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Acronyms

SHG second-harmonic generation

SH second-harmonic

TWB twin-beam state

PDC parametric down conversion

NRF noise reduction factor

SiPM silicon photomultiplier

POVM positive operator-valued measure

PNR photon-number-resolving

MPPC Multi-Pixel Photon Counter

APD avalanche photodiode

GM Geiger-mode

SPAD single-photon avalanche photodiode

PDE photon-detection efficiency

DCR dark-count rate

OCT Optical Cross-Talk

OCT-P prompt cross-talk

OCT-D delayed cross-talk

PSAU Power Supply and Amplification Unit

PBS polarizing cube beam splitter

S/N signal-to-noise ratio

HWP half-wave plate
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Introduction

The idea of a light amplification system by stimulated emission of radiation, commonly known as laser, is

one of the most crucial of the last century.

The whole field of Quantum Optics would hardly have been explored and the same idea of photon,

introduced by Einstein in 1905 to describe the photoelectric effect [1], would not have the slightest

experimental confirmation. The photoelectric effect, indeed, does not really require the quantization of the

electromagnetic field to correctly explain the data: it has been shown [2] that a semiclassical model, where

just the energy exchange with matter is discrete, fulfills the task. However, it was the same Einstein that in

1916 understood and provided a first model for the stimulated emission process [3], whose intuition is at

the roots of lasers.

Moreover, almost all the Nonlinear Optics phenomena would still be unknown or, at least, mysterious

without the localized high-intensity fields achievable with a laser source, even if Maxwell’s equations

already contain all the information required to classically model these processes and some of them had

been already predicted long before the invention of the laser. In this sense, Nonlinear and Quantum Optics

share a common story. The basis of these fields are briefly provided in the first chapter of this thesis.

Being a consequence of the invention of the laser, the empirical observations of Nonlinear and Quantum

Optics phenomena are very young. As for the former, the first known experiments date back to 1961 and

consist in the second-harmonic generation [6] (a nonlinear crystal is pumped with a laser whose frequency

is doubled in the nonlinear process) and in the two-photon absorption [7] (a molecule is excited by the

simultaneous absorption of two photons). The first Quantum Optics experiment, namely the observation

of photoelectric counts in resonance fluorescence, is even posterior, since it dates back to 1977 [8]. Nev-

ertheless, in few decades a huge number of results has been yielded, even touching the foundations of

most current physical theories. Among the best known, we may quote cavity Quantum Electrodynamics

and analogue gravity with nonlinear crystals. From the practical point of view, the achieved results pave

the way to the improvement of current technologies and new inventions. Nowadays, light-based systems

are crucial in Quantum Communication, Quantum-Key-Distribution, Quantum Estimation and Quantum

Computation because the so called quantum resources, such as entanglement, can be efficiently exploited

with the current optical technology.

Thus, the characterization of nonclassical states of light and their properties, in particular their correla-

tions, is an essential tool for Quantum Information protocols. These have been originally developed for

qubits, i.e. two-level quantum systems which can be optically implemented through the polarization of

single-photon states. Later, much attention has been drawn by multi-photon states since they are easier to

manipulate and may allow encoding of information on the energy eigenstates, i.e. the number states, and

exploiting photon-number quantum correlations. To this aim, one needs to generate entangled states of

light in the mesoscopic-intensity regime and to implement a suitable detection scheme. In particular, it is

essential to employ detectors which are sensitive to the photon-number observable. These are the so-called
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photon-number-resolving detectors, which give access to the shot-by-shot determination of the number of

photons in single detected pulses.

Nowadays, several classes of photon-number-resolving detectors have been developed. In the low-intensity

regime, shot-by-shot correlations have been determined through cooled CCDs [9, 10], time-multiplexed

devices [82, 83, 11, 12], visible-light photon counters [13] and arrays of nanowire detectors [14]. However,

if we look at the mesoscopic intensity domain, we can essentially use hybrid photoemissive detectors

[15, 51], multipixel silicon photon counters [79, 81, 96] and other superconductor-based detectors, such as

the transition edge sensors [16].

In particular, for the last ten years much interest has been focusing on multipixel silicon photon counters,

also known as silicon photomultipliers (SiPMs). They are arrays of single-photon avalanche diodes, called

pixels, each of them working as an on-off photodetector. If one should link them to a mythological

creature, it would be the one-hundred-eyed giant Argo Panoptes, father to the peacock feathers. Silicon

photomultipliers benefit from a number of practical advantages which should be relevant in engineering

a Quantum Information protocol. Indeed, as to the photon-number resolution, up to now, they beat the

hybrid photodetectors and, contrarily to the superconductor-based devices, they work at room temperature.

Moreover, their compactness, ruggedness and commercial availability is unique, for what concerns these

applications. Nonetheless, they have been employed in many other research fields long before their

introduction in Quantum Optics, such as biophotonics [17], gamma-ray spectroscopy [18], nuclear physics

[19] and medicine [20]. The reason for that lies in the drawbacks of silicon photomultipliers, which, for

Quantum Information applications, are particularly detrimental. Their quantum efficiency is very low (up

to 50−60%) and serious spurious stochastic effects affect the reliability of the shot-by-shot determination

of the photon number, especially because some of them are correlated with the detected light. The most

important of these noise sources are cross-talk events, spurious counts triggered by avalanches related to

proper counts. Afek et al., in their pioneering work [79], state that ”The full potential of these detectors

will be realizable when cross talk between pixels is eliminated.” As a matter of fact, in 2010 these devices

could not even hold a candle to the hybrid photodetectors (HPDs) in revealing correlations, as Allevi

et al. declare in [42]: ”As SiPMs are affected by dark counts and cross talk that lower the measured

correlation coefficients, they are less suitable than HPDs for correctly revealing shot-by-shot photon

number correlations.” However, a new generation of silicon photomultipliers has been recently developed

by Hamamatsu [63]. The most striking feature of these novel objects is the small impact of the cross-talk

effects, which have been reduced of almost the 90% in ten years. Together with other improvements, this

makes silicon photomultipliers definitely promising for quantum applications.

During the last three years at the University of Insubria, we have performed a series of measurements

aiming at testing if these devices are really amenable for the detection of nonclassical states and correlations

and to which extent. Having repeated the standard characterization which is commonly known in the liter-

ature and hence assessed the basic features of the detectors, we implemented a characterization procedure

specific for Quantum Optics applications, which basically consists in the analysis of the detected-photon

number statistics for different radiation fields, in particular coherent and chaotic light. This procedure

allowed us to determine the impact of the most relevant sources of noise on the reconstruction of the

statistics and correlations.

Since our results were encouraging, we decided to go quantum. We generated entangled states of light in

a mesoscopic regime and used two silicon photomultipliers to reveal quantum correlations and perform

conditional measurements. Eventually, we succeeded in detecting the nonclassical properties of these

states. The performance of these devices can be further improved, but our research shows that their

technological growth goes in this direction and, in particular, suggests how most of the noise sources can

be definitely annihilated, pushing forward these novel sensors for future research in Quantum Information.

This work is fully described in the second and third chapters of this thesis.

The challenges thrown by Quantum Nonlinear Optics also involve the very description of basic optical

phenomena. Second-harmonic generation, as mentioned few lines above, is one of the first nonlinear
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observed processes. Some years later, a complete classical model was suggested for that, by Armstrong

et al. [21]. Yet, no analytical solutions can be provided for the quantum dynamics of the process. Ap-

proximations, perturbative and numeric approaches have been tried up to now, each of them enlightening

different nuances of the phenomenon, which can be relevant also from the experimental point of view.

Indeed, it has been proved that generating nonclassical states of light via second-harmonic generation is

convenient in many respects. This topic is profusely addressed in the fourth chapter of this work, where we

also show our results about the quantum dynamics of the process. In particular, we adopted a perturbative

approach and used it to retrieve the statistics of the second-harmonic fields given different input pump states.

In summary, here we present our experimental and theoretical work on modern and old topics of Nonlinear

Quantum Optics. The thesis is structured as follows.

In the first chapter, we provide a general introduction on the basis of this field, in particular on the

main concepts and results that will be needed in the following.

In the second and third chapters, we explain our research [77, 95, 49] on the role of silicon photo-

multipliers in Quantum Optics experiments. After a specific characterization of the sensors, we used them

to detect nonclassical states of light. Different strategies for the estimation of experimental quantities are

suggested.

In the fourth chapter, we propose our quantum description for the second-harmonic-generation pro-

cess [112], based on well-known perturbative methods. After a general introduction on the state of the art,

we immediately dive into the problem by explaining the employed methods and showing our analytical

results.

Finally, we resume the essence of our achievements and draw our conclusions.

Enjoy!
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1
Theoretical framework

This chapter is aimed at defining the fundamental tools that have been investigated during this PhD work

and that will be extensively used in the rest of the thesis. Where possible, the concepts and equations that

are here presented are derived from first principles in order to provide a strong basis for what follows and a

safe haven where we can compare the results of our research with what is well-known in the literature.

Hardly anything is given for granted since nothing is really trivial.

The evolution of the light statistics in a second-order nonlinear crystal, which is the basis for the research

presented in chapter four, is anticipated by a short introduction to Nonlinear Optics and by a deeper

analysis on the most relevant results on second-harmonic generation.

Similarly, the concept of nonclassical state of light is retrieved from a brief but functional review of the

quantum theory of the electromagnetic field. Most of the definitions and of the results we recall here will

be employed in all the following chapters, especially for what concerns the detection of quantum states of

light.

1.1 Nonlinear Optics: a brief introduction

Physics would be dull and life most

unfulfilling if all physical phenomena

around us were linear.

Y. R. Shen

Nonlinear responses of physical systems to light have already been predicted since the publication

of Maxwell’s A dynamical theory of the electromagnetic field in 1865. Indeed, by requiring that the

dielectric constant depends on the incoming electric field, i.e. ε = ε(E), Maxwell’s equations can correctly

account for the nonlinear properties of a material. However, due to the typically small size of the nonlinear

coupling (χ < 10−12), nonlinear effects have been observed just in a few special cases. For instance, the

cross-modulation between radio waves through the ionosphere, i.e. the so-called Luxembourg-Gorky effect

[4, 5], was succsessfully explained as the nonlinear response of plasma to an external electromagnetic field

in 1936. We are not considering here all the nonlinear phenomenology of ferromagnetic materials, which

concerns solid-state physics rather than Nonlinear Optics.

Things changed when in 1959 the laser was invented. By then, collimated light beams in the high intensity

domain could be achieved and focused on materials and their nonlinear response could be finally detected.

The benchmark experiment, which is sometimes regarded as the beginning of Nonlinear Optics, is the
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generation of second-harmonic light, performed by Franken et al. in 1961 [6, 21].

The polarization of dielectric crystals is due to the motion of valence electrons about their equilibrium

position [22, 23, 24]. It is defined as the dipole moment per unit volume, i.e.

P(t)≡−ner(t) (1.1)

where n is the electronic density and e is the electronic charge. The application of an electromagnetic

field E(r, t) to a material implies a spatial deviation of every loosely bounded charge from their starting

position. Thus, the resulting polarization of the material is a response to the applied field and we say that it

is linear if P depends on E according to

P(ω) = ε0χ(1)(ω;ω)E(ω) (1.2)

where χ(1)(ω;ω) is the coupling, which is called susceptibility. This is a 3×3 matrix where the number

of independent elements depends on the spatial symmetries of the crystal. In particular, for cubic crystals

the linear susceptibility is diagonal and the linear polarization is simply proportional to the electric field.

In such a case, the material is called isotropic. But in general the polarization does not need to share the

same direction of the input field. This is the case of birefringent materials.

The Lorentz model for light-matter interaction shows that such a linear response is obtained if the electron

is assumed to be connected to an atom by a spring, i.e. the restoring force is such that the electrons swing

around their equilibrium positions as harmonic oscillators. Thus, the interaction potential energy V (x) is

elastic. This description can be complicated a little bit more if we expand it as a perturbative power series.

It is then straightforward to see that each new term in V (x) involves the coupling of the charge with more

than one electric field. For example, if ω0 is a crystal resonance frequency and m is the electron mass, up

to the first order the potential reads

V (x)∼ 1

2
mω2

0 x2 +
1

3
kx3 +o(x4). (1.3)

Given an input electric field of the form

E(x, t) = E1(x)e
−iω1t +E2(x)e

−iω2t + c.c.

= E(ω1)+E(ω2)+ c.c. (1.4)

one finds out that a solution to the equations of motion with a restoring force corresponding to the

potential in Eq. (1.3) cannot be found. Here, typically a Rayleigh-Schrǒdinger-like perturbative approach

is applied [22], based on the assumption that the perturbative terms in Eq. (1.3) are negligible compared

to the elastic potential. This trick allows to find that the cubic term in the potential energy couples

the frequency components of the input electric field so that the frequency of some contributions to

the spatial oscillations of the electron is a linear combination of ω1 and ω2. These contributions give

rise to nonlinear polarization terms, defined by Eq. (1.3) with x depending on a combination of the

input frequencies, e.g. P(ω1 +ω2) = −ne · x(ω1 +ω2). Note that also self-interactions are allowed,

e.g. P(2ω1) = −ne · x(2ω1). This procedure allows to find an expression analogue to Eq. (1.2) for the

second-order nonlinear polarizations, which, at a general level, can be stated as follows

Pσ (|ω1 ±ω2|) = ε0

2

∑
j 6=k=1

χσ
νµ(|ω1 ±ω2|;ω j,ωk)E

ν(ω j)E
µ(ωk) (1.5)

where the Greek indexes run over the cartesian coordinates (x,y,z) and χ is a rank-2 tensor such that

χ : ❈3 ⊗❈3 → ❈.



1.1. Nonlinear Optics: a brief introduction 21

The simple perturbative model described above allows to find a scalar quantitative approximation for

this coupling. The processes at ω1 +ω2 and |ω1 −ω2| are respectively known as sum-frequency and

difference-frequency generation.

Thus, nonlinear polarization arises from perturbative corrections to the interaction potential (1.3). In

analogy with (1.5), nonlinear effects at the n-th order and at a given positive linear combination of the

input frequencies Ω are described by

Pσ (Ω) = ε0

n

∑
j1=1

...
n

∑
jn=1

χσ
ν1ν2...νn

(Ω;ω j1 , ...,ω jn)E
ν j1 (ω j1)...E

ν jn (ω jn). (1.6)

The number of components of the susceptibility tensor can be very large. However, the number of

independent elements is in fact much smaller because of the presence of symmetries and can be further

reduced by imposing some general constraints and specific conditions [22].

Most of all, symmetries play an important role in the understanding of a nonlinear process. In particular,

the inversion symmetry provides a first main classification for crystals. If V (r) is the potential acting on

an electron due to its position r in the lattice, when V (r) = V (−r) a crystal is called centrosymmetric.

For example, this symmetry is apparent in NaCl, whereas the zinc blende (ZnS) structure is manifestly

noncentrosymmetric. A simple argument can be used to show that these two classes allow different

nonlinear processes. In the presence of inversion symmetry, V (x)∼ 2−1mω2
0 x2 +αx4 +o(x6), so that the

polarization field changes sign accordingly with the sign of the alternating input field in Eq. (1.94). Then,

since a reversal of E implies a reversal of P, one is left with

−P = χ(2)(−E1)(−E2) = P

which is possible if and only if χ(2) = 0. Thus, second-order nonlinear effects do not occur in centrosym-

metric materials.

Note that, in principle, every material at some order could provide a nonlinear response to an electro-

magnetic field. When in the following we will say that a medium is nonlinear, we just mean that we are

focusing on its nonlinear optical properties.

Even if symmetries can help, the computation of all the components of the whole set of tensors describing a

nonlinear process is still a hard task. It is typically approached with a semiclassical method which exploits

the density matrix formalism to treat the atomic energy states, while the radiation field is described as a

plane wave. Here, we focus on the output of some nonlinear processes rather than on their cross-sections.

Without loss of generality, we can assume to set the geometry of the process (i.e. the direction of propaga-

tion and the polarization of the fields) and the input and output frequency modes we want to observe, so

that the coupling between a component of the input and output vectors in Eq. (1.6) is just a number, that

we name χ
(n)
e f f .

The propagation of light through the nonlinear medium is described by Maxwell’s equations in the absence

of free charges

∇×H = J+
∂D

∂ t
∇×E =−∂B

∂ t
∇B = 0 ∇D = 0 (1.7)

with

J = σE, D = ε0E+P, P = PL +PNL = ε0χ(1)E+PNL

where σ is the conductivity, while PL and PNL are the linear and nonlinear part of the polarization vector,

respectively. Hence the equation of motion of the electric field is given by

�E−µ0σ
∂E

∂ t
= µ0

∂ 2PNL

∂ t2
(1.8)

where �≡ ∆−v−2∂ 2/∂ t2 is the dalambertian operator and v ≡ c/n is the so-called phase velocity, with

n =
√

1+χ
(1)
e f f refractive index of the material. Note that, in the absence of free currents, Eq. (1.8) is an
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inhomogeneous wave equation where the nonlinear polarization is the source term. This is equivalent to

ask that the medium is transparent to the frequencies ωk of the propagating fields, i.e. σ(ωk) = 0.

Equation (1.8) can be easily generalized to a dispersive and dissipative material. If dispersion is not

negligible, one has to consider the evolution of every frequency component of E and PNL through Eq. (1.8)

separately. Also, one can account for losses if the susceptibility of the material is allowed to be complex

and if σ(ω) 6= 0.

In the case of second-order processes, we have that the nonlinear polarization, given by Eq. (1.5), is

a source for a third field E3(ω3), different from the two input fields E1(ω1) and E2(ω2). Before and after

the interaction with the nonlinear medium, it is natural to assume free propagation for all the fields, so that

they can be described as plane waves travelling along, say, z, i.e.

E j(z, t) = A je
i(k jz−ω jt)+ c.c.

with k = 1,2,3 and Ak amplitude of the k-th field. But what about the propagation in the medium? For a

lossless material, the energy of the field is conserved and the field amplitudes can be taken as constant

in time, thus A j = A j(z). If, in addition, the variation of the field amplitude along the crystal length

is assumed to be small, the plane wave solution as a first approximation still holds. This is known as

slowly-varying-amplitude approximation and formally reads
∣∣∣∣
∂ 2A j

∂ z2

∣∣∣∣≪
∣∣∣∣k

∂A j

∂ z

∣∣∣∣ . (1.9)

Then the nonlinear polarization generating the field E3(ω3) can be similarly described as a plane wave

P3(z, t) = p3(z)e
−iω3t . (1.10)

In the case of sum-frequency generation, P3 is given by Eq. (1.5) as well, which can now be conveniently

rewritten in a scalar form as

P3(ω1 +ω2) = 2ε0χ
(2)
e f f A1A2ei(k1+k2)ze−i(ω1+ω2)t (1.11)

where the factor 2 is just a symmetry factor descending from the sum over the frequencies. By comparing

Eq. (1.10) and (1.11), we immediately find

ω3 = ω1 +ω2

p3(z) = 2ε0χ
(2)
e f f A1A2ei(k1+k2)z.

Under these assumptions, we get from Eq. (1.8) a much simpler equation for the amplitude, namely

∂ 2A3

∂ z2
+2ik3

∂A3

∂ z
=−

2ω2
3 χ

(2)
e f f

c2
A1A2ei(k1+k2−k3)z

which furtherly simplifies by requiring the slowly-varying-amplitude approximation in Eq. (1.9). The

resulting equation is the so-called coupled-amplitude equation

∂A3

∂ z
=

iω2
3 χ

(2)
e f f

k3c2
A1A2ei(k1+k2−k3)z. (1.12)

Similarly, one can find out that the evolution of the input field amplitudes throughout the medium is

provided by

∂A1

∂ z
=

iω2
1 χ

(2)
e f f

k1c2
A3A∗

2e−i(k1+k2−k3)z (1.13)

∂A2

∂ z
=

iω2
2 χ

(2)
e f f

k2c2
A3A∗

1e−i(k1+k2−k3)z. (1.14)
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The coupling coefficients here share the same symbol χ
(2)
e f f because, due to the so-called full permutation

symmetry, for lossless material they are equal to each other.

Moreover, note that we did not fix k3 = k1 + k2. The difference ∆k ≡ k3 − k2 − k1 is the momentum

mismatch and the condition

∆k = 0 (1.15)

is called phase matching. Equation (1.15) is the conservation of momentum, which is guaranteed if the

medium is dispersionless, i.e. if the refractive index of the material is not a function of the driving field

frequency. In such a case, the phase matching condition is just a consequence of the conservation of energy

since frequency and momentum are linked by the dispersion relation

k =
n

c
ω.

If the phase matching condition holds, there is a fixed phase relation among the fields generated by the

oscillations of the atomic dipoles in the material. The coherent sum of the generated fields results in a total

output intensity proportional to the square of the number of atomic dipoles. On the other hand, if ∆k 6= 0,

the output intensity I(ω3) = 2ε0nc|A3|2 drops drastically. Indeed, if A1 and A2 are assumed to be constant

along a path l inside the crystal, the integration of Eq. (1.12) shows that

I(ω3) ∝ sinc2

(
∆kl

2

)
, (1.16)

i.e. the efficiency of the nonlinear process decreases as ∆kl increases, due to the back-conversion from

ω3 to ω1 and ω2 for ∆k > l. This is the reason why achieving the perfect phase matching condition is

so important. As already mentioned, the condition is automatically fulfilled if the refractive index of the

material does not depend on the field frequency. But dispersionless materials hardly exist. The problem can

be overcome either by exploiting anomalous dispersion or, more typically, by using birefringent materials.

1.2 Second-harmonic generation

In the case of second-harmonic generation SHG, we have that the frequency ωSH of the field generated

by the second-order nonlinear polarization of the material is twice the frequency of the input beam, from

now on named fundamental frequency ωF. In particular, the components of the nonlinear polarization

contributing to the process are [22, 23, 24]

P(ωF) = 2ε0χ
(2)
e f f ASHA∗

Fei(kSH−kF)ze−iωFt (1.17)

and

P(ωSH) = ε0χ
(2)
e f f A2

Fe2ikFze−iωSHt . (1.18)

Thus, the system of Eqs. (1.12-1.13-1.14) reduces to





∂AF

∂ z
=

iω2
F χ

(2)
e f f

kFc2
ASHA∗

Fe−i∆kz

∂ASH

∂ z
=

iω2
SHχ

(2)
e f f

2kSHc2
A2

SHei∆kz

(1.19)

with ∆k = 2kF − kSH. Note that the field amplitudes are complex variables: A j(z) = ρ j(z)e
iφ j(z) so that

E j = û jA j(z)e
i(k jz−ω jt)+ c.c. = û jρ j(z)cos[k jz−ω jt + φ j(z)] where ρ j(z) and φ j(z) are real functions.
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Then Eqs. (1.19) reduce to the following four-differential-equation system [21]

dρF

dz
=−

ω2χ
(2)
e f f

kFc2
ρF(z)ρSH(z)sin[2φF(z)−φSH +∆kz]

dρSH

dz
=

2ω2χ
(2)
e f f

kSHc2
ρ2

F(z)sin[2φF(z)−φSH +∆kz]

dφF

dz
ρF(z) =−

ω2χ
(2)
e f f

kFc2
ρF(z)ρSH(z)cos[2φF(z)−φSH +∆kz]

dφSH

dz
ρSH(z) =−

2ω2χ
(2)
e f f

kSHc2
ρ2

F(z)cos[2φF(z)−φSH +∆kz]

where we set ωF = ω . The system can be simplified by defining the total phase θ ≡ 2φF(z)−φSH +∆kz

so that we are left with the three equations




dρF

dz
=−

ω2χ
(2)
e f f

kFc2
ρF(z)ρSH(z)sin[θ(z)]

dρSH

dz
=

2ω2χ
(2)
e f f

kSHc2
ρ2

F(z)sin[θ(z)]

dθ

dz
= ∆k−

2ω2χ
(2)
e f f

c2

(
ρSH(z)

kF)
− ρ2

F/ρSH

kF)

)
cos[θ(z)].

(1.20)

The first and the second equation of (1.20) yield the conservation of energy in the form of the so-called

Manley-Rowe relations. Since I j = 2ε0ncρ2
j , it is straightforward to see that d(IF + ISH)/dz = 0. Hence,

we are tempted to rename the modulus of the amplitudes ρ j in terms of the total intensity I = IF + ISH,

which is conserved. In particular, a smart choice is

ρF → u ≡ IF

I
ρSH → v ≡ ISH

I

so that

u2 + v2 = 1. (1.21)

The third equation in (1.20) can be much simplified with the help of the first and the second ones, namely

dθ

dz
= ∆k+ cot[θ(z)]

d

dz
ln[ρ2

F(z)ρSH(z)].

Now, it is convenient to replace the amplitude modulus ρ j with u and v, as long as we suitably redefine the

variable z. With the substitution

z → ζ ≡
2ω2χ

(2)
e f f

kFc2

√
8Iχ

(2)
e f f ω

kSHc2
z

the system (1.20) is expressed in the more compact form




du

dζ
=−u(ζ )v(ζ )sin[θ(ζ )]

dv

dζ
= u2(ζ )sin[θ(ζ )]

dθ

dζ
= ∆s+ cot[θ(ζ )]dζ ln[u2(ζ )v(ζ )]

(1.22)

where ∆s is the rescaled mismatch ∆s ≡ ∆k z
ζ

.
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1.2.1 Perfect phase matching

If the phase-matching condition is fulfilled (i.e. ∆s = 0), we expect to find another conservation law from

the system (1.22). This is the case since the third equation in (1.22) now reads

dθ

dζ
= cot[θ(ζ )]

d

dζ
ln[u2(ζ )v(ζ )]

and hence
d

dζ
(u2vcosθ) = 0. (1.23)

The conserved quantity Γ ≡ |u2vcosθ | is proportional to the energy density of the nonlinear process, i.e.

UNL =
1

2

∫
E ·dPNL.

Thus, in a dispersionless medium the nonlinear field energy is separately conserved. Note that, at variance

with the second-harmonic (SH) field intensity, Γ has a maximum for v2 = 1/3. In particular, 0≤Γ2 ≤ 4/27.

Through the third equation in (1.22) and Eq. (1.21), one finally gets the evolution equation for the second-

harmonic beam intensity, which is

d

dζ
v2 =±2

√
v2(1− v2)2 −Γ2

leading to

ζ =±1

2

∫ v2(ζ )

v2(0)
d(v2)

1√
v2(1− v2)2 −Γ2

. (1.24)

The integrand has three poles, which are the solutions of the equation v2(1− v2)2 −Γ2 = 0. For 0 ≤ Γ2 ≤
4/27, all of them are real and positive. Let us name them v2

1, v2
2 and v2

3 with v2
1 ≤ v2

2 ≤ v2
3. Note that

v2
3 > 1 ∀Γ > 0, so that (see Eq. (1.21)) v2 6= v2

3 except for Γ = 0. The integral in Eq. (1.24) can be easily

recognized and solved [21] if we write the radicand in terms of v2
1, v2

2 and v2
3 and change the integration

variable with

w2 =
v2 − v2

1

v2
2 − v2

1

.

Simple calculations yield

ζ =± 1√
v2

3 − v2
1

∫ w(ζ )

w(0)

dw√
(1−w2)(1− γ2w2)

. (1.25)

which is an elliptic integral of the first kind with elliptic modulus γ =
√
(v2

2 − v2
1)/(v

2
3 − v2

1). The amplitude

is given by the Jacobi elliptic sine, i.e. w(ζ ) = sn
[√

v2
3 − v2

1(ζ +ζ0),γ
]
. Thus,

v2 = v2
1 +(v2

2 − v2
1)sn2

[√
v2

3 − v2
1(ζ +ζ0),γ

]
(1.26)

and, from Eq. (1.21),

u2 = 1− v2
1 − (v2

2 − v2
1)sn2

[√
v2

3 − v2
1(ζ +ζ0),γ

]
. (1.27)
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If Γ2 = 0, v2
1 = 0 and v2

2 = v2
3 = 1. Then, γ = 1 and Eqs. (1.26) and (1.27) reduce to

{
v(ζ ) = tanh(ζ0 +ζ )

u(ζ ) = sech(ζ0 +ζ ).
(1.28)

Typically, no second-harmonic beam is pumped into the crystal and the nonlinear field is generated from

scratch. This is the case if v2(0) = v2
1 = 0, which implies ζ0 = 0. On the other hand, if v2(0) 6= 0, the

conservation law in Eq. (1.23) requires that φSH(0)−2φF(0) =±π
2

, which is preserved by the conservation

of momentum. An arbitrary interaction length L can be defined to study the evolution of the normalized

amplitude. For example, in the case of v2(0) = 0, one can set L so that ζ (L) = 1. Hence,

L ≡ kFc2

2ω2χ
(2)
e f f ρF(0)

. (1.29)

For z = L, the 76% of the input beam has been converted into the second-harmonic field (see Fig. 1.1).

Note that in this case we have no back-conversion. Indeed, there is no interaction between the generated

second-harmonic field and the nonlinear polarization induced by the input beam (Γ = 0).

Fig. 1.1: Eqs. (1.28) with v(0) = 0. Magenta line: v(z). Red line: u(z). L is the interaction length (see the text for

details).

The other extreme case is given by Γ2 = 4/27. But this is not very significant since v2(ζ ) = v2
1 = v2

2 =
1/3 ∀ζ , which is to say that if the second-harmonic and the fundamental beam are mixed in the nonlinear

crystal so that ISH(0) = I/3 and φSH(0) = 2φF(0) in phase-matching condition, then the system does not

really evolve along the propagation because there is a perfect balance between up- and down-conversion.

For 0 < Γ2 < 4/27 we find field oscillations described by the elliptic sine in Eq. (1.26), due to a non-null
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interaction energy between the second-harmonic field and the nonlinear polarization, providing a back-

conversion from the highest to the lowest frequency (see Fig. 1.1). At the beginning of the evolution,

the dominant process is determined by the initial conditions, i.e. if 0 < ISH < I/3 or I/3 < ISH < I. The

normalized intensity of the SH swings between v2
1 and v2

2 with period

Sγ ≡
∫ π

0

dφ√
1− γ2 sin2 φ

. (1.30)

Fig. 1.2: Eqs. (1.26-1.27) with Γ 6= 0 and φSH(0)− 2φF(0) = 0,π . Magenta line: v(z). Red line: u(z). L is the

interaction length (see the text for details). One full period is plotted. Left: Γ2 = 3/64, Sγ ∼ 3.7L. Right:

Γ2 = 9/64, Sγ ∼ 3.2L. Note that, for a fixed phase relation, the stronger the second-harmonic input intensity

v2(0), the larger the nonlinear interaction mean energy, the smaller the variation of the intensity.

1.2.2 Effects of phase mismatch

The effects of dispersion does not affect the kind of solutions given by Eqs. (1.26) and (1.27), but simply

transform them into other solutions of the same equations. Since now ∆k 6= 0, we cannot neglect the

term ∆s = L∆k in the third equation of the system (1.22). However, this just leads to a new conservation

equation, i.e.
d

dζ
(u2vcosθ +

1

2
v∆s) = 0, (1.31)

which replaces Eq. (1.23). Note that this is true if and only if ∆k is not a function of the propagation

distance z, which we implicitly assumed. The new constant of the motion is Γs ≡ Γ+ 1
2
v2∆s, which is

proportional to the total energy density of the nonlinear process. The evolution of the fields is still described

by the elliptic integral in Eq. (1.25) with the only difference that Γ must be replaced with Γs − 1
2
v2∆s, so

that v2
1, v2

2 and v2
3 are now the roots of the equation

v2(1− v2)2 −
[

Γs −
1

2
v2∆s

]2

= 0.

Thus, in the presence of dispersion we have that the interaction between the second-harmonic field and the

nonlinear polarization induced by the fundamental beam is modified.

In particular, in the case Γs = 0 shown in Fig. 1.3, the mismatch breaks the degeneracy of the roots v2
2

and v2
3 that we found for Γ = 0. Here, the contribution to the nonlinear interaction energy given by 1

2
v2∆s

makes the down-conversion process possible. But then, due to the two conservation laws (1.21) and (1.31),
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Fig. 1.3: Eq. (1.26) in the presence of dispersion, with Γs = 0 for different choices of ∆s. In particular, in the left panel

∆s < 1, in the right panel ∆s > 1. The case ∆s = 0 (black line) is shown for both as a comparison with the

Γ = 0 case studied in Fig. (1.1). Left panel. Red line: ∆s = 0.1. Blue line:∆s = 0.2. Purple line: ∆s = 0.5.

Right panel. Red line: ∆s = 1. Blue line:∆s = 2. Purple line: ∆s = 5. Brown line:∆s = 10.

the effect of dispersion consists in a reduction of the second-harmonic generation, as expected. The

evolution is the same explored in the previous section with Γ = 1
2
v2∆s. The main parameters of the process

are

v2
1 = 0, v2

2,3 =


∆s

4
±

√
1+

(
∆s

4

)2




2

and the period is the same as in Eq. (1.30) with γ = |v2/v3|.
We expect that, if the generated SH field is so small that the pump beam can be considered undepleted (i.e.

du/dζ ∼ 0), then we recover the dependence on the phase mismatch outlined in Eq. (1.16). This is the

case because

γ −−−→
∆s≫1

0 ⇒ sn(x)∼ sin(x)

so that, from Eq. (1.26),

v2(z) = v2
2 sn2(v3ζ ,γ)∼

(
2

∆kL

)2

sin2

(
∆kz

2

)

where we used ∆s = ∆kL and ζ = z/L. Then, for a crystal length zout ≡ l,

ISH(l) = I · v2(l) = I ·
(

l

L

)2

sinc2

(
∆kl

2

)
(1.32)

quod erat demostrandum.

1.3 Statistical properties of light

The true mystery of the world is the

visible, not the invisible.

O. Wilde
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In general, different sources of light produce different intensity patterns. For instance, we expect that

the intensity distribution of sunlight is not the same as that emitted by a laser. On the other hand, we may

think that the light from a bulb should have something in common with the gleam of a star since both

of them are black bodies. Definitely, light can be classified according to the statistical behavior of the

intensity, i.e. according to the physical nature of its source. A given intensity distribution is characterized

by specific coherence and correlation properties.

There is a whole family of functions commonly used to study these properties, i.e. the so-called Glauber’s

normalized correlation functions [36, 37]. Upon defining the n-th order correlation function as

G(n)(r1, ...,rn,rn+1, ...,r2n; t1, ..., tn, tn+1, ..., t2n)≡ 〈
n

∏
j=1

E∗
j

2n

∏
k=n+1

Ek〉 (1.33)

E j = E(r j, t j) being the amplitude of a given electric field, a suitable normalization with respect to

〈E∗
j E j〉 ∀ j yields the Glauber’s functions

g(n)(r1, ...,r2n; t1, ..., t2n)≡
G(n)(r1, ...,r2n; t1, ..., t2n)

∏
2n
j=1

√
〈E∗

j E j〉
(1.34)

which are, by definition, real and positive definite.

We will focus on the second-order correlation function because it is of particular interest for the discrimi-

nation between the classical and the quantum case. Indeed, a number of intrinsically quantum states of

light has unique statistical properties that can be identified through their Glauber’s intensity correlation

functions. In the classical case, this tool helps determine the correlation degree of the light distribution

under investigation. As follows from Eq. (1.34), the second-order correlation function reads

g(2)(τ) =
〈I(t)I(t + τ)〉

〈I(t)〉2
(1.35)

where, for the sake of simplicity, we focus only on temporal correlations and name t1 ≡ t, τ ≡ t2 − t1. The

reference experiment for the determination of the correlation 〈I(t)I(t + τ)〉 is the historic Hanbury-Brown

and Twiss experiment [28], originally conceived to provide an estimation for the diameter of stars through

intensity interferometry of spatially separated detectors.

Two fundamental inequalities can be inferred from first principles for the g(2) functions [29]. First, from

the positivity of the variance σ2(I)≥ 0 directly follows that

〈I〉2 ≤ 〈I2〉. (1.36)

Second, from the Cauchy-Schwarz inequality it is straightforward to see that

〈I(t + τ)I(t)〉 ≤ 〈I(t)〉2. (1.37)

From Eqs. (1.36) and (1.37), we respectively find

g(2)(0) ≥ 1 (1.38)

g(2)(τ) ≤ g(2)(0) ∀τ. (1.39)

These properties will be useful in the following.

Typically, we are not only interested in the distribution of the intensity, but also in the statistics that results

after a detection process, which is described by the photoelectric effect. The consequence of the detection
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is the transformation of the intensity probability into the discrete photoelectron distribution, which, under

the assumption that I(t) is a stochastic ergodic process, can be retrieved through the Mandel’s formula [29]

P(m,T ) =
∫ ∞

0
dĨ p(Ĩ)

Ĩm

m!
e−Ĩ (1.40)

where

Ĩ(t) =
η

T

∫ t+T

t
dt ′I(t ′)

and η is the photodetection efficiency of the detector.

The simplest light distribution is the case of a constant intensity emission I0, i.e.

p(I) = δ (I − I0). (1.41)

Hence 〈I2(t)〉 = 〈I(t)〉2 and g(2)(0) = 1, which is the inferior limit in Eq. (1.38). This is the case of

monochromatic plane waves. We define a radiation field described like this as second-order coherent. In

general, if g(n)(0) = 1 ∀n we say that the field is coherent. The typical example for this kind of statistics

is the light emitted by a laser. The statistics of photoelectrons for detected coherent light is straightforward

from Eq. (1.40) and reads

P(m) =
〈m〉m

m!
e−〈m〉 (1.42)

which is a Poissonian distribution with 〈m〉= η〈I〉.
On the contrary, if g(2)(0)> 1, we are dealing with incoherent light. The most common case of incoherent

light is the so called thermal, or chaotic, radiation, which is emitted by a source at a given temperature.

The intensity distribution reads

p(I) =
1

I0
e
− I

I0 (1.43)

which is just the Boltzmann energy distribution as a function of the intensity. Here 〈I〉= I0 and 〈I2〉= 2I2
0

so that g(2)(0) = 2. Actually, this is a particular case of a more general distribution. Indeed, a thermal

source typically emits more than one mode, each mode described by a thermal distribution. The statistics

of the superposition of µ modes is then given by the convolution of µ thermal distributions, which, if the

modes are equally populated, yields

p(I) =
1

(µ −1)!

(
µ

I0

)µ

Iµ−1 exp

(
−µ

I0
I

)
(1.44)

so that 〈I2〉= (µ +1)/µI2
0 and g(2)(0) = (µ +1)/µ . Note that the convolution of infinite modes reduces

to the coherent case (Eq. (1.41)). The photoelectron distribution in this case is given by

P(m) =

(
m

µ −1

)
µµ 〈m〉m

(〈m〉+µ)m+µ
. (1.45)

Note that the single-thermal distribution (µ = 1) is the well-known Bose-Einstein statistics, which is

consistent with the idea of a thermal source. Indeed, the Bose-Einstein statistics describes an harmonic

oscillator at given temperature and energy, emitting a mean number of excitations 〈m〉. Also in this discrete

case, as expected, the coherent case is recovered for µ → ∞ since, via Stirling’s approximation, the limit

in Eq. (1.45) yields the Poissonian distribution in Eq. (1.42).
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1.3.1 Transformation of light statistics in a SHG process

So far, we have introduced some ideas about the statistics of a radiation field. Now we want to investigate

how the propagation through a nonlinear medium affects the intensity distribution of light. In particular,

we will focus on the transformation due to a SHG process. Let us assume a lossless medium and set as

initial conditions ISH(0) = 0 and Γs ∼ 0. Therefore, the evolution of the SH and fundamental beams is

described by Eqs. (1.26) and (1.27) with ζ0 = 0. However, in a typical experimental situation, the SH

intensity is small and dispersion effects cannot be neglected. Then we can use Eq. (1.32) to describe the

output. It is important to outline the dependence of the output intensity on the total intensity I, which is

not explicit in Eq. (1.32) since the interaction length L is a function of I (see the dependence on ρF(0) in

Eq. (1.29)):

ISH(l) =
16ω2l2(χ

(2)
e f f )

3

c2n2
1n2

sinc2

(
∆kl

2

)
I2. (1.46)

Given the link between the incoming light intensity and the SH one in Eq. (1.46), it is possible to find

a relation between the two corresponding light distributions [25, 27, 26], which means that we can find

out how a given light statistics is transformed in the propagation through a SHG crystal. Upon writing

Eq. (1.46) as ISH(l,ωSH) = a f (I(ωF)) = aI2(ωF), where a is the coupling constant and f (I) is a positive

invertible function, the second-harmonic light distribution, say q(ISH), can be expressed as a function of

the incoming one, p(I),

q(ISH) = p( f−1(ISH))

[
d f (I)

dI

]−1

f−1(ISH)

, (1.47)

which implies

q(ISH) =
p(
√

ISH/a)

2
√

aISH

. (1.48)

In the case of a coherent input field, the output SH distribution reads

q(ISH) =
1

2
√

aISH

δ

(√
ISH

a
− I

)
(1.49)

which, by applying the properties of the delta distribution, takes the more familiar form

q(ISH) = δ (ISH −aI2). (1.50)

Therefore, the SH distribution in this case is the same as the input light distribution, which means that the

detected-photon statistics of the SH light is Poissonian as well.

In the case of a multithermal input field, we find from Eq. (1.46) that the output SH light reads

q(ISH) =
1

(µ −1)!

(
µ

〈I〉

)µ
I

µ/2−1

SH

2aµ/2
exp

(
− µ

〈I〉√a

√
ISH

)
. (1.51)

whose first and second moments are

〈ISH〉 =
µ +1

µ
a〈I〉2 (1.52)

〈I2
SH〉 =

(µ +3)(µ +2)(µ +1)

µ3
a2〈I〉4 (1.53)

and the variance reads

〈∆I2
SH〉= 2

(2µ +3)(µ +1)

µ3
a2〈I〉4. (1.54)
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Mandel’s formula [29] provides the detected-photon distribution for the SH field [27], that is

Q(m) =
Γ[1/2+m+µ/2]Γ[m+µ/2]

4
√

πm!(µ −1)!{〈m〉/[µ(1+µ)]}(µ+1)/2
·U
[

1

2
+m+

µ

2
,

3

2
,

µ(µ +1)

4〈m〉

]
,

(1.55)

where 〈m〉 and µ are the mean number of detected photons and the number of modes in the fundamental

beam respectively, Γ[ j] is the Gamma function, and U [i, j,k] is the Tricomi confluent hypergeometric

function. The mean value and the variance of this distribution can be computed analytically and read

〈mSH〉 =
µ +1

µ
aη〈I〉2 = η〈ISH〉 (1.56)

〈∆m2
SH〉 = 2

(2µ +3)

µ(µ +1)
〈mSH〉2 + 〈mSH〉= η2〈∆I2

SH〉+ζ 〈ISH〉. (1.57)

Note that, while the SHG process leaves unchanged the statistical properties of a coherent beam, the

correlations of a chaotic field are enhanced. This can be shown in many ways. First of all, upon defining a

detected-photon correlation coefficient CSH between two intensity distributions f (I1) and f (I2) as in [27]

CSH ≡ 〈m1m2〉−〈m1〉〈m2〉√
〈∆m2

1〉〈∆m2
2〉

, (1.58)

one finds that, if f (I) is given by Eq. (1.45), then

CSH =

√
〈m1〉〈m2〉√

(〈m1〉+µ)(〈m2〉+µ)
(1.59)

whereas, if f (I) is given by Eq. (1.55), we have

CSH =

√
〈m1〉〈m2〉√

(〈m1〉+ k)(〈m2〉+ k)
(1.60)

with

k =
µ(µ +1)

2(2µ +3)
< µ ∀µ ∈ ◆.

Hence, the correlation coefficient for the output SH distribution is larger than the input multithermal one.

In general, this is true for every higher-harmonic field and this is the reason why the statistics of harmonics

is usually called superthermal. Alternatively, the enhancement of correlation can be seen directly from the

Glauber’s correlation functions. In particular, it can be shown [25] that

g
(2)
nω =

g
(2n)
ω

(g
(n)
ω )2

. (1.61)

This fact will be proved for n = 2 in the fourth chapter. Thus, in the simple case of thermal light we have

that g
(2)
ω = 2 and g

(2)
2ω = 12, where we used g

(2)
ω = n!.

Equivalently, one can say that chaotic light enhances the rate of multiphoton effects with respect to a

coherent pump beam. In particular, [30] managed to use the ultrafast intensity fluctuations of twin-beam

states produced via parametric down-conversion, which are endowed with a multithermal statistics (see

the next sections for details), in order to measure an increased statistical efficiency of second-, third- and
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fourth- harmonic generation. They defined the statistical efficiency ζ (n) for an n-photon process, with rate

R(n) and photon flux F , as

ζ (n) ≡ R(n)

Fn

and showed that it is proportional to the nth-order normalized correlation function g(n).

Finally, we recall that, for what concerns the detected-photon statistics, the convolution of a large number

of thermal distributions converges to a Poissonian distribution and, on the contrary, to a delta distribution

in the continuous case. It is worth noting that this is true also for a superthermal distribution as we can see

from Eqs. (1.54) and (1.57) since 〈∆I2
SH〉

µ→∞−→ 0 ⇒ 〈∆m2
SH〉

µ→∞−→ 〈mSH〉. In particular, the convergence of

the superthermal distribution to a Poissonian is four times faster than that of the multithermal distribution.

Indeed, for µ ≫ 1

〈∆I2
SH〉

〈ISH〉2
∼ 4

µ

〈∆I2
F〉

〈IF〉2
∼ 1

µ
. (1.62)

1.4 Elements of Quantum Optics

These are my principles. If you don’t

like them, I have others.

G. Marx

1.4.1 Quantization of the Electromagnetic Field

The quantum theory of the electromagnetic field basically consists in the classical theory for a gauge

field with the fundamental prescription that takes the canonical variables into noncommuting operators

([31, 32]). Here we briefly go through this procedure.

We have already written Maxwell’s equations in Eqs. (1.7) in the absence of free charges. If now we

remove this hypothesis, we have

∇×H− ∂

∂ t
D = J (1.63)

∇×E+
∂

∂ t
B = 0 (1.64)

∇ ·B = 0 (1.65)

∇ ·D = ρ. (1.66)

Eqs. (1.64) and (1.65) are homogeneous and can be solved by introducing a scalar and a vector potential,

respectively φ and A, such that 



E =−∇φ − ∂

∂ t
A

B = ∇×A.
(1.67)

The fields are uniquely determined by the potentials, but the converse is not true. There is something

arbitrary in the choice of the potentials such that the fields remain unchanged under different choices.

Given an arbitrary function of spacetime Ω, the transformations

φ → φ +∂tΩ (1.68)

A → A−∇Ω (1.69)
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leave the fields invariant and are called gauge transformation. This structure can be expressed in a

more compact way by defining the gauge field as the four-vector potential Aµ ≡ (φ ,A). Upon requiring

the invariance under the abelian symmetry group U(1), the field strength F = dA is found to be the

antisymmetric tensor

Fµν ≡ ∂ µ Aν −∂ ν Aµ .

A simple comparison with Eqs. (1.68) and (1.69) shows that F0i = E i and F i j = ε i jkBk. Thus, the four

Maxwell’s equations can be summarized as

∂ν Fµν = Jµ (1.70)

εµνρσ ∂ ρ Fµν = 0 (1.71)

where J ≡ (ρ,J) is the four-current vector. In particular, Eq. (1.70) replaces Eqs. (1.63) and (1.66),

Eq. (1.71) replaces Eqs. (1.64) and (1.65). Note that, if we take the derivative of Eq. (1.70) and exploit the

symmetry of Fµν , we find the conservation of the four current, which is the continuity equation

∂µ Jµ = 0. (1.72)

Finally, the gauge transformations given by Eqs. (1.68) and (1.69) in this formalism are

Aµ → Aµ −∂ µ Ω (1.73)

and the invariance of Fµν is still guaranteed by the fact that it is antisymmetric.

Maxwell’s equations (1.70) and (1.71) are the equations of motions for an electromagnetic field with

external sources Jµ . Hence, by requiring some symmetry properties such as the invariance under Lorentz

and gauge transformations, one finds that the Lagrangian can be given only by

L =−1

4
Fµν Fµν + Jµ Aµ (1.74)

and the corresponding action is S =
∫

d4xL .

Now the procedure is hampered by a a difficulty due to the gauge invariance, which is the fact that we are

left with too many degrees of freedom. This is evident, for example, by the absence of the time-derivative

of A0 in the Lagrangian in Eq. (1.74). Explicitly,

L =−1

2
∂ µ Aν ∂µ Aν +

1

2
∂ µ Aν ∂ν Aµ + Jµ Aµ .

This is a serious problem since the canonically conjugate momentum Πµ is defined as

Πµ =
∂L

∂ (∂0Aµ)
(1.75)

and we need it for the Hamiltonian density

H = Πµ Aµ −L . (1.76)

This field seems to have no dynamics. The problem arises because the electromagnetic field has no

component along the direction of propagation, which is the reason why we have an extra degree of freedom

due to the gauge invariance. We have to fix it by imposing a gauge condition on Aµ .

A class of gauge conditions fixes ∂ µ Aµ to a generic function of spacetime. In particular, the condition

∂ µ Aµ = 0 is called Lorenz gauge. Another strategy is nµ Aµ = 0, with nµ being a given constant four-vector.

The typical choice in Quantum Optics is the Coulomb gauge, i.e.

∇ ·A = 0. (1.77)
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Note that the Fourier transform of Eq. (1.77) is k · Ã = 0, where Ã = (2π)−3
∫

d3xA(x)eikx, which implies

that the component of A that is parallel to the direction of propagation k̂ is set to zero. Thus, this choice

has a physical significance since only the component of A parallel to k̂ depends on the gauge, as follows

from the Fourier transform of Eq. (1.73).

The condition in Eq. (1.77) is naturally imposed if we replace Ai with (δi j −∇i∇ j/∇2)A j. Now we can try

to determine the components of Aµ in the Lagrangian with the variational method. The variation of φ with

δS = 0 yields a Poisson equation for the scalar potential

−∇2φ = ρ (1.78)

whose solution is the well-known Coulomb potential

φ(x, t) =
∫

d3y
ρ(y, t)

4π|x−y| . (1.79)

Upon requiring that both φ and ρ vanish at infinity, this solution is unique. However, it has no particular

physical meaning by itself since it is non-local (the charge density instantaneously generates the potential),

but we can plug it into the Lagrangian and find

L =
1

2
∂0Ai∂0Ai −

1

2
∂ jAi∂ jAi + JiAi −

1

2

∫
d3y

ρ(x, t)ρ(y, t)

4π|x−y| . (1.80)

The variation of Ai yields the massless Klein-Gordon equation with source, i.e.

−∂ 2Ai(x) =

(
δi j −

∇i∇ j

∇2

)
Ji(x). (1.81)

Hence, for a free field, the solution is

A(x) =
2

∑
α=1

∫
d3k

(2π)32Ek,α

[
ε∗α(k)aα(k)e

ikx + εα(k)a
∗
α(k)e

−ikx
]

(1.82)

where aα are the so-called normal modes, pure harmonic oscillation of the free field, whereas ε1 and ε2 are

the polarization vectors. The relativistic invariant d3k/[(2π)32Ek,α ] is normalized with the energy of the

modes Ek,α ≡ h̄ωk,α . The polarization vectors have to be orthogonal to k̂ to satisfy the Coulomb gauge.

Thus, (ε1,ε2,k) is an orthonormal complete set. In particular,

k · εα(k) = 0 (1.83)

εα ′(k)ε∗α(k) = δα ′α (1.84)

2

∑
α=1

ε∗iα(k)ε jα(k) = δi j −
kik j

k2
. (1.85)

Note that Eq. (1.82) can be inverted to find out the normal modes as follows

aα(k) = iεα(k) ·
∫

d3x[e−ikx∂0A(x)−A(x)∂0(e
−ikx)]. (1.86)

Now we are ready to move to a Hamiltonian formalism since the absence of the component Π0 of the

momentum is balanced by the choice of the gate. We have

Πi = ∂0Ai. (1.87)
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Hence, from Eq. (1.76), we get the Hamiltonian density for the electromagnetic field

H =
1

2
(Πi)

2 − 1

2
(∂ jAi)

2 − JiAi +
1

2

∫
d3y

ρ(x, t)ρ(y, t)

4π|x−y| . (1.88)

The quantization of the field is now straightforward from the canonical commutation relations for the field

operators, in analogy with the classical Poisson brackets, i.e.





[Âi(x, t),Π̂ j(x, t)] = ih̄
(

δi j − ∇i∇ j

∇2

)
δ (3)(x−y)

[Âi(x, t), Â j(x, t)] = 0

[Π̂i(x, t),Π̂ j(x, t)] = 0.

(1.89)

The normal modes are also promoted to operators, as a consequence of the quantization of the field A(x)
and from Eq. (1.82). Moreover, from Eq. (1.89), one finds that they satisfy themselves a set of commutation

relations, which is the following





[âα(k), â
†
α ′(k

′)] = (2π)32h̄ωδ (3)(k′−k)δαα ′

[âα(k), âα ′(k′)] = 0

[â†
α(k), â

†
α ′(k

′)] = 0.

(1.90)

âα(k) and â
†
α(k) are the so called annihilation and creation operators because, given an empty state |0〉

defined as the lowest energy state of the field, the application of the latter generate an excitation of the

field |k,α〉, which is a quantum of energy h̄ω and momentum k called photon, namely

â†
α(k)|0〉= |k,α〉. (1.91)

The action of the former on the empty state is

âα(k)|0〉= 0. (1.92)

Thus, the n-photon state can be seen as the result of the application of the creation operator to the empty

state n times, i.e.

|k1,α1; ...;kn,αn〉=
1√
n!

n

∏
j=1

â†
α j
(kj)|0〉. (1.93)

These free-field states are vectors in a Hilbert space, made of compositions, via direct sum and cartesian

products, of the single-photon Hilbert spaces. In the free theory, the space is called Fock space.

Note that, through Eqs. (1.67), we can also define an operator for the electric and magnetic fields, i.e.

Ê = i
2

∑
α=1

∫
d3kh̄ωk,α

(2π)32Ek,α

[
ε∗α(k)âα(k)e

ikx − εα(k)â
†
α(k)e

−ikx
]

(1.94)

B̂ = i
2

∑
α=1

∫
d3k

(2π)32Ek,α

[
(k× ε)∗α(k)âα(k)e

ikx +k× εα(k)â
†
α(k)e

−ikx
]
. (1.95)

The Hamiltonian operator is straightforward from the integration of Eq. (1.88) through Eqs. (1.90), namely

Ĥ =
2

∑
α=1

∫
d3k

(2π)32Ek,α
h̄ωk,α â†

α(k)âα(k)+E0 −
∫

d3xĴ(x) · Â(x)+
1

2

∫
d3xd3y

ρ̂(x, t)ρ̂(y, t)

4π|x−y| (1.96)

where E0 ≡ (2π)−3
∫

d3kh̄ωV is the zero-point energy of all the oscillators.
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1.4.2 Quantum states of light

Fock states

The Fock states in Eq. (1.93) are by definition eigenstates of the free field Hamiltonian

Ĥ =
2

∑
α=1

∫
d3k

(2π)32Ek,α
h̄ωk,α â†

α(k)âα(k)+E0. (1.97)

The well-known problem of the infinite zero-point energy is typically solved imposing a cutoff at the

upper integration limit, justified by the fact that at some large scale one expects that the formalism of

quantum field theory breaks down. In this sense, the zero-point energy term is just a shift and, for the

sake of simplicity, can be set to zero. Again for the sake of simplicity, we will neglect the sum over the

two polarization in the following, giving it for granted. We will focus on one of the two polarizations.

Moreover, from now on, we will operate the following substitution

â → â√
(2π)32Ek,α

so that the first commutation rule in Eqs. (1.90) is simply

[â(k), â†(k′)] = δ (3)(k−k′) (1.98)

and the free Hamiltonian in Eq. (1.97) reads

Ĥ =
2

∑
α=1

∫
d3kh̄ωkâ†(k)â(k). (1.99)

The operator â†(k)â(k) is called number operator because, as follows from the eigenvalue equation for Ĥ,

it counts the number of photons with a given energy h̄ωk, namely

n̂(k)≡ â†(k)â(k). (1.100)

The number operator is a proper observable, not only in the sense that it is linear and self-adjoint by

definition, but also because it is a measurable quantity (for details, see chapter 4). In Quantum Optics [29],

the capability of detecting the number of discrete excitations of the light field leads to focus on the photon

number n rather than on other variables, so that the Fock states are often labeled with n as follows

|n〉 ≡ |k1; ...;kn〉α=ᾱ ᾱ = 1,2

and the eigenvalue equation for n̂ reads

n̂|n〉= n|n〉. (1.101)

The set of Fock states is an orthonormal complete basis in the Fock space. From now on, this will be the

most used basis over which other light states will be expanded, i.e. |ψ〉 = ∑n cn|n〉. As outlined in the

previous section, it is the intensity distribution which mostly characterizes different radiation fields. In the

quantum regime, this is still true with the intensity distribution replaced by the probability p(n) = |cn|2 of

finding n photons in the state |ψ〉.
The action of the creation and the annihilation operators on the number states is straightforward from
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Eqs. (1.91 - 1.93). Explicitly

â|0〉= 0

|n〉= 1√
n!
(â†)n|0〉

â|n〉=
√

n|n−1〉
â†|n〉=

√
n+1|n+1〉.

(1.102)

The last two equations can be verified through the commutation relations between â and â†. In particular,

note that the operators â, â†, n̂ and ✶̂ are the elements of a closed Lie algebra, called Heisenberg algebra

[33].

Coherent states

The coherent states were introduced by Glauber [36] as the eigenstates of the strength field in Eq. (1.94).

Thus, for a single mode, they are the oscillator states |α〉 such that

â|α〉= α|α〉. (1.103)

From the last of Eqs. (1.102) follows that the application of â† to Eq. (1.103) leads to a recursion formula

for the projection 〈n|α〉, which is

√
n+1〈n+1|α〉= α〈n|α〉.

Then, for induction, the following relation must hold

〈n|α〉= αn

√
n!
〈0|α〉. (1.104)

These projections are the coefficients of the expansion of the coherent state over the number states

|α〉= ∑n〈n|α〉|n〉, so that

|α〉= 〈0|α〉∑
n

αn

√
n!
|n〉. (1.105)

From the normalization of the state 〈α|α〉= 1, one immediately finds

〈0|α〉= exp

(
−1

2
|α|2

)
(1.106)

so that

|α〉= exp

(
−1

2
|α|2

)
∑
n

αn

√
n!
|n〉. (1.107)

Hence, the probability distribution |〈n|α〉|2 is Poissonian, i.e.

p(n) =
|α|2n

n!
e−|α|2 (1.108)

which means that Glauber’s coherent states are the quantum description of the second-order coherent fields

in Eq. (1.41).

Finally, we remark that coherent states belong to the class of minimum uncertainty states, which means

that they saturate the uncertainty relation for the quadratures [33]. The quadrature operators are defined
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as a linear combination of the creation and annihilation operators and are the analog of the position and

momentum operator for a radiation field, namely

x̂ = â+ â†

p̂ = −i(â− â†).

From Eqs. (1.90) it is straightforward to find that

[x̂, p̂] = 2i (1.109)

and hence the correspondent uncertainty relation reads

〈∆x̂2〉〈∆ p̂2〉 ≥ 1. (1.110)

It is easy to verify that for coherent states 〈∆x̂2〉= 〈∆ p̂2〉= 1. As a last remark, we note that the quadrature

operators are usually generalized to include the phase of the field as follows

x̂θ = â†e−iθ + â†eiθ . (1.111)

Chaotic states

A chaotic state [29] is the quantum description of the thermal field introduced for µ modes in Eq. (1.44).

By definition, the light state emitted by a single thermal source cannot be a pure state, since we do not

have control on the preparation of the states, being them determined by the temperature T of the source.

Thus, the thermal state is a statistical mixture drawn from the Maxwell-Boltzmann energy distribution, i.e.

ρ̂ =
e−β h̄ω n̂

Tr[e−β h̄ω n̂]
(1.112)

where β ≡ (kBT )−1 and kB is the Boltzmann constant. The computation of the trace yields

ρ̂ = (1− e−β h̄ω)e−β h̄ω n̂.

Hence, we see that it can be represented over the number states [32] as

ρ̂ = ∑
n

p(n)|n〉〈n|

with p(n) given by the Bose-Einstein statistics

p(n) =
Nn

(N +1)n+1
(1.113)

where N = Tr[ρ̂ n̂] = (exp [β h̄ω]− 1)−1. Equation (1.113) easily generalizes to a multi-mode case, for

which, provided that the modes are assumed to be equally populated, p(n) should be the same distribution as

Eq. (1.44) for the discrete variable n. Such a distribution has been already computed for the photoelectrons

(Eq. (1.45)) and can be rewritten as

p(n) =

(
n+µ −1

n

)
Nn

(N +1)n+µ
. (1.114)

The computation of the mean value and variance for the number of photons from (1.114) yields
{
〈n̂〉= µN

〈∆n̂2〉= µN(N +1).
(1.115)

In particular, the variance can be rewritten in terms of the mean value as

〈∆n̂2〉= 〈n̂〉
( 〈n̂〉

µ
+1

)
.
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Squeezed states

A squeezed state [29] is an element belonging to the class of minimum-uncertainty states such that

〈∆x̂2〉 6= 〈∆p̂2〉. In other words, we talk about squeezing if the second moment of an observable, or of a set

of observables, is smaller than the corresponding vacuum level.

A single-mode squeezed state is generated through a transformation of the kind Ĥ ∝ (â†)2 +h.c.. Thus,

the squeezing evolution operator can be written as

Ŝ(r) = exp
( r

2
(â†)2 −h.c.

)
(1.116)

where the complex number r = ρeiφ is the so called squeezing parameter. Note that the evolution of the

creation and annihilation operators through Eq. (1.116) yields a famous isomorphism of the canonical

commutation relations (Eq. (1.98)), which is the Bogoliubov transformation:

Ŝ†(r)âŜ(r) = µ â+ν â† (1.117)

Ŝ†(r)â†Ŝ(r) = µ â† +ν∗â (1.118)

where µ = cosh(ρ) and ν = eiφ sinh(ρ).
We note that the Hamiltonian of this process is a combination of elements of the Schwinger two-boson

representation of the SU(1,1) algebra. Hence, we know how to disentangle the operator in Eq. (1.116),

so that we can apply it to the vacuum state and expand the squeezed states over the number-state basis

[33, 38]. This procedure yields

|r〉= Ŝ(r)|0〉= 1

µ ∑
k

(
ν

2µ

)k
√

2k!

k!
|2k〉 (1.119)

which is called squeezed vacuum state. The computation of the variances of the quadratures shows that

these states are really minimum uncertainty states in the sense outlined at the beginning: 〈∆x̂2〉〈∆p̂2〉= 1,

but 〈∆x̂2〉 6= 〈∆p̂2〉. It may seem counter-intuitive but, even if this state is called squeezed vacuum, it is not

empty since the mean value of the photon-number observable is worth 〈r|n̂|r〉= |ν |2. On the contrary, the

mean value of the quadrature is empty, 〈r|x̂θ |r〉= |0 ∀θ , whereas the variance reads

〈∆x̂θ 〉= e2r cos(θ)+ e−2r sin(θ). (1.120)

In the case of two-mode squeezing, the Hamiltonian of the process should be something like Ĥ ∝

â†b̂† +h.c., for which the unitary evolution reads

Ŝ2(r) = exp
(
râ†b̂† −h.c.

)
(1.121)

where r has the same meaning as before. The Bogoliubov transformations are given by

Ŝ
†
2(r)âŜ2(r) = µ â+ν b̂† (1.122)

Ŝ
†
2(r)b̂

†Ŝ2(r) = µ b̂† +ν∗â. (1.123)

Again, the Hamiltonian is an element of the SU(1,1) algebra, even if the representation is different, and

we can find the expansion of the two-mode squeezed vacuum over the number states, i.e.

|r〉〉= Ŝ2(r)|0〉⊗ |0〉= 1

µ ∑
k

(
ν

µ

)k

|k〉⊗ |k〉 (1.124)
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which is often written also as

|r〉〉=
√

1−|λ |2 ∑
k

λ k|k〉⊗ |k〉 (1.125)

with λ ≡ ν/µ . Note that this state is entangled [48]. Due to the quantum correlations between the

two modes related to one of the most significant implementations in Nonlinear Quantum Optics, the

two-mode squeezed vacuum is also known as twin-beam state TWB. This specific implementation of the

squeezed-vacuum deserves an independent Section, which is the following, since in that case the state in

Eq. (1.125) arises as a consequence of an approximation to a more complicated nonlinear process.

Twin-beam states

The typical optical implementation of the two-mode squeezed vacuum states are the TWBs. These states

are generated through a quantum nonlinear process known as parametric down conversion PDC, which

could be generally described as a difference-frequency generation where the pump interacts with the

fluctuations of the vacuum state [29]. However, while the difference-frequency generation is a nonlinear

effect which is well described in the classical context outlined in the first section [22], the PDC is a genuine

quantum process. As summarized in Fig. 1.4, it basically consists in the interaction, mediated by the

nonlinear crystal, between two vacuum states and the pump mode resulting in the population of the input

vacuum states, which are usually called signal and idler. The interaction Hamiltonian reads

ĤTWB ∝ âpâ†
s â

†
i +h.c. (1.126)

where the indices p, s and i refer respectively to pump, signal and idler.

The conservation of energy and the phase-matching condition set a condition on the frequencies and the

wave vectors of the fields, i.e. {
ωp = ωs +ωi

kp(ωp) = ks(ωs)+ki(ωi).
(1.127)

We recall that, as already noted above, the fulfillment of both the conditions requires the crystal to be

birefringent. Moreover, note that these conditions fix the geometry and the frequency of the generated

states. In particular, as to the geometry, we have that the output wave-vectors originate from the output

surface of the crystal and are symmetric with respect to rotations around the pump direction. Therefore,

the geometry of the PDC is a cone, whose aperture angle is determined by the frequency of the generated

beams. A section of the cone is shown in Fig. 1.5.

The reason for the name parametric is that the effect itself is parametric, since at the end of the process the

energy states of the molecules interacting with the fields are unchanged. The nonlinear crystal just acts as

a medium between the fields.

Note that the Hamiltonian in Eq. (1.126) is not the same as the one originating the two-mode squeezed

vacuum state previously described, but then what do we mean by saying that a TWB is a two-mode squeezed

vacuum? The point here is that the temporal evolution given by the Hamiltonian in Eq. (1.126) cannot be

disentangled because such Hamiltonian does not belong to a subalgebra of the affine metasimplectic group

[38, 33]. One can try to solve the quantum dynamics with numeric [34] or perturbative [35] methods.

However, we can also use a very practical assumption. It is surely true that the pump field is very intense

compared to the vacuum fluctuations, so much stronger that it could be approximated to a c-number, a

parameter. The so called parametric approximation allows us to rewrite Eq. (1.126) as

ĤTWB ∝ αpâ†
s â

†
i +h.c. (1.128)

which is exactly the two-mode squeezing Hamiltonian described in the previous Section. Thus, the

evolution is given by the squeezing operator in Eq. (1.121), i.e.

ŜTWB(r) = exp
(

r(kp,ks,αp)â
†
s â

†
i −h.c.

)
(1.129)
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Fig. 1.4: A scheme of the PDC process. In the boxes, the conditions on frequencies and wave vectors of Eqs. (1.127)

are shown.

where the squeezing parameter here depends on the phase-matching geometry, on the specific nonlinear

material and on the pump intensity. Hence, a TWB can be expressed as the entangled state in Eq. (1.125)

with λ = λ (kp,ks,αp) and photon-number mean value

N ≡ 〈r|n̂|r〉= sinh2(r).

In this respect, a TWB |r〉〉TWB can be described as a two-mode squeezed vacuum |r〉〉. Note that, by fixing

λ 2 =
N

N +1
. (1.130)

such state can be rewritten as

|r〉〉TWB = ∑
n

√
p(n)eiφ0 |n,n〉 (1.131)

where

p(n) =
Nn

(N +1)n+1
,

φ0 is the phase of the pump and |n,n〉 ≡ |n〉⊗ |n〉. Therefore, we have retrieved that a two-mode squeezed

vacuum state is endowed with a thermal distribution. In other words, signal and idler are speckle fields.

However, in a mesoscopic regime, each of the two generated beams may include more than one spatial and

temporal mode. In such a case, we have a multimode TWB and the Hamiltonian describing the process

is better defined as the sum over all the spatial and temporal modes of the single spatio-temporal-mode

Hamiltonians in Eq. (1.126), i.e.

ĤTWB =
µ

∑
j=1

âp, jâ
†
s, jâ

†
i, j +h.c.

∼
µ

∑
j=1

αp, jâ
†
s, jâ

†
i, j +h.c.

(1.132)
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where in the second line we applied the parametric approximation. Note that this definition of the

Hamiltonian holds only if the modes are independent from each other, which is reasonable since there is

no reason for them to interact out of the nonlinear crystal. Another assumption is required to provide a

solution for the temporal evolution given by the Hamiltonian in Eq. (1.132), but still a reasonable one: we

ask that the modes are equally populated. Under this hypothesis, the energy contribution of every mode is

the same and the output state |rµ〉〉TWB is a tensor product of all the single-spatio-temporal-mode TWBs.

Namely,

|rµ〉〉TWB =
µ⊗

j=1

|r〉〉TWBj
= ∑

n

√
pµ(n)δ

(
n−

µ

∑
l=1

nl

)
µ⊗

k=1

|n〉k

µ⊗

j=1

|n〉 j (1.133)

where pµ(n) is a multithermal distribution, defined in Eq. (1.114). Therefore, mean value and variance

read

〈n̂〉 = µN

〈∆n̂2〉 = 〈n̂〉
( 〈n̂〉

µ
+1

)

and hence one has an indirect measure of the number of modes, i.e.

µ =
〈n̂〉2

〈∆n̂2〉−〈n̂〉 . (1.134)

Fig. 1.5: The output of PDC in the mesoscopic domain is a light cone whose distribution of the photon numbers is

multithermal and the geometry is determined by Eqs. (1.127). This is a section of the light cone.
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1.4.3 Nonclassicality

The basic concept of the previous section is that there is a number of light states whose measurable

properties do not fit a classical description. In such a case, we say that these are nonclassical properties.

To be measurable, they have to be somehow statistical properties. By saying that they do not fit a

classical description, we mean that there are some statistical laws which are verified by any classical

light distribution, but which fail to be true for a nonclassical state. These statistical laws are the relations

in Eqs. (1.38) and (1.39). To better understand why, we have to redefine the Glauber’s second-order

autocorrelation function in Eq. (1.35) for quantum operators. Following [37], we consider the kind of

measurements performed in the Hanbury-Brown and Twiss experiment, consisting in detecting photon

coincidences through two detectors placed in different positions, r and r′. If |i〉 and | f 〉 are respectively

the state of the field before and after detection and Ê(±) the positive and negative frequency components of

the electric field operator in Eq. (1.94), the amplitude of the transition from |i〉 to | f 〉 is

〈 f |Ê(+)(r, t)Ê(+)(r′, t ′)|i〉. (1.135)

Hence, the probability that a photon is detected at the spacetime coordinates (t,r) and the other at (t ′,r′) is

proportional to

∑
f

|〈 f |Ê(+)(r, t)Ê(+)(r′, t ′)|i〉|2 = 〈i|Ê(−)(r′, t ′)Ê(−)(r, t)Ê(+)(r, t)Ê(+)(r′, t ′)|i〉 (1.136)

since (Ê(+))† = Ê(−). This is the fundamental quantity that is measured in a photon correlation experiment,

i.e. the second-order correlation function, which is a particular case of Eq. (1.33).

In general, we do not know the initial state of the radiation field. Thus, we should better express it as a

mixed state ρ rather than the pure state |i〉, so that Eq. (1.136) reads

G(2)(r1,r2,r3,r4; t1, t2, t3, t4) = Tr[ρÊ(−)(r1, t1)Ê
(−)(r2, t2)Ê

(+)(r3, t3)Ê
(+)(r4, t4)] (1.137)

For a generic number n of photon coincidences in an experiment, we should consider the nth-order

correlation functions, which easily generalize from Eq. (1.137) as

G(n)(r1, ...,r2n; t1, ..., t2n) = Tr[ρÊ(−)(r1, t1)...Ê
(−)(rn, tn)Ê

(+)(rn+1, tn+1)...Ê
(+)(r2n, t2n)]. (1.138)

The usual normalization of Eq. (1.137) provides the Glauber’s second-order correlation function in the

quantum case

g(2)(r1,r2,r3,r4; t1, t2, t3, t4) =
G(2)(r1,r2,r3,r4; t1, t2, t3, t4)

∏
4
j=1

√
G(1)(r j,r j; t j, t j)

. (1.139)

The generalization to g(n) is straightforward.

The factors G(1)(r j,r j; t j, t j) are proportional to the mean value of the Hamiltonian operator, which, in

absence of external potentials, is conserved. In such a case, G(1)(r j,r j; t j, t j) = G(1)(ri,ri; ti, ti) ∀ j 6= i.

Then Eq. (1.139) can be rewritten as

g(2)(r1,r2,r3,r4; t1, t2, t3, t4) =
Tr[ρÊ(−)(r1, t1)Ê

(−)(r2, t2)Ê
(+)(r3, t3)Ê

(+)(r4, t4)]

Tr2[ρÊ(−)Ê(+)]
. (1.140)

Being Ê(−) and Ê(+) respectively proportional to the creation and annihilation operator, the normalized

seond-order correlation function is more commonly defined in the following form

g(2) =
〈â†â†ââ〉
〈â†â〉2

. (1.141)
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Now we clearly see that in the quantum formalism it is not possible to find the classical inequalities (1.38)

and (1.39). In general, they do not hold any more. We can just say that the g(2) is a positive semidefinite

function. This implies that we can also have g(2) < 1, which is not possible in the classical case. We

have found a nonclassicality criterion, i.e. a strategy to decide if a light state is nonclassical, in the sense

outlined at the beginning of the section. Explicitly, we say that a given radiation field is nonclassical if

0 ≤ g(2) < 1. (1.142)

Note that this is a sufficient, but not necessary condition. Indeed if Eq. (1.142) is satisfied, then the state

cannot be classical, but the vice versa does not hold since this condition is not some fundamental property

of quantum states.

Moreover, we see that the coherent states (g(2) = 1) are the boundary case between quantum and classical

states. In particular, we can use the relation between the mean and the variance of light distributions to

retrieve another way to state the nonclassicality criterion in Eq. (1.142). The trick consists in writing

Glauber’s function in terms of the number operator, as follows

g(2) =
〈: n̂2 :〉
〈n̂〉2

(1.143)

where the notation :: stands for the normal ordering of the operators. Expanding Eq. (1.143), one finds

g(2) =
〈n̂2〉
〈n̂〉2

− 1

〈n̂〉 = 1+

〈∆n̂2〉
〈n̂〉 −1

〈n̂〉 (1.144)

and, hence, we see that g(2) < 1 ⇐⇒ 〈∆n̂2〉< 〈n̂〉 and g(2) ≥ 1 ⇐⇒ 〈∆n̂2〉 ≥ 〈n̂〉. But the mean value 〈n̂〉
is equal to the variance in the Poissonian case. Thus, we deduce that the condition in Eq. (1.142) has the

following meaning: if the variance of a given distribution is smaller than the Poissonian variance, then the

radiation field described by such a distribution cannot be classical. As mentioned before, the coherent-state

case is rigorously a boundary between the classical and the quantum worlds, even if in a weak sense. Then,

we can capture this notion by introducing the ratio [29]

F ≡ 〈∆n̂2〉
〈∆n̂2〉POISS

(1.145)

and re-stating equivalently the condition in Eq. (1.142) as

0 ≤ F < 1. (1.146)

From this formulation, we see that the quantum states described by the criterion in Eq. (1.142) are sub-

Poissonian. The quantity F is called Fano factor. The advantage of re-writing the criterion in Eq. (1.142)

as Eq. (1.146) is the fact that only the mean value and the variance of the distribution under investigation

are needed to establish the nonclassicality of the field. The relation between g(2) and F is straightforward

from Eq. (1.144), i.e.

g(2) = 1+
F −1

〈n̂〉 . (1.147)

As a final remark about Glauber’s correlation functions, note that, from Eq. (1.141) on, we implicitly

omitted the dependence on the spacetime coordinates. For the sake of simplicity, we can write the nth-

correlation function as g
(n)
x1,...,x2n

, so that the subscripts make the arguments x j ≡ (t j,r j) explicit [40, 39]. If

x1 = x2 = ...x2n, the Glauber’s function is the normalized nth-intensity moment, i.e.

g
(n)
x1,...,x1

≡ g
(n)
x1×2n =

〈În〉
〈Î〉n
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where Î ∝ Ê(−)Ê(+). In the particular case with n = 1, Glauber’s functions correspond to well-known

quantities since g
(1)
x1,x2

is the mutual coherence function and g
(1)
x×2 is the autocorrelation function. Their

Fourier transforms are the field spectral densities. In the case we are interested about, we have two

detectors for two beams and a given number n of fields. Consider, for instance, the case of the TWB

outlined in the previous section and say that these two beams are the signal and the idler. Then, Glauber’s

correlation functions read [39]

g
(n)
x1× j,x2×k =

〈: n̂
j
s n̂k

i :〉
〈n̂s〉 j〈n̂i〉k

(1.148)

where j+ k = n.

However, there are more practical functions that can be used to detect nonclassical correlations between

signal and idler [39]. An inspection of the two-boson realization of the SU(1,1) algebra, which describes

the evolution in Eq. (1.121) for the two-mode squeezed states, shows that the difference in the mean

photon-number 〈â†â− b̂†b̂〉 is a constant of motion [33, 38]. Thus, if ρ̂out = Ŝ
†
2(r)ρ̂inŜ2(r), then

〈â†â− b̂†b̂〉ρ̂out
= 〈â†â− b̂†b̂〉ρ̂in

. (1.149)

For a TWB, 〈N̂−〉 ≡ 〈n̂s − n̂i〉 is a conserved quantity. Since this is generally not true for classical states

of light, we can think to estabilish a nonclassicality criterion to detect the quantum correlation in the

photon-number observable by following the strategy of the Fano factor: we compare the variance of the

photon-number difference between signal and idler in a given state N̂− to the same quantity related to a

coherent state. Then we can consider the function [41, 42, 39]

R ≡ 〈∆(N̂−)2〉
〈∆(N̂−)2〉POISS

(1.150)

and say that signal and idler are surely nonclassically correlated in number if

0 ≤ R < 1. (1.151)

Note that in the case of a two-mode squeezed state, R = 0. The quantity in Eq. (1.150) is known as noise

reduction factor (NRF). It can be made more explicit by computing the variance of N̂−, as follows

R =
〈∆(N̂−)2〉
〈N̂+〉

(1.152)

where N̂+ ≡ n̂s + n̂i. We outline that here the fundamental physical observable we are employing to

discriminate between classical and nonclassical correlations is the photon-number difference N̂−. The

NRF is just a function useful to state in a simple way the nonclassicality criterion based on this quantity,

the same as in Eq. (1.142). In the following, we will show that one could equivalently use the second-order

correlation function as long as the variable is the photon-number difference [49].

We also observe that a measurement of the photon-number difference consists in the difference photocurrent

D̂ ≡ m̂1 − m̂2, where m̂ j with j = 1,2 are the observable for the detected-photon number. It is not trivial

that a nonclassicality criterion based on this observable, instead of the pure photon-number difference, still

holds, but, under some constraints, it has been shown that this is the case [41]: it can be used to reveal

entanglement, even if it cannot provide a full characterization of the quantum correlations between signal

and idler. For instance, it can be surely used to discriminate between the entanglement of TWB states and

the classical correlations of a mesoscopic thermal source. We will briefly resume this topic in the next

Section.

Finally, note that so far we have considered ideal photodetectors, i.e. we have actually neglected the

whole process of detection. In the following, we will introduce a more realistic description by considering

as observable the photoelectron number m̂, which basically implies that we will keep into account the

nonidealities of the detector.
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1.5 Detection of quantum states of light

Do you see the light? Do you see the

light? Have you seen the light?

Reverend Cleophus James

The blues brothers

Measuring an observable is the way by which we extract some information from a quantum state.

Typically, one does not implement a proper projective measure because the detector is affected by

nonidealities. We know from Naimark’s theorem [43, 38] that this is equivalent to perform a projective

measure on a subsystem of a larger system, i.e. the so called positive operator-valued measure (POVM)

Π̂ or generalized measure. Explicitly, given a state of the radiation field ρ̂A over which we would like to

measure the observable X̂ , the measurement process can be described as a unitary transformation Û over a

larger Hilbert space HA ⊗HB, so that the probability of getting the outcome x must be given by

px = Tr[Û ρ̂A ⊗ ρ̂BÛ†
✶̂⊗ P̂x] = TrA[ρ̂ATrB[✶̂A ⊗ ρ̂BÛ†

✶̂⊗ P̂xÛ ]] = TrA[ρ̂AΠ̂x]

where P̂x ≡ |x〉〈x| and the POVM is thus defined as Π̂x ≡ TrB[✶̂A ⊗ ρ̂BÛ†
✶̂⊗ P̂xÛ ]. By definition, a POVM

is a set {Π̂x}x∈X of positive and normalized operators which are not, in general, idempotent like the

projectors. In summary,

Π̂x ≥ 0 (⇒ Π̂x = Π̂†
x)∫

X
Π̂xdx = ✶̂.

(1.153)

For what concerns the quantum states of light, we can distinguish two main detection strategies, differing

for the observable which is to be measured [44, 39, 38]. An optical homodyne detection scheme [46]

allows to record the electric field Ê, giving access to the distribution of quadratures. On the other hand, if

one wishes to measure the discrete excitations of the field, the desired observable is the photon-number

operator n̂ and the experimental scheme is called direct detection. Then, the two techniques are somehow

complementary. The former is based on an interferometer where the input state is mixed with a local

oscillator, i.e. a high-intensity coherent beam. The latter consists essentially in addressing the field on a

device which clicks whenever triggered by the light. If the detector response is proportional to the light

intensity and is single-photon sensitive, we are dealing with photon-number-resolving (PNR) detectors.

In the following, will focus on this kind of detection strategy, since it is consistent with the aim of our

work.

1.5.1 Direct detection

The direct detection of light is basically described by the photoelectric effect. The incoming photons ionize

atoms or promote electrons to a conduction band, then the resulting current is amplified to get a pulse that

can be measured. However, the available photodetectors cannot count all the photons: there is a non null

probability that the device does not click after a light event because some photons can be reflected from

the surface of the detector or, also, absorbed without being converted into electric pulses. We can describe

this effect by saying that only a fraction η of the impinging photons effectively leads to a count. This

parameter is usually called quantum efficiency. We would like to find the POVM that catches this notion

[38].

Provided that the detector is small with respect to the coherence length of the field and has a window T ,
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the probability of observing m counts in T is given by [45]

p(m;T ) = Tr

[
ρ̂ :

(η Î(T )T )m

m!
exp(−η Î(T )T ) :

]
(1.154)

where Î(T ) is the integrated intensity operator

Î(T ) ∝
1

T

∫ T

0
dtÊ(−)(t)Ê(+)(t). (1.155)

Note that Eq. (1.154) is nothing but the quantum expression for Mandel’s formula in Eq. (1.40). By

suitably rescaling the quantum efficiency, one can rewrite the probability in Eq. (1.154) with the creation

and annihilation operators, as follows

pη(m) = Tr

[
ρ̂ :

(η â†â)m

m!
exp(−η â†â) :

]
. (1.156)

Now we can use the identities

: (â†â)m := â†â(â†â−1)...(â†â−m+1)

: e−η â†â :∼ (1−η)â†â

and finally find

pη(m) =
∞

∑
k=m

(
k

m

)
〈k|ρ̂|k〉ηm(1−η)k−m. (1.157)

Note that in the ideal case η = 1 the detector measures the photon-number distribution of the state

p(k) = 〈k|ρ̂|k〉, but in general the probability of measuring m photoelectrons is a Bernoullian convolution

of the ideal distribution, which makes sense since the detection events can be equivalently thought in

terms of success and failure. The POVM of the photodetector, obtained from pη(m) = Tr[ρ̂Π̂η(m)] and

Eq. (1.157), reads

Π̂η(m) = ηm
∞

∑
k=m

(
k

m

)
(1−η)k−m|k〉〈k|. (1.158)

A brief inspection of Eq. (1.158) shows that it satisfies the properties of POVMs in Eq. (1.153) without

being a projector since [Π̂η(k),Π̂η(s)] 6= 0 for k 6= s.

This is a general model describing a photodetector with a given quantum efficiency. Anyway, every

particular devices is also affected by specific drawbacks hampering their performance. We will focus on

the nonidealities of the detectors we employed in our work in the following chapter.

The light statistics we commonly deal with in this research is multimode since several temporal and spatial

modes µ are simultaneously detected in TWB and thermal states. Thus, we should generalize Eq.(1.158)

to a multimode POVM, given by the tensor product of the sum over all the single-mode POVM related to

each mode and consistent with the total observed detected-photon number, i.e.

Ω̂(m) =
µ⊗

j=1

[
∞

∑
m j=0

Π̂η(m j)

]
δ

(
∑

j

m j −m

)
, (1.159)

where we have assumed that each mode is equally populated.

For what concerns the measurement of correlations, we can try to compare the entanglement between the

two parties of a TWB with the correlations between the outputs of a beam splitter whose entries are a
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classical state and the vacuum. If the incoming state is ρ̂ = ∑n,m ρn,m|n〉〈m|, with ρn,m = 〈n|ρ̂|m〉, and the

transmittivity of the beam splitter is T , then the output is given by

ω̂ = ∑
s,t,p,q

√(
s+ p

s

)(
t +q

q

)
ρs+p,t+q(

√
T )s+t(

√
1−T )p+q|s, p〉〉〈〈t,q|. (1.160)

Hence, the joint photodetection distribution of the counts and its moments in the single-mode case are

straightforward from

p(m1,m2) = Tr[ω̂Π̂η1
(m1)⊗ Π̂η2

(m2)]

m̂p =
∞

∑
m=0

mpΠ̂η(m).
(1.161)

Note that we are dealing with operatorial moments, so that in general m̂p 6= m̂p. In particular, the first two

moments are given by

m̂ = η n̂

m̂2 = η2n̂2 +η(1−η)n̂
(1.162)

and the variance reads

〈∆m̂2〉 ≡ 〈m̂2〉−〈m̂〉2 = η2〈∆n2〉+η(1−η)〈n̂〉. (1.163)

Thus, the variance of the photoelectron number is not determined uniquely by the photon number variance,

but also by the mean photon number and just in the case η = 1 this dependence disappears [47].

Anyway, as mentioned above, we do not reveal entanglement through a measure of counts, but from the

statistics of the difference photocurrent instead. Why? We could as well evaluate a correlation coefficient

defined from the moments in Eq. (4.11), i.e.

Γ ≡ 〈(m̂1 −〈m̂1〉)(〈m̂2 −〈m̂2〉)〉√
〈∆m2

1〉〈∆m2
2〉

(1.164)

which is analog to the coefficient CSH that we used to highlight the difference between thermal and

super-thermal correlations in Eq. (1.58) [27]. The problem with this parameter is that it cannot reliably

discriminate entanglement from classical correlations even for small mean photon-number, as it has been

shown in [41].

On the contrary, the difference photocurrent D̂ can be used to reveal entanglement. The POVM for such a

measure in the single-mode case can be simply built from Eq. (1.158) as follows

Θ̂(d) =
∞

∑
m=0





Π̂η1
(m)⊗ Π̂η2

(m+d) d > 0

Π̂η1
(m)⊗ Π̂η2

(m) d = 0

Π̂η1
(m+d)⊗ Π̂η2

(m) d < 0

(1.165)

where the numbers d are the eigenvalues of D̂. Hence, the distribution and moments of the photocurrent

difference read

p(d) = Tr[ω̂Θ̂(d)]

D̂p =
∞

∑
d=0

dpΘ̂(d).
(1.166)
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The simplest statistical quantity discriminating quantum and classical correlations is the variance of the

distribution, which is shown [41] to be smaller for TWB states than for thermal and coherent states. In

particular, if η1 = η2 this is always true and, of course, the larger the quantum efficiency, the larger

the difference between quantum and classical cases. If η1 6= η2, the difference between the quantum

efficiencies imposes a superior limit on the number of photons that can be detected preserving the

entanglement, i.e.

n < ñ ≡ 2η1η2

(η1 −η2)2
. (1.167)

We see that one just needs ∆η ∼ 10−2 to achieve a threshold ñ ∼ 100 larger than the typical number of

photons measured in Quantum Optics experiments.

The generalization to the multimode case can be easily retrieved by replacing Π̂η(m) with Θ̂(d) in

Eq. (1.159).

Now we would like to restate the previously introduced nonclassicality criteria for the detected photons

and for the measured difference photocurrent.

1.5.2 Nonclassicality with detected photons and difference photocurrent

We start by defining Glauber’s correlation functions for detected photons. They are sometimes written

in analogy with the normalized correlation functions for photons, but irrespective of the normal ordering

[50, 49, 39, 51]. In the case of a bipartite system the analogy is with Eq. (1.148), which yields

g
(n)
x1× j,x2×k(m1,m2) =

〈m̂ j
1m̂

k
2〉

〈m̂1〉 j〈m̂2〉k
(1.168)

where again j+ k = n and the operators m̂p are given in Eq. (4.11). Note that the absence of the normal

ordering has relevant effects on the final form of these functions. Consider the second-order autocorrelation

function for detected photons, i.e.

g(2)(m) =
〈m̂2〉
〈m̂〉2

. (1.169)

The form of Eq. (1.169) is explicitly different from g(2)(n) in Eq. (1.144). If we had built the correlation

functions for detected photons by replacing the moments n̂p with m̂p, i.e. by preserving the normal ordering

(see for example [56]), we would have ended with the same functions. On the contrary, Eqs. (1.169) and

(1.144) are related by

g(2)(m) = g(2)(n)+
1

〈m̂〉 . (1.170)

Strictly speaking, one could even say that the functions in Eq. (1.168) are not Glauber’s correlation

functions, but it is a fact [50] that they are connected by Eq. (1.170) and, more generally, by

g
(n)
x1× j,x2×k(m1,m2) =

j,k

∑
s,t=0

cs,tg
(n)
x1×s,x2×t(n1,n2) (1.171)

so that nonclassical boundaries similar to the ones defined for Glauber’s functions are inherited by these

detected-photon correlation functions [39]. The coefficients cs,t depend on the parameters of the system.

We recall that, since we are using the criterion imposed by the second-order correlation function, the

investigated states of light exhibit their nonclassicality through sub-Poissonianity. Then, we are led to

define a Fano factor for detected photons in full analogy with Eq. (1.145), i.e. [56, 51]

F(m)≡ 〈∆m̂2〉
〈∆m̂2〉POISS

=
〈∆m̂2〉
〈m̂〉 (1.172)
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which, by making explicit the expressions of the first and second moments, is easily shown to depend on

the photon-number Fano factor as follows [47]

F(m) = ηF(n)+1−η . (1.173)

Hence, the nonclassicality criterion which holds in Eq. (1.146) for photons can be restated for detected

photons as

1−η ≤ F(m)< 1 (1.174)

if F(n) is a monotone function. We see that, as expected, our capability of revealing nonclassicality is

determined by the quantum efficiency. Note that by exploiting Eqs. (1.147) and (1.173) one can easily

retrieved the Glauber’s second-order correlation of the light distribution from the Fano factor of the

measured photoelectrons, i.e. [51]

g(2)(n) = 1+
F(m)−1

〈m̂〉 . (1.175)

Moreover, one could also define a notion of distance in the space of Glauber’s functions as the difference

between the correlation of a given light statistics with mean value 〈n̂〉 = n and the correlation of an

n-photon Fock state and evaluate it through an analog distance defined for the detected-photon Fano factor

as follows

∆g(2)(n)≡ g(2)(n)−g
(2)
Fock(n) =

∆F(m)

〈m̂〉 . (1.176)

Here ∆F(m)≡ F(m)−Fmin is the mentioned distance for the detected-photon Fano factor with respect

to Fmin = 1−η , which is the lower bound of F(m) (see Eq. (1.174)), and g
(2)
Fock(n) = 1−〈n̂〉−1 is the

second-order autocorrelation function for the n-photon Fock state.

Finally, we need to express the cross-correlations in terms of the measured difference photocurrent D̂. As

explained above, the nonclassicality criterion for entanglement based on the difference photocurrent is

defined through the noise reduction factor, which is expressed as a function of the first two moments of D̂

in analogy with Eq. (1.150), i.e.

R ≡ 〈∆D̂2〉
〈∆D̂2〉POISS

=
〈∆D̂2〉

〈m̂1 + m̂2〉
. (1.177)

From the second of Eqs. (1.166), one finds that the variance of the difference photocurrent yields

〈∆D̂2〉 ≡ 〈D̂2〉−〈D̂〉2 =

= 〈D̂2〉+(1−η1)〈m̂1〉+(1−η2)〈m̂2〉−〈D̂〉2

= 〈∆D̂2〉+(1−η1)〈m̂1〉+(1−η2)〈m̂2〉
= 〈∆m̂2

1〉+ 〈∆m̂2
2〉−2(〈m̂1m̂2〉−〈m̂1〉〈m̂2〉)+(1−η1)〈m̂1〉+(1−η2)〈m̂2〉.

Note that the term γ ≡ 〈m̂1m̂2〉−〈m̂1〉〈m̂2〉 is proportional to the correlation coefficient Γ mentioned in

Eq. (1.164). Therefore, the definition of the noise reduction factor for the difference photocurrent in

Eq. (1.177) provides

R = 1+
〈∆m̂2

1〉+ 〈∆m̂2
2〉−2γ −η1〈m̂1〉−η2〈m̂2〉
〈m̂1〉+ 〈m̂2〉

. (1.178)

The variance of the detected photons can be expressed as

〈∆m̂2〉= 〈m̂〉(〈m̂〉+η)
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which allows to simplify Eq. (1.178) as follows

R = 1+
〈m̂1〉2 + 〈m̂2〉2 −2γ

〈m̂1〉+ 〈m̂2〉
. (1.179)

We note that the revealed nonclassicality of the detected state depends on the balance between the sum of

the second moments and the cross-correlations. In particular, we will now retrieve the noise reduction

factor in the case of non-ideal detection of single-mode TWB states. The correlation term 〈m̂1m̂2〉 is given

by

〈m̂1m̂2〉= 〈〈r|m̂1 ⊗ m̂2|r〉〉=
= η1η2〈〈r|n̂1 ⊗ n̂2|r〉〉=
= η1η2N(2N +1) =

= 2〈m̂1〉〈m̂2〉+
√

η1η2

√
〈m̂1〉〈m̂2〉

where |r〉〉 is the single-mode TWB state with photon number-mean value 〈〈r|n̂1 + n̂2|r〉〉= 2N defined in

Eq. (1.131). Thus, the noise reduction factor reads

R = 1+
(〈m̂1〉−〈m̂2〉)2

〈m̂1〉+ 〈m̂2〉
−2

√
η1η2

√
〈m̂1〉〈m̂2〉

〈m̂1〉+ 〈m̂2〉
. (1.180)

We recall that, from the very definition of noise reduction factor, we can say that nonclassical correlations

are detected if R < 1, which is a sufficient but not necessary condition. From Eq. (1.180) we see that, as

expected, a strong limitation is given by the imbalance between the quantum efficiencies of the detectors.

We have already outlined the effect of different quantum efficiencies on the variance of the photocurrent

difference by finding a threshold photon-number value ñ(η1,η2) in Eq. (1.167) over which quantum

correlations cannot be correctly discriminated with this procedure. Note that the noise reduction factor in

Eq. (1.180) can be written in terms of this threshold, as follows

R = 1+2
η1η2

η1 +η2

(
N

ñ
−1

)
. (1.181)

Again, we find that entanglement can be revealed only if N < ñ. For N ≪ ñ we are in the limit N
ñ
→ 0,

which yields the lower bound given by the quantum efficiencies of the detectors to the noise reduction

factor, i.e.

R ≥ 1−2
η1η2

η1 +η2
. (1.182)

If η1 = η2 = η , it reduces to R ≥ 1−η .

The generalization to the multi-mode case is easily done by replacing the single-mode TWB state with the

multi-mode case |rµ〉〉 in Eq. (1.133). The effect of this operation on the noise reduction factor is a factor

1/µ multiplying the second term in Eq. (1.180). Therefore, in a perfectly balanced condition the noise

reduction factor is insensitive to the number of modes.

1.5.3 Conditional measurements

Detecting quantum correlations is not the only way to reveal nonclassicality. An alternative well-known

mechanism exploits the reduction postulate [52], which basically can be stated as follows [53]. Given a

generic POVM Π̂ for our generalized measure and a composite system ρ̂s,i, when we perform a measure on

the idler state i and get an outcome x with probability px = Tr[ρ̂s,i✶̂⊗Π̂] , then, accordingly with Naimark’s

theorem, the subsystem s, the signal, is left in the state

ρ̂
(x)
s =

1

px

Tri[ρ̂s,i✶̂⊗ Π̂] (1.183)
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where Tri is the partial trace over the idler. For a TWB state, ρ̂s,i = |rµ〉〉〈〈rµ |, where |rµ〉〉 is defined in

Eq. (1.133). Therefore, if the system is entangled, when the idler is measured and x photons are detected,

then the signal is conditionally reduced as in Eq. (1.183) according to the outcome of the measurement.

The process is interesting not only from a fundamental point of view, but also because it may give access

to states which cannot be achieved with existing Hamiltonian processes [52].

Conditional states of light have been successfully detected in the case of TWB states via photon-counting

techniques in the mesoscopic intensity regime [54, 55]. Given the POVM describing the losses of the

detectors Π̂η in Eq. (1.158), the detected-photon joint probability distribution is given by

ps,i = Trs,i[|rµ〉〉〈〈rµ |Π̂ms ⊗ Π̂mi
] =

=

(
µη

〈m̂〉+µη

)µ ( η

1−η

)ms+mi

∑
l

(
l +µ −1

l

)(
l

s

)(
l

t

)[ 〈m̂〉(1−η)2

〈m̂〉+µη

]l

where 〈m̂〉= η〈n̂〉 is the total detected-photon mean number. After measuring w photons on the idler, the

signal is left in a conditional state ρ̂
(w)
s , that can be derived from Eq. (1.183), so that the detected-photon

mean value for the signal state can be retrieved as

〈m〉w = Trs

[
ρ
(w)
s ∑

ms

msΠ̂ms

]
=

η(〈n̂〉+µ)

η〈n̂〉+µ
w+

η(1−η)µ〈n̂〉
η〈n̂〉+µ

. (1.184)

Note that the mean value on the signal is a linear function of the conditioning value w because of the

effect of the quantum efficiency of the detector. Of course, for η = 1 we get 〈m〉w = w. Similarly, we can

compute the second moment for ρ̂
(w)
s and determine the Fano factor, thus finding [55]

Fw = (1−η)

[
1+

η〈n̂〉(w+µ)(〈n̂〉+µ)

(η〈n̂〉+µ)[(w+µ)(〈n̂〉+µ)−µ(η〈n̂〉+µ)]

]
. (1.185)
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2
Characterization of Silicon

Photomultipliers for Quantum Optics

Experiments

The search for optimal receivers endowed with photon-number-resolving capability has led us to consider

silicon photomultipliers (SiPMs) for Quantum Optics experiments. In particular, Afek et al. [79] provided

a former model for the photodetection via SiPMs, including the effect of the main nonidealities of these

devices. Ramilli et al. [81] applied the model for the reconstruction of pseudo-thermal and coherent light,

while Kalashnikov et al. [96] used their SiPMs to detect TWB states and estimated the nonclassicality of

the detected-photon statistics. Despite the promising results, the old generations of these detectors were

proved to be worst than other existing detectors, such as hybrid photodetectors [42], mainly due to the

sources of correlated noise affecting them.

However, the new generation of SiPMs opens new perspectives [63]. Indeed, technological improvements

has made the impact of some of these spurious effects almost negligible, paving the way for Quantum

Optics experiments. Therefore, we gave them a chance by testing their performances with classical and

nonclassical light and optimizing them for a reliable reconstruction of light statistics.

Here, after a technical introduction, we will show and examine the results of our detector characterizations.

Firstly, we will assess the main parameters of the sensors through a standard procedure which is well-

known in the literature. Then, we will implement a specific characterization for the reconstruction of the

statistics and the estimation of correlations.

In the following chapter, we will use our devices to explore the quantum world and explain what we

retrieved. Finally, we will see a comprehensive method to estimate with a single tool, i.e. Glauber’s

correlation functions, both the parameters of the detectors and the detected-light nonclassicality.

2.1 Introduction to Silicon Photomultipliers

The story of SiPMs dates back to the early Nineties in Russia [57, 58, 59, 60, 71]. A SiPM is a Multi-Pixel

Photon Counter (MPPC) and, more precisely, a matrix of Geiger-Müller-avalanche-photodiodes connected

in parallel to a common output. This paragraph is devoted to clarify and detail this definition.
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2.1.1 Architecture of the device

Near the breakdown voltage, a diode is operated differently according to the bias voltage. If the applied

voltage is below the breakdown level, we have an avalanche photodiode (APD), which means that an

impact ionization process is triggered by the absorption of a photon. As a result, a number of electron-hole

pairs proportional to the number of absorbed photons is created. On the contrary, if the bias is above the

breakdown voltage, a single carrier crossing the depletion region can start a self-sustaining avalanche. In

this case, we say that the device works in a Geiger-mode (GM) regime. Note that in this case the detector

acts like an on/off photodetector, i.e. it cannot count the number of impinging photons since the output

is the same regardless of the intensity of the impinging light. In a word, the detector is described by the

two-value POVM [38]

Π̂η(0) =
∞

∑
k=0

(1−η)k|k〉〈k| Π̂η(1) = ✶̂− Π̂η(0) (2.1)

where η is the quantum efficiency of the GM-APD. Note that we are implicitly requiring that this APD is

single-photon sensitive, which is the reason why it is known as Single-Photon Avalanche Diode (SPAD)

[61, 62]. In Fig. 2.1 on the left we show the typical electrical model of a SPAD with a quenching circuit

[78]. There are a voltage source, which is set at the breakdown voltage VBD, a resistor RS modeling the

space-charge resistance of the avalanche region, the junction capacitance CD and a switch. Externally, we

can find the bias supply and the quenching resistor. Provided that VBIAS > VBD, the switch is closed by a

carrier triggering an avalanche and is opened when the avalanche is quenched. If the switch is open, no

current flows in the circuit and the voltage over the capacitance equals the bias voltage. When, at a given

time t0, an avalanche starts, the switch closes and the capacitance discharges, its voltage evolving from

VBIAS to VBD. As shown in Fig. 2.1 on the right, a current IINT starts flowing inside the SPAD at the time

t0, but it drops down exponentially as the capacitance discharges. In the same time, an external current

IEXT is generated in the quenching circuit and increases as the exact inverse of the IINT decay. While they

are reaching the plateau, the avalanche may be quenched. When this happens, at time t1, the switch is

opened, no more current flows inside the SPAD, the capacitance recharges to the original bias voltage and

the external current decays exponentially. The external current is the output current signal of this device.

The exponential decay characterizing the output waveform will be crucial in the following.

Fig. 2.1: Left: equivalent circuit of a SPAD with external quenching resistor and bias supply. Right: plot of the internal

and external currents IINT and IEXT as a function of time. Source: [78].
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Fig. 2.2: Equivalent circuits of a SiPM (left) and of a GM-APD (right). Source:[60]

If we want a PNR detector, we can consider an array of micro-GM-APDs, that from now on will be called

cells or pixels, connected in parallel to a single common output. In this configuration, in the absence

of all nonidealities, except a limited quantum efficiency, the output signal must be proportional to the

number of fired cells and then, under the non-trivial assumption that every cell is fired by at most one

photon, the output signal must be proportional to the number of incident photons. In particular, the current

output signal is the sum of the external currents IEXT related to each fired cell [78]. The name of the whole

structure is silicon photomultiplier SiPM [59, 60]. The equivalent circuits of a SiPM and, again, of one of

its GM-APDs are outlined in Fig. 2.2. Schematic pictures of the SiPM structure and of the photodetection

process are shown in Fig. 2.3.

The new generations of SiPMs are endowed with a number of features [63] which makes them convenient

and feasible for Quantum Optics experiments and Quantum Information protocols. They are ideal for

a portable system since they are compact, rugged and insensitive to magnetic fields. Moreover, they

operate at room temperature and at low operation voltages (VBR ∼ 50 V). The gain is high compared to

the previous generations [58]: it ranges from 105 to 106. The dynamic range depends on the number of

cells, which is high despite the small size of SiPMs because the density of cells is high (∼ 104/mm2).

These detectors could be particularly interesting in the Quantum Optics community because of their

photon-number resolution capability, i.e. because the peaks of the detected-light histogram are highly

resolved. Each peak corresponds to a measured number of photons. Last but not the least, they are sensitive

in the visible spectral range, which is the domain of many laser sources. We will better explore the SiPM

features in the following with the characterization of the specific detectors we employed in our research.

In Fig. 2.4 we show the typical waveform of a digitized output signal. The information on the number of

photoelectrons is commonly extracted by integrating the signal over a suitable temporal interval, as shown

in Fig. 2.5. By collecting the data from all the signals, one can obtain the histogram of the counted photons,
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Fig. 2.3: SiPMs are high-density (∼ 104/mm2) matrixes of SPADs with a common output.

known as pulse-height-spectrum. An example for that is shown in Fig. 2.6. The probability related to a

given number of avalanches per pulse is proportional to the area underneath the corresponding peak in the

histogram [79].

Fig. 2.4: Digitized output signal from a SiPM Hamamatsu S13360-1350CS [63].

On the other hand, SiPMs are affected by a limited quantum efficiency, three spurious stochastic effects

and saturation. These drawbacks are addressed one by one in the next sections.

2.1.2 Quantum efficiency

The low quantum efficiency is one of the most detrimental aspects of SiPMs for Quantum Optics ap-

plications. Luckily, a model for photodetection can link the distribution of the detected photons to the

distribution of the incident photons (see next section). Moreover, quantum efficiency has been enhancing
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Fig. 2.5: Digitized output signal from a SiPM Hamamatsu S13360-1350CS [63]. The temporal integral of the whole

waveform is proportional to the number of detected photons. By collecting the information from all the

measured signals, one can build a photon-number histogram, like the one in Fig. (2.6). Here, two different

choices for the integration interval Tint are outlined. Details on the strategy behind this choice in the following

sections.

Fig. 2.6: A photon-number histogram, namely pulse-height-spectrum, obtained with a SiPM Hamamatsu S13360-

1350CS [63] from Poissonian input light. The first peak is the zero-photon peak, the second is the one-photon

peak and so on. The counts on the vertical axis are in arbitrary units.
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with technological improvements. The new generations attained η ∼ 60% in the blue spectral range.

More precisely, the definition of quantum efficiency we gave in the first chapter is usually referred to as

photon-detection efficiency PDE [60], which is the product of three distinct contributions.

The first is a more specific contextualization of the quantum efficiency, i.e. the probability for a photon to

generate an e-h pair. It depends on the transmittance of the dielectric layer over the silicon surface and

on the probability that the e-h pair is generated in the active layer of the detector once the photon has

passed the dielectric layer. Both of these quantities are wavelength dependent, as the absorption spectrum

of silicon is.

The second contribution is the triggering probability ptrig, which is the probability that the e-h pair triggers

an avalanche. It is proportional to the overvoltage and is related to the recovery time τ of the cells as

follows [65]

ptrig = ptrig,0[1− exp(−t/τ)] (2.2)

where ptrig,0 is the triggering probability in a fully recharged cell.

Finally, the contribution of the geometrical efficiency is of major importance. It is the so called fill factor,

which is the percentage of the detector surface area that is sensitive to light. Indeed, each cell is often

separated from its neighbors to limit crosstalk effects (see next Sections). In addition, there is an edge

structure, called guard ring, needed to lower the electric fields at the borders and some surface area is

required for the quench resistor and signal tracks. All of this space results in a dead region around the cell

contributing to a reduction of the fill factor. Since the separation between cells is more or less constant,

regardless of the cell size, larger cells result in a larger percentage of active area. A higher fill factor (larger

cells) results in higher PDE and gain as well as in higher capacitances, longer recovery times and a smaller

dynamic range. On the contrary, a lower fill factor (smaller cells) results in lower PDE and gain as well as

in lower capacitances, shorter recovery times and higher dynamic range.

The PDE can be experimentally evaluated [66]. In Fig. 2.7 we show the dependence of the PDE on the

overvoltage (plots on the left) and on the wavelength (plots on the right) for three SiPMs with different

cell sizes and cell numbers, but with the same overall detector size. These detectors have the maximum

of the PDE at λ ∼ 465 nm. From the plots on the left, it is clear that the PDE is a growing function of

the overvoltage, but, moreover, note that the also derivative of the PDE with respect to Uover depends on

the wavelength. In particular, as the wavelength approaches the value such that the PDE is maximal, the

growth of the PDE as a function of Uover is faster. As a last remark, we highlight that, as expected, at fixed

overvoltage and wavelength, the PDE is larger for larger pixel sizes.

2.1.3 Dark Counts

The carrier initiating the discharge can be the consequence of a pure detection event, but it can also be

thermally generated. As a result, one gets spurious avalanches which are random and independent of

the input field. These spurious avalanches are known as dark counts and, at the single photon level, they

represent an important source of noise. We can think the detector to be embedded in an external thermal

bath and, being the times of arrival of each thermal excitation independent of each other, we can fairly say

that the temporal distribution of the induced dark counts is Poissonian.

Dark counts are usually quantified as a pulse rate (kHz) or pulse rate per unit area (kHz/mm2). The dark-

count rate (DCR) is a function of the thickness of the active area, of the overvoltage and of temperature. In

particular, the junction thickness and the triggering probability grow with the overvoltage, and so does the

DCR [60, 68]. A simple counting system can be used to measure DCR. It consists in setting the threshold

of a discriminator at the half-photon level when no signal impinges on the detector. The DCR can thus be

identified with the threshold-exceeded rate. This method is commonly called Stair Case. A typical Stair

Case plot is shown in Fig. 2.8. Since the Stair Case plot is typically recorded in the absence of light, the

corresponding peak-height spectrum consists of three visible peaks. The 0-photon peak, which in this

case is the highest, the 1-photon peak, due to dark count, and the 2-photon peak, revealing the presence of
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Fig. 2.7: Left: PDE as a function of the overvoltage Uover for different wavelengths. Right: PDE as a function of

the incident light wavelength at room temperature. The three rows refer to Hamamatsu S10362 detectors

[67] with effective active area ∼ 1× 1 mm and differing for the cell sizes. First row: 625µm2 pixel

size, at an over voltage of Uover = (4.3±0.05)V. Second row: 2500µm2 pixel size, at an over voltage of

Uover = (2.15±0.05)V. Third row: 104µm2 pixel size, at an over voltage of Uover = (1.3±0.05)V. Source:

[66]
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optical cross-talk events (see the next section for details).

Note that, since the DCR increases with the overvoltage (see Fig. (2.9)), we have a natural trade-off

between increasing PDE and DCR.

2.1.4 Optical Cross-Talk

One of the most detrimental spurious effects of SiPMs for quantum applications is the optical cross-talk

(OCT). It is defined as the probability that an avalanching cell will cause an avalanche in a second cell.

What happens is that a primary avalanche emits bremsstrahlung secondary photons that can reach another

cell and make it fire. Note that the emission of visible light from a reverse-biased p-n junction has been

known since 1955 [70].

From the point of view of the timing, this process can happen in at least three different ways. The photon

generated by the primary avalanche can either directly fire a neighboring cell or be reflected at one of

the detector surfaces or finally be absorbed in the substrate from where the excited carrier can diffuse up

to the active region and fire a cell. For what concerns the secondary avalanche triggering time, the first

two phenomena can be stark distinguished from the last one [65]. In particular, if the neighboring cell is

directly fired by the secondary photon, then the OCT event is almost simultaneous with the effective light

signal (Tsignal −TOCT < 1ps). The same can be said for the second case, where the photon can be reflected

either from the window material on the top of the sensor (usually epoxy or glass) or from the bottom of the

silicon substrate, since the photon time of flight is approximately a few picoseconds. At the nanosecond

scale (see the typical signal in Fig. (2.5)), these OCT events are almost indistinguishable from the light

events and the process is called prompt cross-talk OCT-P. On the contrary, in the third case the OCT signal

is measurably delayed with respect to the light signal due to the diffusive process from the substrate to the

active region, which can be up to tens of nanoseconds long. Hence, we can typically distinguish the light

signal peak and the OCT peak and we talk about delayed cross-talk OCT-D. A schematic representation of

the OCT-P and OCT-D processes is shown in Fig. 2.10.

Since about 2006 [60, 71], direct migration of a secondary photon to a neighboring cell has been somehow

prevented by applying suitable trenches between the cells [65], so that OCT-P has been noticeably reduced

in the new generations of SiPMs [72]. However, reflections on the device surfaces and OCT-D cannot be

prevented through this expedient.

Fig. 2.10: Scheme of the OCT-P and OCT-D processes. Source: [65].

OCT is that bad for Quantum Optics applications and, in general, for measurements with SiPMs

because it spoils two of the fundamental features of these devices. On the one hand, OCT-D compromises

the peak-to-peak resolution. Indeed, given an integration interval for the output waveform, OCT-D signals
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Fig. 2.8: A Stair Case plot measuring the DCR of a 3×3mm2 SiPM with pixel size 35×35µm2 at room temperature.

Source: [69].

Fig. 2.9: DCR as a function of the overvoltage for a 3×3mm2 SiPM with pixel size 35×35µm2 at room temperature.

Source: [69].
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are not completely integrated and do not contribute to the photon-number statistics as integers. They can

either broaden the peaks or fill the range between two peaks. On the other hand, OCT-P is even worse

because, as dark counts do, it modifies the statistics, being the secondary-photon induced breakdown

indistinguishable from the primary avalanches. Unlike dark counts, the number of false avalanches can be

larger than one, and so the extent up to which the statistics is influenced.

Fig. 2.11: A plot of the OCT probability as a function of the overvoltage. Source: [69].

Note that there is a faint analogy between dark counts and OCT since the secondary photons emitted by

the decelerating carriers are typically in the near infrared region. This is why they can travel long distances

inside the device. From this point of view, also OCT is something like a thermal effect, the difference

with the dark counts being in the source: the acceleration of the avalanche charges for the former, the

environment for the latter.

OCT is a function of the overvoltage (see Fig. 2.11), of the gain and of the detector fill factor. The larger

the number of carriers crossing the junction, the larger the probability that secondary avalanches will be

triggered. Once again, we end with a trade-off with the PDE, as both of them grow with the overvoltage.

An experimental estimation for the OCT probability can be easily achieved [66, 68]. The most common

OCT measure exploits the fact that at the nanosecond scale, which is the reference scale for signal evolution

(see Fig. 2.5), the DCR is small, so that it is unlikely for two dark-count signals to be simultaneous. More

explicitly, the new generations of SiPMs feature a DCR ∼ 102kHz = 1/(104ns) and the duration of the

signal is of the order of 102ns. Based on this evidence, one can fairly say that, in the absence of OCT, the

two-photon peak height should be negligible. Hence, an empirical estimation of the OCT consists in the

ratio of the dark-count frequencies for pulses exceeding the 0.5 and 1.5 levels of the single cell amplitude,
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namely

ε ∼ ν1.5

ν0.5
. (2.3)

In other words, this estimation is a comparison between the event rate above a one-photoelectron threshold

and the total measured DCR. The frequency values can be inferred from a Stair Case plot, as in Fig. (2.12).

Fig. 2.12: A Stair Case plot for the evaluation of the OCT. The amplitudes for the rate thresholds are given in terms of

number of photoelectrons (pe). Source: [66].

The old SiPM series S10362 typically had ε ∼ 25% [68], against the ∼ 3% of the new generation.

2.1.5 Afterpulsing

OCT avalanches are not the only spurious pulses that are correlated to the genuine light signal. During

the breakdown, defects in the silicon structure of the device can become a trap for the carriers. Therefore,

shortly following the primary avalanche (< 1 ns) [65] or after several ns or even µs [66], secondary

avalanches can be triggered by the released charges. The phenomenon is known as afterpulsing. The

amplitude of the resulting pulses depends on the recovery time of the cells and can be calculated [66, 65].

In particular, if the delay is shorter than the recovery time, the afterpulse must be smaller than one

photoelectron since no other avalanches could be triggered. On the contrary, if the delay is longer than

the pixel recovery time, a standard signal similar to the the photon-induced ones is generated. Thus,

afterpulses with short delay have negligible impact, while the long-delayed afterpulses are dangerous

for the photon-number resolution as much as OCT. As for the previously described spurious effects, the

afterpulse probability increases with the overvoltage.



66 2. Characterization of Silicon Photomultipliers for Quantum Optics Experiments

Fig. 2.13: Saturation curve for signals acquired with a limited GM silicon photodiode (an old SiPM model). The solid

line, well superimposed to the experimental data, is the plot of Eq. (2.6), which is to be compared with the

linear trend (dotted line). Source: [58].

2.1.6 Pile up

The spurious stochastic effects described above are essentially detrimental because they spoil the propor-

tionality between the number of photons impinging on the sensor and the number of fired cells, which

is the reason why these devices are interesting. Unfortunately, even in an ideal future, when all these

stochastic effects will be overcome, the detector response will be anyway affected by a deviation from

linearity [59] due to the very idea of counting devices with a finite number of GM-APDs. In particular, the

possible nonlinearity can be ascribed to the limited number N of the cells and the fact that more than one

photon can hit a single cell without changing its response [73]. This saturation problem, called pile up, is

usually modeled with the well-known statistical distribution of ηn balls, representing the detected photons

with PDE η , into N urns, which are the cells. Starting from the distribution of the empty cells x [74]

P(x) =
N

∑
j=x

(−1) j−x

(
j

x

)(
N

j

)
x

j

(
1− j

N

)ηn

(2.4)

one can retrieve the moments of the distribution for the cells N − x ≡ m that are hit by at least one photon,

and hence

〈m〉= N

[
1−
(

1− 1

N

)ηn]

〈∆m2〉= N(n−1)

(
1− 2

N

)ηn

+N

(
1− 1

N

)ηn

−N2

(
1− 1

N

)2ηn

.

(2.5)

If the cell number is large, note that the mean number is approximated by an exponential function, i.e.

〈m〉 ∼ N
[
1− exp

(
−ηn

N

)]
(2.6)

and, in particular, for N → ∞ we find the linear scaling 〈m〉 ∼ ηn. This simple model has always been

consistent with experimental data, as shown in Fig. 2.13.
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However, it has at least two important flaws. First of all, it does not take into account other spurious

stochastic effects. Secondly, while in a semiclassical approach the analogy between photons impinging

on the cells of the sensor and balls invading urns could be fine as long as the photon can be reduced to a

particle, this may be critical for a quantum-optical description because the incoming field is not necessarily

in an eigenstate of the number operator and one should also consider the distribution of the state.

Anyway, the dependence of the pile up effect on the number of cells for fixed dimensions of the device is a

fact, which implies that smaller cells result in a larger dynamic range. Moreover, it is intuitive that the

pile-up effect must depend on the number of incoming photons, so that the chosen intensity regime largely

determines the incidence of pile-up effects. Hence we see that, at the single-photon regime, the deviation

from nonlinearity is negligible, as it will be shown in the following section.
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2.2 Standard characterization

2.2.1 MPPC S13360: preliminary comments from datasheet

Consistently with the project outlined in the introduction and the specific features of SiPM, our search

focused on devices with minimum OCT and with a PDE value as high as possible. The new generation of

SiPMs produced by Hamamatsu, series S13360, offered the variety of possibilities shown in Fig. (2.14).

Fig. 2.14: Table of the SiPM series S13360 by Hamamatsu. Source: [63].

The 25-µm-pixel-pitch sensor features the largest number of cells at fixed size but also with the

smallest fill factor, which limits the sensor PDE to a maximum of ∼ 25%. It is suitable to count a large

number of photons (∼ 100) since the cells are enough to overcome pile-up effects at high-intensity regimes,

but it is not ideal for single-photon quantum measurements. Thus, we ruled it out and chose between the

50-µm-pixel-pitch and the 75-µm-pixel-pitch detectors. For what concerns the size, the best choice is the

smallest surface able to collect all the incident light, which is the case of the 1.3×1.3 mm photosensitive

area. A picture of the geometric structure of these objects is shown in Fig. 2.15.

In Fig. 2.16 we show the dependence of the PDE on the wavelength and in Fig. 2.17 the dependence

of gain, OCT and PDE on the overvoltage. Note that the peak of the PDE is reported at ∼ 450 nm. As

expected, at fixed overvoltage the OCT probability is larger for larger cells. But the 75-µm-pixel-pitch

device is endowed with a higher PDE. Our characterization of the sensors has been essential to take a

decision.

2.2.2 Light Source

For this preliminary standard characterization, following the scheme in [68], as a light source we employed

a Picosecond Pulsed Diode Laser produced by PicoQuant (PDL 800-D) [64] and emitting 6-ns long pulses

at ∼ 400 nm.
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Fig. 2.15: External geometry of the sensors. Dimensional units: mm. Source: [63].

Fig. 2.16: PDE as a function of wavelength for the detectors S13360-1350CS (on the left) and S13360-1375CS (on

the right). Source: [63].
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Fig. 2.17: Plot of gain, OCT probability and PDE as a function of the overvoltage for the detectors S13360-1350CS

(top) and S13360-1375CS (bottom). Source: [63].
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2.2.3 Data Acquisition

Both the detectors we tested were powered and amplified by the computer-based Caen SP5600 Power

Supply and Amplification Unit (PSAU) [75]. In particular, the two SiPMs were mounted in single

interchangeable heads. This device is monitored via USB port, allowing for the setting of the bias voltage

and the gain. The amplification factor is variable in a range up to 50 dB with 1-dB gain step. Moreover,

the temperature of the detectors is monitored and stabilized via an integrated feedback circuit.

For what concerns the acquisition of the amplified signal, we sampled the output with the computer-based

Caen DT5720 desktop waveform digitizer, a device endowed with 12-bit resolution and a sampling rate

ranging from 31.25 to 250 MS/s, simultaneously on each channel. The sampled waveforms were then

integrated offline over suitable integration intervals. The histogram of the integrated values is the so-called

pulse-height-spectrum containing the statistical information on the detected light. The pulse-height-

spectrum displays peaks corresponding to different numbers of detected photons. See the next Sections for

details.

2.2.4 Peak-to-peak distance

One of the most important parameters to monitor in the analysis of a pulse-height-spectrum is the distance

between two consecutive peaks, called peak-to-peak distance ∆pp. It is the very essence of the detector

resolution power, the variable determining the number of resolved peaks. The peak-to-peak distance is a

function of the gain of the single cell and is proportional to the overvoltage according to [68]

∆pp ∝
C

e
Vov (2.7)

where C is the diode single-cell capacitance and e is the electron charge. Thus, we firstly evaluated the

dependence of the peak-to-peak distance on the overvoltage for two 1350CS and two 1375CS SiPMs.

Results are shown in Figs. 2.18 and 2.19. A simple way to estimate the optimal bias voltage is given by

the maximization of the ratio [68]

R ≡ ∆pp√
σ2

1 −σ2
0

(2.8)

where σ2
0,1 are the variances of the 0- and 1- photon-number peaks. For the detectors under investigation,

this figure of merit is nearly constant over the whole interesting bias-voltage range, as shown in Fig. 2.20

for one of the 13360-50CS series. Thus, we set the optimal bias voltage value reported on the datasheets,

i.e. 54,79 V and 55,07 V for the 50-µm-pixel-pitch sensors and 54,57 V for both the 75-µm-pixel-pitch.

This constant trend of the ratio R is quite unusual since it is commonly displayed as a parabola, where a

maximum can be easily found, corresponding to the optimal bias voltage [68]. If this is not the case, we

guess that the effect of a limited quantum efficiency is balanced by the spurious effects of the correlated

noise. Hence, apparently we have no trade-off between losses and correlated noise here. However, we can

certainly say that, for Quantum Optics application, the latter is the most detrimental since it makes the

output statistics unreliable and spoils the detected correlations. Therefore, in the following, our criterion

for choosing between our two sensor classes will focus on the minimization of the correlated-noise sources,

i.e. OCT and afterpulsing.

The peak-to-peak distance is also a function of the temporal gate over which the signal is integrated. It

is maximum when the integration gate covers the whole duration of the output waveform. As shown in

Fig. 2.21, we see that, for what concerns this SiPM generation, the largest gate over which we need to

integrate the signal is ∼ 350 ns. From hereon in, for what concerns this standard characterization, we will

always consider the integration of the whole waveform, i.e. we set T = 350 ns.
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Fig. 2.18: Peak-to-peak distance as a function of the bias voltage Vbias = Vbd +Vov, where Vbd is the measured

breakdown voltage, for the first and the second of the 50-µm-pixel-pitch SiPMs 1350CS.
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Fig. 2.19: Peak-to-peak distance as a function of the bias voltage Vbias = Vbd +Vov, where Vbd is the measured

breakdown voltage, for the first and the second of the 75-µm-pixel-pitch SiPMs 1375CS.
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Fig. 2.20: Estimator of the optimal bias voltage R in Eq. 2.8 for the detector 13360-50CS. An analog behavior is

displayed for the other sensors. Note that no maximum can be fairly identified for the function R in this

case.

Fig. 2.21: Peak-to-peak-distance values ∆pp recorded for different choices of the gate length T . Note that the

dependence of the peak-to-peak distance on the gate is proportional to the temporal evolution of the

integrated signal ∼ 1− exp(1− t/τ), where τ is the time constant of the exponential decay.
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2.2.5 Evaluation of DCR

By exploiting the methods outlined in the introduction to this chapter, we estimated the DCR νdc for our

detectors. We measured the frequencies of one- and two-photon signals for different bias voltages, thus

retrieving Stair Case plots like that shown in Fig. (2.12). An example for the 1350CS model at the optimal

bias voltage is shown in Fig. (2.22) [77]. The Stair Case plot is recorded by sampling and integrating

online the signal from the PSAU through the digitizer. The measurements of the DCRs for our sensors set

at their optimal bias voltages are shown in Tab. (2.1).

Sensor DCR [kHz] V
(opt)
bias [V] Gain [dB] Gate [ns] Temperature [◦C]

1350CS - 1st 540 54,79 40 304 25,0

1350CS - 2nd 298 55,07 40 304 26,6

1375CS - 1st 185 54,57 40 352 25,8

1375CS - 2nd 130 54,57 40 352 27,6

Tab. 2.1: DCR inferred from the StairCase plot. As expected, for detectors with a high number of cells the DCR is

larger. Note that the Gain here is referred to the amplifier in the PSAU unit.

Fig. 2.22: A Stair Case plot for a 1350CS model, performed at room temperature with no impinging light. ν1 and

ν2 are the DCRs related to a one- and two-photon signal amplitude. The ratio ν2/ν1 yields an empiric

estimation of the cross-talk probability ε .
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2.2.6 Evaluation of Afterpulsing

The probability of an afterpulse event is easy to compute from experimental data because, due to the very

nature of this effect, it is possible to select an interval over the integration gate where only dark-counts and

afterpulses can occur, i.e. after that the light signal is completely extinguished. If τrec is the recovery time

of an avalanche triggered by a light event in a single pixel, the fraction of charge carried by the pulse at a

given time is proportional to the triggering probability in Eq. (2.2) according to [66, 60, 78]

q(t)

q0
= 1− exp

(
− t

τrec

)
.

These carriers are likely to be trapped in the high-field region and then re-emitted, starting a secondary

avalanche in the same pixel. In particular, each secondary avalanche is independent of the others, so that

the captured charges are released according to an exponential decay [65]

1

τAP

exp

(
− t

τAP

)

where τAP is the time constant of the process, which strongly depends on temperature [78] and, also, on

the energy level of the traps. Then, if we correctly choose the integration gate T as explained before, we

can define the afterpulse probability as

PAP =

∫ T
0 dt

[
1− exp

(
− t

τrec

)]
N̄AP
τAP

exp
(
− t

τAP

)

∫ T
0 dt

[
1− exp

(
− t

τrec

)][
N̄AP
τAP

exp
(
− t

τAP

)
+ N̄DC

τDC
exp
(
− t

τDC

)] (2.9)

where N̄AP and N̄DC are the mean number of cells fired respectively because of an afterpulse or a dark-count

event over T . For large T , Eq. (2.9) reduces to

PAP ∼ N̄APτAP(τDC + τrec)

N̄APτAP(τDC + τrec)+ N̄DCτDC(τAP + τrec)
. (2.10)

For what concerns the dark counts, N̄DC ∼ νdcT .

The mean number of afterpulse events can be retrieved from experimental data. Our strategy is based

on the method outlined in [80]. It basically consists in dividing the integration intervals ∆t1 ≡ T1 −T0,

∆t2 ≡ T2 −T1 and ∆t3 ≡ T3 −T2 with T0 < T1 < T2 < T3, as shown in Fig. (2.23).

Fig. 2.23: Scan of a large integration gate for a SiPM output signal. The whole gate is partitioned in three smaller

intervals. On the left (dark gridlines), ∆t1 is set before the beginning of the light signal, which is fully

integrated in ∆t2, between the dark and the red gridline. On the right (red gridlines), in the interval ∆t3 one

can find either dark counts or afterpulses.
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Note that ∆t2 is the interval over which the full light-event signal is integrated, so that the events

occurring in ∆t1 can just be dark counts while the events occurring in ∆t3 are either dark counts or

afterpulses. OCT events are all supposed to be integrated together with the signal over the interval ∆t2. We

expect that, on the average, the charge integrated over ∆t3 is larger than that over ∆t1 due to the occurrence

of afterpulses triggered by the light-event signal. Thus, the quantity

N̄AP ≡ Q̄(∆t3)− Q̄(∆t1)

∆pp

, (2.11)

where Q̄(∆t) is the mean value of the total sum of the charges integrated over a gate ∆t, provides an

estimation of the mean number of afterpulses over the interval ∆t3. The averages of the integrated charges

Q̄(∆t) were retrieved by assuming a Gaussian distribution for them, which is guaranteed by the central

limit theorem. The measurement of Q(∆t3) was made by collecting the signals from our pulsed laser

and integrating them over the gate ∆t3, whereas the measurement of Q(∆t1) was performed as a pure

dark-count measurement, i.e. in the absence of impinging light (see the previous section for details). The

experimental distributions of Q(∆t1) and Q(∆t3) are shown in Fig. (2.24).

Fig. 2.24: Distributions of the sum Q of 300 charges integrated over ∆t1 (dark rhombuses + line) and over ∆t3 (red

circles + line). Rhombuses and circles: experimental data. Lines: Gaussian fit. The distributions are well

approximated with Gaussians because here the central limit theorem holds. The difference of the mean

values of the Gaussian fits normalized to the peak-to-peak distance yields the estimation for the mean value

of the number of afterpulses in Eq. (2.11).
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Being the statistics of both, the laser impinging light and the dark counts, Poissonian, the time-of-arrival

distribution of light and of dark-count signals is exponential. But then the mean number of afterpulses in

Eq. (2.11) may also be retrieved from

N̄AP = N̄totPL(∆t2)[1−PDC(∆t3)]PAP(∆t3)

= N̄tote
− ∆t2

τrec [1− e
− ∆t3

τDC ]PAP(∆t3)
(2.12)

where N̄tot is the total mean value of detected photons, PL, PDC and PAP are the time-of-arrival distribution

for respectively light, dark-count and afterpulse events and τrec and τDC are the corresponding time

constants. Eq. (2.12) just states that the probability for an afterpulse event to occur in ∆t3 is given by the

combination of three independent contribution, i.e. the probability that a light signal is detected in ∆t2
(PL(∆t1)), the probability that a dark count does not fire the same cell as the afterpulse in ∆t3 (PDC(∆t3))
and the probability that a carrier of the primary avalanche is trapped during ∆t3 (PAP(∆t3)). The time

constants can be retrieved from the saturation of the peak-to-peak distance as a function of the integration

gate T for light-event signals (τrec) and dark counts (τDC). Therefore, the afterpulse probability can be

estimated from Eqs. (2.11) and (2.12) as

PAP =
N̄APe

∆t2
τrec

N̄tot [1− e
− ∆t3

τDC ]

. (2.13)

For our SiPMs, we found that PAP = 0.07%± 0.01% ≪ 1%. Therefore, hereon we will neglect the

contribution of afterpulse events.

2.2.7 Evaluation of OCT

The cross-talk probability ε is the parameter we are most interested in, since, as mentioned in the

introduction to this chapter, OCT is the most detrimental drawback for Quantum Optics applications.

Therefore, this is the parameter tipping the balance in favor of one of the two types of SiPMs, the 50-µm

or the 75-µm-pixel-pitch. In particular, we expect the latter, endowed with a larger fill factor, to be more

deeply affected by OCT. If on the contrary they were found to share the same cross-talk probability up

to few percentage points, the 75-µm-pixel-pitch sensors should be preferable due to their larger PDE. A

simple analysis from the Stair Case plot and from Eq. (2.3) allows to retrieve an estimation of OCT at

different bias voltages. We report in Fig. 2.25 the dependence of the cross-talk probability on the bias

voltage for both our types of sensors. As expected, the 1375CS model is affected by OCT more than the

1350CS model. In particular, at the optimal bias voltage the cross-talk probability for the 1375CS model is

three times larger. Such experimental evidence led us to choose the 1350CS model to measure nonclassical

states of light. Hereon we will characterize and employ the two 50-µm-pixel-pitch detectors only.

2.2.8 Evaluation of pile up

Another advantage of the model 1350CS with respect to the 1375CS is the fact that the large number of

cells (667 against 285) makes pile up effects completely negligible for our photon-number working regime,

i.e. few photons per pulse, up to 〈n〉 ∼ 10 (mesoscopic regime). If we consider the effects of losses and

pile up only, Eq. (2.6) holds and, being N ≪ ηn, we find that 〈m〉 ∼ η〈n〉.

2.3 A model for photodetection via Multi-Pixel Photon Counters

We are now ready to model the detection process of our SiPM, taking into account every relevant drawback.

In a few words, the model consists in a generalization of the POVM introduced in Eq. (1.158). Following
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Fig. 2.25: Dependence of the cross-talk probability ε on the overvoltage Vov =Vbias −Vbd , measured at room tempera-

ture with no impinging light for the 1350CS (top) and the 1375CS (bottom) model. The red box highlights

the optimal-bias-voltage point V
(opt)
ov , which are 2.49 and 4.18 V respectively. We recall that here we set the

optimal bias voltage to the value reported by the manufacturer. The PDE as expected from datasheet at the

optimal overvoltage together with the corresponding OCT probability are shown in the box.
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[79] and [81], we describe the detector response as

Π̂(k) =
∞

∑
n=0

M
(k)
n |n〉〈n| (2.14)

where M
(k)
n is the probability to detect k photons when a n-photon Fock state impinges on the device.

Equation (1.158) holds for any phase-independent MPPC. We have to specialize M
(k)
n to our particular

situation by considering the effects that the standard characterization presented above highlighted, i.e. a

non-unit PDE, dark counts and OCT. In such a case, it has been shown [79, 82, 83] that the transformations

M
(k)
n are linear. More explicitly, if Pn is the probability to find the state ρ̂ in the n-th eigenstate of the Fock

basis

Pn ≡ 〈n|ρ̂|n〉
and pk is the probability given by the area of the k-th peak in the pulse-height spectrum

pk ≡ Tr[ρ̂Π̂(k)],

the relation between the two is just given by

pk = M
(k)
n Pn. (2.15)

The probabilities M
(k)
n are elements of a matrix M given by the convolution of the three mentioned

stochastic process. For what concerns the losses, we have already seen in the Introduction that the process

is Bernoullian, so that

pm = ηm
∞

∑
n=m

(
n

m

)
(1−η)n−mPn (2.16)

with mean value and variance of the photoelectron number given by

〈m〉= η〈n〉
〈∆m2〉= η2〈∆n2〉+η(1−η)〈n〉

(2.17)

where η is the PDE of the detector.

The dark-count statistics, as mentioned above, is Poissonian. Therefore, it results in a shift of the mean

value and variance in Eq. (2.17) of a quantity 〈mdc〉= νdcT , i.e.

pm̃ =
m̃

∑
m=0

ηm
∞

∑
n=m

(
n

m

)
(1−η)n−m 〈mdc〉m̃−m

(m̃−m)!
exp(−〈mdc〉)Pn

〈m̃〉= 〈m〉+ 〈mdc〉
〈∆m̃2〉= 〈∆m2〉+ 〈mdc〉.

(2.18)

The OCT effect acts exactly in the opposite sense with respect to the PDE, the latter reducing with a given

success probability η the number of counting photons, the former enhancing it with probability ε [79].

Thus, we are left with a Binomial-like contribution
(

m

n−m

)
εn−m(1− ε)2m−n (2.19)

leading to

pk =
k

∑
m̃=0

(
m̃

k− m̃

)
εk−m̃(1− ε)2m̃−k

m̃

∑
m=0

ηm
∞

∑
n=m

(
n

m

)
(1−η)n−m 〈mdc〉m̃−m

(m̃−m)!
exp(−〈mdc〉)Pn (2.20)
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whose mean value and variance read

〈k〉= (1+ ε)〈m̃〉
〈∆k2〉= (1+ ε)2〈∆m̃2〉+ ε(1− ε)〈m̃〉.

(2.21)

Finally, we have to consider the gain introduced in the amplification stage. This parameter is here assumed

to be a multiplicative factor γ > 1 [81] scaling the photoelectron detection probability in Eq. (2.20) so that

px = γ pk (2.22)

and px < 1. Consequently, the first moment and the variance are rescaled according to γ and γ2 respectively.

2.4 Characterization via detection of classical states of light

Having defined through the standard characterization which are the most important parameters to optimize

SiPMs and having introduced a model accounting for them, we then assessed the performance of these

devices by reconstructing the statistics of classical radiation fields, namely coherent and chaotic light [77].

First of all, we showed that the comprehensive theoretical model leading to Eq. (2.20) fits the experimental

data, so that we can fairly say that the occurrence of the most relevant spurious effects of SiPMs can be

predicted. Secondly, we succeeded in further optimizing these devices for Quantum Optics applications by

consistently reducing the impact of their drawbacks.

2.4.1 Experimental setup and the integration gate issue

As shown in Fig. 2.26, we generated coherent light by exploiting the 523-nm second harmonic of a mode-

locked Nd:YLF laser amplified at 500 Hz (High Q Laser) and the multi-mode thermal light by passing the

same laser beam through a rotating ground-glass disk. In this second scheme, we collected nearly one

single coherence area with an iris located at the distance of 1 m from the disk [84]. Each light source

was equally divided through a half-wave plate followed by a polarizing cube beam splitter (PBS). At the

outputs of the PBS, the two SiPMs were positioned. Light was delivered to the detectors by multi-mode

optical fibers with 600-µm-core-diameter. As previously explained, our detectors measure the intensity of

the incoming field at the single-photon level. From one measurement to another we changed the mean

number of photons with a variable neutral density filter wheel attenuating the light intensity from 0 to

2 optical densities. For each intensity, we recorded the response to ∼ 120,000 consecutive laser pulses.

In general, the data acquisition system was the same as that described for the standard characterization.

In particular, we recall that the integration of the waveform with this apparatus still has to be done in

post-processing.

First of all, our work focused on the effects of the integration-gate length on the reconstruction of light

statistics. We investigated the effect of integrating the signal waveform over a gate smaller than the duration

of the signal on the reconstructed light distribution. If the information on the incoming light intensity is

only contained in the integral of the whole signal, then we have no hope that, integrating over a smaller

gate, the detected light statistics may be correctly retrieved. In particular, we expect that in such a case the

processed data are not superimposed on our theoretical predictions, as if the integration over a smaller

gate were equivalent to a source of noise that our model does not take into account. If, on the contrary, the

information on the detected photon-number is proportional to the signal-peak height, then we expect that a

reduction of the integration gate does not compromise the reconstruction of the statistics. Not only, we dare

think that the final results are improved by this operation since dark-count and OCT-D-pulses, typically

occurring during the evolution of the signal, can be rejected. This hypothesis is deeply connected to the

SiPM electronic circuit. Indeed, as mentioned in Sect. 2.1.1, a SiPM output waveform is composed of a
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Fig. 2.26: Experimental setup for the measurement of Poissonian and multi-mode thermal states.

rising edge followed by an exponential decay [78]. In particular, Figs. 2.4 and 2.5 show that the rising edge

lasts few nanoseconds, which is a negligible time compared to the duration of the whole signal (> 100 ns).

Thus, the integral of the waveform w(t) is approximately the same as the integral of the exponential decay,

i.e. ∫ T

0
w(t)dt ∼ A

∫ T

0
exp(−t/τ)dt = Aτ[1− exp(−T/τ)] (2.23)

where T is the integration gate, A is a factor mostly depending on the probability that the avalanches

quench and on the number of fired cells, τ is the time constant of the decay, depending on the junction

capacitances and on the resistances of the fired cells. The integration of the whole waveform ideally

requires to take the limit T → ∞ for Eq. (2.23), so that

∫ ∞

0
w(t)dt ∼ Aτ. (2.24)

However, the signal-peak height is none other than w(0) = A. Thus, the only assumption that the output

waveform can be modeled with an exponential decay leads directly to
∫ ∞

0 w(t)dt ∝ w(0), i.e. the information

collected by integrating the whole waveform in the absence of noise is proportional to the information

carried by the peak and the proportionality constant, which is τ , does not depend on the incident light, but

just on specific electronic parameters of the SiPM.

Motivated by these considerations, we plotted the signal-to-noise ratio S/N given by a multi-mode thermal

state with mean detected-photon-number 〈k〉 ∼ 2. The S/N is here defined as the ratio between the mean

value of the integrated 1-photon peak and its variance. As shown in Fig. 2.27, the signal can be considered

already extincted at ∼ 150 ns. Nevertheless, we kept considering the gate Tmax = 350 ns found through

the standard characterization as a reference to be sure to compare other gate choices with the integration

of the full waveform. We also note that similar values of the S/N are achieved for small gates as T ∼ 50

ns and long gates as T ∼ 350 ns. The pulse-height spectra we retrieved with this two different choices

of the gates are compared in Fig. 2.28, where xout ≡ γk. Two important considerations can be made

from the inspection of this histogram. First, the peak resolution is better for the longer gate. This is a

consequence of the larger impact that the integration of a noisy signal over shorter gates has on the derived

number of photons. Second, we have to note that the statistics inferred from the histograms are consistently

different from each other, which means either that the 50-ns-gate histogram is completely wrong, implying

that we should have integrated the whole waveform, or that the 350-ns-gate histogram is deeply affected

by correlated noise. We will prove in the following that the latter is the case. The possibility that the



2.4. Characterization via detection of classical states of light 83

Fig. 2.27: S/N for a multi-mode thermal state as a function of the integration gate T .

Fig. 2.28: Normalized pulse-height-spectra for a multi-mode thermal state acquired with the digitizer and then

integrated over different gate widths. Black: 50-ns gate; red: 350-ns gate.
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Fig. 2.29: We show the rise time of both outputs for a 1-photoelectron signal from a 50-µm2-pixel-size SiPM. The

high gain output has 6 ns rise time, whereas the low gain output has 1.3 ns.

integration of the whole waveform is not needed to retrieve the number of detected photons, as long as

the same information is provided by recording the peak heights, stimulated us to implement a low-noise

shaping amplifier instead of the one embedded in the PSAU. The card of such amplifier has one input and

two outputs. The gain of one of the outputs is 34 dB, while the gain of the other is equal to 12 dB. We

employed just the high gain output. In Fig. 2.29 we show the two outputs of the amplifier, corresponding

to a 1-detected-photon input signal from our SiPMs. The yellow line is the high gain output. This device,

endowed with a 6-ns-long rise time, can shape the pulse by widening it so that the peak can be fairly

sampled by the digitizer and discriminated shot-by-shot. Here we employed a faster digitizer, so that the

peak-height could be determined with higher accuracy. In particular, we used a CAEN DT5730 digitizer

sampling at 500 MS/s, twice as the previous one. As shown in Fig. 2.30, our amplifier was used in a sort

of peak-and-hold mode. It may be counterintuitive if Figs. 2.5 and 2.30 are compared since the peak in the

latter is wider. However, exactly for this reason, the wider output of the amplifier can be sampled with a

larger number of points, also thanks to the faster digitizer.

2.4.2 A model for the time evolution of the OCT probability

Inspired by the model for afterpulses in [65] and by the experimental results on the OCT-D, we elaborated

a model for the time evolution of OCT probability given an integration gate T . Our aim here is to find

a theoretical and experimental proof for the search of an optimal integration gate by analyzing how it

influences the OCT probability.

The probability density function related to OCT-D is an exponential distribution, i.e.

pdct(t) =
1

τdct

exp

(
− t

τdct

)
(2.25)
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Fig. 2.30: A single-shot detector signal, acquired with the peak-and-hold circuit, is indicated as a black dashed curve,

joining the sampled points (blue dots). The red arrow indicates that in this case the height of the peak was

extracted shot-by-shot.

where τdct is the specific time constant for a OCT-D event. Then, the infinitesimal OCT-D probability

reads

dP = p(t)dt (2.26)

which, integrated over a given gate T , yields

P(T ) = 1− exp

(
− T

τdct

)
. (2.27)

Equation (2.27) gives the probability of integrating an OCT-D signal when a light event is integrated over

a gate T . If we want to describe the probability that a generic OCT pulse affects the integration of a single

detected-light waveform, we have also to consider the probability ε0 that secondary photons trigger an

avalanche in a neighbour cell, i.e. an OCT-P event, and the probability that secondary photons effectively

reach farther cells εdct. Then, we are left with the following OCT probability

ε(T ) = ε0 + εdct

[
1− exp

(
− T

τdct

)]
(2.28)

since the OCT-P events are generally not correlated with the OCT-D events. This last assumption is not

true only if the latter are generated by the former, but the probability of an OCT-D signal generated by

an OCT-P signal is negligible compared to ε0 and εdct(T ). The same can be extended to OCT-D signals

generated by OCT-D signals. However, we are not allowed to keep such assumptions for OCT-D events

triggered by dark counts, especially if the gate is longer than the detected-light signal (T > 150 ns).

Therefore, they should be kept into account. By estimating the mean value of dark counts as 〈mdc〉 ∼ νdcT ,

where νdc is the dark-count rate, and indicating as εdc the generic probability that a dark-count photon

triggers an OCT event, we find that the OCT probability over an integration gate T reads

ε(T ) = ε0 + εdct

[
1− exp

(
− T

τdct

)]
+ εdcνdcT. (2.29)
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We experimentally tested this simple model by counting the OCT events in a set of data acquired in the case

of coherent light with mean photon number ∼ 1.2. In Fig. 2.31 we plotted our experimental data. We see

that they are superimposed to Eq. (2.29) with the following fitting parameters: ε0 = 0.016±0.005, εdct =
0.022±005, τdct = (31±5) ns, εdc = 0.038±0.007 and νdc = (562±49) kHz. Note that by integrating

over a 350-ns gate we retrieve the expected cross-talk probability for these detectors ε(350ns)∼ 0.045.

Both the overall OCT probability and the dark-count rate are compatible with the typical values given by

the manufacturer and with our measurements, reported in Tab. (2.1).

Fig. 2.31: Cross-talk probability as a function of the length of the gate for detected-photon mean value ∼ 1.2. Dots:

experimental data; red curve: theoretical fit from Eq. (2.29).

2.4.3 Results

Fano factor

As we recalled in the first chapter, the Fano factor can be used to assess a sufficient but not necessary

condition for nonclassicality. For the same reason, it is also a necessary and sufficient criterion to

discriminate between Poissonian and super-Poissonian statistics. In this sense, the first and second

moments of a given light distribution are the simplest parameter that we need to check the reliability of

SiPMs in characterizing states of light. From the model of light detection described above, we find that the

Fano factor is a linear function of the detected-photon mean value 〈xout〉, i.e. [81]

F(xout)≡
〈∆x2

out〉
〈xout〉

=
Q(m̃)

〈m̃〉 〈xout〉+ γ
1+3ε

1+ ε
(2.30)
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Fig. 2.32: Fano factor for Poissonian statistics as a function of the mean output. Different colors are related to different

integration-gate widths: black to 350-ns gate, red to 100-ns gate, blue to 70-ns gate, and cyan to 50-ns gate.

Dots: experimental data; lines: fitting linear curves, where ε is the only fitting parameter.

where Q(m̃)≡ F(m̃)−1 is the Mandel factor [85] for the detected photons.

In the case of a Poissonian photon-number distribution, we have 〈∆n2〉= 〈n〉, implying that

F(m̃)≡ 〈∆m̃2〉
〈m̃〉 =

=
〈∆m2〉+ 〈mdc〉
〈m〉+ 〈mdc〉

=

=
η2〈∆n2〉+η(1−η)〈n〉+ 〈m̃dc〉

η〈n〉+ 〈m̃dc〉
=

=
η2〈n〉+η(1−η)〈n〉+ 〈m̃dc〉

η〈n〉+ 〈m̃dc〉
=

= 1

so that Q(m̃) = 0 and the Fano factor in Eq. (2.30) reads

F(xout) = γ
1+3ε

1+ ε
(2.31)

i.e. constant with respect to the output signal. We show in Fig. (2.32) the Fano factors retrieved from

the first moments of the detected distributions. They are plotted as functions of the mean value of the

output and fitted with Eq. (2.31), where ε is the only fitting parameter while γ is fixed. In particular,

the value of γ is estimated independently, since it is proportional to the peak-to-peak distance in the

pulse-height-spectrum and thus, by modeling each peak of the histogram with a Gaussian distribution (see

[81]), it is easily determined. All the data presented in the figure are derived by the same dataset, acquired
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and post-processed as previously explained. The different colors correspond to different integration gates,

as outlined in the caption. The retrieved fitting parameters are shown in Table (2.2). Note that the constant

behavior predicted by Eq. (2.31) is well supported by the experimental data. Moreover, we see that the

Fano factor value seems to increase with the gate width. Flagrant is the case of the 350-nm gate. However,

having fixed γ , the Fano factor, according to this model, depends on the OCT probability only and, in

particular, is a monotonous growing function of ε . We conclude that, as expected from the simple model

outlined above, the OCT increases with the gate width. However, note that other factors could influence

the output statistics, e.g. the stability of the source or the thermal gradient affecting the sensors. Moreover,

the offline integration process itself may be affected by errors. This could be the reason why we see an

anomalous trend for the estimated ε in Table (2.2) at T = 70 ns and 100 ns.

Gate Width [ns] ε CI(ε) χ2
ν

350 0.0480 (0.0467, 0.0494) 2.34

100 0.0370 (0.0356,0.0383) 0.68

70 0.0374 (0.0359, 0.0390) 0.60

50 0.0351 (0.0336, 0.0366) 0.75

Tab. 2.2: The values of the fitting parameter ε in Eq. (2.31) for different choices of the gate width are listed in the

case of coherent light. The symbol CI indicates the 95% confidence interval, whereas in the last column χ2
ν

stands for the χ2 per degree of freedom.

Fig. 2.33: Fano factor for multi-mode thermal statistics as a function of the mean output. Different colors are related

to different integration-gate widths: black to 350-ns gate, red to 100-ns gate, blue to 70-ns gate and cyan to

50-ns gate. Dots: experimental data; lines: fitting curves where the fitting parameters are 〈xdc〉 and µ . The

OCT probability ε is fixed from the plots in Fig. (2.32).

In the case of pseudo-thermal light, the distribution is multi-mode, with µ equally populated modes.
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For this radiation field, the Fano factor reduces to [81]

F(xout) =
1

µ

(
1− 〈xdc〉

〈xout〉

)2

〈xout〉+ γ
1+3ε

1+ ε
(2.32)

where 〈xdc〉 ≡ γ〈mdc〉 is the mean dark-count photon number. Note that in this case the Fano factor is a

rational polynomial function of the output mean value whose minimum is given by the Fano factor for

coherent input light in Eq. (2.31). We used Eq. (2.32) to fit the experimental data plotted in Fig. (2.33).

Again, the amplification factor γ was retrieved independently with the same method as before. Here we

Gate Width [ns] 〈xdc〉 CI(〈xdc〉) DCR[kHz] µ CI(µ)

350 0.0563 (0.0544, 0.0582) 161±11 1.2234 (1.2225, 1.2243)

100 0.0187 (0.0168, 0.0206) 187±38 1.2234 (1.2225, 1.2243)

70 0.0086 (0.0065, 0.0107) 123±60 1.2234 (1.2225, 1.2243)

50 0.0080 (0.0078, 0.0082) 160±8 1.2234 (1.2225, 1.2243)

Tab. 2.3: The values of the fitting parameter 〈xdc〉 in Eq. (2.32) for different choices of the gate width are listed in the

case of multi-mode thermal light. The symbol CI indicates the 95% confidence interval.

also fixed the OCT probability ε by using for each choice of the gate width (50 ns, 70 ns, 100 ns, and

350 ns) the values obtained for coherent light. Moreover, given that the different sets of data share the

same parameters µ and 〈xout〉, for each gate width we performed a common fitting procedure, i.e. we fixed

χ2
ν = 1 and assumed a linear scaling of the mean value of dark counts with the gate width. Finally, being

the detected light the same for every choice of the gates, we assumed that they shared the same number

of modes. Our results are listed in Table (2.3). As we can infer from the plot in Fig. 2.33, smaller Fano

factors correspond to larger integration gates at fixed 〈xout〉. However, by inspecting Eq. (2.32) we see

that we are not allowed to guess that a smaller OCT probability follows, as in the previous case, because

only the minimum of F(xout) depends on ε . For 〈xout〉> 〈xdc〉 the growth of the function is determined

by the mean value of dark counts 〈xdc〉 which, in particular, reduces the Fano factor. We could say that it

suppresses the thermal autocorrelations. As confirmed by the values in Table (2.3) and as one could expect,

the mean values of dark counts 〈xdc〉 are higher for larger gate widths as the integration is likely to collect

more dark-count pulses.

Statistics

Now we deal with the reconstruction of the whole photon-number distribution of the input radiation

fields, which is of course more informative than its first two moments. Furthermore, the knowledge of the

detected-light statistics is all one needs in many applications, such as some cases of state-preparation for

Quantum Key Distribution [86] and Quantum Metrology [87]. Having noted that reducing the integration

gate width seems promising for the rejection of spurious events, here we consider a 100-ns and a 50-ns

gate. We have now reached the first crucial point of this analysis: if the detected-light statistics will be

reconstructed in accordance with the theoretical prediction despite having integrated over small gates,

we will have demonstrated a posteriori that the information collected by integrating the whole output

waveform is preserved by signal peak-height, as explained above.

In the case of Poissonian light, the detected-photon-number statistics is shown in Fig. 2.34 on a logarithmic

scale. The mean value of the measured light was roughly 〈k〉= 1.3 for both. The experimental data are

shown as gray columns with black error bars, while the triangles and the dots are two different fitting

theoretical curves. The blue triangles represent the photoelectron probability distribution in the absence

of OCT pm̃ in Eq. (2.18), where the photon-number distribution Pn is Poissonian (see Eq. (1.108) with

|α |2 = 〈n〉), and pm̃ is itself Poissonian since the convolution of Poissonian distributions is still Poissonian.
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Thus

p
(coh)
m̃ =

〈m̃〉m̃

m̃!
e−〈m̃〉 (2.33)

where the superscript indicates the input photon-number statistics. The magenta dots provide the theoretical

curve in the presence of OCT, which plots Eq. (2.20). If we replace there Pn with the Poissonian photon-

number distribution, we are left with the following expression [81]

p
(coh)
k = e−〈m̃〉(1− ε−k)εk sinc(kπ) 2F2

(
1,−k;

1− k

2
,

2− k

2
;−1− ε2〈m̃〉

4ε

)
(2.34)

where pFq(a1, ...,ap;b1, ...,bq;x)≡ ∑
∞
k=0 ckxk is the generalized hypergeometric function, which means

that the ratio between consecutive coefficients of the series are given by the ratio between polynomial

functions of k. Again, the values of the OCT probability were fixed from the results in Table (2.2). By a

quick comparison of the parameter χ2
ν estimating the fit in the caption of Fig. 2.34, it is immediate to see

that the model including the OCT effect better reproduces the experimental data. Moreover, a comparison

between the two panels reveals that the different choice for the integration gate does not appreciably affect

the reconstructed statistics.

Fig. 2.34: Reconstructed photon-number distribution P(k) in the case of coherent light for two choices of the gates:

100 ns in panel (a) and 50 ns in panel (b). Gray columns + black error bars: experimental data; magenta dots:

theoretical fitting curves from the model comprehensive of OCT in Eq. (2.20); blue triangles: theoretical

curves in the absence of cross talk (Eq. (2.18)). The values of the χ2
ν factor are respectively 34.47 and 28.02

in the absence of OCT and 25.19 and 23.07 in the presence of OCT.

Again, we repeated the same analysis for multi-mode thermal light. The detected-photon-number dis-

tribution P(k) was plotted in Fig. 2.35 with 〈k〉= 1.3 for both the choices of gate width. The model in

the absence of OCT (blue triangles) is given by Eq. (2.18) in which the photon-number distribution Pn

is multi-mode thermal (see Eq. (1.114)) with N = 〈n〉. As in the previous case, the effect of losses is a

rescaling of the mean value, while the convolution with the dark-count Poissonian statistics just shifts the

mean value and the variance of a quantity 〈mdc〉. The output statistics is the convolution of multi-mode

thermal and a Poissonian distribution. In the presence of OCT (magenta dots), the detected-photon-number

distribution is more complicated. By inspecting Eq. (2.20), one finds [81]

p
(th)
k = ek(1− ε−k)

(
1+

〈m̃〉
µ(ε +1)

)−µ

3F2

(
1,−k,µ;

1− k

2
,

2− k

2
;

(ε −1)2〈m̃〉
4ε[µ(ε +1)+ 〈m̃〉]

)
. (2.35)
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Note that the magenta dots in Fig. 2.35 plot Eq. (2.35) in the absence of dark counts, i.e. we replaced m̃

with m. We decided to neglect this contribution as the values of 〈xdc〉 retrieved in Table (2.3) are small

compared to 〈xout〉.

Fig. 2.35: Reconstructed photon-number distribution P(k) in the case of multi-mode thermal light for two choices

of the gates: 100 ns in panel (a) and 50 ns in panel (b). Gray columns + black error bars: experimental

data; magenta dots: theoretical fitting curves from the model comprehensive of OCT in Eq. (2.20); blue

triangles: theoretical curves in the absence of cross talk (Eq. (2.18)). In the presence of OCT effect, the

values of the number of modes are respectively µ = 1.5148±0.5387 and µ = 1.4790±0.5201, while the

corresponding χ2
ν per degree of freedom is 14.24 in (a) and 14.79 in (b). In the absence of OCT, we found

µ = 1.3972±0.0113 in panel (a) and µ = 1.3733±0.0113 in panel (b), while the corresponding χ2
ν per

degree of freedom is 10.85 in (a) and 11.91 in (b). The contribution of dark counts in the theoretical fitting

curves was here neglected.

The results in Fig. 2.35 deserve at least two important comments. Firstly, we remark that the difference

between the two models in this case seems negligible and the impression is confirmed by the inspection of

the χ2
ν factors (see the caption of the figure). This is due to the very nature of the thermal distribution and

of the OCT as correlated noise. The probability that an m-detected-photons pulse produces s OCT events

is binomial, i.e.

poct(s|m) =

(
m

s

)
εs(1− ε)m−s =

(
m

s

)(
ε

1− ε

)s

(1− ε)m. (2.36)

For what concerns our detected-photon range (m≤ 15) and the typical values of ε (< 1−ε), the conditional

probabilities poct(s > 1|m) are all negligible with respect to poct(s = 1|m) = mε(1− ε)m−1. This function

of m is monotonous and growing up to mmax =− ln−1(1−ε). Thus, if we assume ε < 0.04 (see Table (2.2)

keeping in mind which gate widths we are considering here), then the stationary point is attained for

mmax = 24 detected photons, i.e. far from the explored range. For s > 1, it is easy to see that mmax is

even higher. Therefore, up to m = 15, the probability of triggering a secondary avalanche is surely a

monotonous growing function of m. However, a multi-mode thermal distribution with a small number of

modes (here µ < 2, see the caption of the figure) has the maximum around the 0-peak, while the height

of the subsequent peaks drops quasi-exponentially. Thus, the OCT and the thermal distributions have an

opposite growth with respect to m. In other words, an OCT event is most likely to be detected when the

probability for the same event to be triggered is almost negligible. A thermal distribution kills the OCT at

the utmost of its power. This is why the difference between the two models in this case is damped.

A second comment concerns the quality of the fit. Apparently the peaks corresponding to the largest

detected-photon numbers are not matched by the theory. Notwithstanding, this is an illusion due to the

logarithmic scale. Indeed, for the same reason, we see that the error bars seem to grow with k, too. On the
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contrary, the absolute values are similar and almost negligible (∼ 10−4).

Therefore, we can conclude again that the reduction of the integration-gate width has not affected the

reconstruction of the statistics. On the other hand, due to the effect described above, here it is not possible

to see a corresponding reduction of OCT.

Cross-correlations

The determination of the cross-correlations between the two parties of bipartite systems can highlight the

fluctuations of photon numbers far beyond the direct reconstruction of the photon-number distribution. It

should be enough to recall that in the Introduction we discriminated between thermal and super-thermal

statistics by means of a cross correlation-coefficient CSH (Eq. (1.58)) following [27]. Moreover, there

are many and important applications based on correlations, such as imaging [88, 89] and generation of

conditional states [90, 91].

Here we want to test the capability of SiPMs in properly revealing the presence of classical cross-

correlations. The super-Poissonian light we employ is a pseudo-thermal field divided at a balanced beam

splitter. Again, we compare the results from different choices of the integration gate. We use as a figure

of merit the cross-correlation factor defined in Eq. (1.164). In the case of an input multi-mode thermal

distribution, the expression of the cross-correlation coefficient for detected photons reduces to [41, 42]

Γ =

[(
1+

µ1

〈m1〉

)(
1+

µ2

〈m2〉

)]− 1
2

. (2.37)

Equation (2.37) is retrieved in the absence of OCT. By exploiting the previously outlined model for

photodetection, in particular Eq. (2.21), we can express the correlation parameter as a function of k1 and

k2, the numbers of detected photons affected by dark counts and OCT, i.e. our experimental data. This

operation yields

Γ =

[(
1+

(1+ ε1)µ1

〈k1〉− (1+ ε1)〈mdc,1〉

)(
1+

(1+ ε2)µ2

〈k2〉− (1+ ε2)〈mdc,2〉

)]− 1
2

. (2.38)

We used this model to fit the reconstructed shot-by-shot correlation coefficient in Fig. 2.36. Again, the

chosen integration-gate width were 350 ns (black dots), 100 ns (red dots), 70 ns (blue dots), and 50 ns

(cyan dots). We proved above that the information on the detected-photon number is collected by the

peak-height as well as by the integral of the whole signal waveform. Therefore, the only effect of a long

integration gate is a noisier measurement. Provided this, it is immediately evident from the plot that

OCT and dark counts decrease the amount of cross-correlation, which is reasonable because such effects

independently occur in the two detectors. Note that the OCT probability and the mean value of dark counts

were fixed from Tables (2.2) and (2.3). Thus, the only fitting parameter was the number of modes µ , which

was assumed to be the same for the two outputs of the beam splitter. Our results are listed in Table (2.4).

Actually, the number of modes does not depend on the integration gate, and this is why in the analysis of

the Fano factor we determined it once for all by setting χ2
ν = 1. Here we employed a different procedure

which allows to have a glance on the quality of the fits. Note that the best fit is reached in the case T = 50

ns, where the estimated value of µ is comparable to the one found in Table (2.3). Moreover, we remark

that the latter is contained in the confidence interval of the former.

Acquisition with the peak-and-hold circuit

Motivated by the results described in the previous sections, we employed the low-noise shaping amplifier

mentioned above and sampled the output signal peaks with the faster digitizer. Such a system is effectively

a primitive peak-and-hold circuit. Note that in principle this system not only allows to get rid of every
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Fig. 2.36: Experimental correlation coefficient Γ (dots + error bars) as a function of the mean detected-photon number

〈k〉 for pseudo-thermal light fitted by Eq. (2.38) (lines). Different colors are related to different gate widths,

namely 350 ns (black), 100 ns (red), 70 ns (blue), and 50 ns (cyan). The fitting parameter is the number

of modes µ , while ε is fixed from the values in Table (2.2) and 〈mdc〉 from the values in Table (2.3). The

values of fitting parameter obtained in the four cases are shown in Table (2.4).

Gate Width [ns] µ CI(µ) χ2
ν

350 1.3015 (1.2876, 1.3154) 0.28

100 1.2647 (1.2543, 1.2750) 0.34

70 1.2473 (1.2370, 1.2576) 0.30

50 1.2331 (1.2230, 1.2432) 0.38

Tab. 2.4: Values of the fitting parameter µ for the correlation coefficient as a function of the gate width in the case of

multi-mode thermal light. The symbol CI indicates the 95% confidence interval.
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source of delayed noise, but also overcomes an issue intrinsic to the choice of a short gate, which is the

accurate control of temporal delays in the delicate setting of the gate.

A pulse-height-spectrum obtained by means of this system for coherent input light is shown in Fig. 2.37.

Note that, thanks to our full digital peak capture procedure, the resulting resolving power is consistently

enhanced. It is worth noting that, at variance with the pulse-height spectra obtained from the integration

of the digitized signals in Fig. 2.28, the peak corresponding to 0 photons in Fig. 2.37 is asymmetric and

its distance from the 1-photon peak is different from the peak-to-peak distance of the spectrum. The

reason for this bias is due to our specific analysis procedure, consisting in evaluating shot-by-shot the

peak-height. Since the maximum of the signal is calculated also in the absence of light, the 0-photon peak

is not centered in 0, but rather translated.

Fig. 2.37: Normalized pulse-height spectrum related to a Poissonian distribution with 〈k〉= 2.56, obtained by means

of the peak-and-hold acquisition system.

The S/N related to Fig. 2.37 is calculated as the ratio between the mean value of the 1-photon peak and

its width. In particular, its value is 13 ± 1.2. We see from Fig. 2.27 that there is a range of integration gates

having larger S/N values. This is probably due to the fact that the acquisition of the peak-height is more

sensitive to the sampling noise than the integral of the waveform. Indeed, in the latter case the errors caused

by the digitization of the signal are averaged in the integration, which cannot happen in a procedure where

the maximum among a small number of points has to be selected. However, the peak-and-hold circuit

allows for a better reconstruction of the statistical properties since the stochastic effects are essentially

negligible. On the contrary, in the case of an integration over a specific gate width we have shown that

such effects play an important role, modifying the statistical properties of the detected light. In Fig. 2.38

we plotted the detected-photon-number distribution for Poissonian light with different mean values. The

result is remarkable because the theoretical model (blue triangles) which reproduces, with high fidelity, the

experimental data is the cross-talk- and dark-count-free detected-photon-number distribution. Therefore,

this reconstructed distribution does not require the inclusion of the most detrimental non-idealities to

match the theoretical expectations. Such a configuration and such results encouraged us to exploit this new
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Fig. 2.38: Reconstructed distributions P(k) in the case of coherent light acquired with the peak-and-hold circuit. (a)

Coherent light with 〈k〉 = 0.76. (b) Coherent light with 〈k〉 = 2.56. Gray columns + black error bars:

experimental data; blue triangles: theoretical curves in the absence of cross talk. The corresponding χ2
ν per

degree of freedom is 8.31 in (a) and 1.33 in (b).

generation of SiPMs in the Quantum Optics context.



96 2. Characterization of Silicon Photomultipliers for Quantum Optics Experiments



3
Detection of nonclassical states of light

with Silicon Photomultipliers

Having assessed the performance of the new generation of SiPMs for what concerns the reconstruction

of the detected-photon-number distribution and of shot-by-shot correlations and having elaborated an

optimization strategy to reduce their main drawbacks, we tested these devices on the detection of non-

classical states of light [95]. In particular, we focused on multi-mode TWB states in the mesoscopic

regime (see the first chapter for details). Firstly, we determine the analytic expression of the NRF in the

presence of OCT spurious events. Then, we employ this model to fit the experimental data. Moreover,

we performed conditional measurements and analyzed the nonclassicality of the conditional states in

terms of the detected-photon number. We succeeded in revealing the entanglement and the wave-function

collapse, proving that these devices, despite their severe non-idealities, can be employed for Quantum

Optics applications.

3.1 Experimental setup

As mentioned above, here we investigate the reconstruction of the nonclassical properties of TWB states

generated via type-I PDC in quasi-collinear interaction geometry. The experimental setup is shown in

Fig. 3.1. The pumping field is the fourth harmonics of a Nd:YLF laser (4.5-ps pulse duration and 500-Hz

repetition rate), while the nonlinear material was a β -barium-borate (BBO) crystal (BBO2, cut angle

= 46.7 deg, 6 mm long). The generated TWB state was intrinsically multi-mode [39, 51]. Thus, the

photon-number statistics of each of the two parties was described by a multi-mode thermal distribution.

Two portions of the light-cone around frequency degeneracy (523 nm) were spatially and spectrally

filtered by means of two variable irises and two bandpass filters and then delivered to the sensors via two

multi-mode optical fibers (600-µm core diameter). The effective number of independent thermal modes

was larger than 100 [39], so that the photon statistics closely resembled a Poissonian distribution. As

for the characterization of classical states, we performed measurements of the input intensity, which was

modified through a half-wave plate (HWP) followed by a PBS. For each energy value, 105 single shots

were acquired by our SiPMs.

For what concerns the data acquisition system, we tested three different schemes. In particular, we

compared the procedure explained in the previous Section, consisting in signal sampling and offline

integration, with an analogical shot-by-shot integration (see Fig. 3.1). We decided to try also this latter

strategy because the integration over short gates (< 50 ns) of digitized pulses is deeply affected by sampling



98 3. Detection of nonclassical states of light with Silicon Photomultipliers

Fig. 3.1: Experimental setup for the measurement of multi-mode TWB states with SiPMs.

noise. Indeed, the digitizer DT5720 records one point every 4 ns and a section of the output waveform

reconstructed from too few points is not reliable. Therefore, we used an analogical acquisition to fairly

integrate over very short gates (down to 10 ns). This technique was finally compared with the results of the

digital peak-and-hold system described above.

The analogic integration was performed with two synchronous boxcar-gated integrators (Stanford Research

Systems SR250 [76]). They are high-speed NIM modules able to recover fast analog signals. An internal

gate generator allows to set an integration interval, whose width can be chosen in the interval (2 ns - 15 µs).

The delay with respect to the trigger is adjustable as well between few nanoseconds and 100 ms. Gates of

variable widths were selected in advance and centered on the signal peak. The benchmark gate we used to

compare the two different approaches was the shortest useful gate for the digitalization system, i.e. 50 ns.

3.2 Further noise contributions to the noise reduction factor

3.2.1 Quantum efficiency imbalance

We have outlined in the first chapter that one of the major issues in employing the variance of the difference

photocurrent as an entanglement estimator is the imbalance of the quantum efficiency of the two detectors,

which sets a threshold on the number of photons among which nonclassical correlations can be revealed

(Eq 1.167). However, by analyzing the NRF to vary the input light intensity, it is easy to see if our

measurements are affected by this problem and possibly estimate the difference between the quantum

efficiencies. Starting from Eq. (1.180), we can express our estimator of nonclassicality as a function of the

mean photon-number, i.e.

R = 1−2
η1η2

η1 +η2
+

(η1 −η2)
2

η1 +η2
〈n〉 (3.1)

which now can be rewritten as a function of a single experimental variable as Σ ≡ 〈m1 +m2〉/2, so that

R = 1−2
η1η2

η1 +η2
+2

(
η1 −η2

η1 +η2

)2

Σ. (3.2)

Thus, if the contribution of ∆η were relevant, we would expect to find a linear growth of R(Σ). This is not

the case. As shown in Fig. 3.2, for large mean detected-photon numbers the noise reduction factor tends

to an horizontal asymptotic value. This evidence validates R as a reliable estimator for the nonclassical

correlations and allows us to assume η1 ∼ η2 ≡ η . Therefore, the inferior bound in the nonclassicality

criterion based on the NRF is 1−η .
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3.2.2 Optical cross-talk

If we can neglect the imbalance between the quantum efficiencies, surely, accordingly with the results

of our characterization, we cannot do the same for the OCT. As far as we know, a model for the

difference photocurrent operator D̂ in the presence of OCT is still missing, but it can be directly derived in

analogy with the photodetection model presented in the Introduction. The POVM describing the losses in

Eq. (1.158) can be generalized to account for dark counts and cross-talk as follows

Π̂η ,〈mdc〉,ε(k) =
k

∑
m̃=0

(
m̃

k− m̃

)
εk−m̃(1− ε)2m̃−k

m̃

∑
m=0

ηm
∞

∑
n=m

(
n

m

)
(1−η)n−m 〈mdc〉m̃−m

(m̃−m)!
exp(−〈mdc〉)|n〉〈n|.

(3.3)

Note that by computing Tr[ρ̂Π̂η ,〈mdc〉,ε(k)] for a given state ρ̂ with photon-number distribution Pn, one gets

the detected-photon-number distribution in Eq. (2.20). In the next intermediate results, we will neglect dark

counts to highlight the effect of the OCT and the relation with the primitive form of the NRF in Eq. (1.180),

but we will re-introduce it in the final equation. As expected from the moments of the detected-photon

number retrieved above, we get

k̂ = (1+ ε)η n̂

k̂2 = (1+ ε)2[η2n̂2 +η(1−η)n̂]+ ε(1− ε)η n̂.
(3.4)

Here we are interested in the moments of the photocurrent difference. Given the POVM for a single

detector, the generalization of Eq. (1.165) is straightforward, i.e.

Θ̂(d) =
∞

∑
m=0





Π̂η1,〈mdc,1〉,ε1
(k)⊗ Π̂η2,〈mdc,2〉,ε2

(k+d) d > 0

Π̂η1,〈mdc,1〉,ε1
(k)⊗ Π̂η2,〈mdc,2〉,ε2

(k) d = 0

Π̂η1,〈mdc,1〉,ε1
(k+d)⊗ Π̂η2,〈mdc,2〉,ε2

(k) d < 0

(3.5)

and hence, for 〈mdc〉= 0, we have

D̂ =k̂1 − k̂2

D̂2 =
2

∑
j=1

{(1+ ε j)
2[η2

j n̂2
j +η j(1−η j)n̂ j]+ ε j(1− ε j)η jn̂ j}

−2(1+ ε1)(1+ ε2)η1η2〈n̂1n̂2〉.

(3.6)

Now we are ready to compute the variance of the photocurrent difference 〈∆D̂2〉 ≡ 〈D̂2〉−〈D̂〉2 normalized

to the shot-noise 〈k̂1 + k̂2〉 for a TWB state, thus generalizing Eq. (1.180)

R = 1+
1

µ

(〈k1〉−〈k2〉)2

〈k1〉+ 〈k2〉
−2
√

η1η2(1+ ε1)(1+ ε2)

√
〈k1〉〈k2〉

〈k1〉+ 〈k2〉
+

2

∑
j=1

2ε j

1+ ε j

〈k j〉
〈k1〉+ 〈k2〉

. (3.7)

Note that the effect of the OCT consists in a reduction of the correlations, which is evident from the

rescaling of the third term by a factor
√
(1+ ε1)(1+ ε2), and in the widening of the photocurrent difference

distribution by a term proportional to the mean detected-photon numbers. In the presence of dark counts,
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Eq. (3.7) becomes

R = 1+
1

µ

(〈k1〉−〈k2〉)2

〈k1〉+ 〈k2〉

+
2

〈k1〉+ 〈k2〉




2

∑
j=1

ε j

1+ ε j

〈k j〉−

√√√√
2

∏
j=1

(1+ ε j)η j[〈k j〉− (1+ ε j)〈m j,dc〉]




+
1

µ
[(1+ ε1)〈m1,dc〉− (1+ ε2)〈m2,dc〉] ·

[
(1+ ε1)〈m1,dc〉− (1+ ε2)〈m2,dc〉−2

〈k1〉−〈k2〉
〈k1〉+ 〈k2〉

]
.

(3.8)

If 〈m1,dc〉= 〈m2,dc〉= 0 and ε1 = ε2 = 0, we find the expression retrieved in the first chapter and described

in [39]. If instead 〈m1,dc〉= 〈m2,dc〉= 0, ε1 = ε2 ≡ ε and η1 = η2 ≡ η , i.e. perfect balancing without dark

counts, we find the model used in [96]. We will keep the perfect balancing assumption, having corroborated

it above, but we will not neglect the dark-count contribution. Given that η1 = η2 ≡ η , ε1 = ε2 ≡ ε and

〈m1,dc〉= 〈m2,dc〉 ≡ 〈m2,dc〉, Eq. 3.8 reduces to

R = 1−η(1+ ε)

[
1− (1+ ε)〈mdc〉

〈k〉

]
+

2ε

1+ ε
(3.9)

where

〈k〉 ≡ 〈k1〉+ 〈k2〉
2

.

It is worth noting here that the photocurrent difference is broadened also by a term which does not depend

on the mean detected-photon number, i.e. η(1+ ε)2〈mdc〉, related to the number of cross-talk events

triggered by dark counts (1+ε)〈mdc〉. We have shown with the standard characterization that this quantity

is negligible in the presence of light events, but as 〈k〉 → 0 it becomes relevant, to the extent that it can be

used to estimate the OCT, as in Eq. (2.3). This contribution explains the divergent growth of the noise

reduction factor for low-intensity measurements shown in Fig. (3.2), where we used Eq. (3.9) to interpolate

the experimental data.

3.3 Results

3.3.1 Noise reduction factor

As anticipated above, we used the NRF as a test for the detection of the entanglement, being the sub-

Poissonianity condition R< 1 sufficient for nonclassicality. The expression of this estimator in the presence

of losses, dark counts and OCT is derived above (see Eq. (3.8)). Also, we have shown that our detectors

can be assumed to be balanced, i.e. η1 = η2, 〈m1,dc〉= 〈m2,dc〉, ε1 = ε2 ⇒ 〈k1〉= 〈k2〉, so that the NRF

can be safely rewritten as in Eq. (3.9). The measured values of R are plotted in Fig. (3.2) as a function of

〈k〉 ≡ (〈k1〉+ 〈k2〉)/2. Different colors correspond to different gate widths. We remark that the procedure

of shortening the gate is effective for the elimination of delayed noise, being the nonclassicality more

pronounced for shorter gates. This result is consistent with the optimization strategy elaborated for the

characterization of the detectors [77]. On the other hand, we note that, from the comparison between the

digitizer and the boxcar at fixed gate (50 ns), the performance of the former is beaten by the latter, which

is reasonable since we expect that some sampling noise affects the digitalization process. In particular, the

problem is the finite sampling rate of the digitizer, which is not enough to reliably sample the fast output

waveform in correspondence of the signal peak.

On the contrary, the peak-and-hold circuit performance was not as good as expected. We compared this
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Fig. 3.2: Noise reduction factor R as a function of 〈k〉 ≡ (〈k1〉+ 〈k2〉)/2 for different integration gates. Full symbols:

experimental data; lines: theory, provided by Eq. (3.9). The perfect balancing assumption reduces Eq. (3.8)

to the form R = (A+B)/(C+ x), where A and B are related to the non-idealities of the detectors, while C

accounts for errors in the determination of the zero. The value of η determined for data with 10-ns gate

width, which is η = 0.1646±0.0004, was used to fit all the other datasets. As for the OCT probabilities,

we found: ε = 0.07±0.040 (magenta), 0.062±0.002 (blue), 0.0437±0.0008 (green), 0.022±0.002 (red),

0.0228±0.0007 (black). As for the mean dark-count number, we found: 〈mdc〉 = 0.06±0.02 (magenta),

0.028±0.007 (blue), 0.009±0.001 (green), 0.04±0.009 (red), 0.0026±0.0006 (black).

Fig. 3.3: Noise reduction factor R as a function of 〈k〉: peak-and-hold (red) and minimum boxcar gate (10 ns, black).

Full symbols: experimental data; lines: theoretical fit according to Eq. (3.9). The values of the mean

dark-count number retrieved from the fit are 〈mdc〉 ∼ 0 (red) and 0.0026±0.0006 (black). As to the OCT

probability, we got ε = 0.035±0.003(red) and 0.0228±0.0007 (black).
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procedure with the best result from Fig. 3.2, i.e. 10-ns analogic integration. As shown in Fig. 3.3, the

peak-and-hold improves the performance of the digitizer, but it still gives worse results in comparison

with the boxcar-gated integrator. Further improvement of the peak-and-hold acquisition system is still

necessary to assess the limit of this technology.

Finally, note that the interpolation of the NRF allows to provide an estimation of the quantum efficiency.

We found from the fit of the 10-ns case η ∼ 16.5%, which is smaller than the half of the quantum efficiency

declared by the manufacturer at 523 nm (see Fig. 2.16). This flaw is a consequence of the setup being

much more complicated than the one employed for the standard characterization of the detectors. In

particular, there is a number of losses, due either to the reflectivity or to the dissipation of some optical

elements, which should be taken into account. The transmittivity of the interferential filter employed to

select 523-nm wavelength is ∼ 93%. The achromatic doublets and the epoxy layer over the sensors also

contributes with small losses, their transmittivity being ∼ 99%. The critical elements are the fibers, mainly

because of the coupling rather than their losses. Overall, the quantum efficiency related to the fibers is

∼ 52%. The product of all these contributions provides the effective quantum efficiency estimated in

Fig. 3.2.

3.3.2 Conditional measurements

Another measure of nonclassicality that can be used to test the performance of our detectors is a conditional

one. We chose the Fano factor as an estimator for the sub-Poissonianity of the conditional state, as in [92],

[93] and [94]. The Fano factor, in the presence of losses, has the form shown in Eq. (1.185). Here, for

the sake of clarity, we rename the conditioning value w as kcond . Note that the results we obtained for the

NRF do not imply that the same devices can detect the nonclassicality of the conditional states, since the

condition R < 1 is necessary but not sufficient for the generation of sub-Poissonian states.

Having applied the conditioning procedure, we retrieved the results shown in Fig. 3.4. In particular,

Fig. 3.4(a) provides the measured mean values of the conditional states generated by selecting different

values of kcond on the idler for signal acquisition with the boxcar integrator on 10-ns gate width, which

we have proved to be the best achievable experimental condition. The initial mean value of the signal

is 〈k2〉 = 2.52 (indicated as an horizontal line in the figure), a value for which the contribution of dark

counts is negligible (〈mdc〉 ∼ 0.026). Since also the OCT probability is small (ε ∼ 0.0228), we observe

that the photon statistics of the detected light is unaffected by detector imperfections. This is why we have

compared our experimental data with the basic theory outlined in the Theoretical Framework and, more

specifically, Eqs. (1.184) and (1.185). OCT effects should be taken into account only to define an effective

estimation of quantum efficiency. From the value of R we get η ′ = 1−R = η(1+ε)−2ε/(1+ε)∼ 0.124.

All the theoretical predictions in Fig. 3.4 are evaluated by using the effective value η and the measured

number of modes µ ∼ 2000. As expected, the mean value of the conditional state increases or decreases

linearly with the conditioning value.

In Fig. 3.4(b), we plot the measured Fano factor for the same conditional states shown in panel (a). The

horizontal line in the figure is at the value of the Fano factor of the original signal (F ∼ 1.00126).

Finally, Fig. 5(c) shows the statistical distribution of the detected photons for the state obtained by

conditioning at kcond = 5 (black dots) along with the original distribution on signal. Even if the value

of sub-Poissonianity is quite small, the effect is present and interesting: we have obtained a mesoscopic

sub-Poissonian state with 〈k〉 ∼ 2.79. We note that similar conditioning operations performed on the data

acquired by the digitizer do not perform equally well, and that the best results are obtained for the shortest

gate explored.
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Fig. 3.4: (a) Mean value of the conditional states at different conditioning values; (b) Fano factor of the conditional

states; (c) reconstructed photon-number statistics of unconditioned state (magenta) and conditional state

(black) with kcond = 5. The theoretical expectations are given by Eqs. (1.184) and (1.185). They are shown

as lines and well superimposed to the data.
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3.4 Glauber’s correlation functions as complete estimators

So far, we have shown a whole procedure to test the capability of a new class of detectors of revealing

sub-Poissonianity. In particular, we have proved that SiPMs can be successfully employed to this aim. The

procedure basically consists in two parts: a proper characterization with classical states of light aimed

at assessing the performance of the device and then the very measurement of nonclassical correlations.

Till now, the estimator used to discriminate a classical state from a sub-Poissonian one has been the Fano

factor, while the discrimination between quantum and classical correlations has been done by means of the

NRF. However, the criterion at the roots of both the two estimators is based on Glauber’s second-order

correlation functions. Therefore, the whole procedure described above in principle can be repeated as

well by uniquely exploiting Glauber’s function. In the following, we are showing that they can be used

for both the characterization of the detectors and the measurement of nonclassical states of light [49].

In this experimental sense, we can say that these estimators are complete since they allow to achieve an

estimation for all the quantities of interest in the procedure: on the one hand, they can be used to find

the main parameters of the detectors and, on the other hand, they are used to express the nonclassicality

criterion based on sub-Poissonianity. In other words, they are ubiquitous from the beginning to the end of

the detection chain.

The definition of Glauber’s functions that we are often employing here is the one given in terms of

measurable quantities in Eq. (1.169). For the sake of clarity, we will rename it g
(2)
meas. Note that, since the

sub-Poissonianity criterion is defined for the normal-ordered Glauber’s functions g(2), in the next Sections

we will need to relate the operative definition g
(2)
meas with the original one.

3.4.1 Experimental setup

For this analysis we used the experimental data providing the best results in the experiment described in

the previous section [95]. They were obtained through the setup, shown in Fig. 3.5, where the boxcar-gated

integrators were employed in the acquisition chain and a 10-ns gate was selected. Figs. 3.2 and 3.3 have

proved that this is the optimal configuration we can obtain with our setup.

Nd:YLF laser

HWP

PBS

BBO2

BBO1

ADC+PC

boxcar

Fig. 3.5: Experimental setup for the measurement of multi-mode TWB states with SiPMs. It is the same as the one in

Fig. (3.1) without the option of the digitizer in the acquisition chain.
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3.4.2 Results

Estimation of dark counts and optical cross-talk

Our model for photodetection allows us to write the second-order autocorrelation function for measurable

quantities as

g
(2)
meas(xout)≡

〈x2
out〉

〈xout〉2
= g

(2)
meas(k) =

〈∆k2〉
〈k〉2

+1 (3.10)

where 〈k〉 and 〈∆k2〉 are given in Eq. (2.21). It can be shown with some simple algebra that the autocorre-

lation function thus defined depends on the proper Glauber’s function for photons g(2)(n) in Eq. (1.143) as

follows

g
(2)
meas(k) = 1+

(
g(2)(n)−1

)(
1− (1+ ε)〈mdc〉

〈k〉

)2

+
1

〈k〉
1+3ε

1+ ε
. (3.11)

This formulation of Glauber’s functions provides both the information of the detector features and the

information on the input light. Applying Eq. (3.11) to the case of a multi-mode thermal distribution, which

consists in fixing g(2)(n) to (1+1/µ), one can fit the experimental data and provide an estimation of ε
and 〈mdc〉. Note that, while the maximum of the autocorrelation function for photons g(2)(n) is 2, here it

can be larger, due to the dependence on 〈k〉. In the two panels of Fig. 3.6 we show g(2)(k) plotted as a

function of the mean number of detected photons for the two beams. The experimental data are the black

dots with the corresponding error bars, whereas the theoretical fit (Eq. (3.11)) is shown as magenta circles.

We assumed the number of modes to be very large, i.e. µ = 1000, and left ε and 〈mdc〉 as free parameters.

The assumption is based on our previous analysis for the detection of quantum states of light [95]. As to

the cross-talk probability and the mean dark-count number, we found ε1 = 0.008, 〈mdc〉1 = 0.001 (upper

panel) and ε2 = 0.007, 〈mdc〉2 = 0.001 (lower panel).

Note that these results for both dark counts and OCT probabilities are smaller than the same estimated

by fitting the noise reduction factor in Figs. 3.2 and 3.3. However, in this case we expect that the fit is more

reliable since we have less fitting parameters and we did not need the assumption of a perfect balancing

between the two parties. In particular, by fitting the experimental data with the NRF in Eq. (3.9) we had

to determine η , 〈mdc〉 and ε , while the in fit of Eq. (3.11) we had just to fix 〈mdc〉 and ε . Moreover, the

values of 〈mdc〉 and ε obtained in Figs. 3.2 and 3.3 are inferred from the quantum correlations between the

two arms, which are more sensitive to noise than the classical autocorrelations referred to the single arms

in Fig. 3.6. An experimental proof for this statement can be provided by computing for each plot the fit

mean error, defined as

∆ f =
N

∑
i=1

| f (exp)
i − f

(th)
i |

N − p
(3.12)

where N is the number of experimental data, f is a function of the experimental data (in this case either the

NRF or the autocorrelation function) and p is the number of fitting parameters. We found that the fit mean

error for the NRF in Figs. 3.2 and 3.3 is more than twice the fit mean error related to the autocorrelation

functions in the two panels of Fig. 3.6. In particular, ∆R = 7×10−3 while ∆g
(2)
1 = 3×10−3 (upper panel)

and ∆g
(2)
2 = 2×10−3 (lower panel).

Being the mean dark-count number and the cross-talk probability smaller than expected, we quantified

their effective impact on the second-order autocorrelation function, whose relative variation, to a first

approximation, can be defined as

∆g(2)(k)

g(2)(k)
∼ ∂α g(2)(k)

g(2)(k)

∣∣∣∣
α=0

·α (3.13)

where α is either 〈mdc〉 or ε and ∂α ≡ ∂/∂α . Since α ∼ 10−3 and ∂α g(2)(k)/g(2)(k)|α=0 ∼ 10−1, the

impact of these nonidealities should be negligible up to the fourth decimal order. Thus, given that here we
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Fig. 3.6: Operative second-order autocorrelation function as a function of the mean detected-photon number 〈k〉 for

each TWB arm. Black dots + error bars: experimental data; magenta circles: theoretical fitting curve, given

by to Eq. (3.11); blue line: classical boundary. Here the y-axes is just labeled g(2), instead of g
(2)
meas, for the

sake of simplicity.
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hardly need three significant digits, in the following we will not consider the effects of dark counts and

OCT.

Estimation of detected nonclassicality

The connection between the NRF R and Glauber’s functions can be investigated by studying the operative

second-order correlations of the photocurrent difference ∆m ≡ m1 −m2, i.e.

g
(2)
meas(∆m)≡ 〈(m1 −m2)

2〉
〈m1 −m2〉2

= 1+
〈m1 +m2〉
〈m1 −m2〉2

R. (3.14)

by definition of NRF. The normal-ordered Glauber’s second-order correlation function for the photon-

number difference ∆n ≡ n1 −n2, after some simple algebra, is found to be given by

g(2)(∆n) = g
(2)
meas(∆n)− 〈n1 +n2〉

〈n1 −n2〉2
. (3.15)

This function deserves a few considerations. Indeed it is not obvious that g(2)(∆n), expressed as a function

of the single-arm number operators n̂1 and n̂2, inherits the same properties of g(2)(n), described in the first

chapter. Indeed it is not true. For beams perfectly balanced in the photon numbers, i.e. 〈n̂1〉= 〈n̂2〉, as it

happens for the entangled states but also for classical states equally divided at a beam splitter, g(2)(∆n)
diverges, due to the normalization. However, in typical experimental conditions the quantum efficiencies

of the detectors are not exactly the same, so that we can fairly use it for detected-photon numbers as long

as the hypothesis of perfect balancing is smoothed out by requiring the more realistic condition η1 ∼ η2.

In the case of a coherent state, we still have g(2)(∆n) = 1 and the sub-Poissonianity condition is again

g(2)(∆n)< 1.

In the mentioned case of almost-perfect balancing (η1 ∼ η2), g
(2)
meas(∆m) uniquely depends on the moments

of the photon-number distribution. From its very definition and through Eq. (3.15), one gets

g
(2)
meas(∆m)∼ 〈(m1 +m2)

2〉+(1−η)〈m1 +m2〉
〈m1 −m2〉2

=

= g
(2)
op (∆n)+(1−η)

〈m1 +m2〉
〈m1 −m2〉2

=

= g(2)(∆n)+
〈n1 +n2〉
〈n1 −n2〉2

+(1−η)
〈m1 +m2〉
〈m1 −m2〉2

=

= g(2)(∆n)+
〈m1 +m2〉
〈m1 −m2〉2

(3.16)

where in the first line we have exploited the second moment of the difference photocurrent in Eq. (1.166)

under the hypothesis of quasi-perfect balancing. Hence, we see that g
(2)
meas(∆m), through Eqs. (3.14)

and (3.16), is a bridge between R and the correlations of photons, estimated by g(2)(∆n), as follows

g(2)(∆n)−1 = (R−1)
〈m1 +m2〉
〈m1 −m2〉2

. (3.17)

Two important observations are to be made now. First, note that the evaluation of purely experimental

quantities gives us access to the proper correlation function of the photon-number difference. Then,

we point out that the nonclassicality criterion applied on the NRF, i.e. R < 1, implies the negativity of

[g(2)(∆n)−1], which is nothing but the pristine sub-Poissonanity criterion g(2) < 1 established at the very

beginning of this voyage. As for the NRF in Figs. 3.2 and 3.3, we would like to plot the photon-number
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correlations as a function of a mean measured quantity, such as 〈m〉 ≡ (〈m1〉+ 〈m2〉)/2, so we have to

conveniently rewrite Eq. (3.17). By exploiting the expression of the NRF in the absence of dark counts

and OCT in Eq. (1.180), we get

g(2)(∆n)−1 =
1

µ
− η1η2(η1 +η2)

(η1 −η2)2

1

〈m〉

=
1

µ
−η ñ

1

〈m〉

(3.18)

where we have approximated η1 +η2 ∼ 2η and exploited the threshold ñ(η1,η2) in Eq. (1.167). Note

that g(2)(∆n)− 1 = 0 is achieved for 〈m〉 = µη ñ. However, in this case µ = 103 and ñ ≫ 1 due to the

almost-perfect balancing condition, so that, for the explored ranges of mean detected-photon number (up

to 3), we should never have g(2)(∆n)− 1 > 0. Furthermore, note that, at variance with the NRF, even

in the absence of dark counts and OCT, [g(2)(∆n)− 1] depends on 〈m〉 and, in particular, diverges for

〈m〉 → 0. We plotted [g(2)(∆n)−1] in Fig. 3.7, where we named g(2)(∆n)≡ g
(2)
di f f (n), and found that the

experimental data (the black dots with the error bars) are correctly fitted by this theoretical description

(magenta circles), except for the first point, which does not match the model. However, note that the

relative error bar is very large, so that the point is not reliable. The larger dimensions of the error bars for

〈m〉 → 0 are due to the signal to noise ratio collapsing as the signal decreases.

Fig. 3.7: Measured second-order correlation function for the photon-number difference g
(2)
di f f

(n)−1 as a function of

〈m〉 ≡ (〈m1〉+ 〈m2〉)/2. Black dots + error bars: experimental data; magenta circles: theoretical description

in Eq. (1.169).

Finally, we would like to use Glauber’s second-order autocorrelation function to estimate the nonclas-

sicality of a conditional state. Again, we will refer to the measurements explained in the previous Section

and replace the Fano factor F in Fig. (3.4b) with g(2)(n). The connection between the two quantities has

already been given in Eq. (1.175), from which it is straightforward that the nonclassicality condition F < 1
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Fig. 3.8: Measured values of g(2)(n)− 1 as a function of the conditioning value, mcond . Black dots + error bars:

experimental data; magenta circles: theoretical model (see the text for details).

is equivalent to g(2)(n)−1 < 0. The Fano factor for a conditional state is expressed in Eq. (1.185). We

can see from Fig. 3.8 that the model for [g(2)(n)−1] (magenta circle) properly fits the experimental data

(black dots with error bars). The negativity of the plotted function is not large, but it is enough to prove

the sub-Poissonianity of the state. However, note that here the error bars challenge the reliability of the

measurement. As a matter of fact, they are not larger than the error bars in Fig. 3.7, they are just larger

than the negativity of [g(2)(n)−1].
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4
Nonclassicality with second-harmonic

generation

After that the paper [21] by Armstrong et al. had been published in 1962, the generation of second-

harmonic light through a nonlinear crystal was extensively understood. Since the Jacobi elliptic functions

in the long run are boring, in the following few years theoreticians started to work on a quantum description

of the phenomenon. From the experimental point of view, at variance with frequency down-conversion,

squeezed states of light required more time to be generated through up-conversion processes, such as SHG.

As far as we know, the first who studied [97, 98, 99] and implemented [100, 101] a squeezing-generation

and detection scheme via the SHG process was Kumar’s group in the Nineties. Second-harmonic generated

nonclassical states have attracted much attention, essentially because of the simplicity of the experimental

setup, but not only. On the one hand it is not necessary to frequency double the laser first, as in typical

parametric-amplification-based experiments; on the other hand, it can be demonstrated that, for a coherent

input state, both the pump and the harmonic fields are nonclassical, which implies that bright squeezed

light, analog to TWB states, can be generated.

The theoretical description of sub-Poissonian light from SHG is as challenging and hard as the design

of a scheme for the observation of it. Basically, the main problem consists in the form of the interaction

Hamiltonian, which is neither linear nor bilinear in the field modes, so that the evolution operator cannot

be disentangled in a closed form [38] and the quantum dynamics of the process cannot be analytically

retrieved. Many expedients have been suggested to overcome this problem. In 1967, Shen [102] retrieves

the density matrix of the up-converted field by exploiting the parametric approximation, which consists in

assuming that the pump field operators are c-numbers, due to the intensity of the field. In the absence of

this assumption, Shen himself reports ”Ducuing and Armstrong [103] have discussed the statistical aspects

of second-harmonic generation with high conversion using the classical approach. A corresponding

quantum-statistical discussion would be extremely difficult, if the noncommutability of the operators â and

â† is to be taken into account”. Note that the parametric approximation is typically used to describe the

dynamics of the PDC through the evolution operators in Eqs. (1.116) and (1.121). In 1969, Bonifacio

and Preparata [104] proved the equivalence between a system of N two-level atoms interacting with an

electromagnetic field, described by the Dicke model, and a generic trilinear-boson-scattering process.

Orszag et al. [105], in 1983, specified their results for the SHG and retrieved the n-photon-generation

probability and the efficiency of the process. The equivalence is essentially based on the rotating-wave

approximation, but, again, their analytic results can be achieved only by requiring a complete factorization

of the bosonic operators, which is equivalent to treat the operators as c-numbers. The same factorization
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hypothesis was employed by Crosignani et al. [106], even if they managed to retrieve a relevant property

of the process independently from that assumption, i.e. the impossibility to end with a complete depletion

of the fundamental mode, due to the fluctuations of the photon numbers in coherent light [107]. Note

that such a conclusion is general in the sense that it requires no approximations but holds only for input

Poissonian states.

A different approach was used by Kozierowski and Tanaś [108]. They studied the quantum process

from the photon statistics point of view by expanding Glauber’s correlation functions in series, thus

retrieving approximated expressions for the photon-number moments. A similar work on the statistics

was lately made by Ekert and Rzazewski [109] through a numeric approach. In particular, they found

an approximation of the temporal evolution of the second-harmonic intensity for different pump input

states, accounting also for damping effects. However, they just focused on the evolution of the intensities.

The evolution of the correlations for a long interaction time was retrieved more recently by Bajer et al.

[110, 111], thanks to the perturbative approach followed by a numeric analysis, but only in the case of

coherent input states.

In a recent work of ours [112] we reviewed the Hamiltonian quantum description of the process starting

from the perturbative approach and found some analytic and, as far as we know, new results on the

generated second-harmonic intensity, the up-conversion probabilities and the output statistics for different

input states. In particular, we analyzed the cases of coherent, chaotic and squeezed light, providing some

comparisons with the classical results outlined in the introductory Theoretical Framework. Also, our

results are supported by a deep investigation and interpretation of the underlying physical process.

4.1 Dynamics of the process

The trilinear boson interaction Hamiltonian describing SHG can be expressed as follows

Ĥint = h̄γ âFâFâ
†
SH +h.c. (4.1)

where â j and â
†
j are the annihilation and creation boson operators for the input ( j =F) and second-

harmonic field ( j =SH) with the usual commutation rules
[
â j, â

†
k

]
= δ j,k and γ is the coupling constant,

which depends on the second-order nonlinear susceptibility. The complete evolution should be given by

Ĥ = Ĥ0 + Ĥint , where Ĥ0 is the free-field single-mode Hamiltonian, i.e.

Ĥ0 = h̄ω â
†
FâF +2h̄ω â

†
SHâSH. (4.2)

In the following we will show that for this particular process H0 does not play any particular role. However,

note that [113] H0 is a constant of motion. Therefore, also Hint does not depend on time, which is good to

know because it means that the expression of the evolution operator is simple.

As mentioned above, no exact solution can be found for the output state since it is not possible to identify

a finite-dimensional Lie algebra for this Hamiltonian [33]. Here we exploit a perturbative approach. A

comparison with the classical regime will help to test the consistency of our results. The Heisenberg

equation for the number operator n̂SH ≡ â
†
SHâSH, with the Hamiltonian Ĥ reads

ih̄
dn̂SH

dt
= [n̂SH, Ĥ] =

= [n̂SH, Ĥ0]+ [n̂SH, Ĥint ] =

= [n̂SH, Ĥint ]

(4.3)
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since [n̂SH, Ĥ0] = 0. Equation (4.3) provides the coefficients of the Taylor expansion approximating n̂SH at

a given time t, i.e.

n̂SH(t) = n̂0 +∑
k

dkn̂0

dtk

tk

k!
. (4.4)

being n̂0 ≡ n̂SH(0).
As a consequence of the Stone-Von Neumann theorem, it is well known that one can equivalently study

the evolution of the states. In particular, we are interested in the generated second-harmonic states, which

will allow us to retrieve some simple transition amplitudes. The most general input for a SHG process can

be expanded over the basis of the number states as

ρ̂0 = ∑
n,m

cnc∗m|n〉〈m|⊗ |0〉〈0| (4.5)

where ck are suitable coefficients such that ∑k |ck|2 = 1. Given the evolution operator Û = exp
(

i
h̄
Ĥt
)
, we

get the output state from

ρ̂0 → ρ̂(t) = Û†(t)ρ̂0Û(t), (4.6)

by suitably expanding Û via Baker-Hausdorff-Campbell relation. It is wise focusing on the evolution of

the Fock states since we are representing any other state over this basis, which is also the eigenbasis of Ĥ0.

Explicitly,

Û†(t)ρ̂0Û(t) = ∑
n,m

cnc∗mÛ†(t)|n〉〈m|⊗ |0〉〈0|Û(t). (4.7)

Note that the free Hamiltonian does not really contribute to the temporal evolution since [H0,Hint ] = 0.

Thus, Û†(t)ρ̂0Û(t) = e−iĤint t/h̄ρ0eiĤint t/h̄. Under the hypothesis that no second-harmonic field is introduced

in the crystal, the states transform according to

{
|ψ(γ̃)〉〉= Û†(γ̃)|ψ(0)〉〉
|ψ(0)〉〉= |N,0〉

(4.8)

where γ̃ ≡ γt. For instance, up to the second order in γ , the output state reads

|ψ(γ̃)〉〉 ∼
[

1− 1

2
γ̃2N(N −1)+o(γ̃3)

]
|N,0〉

−
[
iγ̃
√

N(N −1)+o(γ̃3)
]
|N −2,1〉,

(4.9)

which is straightforward from the expansion of the evolution operator and its application to the input state,

i.e.

Û†(γ̃)|ψ(0)〉〉 ∼ ∑
k

(
−itĤint/h̄

)k

k!
|N,0〉. (4.10)

4.2 Photon-number distribution

In the following, we will exploit the expansion of the number operator in Eq. (4.4) to express the statistics

of the second-harmonic field in terms of the statistics of the pump, whatever the initial state is. In particular,

we will provide the expansion of the first and the second moment of the second-harmonic distribution

and find and approximated expression for the conversion efficiency. Note that the moments of the output

statistics are straightforward from

〈n̂k
SH〉= Tr[ρ̂0✶F ⊗ n̂k

SH(γ̃)]
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where ρ̂0 is the generic input state defined in Eq. (4.5).

As mentioned above, Kozierowski and Tanaś in [108] studied the statistical properties of the SHG field.

They provided an expansion of the first moment of the output statistics 〈â†
SHâSH〉 up to the fourth order as

a function of Glauber’s autocorrelation functions of the input field, described in Eq. (1.34) and Eq. (1.148)

with j = k, i.e.

g
(n)
F ≡ 〈(â†

F)
nân

F〉
〈â†

FâF〉n
. (4.11)

As shown in appendix A (Theorem 1), it is possible to demonstrate that every order of the perturbative

expansion of the output mean photon-number can be expressed as a linear combination of Glauber’s

autocorrelation functions in Eq. (4.11). Therefore, we can express the second-harmonic moments as a

convergent series over the order of the autocorrelation function for the fundamental field. In particular, we

retrieved that, up to the sixth order in γ̃ , the output mean value reads

〈n̂SH〉=g
(2)
F N2γ̃2 − 2

3

(
g
(2)
F N2 +2g

(3)
F N3

)
γ̃4+

+
4

45

(
2g

(2)
F N2 +16g

(3)
F N3 +17g

(4)
F N4

)
γ̃6 +o(γ̃8)

(4.12)

where N = Tr[ρ̂0n̂F(0)⊗✶SH] is the mean energy of the input state. Note that, for the sake of simplicity,

we assumed γ ∈ ❘. For what concerns the second moment, up to the fourth order in γ̃ , we get

〈n̂2
SH〉= g

(2)
F N2γ̃2 +

[
g
(4)
F N4 − 2

3

(
g
(2)
F N2 +2g

(3)
F N3

)]
γ̃4 +o(γ̃6). (4.13)

In the case of Fock states, Theorem 1 allows to find a general expression for the asymptotic value of 〈n̂SH〉
as a function of N (see Corollary 1 in Appendix B for details), which is

〈n̂SH〉 ∼ N ∑
j

γ̃2 jN j. (4.14)

Note that, upon defining the conversion efficiency as

η ≡ 〈n̂SH〉
2N

, (4.15)

we find that

η ∼ 1

2
∑

j

γ̃2 jN j, (4.16)

which implies that the conversion efficiency related to every single interaction is proportional to the input

intensity. This fact will be relevant in the analysis of the evolution of the input light statistics. It is

interesting to see that, if γ̃2N < 1, Eq. (4.14) is a geometric series, yielding 〈n̂SH〉 ∼ N/(1− γ̃2N) and

η ∼ 1/[2(1− γ̃2N)]. The condition on the efficiency η ≤ 1 implies a stricter bound, i.e. γ̃2N < 1
2
, which

is reasonable in a mesoscopic intensity regime since γ ∝ χ(2) ∼ 10−12Hz and for the typical interaction

time t ∼ 10 ps. In this limit, the factor γ̃2N could be interpreted as the probability of generating a single

second-harmonic photon in the interaction time t.

The physical meaning of the coefficients in the perturbative expansion of 〈n̂〉 can be outlined by expressing

the autocorrelations in Eq. (4.12) as a function of N, as shown in Appendix B for the Fock state. The

inspection of the retrieved perturbative orders leads to some general considerations. In particular, we found

that the first moment of the second-harmonic distribution can be rewritten as follows

〈n̂SH〉=
K

∑
k=1

γ̃2k

[
N!

k!(N −2k)!
k+αk(N)+βk(N)

]
+o(γ̃2(K+1)) (4.17)
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for any given K. Up to the sixth order in γ̃ , we have

α1 = 0 β1 = 0

α2 = 0 β2 =−1

3

[(
N!

(N −2)!

)2

+2
N!

(N −4)!

]

α3 =
1

36

[(
N!

(N −2)!

)3

+4
N!(N −2)!

[(N −4)!]2

]

β3 =
1

60

(
N!

(N −2)!

)3

+
1

90

(N!)2

(N −2)!(N −4)!
− 4

15

N!(N −2)!

[(N −4)!]2
+

1

10

N!

(N −6)!
.

(4.18)

Note that the three terms in Eq. (4.17) can be viewed as three different processes concurring in SHG. The

first one

∑
k

γ̃2kN!/(N −2k)!

is related to the creation of k second-harmonic photons from N. This contribution comes from all and

only the terms that in the expansion of Û(γ̃) in Eq. (4.6) are of the kind (â†
SH)

k. They correspond to pure

up-conversion events, i.e. the annihilation of 2k pump photons from N at each order k.

The second process yields, for k ≥ 3, the αk terms, which corresponds to the alternating creation and

annihilation of second-harmonic photons. For the sake of simplicity, we name these as annihilation

processes since, at variance with the former, consist of back-conversion events. For instance, for k = 3 we

have three different processes leading to a non-null value of 〈n̂SH〉, which are the following: the creation

process (â†
SH)

3 (creation of three second-harmonic photons, having annihilated six pump photons from N

after three interactions) and the annihilation processes â
†
SHâSHâ

†
SH and âSHâ

†
SHâ

†
SH (creation of one second-

harmonic photon after three interactions). These last two provide respectively the first and the second term

of α3 in Eq. (4.18) and differ for the ordering of the operators only. In particular, both these processes

lead to the same output state, i.e.|N −2,1〉, but, as to the first one, we have that a second-harmonic photon

is created, annihilated and then created again, each of these events happening in N!/(N − 2)! possible

ways, and, as to the second one, two second-harmonic photons are created (which is likely to happen in

N!/(N −4)! equivalent configurations) and then one of the two is down-converted in two photons of the

fundamental field ((N −2)!/(N −4)! possible configurations).

Finally, if k ≥ 2, the annihilation processes can interfere either with one another or with creation events,

giving rise to the third kind of contribution, expressed by the βk terms in Eq. (4.17). We have superposition

of processes whenever different processes lead to the same output state. It is something like Feynman’s

description of the Hong-Ou-Mandel effect. For instance, for k = 2 we find, together with the two-photon-

creation process (â†
SH)

2 (creation of two second-harmonic photons, having annihilated four pump photons

from N after two interactions), the superposition β2 of the one-photon-creation process â
†
SH (creation of

one second-harmonic photon from N after one interaction) with the annihilation processes â
†
SHâSHâ

†
SH

and âSHâ
†
SHâ

†
SH mentioned above. Note that all of these three provide the output state |N −2,1〉. More

explicitly, the superposition of â
†
SH with â

†
SHâSHâ

†
SH corresponds to a term (γ̃ âSH)(γ̃

3â
†
SHâSHâ

†
SH) in the

Taylor expansion of Û(γ̃). In particular, from that expansion it is straightforward that the factor γ̃ âSH

contributes with an amplitude
√

N!/(N −2)!, whereas γ̃3â
†
SHâSHâ

†
SH contributes with [N!/(N −2)!]3/2.

Similarly, the superposition of â
†
SH with âSHâ

†
SHâ

†
SH is given by a term (γ̃ âSH)(γ̃

3âSHâ
†
SHâ

†
SH), where

γ̃3âSHâ
†
SHâ

†
SH contributes with an amplitude

√
N!/(N −2)!(N −2)!/(N −4)!.

This hierarchy of processes concurring to the whole SHG phenomenon is just a logic consequence of

the Hamiltonian evolution of the system, but it can help to better understand the underlying physics. A

representation of the perturbative terms through double-sided Feynman diagrams can help to understand
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the underlying physics. Moreover, such a representation may be used to retrieve higher-order terms in the

expansion. In the following, the role of these different contributions will be further pointed out for what

concerns the up-conversion probability and the evolution of the input light statistics.

4.2.1 Double-sided Feynman diagrams for quantum SHG

Double-sided Feynman diagrams are commonly used to display the different contributions to the cross-

section of the SHG process, i.e. the components of the susceptibility tensor, within a semiclassical model

[22, 114], where the atomic energy levels of the medium are described by the Schrödinger equation while

the electromagnetic field is assumed to be a plane wave. Here we define these tools in a totally quantum

frame. Feynman diagrams are commonly used to express the expansion of the transition amplitudes

〈n,m|e−iĤint t/h̄|N,0〉

with n, m ∈ ◆. Double-sided Feynman diagrams are related to the mean values of the evolved state ρ̂(t) in

Eq. (4.6), i.e.

〈n,m|ρ̂(t)|n,m〉= 〈n,m|e−iĤint t/h̄|N,0〉〈N,0|eiĤint t/h̄|n,m〉= |〈n,m|e−iĤint t/h̄|N,0〉|2,

which is the probability of getting n photons on the fundamental mode and m on the second-harmonic

mode at time t. The diagrams describe the interaction between the quantized electromagnetic field and the

energy levels of the materials. Both the fields are assumed to start with their ground states, respectively

|N,0〉〈N,0| and |0〉〈0|. Furthermore, the atomic field is assumed to end with the ground state, i.e. we are

not considering absorption processes. A unique representation can be given for the terms in the expansion

of 〈n,m|ρ̂(t)|n,m〉 via Feynman diagrams by applying the following rules:

1. A double-sided diagram is composed of two Feynman diagrams, one representing 〈n,m|e−iĤint t/h̄|N,0〉
and the other 〈n,m|e−iĤint t/h̄|N,0〉†. The arrows do not provide the time direction. The process starts

at the bottom and ends at the top of the diagram.

2. The fields are represented by lines with arrows. If the arrow points towards the vertex, this is

the ket-state of the field and the corresponding diagram is the one on the left. Vice versa for the

bra-states of the field.

3. The electromagnetic field is represented by a wiggly line attached to a vertex and generally

is given in a state |n,m〉 on the left and 〈n,m| on the right.

4. The atomic field is represented by a plain line attached to a vertex and generally is given in

a state |k〉 on the left and 〈k| on the right.

5. The virtual levels of the electromagnetic field are represented by a wiggly line connecting two

vertexes without the arrow .

6. The virtual levels of the atomic field are represented by a plain line connecting two vertexes without

the arrow .

7. The interaction is represented by a vertex . Given that the input field states are |n,m〉 for the

radiation and |k〉 for the material, every interaction consists of one of the following four events:

• Annihilation of two photons on the pump mode. The energy of the material is increased to

the next eigenstate |k+1〉. It is possible to retrieve the perturbative term related to the given

diagram if one multiplies by a factor
√
(−iγ̃) n!

(n−2)! for each vertex on the left and a factor
√

iγ̃ n!
(n−2)! for each on the right.
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• Creation of two photons on the pump mode. The energy of the material is decreased to the

previous eigenstate |k−1〉. It is possible to retrieve the perturbative term related to the given

diagram if one multiplies by a factor

√
(−iγ̃) (n+2)!

n!
for each vertex on the left and a factor

iγ̃

√
(n+2)!

n!
for each on the right.

• Annihilation of one photon on the second-harmonic mode. The energy of the material is

increased to the next eigenstate |k+1〉. It is possible to retrieve the perturbative term related

to the given diagram if one multiplies by a factor
√
(−iγ̃)m for each vertex on the left and a

factor
√

iγ̃m for each on the right.

• Creation of one photon on the second-harmonic mode. The energy of the material is decreased

to the previous eigenstate |k−1〉. It is possible to retrieve the perturbative term related to the

given diagram if one multiplies by a factor
√
(−iγ̃)(m+1) for each vertex on the left and a

factor
√

iγ̃(m+1) for each on the right.

8. Only the diagrams ending with the state |n′,m′,0〉〈n′,m′,0| can survive. Therefore, the output states

on the left and on the right must share the same number of pump and second-harmonic photons.

9. Divide by the symmetry factor, i.e. the number of equivalent diagrams representing the same term.

By construction, the double-sided Feynman diagrams can help to distinguish among creation, annihilation

and superposition processes.

A creation term in 〈n,m|ρ̂(t)|n,m〉 was defined as a process where only second-harmonic-photon creation

events occur, which at the order γ̃2k is described by the transition

|〈n,m|â2k
F (â†

SH)
k|N,0〉|2. (4.19)

Then, the related diagram is the following

|N〉⊗ |0〉
|0〉

|N −2〉⊗ |0〉 |1〉

|N −4〉⊗ |0〉 |2〉

|N −2k〉⊗ |0〉 |k〉

|N −2k〉⊗ |1〉 |k−1〉

|N −2k〉⊗ |k−1〉 |1〉

|0〉
|N −2k〉⊗ |k〉

〈N|⊗ 〈0|
〈0|

〈N −2|⊗ 〈0|〈1|

〈N −4|⊗ 〈0|〈2|

〈N −2k|⊗ 〈0|〈k|

〈N −2k|⊗ 〈1|〈k−1|

〈N −2k|⊗ 〈k−1|〈1|

〈N −2k|⊗ 〈k|
〈0|
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Note that the direction of the diagram on the right is reversed because it describes the adjoint of the

diagram on the right. Diagrams representing creation processes can be reduced to the simpler one-loop

diagram

|N〉⊗ |0〉
|0〉

|N −2k〉⊗ |0〉 |k〉

|0〉
|N −2k〉⊗ |k〉

〈N|⊗ 〈0|
〈0|

〈N −2k|⊗ 〈0|〈k|

〈N −2k|⊗ 〈k|
〈0|

Here the single loop stands for all the intermediate virtual processes, where either two pump photons

are annihilated or two second-harmonic photons are created. Such a simplification is possible just because

these diagrams describe only two of the four events listed at rule 7., so that every field operator here

commutes with each other, implying that the order of the events does not affect the result.

On the contrary, the so-called annihilation processes involve non-commuting field operators, such as âSH

and â
†
SH, since all of the four events listed at rule 7. occur. Therefore, they cannot be resumed as a one-loop

diagram because different sequences of annihilation and creation processes determines different terms in

the perturbative expansion. The lowest-order example for these processes is found at the γ̃4 order. Such

term explicitly reads

|〈n,m|â†
Fâ

†
FâFâFâSHâ

†
SH|N,0〉|2, (4.20)

i.e. a second-harmonic photon is created and then annihilated. Note that this event cannot be found in the

expansion of the mean value in Eq. (4.17) since the number of second-harmonic photons related to the

output state is m = 0. The diagram related to the transition (4.20) is given by

|N〉⊗ |0〉
|0〉

|N −2〉⊗ |0〉 |1〉

|N −2〉⊗ |1〉 |0〉

|N −2〉⊗ |0〉 |1〉

|0〉
|N〉⊗ |0〉

〈N|⊗ 〈0|
〈0|

〈N −2|⊗ 〈0|〈1|

〈N −2|⊗ 〈1|〈0|

〈N −2|⊗ 〈0|〈1|

〈N|⊗ 〈0|
〈0|

Finally, the superposition processes are represented by diagrams where one side is not the adjoint of

the other. As mentioned above, we read these contributions as an interference between different events.

For instance, at the order γ̃4 we can also find two distinct terms related to the superposition of the events at

the order γ̃3 and γ̃ . They are

〈n,m|â†
Fâ

†
FâFâFâFâFâSHâ

†
SHâ

†
SH|N,0〉〈N,0|â†

Fâ
†
FâSH|n,m〉 (4.21)

〈n,m|âFâFâ
†
Fâ

†
FâFâFâ

†
SHâSHâ

†
SH|N,0〉〈N,0|â†

Fâ
†
FâSH|n,m〉 (4.22)

and fix n = N −2 and m = 1. The diagrams related to these terms are the following
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|N〉⊗ |0〉
|0〉

|N −2〉⊗ |0〉 |1〉

|N −4〉⊗ |0〉 |2〉

|N −4〉⊗ |1〉 |1〉

|N −4〉⊗ |0〉 |2〉

|N −4〉⊗ |1〉 |1〉

|0〉
|N −2〉⊗ |1〉

〈N|⊗ 〈0|
〈0|

〈N −2|⊗ 〈0|〈1|

〈N −2|⊗ 〈1|
〈0|

|N〉⊗ |0〉
|0〉

|N −2〉⊗ |0〉 |1〉

|N −2〉⊗ |1〉 |0〉

|N −2〉⊗ |0〉 |1〉

|N〉⊗ |0〉 |0〉

|N −2〉⊗ |0〉 |1〉

|0〉
|N −2〉⊗ |1〉

〈N|⊗ 〈0|
〈0|

〈N −2|⊗ 〈0|〈1|

〈N −2|⊗ 〈1|
〈0|

where the double-sided diagram on the right stands for the transition (4.21) while the second for (4.22).

Note that in this case the output state, as mentioned above, is |N − 2,1〉〈N − 2,1|. Therefore, these

contributions play a role for the mean value of the second-harmonic photon number 〈n̂2〉 in Eq. (4.17).

Indeed the transitions (4.21) and (4.22) correspond to the two terms in β2 (Eq. (4.18)).

Here we use this raw quantum version of the double-sided quantum diagrams to better show the distinction

among the three processes that we highlighted above, but note that they could be also employed to find all

the processes occurring at a given perturbation order or even to retrieve the cross-section for a specific

process. However, a generalization of this procedure to nonlinear phenomena more complicated than SHG

would probably imply giving up with the virtual levels and considering proper propagators.

Finally, we remark that actually the creation processes are a particular case of the annihilation processes.

We isolated them because they can be easily described through a general analytic formula and a simple

diagram. This distinction will help in the following analysis.

4.3 Up-conversion probability

Now we focus on the up-conversion probabilities, i.e. the probability of converting 2k photons of the

fundamental field into k second-harmonic photons. In this case, we exploited the Schrödinger picture

because, for a small number of input photons, from a computational point of view it is easy to retrieve

a large number of perturbative orders for the evolved state. On the contrary, in the case of a large

input mean energy, achieving an analytic expression for the up-conversion probability is a hard task

because the number of perturbative terms in the expansion of the second-harmonic state (see Eq. (4.6)) is

generally insufficient to recognize the convergence to a known analytic function, as for the moments of the

distribution. Moreover, there is no guarantee at all that such a function exists. However, there are some

simple cases where a large number of perturbative orders (up to 30) can be computed and found to be the

perturbative expansion of some analytical functions. As mentioned few lines above, this is the case if the

number of up-converted photons k is assumed to be small. In particular, we found out that the probability

p1(N, γ̃) of generating a single second-harmonic photon from 2 ≤ N < 6 input photons converges, up to
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the order 30, to a periodic function, i.e.

p1(N, γ̃) = |〈N −2,1|ψ(γ̃)〉〉|2

=
N!

(N −2)!

1

ζ
sin2(

√
ζ γ̃) (4.23)

where

ζ =
N/2

∑
k=1

k
[N −2(k−1)]!

(N −2k)!
.

The interplay among multiple creation and annihilation processes and their superposition is periodic up to

6 input photons, as shown in Fig. 4.1. For N ≥ 6 this is no more true, but still p1(N, γ̃) converges to an

analytic function. The reason for the aperiodic behavior of p1(N, γ̃) for N ≥ 6 is due to the contribution of

a larger number of processes at every order, resulting in a squared sum of different periodic functions. The

ratio between the periods of these functions comes out to be incommensurable, so that their sum is not a

periodic function.

The red solid lines in Fig. 4.1 stand for the numeric prediction retrieved by expanding the evolution

operator as in Eq. (4.10). The black solid lines are the analytic functions in Eq. (4.10). Up to the thirtieth

order, the expansion seems to converge to a closed form.

Fig. 4.1: Evolution of the probability of generating one SH photon from N pump photons. Solid red line: Tr[ρ̂(γ̃)✶F ⊗
n̂k] where ρ̂(γ̃) is obtained by expanding Û(γ̃) in Eq. (4.6) up to k = 30. Dashed line: theoretical prediction

from Eq. (4.23). The purple solid line in the bottom left panel is the probability of generating two photons

from four. It is of the form Asin4(ωγ̃).
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4.4 Statistics of the output second-harmonic field

Here we focus on the transformation of the statistics for specific input states. We will choose a particular

input statistics by suitably setting the coefficients cn of the input density matrix in Eq. (4.5). In particular,

we will investigate and compare the evolution of Fock, coherent, chaotic and squeezed states. Moreover,

we will point out the role of the creation and annihilation processes together with their superpositions,

outlined in Eq. (4.18). If our previous results are correct, one should expect that the SHG increases with the

mean input photon-number (Eq. (4.16)), but is hampered by the annihilation and superposition processes

(Eqs. (4.17, 4.18)).

In analogy with Eq. (4.12), the variance can be expressed as an expansion over the autocorrelation functions

of the input field in Eq. (4.11), i.e.

〈∆n̂2
SH〉 = g

(2)
F N2γ̃2 − 8

3

(
g
(2)
F N2 +2g

(3)
F N3

)
γ̃4 +o(γ̃6)

= 〈n̂〉− 4

3

(
g
(2)
F N2 +2g

(3)
F N3

)
γ̃4 +o(γ̃6). (4.24)

As shown in Eq. (1.144), in general the second-order autocorrelation function can be expressed as a

function of the first moments of the number operator as follows

g(2) = 1+
〈∆n̂2〉−〈n̂〉

〈n̂〉2
. (4.25)

Hence, the second-order autocorrelation function of the second-harmonic field can be easily found from

Eqs. (4.17) and (4.24).

A couple of special remarks should be made about the zero-order of Glauber’s function for the second-

harmonic field. First, a trivial one: note that it is not given just by the zero order of the expansion of the

moments, which is explicit if we rewrite Eq. (4.25) as

g
(2)
SH =

〈n̂2
SH〉−〈n̂SH〉
〈n̂SH〉2

. (4.26)

where the first and the second moments are given by Eqs. (4.12) and (4.13). Indeed, some simple algebra

shows that the zero-order of this function depends on the γ̃2 and on the γ̃4 order of the moments and, in

particular, it reads

g
(2)
SH =

g
(4)
F(

g
(2)
F

)2
, (4.27)

which is a particular case of Eq. (1.61). We have proved it for our case in Appendix C. Also, note that in

the difference 〈n̂2
SH〉−〈n̂SH〉 not only the γ̃2 orders cancel each other, but also all the superposition terms

β2 of Eq. (4.17). Therefore, no interference process contributes to this order. In the following, we will plot

the second-order autocorrelation function for different input states together with the same computed in

the absence of any interference and annihilation process. The goal is highlighting the role of the different

processes. We will see that, as expected, for γ̃ = 0 the two functions are coincident.

As a last remark, we would like to outline that the zero order of the second-harmonic autocorrelation

function inherits the most relevant properties of the autocorrelation function for the fundamental field,

which is reasonable, since it is the less negligible term in the expansion. We will better specify this fact

case by case.
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4.4.1 Fock state

From Eq. (4.25) we immediately get

g
(2)
SH =

(N −2)(N −3)

N(N −1)
(1+4γ̃2)+o(γ̃4). (4.28)

which is consistent with the theoretical expectations. Indeed, by exploiting the expression of Glauber’s

functions for Fock states retrieved in Appendix B, we see that the second- and fourth-order autocorrelation

functions respectively read

g
(2)
F = 1− 1

N

g
(4)
F =

1

N3

(N −1)!

(N −4)!

so that, applying Eq. (4.27), the zero order of the expansion for the expected second-harmonic autocorrela-

tion function must be

g
(2)
SH =

(N −2)(N −3)

N(N −1)
(4.29)

which is consistent with Eq. (4.28). Note that g
(2)
F is not definite for N = 0 and is null for N = 1, while it

tends to 1 if N → ∞. Similarly, g
(2)
SH is not definite for N = 0 or 1, but is null for N = 2 and 3 and converges

to 1 as N → ∞.

4.4.2 Coherent state

As to the case of a coherent input state, one just needs to require the coefficients in Eq. (4.5) to be given by

cn = e−|α|2/2 αn

√
n!

(4.30)

where |α| is the amplitude of the generic coherent state |α〉= e−|α|2/2 ∑
∞
k=0

(
αk/

√
k!
)
|k〉.

Up to k = 2, the output second-order autocorrelation function reads

g
(2)
SH = 1− 4

3
γ̃2 +o(γ̃4) (4.31)

thus showing that the second-harmonic output state displays a sub-Poissonian statistics at the first perturba-

tive order. Therefore, the second-harmonic field from a coherent pump field is expected to be endowed

with quantum correlations. This effect is due to the very nature of coherent light, whose statistics, as

mentioned in the first chapter, is the boundary case between super- and sub-Poissonian light, by definition.

Then, heuristically speaking, the effect of converting 2k input photons into k second-harmonic photons

results in an anti-bunching effect, so that the output statistics is sub-Poissonian. It is a well-known result

[110, 111], which was also experimentally tested [100, 101].

Moreover, note that the perturbative orders in the expansion of the moments (see for instance Eq. (4.17))

contribute only if the input number of photons is large enough, i.e. you need at least 2j input photons to

see the j-th order. However, also the conversion efficiency depends on N. In particular, we found from

Eq. (4.16) that η tends to a growing function of N, i.e. η ∼ 1/[2(1− γ̃2N)]. But then we find that at higher

perturbative orders we can convert only large numbers of photons and, thus, they are more likely to be

converted. This is the reason why we see in Fig. 4.2 that, in the case where only creation processes are

considered (red dot-dashed line), quantum correlations increase as a function of γ̃ .
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Fig. 4.2: Coherent input state. Solid blue line: second-harmonic autocorrelation function, from Eq. (4.31). Dot-dashed

line: second-harmonic autocorrelation function in the absence of annihilation processes and superpositions.

The function are plotted for an input mean value N = 2.

The second-order autocorrelation function of the SHG process in Eq. (4.17) is plotted as the blue line. The

annihilation processes and the interference between different processes, as expected, contribute to reduce

quantum correlations and, consequently, the nonclassicality of the output state.

However, as expected, we do not have this contribution for γ̃ = 0. We do not insist on the analogy between

g
(2)
SH(γ̃ = 0) and g

(2)
F because in this case is self-evident: g

(2)
SH(γ̃ = 0) = g

(2)
F = 1.

4.4.3 Chaotic state

Let us write again the photon-number distribution for multi-mode thermal light, already expressed in

Eq. (1.114), as

p(n) =

(
n+µ −1

n

)
Nn

th

(Nth +1)n+µ
. (4.32)

where the mean number Nth is the average boson-number from the Bose-Einstein statistics

p(n) =
Nn

th

(Nth +1)n+1
. (4.33)

so that the mean value and the variance are here expressed as

N = µNth (4.34)

∆N2 = µNth(Nth +1). (4.35)
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We also recall that a generic input state of the SHG process with multi-mode thermal statistics is the mixed

state

ρ̂0 = ∑
n

pµ(n)|n,0〉〈n,0|.

Here, we explicitly write the mean value and the variance of the output statistics since this case is amenable

to a comparison with the classical one:

〈n̂SH〉=
(µ +1)

µ
N2γ̃2 − 2

3

(µ +1)

µ
N2

[
1+2

µ +2

µ
N

]
γ̃4 +o(γ̃6) (4.36)

〈∆n̂2
SH〉= 〈n̂SH〉+2

(2µ +3)(µ +1)

µ3
N4γ̃4 +o(γ̃6). (4.37)

We remark that 〈n̂SH〉 and 〈∆n̂2
SH〉 in Eqs. (4.36) and (4.37) exhibit the same dependence on the number of

modes µ and on the input mean value N retrieved in Eqs. (1.52) and (1.54) for the classical case.

Thus, at the first order we find again the moments of a superthermal distribution. Note that, at higher

orders we still have that annihilation and superposition processes result in a reduction of correlations, as

shown in Fig. 4.3. From Eqs. (4.36) and (4.37), the second-harmonic autocorrelation function reads

g
(2)
SH =

(µ +2)(µ +3)

µ(µ +1)

[
1− 4

3

(
1+4

N

µ

)
γ̃2

]
+o(γ̃4). (4.38)

If we compare the second panel of Fig. (4.3) with Fig. (4.2), we find again that if the number of modes is

large we are left with a Poissonian statistics. Again, the contribution of the only creation processes (dashed

red line) highlights the effect of the back-conversion, which increases as γ̃ grows while it is absent for

γ̃ = 0. Note that the second-harmonic autocorrelation function inherits the dependence on the number of

modes from the fundamental one.

4.4.4 Squeezed state

The autocorrelation function for a single-mode squeezed state, defined in Eq. (1.119), is given by

g
(2)
F = 3+

1

N
(4.39)

where here N = |ν |2. In this case, we found that the second-harmonic autocorrelation function reads

g
(2)
SH =

3[3+5N(5+7N)]

(1+3N)2
− 12

(1+3N)3

[
1+5N(9+43N2 +87N2 +56N3)

]
γ̃2 +o(γ̃4). (4.40)

Firstly, we remark that the order zero in Eq. (4.40) is the usual first approximation of the second-harmonic

autocorrelation function, which can be obtained through Eq. (4.27). As expected, by inspecting the

autocorrelation functions in the presence (blue line) and in the absence (red line) of superposition processes

for γ̃ = 0 in Fig. (4.4), we find that no superposition process occurs at this order. We retrieve here

the dependence on N shared by g2
F. In particular, for large N, both approach a plateau. But while the

squeezed-state autocorrelation function tends to 3, the asymptotic value in the second-harmonic case is

larger, i.e. 35/3.

For what concerns the evolution of the correlations, as usual, the multiple back-conversion events occurring

for γ̃ > 0 contribute to reduce them.

The large fluctuations retrieved for this SH field are a signature of the quantum properties of both the input

state and the SHG process: since the squeezed state is a superposition of pairs of photons (Eq. (1.119))

and the process always annihilates even numbers of pump photons, then SHG enhances the correlations of

the input statistics.
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Fig. 4.3: Chaotic input state. Solid blue line: second-harmonic autocorrelation function, given by Eq. (4.38). Dashed

line: second-harmonic autocorrelation function in the absence of annihilation processes and superpositions.
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Fig. 4.4: Squeezed input state. Solid blue line: second-harmonic autocorrelation function, given by Eq. (4.40). Dashed

line: second-harmonic autocorrelation function in the absence of annihilation processes and superpositions.
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4.5 Concluding remarks

Here we investigated the statistics of the second-harmonic field from a quantum point of view. We

had introduced the classical results in the first chapter, where the transformation of the light statistics

via SHG was retrieved for Poissonian and chaotic fields by exploiting an approximation of the output

intensity which is consistent with the more general results obtained by Armstrong et al. These results,

also, are based on an assumption, i.e. the slowly varying amplitude approximation in Eq. (1.9). Our

quantum description in the cases of coherent and multi-mode thermal input states reproduces the classical

predictions. This fact is not trivial, since it implies that the perturbative approach to the quantum dynamics

of SHG somehow is equivalent to the classical approximations. In this sense, our results open the way to a

quantum formalization of those approximations.

The most controversial result presented here is the decomposition of the SHG in three sub-processes, which

could be deemed as a mere interpretation. However, we showed that the evolution of the second-harmonics

distributions, investigated through the second-order autocorrelation functions, is consistent with this

description for every input state we analyzed.

Our findings on the up-conversion probabilities are promising. The existence of a closed form for the

simple cases we investigated stimulates further investigation in this direction. In particular, numeric

methods could help to find a large number of perturbative orders also for less trivial input states so that an

analytic expression for more complicated up- and down-conversion probabilities may be found. On the

other hand, it is not trivial that inferences from perturbative expansion are reliable. Therefore, an alternative

to the Hamiltonian approach should be searched too, so that an analytic form for the second-harmonic

moments could be found.

Last but not the least, here we put forward the perturbative approach by providing a further perturbative

order to the expansion of the moments and by retrieving the expression of the second-harmonic autocorre-

lation functions for some significant input states. However, in this case it was not possible to find a closed

form for these quantities.

4.6 Appendix A

Here we state the theorem which guarantees that the perturbative expansion of the output mean photon-

number is an expansion over Glauber’s autocorrelation functions of the input state g
(n)
F .

Theorem 1. Given a Hamiltonian Ĥ(âF, â
†
F, âSH, â

†
SH) of the form 4.1 with N = 〈â†

FâF〉 and 〈n̂〉= â
†
SHâSH

and assuming the initial condition â
†
SH(0) = âSH(0) = 0, then every perturbative order of 〈n̂〉 can be

expressed as a linear combination of the fundamental mode Glauber’s autocorrelation functions g
(n)
F .

Proof. All the terms which are a combination of (â†
SH)

k or âk
SH, with k ∈ ◆, do not contribute to 〈n̂〉

because the state is empty on the SH mode and

〈0|(â†
SH)

k|0〉= 〈0|âk
SH|0〉= 0.

Thus, a term survives at the k-th order in the expansion Eq. (4.3) just if â
†
SH and âSH commute, so that they

are transformed via commutation relations into the identity multiplied for the unchanged operators of the

fundamental mode. These terms are the only ones surviving in the mean value.

Among the survived terms, the commutation relations select just the combinations having the same number

of âF and â
†
F operators because of the form Eq. 4.1 of the Hamiltonian and of the operator n̂.

Moreover, note that the odd derivatives of n̂ all depend on the SH operators, which means that they do not

contribute to 〈n̂〉.
Therefore, the only surviving terms at a given order j are (â†

F)
kâk

F, where the exponents k are increased
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by two for every even derivative, but lowered by one for every odd derivative, so that k ≤ j
2
+1. More

explicitly, k is increased by two for every even derivative because the Hamiltonian contributes with (â†
SH)

2

and â2
SH and these terms do not commute; on the other hand, it is decreased by one for every odd derivative

because in this case no new surviving terms are generated.

Hence, we can conclude that 〈n̂〉 is a linear combination of 〈(â†
F)

kâk
F〉= γ̃kg

(k)
F Nk.

4.7 Appendix B

The first and second moments of the second-harmonic distribution in Eqs. (4.12) and (4.13) can be

expressed for a given input state by specifying the corresponding kth-order autocorrelation functions g
(k)
F .

In the case of a Fock state |N〉, we get

g
(k)
F (N) =

〈N| : n̂k
F : |N〉

〈N|n̂F|N〉k
=

=
〈N|(â†

F)
kâk

F|N〉
〈N|n̂F|N〉k

=

=
N!

Nk(N − k)!
(4.41)

where in the last line we have used âk|N〉 =
√

N!/(N − k)!|N − k〉, which is straightforward from

Eqs. (1.102).

Here, the transformation of the number-state basis is the starting point for the evolution of other light

distributions. Hence, the search for the implications of the Theorem 1 given an input number state. One of

these is expressed in the following corollary of Theorem 1.

Corollary 1. If the fundamental input mode is a Fock state |ψ(0)〉= |N,0〉, then

〈n̂SH〉 ∼ N ∑
j

(γ̃2N) j. (4.42)

Proof. 〈(â†)kâk〉= N!/(N − k)! ∼ Nk. The highest k at the order j is
j
2
+1, but, since the odd j terms do

not contribute, we only sum over the even j orders and replace j with 2 j.

4.8 Appendix C

Up to the first order, the autocorrelation function can be approximated to Eq. (4.27). The result is obtained

through a first-order assumption on the modes, i.e. aSH = γaFaF. Then, from Eq. (4.25), we find

g
(2)
SH =

〈: n̂SHn̂SH :〉
〈: n̂SH :〉2

=
〈â†

SHâ
†
SHâSHâSH〉

〈â†
SHâSH〉2

= (4.43)

=
〈â†

Fâ
†
Fâ

†
Fâ

†
FâFâFâFâF〉

〈â†
Fâ

†
FâFâF〉2

=

=
〈â†

Fâ
†
Fâ

†
Fâ

†
FâFâFâFâF〉

〈â†
FâF〉4

(
〈â†

FâF〉2

〈â†
Fâ

†
FâFâF〉

)2

=
g
(4)
F(

g
(2)
F

)2
.



5
Conclusions and outlooks

This thesis is focused on our last-three-year research, covering topics which are different for what concerns

the field and the investigation methods.

On the one hand, we tested the new generation of SiPMs for Quantum Optics and Quantum Infor-

mation. In the second chapter, we presented a specific characterization of these devices aiming at a fair

reconstruction of the statistics of the detected field and optimized their response by engineering the duration

of the integration gate. Eventually, in the third chapter, we employed them to reveal the entanglement of

nonclassical states of light, i.e. TWBs generated via PDC.

On the other hand, we investigated the problem of a quantum description of the SHG process. In

the fourth chapter, we explored the output statistics given different input states of light by exploiting

perturbative methods and provided some new analytical results for the up-conversion amplitudes.

The results we obtained in both the research lines are promising.

The new class of photodetectors we analyzed has shown to satisfy the necessary conditions for being

employed in Quantum Optics applications. We have proved that SiPMs can reveal the quantum correlations

of entangled states of light as well as the sub-Poissonian statistics of conditional states. Moreover, we have

found that the impact of the nonidealities of these detector can be controlled and limited, leading to better

results for these applications. Our optimization strategy can be further improved by employing a proper

peak-and-hold circuit replacing the digitizer. Such a scheme should give access to an online shot-by-shot

determination of the detected-photon number. In particular, the new acquisition system should also allow

for an online reconstruction of the light statistics.

These results open the possibility of using SiPMs for quantum sensing and quantum estimation. For

instance, they could be tested in the latest multi-parameter estimation experiments, e.g. for the application

to the rotation of light polarization in sugary solutions limited by reduced visibility [118] or in the presence

of a dynamic process [119].

Furthermore, the future perspectives for the applications of SiPMs in Quantum Optics are not limited to

direct-detection schemes. Olivares et al. [115] recently proved that PNR detectors can be successfully em-

ployed in a homodyne-like scheme for the tomography of quantum light states. Furthermore, homodyning

have been shown to be more efficient than direct schemes as to the detection of quantum states in the pres-

ence of losses and phase noise [116]. The extension of this analysis to the case of homodyne-like detection

and an experimental test with SiPMs could be fruitful for Quantum Communication implementations [117].
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For what concerns our results on quantum SHG, we tried to outline the intrinsic structure of the process.

It may be possible that the glimpse of this structure will help to find more general analytic predictions

about the up-conversion probabilities, since our results, till now, are restricted to simple cases. However, a

general expression for the perturbative second-harmonic Glauber’s autocorrelation function still misses.

Finally, we note that the convergence of the up-conversion probabilities to well-known analytic functions

feeds the hope that the same may be possible for the output statistics.

The perturbative approach could be extended to the analysis of PDC in the absence of the parametric ap-

proximation, since the Hamiltonian of the process (Eq. (1.126)) shares the same structure as the interaction

Hamiltonian describing SHG (Eq. (4.1)). Basically, this is the reason why the squeezing can be observed

also via SHG.

As a last remark on possible future perspectives, we address the classical description of SHG described

by Armstrong et al. [21] (see the first chapter for details). Note that the slowly-varying-amplitude ap-

proximation in Eq. (1.9), which is used to linearize the nonlinear equations, may correspond to a WKB

approximation in the quantum case [120]. Further investigations are needed.

This is the end of our journey. Aware of being a poor player that struts and frets his hour upon the

stage and then is heard no more, I hope that this work may have interested the reader anyway. To me, it’s

been deep and free as the sea.



Bibliography
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