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Introduction

Networks are nowadays ubiquitous in our daily life and we are ourselves part of several

networks, such as those describing social interactions.

Complex networks can be described as objects living in the Euclidean space (e.g., power

grids, road networks, neural networks, etc.) or as entities living in an abstract space

(such as collaboration networks, social interaction networks, etc.). Mathematically, they

can be modeled as graphs, i.e., as pairs of sets, one containing the entities (nodes) and

the other containing the interactions among them (edges). These graphs are highly

sparse and exhibit non-trivial topological features, since they are usually far from being

regular but they are not completely random either.

Due to the broad range of possible applications and to the large amount of data available,

the field of network science has become increasingly appealing for experts working in

various fields, from sociology to physics and mathematics, attracting more and more

researchers every year.

Over the years, one of the main objects of study has been the identification of which are

the “most important” nodes in a network. To quantify the importance of nodes, several

centrality measures have been introduced [13, 18, 42, 46, 59]. On the other hand, not

nearly as much work has been done in identifying the most important interactions taking

place in a network. Generally speaking, researchers have not put much effort in the study

of the properties of edges.

In this Thesis we mainly address two problems that have their focus on the edges of a

graph rather than on its nodes.

After reviewing some basic concepts from graph theory, linear algebra, and network

science in Chapter 1, we address these two problems in Chapters 2, 3, and 5.

1



Introduction 2

Figure 1: Representation of the network as-735. A description of this network can be
found in Appendix A. Figure from [26].

The first problem, addressed in Chapters 2 and 3, concerns how to modify the edges in an

existing network in order to tune its ability to diffuse information (in the broad sense of

the term) among its nodes. More specifically, we describe how to add, remove, or redirect

a limited number of connections in the graph in order to increase as much as possible its

communication capability when adding or redirecting links, or to penalize this capability

as little as possible, when removing connections. To this end, we introduce new edge

centrality measures that can be used to guide in the selection of the edges to be added

or removed. The developed techniques produce networks that are highly sparse, but yet

are very well connected and thus less likely to be disrupted by either random failures

or targeted attacks leading to the loss of edges. When describing our heuristics in the

case of directed networks (see Chapter 3), we have to face some computational issues

that are discussed in depth in Chapter 4. The second problem we address, discussed in



Introduction 3

Chapter 5, deals with the prediction of the appearance of edges that close triangles in

networks. Indeed, the problem of understanding when two common friends of someone

will become friends is of great interest in the field of network science and it is far from

being trivial. We propose a communication-driven mechanism for predicting triadic

closure in complex networks mathematically formulated on the basis of communicability

distance functions that account for the quality of communication between nodes in the

network.

Finally, the last chapter is devoted to the conclusive remarks.





Chapter 1

Background

In this chapter we provide some basic definitions, notation, properties, and terminology

from graph theory, linear algebra, and network science that will be used throughout this

thesis.

1.1 Fundamentals in graph theory

In this section we introduce some definitions and notation associated with graphs.

A graph or network G = (V , E) is defined by a set of n nodes (vertices) V = {1, 2, . . . , n}
and a set of m edges E = {(i, j) : i, j ∈ V} between the nodes. The elements in the

complement of E , denoted by E , will be referred to as virtual edges.

Every graph can be represented as a matrix A = (aij) ∈ R
n×n, called the adjacency

matrix of the graph, whose entries are

aij =





ωij if (i, j) ∈ E
0 otherwise

∀i, j ∈ V ,

where each ωij ∈ R>0 is the weight of the corresponding edge (i, j) ∈ E .

A graph is said to be unweighted if all its edges have the same weight; without loss of

generality, we can then assume that all the weights are unitary and that the associated

adjacency matrix is binary.

5



Chapter 1. Background 6

Unless otherwise specified, all the graphs considered in the remaining of this thesis are

assumed to be unweighted.

We define the downdating of the edge (i, j) ∈ E as the removal of this edge from the

network. The resulting graph Ĝ = (V , Ê) may be disconnected. Similarly, let (i, j) ∈ E
be a virtual edge for the graph G. We can construct a new graph G̃ = (V , Ẽ) obtained
from G by adding the virtual edge (i, j) to the graph. This procedure will be referred to

as the updating of the virtual edge (i, j). Finally, the operation of downdating an edge

and successively updating a virtual edge will be referred to as rewiring.

1.1.1 Undirected graphs

A graph is said to be undirected if the edges are formed by unordered pairs of vertices,

i.e., if (i, j) ∈ E ⇔ (j, i) ∈ E . If a graph is undirected, then the associated adjacency

matrix is symmetric, and conversely.

An edge is said to be incident to a vertex i if there exists a node j 6= i such that (i, j) ∈ E .
In an undirected graph, the degree of a vertex i, denoted by di, is the number of edges

incident to i. A walk of length k is a sequence of k + 1 nodes i1, i2, . . . , ik+1 such that

for all 1 ≤ ℓ ≤ k it holds that (iℓ, iℓ+1) ∈ E . A closed walk of length k centered at node i

is a walk of length k in which the first and the last nodes of the sequence are equal to i.

It is well known in graph theory that the powers of the adjacency matrix can be used to

count walks in the associated graph (see [7, Chapter 3]). More specifically, the diagonal

entries of the kth power of A count the number of closed walks of length k centered at

each node, while the off-diagonal entries (Ak)ij for i, j ∈ V count the number of walks

of length k starting at node i and ending at node j. A closed walk of length 3 is called

a triangle. We will call triad every triplet of nodes i, j, and h such that (i, j), (j, h) ∈ E
but (i, h) 6∈ E . Hence a triad is a triangle missing one edge. We shall call this virtual

edge a potential edge.

If all the nodes in the sequence describing a walk are different, than the walk is called

a path. An undirected graph is connected if there is a path connecting every pair of

nodes. A graph with unweighted edges, no self-loops (edges from a node to itself), and

no multiple edges is said to be simple. If the network is simple, then the corresponding

adjacency matrix is binary with zeros on the main diagonal.
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Figure 1.1: Example of 3-regular graph with 6 nodes.

1 2 3

654

In the following, we briefly recall the definitions of four types of graph.

Definition 1.1. The complete graph with n nodes, denoted by Kn, is the simple, undi-

rected graph such that there is an edge from each node to any other node in the network.

Definition 1.2. A path graph or linear graph with n nodes, denoted by Pn, is a simple,

undirected graph G = (V , E) such that

E = {(i, i+ 1)|i = 1, 2, . . . , n− 1}.

Definition 1.3. The empty graph with n nodes is the graph G = (V ,∅) which contains

n nodes and no edges among them.

Definition 1.4. A regular graph of degree k or a k-regular graph is a graph in which all

the nodes have the same degree, equal to k.

As an example of regular graph, consider the 3-regular graph with six nodes in Figure 1.1

1.1.2 Directed graphs

When the edges of the network are formed by ordered pairs of vertices, the network is

said to be directed or, equivalently, it is called a digraph. In this case, for each edge

(i, j) ∈ E we call i the source node and j the target node. If (i, j) ∈ E , we will write

i −→ j. An edge (i, j) ∈ E is said to be unidirectional if (j, i) 6∈ E . Clearly, the adjacency
matrix associated to a digraph is not symmetric.

Every node i ∈ V in a digraph has two types of degree, namely the in-degree and the

out-degree; the first, denoted by din(i), counts the number of edges of the form ∗ −→ i,
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i.e., the number of vertices in G from which it is possible to reach i in one step. The

out-degree, on the other hand, counts the number of nodes that can be reached from i

in one step, i.e., the number of edges of the form i −→ ∗, and it is denoted by dout(i).

The notions of walk and path for an undirected network naturally extend to the case of

digraphs, as described in the following. A walk of length k is a sequence of k + 1 nodes

{i1, i2, . . . , ik+1} such that

i1 −→ i2 −→ · · · −→ ik+1,

i.e., such that for all 1 ≤ ℓ ≤ k it holds that (iℓ, iℓ+1) ∈ E . A closed walk of length k

centered at node i is a walk of length k in which i1 = ik+1. As in the undirected case,

the powers of the adjacency matrix can be used to count walks in the associated graph:

the diagonal entries of the kth power of A count the number of closed walks of length

k centered at each node, whereas the off-diagonal entries (Ak)ij for i, j ∈ V count the

number of walks of length k starting at node i and ending at node j. A path of length

k is a walk of length k with no repeated nodes.

Following [11, 25], we can define two other types of walks.

Definition 1.5. An alternating walk of length k starting with an out-edge is a list of

nodes i1, i2, . . . , ik+1 such that there exists an edge (iℓ, iℓ+1) if ℓ is odd and an edge

(iℓ+1, iℓ) if ℓ is even. An alternating walk starting with an out-edge hence has the form

i1 −→ i2 ←− i3 −→ · · · .

Definition 1.6. An alternating walk of length k starting with an in-edge is a list of

vertices i1, i2, . . . , ik+1 such that

i1 ←− i2 −→ i3 ←− · · · ,

i.e., such that there exists an edge (iℓ, iℓ+1) if ℓ is even and an edge (iℓ+1, iℓ) otherwise.

The alternating walks of any length connecting two nodes can be counted by using the

powers of two matrices AAT and ATA, called the hub and authority matrices, respec-

tively. The reason for this terminology will become clear later. The entries of the kth

power of the hub matrix [(AAT )k]ij count the number of alternating walks of length 2k
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starting with an out-edge from node i to node j. Likewise, the entries [(ATA)k]ij of the

kth power of the authority matrix count the number of alternating walks from node i

to node j of length 2k starting with an in-edge [11].

A digraph is said to be strongly connected if every two nodes in the network are connected

through a path of finite length, while it is said to be weakly connected if this property

holds when the directionality of the links is disregarded.

1.1.3 Bipartite graphs

An undirected network G = (V ,E ) is called bipartite if it is possible to partition its set

of nodes as V = V1 ∪ V2 in such a way that for all (i, j) ∈ E it either holds that i ∈ V1
and j ∈ V2 or i ∈ V2 and j ∈ V1. Let us call n1 the cardinality of V1 and n2 = n − n1

the cardinality of V2. It is always possible to label the elements of V in such a way that

V1 = {1, 2, . . . , n1} and V2 = {n1 + 1, n1 + 2, . . . , n1 + n2 = n} and we will assume this

convention in the following. The adjacency matrix associated with a bipartite graph has

the form:

A =


 0 B

BT 0


 , B ∈ R

n1×n2 .

There is a closed general expression for the powers of the adjacency matrix of a bipartite

graph:

A
2k =


 (BBT )k 0

0 (BTB)k


 , A

2k+1 =


 0 B(BTB)k

(BTB)kBT 0


 .

These expressions tell us that there exist no walks of even length between nodes that

belong to two different sets, while there are no walks of odd length between nodes that

belong to the same set.

Digraphs as bipartite graphs

There is a one-to-one correspondence between bipartite graphs with n1 = n2 and di-

graphs (see [5, 11, 19, 30, 31]). Indeed, let G = (V , E) be a directed graph and consider

the graph G = (V ,E ), whose sets of nodes and edges are constructed as follows. The

set V contains 2n nodes and is formed as V = V ∪ V ′, where V is the original set of
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nodes and V ′ = {1′ = n + 1, 2′ = n + 2, . . . , n′ = 2n} is a set of copies of the nodes in

G = (V , E). The edges between the elements in V are undirected and (i, j′) ∈ E with

i ∈ V and j′ ∈ V ′ if and only if (i, j) ∈ E in the original digraph. This graph is bipartite

by construction and its adjacency matrix has thus the form

A =


 0 A

AT 0


 , (1.1)

where A is the adjacency matrix of the original digraph.

As an example of this construction, consider the matrix

A =




0 0 1 0

1 0 0 1

0 1 0 0

0 1 0 0




. (1.2)

The associated digraph and the corresponding bipartite graph are then:

1

2 3

4

2

1

3

4

1′

2′

3′

4′

Note that in the bipartite graph associated to a digraph the first n nodes, contained in

V , can be seen as the original nodes of the digraph when they play their role of sources

of information; similarly, the n copies, contained in V ′, represent the original nodes in

their role of targets.

1.2 Fundamentals in linear algebra

In this section we recall some fundamental notions and results from linear algebra.

Let A ∈ R
n×n and assume that AT = A; then the eigenvalues of A are real and we

can label them in non-increasing order as: λ1 ≥ λ2 ≥ · · · ≥ λn. Furthermore, we can
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decompose A into

A = QΛQT =
n∑

j=1

λjqjq
T
j ,

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix containing the eigenvalues of A and

Q = [q1, . . . ,qn] ∈ R
n×n is orthogonal, where qi is a normalized eigenvector associated

to the eigenvalue λi, for all i = 1, 2, . . . , n. If the matrix A is not symmetric, then it may

have complex eigenvalues. In this case we will assume that the eigenvalues are ordered

with non-increasing modulus |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

The spectral radius of A is defined as ρ(A) = max
i=1,2,...,n

{|λi|} while, under the hypothesis

that |λ1| ≥ |λi| for all i 6= 1, the spectral gap of A is defined as min
i 6=1
|λ1 − λi|.

Definition 1.7. A matrix A ∈ C
n×n is said to be reducible if there exists an n × n

permutation matrix P such that

P TAP =


 A11 A12

0 A22


 ,

with square diagonal blocks, irreducible otherwise.

Definition 1.8. A matrix A ∈ R
m×n is said to be non-negative (resp., positive) if aij ≥ 0

(resp., aij > 0) for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n. We will write A ≥ 0 (resp.,

A > 0).

Moreover, let B ∈ R
m×n. We will write A ≥ B if A−B ≥ 0.

Theorem 1.9. [94, Theorem 1.18] Let A ∈ R
n×n. Then A is irreducible if and only if

the graph G(A) that has A as its adjacency matrix is strongly connected.

From this result, it follows that the adjacency matrix of any connected and undirected

network is irreducible.

Theorem 1.10. [57, Theorem 8.4.4] Let A ∈ R
n×n and suppose that A ≥ 0 is irreducible.

Then

(i) ρ(A) > 0;

(ii) ρ(A) is a simple eigenvalue of A;

(iii) there is a positive vector x such that Ax = ρ(A)x.
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This theorem is known in the literature as the Perron–Frobenius Theorem.

From Theorems 1.9 and 1.10 it follows that if the graph is undirected and connected,

then ρ(A) = λ1 ∈ R+ and λ1 > λ2. Moreover, the eigenvector q1 associated with the

leading eigenvalue, sometimes referred to as the Perron vector, can be chosen so that its

components q1(i) are positive for all i ∈ V .

We can further characterize the spectrum of a non-negative irreducible matrix A if we

assume it to be p-cyclic.

Definition 1.11. [93, Definition 1] The matrix A = (aij) ∈ R
n×n is cyclic of index p or

p-cyclic (p ≥ 2) if and only if, after some symmetric permutation of rows and columns

of A, the matrix A assumes the cyclic block form




0 0 · · · 0 L1

L2 0 · · · 0 0

0 L3 · · · 0 0
...

...
. . .

...
...

0 0 . . . Lp 0




where the zero diagonal blocks are square.

It can be proved (see [93] and references therein) that the characteristic polynomial of

a p-cyclic matrix A, denoted by pA(λ) := det(A− λI), has the form

pA(λ) = λν
ℓ∏

i=1

(λp − σp
i ),

where ν + ℓp = n. Using this result, it follows that if a non-negative matrix A is

irreducible and p-cyclic, then the matrix A has exactly p eigenvalues of modulus ρ(A),

which coincide with the roots of the polynomial q(λ) := λp − ρ(A)p (see [57, Corollary

8.4.6]).

Corollary 1.12. [57, Theorem 8.4.5] Let A ∈ R
n×n be non-negative and irreducible and

let B ∈ R
n×n. Suppose that A ≥ |B|. Then ρ(A) ≥ ρ(B).

Theorem 1.13. [57, Theorem 4.3.1] Let A,B ∈ R
n×n be symmetric and let the eigen-

values λi(A), λi(B), and λi(A+B) be arranged in non-increasing order. Then, for each
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i = 1, 2, . . . , n we have

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B).

Suppose now that A ∈ C
m×n is a complex matrix of rank r. Then we can factor it

as A = UΣV ∗ using a singular value decomposition (SVD). The matrix Σ ∈ R
m×n

is diagonal and its entries Σii = σi are ordered as σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 =

· · · = σq = 0, where q = min{m,n}. The matrices U = [u1,u2, . . . ,um] ∈ C
m×m and

V = [v1,v2, . . . ,vn] ∈ C
n×n are unitary and contain the left and right singular vectors

of A, respectively. It is well known that the matrix Σ is uniquely determined, while U

and V are not. If A is real, then also U and V can be chosen to be real.

From the singular value decomposition of A it follows that AA∗ = UΣΣTU∗ and A∗A =

V ΣTΣV ∗. Thus, the singular values of a matrix A are the square roots of the positive

eigenvalues of the matrix AA∗ or A∗A. Moreover, the left singular vectors of A are the

eigenvectors of the matrix AA∗, while the right singular vectors are the eigenvectors of

the matrix A∗A.

The singular values of a matrix also emerge (with their opposites) as the eigenvalues of

the matrix

A =


 0 A

A∗ 0


 .

This can be easily seen in the case when m = n, where A can be decomposed as

A =
1

2


 U −U

V V




 Σ 0

0 −Σ




 U −U

V V




∗

.

Consider now the matrices Ur ∈ C
m×r and Vr ∈ C

n×r, which contain the first r columns

of the matrices U and V , respectively, and let Σr ∈ R
r×r be the r × r leading block of

Σ. Then a compact SVD (CSVD) of the matrix A ∈ C
m×n is

A = UrΣrV
∗
r =

r∑

j=1

σjujv
∗
j .
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1.2.1 Matrix functions

There are several equivalent ways to define f(A) when A ∈ C
n×n is a square matrix. We

recall here the definition based on the Jordan canonical form. For a more comprehensive

study, we refer to [56].

Let {λ1, λ2, . . . , λs} be the set of distinct eigenvalues of A and let ni denote the index of

the ith eigenvalue, i.e., the size of the largest Jordan block associated with λi.

Recall that a function f is said to be defined on the spectrum of A if the values f (ℓ)(λi)

exist for all ℓ = 0, 1, . . . , ni− 1 and for all i = 1, 2, . . . , s, where f (ℓ) is the ℓth derivative

of the function and f (0) ≡ f .

Definition 1.14. [56, Definition 1.2] Let f be defined on the spectrum of A ∈ C
n×n

and let Z−1AZ = J = diag(J1, J2, . . . , Jp) be the Jordan canonical form of the matrix,

where

Ji = Ji(λi) =




λi 1

λi
. . .

. . . 1

λi



∈ C

mi×mi ,

∑p
j=1mj = n, and Z is nonsingular. Then

f(A) := Zf(J)Z−1 = Zdiag(f(J1), f(J2), . . . , f(Jp))Z
−1

where

f(Ji) :=




f(λi) f ′(λi) · · · f (mi−1)(λi)
(mi−1)!

f(λi)
. . .

...

. . . f ′(λi)

f(λi)




.

If the matrix A is diagonalizable, then the Jordan canonical form reduces to the spectral

decomposition A = ZΛZ−1, with Λ = diag(λ1, λ2, . . . , λn) and the columns of Z ∈ C
n×n

eigenvectors of A. In such case,

f(A) = Zf(Λ)Z−1 = Zdiag(f(λ1), f(λ2), . . . , f(λn))Z
−1.
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If the function f has a Taylor series expansion, we can use it to describe the associated

matrix function, provided that the eigenvalues of the matrix A satisfy certain require-

ments.

Theorem 1.15. [56, Theorem 4.7] Let A ∈ C
n×n and suppose that f can be expressed

as

f(z) =
∞∑

k=0

ak(z − z0)
k

with radius of convergence R. Then f(A) is defined and is given by

f(A) =
∞∑

k=0

ak(A− z0I)
k

if and only if each of the distinct eigenvalues of A {λ1, λ2, . . . , λs} satisfies one of the

following:

(i) |λi − z0| < R for all i = 1, 2, . . . , s;

(ii) |λi − z0| = R and the series for f (ni−1)(λ) is convergent at the point λ = λi,

i = 1, 2, . . . , s, where ni is the index of λi.

1.2.2 Generalized matrix functions

In [55] the authors considered the problem of extending the definition of matrix function

to the case of rectangular matrices. Their idea was to use in the definition a generaliza-

tion of the SVD of the matrix instead of its Jordan canonical form.

Theorem 1.16. Let A ∈ C
m×n be a matrix of rank r and let {ci : i = 1, 2, . . . , r} be

any set of complex numbers satisfying

|ci|2 = σ2
i = λi(AA

∗),

where λ1(AA
∗) ≥ λ2(AA

∗) ≥ · · · ≥ λr(AA
∗) > 0 are the positive eigenvalues of AA∗.

Then there exist two unitary matrices X ∈ C
m×m and Y ∈ C

n×n such that D = X ∗AY ∈
C
m×n has entries:

dij =





ci if 1 ≤ i = j ≤ r

0 otherwise
.
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From this theorem it follows that, once the non-zero entries of D are fixed, A can be

written as

A = XDY∗ = XrDrY∗
r , (1.3)

where Dr is the leading r × r block of D and the matrices Xr ∈ C
m×r and Yr ∈ C

n×r

consist of the first r columns of the matrices X and Y , respectively.

In the following, we will assume that ci = σi for all i = 1, 2, . . . , r; this assumption

ensures that the decompositions in (1.3) coincide with the SVD and CSVD of the matrix

A, respectively. In particular, D = Σ, X = U , and Y = V .

Definition 1.17. Let A ∈ C
m×n be a rank-r matrix and let A = UrΣrV

∗
r be its CSVD.

Let f : R −→ R be a scalar function such that f(σi) is well defined for all i = 1, 2, . . . , r.

The generalized matrix function f⋄ : Cm×n −→ C
m×n induced by f is defined as

f⋄(A) := Urf(Σr)V
∗
r , (1.4)

where f(Σr) is defined for the square matrix Σr according to definition 1.14 as

f(Σr) = diag(f(σ1), f(σ2), . . . , f(σr)).

Generalized matrix functions arise naturally when one is computing f(A ), where A

is the structured matrix presented earlier in (1.1). Indeed, if one uses the description

of matrix function in terms of power series f(z) =
∑∞

k=0 akz
k, it can be proved that,

within the radius of convergence:

f(A ) =


 feven(

√
AA∗) f⋄

odd(A)

f⋄
odd(A

∗) feven(
√
A∗A)


 , (1.5)

where

f(z) = feven(z) + fodd(z) =
∞∑

k=0

a2kz
2k +

∞∑

k=0

a2k+1z
2k+1.

Indeed, from [56, Chapter 4] it is known that

f(A ) =




∑∞
k=0 a2k(AA

∗)k A
∑∞

k=0 a2k+1(A
∗A)k

A∗∑∞
k=0 a2k+1(AA

∗)k
∑∞

k=0 a2k(A
∗A)k


 .
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By using the facts that A = UrΣrV
∗
r , A

∗A = VrΣ
2
rV

∗
r , and AA∗ = UrΣ

2
rU

∗
r it follows

that

f(A ) =


 feven(

√
AA∗) Urfodd(Σr)V

∗
r

Vrfodd(Σr)U
∗
r feven(

√
A∗A)


 ,

and thus (1.5) follows.

Remark 1.18. If f(0) = 0 and the matrix A ∈ C
n×n is Hermitian and positive semidef-

inite, then the generalized matrix function f⋄(A) reduces to the classical definition of

matrix function f(A) (see [55, 56]).

Remark 1.19. The Moore–Penrose pseudo-inverse of a matrix [57, p. 421] A ∈ C
m×n,

denoted by A†, can be expressed as f⋄(A∗), where f(z) = z−1.

1.3 Bounds on bilinear forms via quadrature rules

In this section we review the technique exposed in [49] to approximate bilinear forms.

Let A ∈ R
n×n be symmetric and let z,w ∈ R

n be two vectors. Let f : R −→ R be a

function defined on the spectrum of A.

Bounds on bilinear forms zT f(A)w can be derived based on Gauss–type quadrature

rules when f is a completely monotonic (c.m.) function on the interval [α, β] containing

the spectrum of A by working on a matrix derived from p steps of the symmetric Lanczos

iteration (see [12, 49]).

Definition 1.20. A function f : R −→ R is said to be completely monotonic (c.m.) on

[α, β] if it is continuous on [α, β] and infinitely differentiable on (α, β) with

(−1)ℓf (ℓ)(t) ≥ 0, t ∈ (α, β), ∀ℓ = 0, 1, . . . ,

where f (ℓ) denotes the ℓth derivative of f and f (0) ≡ f .

The starting point is to observe that bilinear forms zT f(A)w can be thought of as

Riemann–Stieltjes integrals with respect to the spectral measure associated with the
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symmetric matrix A and with the vectors z and w:

zT f(A)w =

∫ β

α
f(λ) dm(λ), m(λ) =





0, if λ < α = λn

∑n
j=i+1 ωjζj , if λi+1 ≤ λ < λi

∑n
j=1 ωjζj , if β = λ1 ≤ λ

where A = QΛQT , ω = QTw = (ωi), and ζ = QT z = (ζi).

This integral can be approximated by means of Gauss–type quadrature rules, which can

be used to obtain lower and upper bounds on the bilinear forms of interest. For example,

one can approximate the integral associated with the bilinear form by using the Gauss

rule: ∫ β

α
f(λ) dm(λ) =

p∑

j=1

cjf(tj), (1.6)

where the nodes {tj}pj=1 and weights {cj}pj=1 are to be determined.

The bound for the bilinear form obtained using the Gauss rule is described in the fol-

lowing theorem.

Theorem 1.21. [49, Theorem 6.3] Suppose f is such that f (2ℓ)(ξ) ≥ 0, ∀ℓ, ∀ξ ∈ (α, β),

and let

LG[f ] =

p∑

j=1

cjf(tj).

The Gauss rule is exact for polynomials of degree less than or equal to 2p − 1 and we

have

LG[f ] ≤
∫ β

α
f(λ) dm(λ).

Moreover ∀p there exists η ∈ [α, β] such that

∫ β

α
f(λ) dm(λ)− LG[f ] =

f (2p)(η)

(2p)!

∫ β

α




p∏

j=1

(λ− tj)



2

dm(λ).

Alternatively, one can use the Gauss–Radau quadrature rule:

∫ b

a
f(λ) dm(λ) =

p∑

j=1

cjf(tj) + v1f(τ1), (1.7)
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where the nodes {tj}pj=1 and the weights
{
{cj}pj=1, v1

}
are to be determined, whereas

τ1 is prescribed and is equal to either α or β. The Gauss–Radau bounds are described

in the following theorem.

Theorem 1.22. [49, Theorem 6.4] Suppose f is such that f (2ℓ+1)(ξ) ≤ 0 for all ℓ and

for all ξ ∈ (α, β). Let UGR be defined as

UGR[f ] =

p∑

j=1

cαj f(t
α
j ) + vα1 f(α),

cαj , v
α
1 , t

α
j being the weights and nodes in (1.7) with τ1 = α, and let LGR be defined as

LGR[f ] =

p∑

j=1

cβj f(t
β
j ) + vβ1 f(β),

cβj , v
β
1 , t

β
j being the weights and nodes in (1.7) with τ1 = β. The Gauss–Radau rule is

exact for polynomials of degree less than or equal to 2p and satisfies

LGR[f ] ≤
∫ β

α
f(λ) dm(λ) ≤ UGR[f ].

Moreover, for all p there exist ηU , ηL ∈ [α, β] such that

∫ β

α
f(λ) dm(λ)− UGR[f ] =

f (2p+1)(ηU )

(2p+ 1)!

∫ β

α
(λ− α)




p∏

j=1

(λ− tαj )



2

dm(λ),

∫ β

α
f(λ) dm(λ)− LGR[f ] =

f (2p+1)(ηL)

(2p+ 1)!

∫ β

α
(λ− β)




p∏

j=1

(λ− tβj )



2

dm(λ).

The explicit computation of nodes and weights appearing in the quadrature rules can be

avoided. Indeed, the evaluation of the quadrature rules is mathematically equivalent to

the computation of orthogonal polynomials via a three-term recurrence, or, equivalently,

to the computation of entries and spectral information on a certain tridiagonal matrix

via the Lanczos algorithm. In fact, the right-hand side of (1.6) can be computed from

the relation (see [49, Theorem 6.6]):

p∑

j=1

cjf(tj) = eT1 f(Jp)e1,
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where

Jp =




ω1 γ1

γ1 ω2
. . .

. . .
. . . γp−1

γp−1 ωp




is a tridiagonal matrix whose eigenvalues are the Gauss nodes, whereas the weights are

given by the squares of the first entry of the normalized eigenvectors of Jp. Similarly,

the right hand side of (1.7) can be computed as

p∑

j=1

cjf(tj) + v1f(τ1) = eT1 f(Jp+1)e1, (1.8)

where

Jp+1 =


 Jp γpep

γpe
T
p ωp+1




is a tridiagonal matrix constructed so as to have τ1 among its eigenvalues. More specifi-

cally, in order to construct such Jp+1, one uses the Lanczos algorithm to compute Jp and

the element γp; then, one derives ωp+1 = τ1 + eTp x
(τ1), where x(τ1) solves the tridiagonal

linear system (Jp − τ1I)x
(τ1) = γ2pep (see [49, p. 89]).

An efficient implementation of this technique is provided in G. Meurant’s mmq toolbox

for MATLAB [72]. This toolbox, adapted to handle sparsity, will be used for some of

the numerical experiments presented.

1.4 Fundamentals in network science

In this section we briefly describe some characteristic features of (undirected) complex

networks and we describe two models that can be used to construct graphs with these

features. Moreover, we review some of the most popular walk-based node centrality

measures.

1.4.1 Some properties of complex networks

A complex network can be mathematically described as a graph. Most of the graphs

of interest to network scientists are highly sparse and exhibit non-trivial topological
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features, in the sense that they are not purely regular nor completely random. However,

there are some characteristics which are independent of the particular type of graph

under study and that are shared by almost all complex networks.

Let us consider the case of undirected graphs. It is well known that several complex

networks (such as the Internet, the World Wide Web, or some social networks) exhibit

a degree distribution that is heavy-tailed and, in most cases, approximately follows a

power law [79, p. 247ff]. More specifically, the fraction of nodes of degree k decays

asymptotically with the degree as P (k) ∼ k−γ , where γ ∈ [2, 3]. The graphs having this

property are called scale-free and their set of nodes contains a few elements that have

a large number of connections and a large number of nodes that have a low degree. As

an example, the histograms in Figure 1.2 show the degree distribution of two real world

networks: ca-GrQc and ca-HepTh (see [26]).

An important feature of real world networks is that they usually have a high clustering

coefficient. This quantity measures the degree of transitivity of the network, i.e., the

extent to which the nodes in the network tend to participate in triangles. It can be

computed by averaging over all nodes their local clustering coefficients:

Ci =
ti

di(di − 1)
,

where ti =
1
2(A

3)ii is the number of triangles in which node i participates and di = (A2)ii

is its degree. Note that if di < 2 for some i, then Ci is undefined (as it equals 0
0). In such

cases the local clustering coefficient of the corresponding node can be set to 0, as the

node clearly does not participate in any triangle. The (average) clustering coefficient of

a graph described by the adjacency matrix A is:

C =
1

n

n∑

j=1

Cj =
1

n

n∑

j=1
dj≥2

tj
dj(dj − 1)

. (1.9)

Complex networks often display also a small average path length. This quantity measures

the average number of steps the information has to take in order to get from its source

to the target, by only going through paths. Before giving its mathematical description,

we need to introduce the concept of shortest path distance or geodesic distance between

two nodes. The geodesic distance between two distinct nodes i and j, d(i, j), is defined
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Figure 1.2: Degree distribution of two real-world networks. (Figure from [13].)
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as the length of the shortest path connecting these nodes. Moreover, we assume by

convention that d(i, i) = 0, so that the introduced quantity is indeed a distance. Using

this definition, we can define the average path length of a connected network as:

ℓ =
1

2m

∑

i,j∈V
d(i, j). (1.10)

The notion of geodesic distance is strictly related to the so called small world property.

This feature, shared by most complex networks, ensures that every node can be reached

in only a few steps from every other node in the graph. This property can be formulated

by saying that complex networks have, in general, a small diameter, which is defined as:

diam(G) = max
i,j∈V

d(i, j).

Typically, networks with the small world property are such that diam(G) = O(logn).
Moreover, they also display a large average clustering coefficient.

1.4.2 The Watts–Strogatz model

A well known generative network model is the Watts–Strogatz model [96]. It generates

graphs that have a high clustering coefficient and a small diameter, i.e., the small world

property.

The n nodes are originally arranged in a ring and connected to their k ≪ n nearest

neighbors. Then each node is considered independently and each one of its incident

edges is either rewired with probability p or left as it is, with probability (1− p). This
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t

Figure 1.3: The Watts–Strogatz model: how the topology of the network changes
with the probability p. (Figure from [96].)

model interpolates between a k-regular graph (p = 0), where diam(G) = O(n) and thus

no small world effect can be observed, and a random network (p = 1), which has a small

diameter, but has a low clustering coefficient C = O(n−1) (see Figure 1.3).

The CONTEST [87, 88] toolbox for MATLAB contains a function that generates in-

stances of the Watts–Strogatz model. The adjacency matrix associated with a graph of

this type is generated by the function smallw(n,k,p). Here n is the number of nodes

in the network, k is the number of nearest neighbors each node is originally connected

to, and p ∈ [0, 1] is a probability. The default parameter settings, which we will use in

our tests, are k = 2 and p = 0.1. Note that this code does not allow the formation of

self-loops or multiple edges.

1.4.3 The Barabási–Albert model

The best known generative network model that generates an undirected scale-free graph

with the small world property is the Barabási–Albert, or preferential attachment model [8].

In this model the nodes are added one by one to the network and they are connected

to a certain subset of other nodes in the graph. Each node i creates exactly d ≥ 1

connections, where d is a fixed integer, and an edge is created between i and j with a

probability that is proportional to dj , the degree of node j. This method ensures that,

when the procedure ends, no nodes have degree less than d.

The function used to build the adjacency matrices associated with this type of graphs

in CONTEST is pref(n,d), where n is the number of nodes and d ≥ 1 is the number
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Table 1.1: Node centrality measures.

Centrality measure Undirected graph
Directed graph

source target

degree di = (A1)i dout(i) = (A1)i din(i) = (AT1)i
eigenvector q1(i) x1(i) y1(i)
f -subgraph eif(A)ei eif(A )ei ei′f(A )ei′

f -total communicability [f(A)1]i [f(A)1]i
[
f(AT )1

]
i

HITS — u1(i) v1(i)

of edges each new node is given when it is first introduced to the network. The default

parameter setting, which we will use in the tests, is d = 2.

1.4.4 Centrality measures

We now review some of the most popular walk-based node centrality measures that will

be used throughout this thesis.

In the general setting, a node centrality measure is a function

C : V −→ R≥0

which is invariant under graph isomorphism1 and that assigns to each node in the graph

a nonnegative score that quantifies its importance within the network. In undirected

networks, each node will be assigned one score, while it will be assigned two in the

directed case: one to describe its importance as a spreader of information and one to

describe its importance as a receiver.

The centrality measures introduced in the remaining of this subsection are summarized

in Table 1.1.

In the list that will follow we omitted some very popular measures of centrality, such

as the closeness and the betweenness centrality (see, e.g., [79, Chapter 7]). We decided

to do so because these measures do not have a simple formulation in terms of matrix

properties, as they are based on the assumption that communication always occurs

through paths, and in this thesis we are concerned predominantly with linear algebraic

techniques.

1Two graphs G1 and G2 with associate adjacency matrices A1 and A2 are isomorphic if there exists
a permutation matrix P such that A1 = PA2P

T (see [47, Lemma 8.1.1]).
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Degree centrality

The easiest and most local measure of centrality, in both the undirected and directed

case, is the degree centrality. It assigns to each node a score that is equal to the number

of its neighbors. In the undirected case, the degree centrality of node i is defined as

di. In the directed case, the two quantities used are dout(i) = |{j ∈ V : (i, j) ∈ E}|,
namely the number of edges of the form i → ∗, for the importance as a source, and

din(i) = |{j ∈ V : (j, i) ∈ E}|, i.e., the number of edges of the form ∗ → i, for the

importance as a target of node i.

As it is clear from their definitions, the measures of centrality based on the degree of the

nodes account for too little information to be able to clearly identify the most important

nodes in the network. For example, if we think of two complete graphs Kn (n > 3) linked

through a path P3, one of the most important nodes in the network is the middle node

in P3. Indeed, the information has to go necessarily through this node in order to flow

from one complete graph to the other. However, the degree of this node is the lowest,

since it equals 2 while the degrees of the other nodes equal n > 3 (for the other two

nodes in the path) or n− 1 > 2 (for the remaining nodes in the graph).

Eigenvector centrality

In [18] the author introduced the eigenvector centrality of nodes. For each node i, it is

defined as the ith component of the eigenvector associated with the leading eigenvalue

of the adjacency matrix. When the undirected network is connected, from Theorem 1.10

it follows that there is a unique normalized eigenvector q1 associated with the simple

eigenvalue λ1 > 0 that can be chosen to have positive entries, and thus the eigenvector

centrality of nodes is well defined.

The eigenvector centrality of a node i can be interpreted as the average amount of time

a random walker spends in a given node as the length of the walks tends to infinity

(see [34, p. 127] and references therein). Furthermore, from Aq1 = λ1q1 it follows that

q1(i) =
1

λ1

n∑

j=1

aijq1(j) =
1

λ1

∑

j:(i,j)∈E
q1(j),
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and thus the centrality of a node i can be expressed as a linear combination of the

centralities of its adjacent nodes. Thus, in some sense, the eigenvector centrality extends

the degree centrality of nodes in order to account for more information than simply the

number of immediate neighbors. Indeed, we now take into account the importance of

the neighboring nodes to determine the eigenvector centrality of each node.

For the case of digraphs, for each node i one can consider the ith components of the

right and left eigenvectors associated with λ1 as measures of centrality as broadcaster

and receiver of information, respectively. These centrality measures are well defined

only for the case of strongly connected networks, when we can ensure that the two

eigenvectors associated with the simple eigenvalue λ1 can be chosen to be non-negative.

The computation of this centrality index will be carried out, in all our numerical tests,

using the MATLAB built-in function eigs.

f-subgraph centrality

The f -subgraph centrality of node i is defined, in the undirected case, as [42]:

eTi f(A)ei,

where f : R −→ R is a function defined on the spectrum of A. The two most widely

used f -subgraph centrality measures are:

• (exponential) subgraph centrality of a node i:
(
eA
)
ii
;

• resolvent subgraph centrality of a node i:
[
(I − αA)−1

]
ii
, with α ∈ (0, λ−1

1 ).

Remark 1.23. The parameter α in the definition of the resolvent subgraph centrality has

to fall in the interval (0, λ−1
1 ) so that the power expansion

(I − αA)−1 =

∞∑

k=0

(αA)k

is convergent and non-negative [59].

The f -subgraph centrality of a node accounts for how much information departing from

a certain node will return to it. This interpretation follows from the Maclaurin expansion
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of the matrix function of interest and from the fact that the powers of the adjacency

matrix can be used to count (closed) walks taking place in the network. Indeed, if

f(z) =
∑∞

k=0 akz
k with ak ≥ 0 for all k, the f -subgraph centrality of a node i can be

expressed, as

eTi f(A)ei =
∞∑

k=0

ak(A
k)ii,

where ak → 0 as k →∞. Therefore, we are counting all the closed walks of any lengths

centered at node i and we are giving more importance to shorter ones.

Remark 1.24. As for the off-diagonal entries of the matrix f(A), they represent the

communicabilities between nodes, i.e., a measure of the amount of information two nodes

in the network exchange if we allow information to flow along walks of up to infinite

length. Following [39], given i, j ∈ V we will call f -communicability between nodes i and

j the bilinear form eTi f(A)ej . Specifically, we will call subgraph communicability between

nodes i and j the quantity
(
eA
)
ij
.

A generalization of this family of centrality measures to the directed case was given

in [11]. The authors proposed to work on the 2n×2n matrix (1.1) of the bipartite graph

associated with the digraph under study. Thus, if f : R −→ R is a function defined on

the spectrum of A , then the first n diagonal entries:

eTi f(A )ei, i ∈ V

provide centrality measures for the nodes in their role of broadcasters; similarly, the last

n diagonal entries

eTi′f(A )ei′ , i′ ∈ V ′

provide the centrality indices for the nodes in their role of receivers of information.

To estimate these quantities in the numerical tests we make use of the mmq [72] toolbox

for MATLAB, which uses five Lanczos steps per estimate to compute the Gauss–Radau

quadrature rule associated with the bilinear form of interest (see Section 1.3 and [49] for

more details).
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Starting from this type of centrality measures, in [32] a global index for the networks

was introduced. This value, later called the Estrada index of the graph, is defined as

EE(A) = Tr(eA) =

n∑

j=1

eλj =

n∑

j=1

(eA)jj , (1.11)

where Tr denotes the trace of the matrix.

From its definition, it is clear that the Estrada index accounts for the total returnability

of the information in the network. Moreover, as we will later see in Chapter 2, this index

can also be interpreted as the partition function of the network (see [34, 38]).

Node f-total communicability

The notion of node f -total communicability was first introduced for undirected networks

in [13], although a special case of node f -total communicability already existed in the

literature since sixty years (see [59]).

Let f : R −→ R be a function defined on the spectrum of A, then the f -total communi-

cability of node i is defined as:

[f(A)1]i.

In [11] the authors focused on two particular cases: the exponential-based total com-

municability (eA1)i, which is usually referred to as node total communicability, and the

well-known Katz centrality [59]:

[
(I − αA)−11

]
i
, with α ∈

(
0, λ−1

1

)
.

When considering the node f -total communicability, each vertex is assigned a score

given by a weighted sum of walks to every node in the network, including the node

itself. Indeed, if f(z) =
∑∞

k=0 akz
k with ak ≥ 0 for all k, the f -total communicability of

a node i can be expressed, as

eTi f(A)1 =
∞∑

k=0

ak(A
k1)i,



Chapter 1. Background 29

where ak → 0 as k → ∞. Thus, this score quantifies the ability of a node to spread

information across the network and the returnability of the information to the node

itself.

The definition of node f -total communicability, provided for the case of undirected

networks, can be easily extended to the case of digraphs. The centralities of the nodes

as sources are obtained by applying the function f to the matrix A, while the centralities

of the nodes as targets are obtained by applying the function to the matrix AT .

The computation of the vector f(A)1 of node f -total communicabilities can be performed

efficiently using Krylov methods (see [56, Chapter 13]). In this work, we have used

S. Güttel’s implementation: the funm kryl toolbox [52] for MATLAB. In the numerical

tests we make use of this toolbox with the default parameter settings.

Similarly to what has been done for the f -subgraph centrality measures, one can define

a global index for the network associated to the node f -total communicability. For a

generic function f defined on the spectrum of the adjacency matrix, the f -total (network)

communicability is defined as:

TC(A, f) := 1T f(A)1. (1.12)

This index is used to quantify the overall ability of a network to diffuse information.

When the function f(t) = et is considered, we will simply write TC(A) and we will

call this index the total (network) communicability. As it is clear from its definition,

the value of TC(A) may be very large. Several normalizations have been proposed; the

simplest is the normalization by the number of nodes n (see [13]), which we will use

throughout this thesis. It is easy to prove that the normalized total communicability

satisfies [13]:
EE(A)

n
≤ TC(A)

n
≤ eλ1 , (1.13)

where the lower bound is attained by the empty graph with n nodes, whereas the upper

bound is attained by the complete graph Kn.
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HITS

The last centrality measure we review here is defined only for the case of digraphs and

was introduced in [60] by Kleinberg, who stated that in directed networks there exist two

types of important nodes: hubs and authorities. In particular, each node can be assigned

a hub score and an authority score, which quantify its ability of playing these two roles.

Good hubs are those nodes which better broadcast information, while good authorities

are those which better receive information. These two types of importance for vertices

are strongly related through a recursive definition: the importance of a node as a hub

is proportional to the importance as authorities of the nodes it points to. Similarly, the

importance of a vertex as an authority depends on the importance as hubs of the nodes

that point to it. This recursive definition is highlighted in the implementation of the

HITS algorithm (see [60]), which makes use of the eigenvectors corresponding to the

leading eigenvalue of the symmetric positive semi-definite matrices AAT and ATA to

rank the nodes as hubs and authorities, respectively. The eigenvectors associated to σ2
1

are u1 and v1, the first left and right singular vectors of the matrix A. In the following,

these vectors will be referred to as the hub and authority vector, respectively.
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Tuning the total communicability

of undirected graphs

The total communicability provides a good measure of how efficiently information (in

the broad sense of the term) is diffused across the network. Typically, very high values of

TC(A) are observed for highly optimized infrastructure networks (such as airline routes

or computer networks) and for highly cohesive social and information networks (like

certain type of collaboration networks). Conversely, the total network communicability

is relatively low for spatially extended, grid-like networks (such as many road networks)

or for networks that consist of two or more communities with poor communication

between them (such as the Zachary network).1

Moreover, the total communicability is closely related to the natural connectivity (or

free energy) of the network, while being dramatically easier to compute; see Section 2.5

below. Sparse networks with high values of TC(A) are very well connected and thus less

likely to be disrupted by either random failures or targeted attacks leading to the loss

of edges. This justifies trying to design sparse networks with high values of the total

communicability.

Finally, in view of the bounds (1.13), the evolution of the total communicability under

network modifications is closely tied to the evolution of the dominant eigenvalue λ1.

This quantity plays a crucial role in network analysis, for example in the definition of

1Numerical values of the normalized total network communicability for a broad collection of networks
are reported in Section 2.4 and in [13].

31
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the epidemic threshold; see, for instance, [79, p. 664] and [92]. In particular, a decrease

in the total network communicability can be expected to lead to an increase in the

epidemic threshold.

Thus, being able of modifying an existing graph so as to tune its total network commu-

nicability can be of interest in several settings. In this chapter, which is mainly based on

the results presented in [4], we discuss how to add edges to a network so as to increase

as much as possible its total communicability, and how to remove connections in order

not to penalize this index too much. The redirection of existing edges is also considered.

The remaining of the chapter is organized as follows. In Section 2.1 we describe bounds

for the total communicability via the Gauss–Radau quadrature rule and we show how

these bounds change when a rank-two modification of the adjacency matrix is performed.

Section 2.2 is devoted to the introduction of methods to controllably modify the graph

in order to adjust the value of its total communicability. Numerical studies to assess the

effectiveness and performance of the techniques introduced are provided in Section 2.4

for both synthetic and real-world networks. In Section 2.5 we discuss the evolution of

a popular measure of network connectivity, known as the free energy (or natural con-

nectivity), when the same modifications are performed. This section provides further

evidence that motivates the use of the total communicability as a measure of connec-

tivity. Finally, in Section 2.6 we discuss how the same problems can be tackled when

the resolvent-based total communicability, defined as TC(A, fα) = 1T (I − αA)−11, is

considered as target function.

2.1 Bounds via quadrature rules

In [13] the authors provide simple bounds on the normalized total network communica-

bility, see equation (1.13). More refined bounds for this index can be obtained by means

of quadrature rules as described in [10, 12, 44, 49].

Indeed, bounds on bilinear forms uT f(A)v can be derived based on Gauss–type quadra-

ture rules when f is a completely monotonic function on the interval [α, β] containing

the spectrum of A by working on a 2× 2 matrix derived from one step of the symmetric

Lanczos iteration (see [12, 49]). Observe that the exponential function ex is not com-

pletely monotonic, while e−x is. This means that, in order to compute bounds on the
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normalized total communicability, we need to use the function f(x) = e−x and therefore

to work on the matrix −A:

TC(A)

n
=

(
1√
n

)T

e−(−A)

(
1√
n

)
.

The following theorem contains our result on the bounds for the normalized total com-

municability.

Theorem 2.1. Let A be the adjacency matrix of an unweighted and undirected network.

Then

Φ

(
β, ω1 +

γ21
ω1 − β

)
≤ TC(A)

n
≤ Φ

(
α, ω1 +

γ21
ω1 − α

)

where [α, β] is an interval containing the spectrum of −A (i.e., α ≤ −λ1 and β ≥ −λn),

ω1 = −µ = − 1
n

∑n
i=1 di is the negative mean of the degrees, γ1 = σ =

√
1
n

∑n
k=1(dk − µ)2

is the standard deviation, and

Φ(x, y) =
c (e−x − e−y) + xe−y − ye−x

x− y
, c = ω1. (2.1)

Proof. First we derive an explicit expression for the right-hand side of equation (1.8)

when f(x) = e−x and

J2 =


 ω1 γ1

γ1 ω2




with the help of the Lagrange interpolation formula for the evaluation of matrix functions

[56, p. 6]. Let µ1 and µ2 be distinct eigenvalues of a given 2× 2 matrix B = (bij), then

e−B =
e−µ1

µ1 − µ2
(B − µ2I) +

e−µ2

µ2 − µ1
(B − µ1I)

where I is the 2× 2 identity matrix. It follows that

eT1
(
e−B

)
e1 =

b11(e
−µ1 − e−µ2) + µ1e

−µ2 − µ2e
−µ1

µ1 − µ2
.

Next, we build explicitly the matrix J2 and compute its eigenvalues. The values of

ω1 = −µ and γ1 = σ are derived applying one step of Lanczos iteration to the matrix

−A with starting vectors x−1 = 0 and x0 = 1√
n
1. We want to compute the value of ω2

in such a way that the matrix J2 has the prescribed eigenvalue τ1 = α or τ1 = β. Note
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that γ1 = 0 if and only if the graph is regular. In such case we simply take ω2 = τ1 and

the matrix J2 is diagonal with eigenvalues µ1 = −µ and µ2 = τ1. Thus, let us assume

γ1 6= 0. In order to compute the value for ω2, we use the three-term recurrence for

orthogonal polynomials:

γjpj(λ) = (λ− ωj)pj−1(λ)− γj−1pj−2(λ), j = 1, 2, . . . , p,

with p−1(λ) ≡ 0, p0(λ) ≡ 1 to impose that p2(τ1) = 0 and hence derive ω2 = τ1 − γ1
p1(τ1)

.

Using the same recurrence, we also find that p1(τ1) =
τ1−ω1
γ1

which is nonzero, since the

zeros of orthogonal polynomials satisfying the three-term recurrence are distinct and lie

in the interior of [α, β] (see [49, Theorem 2.14]).

Finally, the matrix

J2 =


 ω1 γ1

γ1 τ1 − γ2
1

τ1−ω1




has (distinct) eigenvalues µ1 = τ1 and µ2 = ω1+
γ2
1

ω1−τ1
. This, together with Theorem 1.22

and the relation (1.8), concludes the proof.

Following the same procedure, analogous bounds can be found for the adjacency matrix

of the graph after performing a downdate or an update. These results are summarized

in the following Corollaries.

Corollary 2.2. [Downdating] Let Â = A− eie
T
j − eje

T
i be the adjacency matrix of an

unweighted and undirected network obtained after the downdate of the edge (i, j) ∈ E
from the matrix A. Let ω1 = −µ = − 1

n

∑n
j=1 dj and γ1 = σ =

√
1
n

∑n
j=1(dj − µ)2,

where di is the degree of node i in the original graph. Then

Φ

(
β−, ω− +

γ2−
ω− − β−

)
≤ TC(Â)

n
≤ Φ

(
α−, ω− +

γ2−
ω− − α−

)

where 



ω− = ω1 +
2
n ;

γ− =
√
γ21 − 2

n

(
di + dj − 1 + 2ω1 +

2
n

) ,

α− and β− are approximation of the smallest and largest eigenvalues of −Â respectively,

and Φ is defined as in (5.4) with c = ω−.
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Note that if bounds α and β for the extremal eigenvalues of the original matrix are

known, we can then use α− = α and β− = β + 1. Indeed, if we order the eigenvalues

of Â in non–increasing order λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n we obtain, as a consequence of

Theorem 1.13, that

α− 1 ≤ −λ1 − 1 < −λ̂1 ≤ −λ̂2 ≤ · · · ≤ −λ̂n ≤ −λn + 1 ≤ β + 1.

Furthermore, Corollary 1.12 ensures that, when performing a downdate, the largest

eigenvalue of the adjacency matrix cannot increase; hence, we deduce the more stringent

bounds α ≤ −λ̂1 ≤ −λ̂2 ≤ · · · ≤ −λ̂n ≤ β + 1.

Similarly, we can derive bounds for the normalized total communicability of the matrix

Ã obtained from the matrix A after performing the update of the virtual edge (i, j) ∈ E .

Corollary 2.3. [Updating] Let Ã = A + eie
T
j + eje

T
i be the adjacency matrix of an

unweighted and undirected network obtained after the update of the virtual edge (i, j) in

the network associated with the matrix A. Let ω1 = −µ = − 1
n

∑n
j=1 dj and γ1 = σ =

√
1
n

∑n
j=1(dj − µ)2, where di is the degree of node i in the original graph. Then

Φ

(
β+, ω+ +

γ2+
ω+ − β+

)
≤ TC(Ã)

n
≤ Φ

(
α+, ω+ +

γ2+
ω+ − α+

)

where 



ω+ = ω1 − 2
n ;

γ+ =
√
γ21 +

2
n

(
di + dj + 1 + 2ω1 − 2

n

) ,

α+ and β+ are bounds for the smallest and largest eigenvalues of −Ã respectively, and

Φ is defined as in (5.4) with c = ω+.

Notice that again, if bounds α and β for the extremal eigenvalues of −A are known, we

can then take α+ = α− 1 and β+ = β. In fact, the spectrum of the rank-two symmetric

perturbations ±
(
eie

T
j + eje

T
i

)
is {±1, 0} and hence we can use Theorem 1.13 as before

and then improve the upper bound using Corollary 1.12.

In the next section we will see how the new bounds can be used to guide the updating

and downdating process.
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2.2 Modifications of the adjacency matrix

In this section we develop techniques that allow us to tackle the following problems.

(P1) Downdate: select K edges that can be downdated from the network without dis-

connecting it and that cause the smallest drop in the total communicability of the

graph;

(P2) Update: select K edges to be added to the network (without creating self–loops

or multiple edges) so as to increase as much as possible the total communicability

of the graph;

(P3) Rewire: select K edges to be rewired in the network so as to increase as much

as possible the value of TC(A). The rewiring process must not disconnect the

network or create self–loops or multiple edges in the graph.

As we will show below, (P3) can be solved using combinations of methods developed to

solve (P1) and (P2). Hence, we first focus on the downdate and the update separately.

Note that to decrease as little as possible the total communicability when removing an

edge it would suffice to select (i∗, j∗) ∈ E so as to minimize the quantities

1TAk1− 1T (A− eie
T
j − eje

T
i )

k1 ∀k = 1, 2, . . . ,

since TC(A) =
∑∞

k=0
1
TAk

1

k! . Similarly, to increase as much as possible TC(A) by

addition of a virtual edge, it would suffice to select (i∗, j∗) ∈ E that maximizes the

differences

1T (A+ eie
T
j + eje

T
i )

k1− 1TAk1 ∀k = 1, 2, . . .

However, it is easy to show that in general one cannot find a choice for (i∗, j∗) that

works for all such k. Numerical experiments on small synthetic graphs showed that

in general the optimal edge selection for k = 2 is different from the one for k = 3.

Indeed, we have considered 100 synthetic examples built using the functions pref(100)

and smallw(100) from the CONTEST toolbox for MATLAB (see Section 1.4 for more

details). For each one of these matrices, we have selected the update that maximizes

the difference for k = 2 and the one which maximizes the difference for k = 3. Then, we

have computed how many times the two selected edges coincide. We have iterated this



Chapter 2. Tuning the total communicability of undirected graphs 37

procedure 10 times. On average, the selected edges are the same 89.6% of the time, when

using the preferential attachment model, and 33.3% of the time, when using the small

world model. From this simple test it clearly follows that it is unlikely that one can find

a simple “closed form solution” to the problem, and we need to develop approximation

techniques.

The majority of the heuristics we will develop are based on new edge centrality measures.

The idea underlying these is that it seems reasonable to assume that an edge is more

likely used as communication channel if its adjacent nodes are given a lot of information

to spread. We thus introduce three new centrality measures for edges based on this

principle: edges connecting important nodes are themselves important.

Definition 2.4. For any i, j ∈ V we define the edge subgraph centrality of an exist-

ing/virtual edge (i, j) as

eSC(i, j) =
(
eA
)
ii

(
eA
)
jj
.

This definition, based on the subgraph centrality of nodes, exploits the fact that the ma-

trix exponential is symmetric positive definite and hence (eA)ii(e
A)jj > (eA)2ij . There-

fore, the diagonal elements of eA somehow control its off-diagonal entries, hence they

may contain enough information to infer the “payload” of the edges or of the virtual

edges of interest.

Definition 2.5. For any i, j ∈ V we define the edge total communicability centrality of

an existing/virtual edge (i, j) as

eT C(i, j) = [eA1]i[e
A1]j .

It is important to observe that when the spectral gap λ1−λ2 is “large enough”, then the

subgraph centrality
(
eA
)
ii
and the total communicability centrality [eA1]i are essentially

determined by eλ1q1(i)
2 and eλ1q1(i)‖q1‖1, respectively (see, e.g., [13, 14, 33]); it follows

that in this case the two centrality measures introduced and a centrality measure based

on the eigenvector centrality for nodes can be expected to provide similar rankings.
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This is especially true when attention is restricted to the top edges (or nodes). This

observation motivates the introduction of the following edge centrality measure.

Definition 2.6. For any i, j ∈ V we define the edge eigenvector centrality of an exist-

ing/virtual edge (i, j) as

eEC(i, j) = q1(i)q1(j).

As a further justification for this definition, note that

λ1 − 2 (eEC(i, j)) ≤ λ̂1 ≤ λ1, λ̃1 ≥ λ1 + 2 (eEC(i, j)) ,

where λ̂1 is the leading eigenvalue of the adjacency matrix Â = A − eie
T
j − eje

T
i of

the graph obtained after the downdate of (i, j) ∈ E , and λ̃1 is the leading eigenvalue of

the adjacency matrix Ã = A + eie
T
j + eje

T
i of the graph obtained after the update of

(i, j) ∈ E . These inequalities show that the edge eigenvector centrality of an (virtual)

edge (i, j) is strictly connected to the change in the value of the leading eigenvalue of

the adjacency matrix, which influences the evolution of the total communicability when

we modify A. Indeed, since we can write

TC(A) =

n∑

k=1

eλk(qT
k 1)

2,

it is clear that the main contribution to the value of TC(A) is likely to come from the

term eλ1‖q1‖21, especially when λ1 ≫ λ2.

Remark 2.7. The edge eigenvector centrality has been used in [89, 92] to devise edge

removal techniques aimed to reduce significantly λ1, so as to increase the epidemic

threshold of networks.

Note that we defined these measures of centrality for both existing and virtual edges (as

in [15]). The reason for this as well as the justification for these definitions will become

clear in the next subsections.

We now discuss how to use these definitions to deal with the problems previously de-

scribed.
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Algorithm 1: Downdating algorithm with connectivity check.

Data: Initial graph G, K ∈ N, greedy ∈ {0, 1}
Result: Set S of K edges to be removed
S = ∅;
c = 0;
E = list of edges in the graph;
if greedy then

while (c < K) && (E 6= ∅) do
found edge = 0;
Compute the centrality measure of interest ∀(i, j) ∈ E ;
while (found edge == 0) && (E 6= ∅) do
G ′ = G;
s = element in E with the smallest centrality;
Downdate s from G ′;
if G ′ is connected then

G = G ′;
found edge = 1;
S = S ∪ {s};
c = c+ 1;

end

E = E \ {s};
end

end

else

l = 1;
Compute edge centrality measure of interest ∀(i, j) ∈ E ;
Sort the edges in ascending order;
while (c < K) && (l ≤ |E |) do
G ′ = G;
s = lth edge in the sorted array;
Downdate s from G ′;
if G ′ is connected then

G = G ′;
c = c+ 1;
S = S ∪ {s};

end

l = l + 1;

end

end

Return S .

(P1) Downdate

The downdate of any edge in the network will result in a reduction of its total communi-

cability. Note that since we are focusing on the case of connected networks, we will only

perform downdates that keep the resulting graph connected. In practice, it is desirable

to further restrict the choice of downdates to a subset of all existing edges, on the basis

of criteria to be discussed shortly.

An “optimal” approach would select at each step of the downdating process a candidate
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Algorithm 2: Downdating algorithm without connectivity check.

Data: Initial graph G, K ∈ N, greedy ∈ {0, 1}
Result: Set S of K edges to be removed
S = ∅;
c = 0;
E = list of edges in the graph;
if greedy then

for iter = 1 : K do

Compute the centrality measure of interest ∀(i, j) ∈ E ;
s = element in E with the smallest centrality;
Downdate s from G;
S = S ∪ {s};
E = E \ {s};

end

else

Compute edge centrality measure of interest ∀(i, j) ∈ E ;
Sort the edges in ascending order;
S = top K elements in the sorted array;

end

Return S .

edge corresponding to the minimum decrease of communicability.2 Note that for large

networks this method is too costly to be practical. For this reason we aim to develop

inexpensive techniques that will hopefully give close-to-optimal results. Nevertheless,

for small networks we will use the “optimal” approach (where we systematically try all

feasible edges and delete the one causing the least drop in total communicability) as

a baseline method against which we compare the various algorithms discussed below.

This method will be henceforth referred to as optimal.

The next methods we introduce perform the downdate of the lowest ranked existing

edge according to the edge centrality measures previously introduced whose removal

does not disconnect the network. We will refer to these methods as subgraph, nodeTC,

and eigenvector, which are based on definitions 2.4, 2.5, and 2.6, respectively. From

the point of view of the communicability, these methods downdate an edge connecting

two nodes which are peripheral (i.e., have low centrality) and therefore are not expected

to give a large contribution to the spread of information along the network. Hence, the

selected edge is connecting two nodes whose ability to exchange information is already

very low, and we do not expect the total communicability to suffer too much from this

edge removal. This observation also suggests that such downdates can be repeatedly

applied without the need to recompute the ranking of the edges after each downdate.

As long as the number of downdates performed remains small compared to the total

2Strictly speaking, this would correspond to a greedy algorithm which is only locally optimal. In
general, this is unlikely to result in “globally optimal” network communicability. In the following, the
term “optimal” will be understood in this limited sense only.
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number of edges, we expect good results at a greatly reduced total cost. Note also that

such downdates can be performed simultaneously rather than sequentially. We will refer

to these variants as subgraph.no, nodeTC.no, and eigenvector.no.

Finally, we consider a technique motivated by the bounds obtained via quadrature rules

derived in Section 1.3. From the expression for the function Φ in the special case of the

downdate (cf. Corollary 2.2), we infer that a potentially good choice may be to remove

the edge having incident nodes i, j for which the sum di+dj is minimal, if its removal does

not disconnect the network. Indeed, this choice reduces the upper bound only slightly

and the total communicability may mirror this behavior. Another way to justify this

strategy is to observe that it is indeed the optimal strategy if we approximate eA with

its second-order approximation I + A+ 1
2A

2 in the definition of total communicability.

This technique will be henceforth referred to as degree. We note that a related measure,

namely, the average of the out-degrees
di+dj

2 , was proposed in [15] as a measure for the

centrality of an edge (i, j) in directed graphs.

Algorithms 1 and 2 contain the pseudo-code for our downdating techniques with and

without the connectivity check. Both these algorithms can be used with or without the

recomputation of the rankings for the edges after each modification has been performed.

They require as inputs the initial graph G (typically in the form of its adjacency matrix

A), a budget K, i.e., the number of modifications one wants to perform, and a Boolean

greedy, which indicates whether the rankings of the edges have to be recomputed after

each modification (greedy = 1) or not (greedy = 0).

(P2) Update

Most real world networks are characterized by low average degree. As a consequence, the

adjacency matrices of such networks are sparse (m = O(n)). For the purpose of select-

ing a virtual edge to be updated, this implies that we have approximately 1
2

(
n2 − cn

)

possible choices if we want to avoid the formation of multiple edges or self–loops (here

c is a moderate constant). Each one of these possible updates will result in an increase

of the total communicability of the network, but not every one of these will result in a

significant increment.
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Algorithm 3: Updating algorithm.

Data: Initial graph G, K ∈ N, S ⊂ V nodes in the subgraph, greedy ∈ {0, 1}
Result: Set S of K edges to be added
S = ∅;
Ω = list of virtual edges in the subgraph containing nodes in S;
if greedy then

for iter = 1 : K do

Compute edge centrality measure of interest ∀(i, j) ∈ Ω;
s = element in Ω having the largest centrality;
Update s in G;
S = S ∪ {s};
Ω = Ω \ {s};

end

else

Compute edge centrality measure of interest ∀(i, j) ∈ Ω;
Sort the edges in descending order;
S= top K elements in the sorted array;

end

Return S .

One natural updating technique is to connect two nodes having high centralities, i.e.,

add the virtual edge having the highest ranking according to the corresponding edge

centrality. Its incident nodes, being quite central, can be expected to have an important

role in the spreading of information along the network; on the other hand, the com-

munication between them may be relatively poor (think for example of the case where

the two nodes sit in two distinct communities). Hence, giving them a preferential com-

munication channel, such as an edge between them, should result in a better spread of

information along the whole network. Again, we will use the labels subgraph, nodeTC,

and eigenvector to describe these updating strategies. As before, in order to reduce

the computational cost, we also test the effectiveness of these techniques without the

recomputation of the ranking of the virtual edges after each update. These variants

(referred to as subgraph.no, nodeTC.no, and eigenvector.no) are expected to return

good results as well, since the selected update should not radically change the ranking

of the edges. Indeed, they make central nodes even more central, and the ranking of the

edges remains consequently almost unchanged. Note again that these updates can be

performed simultaneously rather than sequentially.

As for the case of downdating, the bounds via quadrature rules derived in Section 1.3

suggest an updating technique, i.e., adding the virtual edge (i, j) for which di + dj is

maximal. Indeed, such a choice would maximize the lower bound on the total commu-

nicability, see Corollary 2.3. Again, this choice can also be justified by noting that it is

optimal if eA is replaced by its quadratic Maclaurin approximant. We will again use the



Chapter 2. Tuning the total communicability of undirected graphs 43

Table 2.1: Brief description of the techniques used to tackle the downdating and
updating problems.

Method Downdate: (i, j) ∈ E Update: (i, j) 6∈ E
optimal argmin{TC(A)− TC(Â)} argmax{TC(Ã)− TC(A)}
subgraph(.no) argmin{eSC(i, j)} argmax{eSC(i, j)}
eigenvector(.no) argmin{eEC(i, j)} argmax{eEC(i, j)}
nodeTC(.no) argmin{eT C(i, j)} argmax{eT C(i, j)}
degree argmin{di + dj} argmax{di + dj}

label degree to refer to this updating strategy.

All these techniques will be compared with the optimal one, based on systematically

trying all feasible virtual edges and selecting at each step the one resulting in the largest

increase of the total communicability. Due to the very high cost of this brute force

approach, we will use it only on small networks.

Algorithm 3 describes the pseudo-code for our updating techniques. It can be used

with or without the recomputation of the rankings for the edges after each modification

has been performed. The Boolean greedy is used to discriminate between these two

options. The algorithm requires as inputs the original graph G (typically in the form

of its adjacency matrix A), a budget K, i.e., the number of modifications one wants to

perform, and the Boolean greedy.

The heuristics introduced to tackle (P1) and (P2) are summarized in Table 2.1.

(P3) Rewire

As we have already noted, there are situations in which the rewire of an edge may

be preferable to the addition of a new one. There are various possible choices for the

rewiring strategy to follow. The greatest part of those found in literature are variants

of random rewiring (see for example [16, 65]). In this work, on the other hand, we

are interested in devising mathematically informed rewiring strategies. For comparison

purposes, however, we will compare our rewiring methods to the random rewire method,

random, which downdates an edge (chosen uniformly at random among all edges whose

removal does not disconnect the network) and then updates a virtual edge, also chosen

uniformly at random.

Combining the various downdating and updating methods previously introduced we ob-

tain different rewiring strategies based on the centralities of edges and on the bounds for
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the total communicability. Concerning the methods based on the edge subgraph, eigen-

vector, and total communicability centrality, we note that since a single downdate does

not dramatically change the communication capability of the network, we do not need to

recompute the centralities and the ranking of the edges after each downdating step, at

least as long as the number of rewired edges remains relatively small (numerical experi-

ments not shown here support this claim). On the other hand, after each update we may

or may not recalculate the edge centralities. As before, we use subgraph/subgraph.no,

eigenvector/eigenvector.no and nodeTC/nodeTC.no to refer to these three variants

of rewiring. Additionally, we introduce another rewiring strategy, henceforth referred to

as node, based on the subgraph centrality of the nodes. In this method we disconnect

the most central node from the least central node among its immediate neighbors; then

we connect it to the most central node among those it is not linked to. It is worth em-

phasizing that this strategy is philosophically different from the previous ones based on

the edge subgraph centrality in the downdating phase (the updating step is the same).

In fact, in those methods we use information on the nodes in order to deduce some infor-

mation on the edges connecting them; on the other hand, the node algorithm does not

take into account the potentially high “payload” of the edges involved, whose removal

may result in a dramatic drop in the total communicability.

2.3 Computational aspects

There are several important points to keep in mind when implementing the methods

described in the previous subsection. First of all, for the downdates, updates, and

rewires based on the edge subgraph centrality we need to compute the diagonal entries

of eA. This is the most expensive part of these methods. There are, however, techniques

that can be used to rapidly estimate the diagonal entries of eA and to quickly identify the

top ℓ nodes, where ℓ≪ n; see [10, 13, 44] and references therein. It should be pointed out

that very high accuracy is not required or warranted by the problem. We also recall that

the same techniques (based on quadrature rules and the Lanczos process) can be used

to compute the total communicability 1T eA1 quickly (typically in O(n) work), although
such computation is actually not required by any of the algorithms tested here except

by the optimal strategy, which is only used (for small networks) as a baseline method.
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Such methods can also be used for rapidly estimating the node total communicability

centralities, TC(i) = [eA1]i = eTi e
A1.

Secondly, when performing an update or the updating phase of a rewire, it makes sense

to work with a subset of the set of all virtual edges E . Indeed, for a sparse network E
contains O(n2) edges and for large n this is prohibitive. Due to the particular selection

criteria we want to use, it is reasonable to restrict ourselves to the virtual edges in the

subgraph of our network that are incident to a subset S of nodes containing a certain

percentage of the top nodes, ranked according to some centrality measure. We found

that for the larger networks considered in this chapter, using just the top 1% of the

nodes ranked using the eigenvector centrality yields very good results.

Next, we derive the computational costs for the downdating techniques used in this

chapter. Let m be the number of edges in the network and let K ≪ n, assumed

bounded independently of n as n→∞, be the maximum number of downdates we want

to perform; in this work, the maximum value of K we consider is 2000 (used for the

three largest networks in our data set).

In the optimal method we remove each edge in turn, compute the total communicability

after each downdate, and then choose the downdate which caused the least decrease in

TC(A); assuming that the cost of computing TC(A) is O(n), we find a total cost of

O(Kmn) for K updates. Since m = O(n), this amounts to O(Kn2).

Next, we consider the cost of techniques based on subgraph centralities. The cost of com-

puting the node subgraph centralities is not easy to assess in general, since it depends

on network properties and on the approximation technique used. If a rank-k approxi-

mation is used [44], the cost is approximately O(kn); hence, the cost is linear in n if k

is independent of n, which is appropriate for many types of networks. Computing the

edge centralities requires another m = O(n) operations, and sorting the edges by their

centralities costs approximately m lnm comparisons. Note that sorting is only necessary

in the subgraph.no variant of the algorithm; indeed, with subgraph we recompute the

centralities after each update and instead of sorting the result we only need to identify

the edge of minimum centrality at each step, which can be done in O(m) work. Summa-

rizing, the cost of subgraph is O(K(n +m)) = O(Kn) for K downdates if we assume

the subgraph centralities can be computed in O(n) time, and the cost for subgraph.no

is O(n+m) = O(n) plus a pre-processing cost of O(m lnm) (= O(n lnn)) comparisons
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for sorting the edge centralities. Although the asymptotic cost of subgraph.no appears

to be higher than that of subgraph (due to the n lnn term), in practice one finds that

subgraph.no runs invariably much faster than subgraph for all cases tested here.

The costs associated with eigenvector and eigenvector.no scale like those of subgraph

and subgraph.no, assuming that the dominant eigenvector q1 of a large sparse n × n

adjacency matrix can be approximated in O(n) time. For many real world networks this

is a reasonable assumption, since in practice we found that running a fixed number of

Lanczos steps will give a sufficiently good approximation of q1. The prefactors can be

expected to be much smaller for the methods based on eigenvector centrality than for

those based on subgraph centrality.

The costs for nodeTC and nodeTC.no are comparable to those for eigenvector and

eigenvector.no, with the same asymptotic scalability.

Finally, the cost of degree is O(Km) and hence also O(Kn) for a sparse network.

Note that the cost of checking that the connectivity is preserved after each downdate

does not affect these asymptotic estimates; indeed, using A∗ search [54] this can be

done in O(m) time and hence the additional cost is only O(n) for a sparse network. Of

course, if the removal of an edge is found to disconnect the network we do not perform

the downdate and move on to the next candidate edge.

We consider next the computational cost for the updating strategies. As before we let

K, assumed bounded independently of n as n→∞, be the maximum number of updates

we want to perform.

It can be easily shown that the optimal method costs O(Kn3) operations. To estimate

the cost of the remaining methods, we assume that the set S ⊂ V consisting of the

top ℓ = |S| nodes (ranked according to some centrality measure) is known. The cost

of determining this set is asymptotically dominated by the term O(n lnn), as we saw.

As already mentioned, ℓ will be equal to some fixed percentage of the total number of

nodes in the network.

Both subgraph and eigenvector cost O(Kℓn) operations, provided a low rank approx-

imation (of fixed rank) is used to estimate the subgraph centralities. The same holds for

nodeTC. Typically, the prefactor will be larger for the former method. Since we assumed

that ℓ = O(n) (albeit with a very small prefactor, like 10−2) these methods exhibit an
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Table 2.2: Description of the Data Set.

NAME n m λ1 λ2 λ1 − λ2

Zachary 34 78 6.726 4.977 1.749
Sawmill 36 62 4.972 3.271 1.701
social3 32 80 5.971 3.810 2.161
dolphins 62 159 7.193 5.936 1.257
Minnesota 2640 3302 3.2324 3.2319 0.0005
USAir97 332 2126 41.233 17.308 23.925
as-735 6474 12572 46.893 27.823 19.070
Erdös02 5534 8472 25.842 12.330 13.512
ca-HepTh 8638 24806 31.034 23.004 8.031

as-22july2006 22963 48436 71.613 53.166 18.447
usroad-48 126146 161950 3.911 3.840 0.071

O(n2) scaling. In practice this is somewhat misleading, since the quadratic scaling is

not observed until n is quite large.

Finally, subgraph.no, eigenvector.no, and nodeTC.no all cost O((K + ℓ)n) while

degree costs O(Kℓ) = O(n). Again, the former cost is asymptotically quadratic but

the actual cost is dominated by the linear part until n becomes quite large. We note

that we can obtain an asymptotically linear scaling by imposing an upper bound on ℓ,

i.e., on the fraction of nodes that we are willing to include in the working subset S of

nodes. We stress that because of the widely different prefactors for the various methods,

these asymptotic estimates should only be taken as indicative. In the next section we

present timings showing the linear scaling behavior of the various heuristics in practice,

at least for the networks considered here.

2.4 Numerical results

In this section we discuss the results of numerical studies performed in order to assess the

effectiveness and efficiency of the proposed techniques. The tests have been performed

on both synthetic and real-world networks, as described below.

All experiments were performed using Matlab Version 7.12.0.635 (R2011a) on an IBM

ThinkPad running Ubuntu 12.04.5 LTS, a 2.5 GHZ Intel Core i5 processor, and 3.7 GiB

of RAM.
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Figure 2.1: Evolution of the normalized total communicability vs number of down-
dates performed on small networks.
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2.4.1 Real-world networks

The real-world networks used in the tests (see Table 2.2) come from a variety of sources

and their description can be found in Appendix A. For each network, Table 2.2 reports

the number of nodes (n), the number of edges (m), the two largest eigenvalues, and the

spectral gap. We use the first eight networks to test all methods described in the previous

section (except for optimal, which is only applied to the four smallest networks) and the

last three to illustrate the performance of the most efficient among the methods tested.

We begin by showing results for the four smallest networks. Figure 2.1 displays the re-

sults obtained with the downdating methods optimal, eigenvector, nodeTC, subgraph,

and degree. The results for eigenvector.no, subgraph.no, and nodeTC.no are vir-

tually indistinguishable from those obtained with eigenvector, subgraph, and nodeTC

and are therefore not shown. At each step we modify the network by downdating an edge

and we then compute and plot the new value of the normalized total communicability.

The tests consist of K = 25 modifications.

Figure 2.1 shows that our methods all perform similarly and give results that are in

most cases very close to those obtained with optimal, and occasionally even better, as

is the case for eigenvector(.no) and nodeTC(.no) on the dolphins network after a

sufficient number of downdates have been performed. This result may seem puzzling at

first, however, it can be easily explained by noticing that eigenvector and nodeTC select

a different edge from that selected by optimal at the third and sixth downdate step,
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Figure 2.2: Evolution of the normalized total communicability vs number of updates
performed on small networks.
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Figure 2.3: Evolution of the normalized total communicability vs number of rewires
performed on small networks.
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respectively. Hence, from that point on the adjacency matrices on which the methods

work are different, and the choice performed by the optimal method may no longer be

optimal for the graphs manipulated by eigenvector and nodeTC. Note that even the

simple heuristic degree seems to perform well, except perhaps on the dolphins network

after 15 or so downdate steps. Overall, the methods based on eigenvector and total

communicability centrality appear to perform best in view of their efficacy and low cost.

The results for the updating methods are reported in Figure 2.2. As for the downdating

methods, subgraph.no, eigenvector.no, and nodeTC.no return results that are virtu-

ally identical to those obtained using subgraph, eigenvector, and nodeTC, therefore we
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Figure 2.4: Evolution of the normalized total communicability vs number of down-
dates, updates and rewires for networks Minnesota and as735.
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omit them from the figure. Once again we see that the methods based on eigenvector,

subgraph, and total communicability centrality give excellent results, whereas degree is

generally not as effective.

Rewiring results are displayed in Figure 2.3. Clearly, the methods making use of edge

centrality perform quite well, in contrast to random rewiring (which is only included as a

base for comparison). Note also the poor performance of node, showing that the use of

edge centralities (as opposed to node centralities alone) is indispensable in this context.

Next, we consider the medium size networks (Minnesota, as735, USAir97, and Erdös02).

For these networks the set E (the complement of the set E of edges) is large enough

that performing an extensive search for the edge to be updated is expensive. Hence,

we form the set S of the top 10% of the nodes ordered according to the eigenvec-

tor centrality and we restrict our search to virtual edges incident to these nodes only.

An exception is the network USAir97 where we have used the set S corresponding to
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Figure 2.5: Evolution of the normalized total communicability vs number of down-
dates, updates and rewires for networks USAir97 and Erdös02.
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the top 20% of the nodes, since in the case of 10% this set contained only 52 vir-

tual edges. In Figures 2.4 and 2.5 we show results for the methods eigenvector,

eigenvector.no, subgraph, subgraph.no and degree. These results confirm the effec-

tiveness of the eigenvector and subgraph algorithms and their less expensive variants

eigenvector.no and subgraph.no in nearly all cases; similar results were obtained with

nodeTC and nodeTC.no (not shown). The only exception is in the downdating of the

Minnesota network, where the eigenvector-based techniques give slightly worse results.

This fact is easily explained in view of the tiny spectral gap characterizing this and sim-

ilar networks3 (see Table 2.2). Because of this property, eigenvector centrality is a poor

approximation of subgraph centrality and cannot be expected to give results similar to

those obtained with subgraph and subgraph.no.

The results also show that the inexpensive degree method does not perform as well on

these networks, except perhaps on Minnesota. The relatively poor performance of this

3Small spectral gaps are typical of large, grid-like networks such as the road networks or the graphs
corresponding to triangulation or discretization of physical domains.
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Figure 2.6: Downdates for large networks: normalized total communicability vs. num-
ber of modifications.
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method is due to the fact that the information used by this method to select an edge

for downdating is too local.

Note, however, the scale on the vertical axis in Figures 2.4 and 2.5, suggesting that

for these networks (excluding perhaps Minnesota) all the edge centrality-based meth-

ods perform well with only very small relative differences between the resulting total

communicabilities.

Overall, these results indicate that the edge centrality-based methods, especially the

inexpensive eigenvector.no and nodeTC.no variants, are an excellent choice in almost

all cases. In the case of downdating networks with small spectral gaps, subgraph.no

may be preferable but at a higher cost.

The behavior of the degree method depends strongly on the network on which it is

used. Our tests indicate that it behaves well in some cases (for example, Erdös02) but

poorly in others (Minnesota). We speculate that this method may perform adequately

on scale-free networks (such as Erdös02) where a high degree is an indication of centrality

in spreading information across the network.

Some comments on the difference in the results for updating as compared to those for

rewiring (downdating followed by updating) are in order. Recall that our downdating

strategies aim to reduce as little as possible the decrease in the value of the total com-

municability, whereas the updating techniques aim to increase this index as much as

possible. With this in mind, it is not surprising to see that the trends of the evolution of

the total communicability after rewiring reflect those obtained with the updating strate-

gies. The values obtained using the updates are in general higher than those obtained
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Figure 2.7: Updates for large networks: normalized total communicability vs. number
of modifications.
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using the rewiring strategies, since updating implies the addition of edges whereas in

rewiring the number of edges remains the same. The difference is especially pronounced

for the small networks (except for dolphins), where the effects of downdates has a greater

impact, leading to a decrease of up nearly 70% of the original value of the total com-

municability after K = 25 downdates (cf. Figure 2.1). It is important to stress that the

methods based on the edge eigenvector and total communicability centrality appear to

be more stable than the others under rewiring and to dampen the effect of the downdates

even for small networks.

Finally, in Figures 2.6 and 2.7 we show results for the three largest networks in our data

set (ca-HepTh, as-22july06, and usroad-48). In the case of the updating, we have selected

the virtual edges among those in the subgraph containing the top 1% of nodes ranked ac-

cording to the eigenvector centrality. We compare the following methods: eigenvector,

eigenvector.no, nodeTC, nodeTC.no, subgraph.no, and degree; random downdating

was also tested and found to give poor results. Note that network usroad-48 behaves

similarly to Minnesota; this is not surprising in view of the fact that these are both road

networks with a tiny spectral gap. Looking at the scale on the vertical axis, however,

it is clear that the decrease in total communicability is negligible with all the methods

tested here. The results on these networks confirm the general trend observed so far; in

particular, we note the excellent behavior of nodeTC and nodeTC.no.
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Figure 2.8: Evolution of the total communicability when 50 downdates, updates or
rewires are performed on two synthetic networks with n = 1000 nodes.
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2.4.2 Synthetic networks

The synthetic examples used in the tests were produced using the CONTEST toolbox

for Matlab (see [87, 88]). We tested two types of graphs: the preferential attachment

(Barabási–Albert) model and the small world (Watts–Strogatz) model, see Section 1.4.

We have used matrices with n = 1000 nodes which were built using the default values

for the functions pref and smallw previously described in Section 1.4. We used d = 2

in the Barabási–Albert model and k = 2, p = 0.1 in the Watts–Strogatz model.

The results for our tests are presented in Figure 2.8. These results agree with what

we have seen previously on real-world networks. Interestingly, degree does not perform

well for the downdate when working on the preferential attachment model; this behavior

reflects what we have seen for the networks USAir97, as-735, and Erdös02, which are

indeed scale-free networks.
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Figure 2.9: Timings in seconds for scale-free graphs of increasing size (500 modifica-
tions).
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2.4.3 Timings for synthetic networks

We have performed some experiments with synthetic networks of increasing size in order

to assess the scalability of the various methods introduced in this chapter. A sequence

of seven adjacency matrices corresponding to Barabási–Albert scale-free graphs was

generated using the CONTEST toolbox. The order of the matrices ranges from 1000

to 7000; the average degree is kept constant at 5. A fixed number of modifications

(K = 500) was carried out on each network.

We used the built-in Matlab function eigs (with the default settings) to approximate

the dominant eigenvector of the adjacency matrix A, the Matlab toolbox mmq [72] to

estimate the diagonal entries of eA (with a fixed number of five nodes in the Gauss–Radau

quadrature rule, hence five Lanczos steps per estimate), and the toolbox funm kryl to

compute the vector eA1 of total communicabilities, also with the default parameter

settings.

The results are shown in Figure 2.9. The approximate (asymptotic) linear scaling be-

havior of the various methods (in particular of nodeTC.no and eigenvector.no, which

are by far the fastest, see the insets) is clearly displayed in these plots.

2.4.4 Timings for larger networks

In Tables 2.3-2.4 we report the timings for various methods when K = 2000 downdates

and updates are selected for the three largest networks listed in Table 2.2.
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Table 2.3: Timings in seconds for K = 2000 downdates performed on the three largest
networks in Table 2.2.

ca–HepTh as–22july06 usroad–48

eigenvector 278.13 599.83 11207.39
eigenvector.no 0.07 1.79 4.08

nodeTC 553.04 1234.49 2634.27
nodeTC.no 0.34 0.83 1.34
subgraph.no 107.36 383.34 1774.07
subgraph.no∗ 246.44 808.24 10322.41

degree 29.67 53.42 153.52

Table 2.4: Timings in seconds for K = 2000 updates performed on the three largest
networks in Table 2.2

ca–HepTh as–22july06 usroad–48

eigenvector 192.8 436.9 1599.5
eigenvector.no 0.19 0.33 5.85

nodeTC 561.9 1218.8 2932.
nodeTC.no 0.30 0.55 1.59
subgraph.no 3.13 7.20 121.4

degree 11.1 12.4 175.8

The timings presented refer to the selection of the edges to be downdated or updated,

which dominates the computational effort. For the method subgraph.no in the case of

downdates, we restricted the search of candidate edges to a subset of E in order to reduce

costs. For the three test networks we used 40%, 45%, and 15% of the nodes, respectively,

chosen by taking those with lowest eigenvector centrality, and the corresponding edges.

We found the results to be very close to those obtained working with the complete set E ,
but at a significantly lower cost (especially for the largest network). The timings when

the complete set E was considered correspond to the label subgraph.no∗ in Table 2.3.

These results clearly show that algorithms nodeTC.no and eigenvector.no are orders

of magnitude faster than the other methods; method subgraph.no, while significantly

more expensive, is still reasonably efficient and can be expected to give better results in

some cases (e.g., on networks with a very small spectral gap). It is worth mentioning

that in principle it is possible to greatly reduce the cost of this method using parallel

processing, since each subgraph centrality can be computed independently of the others.

The degree algorithm, on the other hand, cannot be recommended in general since

it gives somewhat inferior results. The remaining methods eigenvector, nodeTC, and

subgraph (not shown here) are prohibitively expensive for large networks, at least when

the number K of modifications is high (as it is here).

We also observe that downdating is generally a more expensive process than updating,
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since in the latter case the edges are to be chosen among a fairly small subset of all

virtual edges, whereas in the downdating process we work on the whole set E of existing

edges (or on a large subset of E). For some methods the difference in cost becomes

significant when the networks are sufficiently large and the number of modifications to

be performed is high.

Summarizing, the method labelled nodeTC.no is the fastest and gives excellent results,

quite close to those of the more expensive methods, and therefore we can recommend

its use for the type of problems considered here. The methods labelled eigenvector.no

and subgraph.no are also effective and may prove useful in some settings, especially for

updating.

2.5 Evolution of other connectivity measures

In this section we want to highlight another facet of the methods we have introduced

for (approximately) optimizing the total communicability. In particular, we look at the

evolution of other network properties under our updating strategies. When building or

modifying a network, there are various features that one may want to achieve. Typi-

cally, there are two main desirable properties: first, the network should do a good job

at spreading information, i.e., have a high total communicability; second, the network

should be robust under targeted attacks or random failure, which is equivalent to the

requirement that it should be difficult to “isolate” parts of the network, i.e., the net-

work should be “well connected”. This latter property can be measured by means of

various indices. One such measure is the spectral gap λ1 − λ2. As a consequence of the

Perron–Frobenius Theorem, adding an edge to a connected network causes the dominant

eigenvalue λ1 of A to increase (cf. Corollary 1.12). Figure 2.10 displays the evolution

of the leading eigenvalue of the adjacency matrix as we add links to the three largest

networks in our dataset. These results show that when a network is updated using one

of our techniques, the first eigenvalue increases rapidly with the number of updates. On

the other hand, the second eigenvalue λ2 tends to change little with each update and it

may even decrease (recall that the matrix eie
T
j + eje

T
i being added to A in an update

is indefinite). Therefore, the spectral gap λ1 − λ2 widens rapidly with the number of
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Figure 2.10: Evolution of the leading eigenvalue when K = 2000 updates are per-
formed on the three largest networks in Table 2.2.
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updates.4 It has been suggested by some authors (see, e.g., [33, 82]) that a large spectral

gap is typical of complex networks with good expansion properties.

Here we focus on a related measure, the natural connectivity. In particular, we inves-

tigate the effect of our proposed methods of network updating on the evolution of this

index.

2.5.1 Tracking the free energy (or natural connectivity)

In [100] the authors introduced a measure of network connectivity which is based on

an intuitive notion of robustness and whose analytical expression has a clear meaning

and can be derived from the eigenvalues of A; see also [99]. The idea underlying this

index is that a network is more robust if there exists more than one route to get from

one node to another; this property ensures that if a route become unusable, there is an

alternative way to get from the source of information to the target. Therefore, intuitively

a network is more robust if it has a lot of (apparently) redundant routes connecting its

vertices or, equivalently, if each of its nodes is involved in a lot of closed walks. The

natural connectivity aims to measure this property by taking advantage of the fact that

a measure for the total number of closed walks in a network already exists: the Estrada

index (see Subsection 1.4.4). Normalizing its value and taking the natural logarithm,

4This fact, incidentally, may serve as further justification for the effectiveness of algorithms like
nodeTC.no and eigenvector.no.



Chapter 2. Tuning the total communicability of undirected graphs 59

one obtains the natural connectivity (or natural eigenvalue) of the graph,

λ(A) = ln

(
EE(G)

n

)
= ln


 1

n

n∑

j=1

eλj


 ,

which can be seen as an “average” eigenvalue and changes monotonically when an edge

is downdated or updated in the graph (see [100]). Coarse bounds on this index are

readily obtained:

0 ≤ λ(A) ≤ ln((n− 1)e−1 + en−1)− lnn.

The lower bound is attained by the empty graph, while the upper bound is attained by

the complete graph, as a straightforward computation shows. Using the results in [10]

we obtain more refined bounds via quadrature rules:

ln


 1

n

n∑

i=1

β2e
di
β + die

−β

β2 + di


 ≤ λ(A) ≤ ln

(
1

n

n∑

i=1

α2e
di
α + die

−α

α2 + di

)
,

where [α, β] is an interval containing the spectrum of −A and di is the degree of node i.

It turns out, however, that essentially the same index was already present in the liter-

ature. Indeed, the natural connectivity is only one of the possible interpretations that

can be given to the logarithm of the (normalized) Estrada index. Another, earlier in-

terpretation was given in [38], where the authors related this quantity to the Helmholtz

free energy of the network F = − ln (EE(G)).

Let us briefly recall here their approach. Consider a network in which every edge is

weighted by a parameter β > 0 and consider its adjacency matrix βA. The eigenvalues of

this new matrix are βλj for all j = 1, 2, . . . , n and its Estrada index becomes EE(G, β) =

Tr(eβA), where Tr denotes the trace. This index can be interpreted as the partition

function of the corresponding complex network:

Z(G, β) := EE(G, β) = Tr(eβA).

Form the standpoint of quantum statistical mechanics, H = −A is the system Hamil-

tonian and β = 1
kBT is the inverse temperature, with kB the Boltzmann constant and

T the absolute temperature. It is well known [34, 40] that β can be understood as a

measure of the “strength” of the interactions between pairs of vertices; the higher the
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temperature (i.e., the lower the value of β), the weaker the interactions. The eigenvalues

λi (for i = 1, . . . , n) give the possible energy levels, each corresponding to a different

state of the system.

The probability that the system is found in a particular state can be obtained by con-

sidering the Maxwell–Boltzmann distribution:

pi =
eβλi

EE(G, β)
, i = 1, . . . , n.

Using this notation and the fact that the Estrada index can be seen as the partition

function of the system, in [38] the authors define the Gibbs entropy of the network as:

S(G, β) = −kB
n∑

i=1

pi ln(pi) = −kBβ
n∑

i=1

(λipi) + kB ln(EE(G, β))

where in the last equality we have used the fact that
∑

i pi = 1.

Using now the standard relation F = H − TS that relates the Helmholtz free energy F ,

the total energy of the network H, the Gibbs entropy S, and the absolute temperature

of the system T , the authors derive:





H(G, β) =
∑n

i=1 λipi,

F (G, β) = −β−1 ln(EE(G, β)).

It is then clear that if we set β = 1 and let F := F (G, 1), then

λ = ln(EE(G))− ln(n) = −F − ln(n).

Therefore, the behavior of F is completely described by that of λ (and conversely) as

the graph is modified by adding or removing links.

The natural connectivity has been recently used (see [23]) to derive manipulation al-

gorithms that directly optimize this robustness measure. In particular, the updating

algorithm introduced in [23] appears to be superior to existing heuristics, such as those

proposed in [16, 45, 85]. This algorithm, which costs O(mt + Kd2maxt + Knt2) where

dmax = maxi∈V di and t is the (user-defined) number of leading eigenpairs, selects K

edges to be added to the network as described in Algorithm 4.
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Algorithm 4: Updating algorithm from [23].

Data: A adjacency matrix and K ∈ N

Result: Set S of K edges to be added
S = ∅;
Compute the top t eigenpairs (λk,qk) of A;
for iter = 1 : K do

Compute dmax = max(di), the largest degree of A ;
Find the set C of dmax nodes with the highest eigenvector centrality;

Select the edge (i∗, j∗) ∈ E that maximizes

e
λ1

(
e
2q1(i)q1(j) +

t∑

h=2

e
λh−λ1e

2qh(i)qh(j)

)

and such that i∗, j∗ ∈ C, i∗ 6= j∗;
S = S ∪ {(i∗, j∗)}, E = E ∪ {(i∗, j∗)};
Update A;
Update the top t eigenpairs as

{
λk = λk + 2qk(i)qk(j);

qk = qk +
∑

h 6=k

(
qh(i)qk(j)−qk(i)qh(j)

λk−λh

qh

)
k = 1, 2, . . . , t;

end

Return S.

We have compared our updating techniques with that described in Algorithm 4. Results

for four representative networks are shown in Figure 2.11. In our tests, we used the

value t = 50 (as in [23]), and we select K = 500 edges. Note that, when K is large,

the authors recommend to recompute the set of t leading eigenpairs every l iterations.

This operation requires an additional effort that our faster methods do not need. Since

the authors in [23] show numerical experiments in which the methods with and without

the recomputation return almost exactly the same results, we did not recompute the

eigenpairs after any of the updates.

Figure 2.11 displays the results for both the evolution of the natural connectivity and of

the normalized total communicability, where the latter is plotted in a semi-logarithmic

scale. A total of 500 updates have been performed. The method labelled Chan selects

the edges according to Algorithm 4 choosing from all the virtual edges of the graph. For

our methods we used, as before, the virtual edges in the subgraph obtained selecting

the top 10% or 20% of nodes ranked according to the eigenvector centrality. As one

can easily see, our methods generally outperform the algorithm proposed in [23]. In

particular, nodeTC.no and eigenvector.no give generally better results than Chan and

are much faster in practice. For instance, the execution time with Chan on the network

ca-HepTh was over 531 seconds, and much higher for the two larger networks. We recall
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Figure 2.11: Evolution of the natural connectivity and of the normalized total com-
municability (in a semi–logarithmic scale plot) when up to 500 updates are performed

on four real-world networks.
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(see Table 2.4) that the execution times for nodeTC.no and eigenvector.no are about

three orders of magnitude smaller.

It is striking to see how closely the evolution of the natural connectivity mirrors the

behavior of the normalized total communicability. This is likely due to the fact that

both indices depend on the eigenvalues of A (with a large contribution coming from

the terms containing λ1), and all the updating strategies used here tend to make λ1

appreciably larger.

These findings indicate that the (normalized) total communicability is equally effective

an index as the natural connectivity for the purpose of characterizing network connectiv-

ity. Since the network total communicability can be computed very fast (in O(n) time),

we believe that the normalized total communicability should be used instead of the

natural connectivity, especially for large networks. Indeed, computing the natural con-

nectivity requires evaluating all the diagonal entries of eA and is therefore significantly
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more expensive, for large networks, than the total communicability.

2.6 The case of the resolvent

In the previous sections we have focused on the case of the total communicability defined

in terms of the matrix exponential. However, as we have seen in Subsection 1.4.4, in

principle one could use any other function f : R −→ R in the definition, provided that

it is defined on the spectrum of the adjacency matrix A. In this section we focus on the

case of the resolvent:

(I − αA)−1 =
∞∑

k=0

(αA)k , α ∈
(
0,

1

λ1

)
. (2.2)

We can apply the previously introduced strategies to tune the resolvent-based total

communicability defined as:

TC(A, fα) = 1T (I − αA)−1
1, (2.3)

where fα(t) = (1−αt)−1 and α ∈ (0, λ−1
1 ). The quantity we want to tune is now parame-

ter dependent; moreover, for the matrix resolvent to be well defined, the parameter must

vary in an interval which depends on the leading eigenvalue of the adjacency matrix.

To deal with the downdating, updating, and rewiring problem we then have to first set

our framework, deciding whether we want to keep the parameter fixed or let it vary

as we modify the edges in the network. In the following, we briefly discuss these two

options.

Since (P3) requires to perform modifications of the form downdate-then-update, we will

only discuss (P1) and (P2).

2.6.1 Fixed α

Let us first consider the case of α ∈
(
0, λ−1

1

)
fixed. This approach appears to be the

most “natural”, since we want to select modifications for tuning the resolvent-based

total communicability of the original network and this index is associated to the original

matrix via α.
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As we modify the network by removing or adding links, the leading eigenvalue of the

adjacency matrix evolves as well. From Corollary 1.12, we know that the reciprocal of

the leading eigenvalue λ−1
1 cannot increase as we add links, and it cannot decrease as

we remove edges. This means that the interval
(
0, λ−1

1

)
will become wider as we remove

links from the network. Therefore, the originally chosen parameter α will remain in the

interval when we deal with the downdating problem, not affecting the well-posedness of

the Neumann series (2.3).

On the other hand, the addition of links to the network will make the interval more

and more narrow; eventually, α will fall out of the interval. In such case, the global

index TC(A, fα) is not defined. As a further consequence of this fact, we have that only

greedy approaches can be used to select updates. Indeed, we need to make sure that,

after each modification, the parameter α still belongs to the interval of convergence of

the series. Thus (P2) can be tackled, but the set of virtual edges among which to select

the modification at each step has to be redefined after each update in order to allow α

to fit in the interval of convergence of the new series at the subsequent step.

In conclusion, our techniques (as they are) can only be applied when considering (P1),

if one wants to tune the resolvent-based total communicability with a fixed value for the

parameter.

2.6.2 Varying α

Consider now the case in which we let the parameter α in (2.3) vary as we modify the

links of the network. Assume for simplicity that the parameter evolves as a function of

the leading eigenvalue of the adjacency matrix. In the numerical tests presented in this

subsection we have assumed that α = 1
2λ1

.

In this framework, we are considering a different matrix function at each step:

TC(A, fα) = 1T fα(A)1 = 1T (I − αA)−11, α ∈
(
0,

1

λ1

)
,

where fα(t) = f(t, α) = (1− αt)−1.

Despite the well-posedness of the problems, which is now surely verified, there are two

main drawbacks in this approach. Firstly, the fact that the parameter α is varying
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forces us to use only greedy approaches in this setting when tackling both (P1) and

(P2). Secondly, as we will discuss shortly, it may happen that the total communicability

increases as we remove edges or decreases as we add links, as a consequence of the fact

that we are changing the target function at each step.

Let us first focus on the case of the downdate. Suppose that the edge (i, j) ∈ E is

removed from the network. Let Â = A− eie
T
j − eje

T
i be the new adjacency matrix and

let α̂ be the new parameter associated with Â.

The values of the total communicabilities before and after the downdates are thus de-

noted by TC(A, fα) and TC(Â, fα̂). We want to deduce under which conditions the

resolvent-based total communicability increases after edge removal, i.e., when it holds

that

TC(Â, fα̂) ≥ TC(A, fα). (2.4)

Using the Sherman–Morrison–Woodbury formula [50, p. 50], after some algebraic ma-

nipulation, one gets

TC(Â, fα̂) = TC(A, fα̂)− α̂ d(i, j) (2.5)

where

d(i, j) =
2k̂ik̂j(1 + α̂Cij)− α̂(k̂2iCjj + k̂2jCii)

(1 + α̂Cij)2 − α̂2CiiCjj
,

C := fα̂(A) = (I − α̂A)−1, and k̂ = C1 = (k̂i). From (2.5) it follows that relation (2.4)

is satisfied when

TC(A, fα̂)− TC(A, fα) ≥ α̂ d(i, j). (2.6)

Figure 2.12 displays at the top the evolution of the parametric total communicability

as K = 25 downdates are performed on the network Sawmill [73] using the method

subgraph, based on the fα-subgraph centrality of nodes. More specifically, this method

makes use of the edge resolvent-subgraph centrality of nodes, which is a variant of

definition 2.4:

eRC(i, j) = (I − αA)−1
ii (I − αA)−1

jj .

The bottom plot in Figure 2.12 shows the mutual behavior of the left-hand side and right-

hand side of (2.6). As this figure clearly shows, the parametric total communicability

increases when (2.6) is satisfied. Therefore, in general, one cannot tackle the downdating

problem (P1) with a varying parameter with our heuristics.
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Figure 2.12: Network: Sawmill. Top: evolution of the parameter dependent total
communicability TC(A, fα) = 1T (I − αA)−11 when K = 25 downdates are performed
using subgraph. Bottom: mutual behavior of the left- and right-hand sides of Equa-

tion (2.6).
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The same reasoning applied to the updating problem leads to the conclusion that, even

in this case, the evolution of the parametric total communicability does not necessarily

follows the behavior one would expect as edges are added to the network. Indeed, as we

will show below, there are situation in which the addition of one edge may lead to the

decrease in the value of the total communicability.

More specifically, we want to understand under which hypothesis the condition:

TC(A, fα) ≥ TC(Ã, fα̃) (2.7)

is satisfied, i.e., under which conditions the update of an edge leads to the decrease in

the value of the resolvent-based total communicability. Using the Sherman–Morrison–

Woodbury formula as before, after some algebraic manipulation, one finds that

TC(Ã, fα̃) = TC(A, fα̃)− α̃ u(i, j) (2.8)



Chapter 2. Tuning the total communicability of undirected graphs 67

Figure 2.13: Network: Zachary. Top: evolution of the parameter dependent total
communicability TC(A, fα) = 1T (I − αA)−11 when K = 25 updates are performed
using subgraph. Bottom: mutual behavior of the left- and right-hand sides of Equa-

tion (2.9).
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where

u(i, j) =
2k̃ik̃j(1− α̃Dij) + α̃(k̃2iDjj + k̃2jDii)

(1− α̃Dij)2 − α̃2DiiDjj
,

D := fα̃(A) = (I − α̃A)−1, and k̃ = D1 = (k̃i). From (2.8) it follows that relation (2.7)

is satisfied when

TC(A, fα)− TC(A, fα̃) ≥ α̃ u(i, j) (2.9)

Figure 2.13 displays the evolution of the normalized parametric total communicability

(top) and the mutual behavior of the left- and right-hand sides of relation (2.9) (bottom)

when K = 25 updates are performed to the network Zachary [101] using the method

subgraph.

As for the case of the downdate, where the removal of one edge could lead to an increase

in the value of TC(A, fα), when performing an update to the network we may as well

expect the total communicability to decrease.
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In conclusion, the results of this section show that (P1), (P2), and (P3) cannot always

be tackled when using the resolvent-based total communicability. This is due to the fact

that the function appearing in the definition is parameter dependent, with the parameter

varying in an interval that depends on the leading eigenvalue of the adjacency matrix.

Conclusions

In this chapter we have introduced several techniques that can be used to modify an

existing network so as to obtain networks that are highly sparse, and yet have a large

total communicability.

These heuristics make use of various measures of edge centrality, a few of which have

been introduced in [4]. Far from being ad hoc, these heuristics are widely applicable and

mathematically justified. All our techniques can be implemented using well-established

tools from numerical linear algebra: algorithms for eigenvector computation, Gauss-

based quadrature rules for estimating quadratic forms, and Krylov subspace methods

for computing the action of a matrix function on a vector. At bottom, the Lanczos

algorithm is the main player. High quality, public domain software exists to perform

these modifications efficiently.

Among all the methods tested for the case of the total communicability, the best results

are obtained by the nodeTC.no and eigenvector.no algorithms, which are based on the

edge total communicability and eigenvector centrality, respectively. These methods are

extremely fast and returned excellent results in virtually all the tests we have performed.

For updating networks characterized by a small spectral gap, a viable alternative is the

algorithm subgraph.no. While more expensive than nodeTC.no and eigenvector.no,

this method scales linearly with the number of nodes and yields consistently good results.

Moreover, we have shown that the total communicability can be effectively used as a

measure of network connectivity, which plays an important role in designing robust

networks. Indeed, the total communicability does a very good job at quantifying two

related properties of networks: the ease of spreading information, and the extent to

which the network is “well connected”. Our results show that the total communicability

behaves in a manner very similar to the natural connectivity (or free energy) under

network modifications, while it can be computed much more quickly.
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Finally, we have discussed the case of the resolvent-based total communicability. This

case presents some difficulties, since the bilinear form considered in this case is param-

eter dependent. Furthermore, the parameter lies in an interval defined in terms of λ1,

the leading eigenvalue of the adjacency matrix. We have shown that, if we keep this

parameter fixed as we modify the network, our techniques can be used to tackle the

downdating problem only. On the other hand, if we let the parameter vary, we have

shown that the resolvent-based total communicability may display an opposite behavior

with respect to the desired one; namely, it can increase as we remove edges or decrease

if we add connections.





Chapter 3

Heuristics for optimizing the

communicability of digraphs

In Chapter 2 we considered the problem of modifying an existing sparse network so as

to cause the total network communicability to change in some desired way. A serious

limitation of the notion of total communicability is that it is not well suited to deal with

directed networks, and indeed Chapter 2 deals exclusively with undirected networks. The

main reason is that in a directed graph each node plays two roles, that of broadcaster and

that of receiver of information. It is clear that a single index cannot discriminate between

these two forms of communication. In this chapter, building in part on the ideas in [11],

we introduce two new measures of total network communicability, which quantify how

easily information is propagated on a given directed network when the two fundamental

modes of communication (broadcasting and receiving) have both to be accounted for.

Furthermore, we generalize the edge modification criteria in the previous chapter from

the undirected to the directed case, using the newly introduced communicability indices

as the objective functions.

This chapter is based on [5] and it is organized as follows. The new total communicabil-

ity indices for digraphs are introduced in Section 3.1. The edge updating/downdating

problem is described in Section 3.2. In Section 3.3 we introduce the proposed heuris-

tics for edge manipulation, and in Section 3.4 we discuss the result of numerical tests

(including timings) using five real-world directed networks.

71
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3.1 Total network communicabilities for digraphs

In [13] a global measure of how easily information is diffused across an (undirected)

network has been defined in terms of the matrix exponential of the adjacency matrix.

Let now A be the adjacency matrix of a directed graph. In analogy with the undirected

case, we can consider the total network communicability (1.12) defined in terms of

f(t) = et. In principle, this quantity (possibly normalized by n) gives us an idea of how

efficient the network is, globally, at diffusing information. However, by following this

approach we would be completely disregarding the twofold nature of nodes, which is one

of the main features of digraphs.

To better capture the dual behavior of nodes, we introduce two new global indices of

communicability defined in terms of functions of the hub and authority matrices.

Definition 3.1. Let A be the adjacency matrix of a simple digraph and let f : R −→ R

be a function defined on the spectrum of AAT . The total hub f -communicability of the

digraph is defined as

ThC(A, f) := 1T f(AAT )1 =
n∑

i=1

f(σ2
i )(1

Tui)
2.

Similarly, the total authority f -communicability of the digraph is defined as

TaC(A, f) := 1T f(ATA)1 =
n∑

i=1

f(σ2
i )(1

Tvi)
2.

The motivation for using these quadratic forms as total communicability indices is that

they exploit the recursive definition that relates hubs and authorities in a directed net-

work. Indeed, if we assume that the function f can be expressed as a power series of

the form

f(t) =

∞∑

k=0

ckt
k, ck ≥ 0 ∀k = 0, 1, . . . , (3.1)

then an easy computation shows that the total hub f -communicability can be described

in terms of the in-degree vector and of the authority matrix. Analogous computations

carried out on the total authority f -communicability show that this index can be com-

pletely described in terms of the out-degree vector and of the hub matrix. This highlights
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the fact that the overall ability of nodes to broadcast information depends on their abil-

ity of receiving it and that the overall ability of nodes to receive information depends

on how well they are able to broadcast it.

More explicitly, we can write

ThC(A, f) = c0n+ c1‖din‖22 +
∞∑

k=1

ck+1d
T
in(A

TA)kdin

and

TaC(A, f) = c0n+ c1‖dout‖22 +
∞∑

k=1

ck+1d
T
out(AA

T )kdout.

Note that due to the nonnegativity assumption on the coefficients in (3.1), both ThC(A, f)

and TaC(A, f) are an inherently nonnegative quantities.

Proposition 3.2. The total hub and authority f -communicabilities are invariant under

graph isomorphism.

Proof. Let G1 and G2 be two isomorphic graphs with associated adjacency matrices A1

and A2. Then there exists a permutation matrix P such that A2 = PA1P
T . Therefore,

ThC(A2, f) = 1T f(A2A
T
2 )1 = 1T f(PA1P

TPAT
1 P

T )1

= 1TPf(A1A
T
1 )P

T1 = 1T f(A1A
T
1 )1 = ThC(A1, f).

Similar computations carried out on the total authority f -communicability lead to

TaC(A2, f) = TaC(A1, f).

In the remaining of this chapter, we will focus on the total hub and authority f -

communicabilities when the function f(t) = cosh(
√
t) is used in the definition. The

choice of the function f(t) may seem unusual; however, we argue that this choice is the

most natural one if one wants to “translate” the idea of total communicability to the

case of digraphs. Indeed, in the undirected case the total communicability was defined

in terms of the matrix exponential, since we were to count all the walks of any length

taking place in the network, weighting walks of length k by a factor 1
k! . In the case of

a digraph, we want to count all the alternating walks, again penalizing walks of length

k by a factor 1
k! . Recall that the kth power of the hub and authority matrices contain

information concerning the number of alternating walks of length 2k taking place in the
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networks. Hence, the total hub communicability will be defined as

ThC(A) := 1T

( ∞∑

k=0

(AAT )k

(2k)!

)
1 = 1T

( ∞∑

k=0

(
√
AAT )2k

(2k)!

)
1

= 1T cosh(
√
AAT )1 = ThC(A, cosh(

√
t)),

and, similarly, the total authority communicability will be defined as:

TaC(A) := 1T

( ∞∑

k=0

(ATA)k

(2k)!

)
1 = 1T

( ∞∑

k=0

(
√
ATA)2k

(2k)!

)
1

= 1T cosh(
√
ATA)1 = TaC(A, cosh(

√
t)).

A further justification for the choice of the function f(t) comes from considering the

bipartite graph associated with the digraph under study (see [11]). Let A be the ad-

jacency matrix of the bipartite graph G = (V ,E ) obtained from the original digraph

represented by A as described in Subsection 1.1.3. Then the following result holds true.

Proposition 3.3. Let A be the adjacency matrix of the undirected, bipartite graph

obtained from the adjacency matrix A of a digraph. Then

eA =


 cosh(

√
AAT ) sinh⋄(A)

sinh⋄(AT ) cosh(
√
ATA)


 , (3.2)

where sinh⋄(A) is the generalized hyperbolic sine of the matrix A (cf.definition 1.17).

Proof. The result easily follows from (1.5)

An important feature of this matrix is that its entries are nonnegative. Thus, these

quantities can be used to describe the importance of nodes and how well they communi-

cate when they are acting as broadcasters or receivers of information in the graph [11].

Indeed, the entries of the diagonal block cosh(
√
AAT ) provide centrality and commu-

nicability indices for nodes and pairs of nodes when they are all seen as broadcaster of

information in the network. The diagonal entries give the centralities for the nodes in

the original network when they are seen as broadcasters of information (hubs), while the

off-diagonal entries measure how well two nodes, both acting as broadcasters, exchange

information. Similarly, when considering the entries of the diagonal block cosh(
√
ATA),
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we are looking at centrality and communicability indices for nodes and pairs of nodes

when they are all seen as playing the role of authorities in the digraph.

Thus, the total hub communicability and total authority communicability defined as

ThC(A) = 1T cosh(
√
AAT )1 and TaC(A) = 1T cosh(

√
ATA)1, respectively, account for

the overall ability of the network of exchanging information when all its nodes are playing

the same role of broadcasters (ThC(A)) or receivers (TaC(A)).

As for the off-diagonal blocks in (3.2), they contain information concerning how nodes

exchange information when one node is playing the role of broadcaster (resp., receiver)

and the other is acting as a receiver (resp., broadcaster).

3.2 Edge modification strategies

Our main goal is to develop heuristics that can be used to add/remove edges from a

digraph in order to tune the total hub and/or authority communicability. In particular,

we will call update of (i, j) 6∈ E the addition of this virtual edge to the network; we want

to perform this operation in such a way that this addition increases as much as possible

the quantities of interest. Note that, due to the nonnegativity condition in (3.1), the

addition of an edge can only increase the total communicabilities ThC(A) and TaC(A).

The operation of removing an edge from the network will be referred to as the downdate

of an edge. Our aim is to select the edge to be removed in such a way that the target

functions ThC and TaC are not penalized too much, i.e., their values do not drop sig-

nificantly as edges are removed.1 Both these operations can be described as rank-one

modifications of the adjacency matrix A of the digraph G or, equivalently, as rank-two

modifications of the adjacency matrix A of the associated bipartite graph G .

As in the undirected case, in order to describe our updating and downdating strategies

we first introduce some edge centrality measures that can be used to rank the (virtual)

edges in the digraph; then, the derived rankings are used to select the modifications to

be performed. More specifically, a virtual edge having a large centrality is considered

important and thus its addition is expected to highly enhance the total communicabil-

ities. On the other hand, we will remove edges that have a low ranking, since they are

1Clearly, our approach can be adapted so as to obtain the opposite effect if so desired. Indeed, we
can adapt our algorithms to select edges whose removal heavily penalizes the target functions.
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not expected to carry a lot of information; thus, their removal is not expected to heavily

penalize the hub and authorities communicabilities of the network.

The resulting updating and downdating strategies will be similar in spirit to those

adopted in the undirected case (cf. Chapter 2). However, as explained in more de-

tail in the next subsection, we cannot simply apply the heuristics developed for the

undirected case to the bipartite graph G , since doing so could lead to possible loss of

structure.

3.2.1 Bipartite graphs vs. digraphs

In the remaining of this section we will describe in more detail how to tackle the problem

of selecting K edge modifications to be performed on the network in order to tune the

total hub and authority communicability indices: ThC(A) and TaC(A).

First we describe how to rank the edges. A priori, there are two natural approaches.

Indeed, given the definitions of our communicability indices in terms of the function

f(t) = cosh(
√
t), we can either work on the matrix (1.1) obtained from A as described

in Subsection 1.1.3, or on the original adjacency matrix A. When working on A , we

would adapt to this matrix the techniques developed for the undirected case which

performed best according to the results in Chapter 2, taking into account the need to

preserve the zero-nonzero block structure of A . More specifically, we will be using the

edge eigenvector centrality eEC (see definition 2.6) and the edge total communicability

centrality eT C (see definition 3.10) to rank the (virtual) edges. When working directly

on the unsymmetric matrix A, on the other hand, the introduction of new edge centrality

measures specially developed for the directed case is required.

We will show that the new edge centrality measures for digraphs allow us to develop

heuristics that perform as well as or better than the techniques for undirected graphs

applied to A .

Remark 3.4. The set of virtual edges among which we select the updates is the same in

both cases, since one wants to preserve the antidiagonal block structure of A . Indeed,

if a new edge were to destroy the structure, it could not be “translated” into a new

directed edge for the original digraph.
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3.2.2 Edge centralities: directed case

We now want to define two new edge centrality measures that take into account the

directionality of links and that can be computed by directly working on the unsymmetric

adjacency matrix A.

In Section 2.2 it has been pointed out that one of the main factors in the evolution of

the total communicability is the dominant eigenvalue λ1 of the matrix involved in its

computation.

Transferring this idea to ThC(A) and TaC(A), it follows that we want to define (if

possible) an edge centrality measure that allows us to control the change in the leading

singular value of A, which corresponds to the square root of the leading eigenvalue of

AAT and ATA.

Indeed, when considering the total communicability indices for the directed case, we

have that, when σ1 ≫ σ2, then

ThC(A) ≈ eσ1(uT
1 1)

2, TaC(A) ≈ eσ1(vT
1 1)

2;

therefore, a major contribution to the values of the two communicability indices comes

from the leading singular triplet (σ1,u1,v1) of A.

The following result provides guidelines for the introduction of a first edge centrality

measure for the case of digraphs.

Proposition 3.5. Let A be the adjacency matrix of a digraph. Let u1 and v1 be the hub

and authority vectors, respectively. Let σ1 be the leading singular value of A. Consider

the adjacency matrix of the graph obtained after the addition of the virtual edge (i, j):

Ã = A + eie
T
j . Then the leading eigenvalue σ̃2

1 of the new hub and authority matrices

satisfies

σ̃2
1 ≥ σ2

1 + 2σ1u1(i)v1(j) + max
{
u1(i)

2, v1(j)
2
}
. (3.3)

The inequality is strict if AAT is irreducible.

Moreover, let Â = A − eie
T
j denote the adjacency matrix obtained after the removal of

the edge i → j from the digraph. Then the leading eigenvalue σ̂2
1 of the new hub and
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authority matrices satisfies

σ2
1 ≥ σ̂2

1 ≥ σ2
1 − 2σ1u1(i)v1(j) + max

{
u1(i)

2, v1(j)
2
}
. (3.4)

The first inequality is strict if ÂÂT is irreducible.

Proof. Using the Rayleigh–Ritz Theorem (see, for example, [57, Theorem 4.2.2]) we get:

σ̃2
1 = λ1(ÃÃ

T ) = max
‖z‖2=1

zT
(
ÃÃT

)
z

≥ uT
1

(
ÃÃT

)
u1

=
∥∥(AT + eje

T
i

)
u1

∥∥2
2

= ‖σ1v1 + u1(i)ej‖22

= σ2
1 + 2σ1u1(i)v1(j) + u1(i)

2.

Similarly, by working on the authority matrix one gets:

σ̃2
1 = λ1(Ã

T Ã) ≥ vT
1

(
ÃT Ã

)
v1 = σ2

1 + 2σ1u1(i)v1(j) + v1(j)
2.

From these inequalities, and from basic facts from Perron–Frobenius theory, the conclu-

sion easily follows. Similar arguments can be used to prove (3.4).

Relations (3.3) and (3.4) motivate the following definition.

Definition 3.6. Let A be the adjacency matrix of a directed graph. Let u1 and v1

be its hub and authority vectors, respectively. Then the edge HITS centrality of the

existing/virtual edge (i, j) is defined as

eHC(i, j) = u1(i)v1(j).

Notice that when A is symmetric this definition reduces to that of edge eigenvector

centrality: eEC(i, j) = x1(i)x1(j), where x1 is the eigenvector associated with the leading

eigenvalue of A.

Remark 3.7. Inequalities (3.3) and (3.4) and, consequently, definition 3.6 suggest that

there is a “prescribed direction” one has to follow when introducing a new edge centrality
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measure. Indeed, it is required to use the centrality as broadcaster for the source node

i and the centrality as receiver for the target node j when evaluating the importance of

the (virtual) edge i → j. This observation confirms a natural intuition and motivates

the usage of this same “orientation” in all our definitions and methods (cf. Section 3.3).

The next edge centrality measure we want to define relies on the use of the total com-

municability of nodes. This quantity describes how well node i communicates with the

whole network. As discussed in Subsection 1.4.4, this centrality measure is well defined

for any adjacency matrix, in particular for the adjacency matrices of digraphs, and indeed

the row and column sums of eA do provide in some cases meaningful measures of how

well nodes broadcast information (row sums of eA) and how good they are at receiving

information (column sums of eA). However, the expressions describing these quantities

do not provide information on the alternating walks taking place in the digraph and,

thus, miss a crucial feature of communication in real-world directed networks.

For this reason, we introduce here new definitions for the total communicabilities of

nodes which can be shown to be directly connected to their twofold nature. In order

to do so, we make use of the concept of generalized matrix function first introduced in

[55]. Recall from Chapter 1 that, given a matrix A = UrΣrV
T
r ∈ R

n×n of rank r and

a scalar function f : R −→ R such that f(σi) exists for all i = 1, 2, . . . , r, the induced

generalized matrix function f⋄ : Rn×n −→ R
n×n is defined as

f⋄(A) = Urf(Σr)V
T
r =

r∑

k=1

f(σk)ukv
T
k .

It is easy to check that2

f⋄(A) =

(
r∑

k=1

f(σk)

σk
uku

T
k

)
A = A

(
r∑

k=1

f(σk)

σk
vkv

T
k

)
. (3.5)

These equalities show that a generalized matrix function can be expressed in terms of A

and either AAT or ATA. Therefore, the entries of f⋄(A) — and hence its row/column

sums — can be used as meaningful measures of importance in the directed case, provided

that they are all non-negative.

2We will prove this and other properties of generalized matrix functions in Chapter 4.
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Figure 3.1: Digraph associated with the adjacency matrix described in (3.6)

1

2 3

4

It turns out that, in general, this is not the case for the generalized matrix exponential.

Indeed, consider for example the generalized matrix exponential of the adjacency matrix

A =




0 0 1 0

1 0 0 1

0 1 0 0

0 1 0 0




(3.6)

associated with the digraph in Figure 3.1.

It turns out that its (3, 1) and (4, 4) entries are negative, and thus these quantities cannot

be interpreted as communicability/centrality measures.

If we instead consider the generalized hyperbolic sine:

sinh⋄(A) = Ur sinh(Σr)V
T
r =

r∑

k=1

sinh(σk)ukv
T
k ,

we have that this matrix corresponds to the top right block of the matrix eA (see (3.2)).

Hence, the entries of sinh⋄(A) are all non-negative, and can be used to quantify how well

nodes communicate when they are playing different roles. More precisely, reasoning in

terms of alternating walks shows that the (i, j)th entry of this matrix describes how well

node i exchanges information with node j when the first is playing the role of hub and

the latter that of authority. Using this generalized matrix function we can introduce

two new centrality measures for nodes in digraphs.
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Definition 3.8. Let A = UrΣrV
T
r be the rank-r adjacency matrix of a directed network.

We call total hub communicability of node i the quantity

Ch(i) = eTi sinh⋄(A)1 =

r∑

k=1

sinh(σk)(v
T
k 1)uk(i)

and total authority communicability of node j the quantity

Ca(j) = 1T sinh⋄(A) ej =
r∑

k=1

sinh(σk)(u
T
k 1)vk(j)

These quantities correspond to row and column sums of the off-diagonal block of eA ;

therefore, Ch(i) quantifies the ability of node i — playing the role of hub — to com-

municate with all the nodes in the network, when they are all acting as receivers of

information. Similarly, Ca(j) accounts for the ability of node j as an authority to re-

ceive information from all the nodes in the graph, when they are acting as broadcasters

of information.3 This feature highlights the fact that these definitions are better suited

than eA1 and (1T eA)T when it comes to working on digraphs. The following proposition

highlights how these new centrality indices for nodes can be fully described in terms of

how well nodes either broadcast or receive information.

Proposition 3.9. Let A be the adjacency matrix of a graph G = (V , E). The total hub

communicability of node i ∈ V can be written as

Ch(i) =

r∑

k=1

sinh(σk)

σk
eTi (uku

T
k )dout =

r∑

k=1

sinh(σk)

σk
(vT

k 1)
∑

ℓ∈V
i→ℓ

vk(ℓ). (3.8a)

Similarly, the total authority communicability of node j ∈ V can be expressed as

Ca(j) =
r∑

k=1

sinh(σk)

σk
dT
in(vkv

T
k )ej =

r∑

k=1

sinh(σk)

σk
(1Tuk)

∑

ℓ∈V
ℓ→j

uk(ℓ). (3.8b)

Proof. Using the first equality in (3.5) one gets that:

Ch(i) = eTi

(
r∑

k=1

sinh(σk)

σk
uku

T
k

)
A1 =

r∑

k=1

sinh(σk)

σk
eTi
(
uku

T
k

)
dout,

3 The reader is referred to [11] for a more detailed discussion of the interpretation of the entries in
the off-diagonal blocks of eA .
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Table 3.1: Centrality measures for the nodes in the graph represented in Figure 3.1
and described by the adjacency matrix (3.6).

NODE dout(i) din(i) u1(i)
2 v1(i)

2 Ch(i) Ca(i)

1 1 1 .0000 .3333 1.1752 1.3683
2 2 2 .5000 .3333 2.7366 2.7366
3 1 1 .2500 .0000 1.3683 1.1752
4 1 1 .2500 .3333 1.3683 1.3683

which proves the first equality of (3.8a). To prove the second, we apply the second

equality in (3.5):

Ch(i) = (eTi A)

(
r∑

k=1

sinh(σk)

σk
vkv

T
k

)
1 =

r∑

k=1

sinh(σk)

σk
(vT

k 1)Ai,:vk,

where Ai,: is the ith row of the adjacency matrix A. The conclusion then follows from

the fact that Ai,:vk =
∑

i→ℓ vk(ℓ). The proof of (3.8b) goes along the same lines and is

thus omitted.

Before proceeding with the introduction of the associated edge centrality measure, we

want to show with a small example that these measures of hub and authority centrality

are indeed informative. Consider as an example the graph in Figure 3.1. It is intuitive

that node 2 should be given the highest score both as hub and as authority by any

reasonable centrality measure. Consequently, the authority scores for nodes 1 and 4

should be the same and higher than that of node 3 because these nodes are directly

pointed to from node 2, which is the best hub in the graph. For a similar reason, nodes

3 and 4 should be ranked higher than node 1 when considering a hub score, since they

directly point to node 2, which is the most important authority.

Table 3.1 contains the centrality scores for the four nodes when the in/out-degree, HITS

centrality4, and the total hub/authority communicability are considered. Clearly, the

in/out-degrees of the nodes do not capture the picture we just described since they can-

not discriminate between nodes 1, 3, and 4. This happens because the degree centralities

take into account only local information about how nodes propagate information in the

network.

4To compute these scores, we initialize the HITS algorithm with the constant authority vector with
2-norm equal to 1; see [11, 60].
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Concerning HITS, the rankings given by the hub scores match our expectations, but

those given by the authority scores do not, since they are unable to identify node 2

as the most authoritative one (it is tied with nodes 1 and 4). Another problem with

HITS is that the rankings will depend in general on the initial vector, since for this

example the matrices AAT and ATA are reducible (this also explains the occurrence of

zero entries in the hub and authority vectors). Note that this is a non-issue for both

Ch(i) and Ca(i); most importantly, however, these two measures succeed in identifying

the “correct” relative rankings for the hubs and authorities in this digraph.

We now introduce the edge centrality measure associated with definition 3.8.

Definition 3.10. Let A be the adjacency matrix of a simple digraph. Then the edge

generalized total communicability centrality of the existing/virtual edge (i, j) is defined

as

egTC(i, j) = Ch(i)Ca(j),

where Ch(i) and Ca(j) are the total hub communicability of node i and the total au-

thority communicability of node j, respectively.

Note that when the difference between the two largest singular values σ1 − σ2 is “large

enough”, the quantities Ch(i) and Ca(j) are essentially determined by sinh(σ1)‖v1‖1u1(i)
and sinh(σ1)‖u1‖1v1(j), respectively. When this condition is satisfied we expect agree-

ment between the rankings for the edges provided by the edge HITS and generalized

total communicability centrality measures, at least when the attention is restricted to

the top ranked edges.

It is natural to ask how the edge centrality measure just introduced is related to the edge

total communicability centrality applied to the symmetric matrix A . For the centrality

of the (virtual) edge (i, j) we obtain

eT C(i, j′)− [egTC(i, j)] = φ(i, j)−
(
cosh(

√
AAT )1

)
i

(
cosh(

√
ATA)1

)
j

(3.9)

where eT C(i, j′) is the edge total communicability of (i, j′) in the bipartite graph G ,

j′ = j + n, and

φ(i, j) = (eA 1)i

(
cosh(

√
ATA)1

)
j
+ (eA 1)j′

(
cosh(

√
AAT )1

)
i
.
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The difference in (3.9) is positive and it may be so large that the edge selected when

working on the digraph could well be different from that selected when working on the

associated bipartite network, thus leading to different results for the two techniques. As

we will see in the section on numerical experiments, the two criteria may indeed lead to

different results.

Remark 3.11. Concerning the actual computation of the quantities that occur in defini-

tion 3.8, one can either exploit the relationship (3.2) between eA and sinh⋄(A) and use

standard methods for computing the matrix exponential [56] or, if the matrix A is too

large to build and work with A explicitly, one can obtain estimates of the quantities of

interest using the Golub–Kahan algorithm [49, 50]. Indeed, sinh⋄(A) can be rewritten

as5

sinh⋄(A) = sinh(
√
AAT )(

√
AAT )†A = A(

√
ATA)† sinh(

√
ATA),

where “†” denotes the Moore–Penrose pseudoinverse, and one can obtain estimates of

the desired row and column sums by applying Golub–Kahan bidiagonalization with

an appropriate starting vector (A1 or AT1. respectively). The test matrices used in

the numerical tests are small enough that we could form and manipulate the matrix A

explicitly. Therefore, we expect the heuristics based on the two edge centrality measures

egTC(i, j) and eT C(i, j′) to perform similarly in terms of timings. These computational

issues are investigated in more detail in Chapter 4.

3.3 Heuristics

In this section we describe the methods we will use to perform the numerical tests

presented in Section 3.4. For both the updating and downdating problem, we will first

rank the (virtual) edges using a variety of edge centrality measures; for large graphs we

may consider only a subset of all possible candidate edges, as discussed below. For the

updating problem, we will then select the top ranked virtual edges, while for the the

downdating problem we will select the edges having the lowest centrality rankings. This

is because we want to increase as much as possible the total communicability indices

when adding links to the digraph, and to decrease them only slightly when removing

connections. As we have done in Chapter 2 for the undirected case, given a budget of K

5The reader is referred once again to Chapter 4 for a more detailed discussion of the properties of
generalized matrix functions.
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modifications to be performed, we can proceed in one of two ways. We can either perform

one edge modification at a time and then recalculate all the necessary centrality scores

right afterwards, or we can perform all the modifications at once, without recalculation.

This latter approach will correspond to the .no variants of the algorithms. Recall that,

in the undirected case, the latter approach was found to be essentially as effective as the

former (even for relatively large K) while being dramatically less expensive in terms of

computational effort.

As we already mention in Subsection 3.2.1, we can either work on the bipartite network

associated with the digraph or directly on the original network. When working on the

original graph, addition/deletion of an edge corresponds to rank-one updates/downdates

to the corresponding adjacency matrix A.

The methods used in this framework are labeled as follows:

• eig(.no). Let x1 be the right eigenvector associated with the leading eigenvalue

of A (assumed to be simple) and y1 be the left eigenvector associated with the

same eigenvalue. Generalizing definition 2.6 of edge eigenvector centrality to the

directed case, we obtain:

eEC(i, j) := x1(i)y1(j).

This quantity has been recently used in [89] to devise algorithms aimed at increas-

ing as much as possible the leading eigenvalue of A when edges are added to the

network.

• TC(.no). Here we use the total communicability for nodes as defined in Subsec-

tion 1.4.4. The score assigned to a (virtual) edge (i, j) is:

eTC(i, j) :=
(
eA1

)
i

(
1T eA

)
j
.

This heuristic generalizes to the case of digraphs the technique labeled nodeTC(.no)

in Chapter 2.

• HITS(.no). Each (virtual) edge is given a score in terms of the quantities intro-

duced in definition 3.6:

eHC(i, j) = u1(i)v1(j)



Chapter 3. Heuristics for optimizing the communicability of digraphs 86

• gTC(.no). This heuristic is based on the edge generalized total communicabil-

ity defined in terms of the generalized hyperbolic sine (see definition 3.10). The

(virtual) edge (i, j) is assigned the score:

egTC(i, j) = Ch(i)Ca(j),

where Ch(i) = (sinh⋄(A)1)i and Ca(j) = (sinh⋄(AT )1)j .

The first two methods (with their variants) generalize to the case of digraphs the tech-

niques which performed best in the undirected case. Notice that, following what observed

in Remark 3.7, we have used the broadcaster score for the source node and the receiver

score for the target node.

Next, we consider the bipartite network associated to the matrix A defined in (1.1).

The criteria we use to select the modifications are based on the edge centrality measures

described in Chapter 2. We will label the methods as follows:

• b:eig(.no). We use the eigenvector centrality of edges; the edge eigenvector

centrality of the (virtual) edge (i, j′) is defined as

eEC(i, j′) = q1(i)q1(j
′),

where q1 is the Perron vector of A .

• b:TC(.no). This is based on the total communicability centrality of edges: each

(virtual) edge (i, j′) is assigned the score:

eT C(i, j′) =
(
eA 1

)
i

(
eA 1

)
j′
.

• b:deg. This simple heuristic is equivalent to the degree method in the undirected

case. Each (virtual) edge is assigned a score of the form:

d(i) + d(j′), i ∈ V and j′ ∈ V ′,

where d(i) = (A 1)i is the degree of node i in the network represented by A .

Remark 3.12. We do not provide a method that generalizes degree in Chapter 2 to the

case of digraphs since it would coincide with the heuristic b:deg just introduced. Indeed,
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the straightforward generalization would require to assign to the (virtual) edge i → j

the score dout(i)+ din(j), since we need to use the degree centrality as a broadcaster for

the source node i and that as a receiver for the target node j (cf. Remark 3.7). However,

it is easy to see that dout(i) = d(i) where i ∈ V and din(j) = d(j′) where j′ ∈ V ′, and

thus this technique would be indistinguishable from b:deg.

Remark 3.13. The technique based on the degree centralities of nodes is the optimal one

if we want to optimize the sum ThC(A)+TaC(A) and we use the second order Maclaurin

approximations cosh(
√
X) ≈ I + X

2 , with X = AAT , ATA to compute the the total hub

and authority communicabilities.

When working on the matrix associated with the bipartite graph, each edge modification

of the corresponding network will cause a rank-two change in A . We want to stress once

again that the set of virtual edges among which to select the updates is the same whether

we work on A or on A and corresponds to the set of virtual edges of the graph G, or
a subset of it. For large networks, the set of virtual edges among which to select the

updates may be too large to be exhaustively searched. In the numerical experiments

we used the whole set E for all networks except for the largest one, namely cit-HepTh

(see Table 3.2). For this test case, we restricted our search to a subset of the set of all

virtual edges constructed as follows. We first rank in descending order the nodes of G

using the eigenvector centrality. This results in a ranking of 2n elements: the nodes in

V and their copies. Next, for each i = 1, . . . , n we remove from the list the one element

between i and its copy i′ which has the lowest rank. We now have a list of length n which

includes either one element (element of V) or its copy (element of V ′). We thus relabel

all the copies, if present, with the label of the corresponding node in V . The resulting

list contains all the n nodes in the original graph. It has been obtained considering, for

each node, its best performance between its role as hub and its role as authority in the

network. Finally, we take the induced subgraph corresponding to the top 10% of the

nodes in this list. The set of virtual edges in this subgraph is the set we exhaustively

search.
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3.3.1 Rank-two modifications

Before discussing the results obtained by applying our techniques to select rank-one

updates of the matrix A, we want to briefly discuss how these techniques may be mod-

ified in order to make them suitable to select symmetric rank-two modifications of the

unsymmetric adjacency matrix. This approach goes beyond our scope, but it is worth

some discussion. Indeed, in real world applications one may conceivably want to add

(or delete) two-directional edges between nodes in a digraph in order to tune the total

communicability indices. In this setting, the downdating and updating problems aim

at the same goals as before, but the sets in which one searches for modifications are

different from those used in our original problems. Indeed, the updates will be selected

in the set {(i, j) ∈ V × V |(i, j), (j, i) 6∈ E}, while the downdates will be selected among

the edges in {(i, j) ∈ V × V |(i, j), (j, i) ∈ E}.

We start by discussing the case of the degree and of the edge HITS centrality. The

results obtained for these two approaches will motivate the generalization of the other

techniques. As we have observed in Remark 3.13, the degree strategy works as the

optimal strategy when we consider a second order approximation of the terms in the

sum ThC(A) + TaC(A). By carrying out the same computation, replacing a rank-one

update of the adjacency matrix with a rank-two update, one finds that the most natural

generalization requires that the quantities used to rank the (virtual) edges by the method

based on the degree of nodes are

[din(i) + dout(j)] + [dout(i) + din(j)].

A similar results can be obtained if we want to adapt HITS to handle rank-two updates.

Indeed, to rank the undirected (virtual) edges one may use the quantities

eHITS(i, j) + eHITS(j, i).

This follows from the application to the matrices (A+ eie
T
j + eje

T
i )(A+ eie

T
j + eje

T
i )

T

and (A + eie
T
j + eje

T
i )

T (A + eie
T
j + eje

T
i ) of the same technique used in the proof of

Proposition 3.5.
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Table 3.2: Description of the dataset.

NETWORK n m τ σ1 σ2 σ1 − σ2

GD95b 73 96 5160 4.79 4.37 0.428
Comp. Complexity 857 1596 731996 10.93 9.87 1.05

Abortion 2262 9624 5104728 31.91 20.04 5.87
Twitter 3656 188712 13176871 189.15 120.54 68.71

cit-HepTh 27400 352547 3730367 85.16 69.31 15.85

From these simple results, it follows that the quantities used by the other heuristics to

handle rank-two modifications of the adjacency matrix of a digraph have the form

eC(i, j) + eC(j, i),

where eC is one among the edges centralities used in the previous section to work in the

directed case.

3.4 Numerical tests

In this section we comment on the results obtained from the numerical experiments

performed in order to assess the valuability of our heuristics for the directed case.

The numerical tests have been performed on five networks, whose description can be

found in Appendix A. Table 3.2 summarizes some properties of the networks in our

dataset; namely, it contains the number of nodes n and edges m, the number of virtual

edges τ , the two largest singular values of the adjacency matrix σ1, σ2, and their dif-

ference σ1 − σ2. An exception is the network cit-HepTh, for which τ is the number of

virtual edges contained in the subgraph of the network constructed as described at the

end of Section 3.3.

The small network GD95b is used to compare the effectiveness of the proposed heuristics

with a “brute force” approach where each virtual edge is added in turn and the change

in total communicability is monitored in order to find the “optimal” choice. Since

we are tracking not one but two quantities, ThC(A) and TaC(A), we monitor both

ThC(A) + TaC(A) and ThC(A) · TaC(A) and choose the optimal edge for either one of

them. These methods are labeled as opt sum and opt prod, respectively. We perform

a similar set of experiments for the downdating. As a baseline method, we also report

results for a random selection of the edges in all our tests. The random methods are
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Figure 3.2: Evolution of ThC and TaC for the network GD95b when 25 edge modi-
fications are performed working on the matrix A associated with the digraph: updates

(top) and downdates (bottom).
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labeled as random or b:random, depending on whether we work on the matrix A or on

A .

In Figure 3.2 we show plots of the total communicabilities ThC and TaC when up to

K = 25 edge modifications are performed. We limit ourselves to the results for the

heuristics based on the original digraph (matrix A). The results show that the heuristic

gTC performs as well as the “optimal” choice based on brute force, while of course

being much less expensive, in tackling both the updating and downdating problem.

Note moreover that the performance of the methods HITS and gTC is different for this

network. This result agrees with what one would expect, in view of the small gap σ1−σ2
of the adjacency matrix under study. When considering the problem of downdating, on

the other hand, all the methods perform well. In particular we want to stress again the

excellent performance of the method gTC. The only exception is perhaps the heuristic

eig, whose performance for the first 5 steps is comparable with the random choice. This

result confirms our claim that this heuristic, which was shown to work very well for

undirected networks, is not a good approach in the directed case.
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Figure 3.3: Evolution of ThC and TaC for the network GD95b when 25 symmetric
edge modifications are performed working on the matrix A associated with the digraph.

The optimal methods refer to the rank-one selection of the modifications.
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In Figure 3.3 we display the evolution of the total communicability indices under rank-

two updates. In this plot we retain the same names for the techniques as used in

case of the rank-one modifications; however, the quantities used to derive the rankings

are defined as in Subsection 3.3.1. In this figure, each step corresponds to a rank-two

symmetric modification, for the heuristic based on the edge centrality measures, and to

two rank-one modifications, for the optimal methods. Thus, the plots for the optimal

methods coincide with those in Figure 3.2. The results displayed in Figure 3.3 tell us that

the symmetric rank-two modifications of the matrix may not lead to results as good as

those obtained with the rank-one updates. Indeed, for both the total hub and authority

communicabilities we have at least three methods in Figure 3.2 that outperform all

the methods used in Figure 3.3. For this reason, we have not further investigate this

approach.

The results on the small network give us confidence that at least some of our proposed

heuristic for the selection of rank-one modifications of A do a very good job at enhancing

the communicability properties of digraphs. In the remaining tests we concentrate on

the larger networks, for which the “optimal,” brute force approaches are not practical.

All experiments were performed using MATLAB Version 8.0.0.783 (R2012b) on an IBM

ThinkPad running Ubuntu 14.04 LTS, a 2.5 GHZ Intel Core i5 processor, and 3.7 GiB

of RAM.

Figures 3.4-3.7 display the evolution of the total hub and communicability centrality

(rescaled by the number of edges in the network) when K = 200 updates are selected

using the criteria previously introduced. The plots at the top of each figure display the

evolution of the total hub communicability (left) and total authority communicability
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Figure 3.4: Evolution of ThC and TaC for the network Computational Complexity
when 200 updates are selected working on the matrix A associated with the digraph

(top) and on its bipartite version A (bottom).
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Figure 3.5: Evolution of ThC and TaC for the network Abortion when 200 updates are
selected working on the matrix A associated with the digraph (top) or on its bipartite

version A (bottom).
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Figure 3.6: Evolution of ThC and TaC for the network Twitter when 200 updates are
selected working on the matrix A associated with the digraph (top) and on its bipartite

version A (bottom).
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Figure 3.7: Evolution of ThC and TaC for the network cit-HepTh when 200 updates
are selected working on the matrix A associated with the digraph (top) or on its bipartite

version A (bottom).
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Table 3.3: Timings in seconds when K = 200 updates are selected for the networks
in our Dataset using the methods described.

Computational
Abortion Twitter cit-HepTh

Complexity

eig 12.51 53.27 139.82 217.12
eig.no 0.13 0.73 1.75 1.33
TC 114.67 62.22 187.22 163.55
TC.no 0.61 0.76 2.19 1.02
HITS 8.35 50.69 133.50 88.82
HITS.no 0.09 0.63 1.69 0.67
gTC 10.63 59.31 183.48 205.17
gTC.no 0.12 0.68 1.77 1.28
b:eig 9.35 52.43 134.03 99.70
b:eig.no 0.21 0.69 1.66 0.88
b:deg 11.00 85.06 256.66 84.95
b:TC 11.39 59.31 154.97 139.50
b:TC.no 0.11 0.72 1.67 0.82

(right) when the digraph is modified using the techniques developed for the directed case.

The bottom plots show the evolution of the two indices obtained when the modifications

are selected by working on A . As expected, the proposed heuristics are dramatically

better than the random choice.

The results show that the heuristics b:eig(.no) and b:TC(.no) perform similarly to

HITS(.no) and gTC(.no). The methods eig(.no) and TC(.no) display erratic behavior

and often perform very poorly, as shown in Figures 3.4, 3.5, and 3.7. The method

eig(.no) also suffers from the restriction that the dominant eigenvalue must be simple,

which is not always true in practice. Likewise, the performance of b:deg is generally

unsatisfactory, with the exception of TaC(A) for the network Computational Complexity

where it outperforms the other techniques (see Figure 3.4). Overall, considering also the

timings (see Table 3.3), the best performance is displayed by the heuristics gTC(.no) and

HITS(.no) and by their undirected counterparts b:TC(.no) and b:eig(.no). The only

possible exception is the Computational Complexity network, for which the heuristics

for the directed case outperform those for the undirected, bipartite counterpart.

The disagreement between the results for the heuristics labeled HITS and b:eig for the

network Computational Complexity is at first sight puzzling. The two criteria should

lead to the same edge selection and therefore to the same results, since the principal

eigenvector of A is q1 = (uT
1 ,v

T
1 )

T and thus q1(i) = u1(i) and q1(j
′) = v1(j) in the

definition of the heuristic b:eig. However, if at least two edges have the same centrality

score when working with b:eig and HITS, then the two methods may select different

edges. In this case, after the edge modification has been performed, the adjacency
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Table 3.4: Timings in seconds when K = 200 downdates are selected for the networks
in our Dataset using the methods described.

Computational
Abortion Twitter cit-HepTh

Complexity

eig 5.83 7.77 16.65 201.29
eig.no 0.04 0.04 0.05 1.03
TC 104.12 15.05 75.35 126.18
TC.no 0.92 0.07 0.39 0.73
HITS 2.72 4.71 13.32 63.40
HITS.no 0.02 0.02 0.08 0.34
gTC 5.49 12.06 60.77 175.02
gTC.no 0.04 0.08 0.29 0.80
b:eig 4.31 6.63 15.10 85.87
b:eig.no 0.03 0.04 0.05 1.89
b:deg 0.06 0.15 3.94 8.37
b:TC 5.51 11.66 39.02 126.44
b:TC.no 0.02 0.05 0.16 0.42

matrices manipulated by the two methods are different, thus causing the difference we

observe in Figure 3.4. The difference will be more pronounced if the tie between edges

occur at the beginning of the modification process.

Table 3.3 contains the timings (in seconds) employed for the selection of the K = 200

virtual edges to be updated. The heuristics used were implemented using mostly built-in

MATLAB functions, such as the function eigs used for computing the largest eigenvalue.

For the heuristics requiring the computation of a matrix function times a vector we used

the code funm kryl by S. Güttel [52]. To implement the degree-based heuristic we

wrote our own code, which is far from optimal when compared to the other ones. The

relatively high timings reported for this heuristic can likely be reduced with a more

careful implementation. When interpreting the results, it has to be kept in mind that

the size τ of the set of virtual edges can be pretty large (cf. Table 3.2). We have observed

that, for all the methods, roughly half of the reported computing time is spent in the

computation of the products used in the definitions of the edge centrality measures.

Nevertheless, the timings range from very small to moderate in all cases, showing the

feasibility of the proposed heuristics.

Among all the methods we tested on directed networks for the updating problem, the

best performance is displayed by HITS(.no), gTC(.no), b:eig(.no), and b:TC(.no)

with the methods that manipulate A having the edge when σ1 − σ2 is small. Due to its

erratic behavior, we cannot recommend the use of b:deg in general.
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Figure 3.8: Evolution of ThC and TaC for the network Computational Complexity
when 200 downdates are selected working on the matrix A associated with the digraph

(top) and on its bipartite version A (bottom).
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Figure 3.9: Evolution of ThC and TaC for the network Abortion when 200 downdates
are selected working on the matrix A associated with the digraph (top) and on its

bipartite version A (bottom).
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Figure 3.10: Evolution of ThC and TaC for the network Twitter when 200 downdates
are selected working on the matrix A associated with the digraph (top) and on its

bipartite version A (bottom).
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Figure 3.11: Evolution of ThC and TaC for the network cit-HepTh when 200 down-
dates are selected working on the matrix A associated with the digraph.
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Similar conclusions can be drawn when considering the results for the downdating prob-

lem, although the differences among the techniques are less pronounced (Figures 3.8-3.11

and Table 3.4). Indeed, the results shown confirm the effectiveness of the techniques

based on the edge HITS and generalized total communicability centralities and of their

variants which do not require the recomputation of the rankings. As in the case of the

updating problem, the results returned by these two methods essentially reproduce those

obtained when working on A using the heuristics b:eig(.no) and b:TC(.no).

The methods eig(.no) and TC(.no) perform no better (and in some cases worse)

than gTC(.no) and HITS(.no), while b:deg is usually outperformed by b:eig(.no)

or b:TC(.no).

Concerning the timings, if we compare the results in Tables 3.3 and 3.4 we can see that

the values in Table 3.3 are in general higher that those in Table 3.4. This is easily

understood in view of what we observed before, if one compares the number of virtual

edges τ with the number of edges m in each network in the dataset (see Table 3.2).

While we do not provide a formal assessment of the computational cost of the various

heuristics, arguments similar to those found in Chapter 2 indicate that the cost of the

more efficient heuristics can be expected to scale approximately like O(n) or O(n lnn)

with the number of nodes n.

In conclusion, by considering the overall performance of the methods and their cost

(in terms of timings), we find that the best criteria for our updating/downdating goals

are the methods HITS(.no) and gTC(.no). Besides these, satisfactory results may

also be obtained using b:eig(.no) or b:TC(.no). From the timings in Tables 3.3

and 3.4 we can deduce that the heuristics HITS(.no) are in general slightly faster than

b:eig(.no) and may thus be preferred. Concerning whether it is better to use gTC(.no)

or b:TC(.no), we anticipate that the first will be preferable when used in conjunction

with fast algorithms for the approximation of bilinear forms involving generalized matrix

functions.
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Conclusions

In this chapter we have extended the notion of total network f -communicability to the

case of directed graphs. Moreover, we have developed heuristics for manipulating an

existing directed network so as to tune its communicability properties. In doing so

we made use of the concept of alternating walks, which allows us to take into account

the dual role played by each node in a digraph, namely, receiver and broadcaster of

information.

Our computational results indicate that the heuristics which take into account the dual

role of nodes in directed networks tend to be preferable to those that do not. We also

showed that these heuristics are very fast in practice.





Chapter 4

Computation of generalized

matrix functions

Generalized matrix functions were first introduced by Hawkins and Ben-Israel in [55] in

order to extend the notion of a matrix function to rectangular matrices. Essentially, the

definition is based on replacing the spectral decomposition of A (or the Jordan canonical

form, if A is not diagonalizable) with the singular value decomposition, and evaluating

the function at the singular values of A, if defined. The paper appears to have gone

largely unnoticed, despite increasing interest in matrix functions in the numerical linear

algebra community over the past several years. While it is likely that the perceived

scarcity of applications is to blame (at least in part) for this lack of attention, it turns

out that generalized matrix functions do have interesting applications and have actually

occurred in the literature without being recognized as such; see Chapter 3 and Section 4.2

for some examples.

In this chapter we revisit the topic of generalized matrix functions, with an emphasis on

numerical aspects. After reviewing some properties of generalized matrix functions and

proving some new results, we develop several computational approaches based on vari-

ants of Golub–Kahan bidiagonalization to compute or estimate bilinear forms involving

generalized matrix functions, including entries of the generalized matrix function itself

and the action of a generalized matrix function on a vector.

The content of this chapter is based on the results presented in [6].

101
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4.1 Properties

In this section we review some properties of generalized matrix functions and we sum-

marize a few new results. Recall that, given a rank-r matrix A ∈ C
m×n and given a

CSVD of the matrix A = UrΣrV
∗
r , then the generalized matrix function induced by the

scalar function f : R→ R is defined as

f⋄(A) = Urf(Σr)V
∗
r = Urdiag(f(σ1), f(σ2), . . . , f(σr))V

∗
r .

Letting Ei = uiv
∗
i and E =

∑r
i=1Ei, we can write

A =
r∑

i=1

σiuiv
∗
i =

r∑

i=1

σiEi,

and thus it follows that

f⋄(A) =
r∑

i=1

f(σi)uiv
∗
i =

r∑

i=1

f(σi)Ei. (4.1)

Proposition 4.1. (Sums and products of functions [55]). Let f, g, h : R→ R be scalar

functions and let f⋄, g⋄, h⋄ : Cm×n → C
m×n be the corresponding generalized matrix

functions. Then:

(i) if f(z) = k, then f⋄(A) = kE;

(ii) if f(z) = z, then f⋄(A) = A;

(iii) if f(z) = g(z) + h(z), then f⋄(A) = g⋄(A) + h⋄(A);

(iv) if f(z) = g(z)h(z), then f⋄(A) = g⋄(A)E∗h⋄(A).

In the following we prove a few properties of generalized matrix functions.

Proposition 4.2. Let A = UrΣrV
∗
r ∈ C

m×n be a matrix of rank r. Let f : R→ R be a

scalar function and let f⋄ : Cm×n → C
m×n be the induced generalized matrix function,

assumed to be defined at A. Then the following properties hold true.

(i) [f⋄(A)]∗ = f⋄(A∗);
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(ii) let X ∈ C
m×m and Y ∈ C

n×n be two unitary matrices, then f⋄(XAY ) = X[f⋄(A)]Y ;

(iii) Let P ∈ R
r×r be a permutation matrix and let Ur = UrP , Vr = VrP , and Σr =

P TDrP . Then

f⋄(A) = Urf(Dr)V
∗
r .

(iv) if A = diag(A11, A22, . . . , Akk), then

f⋄(A) = diag(f⋄(A11), f
⋄(A22), . . . , f

⋄(Akk));

(v) f⋄(Ik ⊗ A) = Ik ⊗ f⋄(A), where Ik is the k × k identity matrix and ⊗ is the

Kronecker product;

(vi) f⋄(A⊗ Ik) = f⋄(A)⊗ Ik.

Proof. (i) From (1.3) it follows that A∗ = VrΣrU
∗
r , and thus

f⋄(A∗) = Vrf(Σr)U
∗
r = [Urf(Σr)V

∗
r ]

∗ = [f⋄(A)]∗.

(ii) The result follows from the fact that unitary matrices form a group under mul-

tiplication and that the rank of a matrix does not change under left or right

multiplication by a nonsingular matrix [57, p. 13]. Indeed, the matrix B := XAY

has rank r and thus

f⋄(B) = f⋄(XUΣV ∗Y ) = (XU)rf(Σr)[(Y
∗V )r]

∗

= XUrf(Σr)V
∗
r Y = Xf⋄(A)Y.

where (XU)r and (V ∗Y )r are the matrices containing the first r columns of (XU)

and (V ∗Y ), respectively.

(iii) From a basic property of matrix functions [56, Theorem 1.13] it follows that:

Urf(Dr)V
∗
r = UrP

TPf(Σr)P
TPV ∗

r = Urf(Σr)V
∗
r = f⋄(A).
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(iv) Let Aii = Ui,riΣi,riV
∗
i,ri

be the CSVD of the rank-ri matrix Aii for i = 1, 2, . . . , k.

Then A = UrDrV
∗
r , where

Dr := diag (Σ1,r1 , Σ2,r2 , . . . , Σk,rk) ,

Ur := diag (U1,r1 , U2,r2 , . . . , Uk,rk) ,

Vr := diag (V1,r1 , V2,r2 , . . . , Vk,rk) .

From (iii) it follows that f⋄(A) = Urf(Dr)V
∗
r , and thus

f⋄(A) = Urf(Dr)V
∗
r

= diag
(
U1,r1f(Σ1,r1)V

∗
1,r1 , U2,r2f(Σ2,r2)V

∗
2,r2 , . . . , Uk,rkf(Σk,rk)V

∗
k,rk

)

= diag (f⋄(A11), f
⋄(A22), . . . , f

⋄(Akk)) .

(v) The result follows from (iv) and the fact that Ik ⊗ A = diag(A,A, . . . , A) is a

km× kn diagonal block matrix with k copies of A on the main diagonal.

(vi) It follows from (v) and from the fact that for two general matrices A ∈ C
m×n

and B ∈ C
p×q, there exist two permutation matrices K(p,m) and K(n,q) called

commutation matrices such that K(p,m) (A⊗B)K(n,q) = B ⊗A (see [68, Chapter

3]).

The following theorem provides a result for the composition of two functions.

Proposition 4.3. (Composite functions) Let A = UrΣrV
∗
r ∈ C

m×n be a rank-r matrix

and let {σi : 1 ≤ i ≤ r} be its singular values. Assume that h : R → R and g : R → R

are two scalar functions such that h(σi) 6= 0 and g(h(σi)) exist for all i = 1, 2, . . . , r. Let

g⋄ : Cm×n → C
m×n and h⋄ : Cm×n → C

m×n be the induced generalized matrix functions.

Moreover, let f : R → R be the composite function f = g ◦ h. Then the induced matrix

function f⋄ : Cm×n → C
m×n satisfies

f⋄(A) = g⋄(h⋄(A)).
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Proof. Let B := h⋄(A) = Urh(Σr)V
∗
r = UrΘrV

∗
r . Since h(σi) 6= 0 for all i = 1, 2, . . . , r,

this matrix has rank r. Using (iii) in Proposition 4.2 it thus follows that

g⋄(h⋄(A)) = g⋄(B) = Urg(Θr)V
∗
r = Urg(h(Σr))V

∗
r = Urf(Σr)V

∗
r = f⋄(A).

The following result describes the relationship between standard matrix functions and

generalized matrix functions.

Theorem 4.4. Let A ∈ C
m×n be a rank-r matrix and let f : R→ R be a scalar function.

Let f⋄ : Cm×n → C
m×n be the induced generalized matrix function. Then

f⋄(A) =

(
r∑

i=1

f(σi)

σi
uiu

∗
i

)
A = A

(
r∑

i=1

f(σi)

σi
viv

∗
i

)
, (4.2a)

or, equivalently,

f⋄(A) = f(
√
AA∗)(

√
AA∗)†A = A(

√
A∗A)†f(

√
A∗A). (4.2b)

Proof. The two identities are an easy consequence of the fact that ui = 1
σi
Avi and

vi =
1
σi
A∗ui for i = 1, 2, . . . , r.

Remark 4.5. The identities (
√
AA∗)†A = A(

√
A∗A)† = E = UrV

∗
r hold, and these prove

the necessity of condition f(0) = 0 in Remark 1.18.

Proposition 4.6. Let A ∈ C
m×n be a rank-r matrix and let f : R→ R and g : R→ R

be two scalar functions such that f⋄(A) and g(AA∗) are defined. Then

g(AA∗)f⋄(A) = f⋄(A)g(A∗A).

Proof. From A = UrΣrV
∗
r it follows AA∗ = UrΣ

2
rU

∗
r and A∗A = VrΣ

2
rV

∗
r ; thus

g(AA∗)f⋄(A) = Urg(Σ
2
r)U

∗
rUrf(Σr)V

∗
r = Urg(Σ

2
r)f(Σr)V

∗
r

= Urf(Σr)g(Σ
2
r)V

∗
r = Urf(Σr)V

∗
r Vrg(Σ

2
r)V

∗
r

= f⋄(A)g(A∗A).
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4.2 Manifestations of generalized matrix functions

As mentioned in the introduction to this chapter, generalized matrix functions (in the

sense of Hawkins and Ben-Israel) have appeared in the literature without being recog-

nized as such. Here we discuss a few examples that we are aware of. No doubt there

have been other such instances.

In [28], the authors address the problem of computing functions of real skew-symmetric

matrices, in particular the evaluation of the product eAb for a given skew-symmetric

matrix A and vector b using the Lanczos algorithm. The authors observe that any

A ∈ R
2n×2n with AT = −A is orthogonally similar to a matrix of the form


 0 −B

BT 0


 ,

where B is lower bidiagonal of order n. As a consequence, if B = UΣV T is an SVD of

B, the matrix exponential eA is orthogonally similar to the matrix


 U cos(Σ)UT −U sin(Σ)V T

V sin(Σ)UT V cos(Σ)V T


 , (4.3)

where the matrix in the upper right block is precisely − sin⋄(B). The authors of [28]

develop computational techniques for the matrix exponential based on (4.3). We also

mention that in the same paper the authors derive a similar expression, also found in [11],

for the exponential of the symmetric matrix A given in (1.1). These expressions are

extended to more general matrix functions in [64], where they are used to investigate the

off-diagonal decay of analytic functions of large, sparse, skew-symmetric matrices. Fur-

thermore, in [29] it is shown how these ideas can be used to develop efficient geometrical

integrators for the numerical solution of certain Hamiltonian differential systems.

In [25], the authors consider the problem of detecting (approximate) directed bipartite

communities in directed graphs. Consideration of alternating walks in the underlying

graph leads them to introducing a “non-standard matrix function” of the form

f(A) = I −A+
AAT

2!
− AATA

3!
+

AATAAT

4!
− · · · ,
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where A is the adjacency matrix of the graph. Using A = UΣV T this expression is

readily recognized to be equivalent to

f(A) = U cosh(Σ)UT − U sinh(Σ)V T ,

which is a “mixture” of the standard matrix function cosh(
√
AAT ) and the generalized

matrix function sinh⋄(A).

As mentioned, generalized hyperbolic matrix functions were also considered in [11] in the

context of directed networks, also based on the notion of alternating walks in directed

graphs. In Chapter 3, the action of generalized matrix functions on a vector of all ones

was used to define certain centrality measures for nodes in directed graphs; Chapter 3

is based on [5], where the connection with the work of Hawkins and Ben-Israel was

explicitly made.

Finally, we mention that generalized matrix functions arise when filter factors are used

to regularize discrete ill-posed problems; see, e.g., [53].

4.3 Computational methods

The computation of the generalized matrix functions defined as in Definition 1.17 re-

quires the knowledge of the singular value decomposition of A. When m and n are large,

computing the SVD may be unfeasible. Moreover, in most applications it is not required

to compute the whole matrix f⋄(A); rather, the goal is often to estimate quantities of

the form

ZT f⋄(A)W, Z ∈ R
m×k, W ∈ R

n×k, (4.4)

or to compute the action of the generalized matrix function on a set of k vectors, i.e.,

to evaluate f⋄(A)W , usually with k ≪ min{m,n}. For example, computing selected

columns of f⋄(A) reduces to the evaluation of f⋄(A)W where W consists of the cor-

responding columns of the identity matrix In, and computing selected entries of f⋄(A)

requires evaluating ZT f⋄(A)W where Z contains selected columns of the identity matrix

Im.
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The problem of estimating or giving bounds on such quantities can be tackled, follow-

ing [49], by using Gauss-type quadrature rules. In this work we will analyze the case

k = 1; the case of k > 1 is discussed in [6].

It is known that in certain cases Gauss-type quadrature rules can be used to obtain

lower and upper bounds on bilinear forms like zT f(A)w, where f(A) is a (standard)

matrix function and A = AT (cf. Section 1.3). This is the case when f enjoys certain

monotonicity properties. If f is completely monotonic (c.m.) on an interval containing

the spectrum of A = AT , then one can obtain lower and upper bounds on quadratic

forms of the type uT f(A)u and from these lower and upper bounds on bilinear forms

like zT f(A)w with z 6= w. For a general f , on the other hand, Gaussian quadrature can

only provide estimates of these quantities.

Similarly, in order to obtain bounds (rather than mere estimates) for bilinear expressions

involving generalized matrix functions, we need the scalar functions involved in the

computations to be completely monotonic.

Remark 4.7. We will be applying our functions to diagonal matrices that contain the

singular values of the matrix of interest. Thus, in our framework, the interval on which

we want to study the complete monotonicity of the functions is I = (0,∞).

We briefly recall here a few properties of c. m. functions; see, e.g., [74, 98] and references

therein for systematic treatments of complete monotonicity.

Lemma 4.8. If f1 and f2 are completely monotonic functions on I, then

(i) αf1(t) + βf2(t) with α, β ≥ 0 is completely monotonic on I;

(ii) f1(t)f2(t) is completely monotonic on I.

Lemma 4.9. [74, Theorem 2] Let f1 be completely monotonic and let f2 be a nonnegative

function such that f ′
2 is completely monotonic. Then f1 ◦ f2 is completely monotonic.

Using these lemmas, we can prove the following useful result.

Theorem 4.10. If f is completely monotonic on (0,∞), then g(t) := f(
√
t)√
t

is completely

monotonic on (0,∞).
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Proof. Let h(t) = t−1; then by Lemma 4.8 (ii) we know that g(t) is completely monotonic

on I = (0,∞) if both f(
√
t) and h(

√
t) are completely monotonic on I. The function

√
t is positive on the interval (0,∞); moreover, it is such that its first derivative 1

2 t
−1/2

is completely monotonic on I. Therefore, from Lemma 4.9 it follows that if f is c.m. ,

then f(
√
t) is. Similarly, since h(t) = t−1 is completely monotonic, h(

√
t) is completely

monotonic. This concludes the proof.

In the following, we propose three different approaches to approximate the bilinear

forms of interest. The first approach exploits the results of Theorem 4.4 to describe

zT f⋄(A)w as a bilinear form that involves standard matrix functions of a tridiagonal

matrix. The second approach works directly with the generalized matrix function and

the Moore–Penrose pseudo-inverse of a bidiagonal matrix. The third approach first

approximates the action of a generalized matrix function on a vector and then derives

the approximation for the bilinear form of interest.

4.3.1 First approach

When the function f : R −→ R that defines f⋄ is c.m., then Gauss-type quadrature

rules can be used to derive upper and lower bounds for the quantities of interest. It is

straightforward to see by using (4.2a) that a bilinear form involving a generalized matrix

function can be written as

zT f⋄(A)w = zT

(
r∑

i=1

f(σi)

σi
uiu

T
i

)
w̃ = z̃T

(
r∑

i=1

f(σi)

σi
viv

T
i

)
w,

where w̃ = Aw and z̃ = AT z. Using the equalities in (4.2b) one can see that these

quantities can also be expressed as bilinear forms involving functions of the matrices

AAT and ATA, respectively. More specifically, one obtains

zT f⋄(A)w = z̃T

(
r∑

i=1

f(σi)

σi
viv

T
i

)
w = z̃T g(ATA)w, (4.5a)

zT f⋄(A)w = zT

(
r∑

i=1

f(σi)

σi
uiu

T
i

)
w̃ = zT g(AAT )w̃, (4.5b)

where in both cases g(t) = (
√
t)−1f(

√
t).
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In the following we focus on the case described by (4.5a). The discussion for the case

described by (4.5b) follows the same lines.

Remark 4.11. Note that if z,w are vectors such that z̃ 6= w, then we can use the

polarization identity [49, p. 114]:

z̃T g(ATA)w =
1

4

[
(z̃+w)T g(ATA)(z̃+w)− (z̃−w)T g(ATA)(z̃−w)

]

to reduce the evaluation of the bilinear form of interest to the evaluation of two sym-

metric bilinear forms. For this reason, the theoretical description of the procedure to

follow will be carried out only for the case z̃ = w.

Let z̃ = w be a unit vector (i.e., ‖w‖2 = 1). We can rewrite the quantity (4.5a) as a

Riemann–Stieltjes integral by substituting the spectral factorization of ATA:

wT g(ATA)w = wTVrg(Σ
2
r)V

T
r w =

r∑

i=1

f(σi)

σi
(vT

i w)2 =

∫ σ2
1

σ2
r

g(t) dα(t), (4.6)

where α(t) is a piecewise constant step function with jumps at the positive eigenvalues

{σ2
i }ri=1 of ATA defined as follows:

α(t) =





0, if t < σ2
r

∑r
i=j+1(v

T
i w)2, if σ2

j+1 ≤ t < σ2
j

∑r
i=1(v

T
i w)2, if t ≥ σ2

r .

We use partial Golub–Kahan bidiagonalization [48, 50] of the matrix A to find upper and

lower bounds for the bilinear form described in (4.6). After ℓ steps, the Golub–Kahan

bidiagonalization of the matrix A with initial vector w yields the decompositions

AQℓ = PℓBℓ, ATPℓ = QℓB
T
ℓ + γℓqℓe

T
ℓ , (4.7)
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where the matrices Qℓ = [q0,q1, . . . ,qℓ−1] ∈ R
n×ℓ and Pℓ = [p0,p1, . . . ,pℓ−1] ∈ R

m×ℓ

have orthonormal columns, the matrix

Bℓ =




ω1 γ1
. . .

. . .

ωℓ−1 γℓ−1

ωℓ



∈ R

ℓ×ℓ

is upper bidiagonal, and the first column of Qℓ is w.

Remark 4.12. All the {γj}ℓ−1
j=1 and {ωj}ℓj=1 can be assumed to be nonzero [48]. With

this assumption, the CSVD of the bidiagonal matrix Bℓ coincides with its SVD:

Bℓ = UℓΘℓVT
ℓ ,

where Uℓ = [υ1,υ2, . . . ,υℓ] ∈ R
ℓ×ℓ and Vℓ = [ν1,ν2, . . . ,νℓ] ∈ R

ℓ×ℓ are orthogonal, and

Θℓ = diag(θ1, θ2, . . . , θℓ) ∈ R
ℓ×ℓ.

Combining the equations in (4.7) leads to

ATAQℓ = QℓB
T
ℓ Bℓ + γℓωℓqℓe

T
ℓ ,

where qℓ denotes the Lanczos vector computed at iteration ℓ+ 1 . The matrix

Tℓ = BT
ℓ Bℓ

is thus symmetric and tridiagonal and coincides (in exact arithmetic) with the matrix

obtained when the Lanczos algorithm is applied to ATA.

The quadratic form in (4.6) can then be approximated by using an ℓ-point Gauss quadra-

ture rule [49, Theorem 6.6]:

Gℓ := eT1 g(Tℓ)e1 = eT1 (
√
Tℓ)

†f(
√

Tℓ)e1. (4.8)

If the function f(t) is c.m., then the Gauss rule provides a lower bound for (4.6), which
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can be shown to be strictly increasing with ℓ. If the recursion formulas for the Golub–

Kahan bidiagonalization break down, that is, if γℓ = 0 at step ℓ, then the Gauss quadra-

ture rule gives the exact value (see [50, p. 490ff]).

The following result can be easily derived from (4.8).

Proposition 4.13. Let A ∈ R
m×n and let Bℓ ∈ R

ℓ×ℓ be the bidiagonal matrix computed

after ℓ steps of the Golub–Kahan bidiagonalization algorithm. Let (θi,υi,νi) for i =

1, 2, . . . , ℓ be the singular triplets of Bℓ = UℓΘℓVT
ℓ . Then the nodes of the ℓ-point Gauss

quadrature rule Gℓ are the singular values {θi}ℓi=1. Furthermore, if z̃ = w, then the

weights of the rule are given by (eT1 νi)
2θ−1

i .

Similarly, if z = w̃, the weights of Gℓ are (eT1 υi)
2θ−1

i for i = 1, 2, . . . , ℓ.

To provide an upper bound for (4.6) when f is c. m., one can use a (ℓ+1)-point Gauss–

Radau quadrature rule with a fixed node τ = σ2
1; this can be expressed in terms of the

entries of the symmetric tridiagonal matrix

T̂ℓ+1 =


 Tℓ ρℓeℓ

ρℓe
T
ℓ ω̂ℓ+1


 ∈ R

(ℓ+1)×(ℓ+1)

as Ĝℓ+1 := eT1 g(T̂ℓ+1)e1, where g(t) = (
√
t)−1f(

√
t). The entries of this matrix, except

for the last diagonal entry, are those of BT
ℓ+1Bℓ+1. To compute the last diagonal entry

so that T̂ℓ+1 has τ = σ2
1 among its eigenvalues, we proceeds as follows [49, p. 89]. First,

we compute ρℓ; then we set ω̂ℓ+1 = τ + eTℓ x, where x is the solution of the tridiagonal

linear system (Tℓ − τI)x = ρ2ℓeℓ. The arithmetic mean between the ℓ-point Gauss rule

Gℓ and the (ℓ+1)-point Gauss–Radau rule Ĝℓ+1 is then used as an approximation of the

quadratic form wT g(ATA)w.

4.3.2 Second approach

In this section we provide a second approach to the approximation of bilinear forms

expressed in terms of generalized matrix functions.

The following result shows how to compute the ℓ-point Gauss quadrature rule in terms

of the generalized matrix function of the bidiagonal matrix Bℓ. Two expressions are

derived, depending on the starting (unit) vector given as input to the Golub–Kahan
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algorithm. Recall that, unless z = Aw or w = AT z, one has to use the polarization

identity to estimate the bilinear forms of interest.

Proposition 4.14. [6, Proposition 5.5] Let be A ∈ R
m×n and let Bℓ ∈ R

ℓ×ℓ be the

bidiagonal matrix computed at step ℓ of the Golub–Kahan bidiagonalization algorithm.

Then, the ℓ-point Gauss quadrature rule Gℓ is given by

Gℓ = eT1 B
†
ℓf

⋄(Bℓ)e1, if z̃ = w,

or

Gℓ = eT1 f
⋄(Bℓ)B

†
ℓe1, if z = w̃.

The (ℓ + 1)-point Gauss-Radau quadrature rule Ĝℓ+1 with a fixed node σ1 can be ex-

pressed in terms of the entries of the bidiagonal matrix

B̂ℓ+1 =


 Bℓ γℓeℓ

0T ω̂ℓ+1


 ∈ R

(ℓ+1)×(ℓ+1)

as Ĝℓ+1 = eT1 B̂
†
ℓ+1f

⋄(B̂ℓ+1)e1 if z̃ = w or as Ĝℓ+1 = eT1 f
⋄(B̂ℓ+1)B̂

†
ℓ+1e1 when z = w̃.

The entries of B̂ℓ+1, except for the last diagonal entry, are those of Bℓ+1. To compute

the last diagonal entry, one has to ensure that σ2
1 is an eigenvalue of T̂ℓ+1 = B̂T

ℓ+1B̂ℓ+1.

It can be easily shown that

ω̂ℓ+1 =
√
σ2
1 + eTℓ x− γ2ℓ ,

where x is the solution of the tridiagonal linear system (BT
ℓ Bℓ − σ2

1I)x = (ωℓγℓ)
2eℓ.

4.3.3 Third approach

Assume that we have used ℓ = r = rank(A) steps of the Golub–Kahan bidiagonalization

algorithm with starting vector w (normalized so as to have unit norm) to derive the

matrices Pr, Br, and Qr such that A = PrBrQ
T
r . The CSVD of the bidiagonal matrix

is Br = UrΣrVT
r , where Σr is the same diagonal matrix appearing in the CSVD of A.

Since Pr and Qr have full column rank, we know that rank(PrBrQ
T
r ) = rank(Br) = r,
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and thus we can write

zT f⋄(A)w = zT f⋄(PrBrQ
T
r )w = zT f⋄(PrUrΣrVT

r Q
T
r )w

= zT (PrUr)f(Σr)(QrVr)Tw = ẑT f⋄(Br)e1,

where ẑ = P T
r z and QT

r w = e1.

Assume now that ℓ < r. We can then truncate the bidiagonalization process and ap-

proximate f⋄(A)w as

f⋄(A)w ≈ Pℓf
⋄(Bℓ)e1

and then obtain the approximation to the bilinear form of interest as

zT f⋄(A)w ≈ zTPℓf
⋄(Bℓ)e1.

The quality of the approximation will depend in general on the distribution of the

singular values of A and on the particular choice of f . Generally speaking, if f(σi) is

much larger on the first few singular values of A than for the remaining ones, then a

small number of steps result in approximations with small relative errors.

Remark 4.15. It is worth mentioning that these two latter approaches provide the same

results in exact arithmetic.

4.4 Numerical results

In this section we present some numerical results concerning the application of the

previously introduced techniques to the computation of centrality and communicability

indices in directed networks. The first set of experiments concerns the computation of

the total hub communicability of nodes, which, for a node i, is defined as the following

bilinear form:

Ch(i) := [h⋄(A)1]i = eTi h
⋄(A)1 , (4.9)

where h(t) = sinh(t) and A is the adjacency matrix of the digraph. As shown in

Chapter 3, this quantity can be used to rank how important node i is when regarded

as a “hub”, i.e., as a broadcaster of information (analogous quantities rank the nodes in

order of their importance as “authorities”, i.e., receivers of information). The second set
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of experiments concerns the computation of the resolvent-based communicability [11]

between node i, playing the role of broadcaster of information, and node j, acting

as a receiver. The quantities of interest here have the form [h⋄(A)]ij , where h(t) =

αt(1 − (αt)2)−1 and α ∈ (0, σ−1
1 ). In all the tests we apply the approaches previously

described and we use as stopping criterion

Rℓ =

∣∣∣∣∣
x(ℓ+1) − x(ℓ)

x(ℓ)

∣∣∣∣∣ ≤ tol, (4.10)

where tol is a fixed tolerance and x(ℓ) represents the approximation to the bilinear form

of interest computed at step ℓ by the method under study. The relative error, used to

assess the accuracy of approximation, is denoted by

Eℓ =
|x(ℓ) − zTh⋄(A)w|
|zTh⋄(A)w| .

Our dataset contains the adjacency matrices associated with three real world unweighted

and directed networks: Roget, SLASHDOT, and ITwiki [9, 26, 77]. The adjacency matrix

associated with Roget is 994 × 994 and has 7281 nonzeros. The graph contains infor-

mation concerning the cross-references in Roget’s Thesaurus. The adjacency matrix

associated with SLASHDOT is an 82168× 82168 matrix with 948464 nonzeros. For this

network, there is a connection from node i to node j if user i indicated user j as a friend

or a foe. The last network used in the tests, ITwiki, represents the Italian Wikipedia.

Its adjacency matrix is 49728× 49728 and has 941425 nonzeros, and there is a link from

node i to node j in the graph if page i refers to page j.

Node centralities

In this section we want to investigate how the three approaches perform when we want

to approximate (4.9), the total communicability of nodes in the network. For each of

the three networks in the dataset, we computed the centralities of ten nodes chosen

uniformly at random among all the nodes in the graph.

The results for the tests are presented in Tables 4.1–4.3. The tolerance used in the

stopping criterion (4.10) is set to tol = 10−6. The tables display the number of iterations

required to satisfy the above criterion and the relative error of the computed solution
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Table 4.1: Network: Roget, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach
ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 8 1.10e-06 8 1.10e-06 9 9.45e-09
2 34 9.93e-08 34 9.74e-08 10 2.78e-09
3 5 3.20e-05 5 3.20e-05 8 5.26e-07
4 6 4.38e-06 6 4.38e-06 9 1.21e-08
5 20 6.18e-06 20 6.18e-06 9 1.21e-08
6 7 2.62e-06 7 2.62e-06 10 3.68e-10
7 8 7.08e-06 8 7.08e-06 9 1.99e-08
8 15 9.07e-07 15 9.07e-07 9 2.80e-08
9 9 8.15e-08 9 8.15e-08 9 1.72e-09
10 7 3.78e-07 7 3.78e-07 9 2.64e-08

Table 4.2: Network: SLASHDOT, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach
ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 6 4.31e-07 6 5.61e-07 9 2.45e-08
2 9 3.24e-05 15 2.26e-06 9 1.56e-08
3 7 1.24e-06 8 1.75e-06 9 1.04e-07
4 14 2.21e-04 8 2.12e-04 10 1.74e-08
5 7 2.24e-05 7 2.35e-05 10 5.16e-09
6 10 4.84e-04 19 3.72e-04 10 1.99e-08
7 7 1.20e-06 7 1.20e-06 9 6.47e-08
8 7 7.11e-07 7 7.66e-07 9 7.68e-09
9 7 5.53e-06 7 5.98e-06 9 1.32e-09
10 6 6.98e-07 6 4.92e-07 8 8.68e-09

Table 4.3: Network: ITwiki, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach
ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 5 3.88e-08 5 2.90e-08 6 8.02e-09
2 10 4.72e-05 9 4.68e-05 7 1.27e-08
3 5 3.20e-08 5 3.17e-08 6 7.01e-09
4 7 2.31e-05 9 2.33e-05 8 4.31e-09
5 8 4.20e-05 20 5.77e-05 8 5.91e-09
6 9 2.19e-04 24 2.13e-04 8 2.70e-08
7 6 4.26e-07 6 5.85e-07 7 3.15e-09
8 14 1.91e-04 29 2.24e-04 8 3.38e-09
9 5 8.57e-08 5 9.31e-08 6 5.07e-09
10 9 9.36e-06 8 1.12e-05 8 3.22e-10

with respect to the “exact” value of the bilinear form. The latter has been computed

using the full SVD for the smallest network, and using a partial SVD with a sufficiently

large number of terms (≫ ℓ) for the two larger ones.

Concerning the first approach, since g(t) = (
√
t)−1 sinh(

√
t) is not completely mono-

tonic, we have used the Gauss quadrature rule as an approximation for the quantities

of interest, rather than as a lower bound.

As one can see from the tables, only a small number of steps is required for all the

three approaches. The third approach appears to be the best one for computing these



Chapter 4. Computation of generalized matrix functions 117

Figure 4.1: Network: Roget. Diagonal entries of h(Σr) and Σ†
rh(Σr) for h(t) =

αt
1−(αt)2 , when α = 1
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quantities since it requires almost always the same number of steps for all the nodes in

each network, while attaining higher accuracy. Somewhat inferior results (in terms of

both the number of iterations performed and the accuracy of the computed solution)

are obtained with the other two approaches, which however return very good results as

well. This can be explained by observing that the function sinh(t) being applied to the

larger (approximate) singular values of A takes much larger values than the function

t−1 sinh(t) used by the other two approaches, therefore a small relative error can be

attained in fewer steps (since the largest singular values are the first to converge).

Resolvent-based communicability between nodes

Our second set of numerical experiments concerns the computation of the resolvent-

based communicability between two nodes i and j. The concerned function is now

h(t) = αt
1−(αt)2

, where α ∈ (0, σ−1
1 ) is a user-defined parameter. The generalized matrix

function h⋄(A) arises as the top right square block of the matrix resolvent (I − αA )−1,

where the matrix A is defined as in (1.1). This resolvent function is similar to one first

used by Katz to assign centrality indices to nodes in a network, see [59]. In [11] the

authors showed that when A is as in (1.1), the resolvent can be written as

(I − αA )−1 =


 (I − α2AAT )−1 h⋄(A)

h⋄(AT ) (I − α2ATA)−1


 , α ∈ (0, σ−1

1 ).
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Figure 4.2: Network: Roget. Diagonal entries of h(Σr) and Σ†
rh(Σr) for h(t) =

αt
1−(αt)2 , when α = 1

8σ1

, 1
2σ1

, 0.85 σ−1
1

0 500 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

α = 1/(8σ
1
)

 

 

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α = 1/(2σ
1
)

 

 

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

α = 0.85/σ
1

 

 
h(Σr)
Σ

†
rh(Σr)

h(Σr)
Σ

†
rh(Σr)

h(Σr)
Σ

†
rh(Σr)

Furthermore, the entries of its top right block can be used to account for the communi-

cability between node i (playing the role of spreader of information, or hub) and node j

(playing the role of receiver, or authority). As before, the function g(t) = (
√
t)−1h(

√
t)

is not completely monotonic. Thus the Gauss rule can only be expected to provide an

approximation to the quantity of interest.

We have performed three different tests on the network Roget for three different values

of α. More specifically, we have tested α = 1
8σ1

, 1
2σ1

, and 17
20σ1

= 0.85
σ1

. Figure 4.1 shows

the values of the diagonal entries of h(Σr) and Σ†
rh(Σr) for the three different values

of α used in the tests. Figure 4.2 plots the respective behavior of the diagonal entries

of Σ†
rh(Σr) and h(Σr) for the three values of the parameter α. From these plots, one

can expect the first and second approach to require a higher number of steps than

that required by the third one; this is because the leading singular values are mapped

to appreciably larger values when applying the function h(t) than when applying the

function t−1h(t). The results for this set of experiments are contained in Tables 4.4–4.6,

when the tolerance for the stopping criterion (4.10) is set to tol = 10−4. The pairs of

nodes whose communicability we want to approximate are chosen uniformly at random

among all the possible pairs of distinct nodes in the graph. We kept the same set

of pairs in all the three experiments. We want to point out, however, that the value

being computed for each pair varies with α, and thus the results (in terms of number of

iterations and accuracy) cannot be compared among the three tables.

As can be clearly seen from the tables, the fastest and most accurate method (in terms of
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Table 4.4: Network: Roget, h(t) = αt
1−(αt)2 , α = 1

8σ1

(tol = 10−4).

First approach Second approach Third approach
ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 75 2.14e+03 75 2.14e+03 5 6.61e-08
2 106 1.60e-02 106 1.60e-02 4 3.75e-08
3 906 2.99e-01 906 2.99e-01 5 1.65e-08
4 992 2.17e-08 992 7.82e-06 5 1.33e-07
5 166 7.16e+02 166 7.16e+02 5 7.52e-08
6 257 1.03e-01 257 1.03e-01 4 4.46e-08
7 874 5.41e-01 874 5.41e-01 5 2.46e-08
8 274 1.06e+00 274 1.06e+00 5 9.46e-08
9 259 8.37e-04 259 8.37e-04 5 7.31e-11
10 733 2.48e+01 733 2.48e+01 5 3.37e-07

Table 4.5: Network: Roget, h(t) = αt
1−(αt)2 , α = 1

2σ1

(tol = 10−4).

First approach Second approach Third approach
ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 75 6.32e+00 75 6.32e+00 7 1.90e-06
2 87 8.90e-03 87 8.90e-03 6 6.02e-07
3 308 1.10e-02 308 1.10e-02 6 7.96e-06
4 106 5.71e-01 106 5.72e-01 7 7.77e-08
5 495 1.72e-01 495 1.72e-01 7 4.43e-06
6 79 4.51e-02 79 4.51e-02 6 2.12e-06
7 118 8.64e-02 118 8.64e-02 7 4.24e-07
8 121 1.00e-01 121 1.01e-01 7 5.84e-07
9 59 1.91e-02 59 1.91e-02 6 6.99e-07
10 574 1.87e-01 574 1.87e-01 7 1.49e-06

Table 4.6: Network: Roget, h(t) = αt
1−(αt)2 , α = 0.85 σ−1

1 (tol = 10−4).

First approach Second approach Third approach
ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 74 2.72e-01 74 2.72e-01 10 4.88e-06
2 66 3.45e-03 66 3.45e-03 8 5.22e-06
3 97 6.96e-02 97 6.96e-02 8 4.79e-06
4 58 3.72e-02 58 3.72e-02 8 8.04e-05
5 147 6.23e-02 147 6.23e-02 9 1.23e-05
6 53 8.48e-03 53 8.48e-03 9 3.34e-06
7 74 1.58e-02 74 1.58e-02 7 3.20e-04
8 117 6.49e-03 117 6.49e-03 10 4.52e-06
9 23 6.02e-03 23 6.02e-03 9 4.34e-07
10 152 1.70e-01 152 1.70e-01 9 3.90e-05

relative error with respect to the exact value) is once again the third. Indeed, it requires

fewer steps than the first two approaches and it achieves a higher level of accuracy (see,

e.g., Table 4.5). In fact, in some cases the first two approaches stabilize at a value

which is far from the quantity that needs to be computed; this kind of stagnation leads

to the termination criterion to be satisfied even if convergence has not been attained.

Moreover, in Table 4.4, case 4 requires ℓ = rank(A) = 992 steps to satisfy (4.10) for the

first two approaches, whereas the third only requires 5 steps.
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Table 4.7: Network: Roget, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach mmq
ℓ Eℓ ℓ Eℓ ℓ Eℓ ℓ Eℓ

1 10 4.69e-06 10 4.69e-06 9 1.09e-08 11 2.46e-09
2 6 4.48e-06 6 4.48e-06 9 3.71e-08 10 3.38e-08
3 9 4.27e-06 9 4.27e-06 9 5.07e-10 10 3.35e-08
4 5 1.82e-06 5 1.82e-06 8 2.36e-07 10 4.34e-08
5 13 4.25e-06 13 4.25e-06 7 1.29e-08 10 3.47e-09
6 10 1.20e-05 10 1.20e-05 9 4.34e-08 10 1.44e-08
7 4 1.96e-06 4 1.96e-06 9 4.63e-09 9 5.29e-10
8 17 1.02e-05 17 1.02e-05 9 8.20e-08 11 3.53e-09
9 6 1.26e-05 6 1.26e-05 10 2.13e-09 10 4.86e-08
10 13 3.62e-06 13 3.62e-06 9 7.45e-08 11 2.29e-09

Comparison with standard Lanczos-based approach

In the case of generalized matrix functions like sinh⋄(A), which occur as submatrices

of “standard” matrix functions applied to the symmetric matrix A , it is natural to

compare the previously proposed approaches with the use of Gauss quadrature-based

bounds and estimates based on the Lanczos process. This was the approach used, for

example, in [11]. Henceforth, we refer to this approach as “the mmq approach,” since

it is implemented on the basis of the mmq toolkit [72] originally developed by Gérard

Meurant; see also [49].

We have computed the hub centrality of ten nodes chosen uniformly at random among

all the nodes in the network Roget using our three approaches and the mmq approach.

The results when the tolerance in (4.10) is set to tol = 10−6 are summarized in Table 4.7

experiments. These indicate that on average, the mmq approach requires a slightly higher

number of iterations than our third approach to deliver comparable accuracy. Note that

the cost per step is comparable for the two methods. An advantage of the mmq approach

is that it can provide lower and upper bounds on the quantities being computed, but

only if bounds on the singular values of A are available. A disadvantage is that it requires

working with vectors of length 2n instead of n.

Of course, the Lanczos-based approach is not applicable to generalized matrix functions

that do not arise as submatrices of standard matrix functions.
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4.5 Conclusions

In this chapter we have proposed several algorithms for the computation of certain

quantities associated with generalized matrix functions. These techniques are based

on Gaussian quadrature rules and different variants of the Lanczos and Golub–Kahan

algorithms. In particular, we have investigated three distinct approaches for estimating

scalar quantities like zTf⋄(A)w. The performance of the various approaches has been

tested in the context of computations arising in network theory. We have observed

that the quality of approximation and the number of iterations required to satisfy the

stopping criterion depend in general on the choice of the function and on its action on

the diagonal entries of Σr.





Chapter 5

Predicting triadic closure in

complex networks

It is well-documented that real-world networks have a clustering coefficient (1.9) that

is larger than what one would expect from the uniform model [78]. The high degree

of transitivity is a common characteristic of many types of networks, such as social,

biomolecular, cellular, ecological, infrastructural, and technological (see [34] and ref-

erences therein). In 1922 Simmel [86] theorized that people with common friends are

more likely to create friendships. This “friendship transitivity” definitively implies a

social mechanism for triadic closure in social networks which may then be applied to ex-

plain the evolution of triangle closures [63]. It assumes that individuals can benefit from

cooperative relations, and this may induce individuals to choose new acquaintances from

among their friends’ friends. Although intuitive, this simple idea has some fundamental

drawbacks. First, it is not always true that pairs of nodes benefit from cooperative re-

lations, and therefore the Simmelian principle is useless in such situations. Secondly, it

is evident that not every pair of nodes separated by two edges participates in a triangle

in a real-world network. Thus, some kind of selective process has been taking place,

closing some of the triads in a network and leaving many others open.

In this chapter, which is based on [37], we describe a general mechanism to account for

such selective process of triadic closure in networks. We propose a strategy for predicting

triadic closure based on the idea that triadic closure is a communication-driven process.

123
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5.1 Communicability distances and triad closure

The communicability (function) [39–41], defined ∀i, j ∈ V as (eA)ij , can be used to quan-

tify the quality of communication between nodes i and j in a network, which depends

on two factors: how much information departing from a source node reaches its target

(eA)ij , and how much information departing from the node returns to it without ending

at its destination (eA)ii. That is, two nodes communicate better when there is a large

amount of information that departs from the originator and arrives at its destination.

On the other hand, the quality of communication between two nodes decreases when

there is a large amount of information that is wasted due to the fact that the information

returns to its source without being delivered to the target. In [35] the communicability

distance is defined as

ξij =
√

(eA)ii + (eA)jj − 2 (eA)ij . (5.1)

This is an Euclidean distance between the nodes i and j in G (see [35, 36]). From its

definition, it is clear that ξij characterizes the quality of the communication taking place

between nodes i and j.

We start by considering the square of the communicability distance defined in (5.1) for

a pair of nodes i and j in a connected graph. This distance characterizes how effectively

nodes i and j communicate when we assume that the information departing from node i

travels to node j (and vice versa) by taking a series of one-hop steps between the nodes

in any of the walks connecting them. From (5.1), it is clear that the smaller the value

of ξ2ij , the better nodes i and j are at exchanging information.

The communicability distance (5.1) depends on eA, where A is the adjacency matrix of

a simple graph. If we consider i and j such that aij = 1, then we are assuming that

these two nodes are attracted to each other. If instead we were to consider that these

nodes repel each other, we would use e−A.

If the (squared) communicability distance between two pairs of nodes i and j and p and

q satisfies ξ2ij < ξ2pq then we say that the attraction between the pair i and j is stronger

than that of the pair p and q in the corresponding network.

Now, consider a triad i, l, j, where (i, l) ∈ E , (l, j) ∈ E but (i, j) /∈ E . Because ail = 1 and

alj = 1 we can infer that there are attractive “forces” between i and l and between l and
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j. A simple metaphoric way to represent such attractive forces between pairs of nodes

is to suppose that they have opposite charges which attract to each other. For instance,

we can consider either of the following schemes for the previous example: i+− l−−j+ or

i−− l+− j−. Notice that considering a particle spin, as is usually done in sociophysical

models of opinion dynamics, also works here as an appropriate metaphor (see, e.g., [84]).

Observe that there are two types of interactions between the nodes i and j. First, due

to the attractions between i and l, and l and j, node j “feels” an attractive force from i,

which is transmitted through the edges of the network. On the other hand, due to the

fact that both i and j have the same charge, they experience some repulsion from each

other, which takes place in a “through-space” fashion, as we will clarify later. We can

thus expect the link (i, j) to be created if the through-edge attractive force between the

nodes i and j is larger than the through-space repulsive force between them.

In order to understand the nature of the interactions described in the previous para-

graph we consider a molecular system as a model example. In this case there is a

communication between pairs of atoms which occurs through the covalent bonds of the

molecule. This kind of interaction takes place through the edges (covalent bonds) and is

analogous to the attractive forces we have previously described. Hereafter we will refer

to this interaction as the Through-Edges Communicability (TEC). If two non-covalently

bonded atoms are close in space, they can interact with each other through non-covalent

interactions, for example, by hydrophobic, polarity, or electrostatic forces. These in-

teractions are analogous to our through-space repulsion and we will refer to them as

direct Long-Range Communicability (LRC). In a social network, TEC is present when

information is transmitted from one individual to another in the network by using the

social ties that define the edges of the graph. On the other hand, LRC is realized by the

direct influence of an individual to another through any source of social signalling.

Note that although the shortest path distance between every pair of nodes in a triangle

equals one, every pair of nodes in it is connected by a pair of adjacent edges through

the third vertex. A natural way to account for all the pairs of nodes connected by pairs

of adjacent edges is to consider the number of walks of length two between the pairs of

nodes. We can then transform a graph accordingly. Let G = (V , E) be a simple and

connected graph and let W2(G) = (V , E ′) be the graph with the same set of nodes as

G, but whose edges are weighted by the number of walks of length two between every

pair of (not necessarily distinct) nodes in G. More precisely, if µ2(i, j) is the number of
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walks of length two between nodes i and j, then the adjacency matrix A(2) = (a
(2)
ij ) of

W2(G) is

a
(2)
ij =





µ2(i, j) i 6= j

µ2(i, i) = di i = j,

where di is the degree of node i.

Remark 5.1. Clearly A(2) = A2 and so we do not need to explicitly construct the graph

W2(G), since we can simply work with the square of the adjacency matrix of the original

graph G.

Note that two nodes are connected in W2(G) if they have the same charge. Thus,

connected nodes inW2(G) repel each other. Consequently the repulsive communicability

between a given pair of nodes in G is given by (e−A(2)
)ij = (e−A2

)ij .

Using this idea of repulsive communicability, we can define a communicability distance

based on (e−A2
)ij which accounts for the quality of LRC between pairs of nodes separated

by two adjacent edges, i.e., pairs of nodes feeling mutual repulsion in G. This new

communicability distance function will be defined as

ηij =
√
(e−A2)ii + (e−A2)jj − 2(e−A2)ij . (5.2)

A large value of ηij indicates that there is a weak repulsion between nodes i and j. This

new communicability distance ηij is an Euclidean distance between nodes i and j. The

proof of this follows the same lines as in [35, 36] and it is hence omitted.

Remark 5.2. The graph W2(G) is not always connected. Therefore, the function ηij is

defined only for pairs of nodes which sit in the same connected component of the graph.

Elsewhere ηij is set to infinity.

Before continuing, consider the following example. The tree illustrated on the left in

Figure 5.1 can be transformed by adding an edge which closes any of the three nonequiv-

alent existing triads of the graph, i.e., by adding the edge (2, 3), (2, 4) or (1, 5). The

resulting unicyclic graphs are illustrated on the right of Figure 5.1. In Table 5.1 we

report the values of ξ2ij and η2ij for each of the three triads. Now assume that we have

information indicating that the process giving rise to the closure of the 1, 2, 3-triad is

favored over the other two. We cannot a priori know for any particular system how the

attractive and repulsive forces scale. In real physical systems such terms are scaled by
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Figure 5.1: Example of evolution of a tree after one edge is added to close a triangle.

minimizing the global energy of the system. Here we simply consider the weighted dif-

ference between the two terms: αξ2ij − βη2ij , where α and β are two parameters. We will

propose a method to determine the values of the empirical parameter α and β in a given

network a little later. For this example it can be verified that, for instance, ξ2ij − 1.5η2ij

produces a negative value only for the pair (2, 3) (see Table 5.1). This weighted difference

between ξ2ij and η2ij corresponds to the case in which the attractive forces between the

corresponding nodes outweigh the magnitude of the repulsive ones. As noted previously,

a large value of η2ij indicates a small repulsion between the corresponding nodes, and

here we have multiplied η2ij by a coefficient β > 1, which further reduces the repulsive

forces.

Now suppose instead that we have information indicating that the process giving rise to

the closure of the 1, 4, 5-triad is favored over the other two. In this case it can be verified

(see Table 5.1) that the weighted difference −0.5ξ2ij +1.5η2ij is negative only for the pair

(1, 5). Here, we have considered that the attractive forces between the nodes make a

negative contribution to the creation of an edge closing the triad. This may correspond

to the situation in which the links (i, l) and (l, j) are both very weak, i.e., friendship

ties between the corresponding individuals are not too strong. We further weaken those

relations by multiplying ξ2ij by a coefficient α < 0. At the same time, by multiplying η2ij

by a coefficient β < 0 we have assumed that the repulsive factor does not play a major

role in determining whether the new edge is created or not. Indeed, in this way η2ij is
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Table 5.1: Values of weighted sum of ξ2 and η2 for the potential edges considered in
Figure 5.1.

pair ξ2ij η2
ij ξ2ij − 1.5η2

ij −0.5ξ2ij + 1.5η2
ij ξ2ij + η2

ij

2,3 2.000 2.000 -1.000 2.000 4.000
1,5 3.184 0.960 1.744 -0.152 4.144
2,4 2.545 1.312 0.577 0.696 3.857

transformed into an attraction term. In the charged-particles analogy this corresponds

to a situation in which the charges between the corresponding nodes are very weak and

there is no repulsion between those nodes separated by two adjacent edges.

Finally, suppose that we have information indicating that the process giving rise to the

closure of the 1, 2, 4-triad is favored over the other two. In this case it can be verified

(see Table 5.1) that the weighted difference ξ2ij +η2ij reaches the smallest value for (2, 4).

The values of the weighted differences for the three triad closure processes are positive,

but the one corresponding to the closure of he 1, 2, 4-triad is the lowest among the three.

In this case, triadic closure is dominated by attractive forces only. The term αξ2ij with

α > 0 indicates the normal attractive forces between the corresponding pair of nodes

while βη2ij with β < 0 is transformed into an attractive term.

A case we have not considered here is if α < 0 and β > 0, when both terms represent

repulsive forces between nodes. In this case αξ2ij − βη2ij < 0 for all i, j and the order

in which the triads will be closed is determined by the magnitudes of α and β. In

such a repulsive system there are no attractive forces to fuel the creation of new edges.

Consequently, the creation of the new edges to close triads is controlled by factors such as

their similarities or complementarity in their functions which do not depend particularly

on the communicability between nodes. In this case, predictions of triad closure made

on the basis of communicability distances are not expected to differ significantly from

those made by a random closure of the triads.

In summary, we can use the function

∆ij(α, β) := αξ2ij − βη2ij , ∀i, j ∈ V , (5.3)

to determine which triad is closed in the network.

In order to predict which triads will close in a given network it is necessary to know the

values of α and β. We now propose a method that allows us to estimate these empirical
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parameters and consequently to determine which triads will close in a given network.

5.2 Proposed method

In order to predict the triadic closure in a network based on ∆ij(α, β) we develop a

procedure to find the values of the empirical parameters α and β which best predict

the triadic closure in a network from which we have removed all the triangles. That is,

we take a network G and we list all its existing triangles. We then transform G into a

triangle-free graph G ′ by removing one and only one of the edges forming each triangle.

The deleted edges are selected uniformly at random from the three edges forming each

triangle. As this procedure is likely to be repeated a large number of times (see below

for details), the chance that each of the three edges is selected at least once is very high.

We keep a list of all these removed edges which we call R. It may happen that two

triangles T1 and T2 share an edge e. If we select e when considering T1, then, when it

comes to select an edge in T2, we pick an edge which may or may not coincide with e.

If it does, we do not add it to the list. It may also happen that T2 consists of e and

two other edges, one of which has also already been removed because it was in common

with a third triangle. In such cases, we do not remove the last connection remaining in

T2, since it could disconnect the network.

We also create a list P of all the pairs of nodes which form triads in G but are not part

of any triangle. In other words, P contains the potential edges of the network G (cf.

Chapter 1). Finally, we create the list L = R∪P which contains all the potential edges

in G ′. Our task is to select appropriate values of the empirical parameters α and β that

differentiate as much as possible the pairs of nodes in R from those in P . We do this by

using a non-increasing ranking of all the pairs of nodes in L according to ∆ij(α, β). We

have previously predicted that the triadic closure process should be controlled by the

smallest values of ∆ij(α, β) (see the example described in Figure 5.1). Thus, we expect

that a non-increasing ranking of the values of ∆ij(α, β) contains most of the elements

of R at the top of the ranking and most of those of P at the bottom.

In order to quantify the percentage of triangles that were correctly predicted we proceed

as follow. We first rank the entries of L in non-increasing order using the quantities (5.3).

We select the top r entries of this ordered list, where r is the cardinality of R. Then,
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we count the number rp of entries in this top r which are elements of R. These entries

correspond to those virtual edges which were originally closing triangles in G. That is,

rp represents the number of correct predictions made by the current method. We call

the (percentage) ratio of rp to r the percentage of detected.

5.2.1 Datasets and computational methods

We now give some computational details on how we implemented these calculations to

find the optimal values of α and β for a selection of networks.

We study 25 networks representing complex systems from a wide variety of environ-

ments, such as social (Colorado, dolphins, Drugs, Galesburg, Geom, High School, High

tech, Matheoremethod, Prison, Sawmill, social3, Zachary), ecological (BridgeBrook,

Grassland, ScotchBroom, StMartin, and Ythan1), biomolecular (Neurons, PIN Ecoli,

PIN Human, PIN Yeast, and Transc yeast), technological (Internet and USAir97), and

informational (Roget). A brief description of all these networks is given in Appendix A.

In order to find the optimal values of the empirical parameters α and β for these networks

we proceed as follows. We calculate all the values of α and β in the interval I = [−2.1, 2.1]
with a step length of 0.1. This interval I has been determined empirically as smaller

intervals led to worse results and larger ones did not improve the results. Then, for each

combination of α and β in ∆ij(α, β) we rank all the elements of L in non-increasing

order and find the percentage of detected. The optimal values of α and β for this

particular network are those that produce the highest percentage of detected. These

computations were repeated 100 times.

The effectiveness of the proposed method is tested by considering a simple null model

constructed as follows. We randomly order the edges in L, select the top r pairs of

nodes and count how many of them were in the set R. With this information we

compute the percentage of correct predictions made by a random ordering of the pairs

of nodes (rand). Similar values of the percentages of detected and rand indicate

that the ranking produced by the function ∆ij(α, β) does not differ significantly from a

random ordering of the pairs of nodes and consequently is not a good one; while larger

differences between the percentages of detected and rand indicate good performance

of the proposed method.
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Before starting with the detailed analysis of these 25 datasets we consider the possibility

of fixing one of the parameters (α or β) and letting the other varying in the bounded

interval [−2.1, 2.1]. To do this we set α = 1 and let β vary. This seems reasonable, since

this choice allows us to tune the disturbance caused by the repulsion in the values of

∆ij . However, the results obtained for 10 of the studied networks discouraged us from

proceeding with this approach. On average the use of the two parameters α and β makes

predictions of triadic closure which are 7% higher than those using only one parameter,

with maximum differences of up to 20% for one network (results not shown here). Thus,

we will use the more general approach of calibrating both empirical parameters.

5.2.2 Bounds for communicability distance functions

Although in our experiments we use the exact values of the communicability distance

functions in order to obtain the values of ∆ij , we now give some bounds for ξij and

ηij , which can be used in the computations when working on extremely large networks.

It is clear from the definitions given in (5.1), (5.2), and (5.3) that for large matrices

these values may be too costly to compute. To avoid the computation of the matrix

exponential, we derive bounds for ξ2ij and η2ij (and therefore for ∆ij(α, β)) by means of

a Gauss–Radau quadrature rule as described in Section 1.3.

Our results are summarized in the following theorems.

Theorem 5.3. Let A be the adjacency matrix of an unweighted and undirected network.

Then

Φ

(
b, ω1 +

γ21
ω1 − b

)
≤ (ξij)

2

2
≤ Φ

(
a, ω1 +

γ21
ω1 − a

)
, (5.4)

where

Φ(x, y) =
c (e−x − e−y) + xe−y − ye−x

x− y
, c = ω1, (5.5)





ω1 = aij ,

γ1 =
[
di+dj

2 − ω1 −A2
ij

] 1
2
,

and [a, b] is an interval containing the spectrum of −A.

The proof of this result can be found in [37]. Since it goes along the same line as the

proof of Theorem 2.1 it is omitted.
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Remark 5.4. If (i, j) 6∈ E the bounds simplify considerably. Indeed, in this case ω1 = 0

and hence

b2e
γ21
b + γ21e

−b

b2 + γ21
≤ (ξij)

2

2
≤ a2e

γ21
a + γ21e

−a

a2 + γ21

Similar bounds can be computed for η2ij and are described in the following theorem.

Theorem 5.5. Let A be the adjacency matrix of an unweighted and undirected network.

Then

Φ

(
b̃, ω̃1 +

γ̃21
ω̃1 − b̃

)
≤ (ηij)

2

2
≤ Φ

(
ã, ω̃1 +

γ̃21
ω̃1 − ã

)

where Φ is defined as in (5.5) with c = ω̃1, [ã, b̃] is an interval containing the spectrum

of A2, and 



ω̃1 = γ21 + ω1;

γ̃1 =

[
1
2

∑n
l=1

(
A2

il −A2
lj

)2
− ω̃1

2

] 1
2 .

with ω1 and γ1 as in Theorem 5.3.

Remark 5.6. Since the behavior of the eigenvalues of A is known (see [91]), we may take

ã = 0 and b̃ = a2 as the square of the approximation to the largest eigenvalue of A. For

these values, the bounds simplify to

Φ

(
a2, ω̃1 +

γ̃21
ω̃1 − a2

)
≤ (ηij)

2

2
≤ Φ

(
0, ω̃1 +

γ̃21
ω̃1

)
=

ω̃2
1e

− ω̃2
1+γ̃21
ω̃1 + γ̃21

ω̃2
1 + γ̃21

.

Combining the results described in the previous theorems, one easily get bounds for the

values of
∆ij(α,β)

2 . Indeed, the computation is straightforward, since the new bounds are

linear combinations of the previous ones. For example, if we have α ≥ 0 and β ≤ 0 we

get as lower bound for
∆ij(α,β)

2

αΦ

(
b, ω1 +

γ21
ω1 − b

)
+ βΦ

(
ã, ω̃1 +

γ̃21
ω̃1 − ã

)
,

and as upper bound

αΦ

(
a, ω1 +

γ21
ω1 − a

)
+ βΦ

(
b̃, ω̃1 +

γ̃21
ω̃1 − b̃

)
,

where ω1, γ1, ω̃1, and γ̃1 depend on the choice of i and j.
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5.3 Modeling results and discussion

5.3.1 Predicting and interpreting triadic closure

The first series of results refers to the finding of the optimal values of α and β for

the studied networks and the comparison of the percentage of triadic closures correctly

predicted by the proposed method in comparison with the random process. The results

of the tests are listed in Table 5.2. The columns 〈α∗〉 and 〈β∗〉 contain the average best

values for the parameters, where the average is taken over the 100 iterations we run.

The results show that on average the method based on the communicability distance

functions (detect) correctly predicts 20% of the triad closures in the real-world networks

studied. In 7 cases this percentage of correct prediction reaches values larger than 25%.

In contrast, the random closure of triads identifies 7.6% of the real triangles existing in

those networks.

We can now gain some insights about the processes that have governed the triad closure

in the studied networks. According to our standpoint, the triadic closure process arises

from a combination of two kinds of node interaction: TEC and LRC. If we refer to the

nature of the two kinds of transmission in the order TEC-LRC we can have any of the

following four scenarios:

• α > 0, β < 0, the triads close by means of attractive-attractive interactions;

• α > 0, β > 0, the triads close by means of attractive-repulsive interactions;

• α < 0, β < 0, the triads close by means of repulsive-attractive interactions;

• α < 0, β > 0, the triads close by means of repulsive-repulsive interactions.

In Table 5.2 we have arranged the values of 〈α∗〉 and 〈β∗〉 to correspond to these

four classes. For instance, the networks Sawmill, Social3, Matheoremethod, Galesburg,

Prison, Zachary, and Colorado (all social networks), Grassland and Bridge Brook (food

webs) and Transc yeast (a gene transcription network) close their triads following a

scheme of attractive-attractive interactions. The three social networks of High Tech,

Drugs and Geom as well as the networks of USAir97 (air transportation network), neu-

rons (neural network), Ythan1 (a food web) and the Internet network, all belong to the
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class of networks in which triads are closed by an attraction-repulsion mechanism. The

only network with a repulsion-attraction triad closure mechanism is the social network

High School, while there are seven networks closing triads with a repulsion-repulsion

mechanism (three protein-protein interaction (PPIs) networks, two food webs, one ani-

mal social network, and the Roget thesaurus).

The group of networks with attractive-attractive interactions consists of 63% of all the

social networks studied here. Among them we find a communication network within a

small enterprise: a sawmill, where all employees were asked to indicate the frequency

with which they discussed work matters with each of their colleagues on a five-point

scale ranging from less than once a week to several times a day. Two employees were

linked in the communication network if they rated their contact as a three or higher.

This is a cooperative process in which both advisers and advisees cooperate to share the

information needed for improving their skills and knowledge. Thus, closing the potential

triangles in order to enhance the communication between the individuals involved seems

a very reasonable mechanism. The other social networks included in this class all share

a common characteristic. In the networks Social3 (a network of social contacts among

college students participating in a leadership course), Galesburg (a network of friendship

among physicians) and Matheoremethod (a network of friendship among school super-

intendents) the participants in the respective studies were asked the following questions:

• Choose the three members they wished to include in a committee;

• Nominate three doctors with whom they would choose to discuss medical matters;

• Name their best friends among the chief school administrators in Allegheny County.

In the first two cases it is very clear that the participants were asked to nominate

individuals with whom they would easily cooperate, e.g., members of a committee or

colleagues with whom to discuss medical matters. The third resembles a general kind

of friendship relation, but the question was formulated in the context of analyzing the

diffusion of a new mathematical method among High Schools in the county. Thus,

selecting your best friends among other chief school administrators also means selecting

those with whom you would easily cooperate in technical matters. These facts may

explain the kind of attraction-attraction interaction which dictates the main mechanism

for closing the triads in these networks. Transmission of information through the edges
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as well as a direct long-range interaction between peers both benefit the cooperative

atmosphere needed for performing the tasks for which these networks are created.

In the class of networks in which triads have been closed by attraction-repulsion mecha-

nisms we find networks of very different natures and it is difficult to extend the previous

analysis to all these networks. This group includes a social network in a small high-tech

computer firm which sells, installs, and maintains computer systems, where individuals

were asked: “Who do you consider to be a personal friend?”. It could be speculated

that a mechanism of the type based on Simmelian principles dominates here. That is,

if i − l − j is a triad and the two pairs i − l and l − j have strong social relations, it is

natural to think that there is not a strong repulsion between i and j and they can create

a new social tie. The friendship network among boys in a High School, which is the only

one showing repulsion-attraction mechanisms, was created by asking the pupils: “What

fellows here in school do you go around with most often?”. The triads here are formed

when the relations between the pairs i− l and l− j are not strong enough to tie i and j

together. If the pairs i− l and l− j have some strong relation, i.e., if they are dating, a

link between i and j could be seen as offensive to the already established couples. The

final class of networks, that characterized by repulsion-repulsion interactions, does not

contain any human social network. The three PPIs included in this study are charac-

terized by this type of triad closure mechanism, together with two food webs, an animal

social network, and a thesaurus. The repulsion-repulsion mechanism is characterized

by weak through-edge transmission of information and weak long-range interaction be-

tween pairs of nodes separated by two adjacent edges. Thus, it is expected that the triad

closure is controlled by non-topological factors, such as similarities or complimentarities

among the nodes. This is a plausible explanation for the case of the PPI networks, where

triads of proteins may form triangles due to their functional similarities. We notice that,

as expected, the percentages of correct prediction of triad closure in this group are the

smallest of the four groups. That is, the difference between the predictions made by the

proposed method and the random one in this group is 8.7%, in contrasts with 15.5%

for the attraction-attraction, 14.1% for the attraction-repulsion and 10% for the only

network with repulsion-attraction mechanisms.
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Table 5.2: Results of the proposed method for predicting triad closure in 25 complex
networks.

Network r detected rand 〈α∗〉 〈β∗〉

Sawmill 18 27% 10% 1.906 −1.25
social3 32 24% 11% 1.164 −1.258
Matheoremethod 19 25% 10% 1.196 −0.574
Grassland 30 25% 9% 1.833 −1.203
Galesburg 29 23% 11% 0.902 −0.648
Prison 58 30% 12% 0.294 −1.492
Zachary 45 42% 10% 1.696 −0.392
BridgeBrook 774 13% 3% 1.977 −1.046
Colorado 17 20% 1% 0.754 −0.044
Transc yeast 72 4% 1% 0.221 −0.544

USAir97 12181 45% 18% 1.452 0.63
High tech 77 31% 16% 0.198 0.288
Drugs 3598 27% 16% 0.526 1.048
Neurons 2808 16% 8% 0.526 0.978
Geom 12325 12% 6% 0.14 1.149
Ythan1 507 10% 4% 0.248 0.492
Internet 2331 26% 0% 0.1 1.842

High School 199 28% 18% −0.654 −0.434

dolphins 95 24% 13% −0.364 0.586
ScotchBroom 358 31% 4% −0.372 0.660
StMartin 278 16% 11% −0.232 0.335
PIN Ecoli 478 10% 5% −1.025 0.137
PIN Yeast 3530 13% 4% −1.53 1.842
PIN Human 1047 5% 2% −0.203 0.291
Roget 1550 7% 6% −0.305 0.008

5.3.2 Network evolution under triadic closure

Finally, in this section we use the results of the proposed method for modeling the

triadic closure evolution in a given network. In the next experiment, we simulate the

evolution of a real-world complex network to examine to which extent the appearance of

triadic closure can be inferred from TEC-LRC interactions. Starting from an incomplete

description of the real network, we compare the effect of a sequence of triadic closures

generated by our prediction methods against the present structure of the network, with

respect to some well established structural indices. This method allows us to contrast

the predictions made by the current method with some control parameters obtained for

the real-world network in its current state. For this experiment we selected the network

of injecting drug users (Drugs) for which we consider the clustering coefficient (1.9),

the average path length (1.10), and the average communicability of the actual network,

defined as

e =
TC(A)− EE(A)

n2 − n
=

1

n(n− 1)

∑

i 6=j

(eA)ij .
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In order to perform these experiments we select 50% of the total number of triangles

existing in the network and we remove one edge from each of them. Edges are selected

uniformly at random among those present in the corresponding triangle. As before, let

L be the list of edges obtained from the union of the potential edges and of those we

removed. The values for α∗ and β∗ are those determined empirically using the calibration

method already described (cf. Table 5.2).

The iteration process goes as follows. We select the potential edge realizing the smallest

value for ∆ij(α
∗, β∗) and we add this edge to the network. Then we compute the values

of the parameters of interest: the average clustering coefficient, the average path length,

and the average communicability. Finally, the values for ∆ij(α
∗, β∗) are recomputed

using the new adjacency matrix, obtained by the addition of the selected potential edge.

Here every addition of an edge is considered as a time step.

This iteration is run as many times as the number of edges we have removed. That

is, if we removed r edges, we consider a discrete time evolution for 0 ≤ t ≤ r. We

then repeat this experiment 10 times, taking the average and standard deviations of the

corresponding parameter. In order to compare the results we simulate the same process

by adding such edges uniformly at random.

The results of this experiment are illustrated in Figure 5.2, where we plot the values

for the parameters of interest (with the corresponding error bar) versus time. The hori-

zontal dotted line represents the actual value of the property for the original real-world

network. As can be seen in Figure 5.2, the proposed method outperforms the random

one for predicting the clustering coefficient of the network. The current value of C for

this network is 0.549, while the one predicted by ∆ij is 0.486, which contrasts with that

of 0.183 obtained by the random method. We remark here that this is the most impor-

tant parameter to be considered in this experiment as it is the one which accounts more

directly for the ratio of triangles to paths of length two in the network. Both methods

predict the average path length of the network very well, returning values very close

to the actual one (ℓ = 5.287). In addition, the proposed method increases the average

communicability of the network more significantly than the random triadic closure. This

feature is important when one is interested in maximizing the total average communi-

cability of a network, which is equivalent to increasing the quality of communication

among the nodes in the network.
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Figure 5.2: Illustration of the evolution of the clustering coefficient, average path
length, and average communicability for the network of injecting drug users (Drugs)
versus the number of links added using the function (∆ij) and at random (see the text

for explanations).
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5.4 Conclusions

The prediction of triadic closure is a very important and far from trivial problem in

network theory. The fact that most real-world complex networks have more triangles

than random counterparts makes the problem interesting per se. In addition, there is

a large amount of evidence that shows that triadic closure in (social) networks is an

important driver for other important structural characteristics of networks, such as de-

gree distributions, clustering, and community structure. In this chapter, we introduced

a triad closure mechanism based on communicability distances among pairs of nodes in

a network. Our results show acceptable levels of predictability and interpretability of

the potential mechanisms controlling triad closure in real-world networks.



Conclusions and outlook

In this thesis we have studied two different problems:

• how to make a small number of modifications to the edges in a network in order

to tune its total communicability;

• how to predict triadic closure in networks.

We have developed efficient and effective techniques to select which virtual edges to

add in an undirected network in order to increase as much as possible its total commu-

nicability or to select which edges to remove in order to reduce this index as little as

possible. These heuristics are based on some newly introduced edge centrality measures

that are used to rank the (virtual) edges in the graph. Moreover, we have shown that

the total communicability is equally effective an index of network connectivity as the

Helmholtz free energy, while being much cheaper to compute. We have further inves-

tigated the potentiality of our methods by studying what happens when one tries to

tune the resolvent-based total communicability. We proved that, depending on whether

the parameter used in the definition of this index is kept fixed or it is allowed to vary

as the network is modified, different results are obtained. In neither of these two cases

the results are completely satisfying. For example, we showed that when the parameter

is allowed to vary, the resolvent-based total communicability can decrease under link

addition and increase when one removes connections.

We have then generalized the idea of total network communicability to the case of di-

graphs, introducing two indices of total communicability which serve to describe the

overall capability of nodes of playing the roles of broadcasters and receivers of infor-

mation, respectively. We have introduced a few new edge centrality measures based on

the notion of alternating walks and we have used these centrality measures to describe

139
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edge modification techniques to tune the two indices. The modifications were aimed

at the same goals as in the undirected case. When defining the generalized edge total

communicability centrality, we made use of the concept of generalized matrix functions,

introduced in [55]. We have developed three different approaches to approximate this

edge centrality measure, which is expressed as a bilinear form involving the generalized

hyperbolic sine of the adjacency matrix.

Future work in this area includes the generalization to the case of weighted networks of

the edge modification techniques introduced. Moreover, object of future study on this

project will be the investigation of whether these strategies can also be applied to tune

the epidemic threshold of a susceptible-infected-susceptible (SIS) epidemic model [79, 92]

and the synchronizability of networks [3, 17]. Indeed, concerning the former, we know

that the total communicability of a network evolves similarly to a quantity which is

strictly related to the epidemic threshold. Since this threshold is a critical value which

separates the absorbing phase (in which the infection dies out exponentially fast) from

the endemic phase (in which there is an outbreak of the disease) there is a strong interest

in understanding how to best modify a few connections in the network so as to reduce

the risk of outbreaks. Concerning the network synchronizability, it is well known that

synchronization is an emerging phenomenon of a population of dynamically interacting

entities which adjust a given property of their motion due to a coupling configuration or

to external forces. In all settings, the purpose of synchrony is to strengthen the group

bond. The synchronizability of a network is measured by looking at some spectral

properties of the graph Laplacian. Preliminary studies suggested that our techniques

can be adapted to tune this index.

Concerning the problem of triadic closure in complex networks, we proposed a strategy

for predicting triadic closure based on the usage of communicability distance functions.

We studied 25 real world networks and showed that our technique outperforms the

random mechanism, which was previously used in the literature. In the future, we plan

to extend this result to the case of multiplexes. A multiplex is a structure formed by

several layers, each of which represents different types of interactions among the same

nodes. As an example of this type of structure one may consider a set of users that have

profiles on Facebook, Twitter, and Instagram. Then each layer of this multiplex contains

the same set of nodes, but the interactions among them describe the connections among

the users in the three different social networks: one layer describes the interactions on
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Facebook, one that on Twitter, and one the relationships on Instagram. The idea of

communicability has already been extended by other authors to this type of networks,

and thus we aim to extend the methodology developed to the detection of triadic closure

in multiplexes.





Appendix A

Datasets

In this Appendix we shall describe the networks used in the numerical tests.

Brain networks

• Neurons: Neuronal synaptic network of the nematode C. elegans. Includes all data

except muscle cells and uses all synaptic connections [76, 97].

Ecological networks

• BridgeBrook: pelagic species from the largest of a set of 50 New York Adirondack

lake food webs [80];

• Grassland: all vascular plants and all insects and trophic interactions found inside

stems of plants collected from 24 sites distributed within England and Wales [70];

• ScotchBroom: trophic interactions among herbivores, parasitoids, predators, and

pathogens associated with broom, Cytisus scoparius, collected in Silwood Park,

Berkshire, England, UK [71];

• StMartin: birds and predators and arthropod prey of Anolis lizards on the island

of St. Martin, located in the northern Lesser Antilles [69];

• Ythan1: mostly birds, fishes, invertebrates, and metazoan parasites in a Scottish

Estuary [58].
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Informational networks

• Roget: (symmetrized) vocabulary network of words related by their definitions

in Roget Thesaurus of English. Two words are connected if one is used in the

definition of the other [51].

PPI networks

• PIN Ecoli: protein-protein interaction network in Escherichia coli [21];

• PIN Human: protein-protein interaction network in human [83];

• PIN Yeast: protein-protein interaction network in S. cerevisiae (yeast) [20, 95].

Social and economic networks

• ca-HepTh: the collaboration network in the arXiv group of High Energy Physics

Theory [26];

• Colorado: the risk network of persons with HIV infection during its early epidemic

phase in Colorado Spring, USA, using analysis of community wide HIV/AIDS

contact tracing records (sexual and injecting drugs partners) from 1985-1999 [81];

• Dolphins: social network of frequent association between 62 bottlenose dolphins

living in the waters off New Zealand [66];

• Drugs: social network of injecting drug users (IDUs) that have shared a needle in

the last six months [1].

• Erdös02: Erdös collaboration network, Erdös included [26];

• Galesburg: friendship ties among 31 physicians [24, 27, 61];

• Geom: collaboration network of scientists in the field of Computational Geome-

try [9];

• High School: network of relations in a high school. The students choose the three

members they wanted to have in a committee [102];

• High tech: friendship ties among the employees in a small high-tech computer firm

which sells, installs, and maintain computer systems [27, 62];
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• Matheoremethod: network that concerns the diffusion of a new mathematics method

in the 1950s. It traces the diffusion of the modern mathematical method among

school systems that combine elementary and secondary programs in Allegheny

County (Pennsylvania, U.S.) [22, 27];

• Prison: social network of inmates in prison who chose “What fellows on the tier

are you closest friends with?” [67];

• Sawmill: social communication network within a sawmill, where employees were

asked to indicate the frequency with which they discussed work matters with each

of their colleagues [27, 73];

• social3: social network among college students in a course about leadership. The

students choose which three members they wanted to have in a committee [102];

• Zachary: social network of friendship among the members of a karate club [101].

Technological networks

• Internet: the Internet at the Autonomous System (AS) level as of September 1997

and of April 1998 [43];

• USAir97: airport transportation network between airports in US in 1997 [9];

• as-735: communication network of a group of autonomous system (AS) measured

over 735 days between November 8, 1997 and January 2, 2000. Communication

occurs when routers from two ASs exchange information [26];

• as-22july06: (symmetrized) structure of Internet routers as of July 22, 2006 [26].

Road networks

• Minnesota: the road network of Minnesota [26];

• usroad-48: the continental US road network [26].

Transcription networks

• Transc yeast: direct transcriptional regulation between genes in Saccaromyces cere-

visiae [75, 76].
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Directed networks

• GD95b: direct network representing entries in a graph drawing context [26].

• cit-HepTh: citation network between papers in the arXiv group of High Energy

Physics Theory [26].

• Abortion: web graph consisting of web sites on the topic of abortion [90].

• Computational Complexity: web graph consisting of web sites on the topic of com-

putational complexity [90].

• Twitter: network of mentions and retweets of some part of the social network

Twitter [2].

• Roget: Roget’s Thesaurus, 1879 [9, 26].

• SLASHDOT: Slashdot social network from February 2009 [26].

• ITwiki: Wikipedia structure in Italian as of May 2005 [77].
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