∈ Xk(r+1).

If k is large, then we note that the convergence rate approaches O (δ) also for a fixed small r.
The study of the convergence for increasing k and fixed α will be dealt with in Section 5.4.1.

5.3.2 Iterated fractional Tikhonov regularization

With the same path as in the previous subsection, we propose here the stationary iterated
version of the fractional Tikhonov method.
Definition 5.17 (Stationary iterated fractional Tikhonov). We define the stationary iterated
fractional Tikhonov method (SIFT) as

{
x0α,γ := 0;

(A∗A+ αI)γ xkα,γ := (A∗A)γ−1A∗b+ [(A∗A+ αI)γ − (A∗A)γ ]xn−1
α,γ ,

(5.30)

with γ ≥ 1/2. We define xk,δα,γ for the n-th iteration of fractional Tikhonov if b = bδ.
Proposition 5.18. For any given k ∈ N and γ ≥ 1/2, the SIFT in (5.30) is a filter based regulariza-
tion method, with filter function

F (k)
α,γ (σ) =

(
σ2 + α

)γk −
[(
σ2 + α

)γ − σ2γ
]k

(σ2 + α)γk
. (5.31)

Moreover, the method is of optimal order, under the a-priori assumption x† ∈ Xν,ρ, for γ ≥ 1/2 and

0 < ν ≤ 2k, with best convergence rate ‖x† − xk,δα,γ‖ = O
(
δ

2k
2k+1

)
, that is obtained for α =

(
δ
ρ

) 2k
ν+1

,

with ν = 2k. On the other hand, if ‖x† − xkα,γ‖ = O
(
αk
)
, then x† ∈ X2k.

Proof. Multiplying both sides of (5.31) by (A∗A+ αI)(k−1)γ and iterating the process, we get

(A∗A+ αI)kγ xkα,γ =





k−1∑

j=0

(A∗A+ αI)jγ [(A∗A+ αI)γ − (A∗A)γ ]k−1−j



 (A∗A)γ−1A∗b

=
{
(A∗A+ αI)γk − [(A∗A+ αI)γ − (A∗A)γ ]k

}
(A∗A)−1A∗b,
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where we used the fact that (A∗A+ αI)−γ and [(A∗A+ αI)γ − (A∗A)γ ] commute. Therefore,
the filter function in (5.6) is given by

F k
α,γ (σ) =

(
σ2 + α

)γk −
[(
σ2 + α

)γ − σ2γ
]k

(σ2 + α)γk
,

as we stated. We observe that

F (k)
α,γ (σ) =

(
σ2 + α

)γk −
[(
σ2 + α

)γ − σ2γ
]k

(σ2 + α)γk

=
σ2γ

(σ2 + α)γ
· 1

(σ2 + α)γ(k−1)
·
k−1∑

j=0

(
σ2 + α

)γj [(
σ2 + α

)γ − σ2γ
]k−1−j

=
σ2γ

(σ2 + α)γ
·
{
1 +

[
1−

(
σ2

σ2 + α

)γ]
+ · · · +

[
1−

(
σ2

σ2 + α

)γ]k−1
}
,

from which we deduce that
F (k)
α,γ (σ) ≤ kFα,γ (σ) .

Therefore, since Fα,γ is a regularization method of optimal order, conditions (5.7), (5.8) and
(5.14a) are satisfied. Moreover, it is easy to check condition (5.9) and so we get the regularity
for the method. It remains to check condition (5.14b) for the order optimality.

From equations (5.26) and (5.27) we deduce that

1− F (k)
α,γ (σ) =

[(
σ2 + α

)γ − σ2γ

(σ2 + α)γ

]k

=

[
1− σ2γ

(σ2 + α)γ

]k

= (1− Fα,γ (σ))
k

≤ (max{1, γ})k (1− Fα,1 (σ))
k

= c
(
1− F k

α,1 (σ)
)
,

(5.32)

where Fα,1 (σ) is the standard Tikhonov filter and F (k)
α,1 (σ) is the filter function of the station-

ary iterated Tikhonov, i.e., F (k)
α,1 (σ) =

(σ2+α)
k−αk

(σ2+α)k
. Now condition (5.14b) follows from the

properties of stationary iterated Tikhonov, with β = 1/2 and 0 < ν ≤ 2k, see [80, p. 124]. By
applying Proposition 5.6 we get the best convergence rate, O

(
δ

2k
2k+1

)
.

On the contrary, set β = 1/2 and ν = 2k. First, let us observe that from equations (5.32) and
(5.26), (5.27), we infer that

1− F (k)
α,γ (σ) ≥ (min{1, γ})k

(
1− F

(k)
α,1 (σ)

)
.

Then, we deduce that

(
1− F (k)

α,γ (σ)
)
σν ≥ c

αkσ2k

(σ2 + α)k

≥ cαk for σ ∈ [αβ , σ1].
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Therefore, if ‖x† − xkα,γ‖ = O
(
αk
)
, then x† ∈ X2n by Theorem 5.7.

The previous proposition shows that, similarly to SIWT, a large k allows to overcome the
saturation result in Proposition 5.14. The study of the convergence for increasing k and fixed
α will be dealt with in Section 5.4.2.

5.4 Nonstationary iterated regularization

5.4.1 Nonstationary iterated weighted Tikhonov regularization

We introduce a nonstationary version of the iteration (5.29). We study the convergence and
we prove that the new iteration is a regularization method.
Definition 5.19. Let {αk}k∈N, {rk}k∈N ⊂ R>0 be sequences of positive real numbers. We define a
nonstationary iterated weighted Tikhonov method (NSIWT) as follows




x0α0,r0 := 0,[
(A∗A)

rk+1

2 + αkI
]
xkαk,rk

:= (A∗A)
rk−1

2 A∗b+ αkx
k−1
αk−1,rk−1

,
(5.33)

or equivalently




x0α0,r0 := 0,

xkαk ,rk
:= argminx∈X

{
‖Ax− b‖2Wk

+ αk‖x− xk−1
αk−1,rk−1

‖
}2
,

(5.34)

where ‖ · ‖Wk
is the semi-norm introduced by the operator Wk := (AA∗)

rk−1

2 and depending on k,
due to the nonstationary character of rk.

Convergence analysis

We are concerned about the properties of the sequence {αk} such that the iteration (5.33)
shall converge. To this aim we need some preliminary lemmas.
Remark 5.20. Hereafter, without loss of generality, we will assume that σ1 = 1, namely ‖A‖ = 1.
Lemma 5.21. Let {tk}k∈N be a sequence of real numbers such that 0 ≤ tk < 1 for every n. Then

∞∏

k=1

(1− tk) > 0 if and only if
∞∑

k=1

tk <∞.

Proof. See [117, Theorem 15.5]

Lemma 5.22. Let {tj}j∈N be a sequence of positive real numbers and let N > 0. Then

k∑

j=1

tj ∼ c
k∑

j=N

tj,

with c > 0 a constant independent ofN and k (in particular, c = 1 when
∑∞

j=N tj =
∑∞

j=1 tj = ∞).

Proof. Obviously, both the series converge or diverge simultaneously due to the Asymptotic
Comparison test. If they converge, the thesis follows trivially. On the contrary, if they both
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diverge then we conclude by observing that
∑k

j=N tj/
∑k

j=1 tj is a monotonically increasing
sequence bounded from above by 1. Indeed, if we set

Ak :=
k∑

j=N

tj, Bk :=
k∑

j=1

tj,

for every j ≥ N and for every x ≥ 0 the function

hk (x) =
Ak + x

Bk + x

is monotone increasing with hk (x) ≤ 1. Then Ak+1/Bk+1 ≥ Ak/Bk for every k and it is easy
to see that supk{Ak/Bk} = 1.

Lemma 5.23. For every sequence {tk}k∈N ⊂ (0,∞) such that limk→∞ tk = t ∈ (0,∞], we find

k∑

k=1

1

tk
∼ c

k∑

k=1

1

1 + tk
, c > 0,

where ∼ denotes the asymptotic equivalence.

Proof. If limj→∞ tj = t ∈ (0,∞], then

1

tj
∼
(
1 +

1

t

)
1

1 + tj
, (5.35)

where 1/t = 0 if t = ∞. Therefore, from the Asymptotic Comparison test for series, both
series converge or diverge simultaneously. When they converge the thesis follows trivially.
If we set

Xk :=

∑k
j=1

1
tj∑k

j=1
1

1+tj

,

we want to show that the limit of Xk exists finite and, moreover, that limk→∞Xk = 1 + 1/t.
Indeed, for any fixed ǫ > 0 there exists K1

ǫ such that for any j ≥ K1
ǫ it holds that

1

tj
<

(
1 +

1

t
+
ǫ

2

)
1

1 + tj
, (5.36)

and for any fixed ǫ and K1
ǫ , there exists K2

ǫ such that for every n ≥ K2
ǫ it holds that

∑K1
ǫ

j=1
1
tj∑k

j=1
1

1+tj

<
ǫ

2
. (5.37)

Hence, for any n ≥ max{K1
ǫ ,K

2
ǫ }, thanks to (5.36) and (5.37), we have that

Xk =

∑k
j=1

1
tj∑k

j=1
1

1+tj

<

∑K1
ǫ

j=1
1
tj∑k

j=1
1

1+tj

+

(
1 +

1

t
+
ǫ

2

) ∑k
j=K1

ǫ+1
1

1+tj∑k
j=1

1
1+tj

<
ǫ

2
+ 1 +

1

t
+
ǫ

2
= 1 +

1

t
+ ǫ.

On the other hand, there exists K3
ǫ such that for every k ≥ K3

ǫ it holds

1

tj
>

(
1 +

1

t
− ǫ

2

)
1

1 + tj
, (5.38)
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and, by Lemma 5.22, for any fixed K3
ǫ and for any fixed δ < ǫ

2

(
1 + 1

t − ǫ
2

)−1, there exists K4
ǫ

such that for every n ≥ K4
ǫ it holds

∑k
k=K3

ǫ+1
1

1+tj∑k
j=1

1
1+tj

> (1− δ) . (5.39)

Hence, fo any k ≥ max{K3
ǫ ,K

4
ǫ }, thanks to (5.38) and (5.39), we have that

Xk =

∑k
j=1

1
tj∑k

j=1
1

1+tj

>

∑K1
ǫ

j=1
1
tj∑k

j=1
1

1+tj

+

(
1 +

1

t
− ǫ

2

) ∑k
j=K1

ǫ+1
1

1+tj∑k
j=1

1
1+tj

>

(
1 +

1

t
− ǫ

2

)
(1− δ)

> 1 +
1

t
− ǫ.

Then, choosing k ≥ max{Ki
ǫ : i = 1, 2, 3, 4}, the proof is concluded.

We can now prove a necessary and sufficient condition for the sequence {αk} to have the
convergence of NSIWT.
Theorem 5.24. For every x† ∈ X , the NSIWT method (5.33) converges to x† ∈ X as k → ∞ if and

only if
∑k

j=1
σrj+1

σrj+1+αj
diverges for every σ > 0.

Proof. Rewriting equation (5.33) and reminding that b = Ax†, we have

xkαk,rk
=
[
(A∗A)

rk+1

2 + αkI
]−1

(A∗A)
rk+1

2 x† + αk

[
(A∗A)

rk+1

2 + αkI
]−1

xk−1
αk−1,rk−1

=

{
I − αk

[
(A∗A)

rk+1

2 + αkI
]−1
}
x† + αk

[
(A∗A)

rk+1

2 + αkI
]−1

xk−1
αk−1,rk−1

,

from which it follows that

x† − xkαk,rk
= αk

[
(A∗A)

rk+1

2 + αkI
]−1 (

x† − xk−1
αk−1,rk−1

)

= (· · · ) iterating the process k − 1 times

=

k∏

j=1

αj

[
(A∗A)

rj+1

2 + αjI

]−1

x† (5.40)

since x0α0,r0 := 0. As a consequence, the method shall converge if and only if

lim
k→∞

∥∥∥∥∥∥

k∏

j=1

αj

[
(A∗A)

rj+1

2 + αjI

]−1

x†

∥∥∥∥∥∥
= 0
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for every x† ∈ X , namely, if and only if

lim
k→∞

∫

λ(A∗A)

∣∣∣∣∣∣

k∏

j=1

αk

σrj+1 + αj

∣∣∣∣∣∣

2

d〈Eσ2x†, x†〉 = 0

for every Borel-measure 〈Ex†, x†〉 induced by x† ∈ X . Since

∣∣∣∣∣∣

k∏

j=1

αj

σrj+1 + αj

∣∣∣∣∣∣

2

≤ 1

for every k, and since ∫

λ(A∗A)
d〈Eσ2x†, x†〉 = ‖x†‖2,

the Dominated Convergence Theorem [117, Theorem 1.34, pag. 26] implies

lim
k→∞

∫

λ(A∗A)

∣∣∣∣∣∣

k∏

j=1

αj

σrj+1 + αj

∣∣∣∣∣∣

2

d〈Eσ2x†, x†〉

=

∫

λ(A∗A)
lim
k→∞

∣∣∣∣∣∣

k∏

j=1

αj

σrj+1 + αj

∣∣∣∣∣∣

2

d〈Eσ2x†, x†〉.

Hence, the NSIWT method is convergent if and only if

∞∏

j=1

αj

σrj+1 + αk
=

∞∏

j=1

(
1− σrj+1

σrj+1 + αk

)
= 0,

for 〈Ex†, x†〉-a.e. σ2, i.e., for every σ ∈ σ (A) \ {0}. Applying now Lemma 5.21 the thesis
follows.

Corollary 5.25. (1) If supj∈N{rj} = r ∈ [0,∞), then the NSIWT method converges if and only

if
∑k

j=1 α
−1
j diverges.

(2) Let limj→∞ rj = ∞ monotonically and let us set βk =
∑k

j=1 α
−1
j . If limk→∞ β

1/rk
k = ∞,

then the NSIWT method converges.

Proof. (1) For every σ ∈ σ(A) \ {0}, we observe that

∞∑

j=1

σr+1

σr+1 + αj
≤

∞∑

j=1

σrj+1

σrj+1 + αj
≤

∞∑

j=1

1

1 + αj
≤

∞∑

j=1

1

αj
. (5.41)

If the NSIWT method converges then, by Theorem 5.24 and by (5.41),
∑∞

j=1
σrj+1

σrj+1+αj
di-

verges and hence
∑∞

j=1
1
αj

= ∞. On the other hand, if
∑∞

j=1 α
−1
j = ∞, then we can possibly

have three different cases: limj→∞ αj ∈ [0,∞), ∄ limj→∞ αj or limj→∞ αj = ∞. In the first
two cases, σr+1

σr+1+αj
9 0 for every σ > 0, and then the corresponding series diverges. In

the latter case instead α−1
j ∼ cσ,r

σr+1

σr+1+αj
for every σ > 0, and hence the series

∑k
j=1 α

−1
j

and
∑k

j=1
σr+1

σr+1+αj
converge or diverge simultaneously by the Asymptotic Comparison test.
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Then, by
∑∞

j=1 α
−1
j = ∞, we deduce that

∑∞
j=1

σrj+1

σrj+1+αk
diverges for every σ > 0 and the

NSIWT method converges.

(2) Note that

lim
k→∞

β
1/rk
k = ∞ ⇐⇒ lim

k→∞
σrk




k∑

j=1

α−1
j


 = ∞ ∀σ ∈ σ (A) \ {0},

namely,

lim
k→∞

β
1/rk
k = ∞ ⇐⇒




k∑

j=1

α−1
j




−1

= o (σrj ) ∀σ ∈ σ (A) \ {0}. (5.42)

In fact, it holds

(⇒) We have that
σrkβk =

(
σβ

1/rk
k

)rk
.

Since, by hypothesis, lim β
1/rk
k = ∞, then
(
σβ

1/rk
k

)rk → ∞ as n→ ∞.

Indeed, ∞∞ is not an indeterminate form.

(⇐) By contradiction, let us suppose that β1/rkk 9 ∞. Since βk is a monotone increasing
sequence, by monotonicity it admits limit, and it follows that

lim
k
β
1/rk
k = c ∈ (0,∞).

Then,there exists σ̂ ∈ (0, 1) such that σ̂c ∈ (0, 1). Therefore

lim
k→∞

σ̂rkβk = lim
n→∞

(
σ̂β

1/rk
k

)rk
= lim

n→∞
(σ̂c)rk = 0,

a contradiction, since by hypothesis

σrkβk → ∞ ∀ σ ∈ [0, 1].

We can assume that 0 < σ < 1. For σ = 1 the result is indeed trivial owing to the equivalence

∞∑

j=1

1

1 + αj
= ∞ ⇐⇒

∞∑

j=1

α−1
j = ∞ (see the previous point).

Let us fix σ ∈ (0, 1) and for the sake of simplicity let suppose that {αj} admits limit, i.e.,
limj→∞ αj ∈ [0,∞]. We have two cases:

lim
j→∞

αj

σrj+1 = 0 or lim
j→∞

αj

σrj+1 ∈ (0,∞].
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In the first case, σrj+1

σrj+1+αj
9 0 for j → ∞, then the corresponding series

∑k
j=1

σrj+1

σrj+1+αj

diverges. In this case we did not use (5.42), but note that

σk+1α−1
k ≤ σk+1

k∑

j=1

α−1
j

and then, if limj→∞ αj/σ
rj+1 = 0, it holds

(∑k
j=1 α

−1
j

)−1
= o(σrk+1). In the second case,

we have 1

σrj+1+αj
∼ cα−1

j , c > 0, for j → ∞. Therefore, there exists K = K(σ) such that
1

σrj+1+αj
≥ c

2α
−1
j for every j ≥ K . Hence, fixed k > K, we have

c

2
σrk+1

k∑

j=K

α−1
j ≤ σrk+1




K−1∑

j=1

1

σrj+1 + αj
+
c

2

k∑

j=K

α−1
j




≤
k∑

j=1

σrk+1

σrj+1 + αj

≤
k∑

j=1

σrj+1

σrj+1 + αj
,

where the last inequality stands in virtue of the monotonicity of {rj}.

Since, by Lemma 5.22,
∑k

j=K α−1
j ∼ c

∑k
j=1 α

−1
j then, by the preceding inequalities, the hy-

pothesis
(∑k

j=1 α
−1
j

)−1
= o(σrk+1) implies that

∑k
j=1

σrj+1

σrj+1+αj
= ∞. Finally, due to the

arbitrarily choice of σ, we can conclude that
∑k

j=1
σrj+1

σrj+1+αj
diverges for every σ ∈ σ(A)\{0},

and therefore the NSIWT method converges. If {αj} does not have limit, then the proof can
be carried out identically but handling with more care the different cases

lim inf
j→∞

αj

σrj+1 = 0 or lim inf
j→∞

αj

σrj+1 ∈ (0,∞].

Corollary 5.25 applies immediately to the stationary case, where αj = α and rj = r for every
j ∈ N, showing that SIWT converges. On the other hand, from point (2) of Corollary 5.25,
given a monotone divergent sequence rj → ∞ we need a sequence αj → 0 such that αj =
o
(
σrj+1

)
for every σ > 0 in order to preserve the convergence of NSIWT.

Now, we investigate the convergence rate of NSIWT.
Theorem 5.26. Let {xkαk ,rk

}k∈N be a convergent sequence of the NSIWT method, with x† ∈ Xν for
some ν > 0, and let {ϑk}k∈N be a divergent sequence of positive real numbers. If

lim
k→∞

ϑkσ
ν

k∏

j=1

(
1− σrj+1

σrj+1 + αj

)
= 0 for every σ ∈ σ (A) \ {0}; (5.43a)

sup
σ∈σ(A)\{0}

ϑkσ
ν

k∏

j=1

(
1− σrj+1

σrj+1 + αj

)
≤ c <∞ uniformly with respect to k, (5.43b)
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then
‖x† − xkαk ,rk

‖ = o
(
ϑ−1
k

)
.

Proof. From equation (5.40), for x† ∈ Xν , we have

lim
k→∞

ϑk‖x† − xkαk,rk
‖ = lim

k→∞



∫

λ(A∗A)

∣∣∣∣∣∣
ϑkσ

ν
k∏

j=1

(
1− σrj+1

σrj+1 + αj

)∣∣∣∣∣∣

2

d〈Eσ2ω, ω〉



1/2

=



∫

λ(A∗A)

∣∣∣∣∣∣
lim
k→∞

ϑkσ
ν

k∏

j=1

(
1− σrj+1

σrj+1 + αj

)∣∣∣∣∣∣

2

d〈Eσ2ω, ω〉



1/2

,

by (5.43b) and the Dominated Convergence Theorem. Now, from hypothesis (5.43a), the
thesis follows.

Corollary 5.27. We define

βk =
k∑

j=1

α−1
j , β̃k =

k∑

j=1

1

1 + αj
.

Let {rj}j∈N be a sequence of positive real numbers, and let x† ∈ Xν for some ν > 0. If

(i.1) supj∈N{rj} = r ∈ (0,∞),

(i.2) limk→∞ βk = ∞,

then

‖x† − xkαk ,rk
‖ =





o
(
β
− ν

r+1

k

)
if lim

k→∞
αk = α ∈ (0,∞]

O
(
β
− ν

r+1

k

)
if lim

k→∞
αk = 0 and α−1

k ≤ cβk−1, c > 0

o
(
β̃
− ν

r+1

k

)
otherwise.

(5.44a)

(5.44b)

(5.44c)

Proof. For the sake of simplicity, let us assume that the sequences {αj}, {rj} admit limits.
First, note that from (i.1), (i.2) and Corollary 5.25 it follows that the NSIWT method is con-
vergent. Now, since 1− x ≤ e−x ≤ cν,rx

−ν/r+1, and using (i.2), we have

σν
k∏

j=1

(
1− σrj+1

σrj+1 + αj

)
≤ σνe

−∑k
j=1

σ
rj+1

σ
rj+1

+αj

≤ σνe
−σr+1

∑k
j=1

1
σr+1+αj

≤ cν,rσ
ν


 1

σr+1
∑k

j=1
1

σr+1+αj




ν
r+1

≤ cν,r




k∑

j=1

1

1 + αj




− ν
r+1

.
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Moreover, note that 1
1+αj

∼ c 1

1+αj/σ
rj+1 . Therefore, conditions (5.43a) and (5.43b) of Theorem

5.26 are satisfied with

ϑk =




k∑

j=1

1

1 + αj




ν
r+1

,

indeed

sup
σ∈[0,1]




σν




k∑

j=1

1

1 + αj




ν
r+1 k∏

j=1

(
1− σrj+1

σrj+1 + αj

)




≤ cν,r,

and

σν




k∑

j=1

1

1 + αj




ν
r+1 k∏

j=1

(
1− σrj+1

σrj+1 + αj

)

≤




k∑

j=1

1

1 + αj




ν
r+1

e
−∑k

j=1
σ
rj+1

σ
rj+1

+αj

=




k∑

j=1

1

1 + αj




ν
r+1

e
−∑k

j=1
1

1+αj/σ
rj+1

≤ c




k∑

j=K(σ)

1

1 + αj/σrj+1




ν
r+1

e
−∑k

j=K(σ)
1

1+αj/σ
rj+1

,

where K(σ) is chosen such that 1
1+αj

≤ c/2

1+αj/σ
rj+1 for every j ≥ K(σ), and the right hand

side of the last inequality tends to 0 as k → ∞ for every fixed σ. If limj→∞ αj = α ∈ (0,∞],
then βk ∼ c

∑k
j=1

1
1+αj

for k → ∞ by Lemma 5.23. Equations (5.44a) and (5.44c) follow.

Eventually, observing that 1 − σrj+1

σrj+1+αj
≤ 1− σr+1

σr+1+αj
, equation (5.44b) follows instead by a

straightforward application of [79, Lemma 1,2,3 and Theorem 1].

In the general case where no assumptions are made on the existence of the limits for the
sequences {αj} and {rj}, we can apply the same arguments being careful to study the lim inf
and lim sup of these sequences.

When r = 1 (classical iterated Tikhonov), equation (5.44b) is shown in [79, Theorem 1]. On
the other hand, if limn→∞ αk = α ∈ (0,∞], then the convergence rate is improved by the
small “o”.
Remark 5.28. As we stated in (5.44b), when limk→∞ αk = 0, to obtain a convergence rate of order

O
(
β
−ν/(r+1)
k

)
the sequence {αk} has to satisfy the condition α−1

k ≤ cβk−1 for a positive real number

c > 0. Then,
∑k

j=1 α
−1
j = βk = O

(
qk
)
, where q = (1 + c) > 1. To overcome this bound, in

virtue of Corollary 5.27, choosing sequences {r̂k} and {α̂k} such that r̂k diverges monotonically and(∑k
j=1 α̂

−1
j

)−1
= o

(
σr̂k+1

)
for every 0 < σ ≤ 1, we are able to obtain a faster convergence rate,

in a sense that has still to be defined. In the following Proposition 5.29 we will give the proof for a
specific case.
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Following the same approach in [25, (2.3), (2.4) pag.26], we say that the sequence {x̂k} con-
verges uniformly faster than the sequence {xk} if

x† − x̂k = Rk

(
x† − xk

)
, (5.45)

where {Rk} is a sequence of operators such that ‖Rk‖ → 0 as k → ∞. We say instead that
{x̂k} converges non-uniformly faster than {xk} if (5.45) holds and

inf
k∈N

‖Rk‖ > 0, lim
k→∞

‖Rkx‖ = 0 for every x ∈ X .

We are ready to state the following comparison result.
Proposition 5.29. Let {xkαk

} be the sequence generated by the nonstationary iterated Tikhonov with

αk = α0q
k, where α0 ∈ (0,∞) , q ∈ (0, 1), and let {xkα̂k ,r̂k

} be the sequence generated by NSIWT,

where α̂k = 1/k! and r̂k = k, both applied to the same compact operator A : X → Y . Then, {xkα̂k ,r̂k
}

converges, non uniformly, faster than {xkαk
}.

Proof. Observe that the sequence {xkαk
} corresponds to a NSIWT method {xkαk ,rk

} with rk = 1

for every k. Moreover, both the sequences {xkαk
} and {xkα̂k ,r̂k

} converge, indeed they satisfy
conditions (1) and (2) of Corollary 5.25, respectively. Assuming that x0 = 0 and applying the
same strategy used in Theorem 5.24, without any effort it is possible to show that

x† − xkα̂k ,r̂k
=

k∏

j=1

α̂j

(
(A∗A)

r̂j+1

2 + α̂jI

)−1

x†,

x† =
k∏

j=1

α−1
j (A∗A+ αjI)

(
x† − xkαk

)
.

Therefore we find

x† − xkα̂k,r̂k
=




k∏

j=1

α̂jα
−1
j

(
(A∗A)

r̂j+1

2 + α̂jI

)−1

(A∗A+ αjI)



(
x† − xkαk

)

= Rk

(
x† − xkαk

)
.

Since 0 ∈ λ (A∗A), we infer ‖Rk‖ > 1 for every k, and hence infk∈N ‖Rk‖ ≥ 1. If we prove
that

lim
k→∞

‖Rkx‖ = 0,

for every x ∈ X , then the thesis follows. Since

lim
k→∞

‖Rkx‖ = 0 ⇐⇒ lim
k→∞

k∏

j=1

α̂j

(
σ2 + αj

)

αj

(
σr̂j+1 + α̂j

) = 0 ⇐⇒
∞∑

j=1

αjσ
r̂j+1 − α̂jσ

2

αjσr̂j+1 + αjα̂j
= ∞ ∀σ > 0,

if we substitute the values αk = α0q
k, then α̂k = 1/k! and r̂k = k, we obtain

∞∑

j=1

αjσ
r̂j+1 − α̂jσ

2

αjσr̂j+1 + αjα̂j
=

∞∑

j=1

1− σ
α0k!(qσ)

k

1 + 1/k!
σk+1

,
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and the right hand side of the above equality diverges: indeed

1− σ
α0k!(qσ)

k

1 + 1/k!
σk+1

−→ 1 for every fixed q, σ ∈ (0, 1) and α0 ∈ (0,∞) .

Analysis of convergence for perturbed data

Let us now consider bδ = b+ δη, with b ∈ R (A) and ‖η‖ = 1, i.e., ‖bδ − b‖ = δ. We are con-
cerned about the convergence of the NSIWT method when the initial datum b is perturbed.
Hereafter we will use the notation xk,δαk ,rk for the solution of NSIWT (5.34) with initial datum
bδ.

The following result can be proved similarly to Theorem 1.7 in [25].
Theorem 5.30. Under the assumptions of Corollary 5.25, if {δk} is a sequence convergent to 0 with
δk ≥ 0 and such that

lim
k→∞

δk ·
k∑

j=1

α−1
j = 0, (5.46)

then, limk→∞ ‖x† − xk,δkαk,rk‖ = 0.

Proof. From the definition of the method (5.33), for every given i, n, we find that

xi,δkαi,ri =
[
(A∗A)

ri+1

2 + αiI
]−1 (

(A∗A)
ri−1

2 A∗bδk + αix
i−1,δk
αi−1,ri−1

)

=

{
I − αi

[
(A∗A)

ri+1

2 + αiI
]−1
}
x† + αi

[
(A∗A)

ri+1

2 + αiI
]−1

xi−1,δk
αi−1,ri−1

+
[
(A∗A)

ri+1

2 + αiI
]−1

(A∗A)
ri−1

2 A∗
(
bδk − b

)
,

namely,

x† − xi,δkαi,ri = αi

[
(A∗A)

ri+1

2 + αiI
]−1 (

x† − xi−1,δk
αi−1,ri−1

)

−
[
(A∗A)

ri+1

2 + αiI
]−1

(A∗A)
ri−1

2 A∗
(
bδk − b

)
.

Hence, by induction, for every fixed k we have

x† − xk,δkαk ,rk
=

k∏

j=1

αj

[
(A∗A)

rj+1

2 + αjI

]−1

x†

−
k∑

j=1

α−1
j

k∏

i=j

αi

[
(A∗A)

ri+1

2 + αiI
]−1

(A∗A)
rj−1

2 A∗
(
bδk − b

)
.
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If we set gj,k (A∗A) =
∏k

i=j αi

[
(A∗A)

ri+1

2 + αiI
]−1

(A∗A)
rj−1

2 , then we have

‖gj,k (A∗A)A∗b‖2 = 〈gj,k (A∗A)A∗b, gj,k (A
∗A)A∗b〉

= 〈gj,k (AA∗)AA∗b, gj,k (AA
∗) b〉

= 〈gj,k (AA∗) (AA∗)1/2 b, gj,k (A
∗A) (AA∗)1/2 b〉

= ‖gj,k (AA∗) (AA∗)1/2 b‖2,

where we used the fact that gj,k (A∗A)A∗ = A∗gj,k (AA∗) and that for every bounded Borel
function f and h, the product f (A) h (B) commutes if the self-adjoint operators A and B
commute [116, see 12.24]. Therefore,

∥∥∥∥∥∥

k∏

i=j

αi

[
(A∗A)

ri+1

2 + αiI
]−1

(A∗A)
rj−1

2 A∗

∥∥∥∥∥∥
=

∥∥∥∥∥∥

k∏

i=j

αi

[
(AA∗)

ri+1

2 + αiI
]−1

(AA∗)
rk
2

∥∥∥∥∥∥

= max
σ∈[0,1]

∣∣∣∣∣∣
σrj

k∏

i=j

αi

σri+1 + αi

∣∣∣∣∣∣
≤ 1.

It follows that

‖x† − xk,δkαk,rk
‖ ≤ ‖

k∏

j=1

αj

[
(A∗A)

rj+1

2 + αjI

]−1

x†‖+
k∑

j=1

α−1
j ‖bδk − b‖

= ‖x† − xkαk,rk
‖+ δk

k∑

j=1

αkj
−1,

and by Corollary 5.27 and (5.46), ‖x† − xk,δkαk,rk‖ → 0 for n→ ∞.

5.4.2 Nonstationary iterated fractional Tikhonov

Definition 5.31 (Nonstationary iterated fractional Tikhonov). Let {αk}k∈N and {γk}k∈N be
sequences of real numbers such that αk > 0 and γk ≥ 1/2 for every k. We define the nonstationary
iterated fractional Tikhonov method (NSIFT) as

{
x0α0,γ0 := 0;

(A∗A+ αkI)
γk xkαk,γk

:= (A∗A)γk−1A∗b+ [(A∗A+ αkI)
γk − (A∗A)γk ]xk−1

αk−1,γk−1
.

(5.47)

We denote by xk,δαk,γk the k-th iteration of NSIFT if b = bδ.

Convergence analysis

Theorem 5.32. For every x† ∈ X , the NSIFT method (5.47) converges to x† ∈ X as k → ∞ if and

only if
∑

k

(
σ2

σ2+αk

)γk
diverges for every σ > 0.
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Proof. The proof follows the same steps as in Theorem 5.24. Therefore we will omit details.
What follows is that

x† − xkαk,γk
=

k∏

j=1

(A∗A+ αjI)
−γj [(A∗A+ αjI)

γj − (A∗A)γj ] x†,

and hence

‖x† − xkαk ,γk
‖2 =

∫

λ(A∗A)

∣∣∣∣∣∣

k∏

j=1

(
σ2 + αj

)γj − σ2γj

(σ2 + αj)
γj

∣∣∣∣∣∣

2

d〈Eσ2x†, x†〉.

Then, the method converges if and only if

lim
k→∞

k∏

j=1

[
1−

(
σ2

σ2 + αj

)γj]
= 0

for every σ > 0. The thesis follows by Lemma 5.21.

Corollary 5.33.

(1) Let limj→∞ γj = γ ∈ [1/2,∞). Then the NSIFT method converges if and only if

k∑

j=1

α−γ
j = ∞.

More in general, if supj∈N{γj} = s ∈ [1/2,∞) and
∑∞

j=1 α
−s
j = ∞, then the NSIFT method

converges.

(2) Let limj→∞ γj = ∞. If limj→∞ αj = 0 and limj→∞ αjγj = l ∈ [0,∞), then the NSIFT
method converges.

Proof. (1) It is immediate noticing that

k∑

j=1

(
σ2

σ2 + αj

)γj

∼ c

k∑

j=1

(
σ2

σ2 + αj

)γ

k∑

j=1

(
σ2

σ2 + αj

)γj

≥
k∑

j=1

(
σ2

σ2 + αj

)s

.

(2) We observe that
(

σ2

σ2 + αj

)γj

=

(
1− αj

σ2 + αj

)γj

∼ e
− αjγj

σ2+αj → e−l/σ2 6= 0

for j → ∞. Then
∑k

j=1

(
σ2

σ2+αj

)γj
diverges for every σ > 0 and the NSIFT method converges.
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Theorem 5.34. Let {xkαk ,γk
}n∈N be a convergent sequence of the NSIFT method, with x† ∈ Xν for

some ν > 0, and let {ϑk}k∈N be a divergent sequence of positive real numbers. If

lim
k→∞

ϑkσ
ν

k∏

j=1

(
1− σ2γj

(σ2 + αj)
γj

)
= 0 for every σ ∈ σ (A) \ {0};

sup
σ∈σ(A)\{0}

ϑkσ
ν

k∏

j=1

(
1− σ2γj

(σ2 + αj)
γj

)
≤ c <∞ uniformly with respect to k,

then

‖x† − xkαk ,γk
‖ = o

(
ϑ−1
k

)
.

Proof. As seen in Theorem 5.26, the thesis follows easily from the Dominated Convergence
Theorem.

Corollary 5.35. Let {γj}j∈N be a sequence of positive real numbers, γj ≥ 1/2, and let x† ∈ Xν for
some ν > 0. If

(i.1) supj∈N{γj} = s ∈ [1/2,∞),

(i.2) limk→∞ βk = ∞,

then

‖x† − xkαk ,γn
‖ = o(β

− ν
2s

k ) if ∃ lim
j→∞

αj = α ∈ (0,∞],

‖x† − xkαk ,γk
‖ = o(β̃

− ν
2s

k ) otherwise,

(5.49)

(5.50)

where we defined

βk =

k∑

j=1

α−s
j , β̃k =

k∑

j=1

1

1 + αs
j

.

Proof. See Corollary 5.27.

Analysis of convergence for perturbed data

Theorem 5.36. Under the assumptions of Corollary 5.33, if {δk} is a sequence convergent to 0 with
δk ≥ 0 and such that

lim
k→∞

δk ·
k∑

j=1

α
−γj
j = 0,

then, limk→∞ ‖x† − xk,δkαk,γk‖ = 0.

Proof. Here is a sketch of the proof, since it follows step by step from the proof of Theorem
5.30. If we set

ψj (A
∗A) := [(A∗A+ αjI)

γj − (A∗A)γj ]

φj (A
∗A) := ψj (A

∗A) [A∗A+ αjI]
−γj ,

then from (5.47) it is possible to show that

x† − xk,δkαk ,γk
=

k∏

j=1

φj (A
∗A)x† −

k∑

j=1

ψj (A
∗A)−1

k∏

i=j

φi (A
∗A) (A∗A)γj−1A∗

(
bδk − b

)
,
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FIGURE 5.1: Foxgood test problem: (a) the true solution (dashed curve) and
the observed data (solid curve), (b) approximated solutions by SIFT with γ =
0.8 and α = 10−3, SIWT with r = 0.6 and α = 10−2, and SIWT with r = 1 and

α = 10−3.

for every integer n and for every perturbed data bδk = b+ δkη. Owing to the equality
∥∥∥∥∥∥

k∏

i=j

φi (A
∗A) (A∗A)γj−1A∗

∥∥∥∥∥∥
=

∥∥∥∥∥∥

k∏

i=j

φi (AA
∗) (AA∗)γj−1 (AA∗)1/2

∥∥∥∥∥∥
,

we deduce

‖x† − xk,δkαk,γk
‖ ≤ ‖x† − xkαk ,γk

‖+ δk

k∑

j=1

∥∥∥ψj (A
∗A)−1

∥∥∥

= ‖x† − xkαk ,γk
‖+ δk

k∑

j=1

α
−γj
j .

5.5 Numerical examples

We now give few selected examples with a special focus on the nonstationary iterations
proposed in this chapter. For a larger comparison between fractional and classical Tikhonov
refer to [69, 86, 95]. To produce our results we used MATLAB 8.1.0.604 using a laptop pc
with processor Intel iCore i5-3337U with 6 GB of RAM running Windows 8.1.

In all the examples we add to the noise-free right-hand side vector b white Gaussian noise
with noise level ξ.

As a stopping criterion for the methods we used the discrepancy principle (2.19) with τ =
1.01. This criterion stops the iterations when the norm of the residual reaches the norm of
the noise so that the latter is not reconstructed.

To compare the restorations with the different methods, we consider both the visual repre-
sentation and the relative restoration error for the computed approximation x̂.
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α Method r/γ
0.4 0.6 0.8 1 1.2

5× 10−2 SIFT 337.09(7) 0.02498(13) 0.03481(19) 0.03752(29) 0.03838(43)
SIWT 0.02589(9) 0.03202(13) 0.03609(19) 0.03752(29) 0.03932(43)

10−2 SIFT 320.85(3) 0.02048(5) 0.02633(7) 0.03731(7) 0.03783(9)
SIWT 0.01697(3) 0.01818(5) 0.03361(5) 0.03731(7) 0.03672(11)

5× 10−3 SIFT 423.37(3) 0.02216(3) 0.02190(5) 0.03102(5) 0.03723(5)
SIWT 0.02421(3) 0.01573(3) 0.03186(3) 0.03103(5) 0.03347(7)

10−3 SIFT 402.97(1) 0.02299(1) 0.00698(3) 0.01756(3) 0.02443(3)
SIWT 0.06403(1) 0.02210(1) 0.02528(1) 0.01756(3) 0.02736(3)

5× 10−4 SIFT 531.72(1) 0.02119(1) 0.01729(1) 0.02507(1) 0.03119(1)
SIWT 0.10518(1) 0.04506(1) 0.01482(1) 0.02507(1) 0.02086(3)

10−4 SIFT 1012.2(1) 0.07246(1) 0.04229(1) 0.02704(1) 0.01675(1)
SIWT 0.25927(1) 0.13000(1) 0.07213(1) 0.02704(1) 0.01154(1)

TABLE 5.1: Foxgood test problem: RRE for SIWT and SIFT for different
choices of α, r, and γ. The smallest error is shown in boldface.

Foxgood This test case is the so-called Foxgood in the toolbox REGULARIZATION TOOL

[83] using 1024 points. We have added a noise vector with ξ = 0.02 to the observed signal.
In Figure 5.1(a) the true signal and the measured data can be seen.

In Table 5.1 we show the relative errors with different choices of α, r and γ. In brackets we
report the iteration at which the discrepancy principle stopped the method. Note that SIFT
with γ = 1 and SIWT with r = 1 are exactly the classical Tikhonov method and hence
produce the same result. Figure 5.1(b) shows the reconstruction for SIFT with γ = 0.8
and α = 10−3, SIWT with r = 0.6 and α = 10−2, and SIWT with r = 1 (classical Iterated
Tikhonov) with α = 10−3.

From these results, using both fractional and weighted iterated Tikhonov, we can see that
we can obtain better restorations than with the classical version. However, in order to obtain
such results, one has to evaluate α very carefully. Indeed α does not only affects the con-
vergence speed, but also the quality of the restoration: a small perturbation in α can lead to
quite different restoration errors. The nonstationary version of the methods can help also to
avoid such a careful and often difficult estimation.

For the nonstationary iterations we assume the regularization parameter αk at each iteration
be given according to the geometric sequence

αk = α0q
k, q ∈ (0, 1), k = 1, 2, . . . . (5.51)

Setting rk = 0.6 and γk = 0.8, Table 5.2 shows that NSIFT and NSIWT provide a relative
error lower than the classical nonstationary iterated Tikhonov (ITNS). Finally, since NSIFT
and NSIWT allow a nonstationary choice also for rk and γk, in Table 5.2 we report the results
for the following nonincreasing sequences

rk = γk = { 1− k−1
100 k < 50,

1
2 otherwise.

. (5.52)

Again both NSIWT and NSIFT are able to get better results than ITNS . Even tough the errors
are not as good as those for the best choices rk = 0.6 and γk = 0.8, the choice (5.52) stresses
the robustness of our nonstationary iterations.
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α0 Method q
0.7 0.8 0.9

10−1

NSIFT (γk = 0.8) 0.024453(9) 0.030868(11) 0.028849(17)
NSIWT (rk = 0.6) 0.025223(7) 0.027628(9) 0.028534(13)
ITNS 0.035162(9) 0.031627(13) 0.036472(19)
NSIFT (γk in (5.52)) 0.032489(9) 0.027974(13) 0.037199(17)
NSIWT (rk in (5.52)) 0.031493(9) 0.027436(13) 0.036059(17)

10−2

NSIFT (γk = 0.8) 0.014781(5) 0.021687(5) 0.028709(5)
NSIWT (rk = 0.6) 0.014503(3) 0.021501(3) 0.028396(3)
ITNS 0.024838(5) 0.030866(5) 0.028835(7)
NSIFT (γk in (5.52)) 0.023848(5) 0.030002(5) 0.027636(7)
NSIWT (rk in (5.52)) 0.023482(5) 0.029638(5) 0.027366(7)

TABLE 5.2: Foxgood test problem: RRE for NSIWT and NSIFT with the non-
stationary αk in (5.51) and different choices of rk and γk (ITNS is rk = γk = 1).

The smallest error is shown in boldface.
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FIGURE 5.2: Deriv2 test problem: (a) the true solution (dashed curve) and the
observed data (solid curve), (b) approximated solutions.

Deriv2 We consider the test problem deriv2(·,3) in the toolbox REGULARIZATION TOOL

[83] using 1024 points. For the noise vector it holds ξ = 0.05. In Figure 5.2(a) we can see the
measured data and the true signal. We compare NSIWT and NSIFT with the ITNS .

Firstly, αk is defined by the classical choice in (5.51). Table 5.3 shows the results for different
choices of rk and γk. Note that NSIWT and NSIFT usually outperform ITNS . Neverthe-
less, our nonstationary iterations allow also unbounded sequences of rk and γk. Therefore,
according to Proposition 5.29, we set

αk =
1

k!
, rk =

k

10
, γk =

k

2
. (5.53)

Table 5.4 shows that the relative restoration error obtained with the unbounded sequences
rk and γk in (5.53) is lower than the best one (according to Table 5.3), obtained by ITNS by
employing the geometric sequence (5.51) for αk. The computed approximations are also
compared in Figure 5.2(b), where we note a better restoration of the corner for NSIWT and
NSIFT.

Blur We consider the test problem blur(·,·,·) in the toolbox REGULARIZATION TOOL by
P. Hansen [83]. This is a two dimensional deblurring problem, the true solution is a 40 × 40
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α0 Method q
0.7 0.8 0.9

10−1

NSIFT (γk = 0.8) 0.08981(11) 0.09394(13) 0.09445(19)
NSIWT (rk = 0.6) 0.08051(13) 0.09181(17) 0.09401(29)
ITNS 0.08502(15) 0.09175(21) 0.09466(37)
NSIFT (γk in (5.52)) 0.09428(13) 0.09089(19) 0.09327(29)
NSIWT (rk in (5.52)) 0.09073(13) 0.08648(19) 0.09199(29)

10−2

NSIFT (γk = 0.8) 0.09114(5) 0.08953(7) 0.08998(9)
NSIWT (rk = 0.6) 0.07807(7) 0.09411(7) 0.09183(11)
ITNS 0.08183(9) 0.09174(11) 0.09379(17)
NSIFT (γk in (5.52)) 0.07839(9) 0.08721(11) 0.09246(15)
NSIWT (rk in (5.52)) 0.09399(7) 0.08389(11) 0.08990(15)

TABLE 5.3: Deriv2 test problem: RRE for NSIWT and NSIFT with the non-
stationary αk in (5.51) and different choices of rk and γk (ITNS is rk = γk = 1).

The smallest error is shown in boldface.

NSIFT NSIWT ITNS

Error 0.054831(9) 0.059211(7) 0.081835(9)

TABLE 5.4: Deriv2 test problem: relative restoration errors for NSIFT and
NSIWT with parameters in (5.53) and ITNS with αk = 0.01 · 0.7k.

image, the blurring operator is a symmetric BTTB with bandwidth 6. This blur is created
by a truncated Gaussian point spread function with variance 2. For the noise vector it holds
ν = 0.005. Figure 5.3(a) shows the true image while the observed image is in Figure 5.3(b).

Firstly, αk is defined by the classical choice in (5.51). Table 5.5 provides the results for a
good stationary choice of rk and γk. Note that NSIWT and NSIFT usually outperform ITNS .
Table 5.6 shows that the relative restoration error obtained with the unbounded sequences rk
and γk in (5.53) is lower than the best one (according to Table 5.5), obtained by the stationary
choice of rk and γk. We note that NSIWT and NSIFT are less sensitive than ITNS to an
appropriate choice of α0 and q. In particular using rk and γk in (5.53), NSIWT and NSIFT do
not need any parameter estimation and the computed solutions have a relative restoration
error lower than ITNS with the best parameter setting (see Table 5.5) and they provide also a
better reconstruction, in particular of the edges, see Figure 5.4.

Finally, note that for the ITNS a nondecreasing sequence of αk could be considered instead of
the geometric sequence (5.51), see [46]. Nevertheless, this strategy requires a proper choice

(a) (b)

FIGURE 5.3: Blur test problem: (a) the true image, (b) the measured data.
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α0 Method q
0.7 0.8 0.9

10−1
NSIFT (γk = 0.5) 0.19970(9) 0.19526(13) 0.19847(17)
NSIWT (rk = 0.2) 0.18936(7) 0.18920(9) 0.19732(11)
ITNS 0.19816(15) 0.21786(20) 0.28703(20)

10−2
NSIFT (γk = 0.5) 0.19398(5) 0.19962(5) 0.19595(7)
NSIWT (rk = 0.2) 0.20822(3) 0.19547(3) 0.19109(3)
ITNS 0.19518(9) 0.20531(11) 0.20747(17)

TABLE 5.5: Blur test problem: RRE for NSIWT and NSIFT with the nonsta-
tionary αk in (5.51). The smallest error is shown in boldface.

NSIFT NSIWT ITNS

Error 0.19335(10) 0.18765(8) 0.19518(9)

TABLE 5.6: Blur test problem: relative restorations errors for NSIFT and
NSIWT with parameters in (5.53) and ITNS with αk = 0.01 · 0.7k. The smallest

error is shown in boldface.

of α0 and this is out of the scope of this paper, but it could be investigated in the future in
connection with our fractional and weighted variants. A further development of our iterative
schemes is in the direction of the nonstationary preconditioning strategy in [49], which is
inspired by an approximated solution of the ITNS and hence could be investigated also in a
fractional framework.

(a) (b) (c)

FIGURE 5.4: Blur test problem reconstructions: (a) NSIFT and (b) NSIWT with
parameters in (5.53), (c) ITNS with αk = 0.01 · 0.7k.
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Chapter 6

Approximated Iterated Tikhonov:
some extensions

As in the previous chapter we treat the problem in the continuous setting, i.e., whenA : X →
Y is a linear operator between the Hilbert spaces X and Y . In [49] the authors developed an
iterative method with a nonstationary preconditioner, that can be seen as an approximated
iterated Tikhonov regularization. In particular they considered an operator C which is spec-
trally equivalent to A (see Assumption 6.1 in the next section) and form the preconditioner
at step k as

C∗(CC∗ + αkI)
−1 ≈ A∗(AA∗ + αkI)

−1,

where αk is determined by a damped version of the discrepancy principle. In this way they
are able to both achieve fast computation, by wisely choosing the structure of C , and have
a parameter free method. The estimation of the parameter αk can be difficult. For example,
in the mentioned geometric sequence there are two parameter to be estimated: α0 and q.
Even though small changes in either α0 and q have only a limited effect on the quality of the
reconstruction, an imprudent choice can still lead to poor results. Because, roughly speaking,
they are approximating the operator A with C we will refer to this method as Approximated
Iterated Tikhonov (AIT). Another extension of the AIT method has been proposed in [44]. In
the this work the authors consider the case of image deblurring and use the eigenvalue of
the preconditioner generated by AIT as a generating function for a structured preconditioner
inside an iterative refinement technique.

In this chapter we want to add some features to the algorithm in [49] and test the resulting
methods on image deblurring. Since we have shown in Chapter 4 that the introduction of a
regularization operator L in the IT iterations can improve the quality of the obtained recon-
structions, at first we study the introduction of L in place of I in AIT. We call the resulting
method AIT-GP (Approximated Iterated Tikhonov with General Penalty term). If we know that x†

lies in some closed and convex Ω ⊂ X , we constrain the algorithm in order to get xk ∈ Ω, ∀k.
Hence, we modify AIT introducing the metric projection into Ω. We refer to this method as
APIT (Approximated Projected Iterated Tikhonov). For both the previous generalizations of the
iterative method proposed in [49], namely AIT-GP and APIT, we prove that the new itera-
tions are convergent in the noise-free case and that are regularization methods in the noisy
case. Finally, we combine the regularization term and the projection into Ω developing a
third algorithm called APIT-GP (Approximated Projected Iterated Tikhonov with General Penalty
term).

This chapter is structured as follows. Section 6.1 describes the AIT method proposed in
[49]. In Sections 6.2 and 6.3 we define and study the theoretical properties of our new three
iterative regularization methods. Finally, in Section 6.4 the proposed methods are applied to
the image deblurring problem and compared with other methods proposed in the literature.
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6.1 Approximated Iterated Tikhonov

We now describe the preconditioned iteration proposed in [49]. We need the following as-
sumption that it will be necessary also for our algorithms in the next sections.
Assumption 6.1. Let C be a linear operator such that

‖(C −A)z‖ ≤ ρ ‖Az‖ , ∀z ∈ X , (6.1)

for some 0 < ρ < 1
2 . We say that C is spectrally equivalent to A.

Under this assumption it holds a preliminary result useful for the convergence analysis.

Define the residual at the k-th step as

rk = bδ −Axk,

then the following holds
Lemma 6.1 ([49]). Assume that (2.2) and Assumption 6.1 hold. If τk = ‖rk‖ /δ > τ∗ = (1 +
ρ)/(1 − 2ρ), then it follows that

‖rk − Cek‖ ≤
(
ρ+

1 + ρ

τk

)
‖rk‖ < (1− ρ) ‖rk‖ .

Algorithm 6.1 (Approximated Iterated Tikhonov (AIT)). Let x0 ∈ X be fixed. Choose τ = 1+2ρ
1−2ρ

with ρ as in (6.1), and fix q ∈ [2ρ, 1].

k = 0, r0 = bδ −Ax0, τ0 =
‖rk‖
δ

While ‖rk‖ > τδ

τk =
‖rk‖
δ

qk = max

{
q, 2ρ+

1 + ρ

τk

}

compute αk such that
∥∥rk −CC∗(CC∗ + αkI)

−1rk
∥∥ = qk ‖rk‖

hk = C∗(CC∗ + αkI)
−1rk

xk+1 = xk + hk

rk+1 = bδ −Axk+1

We summarize the main theoretical results proved in [49] about the convergence and the
monotonic decrease of the norm of the error for AIT. We denote the iteration error ek by

ek = x† − xk.

Proposition 6.2 ([49]). Under Assumption 6.1, while ‖rk‖ > τδ, with τ = (1 + 2ρ)/(1 − 2ρ) the
norm of the reconstruction error ek decreases monotonically, namely ‖ek+1‖ ≤ ‖ek‖, for k = 0, 1, . . . .
Corollary 6.3 ([49]). With the notation and assumptions of Proposition 6.2, it holds

‖e0‖2 ≥ 2ρ

kδ−1∑

k=0

∥∥(CC∗ + αkI)
−1rk

∥∥ ‖rk‖ ≥ c

kδ−1∑

k=0

‖rk‖2 .
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Theorem 6.4 ([49]). Assume that the data are exact, i.e., δ = 0, and that x0 is not a solution of
problem (2.3). Then the sequence (xk)k converges as k → ∞ to the solution of (2.3) which is nearest
to x0.
Theorem 6.5 ([49]). Let δ 7→ bδ be a function from R+ to Y such that (2.2) holds true for all δ > 0.
Under Assumption 6.1, for two fixed parameters τ and q, denote by xδ the resulting approximation

obtained with AIT. Then for δ → 0 we have that xδ → x†0 which is the nearest solution of (2.3) to x0.

In [49] the choice of x0 was not deeply investigated. For many iterative regularization meth-
ods, like Krylov methods, the null vector is usually a good choice for x0. Nevertheless, for
AIT this is not a good choice and setting x0 = A∗bδ, which is the initial solution subspace
vector for LSQR, usually provides better results. This is confirmed by several numerical
experiments with image deblurring problems and follows from the next observation. The
approximation of A by C is motivated by the fact that the error equation, used for the itera-
tive refinement, allows a slight misfit due to the noise already present in the problem. If we
choose x0 = 0 then r0 = bδ and x1 = x0 + C∗(CC∗ + αkI)

−1bδ which is exactly the Tikhonov
solution for the operator C instead of A. Although, from a theoretical point of view, this
should not be a problem, numerically this can lead to some issues. For example if C does
not approximate well A then x1 could contain large error components. These components
may be hard to reduce in the following iterations to the point of producing slightly worse
reconstructions than the ones obtained by x0 = A∗bδ.

6.2 Approximated Iterated Tikhonov with general penalty term (AIT-

GP)

In this section we combine the idea of AIT with the generalized iterated Tikhonov method
(Algortihm 4.1), i.e., we introduce the regularization operator L in Algorithm 6.1. We need a
couple of assumptions that link the matrix L with A and C similarly to the basic assumption
(2.9).
Assumption 6.2. Let L and C be two linear operators such that

(i) C
∣∣
N (L)

= A
∣∣
N (L)

;

(ii) L and C are diagonalized by the same unitary transformation.

Assumption 6.2(ii) is restrictive, but it is needed for the proofs that follows. This kind of
requirements can be satisfied for certain choices of C and L and in particular for certain
classes of structured matrices. In Section 6.4 we show an example.

Note that thanks to (6.1) N (A) = N (C) and hence (2.9) implies that N (L) ∩ N (C) = {0}.
Remark 6.6. Under the assumption (ii) on C and L we have that

C : X → X ,
L : X → X .

It is indeed possible to choose an L : X → Z and then transform it into an operator to X either via
an appropriate zero padding or using its QR factorization, see Section 4.2.2. However, it can be
challenging, if not impossible, to prove that Assumption 6.2(ii) holds after the transformation.

We define the orthogonal projection over N (L)

PN (L) = I − L†L
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and the orthogonal projection over N (L)⊥

PN (L)⊥ = L†L.

From Remark 6.6 and Assumption 6.2(ii) we have the following
Lemma 6.7. Let L and C be operator that satisfy Assumption 6.2(ii) and let L†

C be the operator
defined in (2.17), then it holds

(i) C†C commutes with L†L;

(ii) (I − L†L)C = C(I − L†L);

(iii) (C(I − L†L))† = (I − L†L)C†.

Proof. By Assumption 6.2(ii) there exists a unitary transformation F such that

C = FΓF ∗,

L = FΛF ∗.

From [108, Lemma 1·6], see also [16, Theorem 2.2.2], it holds that

C† = FΓ†F ∗,

L† = FΛ†F ∗.

Thus,
C†C = FΓ†ΓF ∗,

L†L = FΛ†ΛF ∗.
(6.2)

From (6.2) the proof of point (i) comes immediately. In fact

C†CL†L = FΓ†ΓF ∗FΛ†ΛF ∗

= FΓ†ΓΛ†ΛF ∗

= FΛ†ΛΓ†ΓF ∗

= FΛ†ΛF ∗FΓ†ΓF ∗

= L†LC†C,

where we have used the fact that diagonal operators commute with each other.

We move now to point (ii). From (6.2) we have that

(I − L†L) = (F ∗F − FΛ†ΛF ∗) = F ∗(I − Λ†Λ)F.

We can then write
(I − L†L)C = F (I − Λ†Λ)FF ∗ΓF ∗

= F (I − Λ†Λ)ΓF ∗

= FΓF ∗F (I − Λ†Λ)F

= C(I − L†L),

proving point (ii).
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Finally we can prove point (iii). In order to do that we show the four properties that char-
acterize the Moore-Penrose pseudo-inverse. In particular X is the Moore-Penrose pseudo-
inverse of A if and only if

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

see [108].

We now prove the above four properties with A = C(I − L†L) and X = (I − L†L)C†.

AXA = A. Using the fact that (I − L†L)(I − L†L) = (I − L†L), point (ii) and the properties
of the pseudo-inverse C† we have

[
C(I − L†L)

] [
(I − L†L)C†

] [
C(I − L†L)

]
= C(I − L†L)C†C(I − L†L)

= (I − L†L)CC†C(I − L†L)

= (I − L†L)C(I − L†L)

= C(I − L†L)(I − L†L)

= C(I − L†L).

XAX = X. Considering also point (i) we have
[
(I − L†L)C†

] [
C(I − L†L)

] [
(I − L†L)C†

]
= (I − L†L)C†C(I − L†L)C†

= (I − L†L)(I − L†L)C†CC†

= (I − L†L)C†

(AX)∗ = AX. Noting that (C†C)∗ = C†C and (L†L)∗ = L†L by the properties of the pseudo-
inverse we get

([
C(I − L†L)

] [
(I − L†L)C†

])∗
=
(
C(I − L†L)C†

)∗

=
(
(I − L†L)CC†

)∗

= CC†(I − L†L)

= (I − L†L)CC†

= C(I − L†L)C†

=
[
C(I − L†L)

] [
(I − L†L)C†

]
.

(XA)∗ = XA. Analogously we get
([

(I − L†L)C†
] [
C(I − L†L)

])∗
=
(
(I − L†L)(I − L†L)C†C

)∗

=
(
(I − L†L)C†C

)∗

= C†C(I − L†L)

= C†C(I − L†L)(I − L†L)

=
[
(I − L†L)C†

] [
C(I − L†L)

]
.

Which concludes the proof of point (iii).
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We are now in the position of proving
Lemma 6.8. With the same assumptions and notations of Lemma 6.7 it holds

L†
C = L†

Proof. Let us write the expression for L†
C and use the results shown in Lemma 6.7

L†
C = (I − (C(I − L†L))†C)L†

= (I − (I − L†L)C†C)L†

= (I − C†C + L†LC†C)L†

= L† − C†CL† + L†LC†CL†

= L† − C†CL† + C†CL†LL†

= L† − C†CL† + C†CL†

= L†

We define
C = CL†

C = CL†. (6.3)

Algorithm 6.2 (Approximated Iterated Tikhonov with General Penalty term (AIT-GP)). Let
L and C be linear operators that fulfill Assumptions 6.1 and 6.2 for a fixed 0 < ρ ≤ 1

2 .

Let x0 ∈ X be fixed. Choose τ = 1+2ρ
1−2ρ with ρ from (6.1), and fix q ∈ [2ρ, 1].

k = 0, r0 = bδ −Ax0, τ0 =
‖rk‖
δ

While ‖rk‖ > τδ

τk =
‖rk‖
δ

qk = max

{
q, 2ρ+

1 + ρ

τk

}

compute αk such that
∥∥rk −CC∗(CC∗ + αkLL

∗)−1rk
∥∥ = qk ‖rk‖

hk = C∗(CC∗ + αkLL
∗)−1rk

xk+1 = xk + hk

rk+1 = bδ −Axk+1

Note that, by construction of αk, it holds for all k that

‖rk − Chk‖ = qk ‖rk‖ , (6.4)

We refer to Algorithm 6.2 as Approximated Iterated Tikhonov with General Penalty term (AIT-GP)
since this method can be seen as a preconditioned iterative method whose preconditioner is
obtained by approximated Tikhonov with a general regularization operator L.
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We define, as in Subsection 2.2.1,
{
h
(0)
k = (C(I − L†L))†rk
rk = rk − Ch

(0)
k .

(6.5)

Note that if L is invertible then rk = rk.
Lemma 6.9. Let rk be defined in (6.5), then it holds

∥∥∥L†rk
∥∥∥ =

∥∥∥L†rk
∥∥∥ .

Proof. From the definition of rk and h(0)k in (6.5) it follows that
∥∥∥L†rk

∥∥∥ =
∥∥∥L†(rk − Ch

(0)
k )
∥∥∥ =

∥∥∥L†rk − L†C(C(I − L†L))†rk
∥∥∥

proving thatL†C(C(I−L†L))† = 0 will conclude the proof. Consider the results in Lemma 6.7

L†C(C(I − L†L))† = L†C(I − L†L)C† = L†(I − L†L)CC†.

Note that, since L : X → X it holds that N (L†) = N (L) thus, being (I − L†L) = PN (L), we
have that L†(I − L†L) = 0. Using this last equality we have that

L†C(C(I − L†L))† = L†(I − L†L)CC† = 0,

which concludes the proof.

In particular we also obtained that h(0)k ∈ N (L).

Lemma 6.10. Let rk and C be defined in (6.5) and (6.3), respectively, and define

hk := Lhk.

Then it holds ∥∥rk − Chk
∥∥ = ‖rk − Chk‖ .

Proof. This results has been shown in [59], we give here a proof with our notation for com-
pleteness.

Form [59] we know that

hk = L†C
∗
(CC

∗
+ αkI)

−1rk + h
(0)
k ,

and so, since C∗
(CC

∗
+αkI)

−1rk ∈ N (L)⊥ for construction of rk and C and h(0)k ∈ N (L) (see
Lemma 6.9), we get

hk = Lhk = LL†C
∗
(CC

∗
+ αkI)

−1rk + Lh
(0)
k = C

∗
(CC

∗
+ αkI)

−1rk,

and so it holds
hk = C

∗
(CC

∗
+ αkI)

−1rk. (6.6)

Moreover, ∥∥rk − Chk
∥∥ = ‖rk − Chk‖ , (6.7)
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in fact
∥∥rk − Chk

∥∥ =
∥∥∥rk − Ch

(0)
k −Chk

∥∥∥ =
∥∥∥rk − C

(
L†hk + h

(0)
k

)∥∥∥ = ‖rk −Chk‖ ,

where, in the last step, we have used the definition of C = CL†.

Now we divide the space X = N (L)⊕N (L)⊥ and we analyze the behavior of Algorithm 6.2
on each subspace.

We call
e⊥k = PN (L)⊥(ek) = PN (L)⊥(x

†)− PN (L)⊥(xk)

and
e
(0)
k = PN (L)(ek) = PN (L)(x

†)− PN (L)(xk).

On the two subspaces the Algorithm 6.2 has different behaviors.

This is analysis is related to the one we performed in Chapter 4 for the GIT algorithm.

First, in Remark 6.11 we concentrate on the space N (L).
Remark 6.11. Let us consider the projection onto N (L) of the very first iteration

PN (L)(x1) = PN (L)(x0 + h0) = PN (L)(x0) + PN (L)(h0),

since hk = L†hk + h
(0)
k , we get

PN (L)(h0) = PN (L)(h
(0)
0 ) = h

(0)
0 =

(
C
∣∣
N (L)

)†
(bδ −Ax0).

In force of Assumption 6.2(i) we have

PN (L)(h0) =
(
A
∣∣
N (L)

)†
(bδ −Ax0) = PN (L)(A

†bδ)− PN (L)(x0).

And thus

PN (L)(x1) = PN (L)(x0) + PN (L)(A
†bδ)− PN (L)(x0) = PN (L)(A

†bδ),

so in the null space of L we directly invert the operator A at the very first step.
Proposition 6.12. Let ek = Le⊥k , under Assumption 6.2 the norm of ek of Algorithm 6.2 decreases
monotonically.

‖ek‖2 − ‖ek+1‖2 ≥ 2ρ
∥∥∥(CC∗

+ αkI)
−1rk

∥∥∥ ‖rk‖

Proof. This proof is in the spirit of the original result showed in [49, Proposition 2]. Let us
consider ‖ek‖ =

∥∥Le⊥k+1

∥∥ = ‖Lek+1‖

‖ek+1‖2 = 〈Lek+1, Lek+1〉 = 〈Lek − Lhk, Lek − Lhk〉
= ‖Lek‖2 − 2 〈Lek, Lhk〉+ ‖Lhk‖2 .

Using the definition of hk , denoting with Qk = (CC
∗
+ αkI), it holds

‖ek‖2 − ‖ek+1‖2 = 2 〈Lek, Lhk〉 − ‖Lhk‖2

≥ 2 〈Lek, Lhk〉 − 2 ‖Lhk‖2

= 2
〈
Lek, C

∗
Q−1

k rk

〉
− 2

〈
rk, CC

∗
Q−2

k rk

〉
.
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since Lhk = hk = C
∗
Q−1

k rk thanks to (6.6). Therefore

‖ek‖2 − ‖ek+1‖2 = 2
〈
rk, Q

−1
k rk

〉
− 2

〈
rk, CC

∗
Q−2

k rk

〉

− 2
〈
rk − CLek, Q

−1
k rk

〉

= 2
〈
rk, Q

−1
k rk

〉
− 2

〈
rk, CC

∗
Q−2

k rk

〉

− 2
〈
rk − Ce⊥k , Q

−1
k rk

〉

= 2
〈
rk,
[
Q−1

k − CC∗Q−2
k

]
rk
〉
− 2

〈
rk − Ce⊥k , Q

−1
k rk

〉

≥ 2αk

〈
rk, Q

−2
k rk

〉
− 2

∥∥∥rk − Ce⊥k
∥∥∥
∥∥Q−1

k rk
∥∥

= 2αk

∥∥Q−1
k rk

∥∥2 − 2
∥∥∥rk − Ce⊥k

∥∥∥
∥∥Q−1

k rk
∥∥

= 2
∥∥Q−1

k rk
∥∥
[∥∥αkQ

−1
k rk

∥∥−
∥∥∥rk − Ce⊥k

∥∥∥
]

≥ 2
∥∥Q−1

k rk
∥∥ [‖rk − Chk‖ − ‖rk −Cek‖] ,

where the last step is obtained by considering (6.7)

‖rk − Chk‖ =
∥∥rk − Chk

∥∥ =
∥∥∥rk − CC

∗
(CC ∗+αkI)

−1rk

∥∥∥

=
∥∥∥
[
I − CC

∗
(CC ∗+αkI)

−1
]
rk

∥∥∥ =
∥∥αkQ

−1
k rk

∥∥ ,

and by ∥∥∥rk −Ce⊥k
∥∥∥ =

∥∥∥PN (L)⊥(rk − Cek)
∥∥∥ ≤ ‖rk − Cek‖ ,

since
∥∥∥PN (L)⊥

∥∥∥ =
∥∥L†L

∥∥ = 1.

In virtue of Proposition 6.1 and using equation (6.4) we have that

‖ek‖2 − ‖ek+1‖2 ≥ 2
∥∥Q−1

k rk
∥∥ [qk ‖rk‖ − ‖rk −Cek‖]

≥ 2ρ
∥∥Q−1

k rk
∥∥ ‖rk‖ = 2ρ

∥∥∥(CC∗
+ αkI)

−1rk

∥∥∥ ‖rk‖ .

We call kδ the iteration at which Algorithm 6.2 stops. From Corollary 6.13 we are going to be
able to deduce that kδ is finite if δ > 0, independently of the choice of x0.

Repeating the same steps that in [49] led to derive Corollary 3 from Proposition 2, the fol-
lowing result can be derived from Proposition 6.12.
Corollary 6.13. With the notation and assumptions of Proposition 6.12, it holds

‖e0‖2 ≥ 2ρ

kδ−1∑

k=0

∥∥∥(CC∗
+ αkI)

−1rk

∥∥∥ ‖rk‖ ≥ c

kδ−1∑

k=0

‖rk‖2 .

Form the outer inequality in Corollary 6.13 we obtain that the sum of the squares of the
norm of the residual (in N (L)⊥) is bounded and hence, if δ > 0, there must be a first integer
N ∋ kδ < ∞ that fulfills the stopping criterion. In fact suppose that the algorithm does not
stop after finitely many iterations, we get that limk→∞ ‖rk‖2 = 0. Thus there exists k such
that

∥∥rk
∥∥ < τδ which is absurd. In other words, if δ > 0 Algorithm 6.2 terminates after a
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finite number of iterations. Conversely, in Theorem 6.14 we show that, if δ = 0 and x0 is not
a solution of the system, then the algorithm, even though it converges to a solution of the
system, does not stop.
Theorem 6.14. Assume that the data are exact, i.e., δ = 0, and that x0 is not a solution of the

problem. Then, the sequence (xk)k converges as k → ∞ to a solution x†0 such that:

(i) Ax†0 = b;

(ii) PN (L)(x
†
0) = PN (L)(x

†);

(iii) the distance between x†0 and x0 is minimal with respect to the set of all the solutions.

Proof. The proof follows the same strategy of the analogous result in [49, Theorem 4]. Let
us call xkδ = x†0, since δ = 0 the stopping criterion can only be fulfilled for k = kδ and with
‖rk‖ = 0.

We now show that an infinite number of iterations is needed. If k > 0, then hk−1 must
coincide with ek−1 up to an element in the null space of A, that is (thanks to Assumption 6.1)
the null space of C , and so, using (6.4) and Proposition 6.1, we get

qk−1 ‖rk−1‖ = ‖rk−1 − Chk−1‖ = ‖rk−1 − Cek−1‖ ≤
(
ρ+

1 + ρ

τk−1

)
‖rk−1‖ .

This contradicts the definition of qk−1 and so the iteration does not terminate after finitely
manly iterations for exact data if x0 is not a solution of the system.

Using Remark 6.11, the proof of point (ii) is immediate. It is left for us to show points (iii)
and (i). We first show that the sequence (Lxk)k = (xk)k is a Cauchy sequence.

Let j > l and let us consider ‖Lxj − Lxl‖2

‖Lxj − Lxl‖2 = ‖Lej − Lel‖2 = ‖ej‖2 − ‖el‖2 − 2 〈el, ej − el〉
= ‖ej‖2 − ‖el‖2 + 2 〈el, xj − xl〉 .

Inserting the definition of xk and of hk we get

‖xj − xl‖2 = ‖ej‖2 − ‖el‖2 + 2

j−1∑

i=l

〈
el, hi

〉

= ‖ej‖2 − ‖el‖2 + 2

j−1∑

i=l

〈
Lel, C

∗
(CC

∗
+ αiI)

−1ri

〉

= ‖ej‖2 − ‖el‖2 + 2

j−1∑

i=l

〈
Ce⊥l , (CC

∗
+ αiI)

−1ri

〉

≤ ‖ej‖2 − ‖el‖2 + 2

j−1∑

i=l

∥∥∥Ce⊥l
∥∥∥
∥∥∥(CC∗

+ αiI)
−1ri

∥∥∥

≤ ‖ej‖2 − ‖el‖2 + 2

j−1∑

i=l

‖Cel‖
∥∥∥(CC∗

+ αiI)
−1ri

∥∥∥,

where in the last step we have used the fact that
∥∥Ce⊥i

∥∥ ≤ ‖Cei‖.
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Let us suppose now that l ≥ k and so

‖xl − xk‖2 = ‖ek‖2 − ‖el‖2 + 2
l−1∑

i=k

〈
el, hi

〉

= ‖ek‖2 − ‖el‖2 + 2

l−1∑

i=k

〈
Ce⊥l , (CC

∗
+ αiI)

−1ri

〉

≤ ‖ek‖2 − ‖el‖2 + 2
l−1∑

i=k

∥∥∥Ce⊥l
∥∥∥
∥∥∥(CC∗

+ αiI)
−1ri

∥∥∥

≤ ‖ek‖2 − ‖el‖2 + 2

l−1∑

i=k

‖Cel‖
∥∥∥(CC∗

+ αiI)
−1ri

∥∥∥.

Using the two inequalities together and Assumption 6.1 we get for general j > k and any
l ∈ {k, . . . , j − 1}

‖Lxj − Lxk‖2 ≤ 2 ‖Lxj − Lxl‖2 − 2 ‖Lxl − Lxk‖2

≤ 2 ‖ej‖2 + 2 ‖ek‖2 +

− 4 ‖el‖2 + 4

j−1∑

i=k

‖Cel‖
∥∥∥(CC∗

+ αiI)
−1ri

∥∥∥

≤ 2 ‖ej‖2 + 2 ‖ek‖2 − 4 ‖el‖2 +

+ 4(1 + ρ)

j−1∑

i=k

‖rl‖
∥∥∥(CC∗

+ αII)
−1ri

∥∥∥

Let l ∈ {k, . . . , j − 1} be that particular index for which ‖rl‖ is minimal, so that

‖Lxj − Lxk‖2 ≤2 ‖ej‖2 + 2 ‖ek‖2 − 4 ‖el‖2 +

+ 4(1 + ρ)

j−1∑

i=k

‖ri‖
∥∥∥(CC∗

+ αiI)
−1ri

∥∥∥.

The right-hand side of the inequality above becomes arbitrarily small, because the sequence
(‖ek‖)k is monotonically decreasing, in force of Proposition 6.12, and so it converges to some
limit ǫ ≥ 0 and the summation is the partial sum of a converging series (see Corollary 6.13).
We have proved that the sequence (xk)k is a Cauchy sequence and so it converges to a certain
limit x ∈ X . By continuity of L† we get that

PN (L)⊥(xk) = L†Lxk → L†x = L†Lx = PN (L)⊥(x),

for some x ∈ X . Accordingly the norm of the residual PN (L)⊥(rk) = PN (L)⊥(b−Axk) goes to
PN (L)⊥(b − Ax), while in force of Corollary 6.13 the norm of this residual converges to zero
and so PN (L)⊥(x) is the projection of a solution of the system, this with Remark 6.11 proves
point (i) of the theorem.

By construction, every iterate xk satisfies

xk − x0 =

n−1∑

k=0

hk ∈ R(C∗) = N (C)⊥,
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Therefore x−x0 ∈ N (A)⊥, thanks to Assumption 6.2 (i) and so x is the particular solution of
the system which is closest to x0 in the norm of X thus proving point (iii).

Remark 6.15. If x0 is a solution of the system then we have that ‖r0‖ = ‖Ax0 − b‖ = 0 and thus
the algorithm does not start. In particular only a finite number of iteration is needed.

Let us consider the inexact data case, in this circumstances Algorithm 6.2 is a regularization
method, in fact we have the following
Theorem 6.16. Assume that Assumption 6.2 holds for some 0 < ρ ≤ 1

2 and let δ 7→ bδ be a function
from R to X such that for all δ it holds

∥∥b− bδ
∥∥ ≤ δ. For fixed τ and q denote by xδ the approximation

of x† obtained with Algorithm 6.2. Then, as δ → 0, xδ goes to the solution of the system which is
closest to x0.

We omit the proof since it can be copied from [77, Theorem 2.3]; for further reference see also
[61, Theorem 11.5]. Its essentials ingredients are the monotonicity proved in Proposition 6.12,
the convergence to the exact solution in the exact data case proved in Theorem 6.14 and the
continuity of the map δ 7→ bδ.

6.3 Approximated Projected Iterated Tikhonov (APIT)

Let Ω ⊂ X be closed and convex and such that x† ∈ Ω, let PΩ be the metric projection of X
on Ω and AΩ = A

∣∣
Ω

, CΩ = C
∣∣
Ω

. We want to constrain our problem so that ∀k, xk ∈ Ω.
Definition 6.17. We define the metric projection of x ∈ X onto Ω as

PΩ(x) = argmin
y∈Ω

1

2
‖x− y‖2 .

Lemma 6.18. Let Ω be a closed and convex subset of a Hilbert space X , then PΩ, the metric projection
of X over n, is such that:

(i) ‖PΩ(x)− PΩ(y)‖2 ≤ ‖x− y‖2 − ‖(I − PΩ) (x)− (I − PΩ) (y)‖2;

(ii) ‖PΩ(x)− PΩ(y)‖2 ≤ 〈x− y, PΩ(x)− PΩ(y)〉.

Proof. The proof of the first can be found in [121]. The second is just a reformulation.

Remark 6.19. Lemma 6.18 implies that the map PΩ is non-expansive.

In order to constrain Algorithm 6.1 we simply project at each iteration, obtaining the follow-
ing
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Algorithm 6.3 (Approximated Projected Iterated Tikhonov (APIT)). Let x0 ∈ X be fixed.
Choose τ = 1+2ρ

1−2ρ with ρ as in (6.1), and fix q ∈ [2ρ, 1].

k = 0, r0 = bδ −Ax0, τ0 =
‖rk‖
δ

While ‖rk‖ > τδ

τk =
‖rk‖
δ

qk = max

{
q, 2ρ+

1 + ρ

τk

}

compute αk such that
∥∥rk −CC∗(CC∗ + αkI)

−1rk
∥∥ = qk ‖rk‖

hk = C∗(CC∗ + αkI)
−1rk

xk+1 = PΩ(xk + hk)

rk+1 = bδ −Axk+1

We refer to Algorithm 6.3 as Approximated Projected iterated Tikhonov since this method can
be seen as a preconditioned iterative method whose preconditioner is obtained by approxi-
mated Tikhonov and is projected at each iteration.
Remark 6.20. Since x† ∈ Ω, we have ‖ek‖ ≤ ‖ẽk‖ , where ẽk is the error at the n-th iteration before
of the projection into Ω, namely ẽk = x† − (xk−1 + hk−1).

Using Lemma 6.18, the theoretical results reported in Section 6.1 for AIT can be easily ex-
tended to APIT.
Proposition 6.21. With the same notations and assumptions of Proposition 6.2, the norm of the
iteration error ek decreases monotonically, namely

‖ek‖2 − ‖ek+1‖2 ≥ 2ρ
∥∥(CC∗ + αkI)

−1rk
∥∥ ‖rk‖ .

Proof. Using Lemma 6.18:

‖ek‖2 − ‖ek+1‖2 = ‖ek‖2 −
∥∥∥x† − PΩ(xk + hk)

∥∥∥
2
≥

≥ ‖ek‖2 −
∥∥∥x† − (xk + hk)

∥∥∥
2
= ‖ek‖2 − ‖ek − hk‖2 .

Then, proceeding like in [49, Proposition 2], we have the thesis.

Using the same approach of [49] to prove the results in Section 6.2, it can be shown that1

Theorem 6.22. Assume that the data are correct, i.e., δ = 0, and that x0 is not a solution of the
problem (2.3). Then, the sequence xk converges as n→ ∞ to a solution of (2.3).

Using this result and copying the proof of Theorem 2.3 in [77] we obtain
Theorem 6.23. Let δ 7→ bδ be a function from R+ to Y such that (2.2) holds true for all δ > 0. Under
Assumption 6.1, for fixed parameters τ and q, denote by nδ the corresponding stopping indexes, and
by xδ the resulting approximations. Then, as δ → 0, xδ converges to a solution of (2.3).

1For more details see the proof of Theorem 7.10 in Chapter 7
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6.3.1 Approximated Projected Iterated Tikhonov with General Penalty term (APIT-
GP)

We now combine the previous two algorithms into a third one.
Algorithm 6.4 (Approximated Projected Iterated Tikhonov with General Penalty term (APIT-GP)).
Let x0 ∈ X be fixed, set k = 0. Choose τ = 1+2ρ

1−2ρ with ρ as in (6.1), and fix q ∈ [2ρ, 1].

k = 0, r0 = bδ −Ax0, τ0 =
‖rk‖
δ

While ‖rk‖ > τδ

τk =
‖rk‖
δ

qk = max

{
q, 2ρ+

1 + ρ

τk

}

compute αk such that
∥∥rk −CC∗(CC∗ + αkLL

∗)−1rk
∥∥ = qk ‖rk‖

hk = C∗(CC∗ + αkLL
∗)−1rk

xk+1 = PΩ(xk + hk)

rk+1 = bδ −Axk+1

We refer to Algorithm 6.4 as Approximated Projected Iterated Tikhonov with General Penalty term
since this method can be seen as the combination of Algorithms 6.2 and 6.3.

From the numerical experiments in Section 6.4 we can see that this algorithm has good per-
formances, however, we are not able to provide a proof of its convergence.

6.4 Numerical Examples

We apply our methods to the image deblurring problem. In this examples we use as A the
blurring matrix with boundary conditions that respect the nature of the image and C the
blurring matrix that has the same point PSF of A with periodic boundary conditions.

As L we choose the divergence with periodic boundary conditions defined in (2.14). Recall
that L is singular and its null space is

N (L) = span {1} . (6.8)

Since we are using the periodic boundary conditions the C and L are BCCB matrices and
satisfy the Assumption 6.2 (ii), with F ∗ being the two-dimensional discrete Fourier transform
[84].

Note that for L defined in (2.14), we have that N (L) ∩ N (C) = {0} thanks to (6.8). Indeed,

C1 = 1

because the sum of every row of C is equal to the sum of all entries of the PSF, which is equal
to 1 to preserve the total light intensity.
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Images can be seen as the measurement of the quantity of light received from a source and
so they should not have negative values. Therefore we choose Ω to be the nonnegative cone
defined in (3.2).

Moreover, according to several numerical tests with different problems and the suggestions
in [49], we fix

ρ = 10−3 and q = 0.7

in all our examples. To compare the quality of the restorations, we use the RRE defined in
(2.15). The minimum RRE in all table will be marked in bold.

For the construction of the examples we proceed in the following way. We first start with
an image of n1 × n2 pixels and blur it using any boundary conditions, e.g., the periodic one,
using a PSF with of m1 × m2 with mj < nj , j = 1, 2. Then, in order to simulate a real
situation, we cut out the the boundary from the blurred image of half the size of the PSF, i.e.,
of
⌈mj

2

⌉
. We then add some white Gaussian noise with noise level ξ defined in (2.13).

We compare the restoration obtained with our methods with the original method AIT and
with some other methods already present in the literature. In particular we consider the
following methods:

• Hybrid [40];

• Two step iterative shrinkage/thresholding (Twist) [15];

• Range Restricted Arnoldi–Tikhonov (RRAT) [104];

• Flexible Arnoldi Tikhonov(FlexiAT) [67];

• Nonnegative Restarted Generalized Arnoldi Tikhonov (NN-ReStart-GAT) [67].

The Hybrid method is a Krylov method in which on each Krylov space a Tikhonov regu-
larization is implemented so to obtain a regularized solution, the regularization parameter
is chosen with a particular modification of the generalized cross validation. In RRAT the
Arnoldi Tikhonov decomposition is used to consider a certain Krylov space and then on this
space the regularized solution is obtained using Tikhonov regularization, the regularization
parameter is chosen solving the discrepancy principle equation. Twist is a method that com-
bines regularization of the iterative shrinkage/thresholding methods and the splitting of the
Iterative Re-Weighted Shrinkage methods. FlexiAT is a method that enables to introduce
a regularization term into the equation and to adapt the Krylov subspace using the inter-
mediate solutions in order to achieve better approximates the optimal regularization matrix.
NN-ReStart-GAT is a projected version of ReStart-GAT, this method uses a restarted strategy,
the inner iteration solves a Tikhonov regularized version of the problem exploiting Arnoldi
Tikhonov decomposition with a regularization term L such that ‖Lx‖ ≈ ‖x‖1, then the outer
iteration updates L so that the approximation of the 1−norm gets better and better with the
iterations.

In the following figures, the restored images are shown after a projection into Ω also for the
methods that do not impose the nonnegative constraint. This allows a better visualization of
the images in particular when they are affected by large ringing effects.

All the tests were performed using MATLAB 9.0.0.341360 (R2016a) 64bit running on a laptop
with an Intel core i7-6700HQ @ 2.60 GHz CPU and 8 GB of RAM.
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(a)

0 5 10 15

0

2

4

6

8

10

12

14

16

(b) (c)

FIGURE 6.1: Barbara test problem: (a) Test image (496 × 496 pixels), (b) Di-
agonal motion PSF (16 × 16 pixels), (c) Blurred image (496 × 496 pixels),

RRE = 0.16145.

(a) (b) (c) (d)

FIGURE 6.2: Barbara test problem reconstructions: (a) AIT-GP, (b) AIT (c) Hy-
brid at the optimal iteration (the method does not stop properly), (d) TwIST.

Barbara In this example we use the image Barbara, we blur the image with a diagonal
motion PSF of 16 pixel and add 3% of white Gaussian noise, i.e., ξ = 0.03 in (2.13), see
Figure 6.1.

Since the image is generic we use the antireflective boundary conditions for the operator A.
From the comparison of the RRE history in Figure 6.8(a) we can see that, since there are no
important black parts in the image, the introduction of the projection does not give any rele-
vant improvement, in fact the graphs of APIT and AIT are overlayed and the same happens
for AIT-GP and APIT-GP. The introduction of L is able to make the method faster and more
accurate. In Figure 6.2 we can see the reconstructions with AIT-GP, AIT, Twist and the op-
timal reconstruction obtained with Hybrid. We can see from those reconstructions that the
introduction of the regularization operator L let us have a better reconstruction of edges and
details even though there are some ringing effects. In Table 6.1 we can find the comparison
of the RRE and computational times with some other method from the literature, we can see
that usually the method proposed are able to get better reconstructions in a smaller amount
of time. We want to stress the fact that the stopping criterion of Hybrid was not able to effec-
tively stop the method, so we printed also the optimal error; from this we can see that, even
though AIT and APIT are outperformed by Hybrid, the introduction of the regularization
operator gives better reconstructions.

FlexiAT, RRAT and NN-ReStart-GAT do not seems to perform well, moreover they also reach
the maximum number of iterations without converging. This effect might be due to the
fact that this methods are constructed for images that are mostly black, like astronomical or
biological images, and not for photographic images like the one we are using in this example.
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Method RRE Iterations Computational Time (sec.)
AIT 0.13489 3 0.60364
AIT-GP 0.13132 3 0.75130
APIT 0.13489 3 0.57012
APIT-GP 0.13132 3 0.73076
Hybrid 0.15919 (Opt.: 0.13337) 33 (Opt.: 5) 9.4639 (Opt. 1.4339)
TwIST 0.13906 6 4.5313
FlexiAT 0.16613 50 6.6665
RRAT 0.17308 50 13.782
NN-ReStart-GAT 0.16471 500 109.10

TABLE 6.1: Barbara test problem: Comparison of the methods in term of RRE,
number of iterations and computational time. The smallest error is shown in

boldface.

(a) (b) (c)

FIGURE 6.3: Grain test problem: (a) Test image (300 × 300 pixels), (b) Non
symmetric Gaussian PSF (22 × 22 px), (c) Blurred image (300 × 300 pixels),

RRE = 0.3680.

Grain For this example we use the image Grain, we blur the image with a non symmetric
Gaussian PSF from the toolbox RESTORE TOOLS[12], and add 5% of white Gaussian noise,
i.e., ξ = 0.05 in (2.13) (for the result see Figure 6.3). This image having a very huge black area
is very useful to see the improvements introduced by the nonnegative constraint. Again,
since the image is generic at the boundary, we use the antireflective boundary conditions.
From the RRE history in Figure 6.8(b) we can see that the projection in the nonnegative
cone gives great improvements in the quality of the reconstructions. In Figure 6.4 we can
find the reconstruction with the AIT-GP, APIT, APIT-GP and Hybrid methods, from these
we can see that L helps reconstructing the edges and that the projection let us have a more
homogeneous result in the black areas. In order to better notice that we show in Figure 6.5 a
detail of |enδ | in color map jet. In fact the reconstructions in Figure 6.4 are visualized so that
no negative values are introduced, if the negative values were permitted we would get high
oscillations in the black areas for the non-projected algorithms. In Table 6.2 we can find the
RRE and computational times of our algorithms compared with some other method from
the literature.

Satellite In this last example we use the dataset satellite from the toolbox RESTORE

TOOLS[12]. In this case the image is blurred with an astronomical PSF. The noise level ξ is
approximately of the 4% and has been computed using the knowledge of the true image. See
Figure 6.6 for the true image, the PSF and the blurred and noisy data. Like in the example
before this image, having a very huge black area, is very useful to see the improvements
introduced by the nonnegative constraint. Since near the boundary the image is all black
we use the zero boundary conditions. In Figure 6.8(c) we find the RRE history, we can see
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(a) (b) (c) (d)

FIGURE 6.4: Grain test problem reconstructions: (a) AIT-GP, (b) APIT, (c) APIT-
GP, (d) Hybrid.

(a) (b) (c) (d)

FIGURE 6.5: Grain test problem, absolute value of the error in the south-east
corner: (a) AIT-GP, (b) APIT, (c) APIT-GP, (d) Hybrid.

Method RRE Iterations Computational Time (sec.)
AIT 0.28742 4 0.33530
AIT-GP 0.28485 4 0.33922
APIT 0.27393 30 1.4502
APIT-GP 0.27063 57 3.0685
Hybrid 0.32334 8 1.0395
TwIST 0.28743 16 5.3594
FlexiAT 0.35340 4 2.7535
RRAT 0.29767 9 0.084399
NN-ReStart-GAT 0.35044 52 4.7067

TABLE 6.2: Grain test problem: Comparison of the methods in term of RRE,
number of iterations and computational time. The smallest error is shown in

boldface.

FIGURE 6.6: Satellite test problem: (a) Test image (256 × 256 pixels), (b) As-
tronomic PSF (256 × 256 pixels), (c) Blurred image (256× 256 pixels), RRE =

0.70464.
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FIGURE 6.7: Satellite test problem reconstructions: (a) APIT, (b) APIT-GP, (c)
RRAT, (d) FlexiAT.

Method RRE Iterations Computational Time (sec.)
AIT 0.40996 7 0.48016
AIT-GP 0.42385 7 0.50797
APIT 0.39801 21 1.1806
APIT-GP 0.41129 32 1.7659
Hybrid 0.47663 50 4.5397
TwIST 0.47745 22 3.0313
FlexiAT 0.44875 8 0.18139
RRAT 0.45807 8 0.078776
NN-ReStart-GAT 0.83804 59 4.5397

TABLE 6.3: Satellite test problem: Comparison of the methods in term of RRE,
number of iterations and computational time. The smallest error is shown in

boldface.

that all the three methods we introduced give better result than AIT, since the image is for
the most part black the better result is achieved with APIT. In this case, however, the best
reconstruction is not the one given by APIT-GP, this is due to the fact that the introduction of
the regularization operator is able to enhance the edges and some small noise, in the black
area is recognized as edge and preserved. We must notice, none the less, that the difference
between APIT-GP and APIT is very small. Finally in Figure 6.7 we can see the reconstructions
for APIT, APIT-GP, RRAT and NN-Restart-GAT. In Table 6.3 we can find the comparison of
the RRE and computational times with some other method from the literature, we can see
that all the method proposed are able to get better reconstructions, even though in some
cases the computational time is higher.
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FIGURE 6.8: Evolution of the relative reconstruction error against the iterations
for AIT, APIT, AIT-GP, and APIT-GP: (a) Barbara test case, (b) Cell test case, (c)
Satellite test case. In black with stars AIT, in blue with circles APIT, in red with

triangles AIT-GP, and in cyan with pentacles APIT-GP.
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Chapter 7

Multigrid iterative regularization
method for image deblurring with
arbitrary boundary conditions

In this chapter we turn again our attention to the finite dimensional case of the linear system
of equations (2.3). We are going to discuss a multigrid algorithm designed for image deblur-
ring and denoising. In particular, we want to construct an iterative regularization method
using the multigrid framework.

Multigrid methods are very powerful algorithms that are able to achieve very fast computa-
tions and high accuracy, see e.g. [24, 120]. Multigrid methods have been initially developed
for solving linear systems of equations derived from partial differential equations (PDEs)
[22] and later successfully applied to more general linear systems [118].

Multigrid methods have already been considered to solve ill-posed problems [36, 37, 55, 81,
92, 94, 114], but usually as solvers for Tikhonov like regularized models. The first attempt
of using multigrid methods as iterative regularization methods has been probably done in
[56], where the authors combined an iterative regularization method used as pre-smoother
with a low-pass filter coarsening. Later the same authors furtherly discussed in [55] the
regularizing properties of this method. A different multilevel strategy based on the cascadic
approach was proposed in [110]. Nonlinear “corrections” to the previous multigrid methods
were introduced in [100] using a total variation-type regularization and in [45, 63] combining
multigrid and wavelets. More recently, also the blind deconvolution has been successfully
approached in [62]. Note that, these multigrid methods have been defined to preserve the
BTTB structure of the blurring matrix at each coarser level. This is crucial for the definition
of the algorithm and for preserving a fast and simple matrix vector product.

The main novelty in [45], with respect to [56], was the addition of a soft-thresholding de-
noising as post-smoother. We are going to define our method by starting from the idea in
[45] of combining framelet denoising and multigrid. Firstly, differently from the previous
works, we define a general coarsening strategy independently of the boundary conditions.
In practice, the Galerkin projection of the operator is applied to the PSF instead of to the
coefficient matrix and at each coarser level we can apply the favorite boundary conditions.
Furthermore, our proposal differs from the one in [45] also for the use of framelet denoising
as a pre-smoother instead of as post-smoother and for the use of APIT, described in Chap-
ter 6, instead of CGLS as inner iterative regularization method. This choice let us ensure the
nonnegativity of the provided approximation, because APIT projects each iteration into the
nonnegative cone and so using it as post-smoother it is equivalent to project each multigrid
iteration into the nonnegative cone. Finally we also give a theoretical proof of convergence
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of the algorithm in the two grid case (as usual for multigrid methods [120]) under some
restrictive, but reasonable, hypothesis.

Using the knowledge of δ the proposed algorithm is able to achieve very high accuracy with-
out tuning any parameter.

This chapter is structured as follows: in Section 7.1 we briefly describe the multigrid algo-
rithm and the framelet denoising, which are both needed for the formulation of our algo-
rithm, in Section 7.2 we describe our algorithmic proposal, in Section 7.3 we discuss the
convergence of the method and, finally, in Section 7.4 we give some numerical examples.

7.1 Preliminaries

In this section we present some tools which are needed in the construction of our algorithm.

7.1.1 Multigrid Methods

The first tool which we have to describe is the Multigrid approach.

Multigrid methods have been developed for solving partial differential equation and, more
in general, for solving linear systems of equations of large size. The basic idea of the multi-
grid is to create a sequence of linear systems which get smaller and smaller by consecutive
projection. In this way the computational effort can be reduced and the convergence speed
can be improved up if the smaller linear systems are properly chosen.

Let us start with the linear system of equation

Ax = b, (7.1)

where A ∈ Rn×n is invertible and x,b ∈ Rn.

It is well known that iterative methods first converge in the well-conditioned space and that
the convergence can be very slow in the ill-conditioned space. Differently, while direct meth-
ods are not affected by this kind of problem, they are usually much more expensive and are
more sensible to error propagation.
Remark 7.1. The definition of well- and ill-conditioned space is not formal.

Let V ⊂ Rn be a linear subspace of Rn. We define the conditioning number of A restricted to V by

κV = sup
x∈V

‖Ax‖
‖x‖ .

The well-conditioned space is the space W such that κW is not too large, whereas the ill-conditioned
space I is the one where κI is very large.

For matrices deriving from the discretization of compact integral operator we have thatW corresponds
to the low frequency space and I is the high frequency space.

The idea of the Multigrid method is to combine the positive aspects of both direct and itera-
tive method.

Let us start by describing the Two Grid Method (TGM).
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The TGM is an iterative algorithm. Let xk be an approximation of the solution of (7.1) at the
kth step, apply ν1 steps of an iterative method to xk obtaining

x̃k = Pre-Smooth(A,b,xk, ν1).

This step is called pre-smoothing, since it is done before everything else and, in the context of
differential equations, damps the error in the high frequencies, i.e., it smooths the error.

We then compute the residual
rk = b−Ax̃k,

since we are moving to the error equation in order to compute a refinement term for x̃k. Let
0 < n1 < n, we call R ∈ Rn1×n the restriction operator. This operator projects a vector from
a grid of size n to a grid of size n1.

Define P ∈ Rn×n1 the interpolation operator. This operator interpolates a vector from a grid
of size n1 to a grid of size n. Usually R = P t.

We can now define the restricted operator using the Galerkin approach as

A1 = RAP ∈ Rn1×n1 .

Let us assume that both R and P are of full rank. This implies that A1 is invertible. Comput-
ing the refinement term for x̃k as

hk = PA−1
1 Rrk,

we obtain the refined version of x̃k as

x̂k = x̃k + hk = x̃k + PA−1
1 R(b−Ax̃k).

The procedure that computes x̂k from x̃k is called Coarse Grid Correction (CGC). Let us call
C the iteration matrix of the CGC, i.e.,

C = I − P (RAP )−1RA,

it is possible to show that C is a projector and hence λ(C) = {0, 1}, where λ(C) denotes the
spectrum of C. Therefore, the TGM algorithm, without any smoothing step, can not converge
to the solution of (7.1), cf. [24].

Finally, to obtain the (k + 1)th approximation, we apply ν2 steps of an iterative method

xk+1 = Post-Smooth(A,b, x̂k, ν2),

which can be different from the pre-smoother. This is called post-smoothing.

It is possible to show that, under mild conditions, this method converges to the solution of
(7.1).

The problem of the TGM algorithm is obviously the computation of hk since it requires the
inversion of A1 which, if n1 is large, can be extremely expensive. The multigrid method
stems from this observation. Since A1 can be very large the idea is to restrict consecutively
the grid until it is so small that the inversion can be easily performed.
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FIGURE 7.1: V-cycle scheme

Let n = n0 > n1 > · · · > nL > 0, we call Ri and Pi the ith restriction and interpolation
operator respectively so that Ri ∈ Rni+1×ni and Pi ∈ Rni×ni+1 , for i = 0, . . . , L− 1; then

Ai =

{
A if i = 0
Ri−1Ai−1Pi−1 i = 1, . . . , L.

(7.2)

We proceed to project for L levels then we directly solve the system. The idea is that nL
is so small that AL can be inverted directly. For instance, for images of size 2L × 2L we
have n = 22L and picking up a pixel every two in each direction it holds ni = 22(L−i), for
i = 0, . . . , L, thus nL = 1.

Summarizing the single step of the multigrid iteration goes as follows

yi = MGM Single Step(xi,bi, Ai, i, L)

if (i = L) then yL = Solve(ALyL = bL)
else x̃i = Pre-Smooth

(
Ai,bi,xi, ν1

)

ri+1= Ri(bi −Aix̃i)
ei+1= MGM Single Step(0, ri+1, Ai+1, i+ 1, L)
x̂i = x̃i + Piei+1

yi = Post-Smooth
(
Ai,bi, x̂i, ν2

)

end

We call this iteration V-cycle since when represented graphically the single iteration resem-
bles a V, see Figure 7.1. Iterating the process we obtain the Multigrid Method

x = MGM(x0,b, A, L)

for k = 1, 2, . . .
xk = MGM Single Step(xk−1,b, A, 1, L)

end

Remark 7.2. For well-posed problems, in [4] the authors showed that for certain matrix algebras
related to BTTB and under some hypothesis that links the smoothers and the coarsening strategy, the
Multigrid method has a linear convergence rate, i.e., the number of iterations does not depend on the
dimension of the problem.

Intuitively the idea is that the restriction operator should map into the subspace where A is ill-
conditioned. In this way the multigrid is able to deal simultaneously on both the ill-conditioned and
the well-conditioned subspaces, on the first the matrix is inverted directly on the second the smoother
damps the error very fast.

Conversely, for ill-posed problems, the projection in the ill-conditioned subspace results to
be dangerous and the grid transfer operator has to be chosen differently [56]. The reason
of this is twofold: firstly the matrix A is usually not invertible and thus, if projected on the
ill-conditioned subspace, the restricted operator is not invertible as well; secondly the order
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of the zero of the singular values can be very high, even exponential, and thus an eventual
(pseudo-)inversion on the ill-conditioned subspace may lead to a dramatical amplification
of the noise.

On the other hand the projection in the well-conditioned subspace allows the direct inversion
of the coefficient matrix, since, if L is chosen big enough, the restricted operator becomes in-
vertible. Because we assume L large, AL is very small, usually just a scalar, and so numerical
stability is not an issue.

Using a projection into the well-conditioned subspace, the multigrid which we are going to
construct does not have a linear convergence rate since it does not fulfills the hypothesis in
[4], but it shows a very stable convergence which is also fast thanks to the preconditioned
smoother.

7.1.2 Tight frames denoising

We now describe an algorithm for denoising a signal based on the framelet decomposition.
Definition 7.3. Let A ∈ Rr×n with n ≤ r, the set of the rows of A is a tight frame for Rn if
∀x ∈ Rn it holds

‖x‖2 =
∑

y∈A
| 〈x,y〉 |2, (7.3)

where 〈·, ·〉 is the inner product of Rn, ‖·‖ is the Euclidean norm, and y are the transpose of the rows
of A. The matrix A is the analysis operator and A∗ is the synthesis operator.

The equation (7.3) is equivalent to the perfect reconstruction formula

x =
∑

y∈A
| 〈x,y〉 |y = A∗Ax.

In other words
A is a tight frame ⇔ A∗A = I.

Note that in general AA∗ 6= I , unless the system is orthogonal.

Tight frames have been used in many image applications like inpainting and deblurring
[31–33]. A very important feature of tight frames is their redundancy. Since the system is
redundant the loss of some information can be tolerated.

Moreover, we can identify some of the elements of the tight frame as low frequency vectors
and the others as high frequency vectors. In other words we can write

A =

(
H0

H1

)
,

where the rows ofH0 are the low frequency vectors and the rows ofH1 are the high frequency
vectors. When we apply A to a vector x we have

Ax =

(
H0

H1

)
x =

(
c0
d0

)
.

We can recursively apply this decomposition by decomposing again c0

A(1)c0 =

(
H

(1)
0

H
(1)
1

)
x =

(
c1
d1

)
,
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where we indicated with ·(1) the various operators on the (possibly) smaller space in which
c0 lives. In general we have





c0 = x

cj = H
(j)
0 cj−1 j = 1, . . . , l

dj = H
(j)
1 cj−1 j = 1, . . . , l

We want to use this decomposition to eliminate the noise from a signal. In particular, since
the noise is a highly oscillating function, the largest components of the noise correspond to
the high frequencies. We want to eliminate the noise from this subdomain.

We apply the soft-thresholding technique to the high frequency components dj .

Let θ be the threshold parameter, the soft-thresholding µθ applied to the vector d is defined
as

µθ(d) = sgn(d)(|d| − θ)+, (7.4)

where by sgn(x) we denote the sign of x and by x+ the positive part, i.e., x+ = max{x, 0},
here all the operation are computed element-wise. The choice of the parameter θ is of crucial
importance. According to [58] we use

θ = c

√
log n√
n

(7.5)

where c > 0 is a constant that for Gaussian noise can be chosen as c = δ

‖bδ‖ .

The final algorithm for the denoising applied to l levels is then
Algorithm 7.1 (Denoise). Let bδ denote the noisy signal, θ the thresholding parameter, and l the
number of levels to which apply the denoising.

y = Denoise(z, θ, lev, l)

if lev = l
y = z

else (
c

d

)
= Az

c1 = Denoise(z, θ, lev + 1, l)
d1 = µθ(d)

y = A∗
(

c1
d1

)

end

(7.6)

In the following we will denote the application of the denoising algorithm to a vector z by

Sl
θ(z) := Denoise(z, θ, 0, l).

The system we are interested in is one of linear B-splines. We will use the corresponding
low-pass filter as transfer operator for our multigrid method. In principle it is not necessary
to use the same operator for denoising and grid transfer, but the numerical tests show that
this combination provides better results. This system is formed by one low-pass filter H0 and
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two high-pass filters H1 and H2, the corresponding masks are

h(0) =
1

2
(1, 2, 1) , h(1) =

√
2

4
(1, 0, −1) , h(2) =

1

4
(−1, 2, −1) .

We now derive A from the masks above; imposing the reflexive boundary condition, so that
A∗A = I , we obtain

H0 =
1

4




3 1 0 . . . 0
1 2 1

. . . . . . . . .
1 2 1

0 . . . 0 1 3



, H1 =

√
2

4




−1 1 0 . . . 0
−1 0 1

. . . . . . . . .
−1 0 1

0 . . . 0 −1 1



,

and

H2 =
1

4




1 −1 0 . . . 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 . . . 0 1 1



.

These operators are for 1D signals, we can define the operators for two-dimensional space
by using the tensor product

Hij = Hi ⊗Hj, i, j = 0, 1, 2.

Thus we obtain the analysis operator

A =




H00

H01
...

H22


 .

This case is slightly different from the simpler one described above, since there are eight high
frequency parts. However, the extension is trivial.

7.2 Our multigrid iterative regularization method

In this Section we describe our algorithmic proposal.

7.2.1 Coarsening

The first thing we discuss is the construction of the matrices Ai. The Galerkin approach in
(7.2) is not sure to preserve the structure of the coefficient matrix across the levels. Indeed the
proposal in [56] requires images of size (2ℓ−1)× (2ℓ−1), ℓ ∈ N, and zero Dirichlet boundary
conditions. In particular if A has a structure defined by reflective or antireflective boundary
conditions, A1 = Rt

1AP1 does not have the same structure. Since preserving the structure of
the matrix is essential for fast computations, we want to construct the sequence Ai so that
the structure is preserved.
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We first define the restriction operatorRt
i and the interpolation operatorPi used in our multi-

grid. Ri is the full weighting operator and for Pi is the linear interpolation operator. Let K(i)
d

be the downsampling operator at level i and K(i)
u the upsampling operator at level i, usually

K
(i)
u =

(
K

(i)
d

)t
, and define

M =
1

16




1 2 1
2 4 2
1 2 1


 . (7.7)

Remark 7.4. Observe that the mask M is the same of the low-pass filter H00 described in Subsec-
tion 7.1.2.

Working on 2D problems we store the data in bi-dimensional arrays. Let x ∈ Rni×ni , define
the restriction operator Ri : R

ni×ni → Rni+1×ni+1 as

Ri(x) = K
(i)
d (M t ∗ x),

where ∗ denotes the convolution operator. Note that K(i)
d is defined as

K
(i)
d = K̃

(i)
d ⊗ K̃

(i)
d ,

where K̃(i)
d is the one-dimensional down-sampling operator which keeps a component every

two. K̃(i)
d can be written as a ni+1×ni matrix, i.e., it is a matrix with more columns than rows.

If ni is even

K̃
(i)
d =




1 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 0 0 0 1 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . 1 0



,

whereas, if ni, is odd we obtain

K̃
(i)
d =




0 1 0 0 0 0 . . . 0 0
0 0 0 1 0 0 . . . 0 0
0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

... . . .
...

...
0 0 0 0 0 0 . . . 1 0



.

Therefore we have

Ri(x) =
(
K̃

(i)
d ⊗ K̃

(i)
d

)
(M t ∗ x) = K̃

(i)
d (M t ∗ x)

(
K̃

(i)
d

)t
,

where the one-dimensional down-sampling is applied to each row and each column. Simi-
larly, the prolonging operator Pi : R

ni×ni → Rni−1×ni−1 is defined as

Pi(x) =M ∗
(
K(i)

u x
)
,

where K(i)
u is defined as

K(i)
u = K̃(i)

u ⊗ K̃(i)
u .
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K̃
(i)
u is the one-dimensional up-sampling operator which adds a component every two, i.e.,

K̃
(i)
u =

(
K̃

(i)
d

)t
. Therefore we have

Pi(x) =M ∗
(
K̃(i)

u ⊗ K̃(i)
u x

)
=M ∗ K̃(i)

u x
(
K̃(i)

u

)t
.

We construct Ai by computing the PSF at level i and then imposing the boundary condition
(and so the structure) we want to implement.

PSFi =

{
PSF i = 1

K
(i)
d (M t ∗ PSFi−1 ∗M)K

(i)
u = RiPSFi−1Pi i = 2, . . . , L.

(7.8)

In this way we are able to construct operators with the same structures for all levels and
achieve fast computations. The matrices PSFi are computed in a setup phase executed be-
fore the iterations of the multigrid method, while the computation of the matrices Ai is not
necessary. Note that (7.8) implements a Galerkin approach on the stencil of the PSF coef-
ficients instead of the matrices Ai like in (7.2). This is equivalent to define a sequence of
continuous operators independent of the boundary conditions that will be applied.

We project down until we reach a level L such that the system is reduced to a single equation
in only one variable. In this way the solution of the system at this level is stable and fast.

7.2.2 Smoothing

The next thing we have to specify is the pre-smoother. Our choice is the wavelet framelet
denoising described in Section 7.1.2. With this choice of pre-smoother we are able to keep
under control the effect of the noise, while preserving the edges. Differently from [45] here
we use the framelet denoising as a pre-smoother instead that as a post-smoother. This choice
is mainly due to the fact that we want to project the iteration inside the nonnegative cone.
The denoising of a nonnegative signal can, in principle, insert negative values and thus,
since the post-smoother is the very last operation performed, using it as a post-smoother
may result in that the determined approximation has negative values.

The threshold parameter θ for the denoising is chosen as in (7.5) for the first iteration. How-
ever, the post-smoother that we are going to use also has a denoising effect, thus we choose
to decrease the parameter throughout the iterations.

Since the pre-smoother acts directly on the initial approximation at each level we have that
we are going to denoise only the finest level. In fact the initial approximation of the coarser
levels is the zero vector and thus its soft-thresholded version is again 0, independently from
the parameter θ.

We use the following sequence of parameters

θk = pk
δ

‖bδ‖

√
log n√
n
, (7.9)

where 0 < p < 1 and k denotes the iteration.

For the post-smoother we want to use one iteration of Algorithm 6.1 AIT described in Chap-
ter 6. For the computation of the regularization parameter we need an estimate of the norm
of the noise for each levels. To derive this estimation we refer to [100], where the authors
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showed that, indexing with 0 the finest level and L the last one, the norm of the noise δi can
be estimated as

δi =
δi−1

4
i = 1, . . . , L− 1, (7.10)

where δ0 = δ.

As we pointed out before, enforcing the nonnegativity of the solution can help in achieving
better reconstructions so we want to be sure that our method fulfills this constraint. This
can be easily added at each iteration as shown in [34], which is equivalent to use APIT as
post-smoother at the finest level.

Note that it does not make sense to do this kind of projection on every level since, a part
from the finest level, we are working on the error equation and so it is harmful to impose the
nonnegative constraint at the coarser levels.

7.2.3 The algorithm

After having defined the smoothers and the coarsening strategy, the last thing to discuss
is the stopping criterion. To determine at which iteration we want to stop our multigrid
regularization, we use the discrepancy principle with a parameter similarly to what used for
APIT in Chapter 6. Let xk be the approximated solution at step k. Then the stopping iteration
kδ is

kδ = min
k

{
k :
∥∥∥Axk − bδ

∥∥∥ ≤ 1 + 2ρ

1− 2ρ
δ

}
, (7.11)

where ρ is defined in (6.1).
Algorithm 7.2 (MgM). Consider the system (2.3). Choose suitable boundary conditions and let Ai

be defined as the blurring matrix with PSF PSFi defined in (7.8) for i = 0, . . . , L. Let the noise levels
for each level δi be defined as in (7.10), the parameter θk be chosen as in (7.9), and choose the number
of framelet levels l to which apply the denoising. Let x0 be an initial guess for the solution of (2.3)

x = MGM(x0,b
δ, A)

k = 1

While
∥∥Axk − bδ

∥∥ > 1+2ρ
1−2ρδ

xk = MGM Single Step(xk−1,b
δ, A, 1, l, L)

k = k + 1
end

The single step of the algorithm is defined as

yi = MGM Single Step(xi,b
δi
i , Ai, i, l, L)

if (i = L) then yi = Solve ALyL = b
δL
L

else x̃i =

{
Sl
θk
(bδ) i = 1

xi otherwise

ri+1= P t
i (b

δi
i −Aix̃i)

ei+1= MGM Single Step(0, ri+1, Ai+1, i+ 1, l, L)
x̂i = x̃i + Piei+1

ŷi = AIT
(
x̂i, Ai,b

δi
i , 1

)

yi =

{
PΩ(ŷi) i = 1
ŷi otherwise

end
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Where by AIT
(
x̂i, Ai,b

δi
i , 1

)
we mean that we apply one step of Algorithm 6.1 with initial guess x̂i,

system matrix Ai, right-hand side bδi
i , and we estimate the noise level with δi.

Remark 7.5. As stated in Remark 7.2, if the smother and the projector are chosen in the right way,
the multigrid algorithm is optimal. However, our choice does not fulfill the hypothesis in [4]. In
particular, the chosen projector does not project into the ill-conditioned space of A. On the contrary,
being a low-pass filter, project into the well-conditioned space of A that is the low-frequency space.

This means that our algorithm is not optimal and, as we will see in Section 7.4, the number of itera-
tions required is usually slightly higher when compared to the post-smoother APIT. However, this is
needed in order to obtain a regularizing effect as we are going to see in Section 7.3.

Concerning the arithmetic cost of one multigrid iteration, this is not much higher than the
cost of a single iteration of the post-smoother APIT at the finer level, which is lower than
cn log n for a fixed constant c, up to lower order terms, due to four FFTs (two for computing
the residual with the chosen boundary conditions and two for applying the preconditioner).
Indeed, recalling that the cost of the denoising pre-smoother at the finest level is linear in n,
the computational cost at each level i is lower than cni log ni, for i = 0 . . . , L, up to lower
order terms. Therefore, the total arithmetic cost of one iteration of our MgM for image
deblurring is

4

3
cn log n+O(n)

according to the computational cost of classical V-cycle [120].

7.3 Convergence Analysis

We are now going to study the convergence and regularization properties of our algorithm.
In order to do that, however, we are going to restrict ourselves to the simpler case of the two
grid method, i.e., L = 2, as is usually done for the theoretical analysis of multigrid methods
(see e.g. [103, 120]).

Assume that Pi(x) = Ri(x)
t as in our numerical results and denoting the interpolation oper-

ator by P such that
A1 = P tAP.

In this simplified version, the algorithm becomes
Algorithm 7.3 (TGM). Consider the system (2.3). Let the parameter θk be chosen as in (7.9), and
choose the number of framelet levels l to which apply the denoising. Let ρ be the parameter in equation
(6.1) and q be a fixed constant such that 2ρ ≤ q ≤ 1. Let x0 be an initial guess for the solution of
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(2.3)
x = TGM(x0,b

δ, A)

k = 0

While
∥∥bδ −Axk

∥∥ ≥ 2+ρ
2−ρδ

x̃k = Sl
θk
(xk)

rk = bδ −Ax̃k

hk = P (P TAP )−1P trk
x̂k = x̃k + hk

qk = max

{
q, 2ρ+ (1+ρ)δ

‖bδ−Ax̂k‖

}

αk = compute αk such that∥∥rk −CC∗(CC∗ + αkI)
−1rk

∥∥ = qk ‖rk‖
xk+1= PΩ

(
x̂k + Ct(CCt + αkI)

−1(bδ −Ax̂k)
)

k = k + 1
end

We define the following errors 



ek = x† − xk

ẽk = x† − x̃k

êk = x† − x̂k

(7.12)

For convenience we also define

D = P (P tAP )−1P t

Qk = Ct(CCt + αkI)
−1.

(7.13)

(7.14)

In order to prove the convergence we need the following
Assumption 7.1. We assume that

(i) The thresholding parameters θk and the number of levels l to which apply the denoising are
chosen such that

‖ek‖ ≥ ‖ẽk‖ .

(ii) The matrix P tAP is invertible and the noise does not have any component in R(P t), i.e.,
P tbδ = P tb.

Before proving the convergence of the TGM algorithm let us discuss Assumption 7.1. Point
(i) asks that the threshold parameter is chosen so that it does not deteriorate the error. While
this seems a strong request it is satisfied if the parameter is small enough. Since we have
chosen a strictly decreasing sequence it is reasonable to think that the assumption will be
satisfied, at least, for k large enough. (ii) is unlikely to be satisfied in a real case scenario,
however, our MgM Algorithm 7.2 directly inverts the problem when AL is a scalar and thus
in this case the assumption becomes reasonable as well. In fact, the PSF and M defined in
(7.7) are nonnegative, hence AL can be equal to zero only if the initial PSF is zero.
Remark 7.6. Note that when the data are exact, i.e., δ = 0, Assumption 7.1(ii) is trivially satisfied.
Moreover, we set θk ≡ 0 and so also Assumption 7.1(i) holds. In other words in the noise-free case
Assumption 7.1 is satisfied.

First of all we have to prove the following
Lemma 7.7. Let êk and ẽk be defined in (7.12). Under Assumption 7.1(ii) it holds

‖êk‖ ≤ ‖ẽk‖ .
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Proof. We denote by C = I − DA the Coarse Grid correction matrix, C is a projector and so
has spectral norm equal to 1. Thus, it holds

‖êk‖ =
∥∥∥x† − x̂k

∥∥∥

=
∥∥∥x† − (x̃k +D(bδ −Ax̃))

∥∥∥
(a)
=
∥∥∥x† − (x̃k +D(b−Ax̃)

∥∥∥

=
∥∥∥x† − (x̃k +D(Ax† −Ax̃))

∥∥∥

=
∥∥∥x† − x̃k −DA(x† − x̃)

∥∥∥

=
∥∥∥(I −DA)(x† − x̃k)

∥∥∥
≤ ‖C‖ ‖ẽk‖
= ‖ẽk‖ ,

where (a) is justified by Assumption 7.1(ii); in fact

Dbδ = P (P tAP )−1P tbδ = P (P tAP )−1P tb = Db.

We are now in a position to prove
Proposition 7.8. Let êk, ẽk, and ek be defined in (7.12). Assume that x† ∈ Ω, under Assump-
tions 6.1 and 7.1 it holds

‖ek‖2 − ‖ek+1‖2 ≥ 2ρ
∥∥(CCt + αkI)

−1r̂k
∥∥ ‖r̂k‖ , (7.15)

where r̂k = bδ −Ax̂k.

Proof. From Assumption 7.1(i) and Lemma 7.7 we have

‖ek‖2 − ‖ek+1‖2 ≥ ‖ẽk‖2 − ‖ek+1‖2 ≥ ‖êk‖2 − ‖ek+1‖2 .

The proof now continues as the proof of Proposition 6.21 in Section 6.3.

Denote with ĥk = Ct(CCt + αkI)
−1r̂k. Consider

‖ek+1‖2 =
∥∥∥x† − xk+1

∥∥∥
2

=
∥∥∥x† − PΩ

(
x̂k + ĥk

)∥∥∥
2

(a)
=
∥∥∥PΩ

(
x†
)
− PΩ

(
x̂k + ĥk

)∥∥∥
2

(b)

≤
∥∥∥x† − x̂k − ĥk

∥∥∥
2

= ‖êk‖2 − 2
〈
êk, ĥk

〉
+
∥∥∥ĥk

∥∥∥
2
,

where to obtain (a) we have used the fact that, by assumption, x† ∈ Ω and for (b) we have
used the fact that the metric projection is a contractive mapping (see [121]).
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Thus

‖ek‖2 − ‖ek+1‖2 ≥ ‖êk‖2 − ‖ek+1‖2

= 2
〈
êk, ĥk

〉
−
∥∥∥ĥk

∥∥∥
2

= 2
〈
Cêk, (CC

t + αkI)
−1r̂k

〉
−
〈
r̂k, CC

t(CCt + αkI)
−2r̂k

〉

= 2
〈
r̂k, (CC

t + αkI)
−1r̂k

〉
−
〈
r̂k, CC

t(CCt + αkI)
−2r̂k

〉

− 2
〈
r̂k − Cêk, (CC

t + αkI)
−1r̂k

〉

≥ 2
〈
r̂k, (CC

t + αkI)
−1r̂k

〉
− 2

〈
r̂k, CC

t(CCt + αkI)
−2r̂k

〉

− 2
〈
r̂k − Cêk, (CC

t + αkI)
−1r̂k

〉

= 2αk

〈
r̂k, (CC

t + αkI)
−2r̂k

〉
−
〈
r̂k − Cêk, (CC

t + αkI)
−1r̂k

〉

≥ 2αk

〈
r̂k, (CC

t + αkI)
−2r̂k

〉
− ‖r̂k − Cêk‖

∥∥(CCt + αkI)
−1r̂k

∥∥

= 2
∥∥(CCt + αkI)

−1r̂k
∥∥ (∥∥αk(CC

t + αkI)
−1r̂k

∥∥− ‖r̂k − Cêk‖
)

Since αk(CC
t + αkI)

−1r̂k = r̂k − Cĥk and inserting the definition of αk we have that
∥∥αk(CC

t + αkI)
−1r̂k

∥∥ = qk ‖r̂k‖ .

Thus
‖ek‖2 − ‖ek+1‖2 ≥ 2

∥∥(CCt + αkI)
−1r̂k

∥∥ (qk ‖r̂k‖ − ‖r̂k − Cêk‖) .
Using Lemma 6.1 and the definition of qk

‖ek‖2 − ‖ek+1‖2 ≥ 2
∥∥(CCt + αkI)

−1r̂k
∥∥
(
qk ‖r̂k‖ −

(
ρ+

1 + ρ

τk

)
‖r̂k‖

)

≥ 2ρ
∥∥(CCt + αkI)

−1r̂k
∥∥ ‖r̂k‖ .

which concludes the proof.

Corollary 7.9. With the same notation and assumptions as above it holds

‖e0‖ ≥ 2ρ
kδ−1∑

k=0

∥∥(CCt + αkI)
−1r̂k

∥∥ ‖r̂k‖ ≥ c
kδ−1∑

k=0

‖rk+1‖2 ,

for some constant c > 0 depending only on ρ and q.

Proof. Corollary 6.3 implies that

‖e0‖ ≥ 2ρ
kδ−1∑

k=0

∥∥(CCt + αkI)
−1r̂k

∥∥ ‖r̂k‖ ≥ c̄
kδ−1∑

k=0

‖r̂k‖2 .

If we prove that ‖r̂k‖ > d ‖rk+1‖, where d is a constant depending only on ρ and q, the thesis
will follow with c = dc̄.
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Before proving the main result we give an estimate of ‖AQk‖ forQk defined in (7.14). It holds

‖AQk‖ = sup
‖z‖=1

∥∥ACt(CCt + αkI)
−1z
∥∥

≤ 1

1− ρ
sup
‖z‖=1

∥∥CCt(CCt + αkI)
−1z
∥∥

≤ 1

1− ρ
,

where we have used the fact that, because of Assumption 6.1 ∀z ‖Az‖ ≤ 1
1−ρ ‖Cz‖ and that

CCt(CCt+αkI)
−1 is symmetric and has all the eigenvalues between 0 and 1 for any αk > 0.

Finally
‖rk+1‖ =

∥∥∥bδ −Axk+1

∥∥∥

=
∥∥∥bδ −A(x̂k + Ct(CCt + αkI)

−1(bδ −Ax̂k))
∥∥∥

=
∥∥(I −ACt(CCt + αkI)

−1)r̂k
∥∥

≤ (1 +
∥∥ACt(CCt + αkI)

−1
∥∥) ‖r̂k‖

≤
(
2 +

1

1− ρ

)
‖r̂k‖ ,

which concludes the proof.

Corollary 7.9 shows that, when δ > 0, Algorithm 7.3 stops after finitely many iterations,
independently of the choice of x0. In fact, assume that kδ = ∞, i.e. that the algorithm does
not stop after finitely many iterations. Then we would have that

∞∑

k=0

‖rk‖2 ≤ ‖e0‖ <∞.

Thus the norm of the residual becomes arbitrarily small and in particular smaller than 1+2ρ
1−2ρδ

which is absurd.

We are now in a position to prove the convergence of Algorithm 7.3 in the noise free case and
that, if x0 is not a solution of the system, an infinite number of iterations are needed.
Theorem 7.10. Let δ = 0 and suppose that x0 is not a solution of the system (2.3). Then the iterates
generated by Algorithm 7.2 converge to a solution of (2.3). Moreover, an infinite number of iterations
are needed.

Proof. This proof is in the spirit of the proof of [49, Theorem 4], however some details are
different and thus we show it here.

We start first by proving that infinitely many iterations are needed. If δ = 0 then the stopping
criterion can be satisfied for a k = kδ such that xk is a solution of the system (2.3). This means
that calling

ĥk−1 = Ct(CCt + αkI)
−1r̂k−1,

it should coincide with êk−1 up to an element in the null space of A, which is the null space
of C because of Assumption 6.1. From the definition of αk−1 and Lemma 6.1 it follows that

qk−1 ‖r̂k−1‖ =
∥∥∥r̂k−1 − Cĥk−1

∥∥∥ = ‖r̂k−1 − Cêk−1‖ ≤
(
ρ+

1 + ρ

τk−1

)
‖r̂k−1‖ .
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However, this contradicts the definition of qk−1 which means that the iterations does not stop
if x̂0 is not a solution of the system.

We now show that the sequence {xk}k converges.

We first show that the norm of the iterates xk is bounded. Observe that

‖ek‖2 =
∥∥∥xk − x†

∥∥∥
2
≥ ‖xk‖2 −

∥∥∥x†
∥∥∥
2
.

Using the fact that ‖ek+1‖2 ≤ ‖ek+1‖2 for all k we have that

‖e0‖2 ≥ ‖xk‖2 −
∥∥∥x†
∥∥∥
2
,

this yields

‖xk‖2 ≤
∥∥∥x†
∥∥∥
2
+ ‖e0‖2 . (7.16)

We now need to relate the norm of ĥk with ‖rk‖2. First of all note that, by construction, it
holds that ĥk ∈ R

(
Ct
)
= N (C)⊥, thus

ĥk = C†Cĥk.

The equality above yields
∥∥∥ĥk

∥∥∥ =
∥∥∥C†Cĥk

∥∥∥

≤
∥∥∥C†

∥∥∥
∥∥∥Cĥk

∥∥∥

=
∥∥∥C†

∥∥∥
∥∥∥CCt

(
CCt + αkI

)−1
r̂k

∥∥∥
(a)

≤
∥∥∥C†

∥∥∥ ‖r̂k‖
(b)

≤ c
∥∥∥C†

∥∥∥ ‖rk+1‖ ,

(7.17)

where inequality (a) is obtained by observing thatCCt
(
CCt + αkI

)−1 is a symmetric matrix
whose eigenvalues are all smaller than 1 for any αk > 0 and (b) has been shown in the proof
of Corollary 7.9 for some fixed constant c ≥ 0.

We now show that ‖xk+1 − xk‖ → 0 as k → ∞. Consider

‖xk+1 − xk‖2 =
∥∥∥PΩ

(
xk + P t

(
P tAP

)−1
Prk + ĥk

)
− xk

∥∥∥
2

≤
∥∥∥xk + P t(P tAP )−1Prk + ĥk − xk

∥∥∥
2

=
∥∥∥P t(P tAP )−1Prk + ĥk

∥∥∥
2

≤ 2
∥∥P t(P tAP )−1P

∥∥2 ‖rk‖2 + 2
∥∥∥ĥk

∥∥∥
2

≤ 2
∥∥P t(P tAP )−1P

∥∥2 ‖rk‖2 + 2c
∥∥∥C†

∥∥∥
2
‖rk+1‖2 ,

where in the last step we have used (7.17). Since ‖rk‖ → 0 as k → 0 in force of Corollary 7.9,
we have that

‖xk+1 − xk‖ → 0 as k → 0. (7.18)
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Combining (7.16) and (7.18) we have that the xk converges to a limit x. Moreover, the resid-
uals b − Axk → b − Ax, while their norm converges to 0 because of Corollary 7.9. We then
have that Ax = b. Thus the limit point of Algorithm 7.3 is a solution of (2.3)

The last result that we would like to prove is that Algorithm 7.3 is a regularization method.
Theorem 7.11. Assume that Assumption 6.1 holds for some 0 < ρ ≤ 1

2 and let δ 7→ bδ be a
function from R+ to RN such that for all δ it holds

∥∥b− bδ
∥∥ ≤ δ. For fixed τ and q denote by xδ

the approximation of x† obtained with Algorithm 7.3. Then, as δ → 0, xδ goes to a solution of the
system.

We omit the proof since it can be copied from [77, Theorem 2.3]; for further reference see also
[61, Theorem 11.5]. Its essentials ingredients are the monotonicity proved in Proposition 6.2,
the convergence to the exact solution in the exact data case proved in Theorem 7.10 and the
continuity of the map δ 7→ bδ.

7.4 Numerical Examples

We now give some numerical examples.

The only things that are left to define in Algorithm 7.2 are how we construct the approx-
imation Ci of Ai, the parameters ρi and qi. We set Ci, like in Chapter 6, as the blurring
matrix with PSF PSFi, but with periodic boundary conditions. In this way the computation
of Ct

i (CiC
t
i + αI)−1 can be done in O(n log n) flops using the FFT. We set ρi = 10−4 and

qi = 0.7 for all levels.

We compare Algorithm 7.2 to several methods from the literature with respect to both accu-
racy and efficiency. For the comparison in accuracy we consider the RRE and the Peak Signal
to Noise Ratio (PSNR), the latter is defined as follows

PSNR(x) = 20 log10

( √
nM

‖x− x†‖

)
,

where n is the the number of elements of x and M denotes the maximum value that can be
achieved by x†.

We compare our MgM Algorithm 7.2 with the following methods

• ADMM with unknown boundary conditions (ADMM-UBC) with Total Variation penalty
term, see [2, 3];

• Approximated Projected Iterated Tikhonov (APIT), see Section 6.3;

• Flexible Arnoldi Tikhonov (FlexiAT), see [67];

• Non Negative Restarted Generalized Arnoldi Tikhonov (NN-ReStart-GAT), see [67];

• Range Restricted Arnoldi Tikhonov (RRAT), see [104];

• Two step Iterative Soft Thresholding (TwIST), see [15].

Some of these methods require the estimation of a parameter, in particular this is true for
ADMM-UBC, FlexiAT, and TwIST. For these methods we use the parameter which minimizes
the RRE (or, equivalently, maximizes the PSNR).

The maximum number of iterations is fixed at 500 for all methods.
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(a) (b) (c)

FIGURE 7.2: Grain test problem: (a) True image (242×242pixels), (b) Gaussian
PSF with variance σ = 2.5 (15 × 15 pixels), (c) Blurred and noisy image with

ν = 0.03 (242× 242 pixels).

Method RRE PSNR Iterations
MgM 0.20479 24.9609 99
ADMM-UBC 0.20982 24.75 315
APIT 0.21582 24.5052 81
FlexiAT 0.25566 23.0338 500
NN-ReStart-GAT 0.26845 22.6096 59
RRAT 0.23263 23.8536 7
TwIST 0.23052 23.933 99

TABLE 7.1: Grain test problem: Comparison between MgM and other methods
from the literature. For ADMM-UBC, FlexiAT, and TwIST the optimal regular-
ization parameter was used. In bold the smallest error and the greatest PSNR.

Grain In this first example we consider the grain image and we blur it with a Gaussian PSF
with variance σ = 2.5 and add noise with ξ = 0.03. In Figure 7.2 we show the true image,
the PSF and the blurred and noisy image. For this example we have employed the reflexive
boundary conditions.

In Table 7.1 we compare the results obtained with our algorithm against the one obtained
with other methods from the literature. MgM gives the best result in term of accuracy while
keeping a reasonable computational cost. In Figure 7.3 we can see different reconstruction
obtained with three methods: MgM, ADMM-UBC, and APIT. From a visual inspection we
can see that the reconstruction obtained with ADMM-UBC is not able to reconstruct the
black area in the low right corner. This is due to the fact that ADMM-UBC does not enforce
nonnegativity on the reconstruction and thus negative values appears in that area.

We want to stress the fact that MgM does not require the estimation of any parameter whereas
ADMM-UBC needs the evaluation of a regularization parameter. In Figure 7.4 we show
the variation of the error obtained with ADMM-UBC when the regularization parameter
changes. We can see that if the parameter is not estimated accurately the error can become
very large.

Cameraman In this second example we blur the cameraman image with a circular blur PSF
and add Gaussian noise so that ξ = 0.02. In Figure 7.5 we report the true image, the PSF, and
the blurred and noisy image. We employ the antireflective boundary conditions. In Table 7.2
we show the results obtained with MgM and the benchmark methods. From this comparison
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(a) (b) (c)

FIGURE 7.3: Grain test problem reconstructions obtained with different meth-
ods: (a) MgM, (b) ADMM-UBC, (c) APIT.

10-4 10-3 10-2
0.2028

0.2156

0.2293

0.2438

0.2593

0.2757

FIGURE 7.4: Grain test problem: Error obtained with ADMM-UBC with re-
spect to the regularization parameter. The solid black line represent the error
obtained with ADMM-UBC for different choice of the regularization parame-
ter, the dashed line is the error obtained with MgM, and the dotted line is the

RRE obtained with NN-Restart-GAT.
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(a) (b) (c)

FIGURE 7.5: Cameraman test problem: (a) True image (238 × 238 pixels), (b)
Circular motion PSF (21×21 pixels), (c) Blurred and noisy image with ξ = 0.02

(238× 238 pixels).

Method RRE PSNR Iterations
MgM 0.084219 27.1115 50
ADMM-UBC 0.17452 20.7828 167
APIT 0.11638 24.3018 8
FlexiAT 0.12042 24.0055 9
NN-ReStart-GAT 0.11249 24.5978 58
RRAT 0.11403 24.4795 7
TwIST 0.11311 24.5498 52

TABLE 7.2: Cameraman test problem: Comparison between MgM and other
methods from the literature. For ADMM-UBC, FlexiAT, and TwIST the optimal
regularization parameter was used. In bold the smallest error and the greatest

PSNR.

we can see that MgM greatly outperforms all the other methods in term of accuracy, while
keeping a reasonable computational time. From the visual inspection of the reconstruction
in Figure 7.6 we can see how good the approximation given by MgM also in the small details
in the background, while the other methods are affected by a very heavy ringing effect.

Biological Image For the last example we use a biological image and we blur it with a non-
symmetric Gaussian PSF, finally we add white Gaussian noise with ξ = 0.05. In Figure 7.7
we show the true image, the PSF, and the blurred and noisy image. For the deblurring we
use the antireflective boundary conditions.

From the comparison in Table 7.3 of the results obtained with MgM and the other methods
considered we can see that our methods outperforms all the others while keeping a rea-
sonable computational cost. Moreover, from the visual inspection of the reconstructions in
Figure 7.8 we can see the benefit of the nonnegative constraint. In fact the reconstruction
provided by ADMM-UBC looks grayish due to the presence of negative values, whereas the
reconstruction obtained using MgM and APIT do not suffer of this problem.
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(a) (b) (c)

FIGURE 7.6: Cameraman test problem reconstructions obtained with different
methods: (a) MgM, (b) TwIST, (c) NN-Restart-GAT.

(a) (b) (c)

FIGURE 7.7: Biological image test problem: (a) True image (224× 224 pixels),
(b) Gaussian non-symmetric PSF (33× 33 pixels), (c) Blurred and noisy image

with ξ = 0.05 (224× 224 pixels).

Method RRE PSNR Iterations
MgM 0.27444 22.7457 47
ADMM-UBC 0.27674 22.6733 333
APIT 0.28328 22.4703 10
FlexiAT 0.31601 21.5208 500
NN-ReStart-GAT 0.35159 20.5939 58
RRAT 0.28603 22.3865 5
TwIST 0.28659 22.3693 53

TABLE 7.3: Biological image test problem: Comparison between MgM and
other methods from the literature. For ADMM-UBC, FlexiAT, and TwIST the
optimal regularization parameter was used.In bold the smallest error and the

greatest PSNR.
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(a) (b) (c)

FIGURE 7.8: Biological image test problem reconstructions obtained with dif-
ferent methods: (a) MgM, (b) ADM-UBC, (c) APIT.
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Chapter 8

Weakly Constrained Lucy-Richardson
algorithm with application to light
scattering inversion

In this chapter we are going to consider inverse problems of the form

I(θ) =

∫
K(θ,R)N(R)dR, (8.1)

coming from optics [19, 70–72, 74], where the main goal of the optical technique is to recover
the particle-size distributionN(R) which characterizes the sample under investigation. Thus
the solution N(R) is defined to be nonnegative (N ≥ 0) with a positive support (R > 0).
Among the various optical techniques, the measurement of the light intensity distribution
I(θ) scattered by the sample at different angles θ, is definitely among the most popular ones
[19, 70–72, 74]. Such a technique can be easily implemented by using simple experimental
setups [74], with the possibility of characterizing simultaneously a very large number of
particles, the characterization being carried out in situ and almost real time [19, 70–72, 74].

In this setting the goal of an efficient, well performing inversion algorithm is the accurate
and fast recovery of the sample particle-size distribution over the largest possible range of
particle radii. Indeed, inversion algorithms are expected to work pretty well only when the
particle sizes to be recovered lie within a given range [Rmin, Rmax], which depends on the
range [θmin, θmax] of the independent variable being probed. In the past it has been shown
[65] that the dynamical extension of the R−range, i.e., the ratio [Rmax/Rmin], which can be
probed, scales proportionally to [θmax/θmin] and, therefore can be rather limited if such a ratio
is not sufficiently large. Typically in optics, [Rmax/Rmin] ∼ [θmax/θmin] ∼ 10− 100, see [65].

Discretizing (8.1) we obtain a linear system

AN = I, (8.2)

where N ∈ Rm and I ∈ Rn are the discretizations of N(R) and I(θ), respectively, and A ∈
Rn×m. As mentioned above, since K is compact, the inverse problem in (8.1) is ill-posed.

For solving this problem we are going to consider one of the most popular iterative methods
used in this framework: the classical Lucy-Richardson (LR) method [97, 113]. This algorithm
has the remarkable feature of ensuring nonnegativity of the solutions. LR is also quite sim-
ple, robust against noise and, provided that the iterative procedure is stopped after a large
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enough number of steps, does not require any parameter to be optimized. However, as men-
tioned above and reported in [65]1 when the range of recoverable radii is too large, LR may
might be not so efficient.

The method proposed in Chapter 3 looks appealing for the problem describe above, however,
it is difficult to apply in the physical setup we consider here. In fact, the norm of the noise,
whose knowledge is required by Algorithm 3.4, here is not known and only some statistical
informations are available. Moreover, the noise we consider is not white Gaussian and, thus,
applying in this framework the standard discrepancy principle is not straightforward.

In this chapter we are going to improve the LR method by adding to the true solution a
weak constraint associated to a physical property (the particle volume fraction concentra-
tion) which is known or can be measured with high accuracy. The introduction of this ad-
ditional knowledge largely improves the quality of the restoration and allows to enlarge the
R−range by more than one order of magnitude, property that is crucial in many real applica-
tions. On the other hand, the added weak constraint requires the estimation of a damping pa-
rameter which can be easily and robustly optimized by exploiting a second physical property
(the particle number concentration), whose value needs to be estimated only very roughly.
Note that the strong imposition of the constraint, which is equivalent to a huge value of the
damping parameter, does not provide an improvement in the quality of the restoration while
requires a larger number of iterations of the convergence, cf. numerical results in Section 8.3.
In particular, due to unavoidable measurement errors in the value of the constraint, classical
optimization algorithms for linear constrained problems does not provide restorations better
than our WCLR, which is simple to implement and does not require any parameter setting
in the same spirit of LR.

This chapter is structured as follows. In Section 8.1 we give some physical details about the
problem we are going to analyze. In particular, Section 8.1.1 describes the discretization pro-
cess, while Section 8.1.2 considers the constrains we are going to use. Section 8.2 is devoted
to the formulation of the mathematical model and to the definition of our numerical method,
which is tested and compared with LR on some numerical examples in Section 8.3.

8.1 Physical details

In this section we give some insight into the physical problem we are going to consider, i.e.,
the problem associated to the inversion of elastic light scattering (ELS) data, where the main
goal is to recover the size distribution of the particles present in the sample.

According to ELS theory [93], when a sample made of polydisperse particles characterized
by a refraction index different from that of the surrounding medium is illuminated with a
laser light of wavelength λ, part of the radiation is going to be scattered at angles different
from the incident direction. If the particles are homogeneously dispersed in the medium
and their concentration is so low that they can be considered as non-interacting, the angular
distribution of the overall scattered intensity, I(θ), is given by the sum of the intensities scat-
tered by the single particles [93]. Thus the system is linear and I(θ) can be written as (8.1)
where θ is the scattering angle (the angle between the incident laser beam and the direction
at which the scattered light is detected), N(R) is the unknown number-concentration den-
sity [cm−3 µm−1] of particles of radius R, and K(θ,R) is the (known) kernel of the system,

1After the publication of [65], it was realized that the method called “modification of the Chahine algorithm”
proposed in that work, is identical to the LR algorithm.
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FIGURE 8.1: (a): normalized behavior of the kernel K(θ, R) appearing in (8.1)
as a function of the scattering angle θ for five particles with diameters d = 2R
ranging from d = 0.01µm to d = 100µm; the normalization is such that K(θ =
0, R) = 1. (b): behavior of the kernel amplitude K(θ = 0, R) as a function of
the ratio R/λ. The straight lines with slopes 6 and 4 indicate that K(θ = 0, R)

growths as ∼ R6 or ∼ R4, the crossover occurring at R ∼ λ.

representing the intensity scattered by a single particle of radius R at angle θ. Typically, I(θ)
is detected at a finite number of angles θi (i = 1, .., n) within a bounded interval [θmin, θmax].

If the particles are spheres, the kernel K(θ,R) is provided by the Mie theory [91], according
to which the angular distribution of I(θ) scattered by a particle of radiusR is mostly confined
to the diffraction lobe θdiff ∼ λ/2R. Moreover, the amplitude of I(θ) strongly increases with
particle radius as I ∼ R6 for small particles (R ≪ λ) and I ∼ R4 for large particles (R ≫ λ).
Figure 8.1(a) reports an example of the behaviors of I(θ)/I(0) = K(θ,R)/K(0, R) versus θ
over a range of [2 − 180 deg] for particles of different diameters d = 2R from d = 0.01 to
100µm. As one can notice, for small particles I(θ) tends to be rather flat, whereas for large
particles I(θ) exhibits many oscillations and decays by many order of magnitude over the
reported θ range. At the same time the zero-angle amplitude I(0) varies widely, passing
from I(0) ∼ 10−11 at R/λ = 10−2 to I(0) ∼ 108 at R/λ = 102, see Figure 8.1(b). Thus, it
is clear that the inversion of (8.1) might become an unbearable task when the particle size
distribution N(R) to be recovered contains particles with very different radii.

8.1.1 Discretization of the Fredholm Integral Equation

We now describe the discretization of (8.1). Let us consider that only a finite number of θi
(i = 1, ..., n) can be accessed experimentally and within a limited range [θ1, θn]. Thus, if
the particle size distribution N(R) is approximated by a histogram constituted by m bins (or
classes) delimited by the radii rj , j = 1, ..., m, the equation (8.1) becomes

I(θi) =

m∑

j=1

AijNj , i = 1, 2, . . . , n, (8.3)

where Nj is the number-concentration density [cm−3 µm−1] of the particles belonging to the
j-th class of width ∆rj = rj − rj−1 and

Aij =

∫ rj

rj−1

K(θi, r) dr. (8.4)
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FIGURE 8.2: Discretization scheme of equation (8.1)

When the classes are narrow enough, we can pinpoint them in terms of their average radius
Rj = (rj + rj−1)/2 and width ∆Rj = ∆rj = rj − rj−1. Thus Nj∆Rj represents the number
concentration of particles belonging to the j − th class and the term Aij/∆rj is the average
intensity scattered at angle θi by a single particle with average radius Rj . Note that (8.3) is
a set of n linear equations in which the left-hand sides I(θi) are the data provided by the
experiment, the matrix entries Aij are known and Nj are the unknowns to be recovered.

Although somewhat arbitrary, it is often convenient to choose the rj grid so that, within the
range [r0, rm], all the m classes are characterized by the same relative width α = ∆Rj/Rj .
This can be accomplished by scaling rj according to the geometrical progression

rj = r0 a
j ,

where a = (Rm/R1)
1/(m−1) and r0 = 2R1/(1 + a). In this way the average radius and the

width of each class scale as

Rj = R1 a
j−1 ∆Rj = ∆R1 a

j−1 j = 1, ..., m, (8.5)

so that α = 2[(a − 1)/(a + 1)] and for a & 1, α ≈ a − 1. A sketch of the classes layout and
discretization scheme is reported in Figure 8.2. Typically if we want to cover three order of
magnitude in size, i.e., Rm/R1 = 103 , with α = 0.02 then approximately m = 350 classes are
necessary.

8.1.2 Constraints

The very first constraint we would like to impose is that

Nj ≥ 0, j = 1, . . . ,m, (8.6)

this comes from the simple observation that the number of particle can not be negative.

A more interesting constraint is related to the integral of N(R)

cN =

m∑

j=1

Nj∆Rj , (8.7)
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where cN represents the particle number-concentration [cm−3], i.e., the total number of par-
ticles contained in the sample divided by the sample volume. This constraint can be applied
whenever the number of particle can be counted, a somewhat difficult task that can be car-
ried out only under some experimental conditions.

The last constraint is related to the particle volume fraction concentration cV , which is given
by the total volume occupied by the particles divided by the sample volume

cV =

m∑

j=1

Njvj∆Rj, (8.8)

where

vj =
1

∆Rj

∫ Rj+∆Rj/2

Rj−∆Rj/2
(4/3)πR3dR (8.9)

is the average volume of one particle belonging to the jth class. Clearly, for very narrow
classes (∆Rj/Rj ≪ 1), vj ≈ (4/3)πR3

j . The cV constraint is of particular significance because
in most experiments the volume concentration is a quantity that can be measured quite easily
and with high accuracy.

In our method we would like to exploit both concentration constraints (8.7) and (8.8) (the
positiveness constraint, (8.6), being fulfilled automatically, see below), but they are not equiv-
alent from a physical point of view. As mentioned out above, whereas an accurate value of
cV can be easily obtained experimentally, the estimate of cN might be somewhat trouble-
some and affected by large errors. Thus, we propose a weakly constrained version of the LR
algorithm based on the cV constraint alone, and we will use the estimate of cN only for cross-
checking the self-consistency of the inversion procedure, i.e., for estimating the damping
parameter that weight the constraint on cV .

8.2 An iterative method based on Lucy-Richardson method

We are now going to describe how the physical model translates into the linear algebra lan-
guage. The linear system (8.3) is compactly rewritten as

AN = I (8.10)

where A ∈ Rn×m, N ∈ Rm and I ∈ Rn.

Similarly, the three constraints of Section 8.1.2 can be rewritten as:

(i) From (8.6) N ≥ 0, meaning that Nj ≥ 0, for j = 1, . . . ,m;

(ii) From (8.7)

cN = Nt∆R, (8.11)

where 0 < ∆R ∈ Rm , with (∆R)j = ∆Rj defined in (8.5) for j = 1, . . . ,m;

(iii) From (8.8)

cV = NtV =

m∑

j=1

VjNj. (8.12)

where 0 < V ∈ Rm and Vj = vj∆Rj , being vj is defined in (8.9).
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This information will be used in the following to define a simple and effective iterative proce-
dure to compute a solution of (8.10), where, except from the positiveness (i), the constraints
(ii) and (iii) are not all strictly satisfied, but are used to improve the computed approxima-
tion or to estimate possible parameters.

Note that equations (8.11) and (8.12) can be seen as weighted ℓ1-norms because both V and
∆R are nonnegative, so we can define

‖N‖1,V = NtV, ‖N‖1,∆R = Nt∆R.

As stated at the end of Section 8.1.2, we are going to use only a weighted version of the
constraint (iii).

In order to insert the constraint (iii) we opportunely pad the matrix A and the right-hand
side I. Let γ > 0 be a fixed real number and define

ϕ =
< A >i,j

< V >j
,

where < A >i,j and < V >j denote the arithmetic averages of the entries of the matrix A
and the vector V, respectively. We define

Ãγ =

(
A

γϕVt

)
and Ĩγ =

(
I

γϕcV

)
.

Note that, since the factor γϕVj = γ < A >i,j (Vj/ < V >j) appearing in (8.17), must have
the same dimensional units as < A >i,j , γ necessarily has to be a dimensionless parameter
and, therefore, its effect on (8.17) is independent of the units of both Ai,j and Vj .

In this way we have inserted the constraint (iii) in our system weighted by the value γ. The
value of γ determines the strength of the constraint and its effectiveness. In particular, the
larger γ the stronger the effect of the constraint will be.

The new extended system becomes

ÃγN =

(
A

γϕVt

)
N = Ĩγ =

(
I

γϕcV

)
(8.13)

Since, the entries of the matrix Ã and Ĩ are nonnegative, and, according to (i), we are look-
ing for a nonnegative solution of (8.13), the LR iterative method, appears to be an excellent
candidate for undertaking this task. Indeed, provided that the initial guess N0 > 0, the k+1
approximated solution of equation(8.13) can be recursively written in term of the kth iterate
as

Nk+1 =
Nk

a
◦
(
Ãt

γ ·
Ĩγ

Ĩkγ

)
, k = 0, 1, . . . ,

where •
• and • ◦ • are the entry-wise division and multiplication, respectively, and • · • is the

usual matrix-vector multiplication. The vector a ∈ Rm is defined as

aj =
n+1∑

i=1

(
Ãt

γ

)
j,i

=
n∑

i=1

Ai,j + γϕVj , j = 1, . . . ,m, (8.14)
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and Ĩkγ is

Ĩkγ = ÃγN
k =

(
ANk

γϕ
∥∥Nk

∥∥
1,V

)
.

Let us consider the j − th component of Nk+1:

Nk+1
j =

Nk
j

aj

[
Ãt

γ ·
Ĩγ

Ĩkγ

]

j

=
Nk

j

aj
ξj, (8.15)

the factor ξj is

ξj =

n+1∑

i=1

(
Ãt

γ

)
j,i

(
Ĩγ

)
i(

Ĩkγ

)
i

=

n+1∑

i=1

(
Ãγ

)
i,j

(
Ĩγ

)
i(

Ĩγ

)k
i

=

n∑

i=1

Ai,j
Ii

Iki
+ γϕVj

cV

ckV
, (8.16)

with ckV =
∥∥Nk

∥∥
1,V

. Combining (8.14) and (8.16) with (8.15), we obtain

Nk+1
j = Nk

j

∑n
i=1Ai,j

Ii
Iki

+ γϕVj
cV
ckV∑n

i=1Ai,j + γϕVj
, j = 1, . . . ,m, (8.17)

where we have called Ik = ANk. We can see that constraint (iii) is not blended with the other
term, it is decoupled from the data fitting part and is weighted by γ. Moreover, the nonneg-
ativity of Nk is simply preserved starting with N0 > 0, e.g., N0 = 1, where 1 represents the
vector with entries all equals to 1.

8.2.1 Heuristic interpretation

We now want to give an heuristic interpretation of the formulation of (8.13).

A standard approach for passing from a constrained least square problem to an uncon-
strained problem is the well-known quadratic penalization technique [16]. In our case, con-
sidering the constraint (iii), we obtain the minimization problem

min
N

‖AN− I‖2 + (γϕ)2
(
‖N‖1,V − cV

)2
,

where (γϕ)2
(
‖N‖1,V − cV

)2
is the penalization term. This can be seen as a regularized

version of the problem (8.2), where the parameter (γϕ)2 balances the trade off between the
data fitting and the penalization term.

Define

Ψ(N) = ‖AN− I‖2 + (γϕ)2
(
‖N‖1,V − cV

)2

= NtAtAN− 2NtAtI+ ItI+ (γϕ)2
(
NtVVtN− 2cV N

tV + c2V
)
.

The gradient of Ψ(N) is

∇Ψ(N) = 2[AtAN−AtI+ (γϕ)2(VVtN− cV V)].
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Assume that Vj 6= 0 for all j. Then Ψ(N) is coercive. In fact

Ψ(N) ≥ γϕ

(
min
j

{Vj}Nt1 − cV

)2

→ ∞ as ‖N‖ → ∞.

Thus the minimum of Ψ satisfies
∇Ψ(N) = 0. (8.18)

Condition (8.18) can be rewritten equivalently as

(
At γϕV

)( A
γϕVt

)
N =

(
At γϕV

)( I

γϕcV

)
, (8.19)

Recalling the definitions of Ãγ and Ĩγ , we can see that (8.19) is simply the normal equations
of (8.13). This, coupled with (i), leads to the idea of looking for a nonnegative solution of
(8.13).

8.2.2 Estimation of γ

The parameter γ weights the constraint (iii), but larger values of γ not necessarily lead to bet-
ter restorations in practice (see Figures 8.4 and 8.6). This shows that the use of a constrained
optimization algorithm does not necessarily provide better reconstructions.

The estimation of the optimal value of γ, i.e., the one that minimizes the reconstruction error,
can be somewhat tricky and the choice of γ is not straightforward, thus we propose to use
an a posteriori strategy using the constraint (ii).

Let us call Nγ the nonnegative solution of (8.19) obtained with a certain choice of γ and
suppose to know exactly cN . Thus, we expect that the best choice for γ is the one that, beside
providing the best reconstruction for Nγ , minimizes also the error on cN . Therefore, we
choose γ = γopt such that

γopt = argmin
γ

{|cN − ‖Nγ‖1,∆R
|}. (8.20)

In practice, as we will see in Section 8.3, the rule choice (8.20) is not so strict because there
is a large range of γ-values around γopt where the reconstruction is equally good and even a
value of γ very far from γopt would provide accurate results. This feature is of fundamental
importance because, whenever the constraint cN is not known and can be only roughly es-
timated (as it might happen experimentally), γopt cannot be determined with high accuracy
and the condition (8.20) would be inapplicable.

Summarizing, our weakly constrained LR (WCLR) algorithm is the following:

1. fix N0 = 1 and a small set of possible values for γ;

2. compute Nγ = Nk, with k large enough, by (8.17) for every γ;

3. choose the solution Nγopt corresponding to γopt defined in (8.20).
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8.3 Numerical Examples

In this section we report some numerical examples aimed at ascertaining how our algorithm
performs against the classical LR method, i.e., when γ = 0. We will also show how to find
the optimal value γopt, consistently with what described in Subsection 8.2.2.

Generation of matrix A

The n ×m matrix A was computed by numerically integrating equation (8.4) with the ker-
nel K provided by the Mie theory [91] and illustrated in Figure 8.1. The number of an-
gles was n = 100, scaled according to a geometrical progression with θmin = 2 deg and
θmax = 180 deg. The bins for the recovered distribution were also chosen accordingly to a
geometrical progression (see Section 8.1.1) with Rmin = 10−3 µm and Rmax = 103 µm and
their number was m = 600. In this way all the bins were characterized by the same relative
width ∆Rj/Rj ≈ 0.023.

Generation of artificial test data

The generation of artificial test data was carried out by supposing to know a true solution
for the system Ntrue and computing the noise-free data as

Itrue = ANtrue.

Then the real data were obtained by adding to Itrue a (fractional) random white Gaussian
noise, so that the noise level is proportional to Itrue and independent from point to point. If
we indicate with ǫ the fractional noise level, the noisy I becomes

I = Itrue ◦ (1+ ǫe) , (8.21)

where e is a vector whose entries are realizations of a random variable such that (e)j ∼
N (0, 1). Typical values for ǫ were 10−3 to 10−2.

Inversion and parameters evaluation procedures

The artificial test data in (8.21) were inverted by using (8.17) with different values of the
parameter γ, and the accuracy of the inversion algorithm was evaluated by comparing the
retrieved distribution with the true one. However, since from a physical point of view, vol-
ume (or mass) distributions are much more significant than number distributions, we com-
pared retrieved and true distributions on the basis of volume-fraction density distributions,
defined as

φ(R) = N(R)v(R),

where φ(R) has the dimensions of [µm−1].

For assessing the accuracy of the inversion procedure, we define a γ-dependent RRE as

RRE(γ) =
‖φγ − φtrue‖

‖φtrue‖
,
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which corresponds to the relative average root mean square deviations between the retrieved
and true mass distributions.

Similarly, for assessing the accuracy on the recovered values of the two parameters cN and
cV which characterize the true distribution, we define the quantities

DN (γ) =

∣∣∣‖Nγ‖1,∆R
− cN

∣∣∣
cN

and DV (γ) =

∣∣∣‖Nγ‖1,V − cV

∣∣∣
cV

,

which represent the relative errors between cN and cV and the corresponding recovered
parameters.

Numerical results

In the following numerical tests, the WCLR and LR algorithms were stopped after 106 itera-
tions, beyond which the recovered distribution did not changed anymore. The approximate
solution was computed for several values of γ in a given range of recoverable radii, which
was selected as a two order of magnitude large subset ([Rmax/Rmin = 100]) of the original
range defined above. For each γ, the tests were repeated 30 times, with different noise real-
izations (of the same ǫ level).

Test 1 In the first test we show that, when the distribution to be recovered is character-
ized by particles that produce signals whose features are: (a) asymptotically constant at low
angles and (b) exhibit a dynamic range between first and last angle of several orders of mag-
nitude [see d = 0.1µm or d = 1.0µm curves in Figure 8.1(a)], the original LR and our WCLR
algorithms are quite equivalent. To this aim, we selected as true number distribution Itrue a
Gaussian centered in the middle of the recoverable range [Rmin, Rmax], i.e., with an average
value 〈R〉 = 1µm and standard deviation σR = 0.1µm. The particle number concentration
was (arbitrarily) chosen to be cN = 1016 cm−3 and the r.m.s. noise level added to the data
was ǫ = 0.01. The inversion was carried out by trimming the recoverable particle radii in the
range [0.1µm − 10µm] (so that the number of bins was m = 200).

The value of γ ranges from zero (original LR) to γ = 106. The findings of this test show
that our algorithm performs equally well independently of the γ−value (0 − 104) and its
performances were quite similar to the ones provided by the original LR algorithm. This
is shown in Figure 8.3 where data reconstructions and average recovered distributions are
highly accurate and, as matter of fact, indistinguishable between our algorithm (run with
γ = 1) and the classical LR algorithm (γ = 0).

Test 2 The effective difference between the two algorithms becomes evident only when the
particles are close to the sides of the [Rmin, Rmax] range. For this second test we selected
a Gaussian distribution characterized by large particles, i.e., with 〈R〉 = 100µm and σR =
10µm. The inversion was carried out in the range [10µm − 1000µm] varying γ in [10−2 −
107]. Differently from the first test, the effect of changing γ is quite relevant, as shown in
Figure 8.4 where the behaviors of the parameters RRE (a), DN (b), and DV (c) are reported
as a function of γ. As one can notice, whereasDV decreases monotonically with increasing γ
(which is consistent with the fact that the stronger the constraint, the higher the accuracy of
its recovered value), the other two parameters exhibit very broad valleys whose flat regions
cover almost the same range of γ ∼ [101 − 105]. Thus, the choice of an optimal value for
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FIGURE 8.3: Test 1: Comparison between the original LR (blue symbols) and
our WCLR algorithm (red symbols) run with γ = 1 for a Gaussian distribution
with an average value 〈R〉 = 1µm and standard deviation σR = 0.1µm. (a)
Reconstructed (symbols) and true (line) signals. (b) Reconstructed (symbols)
and true (line) distributions. The two algorithms performs equally well and,

as matter of fact, are almost indistinguishable results.

FIGURE 8.4: Test 2: Behavior as a function of γ of the average parameters
RRE (a), DN (b), and DV (c) for a Gaussian distribution with 〈R〉 = 100µm
and σR = 10µm. The error bars are the standard deviations associated to the

various parameters deriving from the noise (ǫ = 0.01) present on the data.

γ is not critical at all and any value chosen in the central part of this interval (for example
γopt ∼ [102 − 104]) leads both to small errors in the recovery of cN and to very accurate
distribution reconstructions, as shown in panels Figure 8.5(e-f-g). Conversely, for values of
γ outside this range, the recovery of cN becomes increasingly less and less accurate and,
at the same time, the distributions are recovered more and more poorly, as shown in all
the other panels of the Figure 8.5. In particular, we would like to point out the remarkable
mismatching between the true distribution and the one recovered in Figure 8.5(a), showing
that the classical LR algorithm (γ = 0) is totally unable to perform such a task. Finally, we
would like to point out that the rather similar behaviors between RRE and DN guarantees
that, in a real experiment where the parameter RRE cannot be measured because φtrue(R)
is not known, the optimal range for γopt can be inferred by looking at the behavior of DN

(Figure 8.4(b)). The fact that such a range is remarkably broad (∼ 3 orders of magnitude)
ensures that even a huge uncertainty on the value of cN would not affect significantly the
accuracy with which φtrue(R) will be reconstructed.
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FIGURE 8.5: Test 2: Comparison between the average recovered distributions
(red symbols) obtained with our algorithm at various γ-values (γ = 0 is LR)
and a true Gaussian distribution φtrue(R) with with 〈R〉 = 100µm and σR =
10µm. The error bars are the standard deviations associated to the bins of the

recovered histogram due to the noise (a ǫ = 0.01) present on the data.
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FIGURE 8.6: Test 3: Behavior as a function of γ of the average parameter RRE
(a), DN (b), and DV (c) for a Gaussian distribution with 〈R〉 = 0.05µm and
σR = 0.005µm with 〈R〉 = 100µm and σR = 10µm. The error bars are the
standard deviations associated to the various parameters deriving from the

noise (ǫ = 0.001) present on the data.

Test 3 As a final test, we selected a distribution close to the left side of the range, namely
a Gaussian with 〈R〉 = 0.05µm and σR = 0.005µm. In this case, as shown in Figure 8.1,
the I(θ) data are rather flat and therefore, for not corrupting completely their behavior,
the noise level added to the data was ǫ = 0.001. All the other inversion parameters were
identical to the ones used in the previous test, except for the range of recoverable radii that
was [0.005µm − 0.5µm]. The behaviors of the parameters RRE (a), DN (b), and DV (c)
are reported in Figure 8.6, whereas the comparison between the recovered distribution and
φtrue(R) is shown in the nine panels of Figure 8.7 varying γ in the range [10−6 − 103] . As for
the large particles, there is an optimal range γopt ∼ [10−4 − 101] where both distribution re-
construction and cN recovery are very accurate. Also in this case, the original LR algorithm
is totally unable to recover the true distribution (see Figure 8.7(a)). And finally, given the
similar behaviors of the parameters of RRE and DN which exhibits very broad and shallow
minima, the same method described above for the estimate of the optimal range for γopt can
be applied.

To conclude this section we observe that in Figure 8.7(c) we can see a strange behavior of the
quantity DV with respect to γ. In particular, we would expect this quantity to be monotoni-
cally decreasing as γ increases, however, this is not the case. What happens in this scenario is
that when γ is very large, the constraint is very effective thus slowing down the convergence
of method. The “bumb” that can be seen in Figure 8.7(c) is due to the fact that the maximum
number of iteration was reached before convergence. In order to solve this issue we plan to
insert a more sophisticated stopping criterion, related to the discrepancy principle, that will
avoid this problem.
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FIGURE 8.7: Test 3: Comparison between the average recovered distributions
(red symbols) obtained with our algorithm at various γ-values (γ = 0 is LR)
and a true Gaussian distribution φtrue(R) with with 〈R〉 = 0.05µm and σR =
0.005µm. The error bars are the standard deviations associated to the bins of

the recovered histogram due to the noise (a ǫ = 0.001) present on the data.
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Chapter 9

A semi-blind regularization algorithm
for inverse problems with application
to image deblurring

In this last chapter we consider inverse problems in Sobolev spaces which can be modeled
as an equation of the form

B (k, f) = g, (9.1)

where f is the desired solution, g is the measured data, and k is a variable on which the
operatorB depends, e.g., if B (k, f) = k ∗ f is the convolution operator, then k represents the
integral kernel.

We consider the situation in which (9.1) is ill-posed and both k and g are corrupted by noise.
We denote by kǫ and gδ the noise corrupted version of k and g, respectively, and we assume
that the following bounds hold

‖g − gδ‖ ≤ δ and ‖k − kǫ‖ ≤ ǫ.

Therefore, equation (9.1) becomes
B (kǫ, f) = gδ.

We refer to the regularization of such a problem as semi-blind regularization, since the variable
k, even though it is not completely unknown, has a certain degree of uncertainty on it.

Blind and semi-blind deconvolution has been widely investigated [1, 11, 17, 18, 20, 39, 41,
51, 66, 85, 109]. The approach in [11, 51] requires that the blurring operator is diagonalized
by fast transforms, which is not assumed in this chapter. In [17] a double regularization
approach to recover f and k was proposed, which consisted in solving

argmin
k,f

J (k, f) (9.2)

where
J (k, f) =

1

2
T (k, f) +R (k, f) ,

T had the role of data-fitting term and R was the penalty term. In particular,

T (k, f) = ‖B (k, f)− gδ‖2 + γ ‖k − kǫ‖2 ,
R (k, f) = α ‖Lf‖+ βR (k) ,
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where R (k) is an appropriate penalty term and L is a regularization operator which is
bounded and continuously invertible. A possible numerical technique to solve (9.2) was
proposed by the same authors in [18] using an alternating minimization over f and k.

In this chapter we want to improve the results in [17, 18] by introducing a more complex
penalty term for f and by constrain the minimization. In particular, we want to introduce, for
both k and f , the Total Variation (TV) as a prior and add nonnegativity and flux conservation
constraints. The introduction of TV and the constraints complicates the minimization of the
resulting functional, thus the usage of advanced numerical techniques is required.

Summarizing, the problem that we would like to solve is
(
kδ,ǫα,β , f

δ,ǫ
α,β

)
= arg min

(k,f)∈Ωk×Ωf

Jδ,ǫ
α,β (k, f) (9.3)

where Jδ,ǫ
α,β is the non-smooth and non-convex functional defined in (9.4).

Firstly we prove some theoretical properties of Jδ,ǫ
α,β . In particular, we show the existence of

a global minimum, the stability property and that, if α and β are chosen properly, (9.3) is a
regularization method.

Then, for the numerical solution of (9.3), we use the well known Alternating Direction Mul-

tiplier Method (ADMM). However, since Jδ,ǫ
α,β is non-convex, the classical theory of ADMM

does not assure the convergence of the algorithm. Thus, we prove that ADMM applied to
(9.3) converges to a stationary point of Jδ,ǫ

α,β .

Finally, we give some numerical evidences of the improvement in term of quality of the re-
constructed images with respect to the proposal in [18]. Moreover, we show that inserting
k as a variable inside the model leads to more accurate approximations than using the mea-
sured kǫ directly, i.e., than solving

f δ,ǫα,β = arg min
f∈Ωf

Jδ,ǫ
α,β (kǫ, f) .

This chapter is structured as follows. In Section 9.1 we describe the functional we consider
and analyze some of its properties. In Section 9.2 we discuss the addition of some con-
straints, while in Section 9.3 we describe the algorithm for the minimization of the functional
previously introduced and we prove its convergence. Section 9.4 is devoted to numerical
examples in image deblurring.

9.1 The regularized functional

As previously discussed, our goal is to extend the results form [17] using a more complex
penalty term obtained by considering the TV for both f and k. Let gδ , kǫ, f, k ∈ H1, whereH1

denotes the Sobolev space W 1,2 which is a separable Hilbert space, see, e.g., [23, Section 9.1].
We consider the minimization of the following functional

Jδ,ǫ
α,β (k, f) = ‖B (k, f)− gδ‖2 + α

(
‖f‖TV + ‖f‖2

)
+ γ ‖k − kǫ‖2 + β ‖k‖TV , (9.4)

where
‖h‖TV =

∫
‖∇h‖
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is the total variation of h ∈ H1. The penalty term on f is able to ensure a certain degree of
smoothness, thanks to the ‖·‖ term, while preserving edges at the same time, using the ‖·‖TV

term.

We now show some theoretical properties of (9.4), in particular, we want to show the exis-
tence of a global minimizer, the stability property, and the fact that, if α and β are chosen in
relation to the noise, the minimization of Jδ,ǫ

α,β induces a regularization technique.

We assume that
Assumption 9.1. The operator B is strongly continuous on its domain.

Before proving the existence of the minimizer we first need to show some properties of
Jδ,ǫ
α,β (f, k).

Lemma 9.1. The functional Jδ,ǫ
α,β (f, k) defined in (9.4) is positive, weakly lower semi-continuous

(wlsc) and coercive with respect to the norm ‖(k, f)‖2 := ‖k‖2 + ‖f‖2.

Proof. It is obvious that Jδ,ǫ
α,β is positive and wlsc since it is a sum of positive and wlsc func-

tions. The coercivity trivially follows from

Jδ,ǫ
α,β(k, f) ≥ γ ‖k − kǫ‖2 + α ‖f‖2 → ∞ as ‖(k, f)‖ → ∞.

We are now able to prove the existence of a global minimizer.
Theorem 9.2 (Existence). The functional Jδ,ǫ

α,β (f, k) defined in (9.4) has a global minimizer.

Proof. From Lemma 9.1 we know that Jδ,ǫ
α,β is positive, proper, and coercive, thus ∃ (k, f) ∈

D
(
Jδ,ǫ
α,β

)
, where D

(
Jδ,ǫ
α,β

)
denotes the domain of Jδ,ǫ

α,β , such that Jδ,ǫ
α,β (k, f) <∞. Let us call

ν := inf
{
Jδ,ǫ
α,β (k, f) : (k, f) ∈ D

(
Jδ,ǫ
α,β

)}
, (9.5)

we want to show that ν is attained, meaning that the infimum is actually a minimum.

By definition of ν there exist M > 0 and {(kj , fj)}j ∈ D
(
Jδ,ǫ
α,β

)
such that

Jδ,ǫ
α,β (kj , fj) → ν and Jδ,ǫ

α,β (kj , fj) ≤M ∀j. (9.6)

From (9.6) we get that α ‖fj‖2 ≤M and γ ‖kj − kǫ‖2 ≤M , moreover,

‖kj‖ − ‖kǫ‖ ≤ ‖kj − kǫ‖ ≤
(
M

γ

) 1
2

.

Thus the following bounds hold

‖kj‖ ≤
(
M

γ

)1
2

+ ‖kǫ‖ and ‖fj‖ <
(
M

α

) 1
2

,

i.e., the sequence {(kj , fj)}j is uniformly bounded, so there exists a subsequence {(kj , fj)}j
(with abuse of notation we use the same indexes) such that kj ⇀ k̄ and fj ⇀ f̄ , i.e., (kj, fj)⇀(
k̄, f̄

)
.
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We now prove that ν is the minimum of the functional Jδ,ǫ
α,β and is attained at

(
k̄, f̄

)
, i.e.,(

k̄, f̄
)

is a global minimizer. By wlsc of Jδ,ǫ
α,β we have

ν ≤ Jδ,ǫ
α,β

(
k̄, f̄

)
≤ lim inf

j→∞
Jδ,ǫ
α,β (kj , fj) = lim

j→∞
Jδ,ǫ
α,β (kj , fj) = ν.

So ν = Jδ,ǫ
α,β

(
k̄, f̄

)
is the minimum of the functional and

(
k̄, f̄

)
is a global minimizer.

We are now in a position to show the stability property
Theorem 9.3 (Stability). With the same notation as above, let α and β be fixed. Let

{(
gδj
)}

j
and{(

kǫj
)}

j
be sequences such that gδj → gδ and kǫj → kǫ, let {(kj , fj)}j be minimizers obtained

with data gδj , kǫj . Then there exists a convergent subsequence of {(kj , fj)}j and the limit of every

subsequence is a minimizer of Jδ,ǫ
α,β .

Proof. Because {(kj , fj)}j are minimizers it holds that

J
δj ,ǫj
α,β (kj , fj) ≤ J

δj ,ǫj
α,β (k, f) ∀ (k, f) ∈ D

(
J
δj ,ǫj
α,β

)
. (9.7)

Let us denote by
(
k̃, f̃

)
the minimizers of Jδ,ǫ

α,β , i.e.,
(
k̃, f̃

)
:=
(
kδ,ǫα,β, f

δ,ǫ
α,β

)
.

Since Jδj ,ǫj
α,β

(
k̃, f̃

)
→ Jδ,ǫ

α,β

(
k̃, f̃

)
there exists c̃ > 0 such that

J
δj ,ǫj
α,β

(
k̃, f̃

)
≤ c̃ for j large enough.

The latter implies that {‖kj − kǫ‖}j and {‖fj‖}j are uniformly bounded and so, like in Theo-
rem 9.2, it holds that {(kj , fj)}j is uniformly bounded.

With abuse of notation there exists a subsequence {(kj , fj)}j such that

kj ⇀ k̄ and fj ⇀ f̄.

By wlsc of B and of ‖·‖ we have
∥∥B
(
k̄, f̄

)
− gδ

∥∥ ≤ lim inf
j→∞

∥∥B (kj, fj)− gδj
∥∥

and
‖kj − kǫ‖ ≤ lim inf

j→∞

∥∥kj − kǫj
∥∥ .

From (9.7) it derives

Jδ,ǫ
α,β

(
k̄, f̄

)
≤ lim inf

j→∞
J
δj ,ǫj
α,β (kj , fj) ≤ lim sup

j→∞
J
δj ,ǫj
α,β (k, f)

= lim
j→∞

J
δj ,ǫj
α,β (k, f) = Jδ,ǫ

α,β (k, f) , ∀ (k, f) ∈ D
(
Jδ,ǫ
α,β

)
.

In particular, Jδ,ǫ
α,β

(
k̄, f̄

)
≤ Jδ,ǫ

α,β

(
k̃, f̃

)
, but

(
k̃, f̃

)
is a minimizer and so Jδ,ǫ

α,β

(
k̄, f̄

)
= Jδ,ǫ

α,β

(
k̃, f̃

)
,

implying that
lim
j→∞

J
δj ,ǫj
α,β (kj , fj) = Jδ,ǫ

α,β

(
k̄, f̄

)
.
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We have proven the weak convergence of kj and fj to k̄ and f̄ , respectively. We now have to
show that the convergence is strong. It is enough to prove that

∥∥k̄
∥∥ ≥ lim sup

j→∞
‖kj‖ and

∥∥f̄
∥∥ ≥ lim sup

j→∞
‖fj‖ .

Let us suppose that ∃ τ such that τ = lim supj→∞ ‖fj‖ >
∥∥f̄
∥∥. So there exists a subsequence

{fn}n of {fj}j such that fn ⇀ f̄ and ‖fn‖ → τ .

lim
n→∞

(
‖B (kn, fn)− gδn‖2 + α ‖fn‖TV + γ ‖kn − kǫn‖2 + β ‖kn‖TV

)

=
∥∥B
(
k̄, f̄

)
− gδ

∥∥2 + α
∥∥f̄
∥∥
TV

+ γ
∥∥k̄ − kǫ

∥∥2 + β
∥∥k̄
∥∥
TV

+ α
(∥∥f̄

∥∥2 − lim
n→∞

‖fn‖2
)

=
∥∥B
(
k̄, f̄

)
− gδ

∥∥2 + α
∥∥f̄
∥∥
TV

+ γ
∥∥k̄ − kǫ

∥∥2 + β
∥∥k̄
∥∥
TV

+ α
(∥∥f̄

∥∥2 − τ2
)

<
∥∥B
(
k̄, f̄

)
− gδ

∥∥2 + α
∥∥f̄
∥∥
TV

+ γ
∥∥k̄ − kǫ

∥∥2 + β
∥∥k̄
∥∥
TV

,

which contradicts the wlsc of B and the norms, thus fj → f̄ .

Similarly we prove that kj → k̄.

Let us suppose that ∃ τ such that τ = lim supj ‖kj − kǫ‖ >
∥∥k̄ − kǫ

∥∥. So there exists a subse-
quence {kn}n of {kj}j such that kn−kǫ ⇀ k̄−kǫ and ‖kn − kǫ‖ → τ . By triangular inequality

‖kn − kǫ‖ − ‖kǫ − kǫn‖ ≤ ‖kn − kǫn‖ ≤ ‖kn − kǫ‖+ ‖kǫ − kǫn‖ ,

so
lim
n→∞

‖kn − kǫn‖ = lim
n→∞

‖kn − kǫ‖ .

Thus
lim
n→∞

(
‖B (kn, fn)− gδn‖2 + β ‖kn‖TV

)

=
∥∥B
(
k̄, f̄

)
− gδ

∥∥2 + β
∥∥k̄
∥∥
TV

+ β
(
γ
∥∥k̄ − kǫ

∥∥2 − lim
n→∞

‖kn − kǫ‖2
)

=
∥∥B
(
k̄, f̄

)
− gδ

∥∥2 + β
∥∥k̄
∥∥
TV

+ β
(
γ
∥∥k̄ − kǫ

∥∥2 − τ2
)

<
∥∥B
(
k̄, f̄

)
− gδ

∥∥2 + β
∥∥k̄
∥∥
TV

,

which contradicts the wlsc of B and the norms, so kj → k̄.

One of the most important properties of iterative regularization methods is the regulariza-
tion property. We want to prove that in the noise-free case we can exactly recover an exact
solution of the problem and in particular that with minimum norm. Moreover we want that,
as the norm of the noise goes to 0, the corresponding reconstructions converge to the min-
imum norm solution of the problem as well. This intuitively means that, if there is not too
much noise and if the parameters α and β are set accordingly, we can trust our method to
give good approximation to the true solution.

In order to talk about the regularization property, we need to clearly define what is the mini-
mum norm solution in this setup.
Definition 9.4. The minimum norm solution of B (k0, f) = g0 is

f † = arg min
f∈H1

{‖f‖2 + ‖f‖TV : B (k0, f) = g0}.
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We now prove that, if α and β are chosen properly and dependently from the noise, the
method proposed is a regularization method.
Theorem 9.5 (Regularization property). Let

{
gδj
}
j

and
{
kǫj
}
j

be sequences such that

∥∥gδj − g0
∥∥ < δ and

∥∥kǫj − k0
∥∥ < ǫj

and such that δj , ǫj → 0 as j → ∞. Let {α}j and {β}j be sequences such that αj , βj → 0 as j → ∞,
moreover assume that it holds

lim
j→∞

δ2j + γǫ2j
αj

= 0 and lim
j→∞

βj
αj

= η 0 < η <∞.

Call (kj , fj) :=
(
k
δj ,ǫj
αj ,βj

, f
δj ,ǫj
αj ,βj

)
, then there exists a convergent subsequence of {(kj , fj)} such that

kj → k0 and the limit of every convergent subsequence of fj is the minimum norm solution.

Proof. Since (kj , fj) is a minimizer we have

J
δj ,ǫj
αj ,βj

(kj , fj) ≤ J
δj ,ǫj
αj ,βj

(k, f) ∀ (k, f) ∈ D
(
J
δj ,ǫj
αj ,βj

)
,

in particular

0 ≤ J
δj ,ǫj
αj ,βj

(kj , fj) ≤ J
δj ,ǫj
αj ,βj

(
k0, f

†
)
≤ δ2j + γjǫ

2
j + αj

(∥∥∥f †
∥∥∥
TV

+
∥∥∥f †
∥∥∥
2
)
+ βj ‖k0‖TV ,

so
∥∥B (kj , fj)− gδj

∥∥2,
∥∥kj − kǫj

∥∥2, ‖fj‖2, ‖fj‖TV , and ‖kj‖TV are uniformly bounded.

There exists a subsequence {(kn, fn)}n of {(kj , fj)}j such that (kn, fn) ⇀
(
k̄, f̄

)
. We want to

show that k̄ = k0 and that f̄ is the minimum norm solution. Moreover, we want to prove
that the convergence is strong.

Let us firstly show that k̄ = k0. Indeed, it holds

0 ≤
∥∥B
(
k̄, f̄

)
− g0

∥∥2 + γ
∥∥k̄ − k0

∥∥2

≤ lim inf
n→∞

‖B (kn, fn)− gδn‖2 + γn ‖kn − kǫn‖2

≤ lim inf
n→∞

δ2n + γnǫ
2
n + αn

(∥∥∥f †
∥∥∥
2
+
∥∥∥f †
∥∥∥
TV

)
+ βn ‖k0‖TV

= 0,

thus k̄ = k0 and B
(
k̄, f̄

)
= g0.

We now show that f̄ is the minimum norm solution. We have that

‖fn‖2 + ‖fn‖TV +
βn
αn

‖kn‖TV ≤ δ2n + γn
αn

+
∥∥∥f †
∥∥∥
2
+
∥∥∥f †
∥∥∥
TV

+
βn
αn

‖k0‖TV .



9.2. Constraints and flux conservation 147

We get

∥∥f̄
∥∥2 +

∥∥f̄
∥∥
TV

+ η
∥∥k̄
∥∥
TV

≤ lim inf
n→∞

(
‖fn‖2 + ‖fn‖TV + η ‖kn‖TV

)

= lim inf
n→∞

(
‖fn‖2 + ‖fn‖TV +

βn
αn

‖kn‖TV

)

≤ lim inf
n→∞

(
δ2n + γn
αn

+
∥∥∥f †
∥∥∥
2
+
∥∥∥f †
∥∥∥
TV

+
βn
αn

‖k0‖TV

)

=
∥∥∥f †
∥∥∥
2
+
∥∥∥f †
∥∥∥
TV

+ η ‖k0‖TV ,

but k̄ = k0 and so f̄ is the minimum norm solution.

We finally prove that fn → f † and kn → k0.

We start with fn, it is sufficient to show that ‖fn‖ →
∥∥f †
∥∥ or equivalently (by wlsc of

the norm) that lim supn→∞ ‖fn‖ ≤
∥∥f̄
∥∥. Let us suppose that there exists τ such that τ =

lim supn→∞ ‖fn‖2 >
∥∥f̄
∥∥2 and so there is a subsequence {fl}l of {fn}n such that fl ⇀ f̄ and

‖fl‖2 → τ , so

lim sup
l→∞

βl
αl

‖kl‖TV = η ‖k0‖TV +

(∥∥f̄
∥∥2 − lim sup

l→∞
‖fl‖2

)
< η ‖k0‖TV ,

which is a contradiction to the wlsc of the norm. So we have that fn → f̄ .

As for kn we have

‖kn − k0‖ ≤ ‖kn − kǫn‖+ ‖kǫn − k0‖ ≤ ‖kn − kǫn‖+ ǫn → 0,

which leads to the thesis.

9.2 Constraints and flux conservation

In many cases it is known that the true solution (k, f) lies in some closed and convex set

(k, f) ∈ Ωk × Ωf .

Therefore, we want to restrict the domain of Jδ,ǫ
α,β to Ωk × Ωf (for simplicity we assume that

Ωk × Ωf ⊆ D
(
Jδ,ǫ
α,β

)
) and, consequently, our minimization problem becomes a constrained

one.

Note that, if Ωk × Ωf is compact, the proof of Theorem 9.2 becomes a simple application of
the Weierstrass Theorem.

Consider, for example, the framework of convolution such that

B (k, f) = k ∗ f. (9.8)

Throughout this Section we will assume that k is such that

(i) k (x) ≥ 0 ∀x;

(ii)
∫
k (x) dx = 1.
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It is then straightforward to show, using the convolution theorem, the following
Lemma 9.6. Let k be an integral kernel with compact support and let g = k ∗ f , then

∫
f =

∫
g.

After a discretization procedure by a collocation method, replacing (9.8) in (9.1), the latter
becomes

g = Akx.

Lemma 9.6 implies that

• Ak has no negative entries;

• If the periodic boundary conditions are imposed, then

– the row-sum and column-sum of A is 1, i.e., the entries of the vector which dis-
cretize k sum up to 1;

– If y = Akz, then 1ty = 1tz, where 1 = (1, 1, . . . , 1)t.
Definition 9.7. Let x ∈ Rn, we call

flux (x) = 1tx.

Remark 9.8. In the noise-free case and when periodic boundary conditions are employed it holds that

flux (g) = flux (x) , (9.9)

where x,g are the discretization of the true signal f and the noise-free g, respectively.

In the noisy case (9.9) does not hold in general. Let us call gδ the discretization of gδ so that

gδ = g+ η,

where η represents the discretized noise. It holds

flux (gδ) = flux (g) + flux (η) ,

but, if we assume that η is white Gaussian noise, we have that

flux (η) ≈ 0.

Therefore, in this case we have that
flux (gδ) ≈ flux (x) .

From Remark 9.8 it follows that we would like to constrain the reconstructed solution to lie
in

ΩF =
{
x ∈ Rn

∣∣ flux (x) = flux (gδ)
}
. (9.10)

Remark 9.9. The set ΩF in (9.10) is a closed and convex set.

We now construct PΩF
, the metric projection over ΩF . By definition of metric projection we

have
PΩF

(x) = arg min
y∈ΩF

1

2
‖x− y‖2 .

Consider the Fourier matrix F1 ∈ Rn×n defined in (2.6). Let us define F = 1√
n
F1, F is is a

unitary matrix and so ‖Fz‖ = ‖z‖ for all z. Note that the first row of the matrix F is the
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constant vector 1√
n
1t. Hence the first entry of Fz, for some z ∈ Rn, is 1√

n
1tz which is the flux

of z multiplied by 1√
n

, see Definition 9.7. Namely, ẑ1 =
flux(z)√

n
for ẑ = Fz. This implies that

Ω̂F = {x̂ = Fx | x ∈ ΩF } =

{
x̂ ∈ Rn | x̂1 =

flux (gδ)√
n

}
.

Consider now

PΩF
(x) = arg min

y∈ΩF

1

2
‖x− y‖2 = arg min

y∈ΩF

1

2
‖Fx− Fy‖2 = F ∗ arg min

ŷ∈Ω̂F

1

2
‖x̂− ŷ‖2 ,

where we have called x̂ = Fx, ŷ = Fy. The solution of the last minimization problem
follows straightforward from the definition of Ω̂F . Defining

ẑ = arg min
ŷ∈Ω̂F

1

2
‖x̂− ŷ‖2 ,

the j-th entry of ẑ is

ẑj =

{
flux(gδ)√

n
if j = 1

x̂j otherwise.
(9.11)

Finally, we have that

PΩF
(x) = F ∗ẑ, (9.12)

with ẑ defined in (9.11).

In practice the computation of PΩF
does not need any FFT and can be done in O (n) arith-

metic operations. Let us call vj , for j = 1, . . . , n, the vectors of the Fourier basis. The expan-
sion of the vector x in this base is

x =
n∑

j=1

x̂jvj = x̂1
1√
n
1+

n∑

j=2

x̂jvj .

According to (9.12) and (9.11), it holds

PΩF
(x) =

flux (gδ)√
n

(
1√
n
1

)
+

n∑

j=2

x̂jvj ,

=
flux (gδ)√

n

(
1√
n
1

)
− x̂1

(
1√
n
1

)
+ x̂1

(
1√
n
1

)
+

n∑

j=2

x̂jvj

=
(flux (gδ)− x̂1

√
n)

n
1+ x

=
(flux (gδ)− flux (x))

n
1+ x, (9.13)

where the last equation holds recalling that x̂1 = flux(x)√
n

. Note that the computation of
PΩF

(x) by (9.13) requires only O (n) operations.
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9.3 Minimization Algorithm

Computing a minimum of (9.4), especially if the minimization is constrained, can be a diffi-
cult problem since it contains both linear and non-linear terms. Moreover, the minimization
over two variables can be very challenging. The strategy proposed in [18] was an alternating
minimization, where at each step one variable was fixed and the functional was minimized
with respect to the other one. With this method it is possible to avoid the complicated mini-
mization over two arguments, but still the minimization over only one variable can be tough.
The method we are going to propose decouples the various terms inside (9.4) obtaining a se-
ries of simple minimization problems. The main tools to design such decomposition are
Augmented Lagrangian and ADMM.

9.3.1 ADMM

We now briefly describe the ADMM algorithm.

First of all we need to define the Augmented Lagrangian related to a constrained minimiza-
tion problem. Consider

x = argmin
x
f (x) ,

subject to Ax = b.
(9.14)

The traditional Lagrangian associated with (9.14) is

L (x;λ) = f (x)− 〈λ, b−Ax〉 ,

where λ is the Lagrangian multiplier. The Augmented Lagrangian is defined as

LA (x;λ) = f (x)− 〈λ, b−Ax〉+ ω

2
‖b−Ax‖2 ,

where ω > 0 is called the penalty parameter. The Augmented Lagrangian can be seen as the
traditional Lagrangian for the problem

x = argmin
x
f (x) +

ω

2
‖b−Ax‖2

subject to Ax = b,

which is equivalent to (9.14).

Let us now assume that the problem we have to solve can be written as

x = argmin
x
f (x) + g (z)

subject to Ax+Bz = c.
(9.15)

Firstly, we form the Augmented Lagrangian of (9.15)

LA (x, z;λ) = f (x) + g (z)− 〈λ, c− (Ax+Bz)〉+ ω

2
‖c− (Ax+Bz)‖2 .

The ADMM algorithm applied to (9.15) is
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Algorithm (ADMM). Start with initial guesses x0, z0, and λ0 for x, z, and λ, respectively.

for j = 0, 1, 2, . . .

xj+1 = argmin
x

LA

(
x
∣∣ zj ;λj

)

zj+1 = argmin
x

LA

(
z
∣∣ xj+1;λj

)

λj+1 = λj − ω (c− (Ax+Bz))

end

Where by argmin
•

LA

(
•
∣∣◦
)

we mean that we minimize the quantity in respect of • having fixed the

other parameters ◦.

For a recent and comprehensive review on the ADMM method, refer to [21].

It is possible to show that
Theorem 9.10. With the same notation as above, if f and g are closed, proper, and convex functions
and if the unaugmented Lagrangian has a saddle point, then the ADMM method converges to a
solution of (9.15).

Constrained Minimization We now discuss how to use the ADMM algorithm for solving
a constrained minimization problem. Suppose that we want to constrain a minimization
problem like (9.14), so that our minimizer lies in some closed and convex set Ω ⊂ D (f)

x = argmin
x∈Ω

f (x) ,

subject to Ax = b.
(9.16)

Let us write (9.16) in an equivalent way

(x, x̃) = arg min
x̃∈Ω,x

f (x) ,

subject to Ax = b and x̃ = x.
(9.17)

The Augmented Lagrangian associated with (9.17) is

LA (x̃, x;λ, ξ) = f (x)− 〈λ, x̃− x〉+ ω1

2
‖x̃− x‖2 − 〈ξ, b−Ax〉+ ω2

2
‖b−Ax‖2 .

The ADMM applied to (9.17) leads to the following algorithm:
Algorithm. Let x0, λ0, and ξ0 be initial guesses for x, λ, and ξ, respectively

for j = 0, 1, . . .
x̃j+1 = argmin

x̃∈Ω
LA

(
x̃
∣∣ xj ;λj , ξj

)

xj+1 = argmin
x

LA

(
x
∣∣ x̃j+1;λj , ξj

)

λj+1 = λj − ω1 (x̃j+1 − xj+1)
ξj+1 = ξj − ω2 (b−Axj+1)

end

It is easy to show that x̃j+1 is obtained by

x̃j+1 = PΩ

(
xj +

λj
ω1

)
.
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In this way we are able to easily deal with the constrained optimization problem.

This approach is feasible if the projection PΩ is easily performed. On the other hand if the
projection into Ω is too complicated the algorithm above might not be attractive. Neverthe-
less, whenever Ω can be written as the intersection of two or more closed and convex sets,
i.e.,

Ω =

L⋂

l=1

Ω(l),

if PΩ(l) is easily performed, then we can still use ADMM to solve the constrained minimiza-
tion problem.

For the sake of simplicity we fix L = 2. Consider the minimization problem

min
x
f (x)

s.t. x ∈ Ω(1) ∩ Ω(2),

which is equivalent to the following

min
x,x(1),x(2)

f (x)

s.t. x(1) ∈ Ω(1), x(2) ∈ Ω(2), x = x(1), x = x(2).
(9.18)

In this way we have separated the two constraints on Ω(1) and Ω(2); hopefully the projection
on each set is easier to compute than the projection over the intersection.

The Augmented Lagrangian of the new minimization problem (9.18) is

LA

(
x, x(1), x(2);λ, θ

)
= f (x)−

〈
λ, x(1) − x

〉
+
ω1

2

∥∥∥x(1) − x
∥∥∥
2
−
〈
θ, x(2) − x

〉
+
ω2

2

∥∥∥x(2) − x
∥∥∥
2
.

We can now write the ADMM iterations for this LA.
Algorithm 9.1. Given f0, λ0, and θ0 initial guesses for f , λ, and θ, respectively. Let ω1, ω2 > 0 be
real constant numbers.

for j = 0, 1, . . .(
x
(1)
j+1

x
(2)
j+1

)
= arg min

x(1),x(2)
LA

(
x(1), x(2)

∣∣xj;λj , θj
)

xj+1 = argmin
x

LA

(
x
∣∣x(1)j+1, x

(2)
j+1;λj , θj

)

λj+1 = λj − ω1

(
x
(1)
j+1 − xj+1

)

θj+1 = θj − ω2

(
x
(2)
j+1 − xj+1

)

end

The first minimization problem decouples and the solutions are simply obtained by

x
(1)
j+1 = PΩ(1)

(
xj +

λj
ω1

)
, x

(2)
j+1 = PΩ(2)

(
xj +

θj
ω2

)
.

We do not consider the minimization in respect to x since it is not relevant for our purpose.
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9.3.2 The proposed Algorithm

We now consider the finite dimensional case, in particular for simplicity we assume f ,k ∈
Rn×n (the extension to the case where f and k belong to different spaces and are not square
is straightforward). We apply the ADMM to the Augmented Lagrangian related to the fol-
lowing constrained minimization problem

(k∗, f∗) = arg min
k∈Ωk,f∈Ωf

Jδ,ǫ
α,β (k, f) , (9.19)

where, with abuse of notation, we call Jδ,ǫ
α,β the discretization of the function defined in (9.4)

and Ωk,Ωf ⊂ Rn×n are closed and convex sets.

Please note that Theorem 9.10 does not assure the convergence of the ADMM in this case
since Jδ,ǫ

α,β is non-convex, so we are going to need a different result for the convergence. In
particular we are going to need a further assumption on Ωk × Ωf .

Before covering the convergence property of the proposed algorithm we explicitly formulate
all its ingredients.

The isotropic Total Variation operator in this space is defined as follows. Let x ∈ Rn×n

TV (x) =

n2∑

i=1

‖Dix‖ ,

where Dix =
((
D(1)x

)
i
,
(
D(2)x

)
i

)t ∈ R2 is

(
D(1)x

)
i
=

{
xi+n − xi, if 1 ≤ i ≤ n (n− 1)
xmod(i,n) − xi, otherwise

(
D(2)x

)
i
=

{
xi+1 − xi, if mod(i, n) 6= 0
xi−n+1 − xi, otherwise.

(9.20)

With abuse of notation we will write

‖x‖TV = TV (x),

also in the finite dimensional case.

Let us rewrite (9.19) in an equivalent way

(k∗, f∗) = arg min
k∈Ωk,f∈Ωf

‖B (k, f)− gδ‖2 + α
(
‖f‖2 + ‖f‖TV

)
+ γ ‖k− kǫ‖2 + β ‖k‖TV

= arg min
k̃∈Ωk,f̃∈Ωf

k̂,f̂ ,k,f

{
‖B (k, f)− gδ‖2 + α

(
‖f‖2 +

∥∥∥f̂
∥∥∥
TV

)
+ γ ‖k− kǫ‖2 + β

∥∥∥k̂
∥∥∥
TV

,

k = k̃, f = f̃ ,k = k̂, f = f̂
}
,

where N = n2, f , f̃ , f̂ ,k, k̃, k̂ ∈ RN .
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We now write the Augmented Lagrangian of the minimization above

LA

(
f̃ , f̂ , f , k̃, k̂,k;λ, ξ, ζ,µ

)

= ‖B (k, f)− gδ‖2 + α
(
‖f‖2 +

∥∥∥f̂
∥∥∥
TV

)
+ γ ‖k− kǫ‖+ β

∥∥∥k̂
∥∥∥
TV

+
ω1

2

∥∥∥f̃ − f

∥∥∥
2
−
〈
λ, f̃ − f

〉
+
ω2

2

∥∥∥f̂ − f

∥∥∥
2
−
〈
ξ, f̂ − f

〉

+
ω3

2

∥∥∥k̃− k

∥∥∥
2
−
〈
ζ, k̃− k

〉
+
ω4

2

∥∥∥k̂− k

∥∥∥
2
−
〈
µ, k̂− k

〉
,

where λ, ζ, ξ,µ ∈ RN .

We can apply the ADMM algorithm obtaining
Algorithm 9.2 (SeB-A). Given f0, k0, λ0, ξ0, ζ0, and µ0 initial guesses for f , k, λ, ξ, ζ, and µ,
respectively. Let ω1, ω2, ω3, ω4 > 0 be real fixed numbers.

for j = 0, 1, . . .


f̃j+1

f̂j+1

kj+1


 = argmin

f̃ ,f̂ ,k
LA

(
f̃ , f̂ ,k

∣∣k̃j , k̂j , fj ;λj , ξj , ζj ,µj

)




k̃j+1

k̂j+1

fj+1


 = arg min

k̃,k̂,f
LA

(
k̃, k̂, f

∣∣f̃j+1, f̂j+1,kj+1;λj , ξj , ζj ,µj

)

λj+1 = λj − ω1

(
f̃j+1 − fj+1

)

ξj+1 = ξj − ω2

(
f̂j+1 − fj+1

)

ζj+1 = ζj − ω3

(
k̃j+1 − kj+1

)

µj+1 = µj − ω4

(
k̂j+1 − kj+1

)

end

We call this method SeB-A as for Semi-blind ADMM. We now formulate some assumptions
that we are going to need in the following.
Assumption 9.2. B (k, f) is bilinear.
Remark 9.11. The semi-blind deconvolution problem we are interested in satisfies Assumption 9.2.

Under Assumption 9.2 most of the minimization above are easily computed. We have that

f̃j+1 = PΩf

(
fj +

λj

ω1

)

kj+1 =
(
2A∗

fj
Afj + 2γI + (ω3 + ω4) I

)−1 (
2A∗

fj
gδ + 2γkǫ − ζj

+ω3k̃j − µj + ω4k̂j

)

k̃j+1 = PΩk

(
kj+1 +

ζj

ω3

)

fj+1 =
(
2A∗

kj+1
Akj+1

+ 2αI + (ω1 + ω2) I
)−1 (

2A∗
kj+1

gδ − λ

+ω1f̃j+1 − ξj + ω2f̂j+1

)

Where by A• we indicate the linear operator obtained from B (k, f) by fixing •.
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On the other hand the minimizations with respect of f̂ and k̂ are non trivial, in fact

f̂j+1 = argmin
f̂

α
∥∥∥f̂
∥∥∥
TV

+
ω2

2

∥∥∥f̂ − fj

∥∥∥
2
−
〈
ξj , f̂ − fj

〉

= argmin
f̂

∥∥∥f̂
∥∥∥
TV

+
ω2

2α

∥∥∥∥f̂ −
(
fj +

ξj

ω2

)∥∥∥∥
2

k̂j+1 = argmin
k̂

β
∥∥∥k̂
∥∥∥
TV

+
ω4

2

∥∥∥k̂− kj+1

∥∥∥
2
−
〈
µj , k̂− kj+1

〉

= argmin
k̂

∥∥∥k̂
∥∥∥
TV

+
ω4

2β

∥∥∥∥k̂−
(
kj+1 +

µj

ω4

)∥∥∥∥
2

To solve this minimization problems we can use, e.g., the ADMM algorithm. Since, however,
in this case the functional are proper and convex the convergence is assured by the classical
ADMM theory, see, e.g., [21]. For completeness we describe here this approach.

Consider the minimization problem

x = argmin
x

‖x‖TV + c ‖x− y‖2 , (9.21)

where c > 0 is a constant. We can rewrite (9.21) as

x = argmin
x,x̂

{
N∑

i=1

‖(x̂)i‖+ c ‖x− y‖2 , (x̂)i = Dix

}
.

The related augmented Lagrangian is

LA (x, x̂;λ) =
N∑

i=1

‖(x̂)i‖+ c ‖x− y‖2 +
N∑

i=1

(ω
2
‖x̂i −Dix‖2 − 〈(λ)i , x̂i −Dix〉

)
.

The resulting ADMM algorithm is the following
Algorithm (ADMM for TV optimization). Given x0 and λ0 initial guesses for x and λ, respec-
tively. Let ω > 0 be a real fixed number.

for j = 0, 1, . . .

x̂j+1 = argminx̂
∑N

i=1

(
‖x̂i‖+ ω

2 ‖x̂i −Dixj‖2 −
〈
(λj)i , x̂i −Dixj

〉)

xj+1 = argminx c ‖x− y‖2 +∑N
i=1

(
ω
2

∥∥(x̂j+1)i −Dix
∥∥2 −

〈
(λj)i , (x̂j+1)i −Dix

〉)

λj+1 = λj − ω (x̂j+1 −Dxj+1)
end

The minimization above are easily computed. The minimization with respect to x̂ decou-
ples in N subproblems which are easily solved using a two-dimensional shrinkage and the
minimization with respect to x can be achieved by solving a linear system. In particular

(x̂j+1)i =
Dixj +

(λj)i
ω∥∥∥Dixj +

(λj)i
ω

∥∥∥
◦
(∥∥∥∥Dixj +

(λj)i
ω

∥∥∥∥−
1

cω

)

+

xj+1 = (2cI + ωD∗D)−1 (2cy + ωD∗x̂j+1 −D∗λj)

In this setup D is the linear operator which maps RN into RN×2 defined as
(
D(1)

D(2)

)
.
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We now prove the convergence of SeB-A Algorithm 9.2. This proof is very technical and
inspired by [87].
Remark 9.12. The convergence of Algorithm 9.2 is proven only under Conjecture 9.13, i.e., that the
norms of the iterates fj and kj remain bounded. While this seems a very strong requirement, from
the numerical experiments we can see that this condition is always satisfied. We provide some simple
bounds ϕk and ϕf for the norms of kj and fj , respectively. In Section 9.4 we show that this bounds
are far from being violated in all the computed examples.

Proof of convergence

We now give prove that Algorithm 9.2 converges to a stationary point of Jδ,ǫ
α,β(k, f).

We first analyze the unconstrained case, i.e., we consider the minimization problem

(k∗, f∗) = argmin
k,f

‖B (k, f)− gδ‖2 + α
(
‖f‖2 + ‖f‖TV

)
+ γ ‖k− kǫ‖2 + β ‖k‖TV ,

Let us rewrite the minimization problem above in an equivalent way

(k∗, f∗) = argmin
k,f

k̂,f̂

{
‖B (k, f)− gδ‖2 + α

(
‖f‖2 +

∥∥∥f̂
∥∥∥
TV

)

+γ ‖k− kǫ‖2 + β
∥∥∥k̂
∥∥∥
TV

, f̂ = f , k̂ = k
}
.

(9.22)

We now form the augmented Lagrangian related to the minimization problem (9.22), where,
without loss of generality, we have chosen the same ω for all the augmentation terms

LA

(
f ,k, f̂ , k̂; ξ,µ

)
= ‖B (k, f)− gδ‖2 + α

(
‖f‖2 +

∥∥∥f̂
∥∥∥
TV

)

+ γ ‖k− kǫ‖2 + β
∥∥∥k̂
∥∥∥
TV

+
ω

2

∥∥∥f̂ − f

∥∥∥
2
−
〈
ξ, f̂ − f

〉

+
ω

2

∥∥∥k̂− k

∥∥∥
2
−
〈
µ, k̂− k

〉
.

(9.23)

Thus the unconstrained algorithm becomes
Algorithm 9.3. Given f0, k0, ξ0, and µ0 initial guesses for f , k, ξ, and µ, respectively.

for j = 0, 1, . . .(
f̂j+1

kj+1

)
= argmin

f̂ ,k
LA

(
f̂ ,k
∣∣k̂j , fj ; ξj ,µj

)

(
k̂j+1

fj+1

)
= argmin

k̂,f
LA

(
k̂, f
∣∣f̂j+1,kj+1; ξj,µj

)

ξj+1 = ξj − ω
(
f̂j+1 − fj+1

)

µj+1 = µj − ω
(
k̂j+1 − kj+1

)

end
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This simplified version of our method is an algorithm to compute a solution of the uncon-
strained minimization problem

argmin
k,f

Jδ,ǫ
α,β(k, f).

In our proofs we are not going to consider the constrain (k, f) ∈ Ωk × Ωf . We are going to
insert this constraint only at the very end.

To proceed we need some further assumptions
Assumption 9.3. We assume that

(i) If k = 0 or f = 0 then B (k, f) = 0;

(ii) If for a certain set K = {k(l), l = 1, 2, . . .} it holds that
∥∥k(l)

∥∥ < CK , where CK is a constant,

then the operators Ak(l) = B
(
k(l), ·

)
, which are linear in force of Assumption 9.2, have bounded

norm, i.e. there exists a constant C such that ∀f and ∀k ∈ K it holds ‖B (k, f)‖ < C ‖f‖.

Similarly assume that for a certain set F = {f (l), l = 1, 2, . . .} it holds that
∥∥f (l)

∥∥ < CF ,

where CF is a constant, then the operators Af (l) = B
(
·, f (l)

)
, which are linear in force of

Assumption 9.2, have bounded norm, i.e. there exists a constant C such that ∀k and ∀f ∈ F it
holds ‖B (k, f)‖ < C ‖k‖;

(iii) The parameter ω is big enough so that

‖B (k, f)− gδ‖2 + α ‖f‖2 + ω

2

∥∥∥f̂ − f

∥∥∥
2
−
〈
ξ, f̂ − f

〉
,

‖B (k, f)− gδ‖2 + γ ‖k− kǫ‖2 +
ω

2

∥∥∥k̂− k

∥∥∥
2
−
〈
µ, k̂− k

〉

are strongly convex with respect to f and k, respectively with modulus ρ.

We are going now to conjecture that the norms of the iterates fj and kj are bounded. More-
over, we also derive a bound in the case in which the flux constraint (9.9) is imposed.
Conjecture 9.13. The norm of the iterates fj and kj generated by Algorithm 9.3 are bounded. More-
over, if the flux and nonnegativity constraints are imposed, then the flux bounds the norm of the
iterates. In particular, if we constrain the flux of k to be ϕk then

‖kj‖ ≤ ϕk ∀ j.

If we constrain the flux of f to be ϕf then

‖fj‖ ≤ ϕf ∀ j.

The bounds proposed above are derived by the following argument. We consider f , but the
extension to k is trivial. Recalling that ∀z ∈ RN it holds that ‖z‖ ≤ ‖z‖1. Since we are
imposing that flux (f) = ϕf and that f ≥ 0, it yields

‖f‖ ≤ ‖f‖1 = flux (f) = ϕf .

Conjecture 9.13 seems indeed strong, however, as shown in Section 9.4, it is always satisfied
in our numerical examples.
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For convenience we define

φ (f ,k) = ‖B (k, f)− gδ‖2 + α ‖f‖2 + γ ‖k− kǫ‖2 ,
ψα (f) = α ‖f‖TV ,

ψβ (k) = β ‖k‖TV .

(9.24)
(9.25)
(9.26)

We now prove an auxiliary result which we need for the following.
Lemma 9.14. Let ξj ,µj , fj ,kj be the iterations generated by Algorithm 9.3. Assume that Assump-
tions 9.1-9.3 hold and assume that Conjecture 9.13 holds. Then we have

∥∥ξj+1 − ξj
∥∥ ≤ C ‖fj+1 − fj‖ ,

∥∥µj+1 − µj

∥∥ ≤ C
∥∥∥k̂j+1 − k̂j

∥∥∥

where C > 0 is a constant.

Proof. We prove the first inequality.

Consider the optimality condition for fj+1 obtained differentiating (9.23)

0 = ∇fφ (fj+1,kj+1) + ξj − ω
(
f̂j+1 − fj+1

)
,

where φ is defined in (9.24). Using the update rule for ξj+1 we get

−ξj+1 = ∇fφ (fj+1,kj+1) . (9.27)

Combining Conjecture 9.13 with Assumption 9.3(ii), we get that the linear operators {∇fφ (·,kj)}j
have uniformly bounded norm, i.e., there exists a constant Cf > 0 such that

‖∇fφ (x,kj+1)−∇fφ (y,kj+1)‖ ≤ Cf ‖x− y‖ .

Hence we have
∥∥ξj+1 − ξj

∥∥ = ‖∇fφ (fj+1,kj+1)−∇fφ (fj ,kj+1)‖ ≤ Cf ‖fj+1 − fj‖ .

We now move to the second inequality.

Considering the optimality condition of (9.23) for k̂j+1 and denoting with ∂ψβ the subdiffe-
riential of ψβ defined in (9.26), we get

0 ∈ ∂ψβ

(
k̂j+1

)
− µj + ω

(
k̂j+1 − kj+1

)

= ∂ψβ

(
k̂j+1

)
− µj+1,

in other words
µj+1 ∈ ∂ψβ

(
k̂j+1

)
.

Thus it holds
µj+1 − µj ∈ ∂ψβ

(
k̂j+1

)
− ∂ψβ

(
k̂j

)
,

Hence ∥∥µj+1 − µj

∥∥ ≤ sup
∥∥∥∂ψβ

(
k̂j+1

)
− ∂ψβ

(
k̂j

)∥∥∥ .
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By Conjecture 9.13 we have that
∥∥∥k̂j

∥∥∥ is uniformly bounded and thus there exists C
k̂
> 0

such that ∥∥µj+1 − µj

∥∥ ≤ C
k̂

∥∥∥k̂j+1 − k̂j

∥∥∥ .

Calling C = max
{
Cf , Ck̂

}
we have the thesis.

Proposition 9.15. With the same notation and assumptions of Lemma 9.14 it holds that

LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj+1,µj+1

)
− LA

(
kj , fj , k̂j , f̂j ; ξj ,µj

)

≤
(
C2

ω
− ρ

2

)(
‖fj+1 − fj‖2 +

∥∥∥k̂j+1 − k̂j

∥∥∥
2
)
− ρ

2

(∥∥∥f̂j+1 − f̂j

∥∥∥
2
+ ‖kj+1 − kj‖2

)
.

Proof. We split the difference above as

LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj+1,µj+1

)
− LA

(
kj , fj, k̂j , f̂j ; ξj,µj

)

= LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj+1,µj+1

)
− LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj ,µj

)

+ LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj,µj

)
− LA

(
kj , fj , k̂j , f̂j ; ξj,µj

)
. (9.28)

Consider the first part

LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj+1,µj+1

)
− LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj ,µj

)

=
〈
ξj − ξj+1, f̂j+1 − fj+1

〉
+
〈
µj − µj+1, k̂j+1 − kj+1

〉

=
1

ω

∥∥ξj − ξj+1

∥∥2 + 1

ω

∥∥µj − µj+1

∥∥2 , (9.29)

where the last step is obtained by recalling the definition of ξj+1 and µj+1. We move to the
second part.

As above we indicate with ∂LA the subdifferential of L. Let a general element of ∂LA be
denoted by

θ



f

k̂





∈ ∂



f

k̂





LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj,µj

)

and
θ



f̂

k





∈ ∂



f̂

k





LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj,µj

)
.
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Then it holds

LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj ,µj

)
− LA

(
kj , fj , k̂j , f̂j ; ξj ,µj

)

= LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj ,µj

)
− LA

(
kj+1, fj, k̂j , f̂j+1; ξj,µj

)

+ LA

(
kj+1, fj, k̂j , f̂j+1; ξj,µj

)
− LA

(
kj , fj , k̂j , f̂j ; ξj ,µj

)

(a)

≤
〈
θ



f

k̂





,

(
fj+1

k̂j+1

)
−
(

fj

k̂j

)〉
− ρ

2

∥∥∥∥
(

fj+1

k̂j+1

)
−
(

fj

k̂j

)∥∥∥∥
2

+

〈
θ



f̂

k





,

(
f̂j+1

kj+1

)
−
(

f̂j
kj

)〉
− ρ

2

∥∥∥∥
(

f̂j+1

kj+1

)
−
(

f̂j
kj

)∥∥∥∥
2

(b)

≤ −ρ
2

∥∥∥∥
(

fj+1

k̂j+1

)
−
(

fj

k̂j

)∥∥∥∥
2

− ρ

2

∥∥∥∥
(

f̂j+1

kj+1

)
−
(

f̂j
kj

)∥∥∥∥
2

= −ρ
2

(
‖fj+1 − fj‖2 +

∥∥∥f̂j+1 − f̂j

∥∥∥
2
+ ‖kj+1 − kj‖2 +

∥∥∥k̂j+1 − k̂j

∥∥∥
2
)
, (9.30)

where (a) follows from Assumption 9.3(iii) and (b) comes from the optimality condition for
k, k̂, f̂ , and f , i.e., from the fact that we can specialize the subgradients θ to be the one which
satisfies the optimality conditions.

Combining (9.29) and (9.30) with (9.28) and using Lemma 9.14, we obtain

LA

(
kj+1, fj+1, k̂j+1, f̂j+1; ξj+1,µj+1

)
− LA

(
kj, fj , k̂j , f̂j ; ξj ,µj

)

≤ 1

ω

∥∥ξj − ξj+1

∥∥2 + 1

ω

∥∥µj − µj+1

∥∥2

− ρ

2

(
‖fj+1 − fj‖2 +

∥∥∥f̂j+1 − f̂j

∥∥∥
2
+ ‖kj+1 − kj‖2 +

∥∥∥k̂j+1 − k̂j

∥∥∥
2
)

≤
(
C2

ω
− ρ

2

)(
‖fj+1 − fj‖2 +

∥∥∥k̂j+1 − k̂j

∥∥∥
2
)
− ρ

2

(∥∥∥f̂j+1 − f̂j

∥∥∥
2
+ ‖kj+1 − kj‖2

)

We are now in a position to prove that Algorithm 9.3 converges to a limit.
Lemma 9.16. Let LA be the functional defined in (9.23) and kj, fj , k̂j , f̂j , ξj,µj the iterates generated

by Algorithm 9.3. Let Assumptions 9.1-9.3 and Conjecture 9.13 hold. Moreover, assume that C2

ω −
ρ
2 < 0 we have that

lim
j→∞

LA

(
kj , fj , k̂j , f̂j ; ξj ,µj

)
≥ ν,

where ν, defined in (9.5), is the global minimum of Jδ,ǫ
α,β(k, f).

Proof. We observe that, since we assumed that C2

ω − ρ
2 < 0, from Proposition 9.15 it holds that

the sequence
{
LA

(
kj, fj , k̂j , f̂j ; ξj,µj

)}
j

is monotonically decreasing.
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We now prove that the sequence is bounded from below. LA can be rewritten as

LA

(
kj , fj, k̂j , f̂j; ξj,µj

)

= ‖B (kj , fj)− gδ‖2 + α
(
‖fj‖2 +

∥∥∥f̂j
∥∥∥
TV

)
+ γ ‖kj − kǫ‖2 + β

∥∥∥k̂j

∥∥∥
TV

+
ω

2

∥∥∥f̂j − fj

∥∥∥
2
−
〈
ξj, f̂j − f

〉
+
ω

2

∥∥∥k̂j − kj

∥∥∥
2
−
〈
µj, k̂j − kj

〉

∈ ‖B (kj , fj)− gδ‖2 + α
(
‖fj‖2 +

∥∥∥f̂j
∥∥∥
TV

)
+ γ ‖kj − kǫ‖2 + β

∥∥∥k̂j

∥∥∥
TV

+
ω

2

∥∥∥f̂j − fj

∥∥∥
2
−
〈
∇fφ (kj , fj) , f̂j − fj

〉
+
ω

2

∥∥∥k̂j − kj

∥∥∥
2
−
〈
∂ψβ (kj) , k̂j − kj

〉

. Using the fact that ∇fφ and all the elements in ∂ψβ are Lipschitz continuous and consider-
ing that C2

ω − ρ
2 < 0 by assumption we get

LA

(
kj , fj , k̂j , f̂j ; ξj ,µj

)

≥ ‖B (kj, fj)− gδ‖2 + α
(
‖fj‖2 + ‖fj‖TV

)
+ γ ‖kj − kǫ‖2 + β ‖kj‖TV

≥ ν

where in the last step we have used the fact that ν is the global minimum of Jδ,ǫ
α,β(k, f).

Since the sequence
{
LA

(
kj, fj , k̂j , f̂j ; ξj,µj

)}
j

is monotonically decreasing and bounded,

we have that it converges.

We can now prove our primary result.
Theorem 9.17. Let p∗ =

(
k∗, f∗, k̂∗, f̂∗, ξ∗,µ∗

)
be the limit point of Algorithm 9.3. Assume that

Assumptions 9.1–9.3 hold and that Conjecture 9.13 is satisfied. Then the following hold

(a) p∗ is a stationary point, that is

(i) f∗ = f̂∗ and k∗ = k̂∗;

(ii) 0 = ∇fφ (f∗,k∗) + ξ∗ and 0 = ∇kφ (f∗,k∗) + µ∗;

(iii)
(
k̂∗, f̂∗

)
∈ argmin(k̂,f̂) α

∥∥∥f̂
∥∥∥
TV

+
〈
f∗ − f̂ , ξ∗

〉
+ β

∥∥∥k̂
∥∥∥
TV

+
〈
k∗ − k̂,µ∗

〉
.

(b) Assume now that Ωf ×Ωk is compact then

lim
j→∞

dist
((

fj,kj , f̂j , k̂j ; ξj,µj

)
, Z∗

)
= 0,

where Z∗ denotes the set of stationary points and dist the Euclidean distance between sets and
points.

Proof. We only prove part (a), we omit the proof of part (b) since it can be copied with no
significant modification from [87, Theorem 2.4 part 3].

From Proposition 9.15 and Lemma 9.16 for j → ∞ we have that

‖fj+1 − fj‖ → 0,
∥∥∥f̂j+1 − f̂j

∥∥∥→ 0, ‖kj+1 − kj‖ → 0,
∥∥∥k̂j+1 − k̂j

∥∥∥→ 0.
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Moreover, in force of Lemma 9.14 it holds

∥∥ξj+1 − ξj
∥∥→ 0,

∥∥µj+1 − µj

∥∥→ 0. (9.31)

Let φ be the functional defined in (9.24) and recall that p∗ =
(
f∗,k∗, f̂∗, k̂∗, ξ∗,µ∗

)
is the limit

point (that exists in virtue of Lemma 9.16) generated by the iterations of Algorithm 9.3.

Observe that, from (9.31), it follows that

f∗ = f̂∗, k∗ = k̂∗,

which proves (i).

We move now to the proof of (ii).

From (9.27) we have that 0 = ∇fφ (fj+1,kj+1) + ξj+1 and by taking the limit for j → ∞ we
get that

0 = ∇fφ (f∗,k∗) + ξ∗.

Consider now kj+1, imposing the optimality condition for kj+1 to (9.23), it holds

0 = ∇kφ (fj,kj+1) + µj − ω
(
k̂j − kj+1

)

= ∇kφ (fj,kj+1) + µj − ω
(
k̂j − kj+1

)
− ωk̂j+1 + ωk̂j+1

= ∇kφ (fj,kj+1) + µj+1 − ω
(
k̂j − k̂j+1

)
,

where we added and subtracted ωk̂j+1 in order to make µj+1 appear.

Taking the limit for j → ∞, since
∥∥∥k̂j+1 − k̂j

∥∥∥→ 0, we have that

0 = ∇kφ (f∗,k∗) + µ∗,

completing the proof of (ii).

For the proof of (iii) consider the optimality condition of (9.23) for f̂j+1, we have that there
exists θ ∈ ∂ψα

(
f̂j+1

)
, where ψα is defined in (9.25), such that

〈
f̂ − f̂j+1,θ −

(
ξj − ω

(
f̂j+1 − f̂j

))〉
≥ 0 ∀ f̂ .

By convexity of ψα we have that

ψα

(
f̂
)
− ψα

(
f̂j+1

)
+
〈
f̂ − f̂j+1,−ξj − ω

(
f̂j+1 − f̂j

)〉
≥ 0 ∀ f̂ .

Taking to the limit for j → ∞ we have that

ψα

(
f̂
)
− ψf

(
f̂∗
)
−
〈
f̂ − f̂∗, ξ∗

〉
≥ 0 ∀f̂ .

Using the fact that f̂∗ = f∗ we have

ψα

(
f̂
)
+
〈
f∗ − f̂ , ξ∗

〉
−
(
ψα

(
f̂∗
)
+
〈
f∗ − f̂∗, ξ∗

〉)
≥ 0 ∀ f̂ .
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Similarly we can prove, recalling the definition of ψβ in (9.26), that

ψβ

(
k̂
)
+
〈
k∗ − k̂,µ∗

〉
−
(
ψβ

(
k̂∗
)
+
〈
k∗ − k̂∗,µ∗

〉)
≥ 0 ∀ k̂,

which concludes the proof of (iii). We have then proven that the limit point of the sequence
is a stationary point for the unconstrained problem.

9.4 Numerical examples

We now give some numerical examples. Firstly we reformulate our algorithm to be more
efficient, then we compare our approach with the one in [18] on the same example they
proposed in their work. Finally we show the effectiveness of the proposed method on other
situations.

We consider the framework of image deblurring with spatially invariant blur, in this setting
k will be the PSF. As we stated in Chapter 2 if we fix one of the two variables and discretize
(2.5) by a collocation method, we get a linear system which is severely ill-conditioned. We
call Ak the discretization of B (k, ·) and Af the discretized version of B (·, f). For simplicity
we assume that both the image and the PSF are periodic and soAf andAk are BCCB matrices.
Since we imposed periodic boundary condition on D defined in (9.20) we have that D is a
BCCB matrix as well. Thanks to this choice all the matrices involved are diagonalizable using
the Fourier transform and so all the linear systems involved can be solved exactly using the
FFT in O (n log n) flops.

Both the image and the PSF should not have negative values, thus we want to constrain them
inside the nonnegative cone. Since the assumptions of Section 9.2 hold, we can use the flux
conservation on f . Moreover, since we know that k should sum up to 1, we want to constrain
the flux of k to be 1. Summarizing we set

Ωf = Ω0 ∩ ΩF ,

Ωk = Ω0 ∩ Ω1,

where Ω0 is the nonnegative cone, ΩF is defined in (9.10), and Ω1 = {k ∈ Rn×n | flux (k) = 1}.

Projecting on either Ωf or Ωk is not trivial, then we have to resort to the technique described
in Algorithm 9.1 for decoupling the projection on the components of Ωf and Ωk. By doing so
we are able to perform the projections into the nonnegative cone, on Ω1, and on ΩF in O (n)
flops. We are then actually able to introduce both the nonnegativity and the flux conservation
constraints in our method.

For the evaluation of the performances of the method we use the Signal to Noise Ratio (SNR),
which is computed as

SNR (x) = 20 log10

( ∥∥x†∥∥
‖x− x†‖

)
.

The discussion on how to choose the appropriate α and β is out of the scope of this chapter
and thus we choose the optimal one, i.e., the one which gives the highest value of SNR
among some tested ones.
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For stopping both methods we use the relative distance between two consecutive iterations,
i.e., we stop as soon as

‖fj−1 − fj‖
‖fj−1‖

≤ 10−4.

Since in the considered examples we use the flux conservation (9.9) and nonnegativity con-
straints, we have that the bounds in Conjecture 9.13 are

ϕk = 1 and ϕf = flux (gδ) . (9.32)

In the computed examples we are going to show that, at least experimentally, the norm of
the iterates are bounded by the quantities in (9.32) and so that Conjecture 9.13 holds.

We want to show that the introduction of the knowledge of the presence of the noise in the
PSF and the flux constraint helps in getting better reconstructions. We confront SeB-A against
the deconvolution obtained using directly the noisy PSF, i.e., the reconstruction obtained by
minimizing

f = arg min
f∈Ωf

‖B (kǫ, f)− gδ‖2 + α
(
‖f‖TV + ‖f‖2

)
, (9.33)

where, for the sake of simplicity, we consider only one auxiliary variable for the constraint
on Ωf . This algorithm is very similar to the one proposed in [38], the only difference is the
presence of ‖f‖2 in the regularization term. To minimize (9.33) we proceed as in [38], i.e.,
decoupling the variables and forming the Augmented Lagrangian and then using ADMM.

The decoupled problem in finite dimension becomes

f = arg min
f̃∈Ωf ,f̂ ,f

{
‖B (kǫ, f)− gδ‖2 + α

(
N∑

i=1

∥∥∥f̂i
∥∥∥+ ‖f‖2

)
,

f̃ = f , f̂i = Dif , ∀i = 1, . . . , N
}
.

The related Augmented Lagrangian is

LA

(
f̃ , f̂ , f ,λ, ξ

)
= ‖B (kǫ, f)− gδ‖2 + α

(
N∑

i=1

∥∥∥f̂i
∥∥∥+ ‖f‖2

)

+
ω1

2

∥∥∥f̃ − f

∥∥∥
2
− λt

(
f̃ − f

)
+

N∑

i=1

[
ω2

2

∥∥∥
(
f̂
)
i
−Dif

∥∥∥
2
− (ξ)ti

((
f̂
)
i
−Dif

)]
.

The ADMM algorithm becomes
Algorithm 9.4 (Tikhonov-TV). Let f0, λ0, and ξ0 be initial guesses for f , λ, and ξ, respectively.
Let ω1, ω2 > 0 be real fixed positive numbers.

for j = 0, 1, . . .(
f̃j+1

f̂j+1

)
= argmin

f̃ ,f̂
LA

(
f̃ , f̂
∣∣fj;λj, ξj

)

fj+1 = argmin
f

LA

(
f
∣∣f̃j+1, f̂j+1;λj, ξj

)

λj+1 = λj − ω1

(
f̃j+1 − fj+1

)

ξj+1 = ξj − ω2

(
f̂j+1 −Dfj+1

)

end
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The various minimizations in the algorithm above have a closed form, see [38] and Algo-
rithm 9.5.

Since the minimized functional in (9.33) is convex it admits an unique minimizer and thus
Algorithm 9.4 converges to it in force of the classical ADMM theory.

The implementation of SeB-A Algorithm 9.2 can be quite expensive. In fact, since there is no
closed form for the minimization with respect to the auxiliary variables k̂ and f̂ , the usage
of some iterative method is required. This implies that the computational cost of SeB-A can
be fairly high. In order to damp this cost we now present a different implementation of the
algorithm. We will refer to this method as Computational SeB-A (CSeB-A). This algorithm
does not require any inner cycle for the solution of the intermediate problems, however, we
are not able to present a rigorous result of convergence. In the first example we are going to
show that SeB-A and CSeB-A give equivalent results and thus in the following experiments
we are going to use only the latter for computational convenience.

Let us rewrite (9.19) explicitly and reformulate as in [38]

(k∗, f∗) = arg min
k∈Ωk,f∈Ωf

‖B (k, f)− gδ‖2 + α

(
‖f‖2 +

N∑

i=1

‖Dif‖
)

+ γ ‖k− kǫ‖2 + β
N∑

i=1

‖Dik‖

= arg min
k̃∈Ωk,f̃∈Ωf

k̂,f̂ ,k,f

{
‖B (k, f)− gδ‖2 + α

(
‖f‖2 +

N∑

i=1

∥∥∥f̂i
∥∥∥
)

+γ ‖k− kǫ‖2 + β

N∑

i=1

∥∥∥k̂i

∥∥∥ ,

k = k̃, f = f̃ ,Dik = k̂i,Dif = f̂i, i = 1, . . . , N
}
,

where, f , f̃ ,k, k̃ ∈ RN , f̂ , k̂ ∈ RN×2 and we have
(
f̂
)
i
=

(
f̂i,1

f̂i,2

)
and similarly for

(
k̂
)
i
.

We now write the Augmented Lagrangian of the minimization above

LA

(
f̃ , f̂ , f , k̃, k̂,k;λ, ξ, ζ,µ

)

= ‖B (k, f)− gδ‖2 + α

(
‖f‖2 +

N∑

i=1

∥∥∥
(
f̂
)
i

∥∥∥
)

+ γ ‖k− kǫ‖+ β

N∑

i=1

∥∥∥
(
k̂
)
i

∥∥∥

+
ω1

2

∥∥∥f̃ − f

∥∥∥
2
−
〈
λ, f̃ − f

〉
+

N∑

i=1

[
ω2

2

∥∥∥
(
f̂
)
i
−Dif

∥∥∥
2
−
〈
(ξ)i ,

(
f̂
)
i
−Dif

〉]

+
ω3

2

∥∥∥k̃− k

∥∥∥
2
− 〈ζ, ktb− kǫ〉+

N∑

i=1

[
ω4

2

∥∥∥
(
k̂
)
i
−Dik

∥∥∥
2
−
〈
(µ)i ,

(
k̂
)
i
−Dik

〉]
,

where λ, ζ ∈ RN and ξ,µ ∈ RN×2.

We can apply the ADMM algorithm obtaining
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Algorithm 9.5 (CSeB-A). Given f0, k0, λ0, ξ0, ζ0 and µ0 initial guesses for f , k, λ, ξ, ζ, and µ,
respectively. Let ω1, ω2, ω3, ω4 > 0 be real fixed numbers.

for j = 0, 1, . . .


f̃j+1

f̂j+1

kj+1


 = argmin

f̃ ,f̂ ,k
LA

(
f̃ , f̂ ,k

∣∣k̃j , k̂j , fj ;λj , ξj , ζj ,µj

)




k̃j+1

k̂j+1

fj+1


 = arg min

k̃,k̂,f
LA

(
k̃, k̂, f

∣∣f̃j+1, f̂j+1,kj+1;λj , ξj , ζj ,µj

)

λj+1 = λj − ω1

(
f̃j+1 − fj+1

)

ξj+1 = ξj − ω2

(
f̂j+1 −Dfj+1

)

ζj+1 = ζj − ω3

(
k̃j+1 − kj+1

)

µj+1 = µj − ω4

(
k̂j+1 −Dkj+1

)

end

As we stated above, thanks to Assumption 9.2 and to the fact that all the matrices involved
are BCCB matrices, the minimization above are easily computed and all have a closed form.

f̃j+1 = PΩf

(
fj +

λj

ω1

)

(
f̂j+1

)
i
=

(
Difj +

1
ω2

(
ξj
)
i

)

∥∥∥Difj +
1
ω2

(
ξj
)
i

∥∥∥
◦
(∥∥∥∥Difj +

1

ω2

(
ξj
)
i

∥∥∥∥−
α

ω2

)

+

kj+1 =
(
2A∗

fj
Afj + 2γI + ω3I + ω4D

∗D
)−1 (

2A∗
fj
gδ + 2γkǫ − ζj

+ω3k̃j −D∗µj + ω4D
∗k̂j

)

k̃j+1 = PΩk

(
kj+1 +

ζj

ω3

)

(
k̂j+1

)
i
=

(
Dikj+1 +

1
ω4

(
µj

)
i

)

∥∥∥Dikj+1 +
1
ω4

(
µj

)
i

∥∥∥
◦
(∥∥∥∥Dikj+1 +

1

ω2

(
µj

)
i

∥∥∥∥−
β

ω4

)

+

fj+1 =
(
2A∗

kj+1
Akj+1

+ 2αI + ω1I + ω2D
∗D
)−1 (

2A∗
kj+1

gδ − λ

+ω1f̃j+1 −D∗ξj + ω2D
∗f̂j+1

)

We can now proceed with the numerical tests. The first example was performed on a laptop
pc with an Intel Core i7 6700HQ with 16GB of RAM running MATLAB 2016a 64-bit. The
other tests (a part the one from [18]) were made on another laptop pc with an Intel Core i5
3337U with 6GB of RAM running MATLAB 2015a 64-bit on Windows 10.

Equivalence between SeB-A and CSeB-A We would like now to show that SeB-A and
CSeB-A give equivalent results. For this purpose we use a relatively small example, since
the images involved are of 128 × 128 pixels. We consider the image deblurring problem



9.4. Numerical examples 167

(a) (b) (c) (d)

FIGURE 9.1: Boat test problem: (a) Test image, (b) Noise-free PSF, (c) Blurred
and noisy image, (d) Noisy PSF.

in Figure 9.1. We blur the image in Figure 9.1(a) with an out of focus PSF then add white
Gaussian noise, such that ξ = 0.02. We add 70% of Gaussian noise to the PSF k to obtain kǫ.

We run both SeB-A and CSeB-A on several choices of α and β. In particular we test the
method on a 7× 7 grid of parameters logarithmically spaced between 10−4 and 10−2. In Fig-
ure 9.2 we show the RREs obtained with different choices of α and β with the two methods.
We can see that the errors are almost the same. Moreover, we can see that the errors obtained
with CSeB-A are slightly better than the one obtained with SeB-A. This can be due to the fact
that in SeB-A we approximate the minimization with respect to f̂ and k̂ whereas in CSeB-A
all the minimization are exact.

We can also observe that changing α does not affect too much the quality of the reconstruc-
tion of k and, similarly, changing β does not affect to much the quality of the reconstruction
of f .

We conclude by showing, in Figure 9.3, the best restorations of k and f for both methods.
From both visual inspection and the comparison of the resulting SNRs we can see that the
difference between the two methods in term of accuracy is very small.

Comparison with dbl-RTLS We now compare our approach to the one in [18] on the same
example proposed in that work. In Figure 9.4 we show the true image, the PSF, and the
noise-free blurred image, we add different level of noise to both the image and the PSF and
analyze the behavior in each situation. In Table 9.1 we show the comparison of the SNR with
the different levels of noise and we also show the used parameter α and β for both CSeB-A
and Tikhonov-TV. Finally, in Figure 9.5 we can see the reconstructions.

From these comparisons we can see that the proposed approach is able to get a better restora-
tion of the image and in particular of the PSF. The gap between the two approaches gets more
and more evident as the quantity of noise increases.

Finally we want to show that the norm of the iterates remains bounded and that it holds

‖kj‖ ≤ 1 and ‖fj‖ ≤ flux (gδ) ∀j = 1, 2, . . . .

In Figure 9.10 we show the norm of the iterates compared with the above bounds in the case
with 8% of noise. We can see that the norm of the iterates stabilizes in very few iterations
and that it is several order of magnitude smaller than the proposed bound.

Satellite We now test our method on the Satellite image blurred with an atmospheric PSF.
We add white Gaussian noise such that δ = 0.05 ‖g‖, i.e., with ξ = 0.05, and we also add
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FIGURE 9.2: Boat test problem errors comparison: Errors comparison between
SeB-A and CSeB-A against α and β. (a) RRE of the image for SeB-A, (b) RRE of
the image for CSeB-A, (c) RRE of the PSF for SeB-A, (d) RRE of the image for

CSeB-A.

(a) (b) (c) (d)

FIGURE 9.3: Boat test problem optimal reconstructions: (a) PSF computed with
SeB-A (SNR=29.129), (b) PSF computed with CSeB-A (SNR=29.211), (c) Im-
age computed with SeB-A (SNR=20.886), (d) Image computed with CSeB-A

(SNR=20.859).

Noise Level
SNR f SNR k

dbl-RTLS Tikhonov-TV CSeB-A dbl-RTLS CSeB-A
8% 8.627 9.516 12.481 11.679 23.257
4% 12.116 12.116 13.882 13.638 23.870
2% 13.099 12.891 15.039 15.041 23.958
1% 15.190 15.086 15.830 15.997 24.141

TABLE 9.1: Example from [18]: Confront of the SNR obtained with the method
described in [18] (dbl-RTLS), Algorithm 9.4 (Tikhonov-TV) and our (computa-
tional) proposal (CSeB-A). Note that Tikhonov-TV does not take into account

the noise in the PSF.
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(a) (b) (c)

FIGURE 9.4: Example from [18]: (a) Test image, (b) PSF, (c) Blurred image
(without noise).

(a) (b) (c) (d)

(f) (g) (h) (i)

(j) (k) (l) (m)

FIGURE 9.5: Example from [18] reconstructions with different noise levels: on
the first row the reconstructed images with Tikhonov-TV, on the second and
third row the reconstructed images and PSF with CSeB-A, respectively. From

left to right with 8%, 4%, 2%, and 1% of noise.
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(a) (b) (c) (d)

FIGURE 9.6: Satellite test problem: (a) Test image, (b) Noise-free PSF, (c)
Blurred and noisy image, (d) Noisy PSF.

(a) (b) (c)

FIGURE 9.7: Satellite test problem reconstructions: (a) PSF computed with
CSeB-A (SNR=16.246), (b) Image computed with CSeB-A (SNR=11.856), (c)

Image computed with Tikhonov-TV (SNR=10.816).

white Gaussian noise to the PSF, so that ǫ = 0.7 ‖k‖. All the corresponding images are shown
in Figure 9.6.

We compare CSeB-A with Tikhonov-TV, where for both methods we fix α = 10−6 and for
CSeB-A we set β = 10−4. In Figure 9.7 we can see the reconstructed images for both methods
and the corresponding SNR. It can be noted that our proposal allows a large improvements
in the details of the reconstruction.

In Figure 9.10 the norms of the iterates against the given bounds are shown. As in the previ-
ous example the norms are much smaller than the bounds and stabilize quickly.

Grain We now test our method on the Grain image blurred with a non symmetric PSF. We
add white Gaussian noise such that ξ = 0.01 and we also add white Gaussian noise to the
PSF, so that ǫ = 0.8 ‖k‖. All the corresponding images are shown in Figure 9.8.

Similarly to the previous example the reconstruction obtained with CSeB-A is more accurate
than the one obtained with Tikhonov-TV, see the SNR and the restored images in Figure 9.9,
where we compare again CSeB-A with Tikhonov-TV fixing α = 10−4 for both methods and
β = 10−4 for CSeB-A.

Finally in Figure 9.10 we can see the norms of the iterates compared with the given bounds.
Also in this case the bounds are respected and the norms of the iterates stabilize in few
iterations.
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(a) (b) (c) (d)

FIGURE 9.8: Grain test problem: (a) Test image, (b) Noise-free PSF, (c) Blurred
and noisy image, (d) Noisy PSF.

(a) (b) (c)

FIGURE 9.9: Grain test problem reconstructions: (a) PSF computed with SeB-
A (SNR = 22.257), (b) Image computed with SeB-A (SNR = 20.731), (c) Image

computed with Tikhonov-TV (SNR = 12.103).
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FIGURE 9.10: Comparison of the norm of the iterates generated by CSeB-A
with the proposed bounds for all the examples. The first row are related to
the PSFs, the second to the images. The first column are the norms for the first
example with 8% of noise, the second column is related to the Satellite example
and the last one is for the Grain example. The solid curve is the Euclidean norm

of the iterates, the dashed curve is the bound.
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Chapter 10

Conclusions and Future work

We now draw some conclusions on the presented work and describe some possible future
extensions.

In this thesis we dealt with ill-posed inverse problems and described several algorithms to
compute in a fast way accurate approximations of the solution of these problems.

All the presented work stemmed from the basic idea of Tikhonov regularization both in
its iterated and non-iterated form. We have shown that, by inserting inside the algorithms
available knowledge on the solution, we are able to greatly improve the quality of the recon-
structions while keeping the computational cost under control.

In Chapter 3 we saw that simply introducing the nonnegativity constraint inside the standard
Tikhonov regularization can improve the quality of the reconstructions. Moreover, taking
advantage of the very rapid decay of the singular values, it is possible to use the Krylov
space theory to achieve very fast computations without losing anything in term of quality of
the reconstruction.

In Chapter 4 we saw that the introduction of a regularization operator different from the
identity inside the iterated Tikhonov algorithm can enhance the quality of the reconstruc-
tions. If we are able to select a regularization operator such that significant components of
the exact solution lie in its null space then this can dramatically improve the performances
of the algorithm.

Combining this two observation in Chapter 6 we were able to extend the AIT method, which
was already a very powerful algorithm. By inserting either the general form of Tikhonov
regularization or the projection inside a closed and convex set we created two highly per-
forming algorithms. We were able to prove their theoretical properties, like the monotonic
decay of the reconstruction error and their regularization effect. Moreover, we formulated
an algorithm which combines both the presence of the regularization operator and the pro-
jection into a closed and convex set. Even if we were not able to provide a precise proof of
convergence we gave numerical evidences of the potentialities of this algorithm.

In Chapter 5, taking two different extensions of the classical Tikhonov regularization method,
we formulated two iterative regularization methods. We gave a very deep theoretical insight
on their convergence properties, including optimality results. We were able to derive also the
nonstationary version of these algorithms and we gave conditions on the parameters for the
convergence.

In all the above mentioned methods, either by using the knowledge of the noise level or
by exploiting the nonstationarity we were able to build methods which do not require the
manual estimate of any constant, but derive the necessary parameters in an automatic way.
This does not only means that the methods formulated are stable and robust, but also that
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can be considered for real data and not only for synthetic experiments. Even though we did
not present any real case scenario for these methods the absence of any parameter estimation
makes their usage easy on real data.

All the methods proposed in Chapters 3-6 only relied on purely linear techniques. From
Chapter 7 we started to insert non-linear elements in our algorithms.

In Chapter 7 we combined a non-linear framelet denoising with a multigrid algorithm de-
signed for image deblurring. In particular we used one of the algorithms described in Chap-
ter 6 as post-smoother and soft-thresholding denoising algorithm as pre-smoother. This
choice made us able to construct a multigrid algorithm with regularizing properties, which
we were able to prove, under reasonable hypothesis. We constructed an algorithm which is
able to recover with high accuracy images from blurred measurements. The presence of the
non-linear denoising let us recover the edges of the image without reconstructing the noise.
Moreover, since we employed a nonstationary strategy for both the pre- and post-smoother,
the formulated algorithm is very robust and does not need the estimation of any parameter.-

In Chapter 8 we developed a method tailored for an application in optics starting from the
non-linear Lucy-Richardson algorithm. We added a weak constraint inside the algorithm.
By weak we mean that the computed solution does not necessarily satisfy this constraint but
the divergence from this is used as a penalization term, like in Tikhonov. The weight of this
penalty term is determined by a parameter that can be estimated using a second constraint
known on the true solution. We applied this “hybrid” approach since in real case scenarios
the value of the first constraint can be evaluated precisely, whereas the measurement of the
second one is likely to be affected by heavy noise. But, thanks to the robustness of the LR
algorithm, the noise on the second constraint does not affect too much the quality of the
reconstruction.

Finally, in Chapter 9, we introduced a slightly more complicated inverse problem. In this
case not only the solution of the problem is unknown, but also the operator itself has a cer-
tain degree of uncertainty on it. In particular we assumed that the operator depends on a
set of parameters which is not completely known, more precisely, the parameters given by
the problem are affected by noise. We formulated a functional that depends on both the pa-
rameters and the solution of the problem and looked for its minimum. Being the functional
non-convex, the existence of a global minimum was not assured. Nevertheless, we proved
the existence of a global minimum and we were able to provide stability and regularization
properties. The computation of a stationary point of a non-convex functional is no easy task.
We used the well known ADMM algorithm to solve this problem. However, since the con-
vergence of such an algorithm is not assured in the non-convex case, we provided a proof of
convergence under some assumptions and a conjecture. We did not provide any proof for
the conjecture, however in the numerical it is always largely satisfied.

With the work done to this point we were able to construct accurate, robust, and fast algo-
rithm for ill-posed inverse problems. However, there is still room for improvements and
future studies for all the proposed methods.

As we saw in Chapter 3 the nonnegative constraint can help in providing accurate solutions.
Combining active set methods with the modulus method could, at least in principle, helps
in achieving even better solutions. Both the Modulus Method and the active set methods
have their shortcomings. In particular we saw that MM has some issues when dealing with
solutions with huge zero areas, on the other hand active set method usually suffers of slow
convergence when the noise level is low. By combining the two approaches it may be possi-
ble to cancel both of this issues and create a more robust method.
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In Chapter 4 we formulated a nonstattionary algorithm. By nonstattionary in this setting we
meant that the regularization parameter can change throughout the iterations. However, it is
possible to think about a “different” nonstattionary. In particular we would like to see what
happens when not only the regularization parameter changes at each iteration but also the
regularization operator itself can vary. In particular, one might think of inserting more and
more information on the solution in the regularization operator as the iterations goes on.

Another possible extension of the work we have done would be to combine the methods in
Chapters 5 and 6. Combining the various strategy used in the algorithms of Chapter 6 and
the fractional or weighted filters of Chapter 5 we could develop an algorithm that is both
fast and stable. Moreover, such an algorithm should be able to well recover edges without
amplifying the noise.

The work in Chapter 7 can be seen as a particular version of the iterative soft thresholding
algorithm (ISTA) in [43] where the Landweber step has been substituted with a step of multi-
grid. The evolution of the ISTA algorithm is the Linearized Bregman Splitting method. Then
it is only natural to think about a Linearized Bregman Splitting where the Landweber step
is substituted with a step of our multigrid algorithm. A similar approach has already been
used in [34] where the Landweber step has been substituted with a step of the AIT algorithm.

The method developed in Chapter 8 was designed to work with only one source of data on
the particles we are interested in studying. However, new technological advances let us mea-
sure different quantities about the same sample simultaneously. Combining the two different
sources of data inside a LR framework could let us have a more stable, robust and accurate
algorithm that is also able to exploit additional information experimentally measurable on
the sample.

Finally, since the algorithm proposed in Chapter 9 does not have any rule for estimating the
regularization parameters, it would be interesting to develop some criterion to determine a
good choice of parameters, maybe exploiting the knowledge of the levels of noise δ and ǫ.

Summarizing we think that we have shown a collection of nice methods that all stem from
the basic idea of Tikhonov regularization. Moreover, all these can lead to interesting future
development and open new questions that need to be answered.
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