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MYSCE, a new Monte Carlo code for star cluster simulations

Axion-like particles and very-high energy astrophysics

by Giorgio Galanti

This thesis focuses on two different topics: (i) star clusters, as favourite environments

for the formation of black holes of very high mass, and (ii) the implications of axion-

like particles for very-high energy astrophysics by considering γ-ray observations from

blazars.

In the first part of this thesis we develop a new Monte Carlo code MYSCE (Montecarlo

Young Star Cluster Evolution) which improves and solves some problems of the original

scheme presented by Hénon. We use our code to simulate star clusters and to inquire

if an episode of gas infall during the cluster lifetime can lead to the formation of an

intermediate mass black hole and/or a super massive black hole seed.

In the second part of this thesis we explore axion-like particles in an astrophysical

context. We describe their origin and properties within extensions of the Standard

Model of elementary particle physics. We show how axion-like particles can in principle

solve the cosmic opacity problem for distant blazars and naturally explain the emission

of very-high energy photons from flat spectrum radio quasars.
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Part I

MYSCE, a new Monte Carlo code

for star cluster simulations
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Introduction

Star clusters (hereafter SCs) are dense aggregates of stars that can include 103 − 107

elements. The study of SCs is of paramount importance to understand the dynamics of

stellar systems. In fact, SCs are exquisite laboratories to analyze several key processes

such as two- and three-body encounters among stars and stellar evolution, and to test

their consequences on the SC macroscopic evolution driving the SC to relaxation, core

collapse, etc.

SCs are proposed as favoured environments for the formation of black holes (hereafter

BHs) more massive than ∼ 102 M�. While BHs with mass lower than ∼ 102 M� are the

result of the evolution of massive stars, the formation of BHs with a higher mass still

represents a challenge.

Intermediate mass black holes (IMBHs) with a mass in the range 103 − 105 M� are

proposed as an explanation of several observations. However, there is no compelling

evidence that IMBHs are present inside galaxies and SCs. The very high central velocity

dispersion of the globular clusters M15 and G1 hints to the existence of a central IMBH

[35, 36, 108]. Moreover, the high core rotation observed in the clusters M15, ω Cen,

47 Tuc, and G1 [35, 108, 109] might be explained by the existence of a core angular

momentum source, such as an IMBH binary [71], and observations of a millisecond

pulsar in the halo of NGC 6752 might suggest the presence of an IMBH binary in the

core [19]. But these phenomena can be explained without resorting to a central IMBH:

for example also a collection of compact stellar remnants in the core may explain the

observations of these clusters [9].

Super Massive Black Holes (SMBHs) with a mass in the range 105− 109 M� are present

in the centre of many galaxies. SMBHs with mass Msmbh ∼ 109 M� have been observed

at redshifts z > 6 [8, 113]. It is very unlikely that such massive objects formed directly

from primordial gas; instead, it is quite possible that they formed as much smaller BH

“seeds”, and then got most of their mass through accretion. However, if the accretion

was Eddington-limited, the seed mass must be much more massive (Mseed > 1000 M�)

than a stellar-mass BH (Msbh < 100 M�).

3



4 Introduction

Several different channels have been proposed in order to explain the formation of SMBH

seeds (∼ 105 M�) (see Chapter 4 Sec. 4.1). One of them is the possibility that a massive

and dense SC undergoes core collapse, producing a massive central BH through mergers

of compact objects thanks to the aid of a large gas infall [21]. This process could lead

to the formation of seeds as massive as 105 M� in a short time scale.

In the first part of this thesis we investigate in a quantitative fashion the SMBH seed

formation channel proposed by [21] (see Chapter 4): by means of the MYSCE (Montecarlo

Young Star Cluster Evolution) code – a new Monte Carlo code developed by us (see

Chapter 2) – we estimate gas infall consequences: SC Lagrangian radii contraction,

cluster star velocity dispersion evolution, and fate of the primordial binaries, in order to

understand if conditions for star/stellar BH runaway merger can be reached in a realistic

environment.

We study also if a gas infall can help the formation of an IMBH in a young star cluster

via the collapse of a very massive star produced by the runaway merger of main-sequence

stars [26, 43, 44, 83, 85]. Other ways to produce IMBHs are discussed in the literature

and they are sketched in Chapter 4 Sec. 4.1.

Among the numerical methods (see Chapter 2 Sec. 2.1) used to simulate SCs we select

a Monte Carlo method since it is faster than a N -body method and allows therefore to

study a higher number of stars. Furthermore, the Monte Carlo method guaranties a high

accuracy when treating energy exchanges by two- and three-body interactions which is

similar to the one of a N -body method and better than the one of a pure statistical

method. In addition, the MC scheme can be easily modified in order to introduce other

physical processes such as stellar evolution and its metallicity dependence. In particular,

the code MYSCE (see Chapter 2) is a modified version of the Hénon Monte Carlo scheme

[49, 50]. We choose this scheme since it drastically reduces the computational burden

not requiring orbit integration and because it uses time steps which are fractions of the

relaxation time instead of fractions of the crossing time. The algorithms used in MYSCE

differ from the original ones by Hénon in four main aspects: the code treats each particle

in the simulation as a real star, reduces the duration of the time step, describes in more

details three-body interactions, and solves the spurious relaxation problem.

Plan of the first part of the thesis

The plan of the first part of the thesis is as follows: in Chapter 1 we describe the SCs,

their mathematical model and the physical processes driving their evolution; in Chapter

2 we present an overview of numerical methods used to simulate SCs and we describe the
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modified version of the Hénon MC method used in the code MYSCE, which we developed

as part of this thesis; in Chapter 3 we account for SC initial conditions; in Chapter

4 we first sketch different mechanisms to produce IMBHs and SMBH seeds present in

the literature, then we describe the consequences of gas infall on a SC when all other

physical interactions are turned off and we finally add two- and three-body interactions

to study binary evolution and the fate of the SC; in Appendix A we present our solution

to the spurious relaxation problem.

The material discussed in the first part of this thesis is reported also in the following

publications:

• [dyn1] Galanti, G., & Ripamonti, E., “An improved treatment of spurious relax-

ation in the Monte Carlo method”, paper submitted to New Astronomy (2013)

• [dyn2] Galanti, G., Colpi, M., Lupi, A., Ripamonti, E., & Mapelli, M., “Conse-

quences of gas infall inside star clusters”, paper in preparation (2013)

• [dyn3] Lupi, A., Colpi, M., Devecchi, B., Galanti, G., & Volonteri, M., “Constrain-

ing the high redshift formation of black hole seeds in nuclear star clusters with gas

inflows”, paper in preparation (2013)

In particular, [dyn1] deals with the topic of Appendix A, [dyn2] treats the matter de-

veloped in Chapters 2, 3 and 4, and [dyn3] discusses part of the subject of Chapter

4.





Chapter 1

Star clusters

A star cluster (SC) is a self-gravitating system (see Sec. 1.1) of stars of coeval formation.

It is formed by a number of stars that can vary from tens to millions and it is often

roughly spherical. SCs are commonly classified into three types: globular clusters, open

clusters and young star clusters.

• Globular clusters (GCs) – GCs are spherical collections of 104 − 106 stars (Fig.

1.1 shows an example); they are gas poor and have very high central densities

(105−106 stars ·pc−3). They are old evolved systems (often ∼ 10 Gyr) constituted

by Population II stars with masses lower than 1− 2 M� and have low metallicities

[46]. Such stars predominate because hotter and more massive stars have evolved,

becoming white dwarfs, neutron stars or black holes. GCs are highly gravita-

tionally bound systems so that GCs can survive for many billions of years: their

self-gravity dominates on tidal effects due to their host galaxies. GCs are found in

the galactic haloes with a roughly spherical distribution. The Milky Way counts

about 150 GCs [46] but other galaxies can contain over a thousand [7]. GCs orbit

the Milky Way mainly around ∼ 2− 20 kpc from the centre [46].

• Open clusters (OCs) – OCs are formed by less than 104 stars, are less dense (<

104 stars · pc−3), present a more irregular shape, and may be gas rich (Fig. 1.2

shows an example of OCs). OCs are only weakly bound and generally survive

for a few hundred million years (because of the tidal field of their host galaxy)

and can be disrupted by encounters with other clusters. They are generally quite

young objects (∼ 108 yr) and are constituted by Population I stars with a rather

broad range of masses and metallicities. In the Milky Way, OCs are located in the

galactic plane; in general, they are mainly found within the arms of spiral galaxies.

7
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Figure 1.1: The GC Messier 92 in the Hercules constellation.

Figure 1.2: The Pleiades, an example of OC.

• Young star clusters (YSCs) – The observations of YSCs are quite recent [18, 20, 32].

They are very young (∼ 107 yr) systems constituted by 103 − 105 stars (Fig. 1.3

shows an example). They are formed by Population I young stars with a very

broad mass range (0.2− 120 M�). They have very high central densities similar to

GCs; but in contrast with GCs they may be gas rich, and are a disk population

in galaxies – like OCs. Like GCs, YSCs are rather gravitationally bound systems.

Some speculations suggest YSCs to be similar to the progenitors of GCs even if

they are not massive enough to become the GCs observable today. Because of their

young age, broad mass range, and high densities YSCs are extremely important

laboratories to study early stages of SC dynamics, and to observe processes such

as two- and three-body relaxation, mass segregation, and core collapse.
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Figure 1.3: The YSC R136 in the 30 Doradus region of the Large Magellanic Cloud.

1.1 Self-gravitating systems

SCs (mainly GCs and YSCs, because OCs are only weakly bound) can be described

with a good approximation as self-gravitating systems. A self-gravitating system S of

N elements is defined as an isolated system whose elements interact gravitationally (for

a full description see for example [92]).

By calling mα (1 ≤ α ≤ N) the mass of the α-th element of S, with M its total mass

and with m ≡M/N the average mass of the elements of S the potential energy U of S
reads

U = −G
2

N∑
α=1

N∑
β 6=α

mαmβ

|xα − xβ|
, (1.1)

while the escape velocity vf,α of the α-th element is

v2
f,α = 2G

N∑
β 6=α

mβ

|xα − xβ|
, (1.2)

where G is the gravitational constant, and xα and xβ are the positions of the α-th and

β-th element, respectively.

The dynamics of S is ruled by two time scales.

• Crossing time tcross – The crossing time (also called dynamical time) is defined as

the time that a generic element of S needs to cross the system. By calling d the
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linear size of S, and v the typical velocity of an element of S tcross reads

tcross '
d

v
. (1.3)

Starting from a particular initial condition S usually gets a stationary condition

after a few tcross.

• Relaxation time trel – It is defined as the time that a generic element of S needs

to lose memory of its own initial condition. trel is linked to tcross by (more about

this in Sec. 1.3.1)

trel ' 0.1

(
N

lnN

)
tcross , (1.4)

and when N & 100 (i.e. for all but the smallest SCs) we get

trel � tcross . (1.5)

System relaxation is driven by gravitational encounters (two-body interactions) among

the elements of S (see Sec. 1.3 for more details). The physical meaning of trel can

be understood also by considering that a system is relaxed when the velocity variation

experienced by each element of S during the whole history of the SC is, on average, of

the order of the velocity of an element of S.

When S is in a stationary condition the virial theorem subsists

2K + U = 0 , (1.6)

where K = M〈v2〉/2 = 3
2kBT is the kinetic energy of S 1, 〈v2〉 is the mean square

velocity of an element of S, T is the average kinetic temperature of S, and kB is the

Boltzmann constant.

If S is in virial equilibrium its energy

E ≡ K + U , (1.7)

can be written by using Eq. (1.6) as

E = −K =
U

2
. (1.8)

Eq. (1.8) shows that the formation of a bound system from a condition in which all the

elements of S were initially at rest at infinity, implies a release of kinetic energy by an

1If S is in motion with respect to the observer – as usually happens – 〈v2〉 must be substituted by
the tridimensional dispersion velocity σ2 ≡ 〈v2〉 − 〈v〉2
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amount equal to half of the gravitational energy of the new equilibrium configuration.

This implies that some of the elements evaporate at the time of system formation.

By remembering the meaning of K and using Eqs. (1.1) and (1.8) the mean square

velocity 〈v2〉 reads

〈v2〉 =
G

2M

N∑
α=1

N∑
β 6=α

mαmβ

|xα − xβ|
. (1.9)

By defining the mean square escape velocity 〈v2
f 〉 as

〈v2
f 〉 =

1

M

N∑
α=1

mαv
2
f,α , (1.10)

Eq. (1.2) implies

〈v2
f 〉 =

2G

M

N∑
α=1

N∑
β 6=α

mαmβ

|xα − xβ|
. (1.11)

So, in the presence of the virial equilibrium we get

〈v2
f 〉 = 4〈v2〉 . (1.12)

The physical meaning of this relation is quite clear: at the virial equilibrium 〈v2
f 〉 =

4〈v2〉. If 〈v2
f 〉 � 〈v2〉, S would evaporate, while in the opposite case, if 〈v2

f 〉 � 〈v2〉, S
would collapse – and both these processes would happen in about tcross, hence the virial

equilibrium would be impossible over this time scale.

From the virial theorem we can also infer the termodynamic behaviour of S. By using

Eq. (1.8) and remembering the thermodynamic meaning of K we get

E = −3

2
NkBT . (1.13)

The sign of Eq. (1.13) implies that S has a negative thermal capacity: a decrease of

the total energy (∆E < 0) warms the system (∆T > 0), while an increase of the total

energy (∆E > 0) cools S (∆T < 0).

Eq. (1.13) predicts the evaporation of S in a finite time. In fact, Eq. (1.12) implies that

the quickest elements of S have velocities higher than the escape velocity so that they

can leave the system. As a consequence, the total energy of S decreases. Because of the

negative thermal capacity the average velocity of the survived elements of S increases.

This fact amplifies the evaporation process. It is possible to get that the evaporation

time of S is of the order of

tev ' 102 trel . (1.14)
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In the usual case where N � 1, we can use Eq. (1.5) to infer that tev � tcross. Therefore,

the virial equilibrium exists over multiples of tcross but cannot persist for an infinite time.

When trel � tev S is called collisionless system: in this case, the interaction rate among

the elements of S is so low that the system cannot relax before its evaporation. When

trel � tev S is called collisional system: in this case, two-body interactions drive the

system to relaxation before its evaporation. Collisional systems experience several dy-

namical processes such as mass segregation, core collapse, etc. (see Sec. 1.3 for more

details). Among the collisional systems important examples are given by SCs, while

galaxies are examples of collisionless systems.

1.2 Star cluster models

It is a matter of fact that it is impossible to follow the evolution of all the elements

inside a system composed by many body: a statistical approach is necessary – discrete

distribution functions are substituted with their smooth counterparts. In this fashion,

the kinetic description of a self-gravitating system S is based on the distribution function

of single particle (star) f(x,v, t) which satisfies the Boltzmann equation

∂f

∂t
+ vi

∂f

∂xi
+ ai

∂f

∂vi
= Γ[f ] , (1.15)

where x, v, and a are the position, velocity, and acceleration of an element of S and

Γ[f ] is the collisional term, which represents the variation of f due to elastic collisions

among elements of S.

A particle (star) of S moves in a conservative force field and it is also subject to impul-

sive forces due to the granularity of matter which give birth to collisions. Both these

categories of forces have a gravitational origin so that we must divide the gravitational

field exerted on an element of S into two components.

• A mean, smooth field (with a potential Φ(x, t)) generated by a continuous distri-

bution of matter ρ(x, t) which represents the average effect of all other elements

of S.

• A rapidly fluctuating field (both in space and time) that takes into account the

gravitational (two- and three-body) encounters among the elements of S.

Φ(x, t) satisfies the Poisson equation

∆Φ = 4πGρ . (1.16)
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As a result, Eq. (1.15) becomes

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= Γ[f ] , (1.17)

where Γ[f ] results from the fluctuating field. The source of the main field is given by

the constituents of S such that the density in the Poisson equation reads

ρ(x, t) = m

∫
d3v f(x,v, t) , (1.18)

where m is is the average mass of an element of S. As a result, the Boltzmann equation

is non linear and coupled with the Poisson equation. The ultimate goal is to find the

solutions f of the system of equations

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= Γ[f ] , (1.19)

∆Φ = 4πmG

∫
d3v f . (1.20)

In order to simulate SCs we want to get its initial configuration. In order to get this

goal we neglect the collisional term in the Bolzmann equation (1.19) and since we want

to study stationary SC models where the distribution function f and the mean potential

Φ are time-independent the system of Eqs. (1.19) and (1.20) becomes

vi
∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0 , (1.21)

∆Φ = 4πmG

∫
d3v f , (1.22)

where Eq. (1.21) is called stationary Vlasov equation.

We can build stationary distribution functions by means of the Jeans theorem according

to which each stationary distribution function is an integral of motion in the potential

Φ and vice versa. As a consequence,

• each stationary solution of the Vlasov equation depends on x, v only through the

independent integrals of motion in the potential Φ

• each function of the independent integrals of motion is a stationary solution of the

Vlasov equation

Now, with the results of the Jeans theorem in mind in order to build a stationary SC

model we can proceed as follows: first we formally solve Eq. (1.21) by expressing f(x,v)

as functions of the independent integrals of motion. In this way it is possible to decouple
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Eqs. (1.21) and (1.22) and then we can solve Eq. (1.22) and get the distribution function

f .

We restrict ourselves to the case of complete spherical symmetry (spherical symmetry

in the phase space). In this case, the potential is function only of the radial distance.

Since the spherical symmetry is complete f is function only of the energy E of a test

star and of the norm of its angular momentum L (i.e. f = f(E,L2)).

A particularly important case is when the distribution function depends only on the

energy (i.e. f = f(E)). In this case, we have

E =
1

2
v2 + Φ(r) , (1.23)

where we remind that we take the mass of a generic star m to be unity. By considering

Eq. (1.23), Eq. (1.21) is identically satisfied, and by expressing the laplacian in spherical

coordinates and using Eq. (1.23) we can rewrite Eq. (1.22) as

1

r2

d

dr

(
r2dΦ

dr

)
= 16π2G

∫ ∞
0

dv v2f

(
1

2
v2 + Φ

)
. (1.24)

It is useful to introduce the relative potential

Ψ(r) ≡ Φ0 − Φ(r) , (1.25)

and the relative energy

E ≡ Φ0 − E (1.26)

of a test star. As a result, from Eqs. (1.25) and (1.26)

E = Ψ(r)− 1

2
v2 . (1.27)

We choose Φ0 such that f > 0 for E > 0 and f = 0 for E ≤ 0: correspondingly, the

Poisson equation (1.24) results

1

r2

d

dr

(
r2dΨ

dr

)
= −16π2G

∫ √2Ψ

0
dv v2f

(
Ψ− 1

2
v2

)
, (1.28)

where f = f(E) and E = Ψ− 1
2v

2, as in Eq. (1.27).

We consider three models
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• Polytropic models – They are defined by the distribution function

f(E) =

{
FEn−3/2, E > 0

0, E ≤ 0
, (1.29)

where F is an arbitrary constant and n is called polytropic index. Polytropes are

self-gravitating gaseous spheres that are a useful approximation to realistic stellar

models or star distributions in SCs or galaxies. There is a polytropic relation

between pressure P and density ρ

P = Fρ1+ 1
n , (1.30)

where F is a positive constant. The case n = 5 corresponds to the Plummer model

[88] which is often used to model SCs. In the case n→∞, the polytrope tends to

the isothermal sphere. We can observe that as the polytropic index increases, the

central density becomes higher and higher.

As mentioned above, the polytrope with n = 5 is called Plummer model. It is

characterized by the potential

Φ(r) = − GM√
r2 + a2

, (1.31)

where a is the Plummer scale radius that defines the extension of the core and which

approximately contains the 35% of the total mass M of the SC. The corresponding

density distribution is

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2

, (1.32)

and its velocity dispersion reads

σ2(r) =
63π

256

GM√
r2 + a2

. (1.33)

Plummer represents one of the most widely used models to describe SCs both for

its accuracy, and for its simplicity, since potential, density profile, and velocity

dispersion have an analytical form.

• Isothermal sphere – This model is defined by the distribution function

f(E) =
ρ0

(2πσ2)3/2
eE/σ

2
, (1.34)

where ρ0 is an arbitrary constant and σ is the velocity dispersion. We can un-

derstand why this model is called isothermal sphere by comparing it with an
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isothermal gas. By combining the condition of hydrostatic equilibrium for a self-

gravitating sphere and the equation of state for an ideal gas applied to an isother-

mal sphere of gas we obtain an equation that is structurally identical to Eq. (1.28)

in which f is given by Eq. (1.34). The two equations overlap if

σ2 ≡ kBT

mg
, (1.35)

where mg is the mass of a gas particle and T is the gas temperature. This shows

that a self-gravitating isothermal sphere of gas is identical to a collisionless system

of stars described by the distribution function (1.34). As a result, the star velocity

distribution overlaps the maxwellian velocity distribution of a gas at the constant

temperature T .

The density distribution of the isothermal sphere is

ρ(r) =
σ2

2πGr2
, (1.36)

while its corresponding potential reads

Φ(r) = 2σ2ln(Fr) , (1.37)

where F is an arbitrary constant.

Without invoking particular boundary conditions (more about this further) the

isothermal sphere however presents two physical inconsistencies: from Eq. (1.36)

we observe that the central density (ρ(r = 0)) diverges to infinity and if we in-

tegrate Eq. (1.36) the corresponding mass profile diverges at infinity (r → ∞).

These issues are solved in the King model.

• King model – The King model [59] is defined by the distribution function

f(E) =

{
ρ0

(2πσ2)3/2 (eE/σ
2 − 1), E > 0

0, E ≤ 0
, (1.38)

where ρ0 is an arbitrary constant and σ is the dispersion velocity. The King model

eliminates the unphysical properties of the isothermal sphere. The King radius or

core radius

rc =

√
3σ2

4πGρ0
, (1.39)

is used to get a finite density for r → 0, while the tidal radius rt is introduced to

avoid the mass divergence at infinity. rt can be considered as the distance (from

the centre of the SC) where tidal effects due to the host galaxy are comparable to
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the SC self gravity. Therefore, rt defines the boundary of the SC. The region within

rc is called core, it is approximately isothermal and has a rather constant density,

while the region between rc and rt is called halo, it has a lower density than the core

and is not isothermal as the velocity dispersion decreases to zero at rt. Different

King models exist in dependence of the value of the concentration parameter c ≡
log10(rt/rc). c is usually in the range 0.3 − 3.3, the case c → ∞ corresponds to

the isothermal sphere. The King model is a very good approximation of the star

distribution in SCs.

What we called isothermal sphere is also known as singular isothermal sphere since

its density diverges for r → 0. As we have seen, a way to overcome this issue is to

consider the King model. For completeness, another solution has been proposed: the

soft isothermal sphere whose density profile is

ρ(r) =
σ2

2πG

1

a2 + r2
, (1.40)

where a is called nuclear radius. It is evident that in the case r � a the soft isothermal

sphere reduces to the singular isothermal sphere. The importance of the isothermal

sphere is not confined to the description of the star distribution inside SCs or inside

galaxies: in fact observations show that dark matter haloes surrounding both singular

galaxies and galaxy clusters are well described by a singular isothermal sphere, at least

at high distances from the centre. Dark matter haloes are however commonly described

by the profile [79].

1.3 Star cluster dynamics

As we mentioned in Sec. 1.1 SCs are self-gravitating collisional systems. In fact their

relaxation time is shorter than their life time. As a result two-body interactions between

elements of the SC are efficient to erase the memory of the initial conditions of the system

– i.e. they are efficient to relax it. Two-body interactions (see Sec. 1.3.1) are long-range

exchanges of energy between distant particles that interact gravitationally. The result

of this process is a redistribution of the energy inside the SC. As a consequence, the

SC experiments two phases: the core-collapse phase (see Sec. 1.3.2) and the post core-

collapse phase (see Sec. 1.3.5). In this scenario also impulsive three-body encounters

(between binaries and single stars) (see Sec. 1.3.3) play an important role: they may

slow down or even revert the core collapse depending on their strength.
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Figure 1.4: Picture of a two-body encounter. A test star approaches the field star at
velocity v and impact parameter b. The velocity is perturbed only by the component

of the gravitational force F⊥ perpendicular to v.

1.3.1 Two-body interactions

We consider a SC with homogeneous density, a characteristic radius R and composed

of N identical stars with mass m. We study the evolution of the velocity of a test star

during one system crossing [13].

We suppose that the test star passes with a velocity v at the minimal distance b (impact

parameter) (see Fig. 1.4) from a field star. v is deflected by δv because of the encounter

and the amount of the deflection depends on b, and on the masses of the stars, and on

their velocities. Without loss of generality, we assume that the field star is stationary

during the encounter and that the encounter produces a small perturbation on the

velocity of the test star: that is, ||δv||/v � 1, where v ≡ ||v||. We assume that the test

star passes the field star on a straight-line trajectory. v is perturbed only by δv⊥, the

component of δv, perpendicular to v.

If we define the istant t = 0 to be coincident with the closest approach of the two stars,

the perpendicular force F⊥ – origin of δv⊥ – reads

F⊥ =
Gm2

b2 + x2
cos θ =

Gm2b

(b2 + x2)3/2
' Gm2

b2

[
1 +

(
vt

b

)2]−3/2

, (1.41)

where x is the (signed) distance of the test star from its position at closest approach

with the field star (see Fig. 1.4). By substituting the Newton’s laws d/dt(mv⊥) = F⊥

into Eq. (1.41) and integrating with respect to time we get

δv⊥ ≡ ||δv⊥|| '
Gm

b2

∫ ∞
−∞

[
1 +

(
vt

b

)2]−3/2

dt =
2Gm

bv
. (1.42)

Remembering that the surface density of stars in the SC is of the order N/πR2, we can

estimate the number δn of encounters with impact parameter between b and b+ db that
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a test star suffers in one SC crossing as

δn =
2N

R2
b db . (1.43)

Since perturbations v⊥ to test star velocity are randomly distributed around v, the

mean value 〈v⊥〉 = 0. We can instead calculate the variation δv2
⊥,b in one crossing

on the square of the perpendicular component of v (caused by encounters with impact

parameters between b and b+ db) by approximating it using Eqs. (1.42) and (1.43) as

δv2
⊥,b ' δv2

⊥ δn =

(
2Gm

bv

)2
2N

R2
b db . (1.44)

By integrating Eq. (1.44) over all impact parameters in the range bmin − bmax we get

the total variation ∆v2
⊥

∆v2
⊥ ≡

∫ bmax

bmin

δv2
⊥,b ' 8N

(
Gm

Rv

)2

ln Λ , (1.45)

where

ln Λ ≡ ln

(
bmax

bmin

)
(1.46)

is called Coulomb logarithm. We can estimate bmin as the impact parameter at which

the perturbation approach is not valid anymore, i.e. when δv ∼ v: correspondingly

bmin = 2Gm/v2, while bmax can be assumed of the order of R. If we assume that the

system is in virial equilibrium we can use Eq. (1.8) so that we can write

v2 ' 〈v2〉 =
GNm

R
, (1.47)

where v2 ' 〈v2〉 is justified since the typical velocity of a star in a SC is similar to the

mean square velocity. Now, by combining Eq. (1.45) with Eq. (1.47) we get

∆v2
⊥

v2
=

8ln Λ

N
' 8lnN

N
, (1.48)

where the second relation derives from the definition of the Coulomb logarithm and from

Eq. (1.47). We remember that the relaxation time is the time in which an (average)

element of the system undergoes a total velocity variation of the order of its velocity.

In each SC crossing v2
⊥ changes of ∼ ∆v2

⊥; so, in order to have ∆v2
⊥/v

2 ' 1 we need a

number of crossing

nrel =
N

8lnN
. (1.49)

We can now justify the expression of the relaxation time of Eq. (1.4). In fact, by

remembering that tcross is the time necessary for a star to cross the system (see Eq.
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(1.3)) the relaxation time reads

trel = nrel tcross =

(
N

8lnN

)
tcross , (1.50)

where we have used Eq. (1.49). In conclusion, we infer that a star is significantly

perturbed only after many crossing times. If we consider time scales of the order of the

crossing time, the system can be considered in a quasi-stationary state. Furthermore,

on such time scales it is perfectly legitimate to consider that the system is ruled by the

mean potential, with (two-body) interactions playing a negligible role. Only after many

crossing times interactions become important and as a consequence, the system changes

its initial configuration, suffers an energy redistribution and loses memory of its initial

condition. Obviously, only systems with a life time (evaporation time) higher than trel

(for example SCs) may relax: in fact, in the opposite case (for example in galaxies, where

trel is higher than the age of the Universe), the system evolves so slowly that evaporates

before interactions may perturb it and may change its initial condition. Eq. (1.50) gives

a general idea about the order of magnitude of the global relaxation time of a system;

but the different parts of the system – we can think to the SC core with respect to the

halo – evolve with different rates (in particular the SC core evolves faster than the rest

of the SC). In order to account for this fact it is useful to introduce a local relaxation

time [103]

trel ∼ 0.3
σ3

G2〈m〉ρln Λ
, (1.51)

where σ is the local velocity dispersion, 〈m〉 is the local average stellar mass, ρ is the

local density, while the Coulomb logarithm reads

ln Λ = ln(γN) , (1.52)

where γ is a parameter whose value is either inferred by theoretical considerations or

calculated numerically. For equal-mass systems γ ∼ 0.11 [37] is generally higher – as

argued in [51] – than for unequal mass systems where γ ∼ 0.021 [39].

1.3.2 Core collapse

The core collapse is a phase in the life time of SCs when energy is redistributed. In

particular, some stars fall down towards the centre losing kinetic energy, while some

others leave the centre. The core becomes denser and denser, while the halo widens to

such an extent that core and halo become two almost separate systems (see Fig. 1.5).

These processes are due to the two-body interaction: in a heuristic vision what happens

can be sketched as follows. During two-body interactions the stars that lose velocity
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Figure 1.5: Typical behaviour of the Lagrangian radii when the SC approaches to
the core collapse [91]. The inner Lagrangian radii shrink, while the outer Lagrangian

radii widen.

tend to go towards the centre of the SC while stars that increase their velocity tend to

depart from it. As the two-body interaction goes on, two different systems develop: one,

the core, made by slower stars tend to become more bound, the other, the halo, made

by faster stars becomes less bound and less dense. During this phase the core loses a

great amount of stars which enrich the halo or even leave the SC if they have enough

velocity to overcome the escape velocity. The system tends to develop an infinite central

density, but, since SCs with infinite density have not been observed so far there should

exist a process that inverts, stops or at least slows down the core collapse: three-body

interactions (see Sec. 1.3.3) are a good candidate. After this qualitative description of

the core collapse we want to be more precise and quantitative in describing which is the

physical process responsible for the core collapse: the gravothermal catastrophe.

A SC is a self-gravitating system which reaches virial equilibrium soon after its birth.

As a consequence Eqs. (1.6), (1.8) and (1.13) describe the system. The gravothermal

instability is due to the negative heat capacity expressed by Eq. (1.13). In more details,

two-body relaxation is responsible for a redistribution of energy among the stars of the

SC. In this way, some stars get enough energy to escape from the core (or even the SC).

This fact breaks the virial equilibrium and we get

2K + U < 0 , (1.53)

since kinetic energy decreases more than the potential energy. In fact, escaped stars
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are the fastest in the core and and take with them an amount of kinetic energy that is

much larger than their potential energy. As a result, since potential energy is dominant

over kinetic energy in the core, the immediate consequence of Eq. (1.53) is that the core

contracts in order to get a new equilibrium state. But, as the core contracts it becomes

hotter because of the negative heat capacity, therefore the dispersion velocity increases.

In this way, other stars will get enough velocity to leave the core starting a runaway

process. This runaway process is called gravothermal catastrophe. The asymptotic

conclusion would be a core with infinite density and infinitesimal size and a scattered

halo with almost unbound stars which separates its evolution from the rest of the SC. We

will see in Sec. 1.3.3 that three-body interactions prevent the system from this extreme

fate.

So far we have not imposed any condition on the mass spectrum of the SC: in fact, the

process described is valid both for equal-mass and multi-mass systems. If the SC has

a broad mass distribution, the result is an accelerated core collapse with respect to the

case of a equal-mass system. The reason lies in the equipartition theorem of statistical

mechanics that states that every system tends to a condition of equipartition of energy:

stars tend to have the same kinetic energy. If we have a system with two populations of

mass and velocity (m1, 〈v1〉) and (m2, 〈v2〉), the equipartition theorem assures that the

system tends to condition
1

2
m1〈v2

1〉 =
1

2
m2〈v2

2〉 . (1.54)

If m1 > m2 then 〈v1〉 < 〈v2〉, i.e. population 1 will be on average slower than population

2. In general, at energy equipartition more massive stars have lower average velocities

than lighter ones.

It is quite possible that high and low-mass stars are born with similar velocities within

a SC; but this implies that the average kinetic energy of high-mass stars is larger than

that of low-mass stars, and equipartition will drive the system to a status where the two

populations have the same average kinetic energy, so that high-mass stars will become

slower than low-mass stars: the result is a mass segregation.

More massive stars becoming slower and slower tend to sink to the centre, while lighter

stars becoming faster and faster tend to leave it. As a result, more massive stars in the

core separate from the lighter ones in the halo. So the effect of the two-body encounters

on the SC is magnified by the tendency of the system to get kinetic energy equipartition.

In fact, the resulting mass segregation makes the loss of kinetic energy and increase of

potential energy of the core more efficient. While for many SCs mass segregation forms

dynamically through the above-mentioned process [3], some SCs with primordial mass

segregation exist [14, 41, 98]. The segregation time (i.e. the characteristic time for the
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mass segregation process) for a star of mass m∗ reads [28]

tseg(m∗) =
〈m〉
m∗

trel , (1.55)

with 〈m〉 the average stellar mass in the SC and trel the SC relaxation time.

We conclude this section giving an estimation of the core-collapse time tcc. It is related

to the relaxation time trel – which is not surprising since core collapse is driven by two-

body interactions responsible for SC relaxation. Several numerical simulations estimate

tcc ∼ 15 trel for equal-mass systems (e.g. [100]). In the case of multi-mass systems,

simulations have demonstrated that tcc is lower than in the case of equal-mass SCs but

they are not in complete agreement about the amount: anyway, typical estimates are in

the range tcc ∼ 0.15− 0.20 trel
2 [43, 85].

1.3.3 Three-body interactions

Binaries are of crucial importance for the evolution of a SC: in fact, the encounters

between single and binary stars can tap the internal energy reservoir of the binaries,

so that binaries act as a sort of source of energy, and might prevent the complete core

collapse of the system, or at least slow down the process.

Binaries can originate from three mechanisms:

• Gravitational collapse of a gas cloud – This is the origin of the primordial binaries.

These stars are already bound at the birth of the SC.

• Three-body interactions between stars – During a gravitational encounter among

three stars with positive energy, one of them may increase its own kinetic energy

to an extent that the final energy of the system constituted by the two others is

negative. As a result, those two stars are bound in a binary.

• Tidal capture between couples of stars – This process happens when two stars pass

very close to each other. The tidal interaction dissipates part of the relative kinetic

energy of the two stars, and can lead to the formation of a binary.

From a dynamical point of view we can distinguish between hard and soft binaries. A

hard binary is a binary whose binding energy Eb is greater than the average kinetic

energy of a SC star 〈Ek〉, i.e.

Gm1m2

2a
≥ 1

2
〈m〉σ2 , (1.56)

2It is discussed if trel must be calculated at the half-mass radius or at the core radius.
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where m1 and m2 are the masses of the two stars forming the binary, a is their semi-

major axis, 〈m〉 is the average star mass in the SC, and σ star velocity dispersion. A

soft binary is instead a binary whose binding energy is less than the average star kinetic

energy in the SC. It is useful to introduce also the ratio x between the binary binding

energy Eb and the average star kinetic energy 〈Ek〉

x =
Eb

〈Ek〉
=
Gm1m2

a〈m〉σ2
. (1.57)

As a result, a binary is considered hard if x > 1 and soft in the opposite case.

During three-body encounters there may be an energy exchange between the binary

internal energy and the kinetic energy of the single star: part of the binary internal

energy may be transformed into single star kinetic energy or vice versa [75]. In the

former case the binary becomes more bound (harder) and the single star becomes faster,

in the latter case the binary becomes less bound (softer) and the single star decreases

its velocity.

The behaviour of binaries in three-body interaction can be effectively described by the

Heggie’s law [47]: “hard binaries get harder, soft binaries get softer”. The meaning of

this sentence is quite clear: hard binaries tend to become more and more bound, they

increase their bounding energy and decrease their semi-major axis, while soft binaries

tend to become less and less bound, they decrease their bounding energy and increase

their semi-major axis, until they become totally unbound. This behaviour must be

considered in a statistical fashion: in any particular encounter a hard binary might

widen and a soft binary might shrink.

The binary-single star cross section σcoll can be defined as the area of the circle centred

on the centre of mass of the binary, and with radius equal to the maximum impact

parameter bmax for which the energy exchange is high enough [97]

σcoll = πb2max . (1.58)

In the case where the gravitational focusing (the deflection of the trajectory of the single

star as an effect of the gravitational attraction due to the binary) is important Eq. (1.58)

becomes

σcoll = πa2

(
1 +

2GmT

v2
rela

)
, (1.59)

where mT = m1 + m2 is the total mass of the binary and vrel is the relative velocity

between the single star and the binary. By calling n the stellar density we can define
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the interaction time t2+1 between binary and single star as

t2+1 =
1

nσcollvrel
. (1.60)

After some mathematical manipulations and by using the virial theorem and Eq. (1.57)

t2+1 reads

t2+1 ' 0.02
GM2

cm3

m2
Tv

3
rel

x2

1 + 2x
, (1.61)

where Mc is the mass of the SC and m3 is the mass of the single star interacting with

the binary.

The results of single star-binary interaction can be classified as [97]:

• Flyby – The final state is similar to the initial state but with energy exchange.

• Exchange – The single star becomes part of the binary, while one of the initial

components of the binary becomes a single star.

• Ionization – The binary is destroyed and the final state is made up of three single

stars.

• Merger – Two of the three stars merge in a new star and the third star may remain

bound into a binary or not.

• Triple system – In the final state all the three stars are bound in a triple system.

Anyway this kind of system is unstable [16]: one of the stars leaves the system

within a few crossing times.

The average energy exchange in a single scattering is proportional to the mass of the

single star and inversely proportional to the total mass of the binary [52, 90]

∆Eb

Eb
∝ m3

m1 +m2
, (1.62)

where Eb is the binary binding energy and m3 is the mass of the single star.

If a SC has a significant fraction of hard binaries, these latter represent a energy reservoir

to support the cluster from a complete core collapse. In particular, when the core shrinks,

its density grows and the rate of three-body encounters increases. As a result, the total

energy due to three-body encounters can overcome the potential energy of the core: in

this case, the collapse stops and the core re-expands. This phase is called core bounce

[33].
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1.3.4 Effects of stellar evolution

Stellar evolution produces a mass loss in the SC. In fact, massive stars (> 20 M�)

suffer strong stellar winds which gradually decrease their mass. Furthermore, supernova

explosions are impulsive processes: they partially or totally destroy massive stars as

nuclear reactions are unable to prevent their collapse. This mass loss influences SC

evolution since it decreases the gravitational energy of the core, where for the segregation

process more massive stars are more frequently located (see Sec. 1.3.2). This fact breaks

the virial equilibrium and we get

2K + U > 0 . (1.63)

As an effect, the core widens and the velocity dispersion decreases. In this way, the

relaxation time increases and the core collapse is slowed down [4, 5, 58]. The result of

star evolution on the SC is therefore qualitatively similar to the three-body interactions

even if the causes are different. In three-body interactions the total energy due to

interactions can overcome the potential energy of the core which tends to expand in

order to get a new equilibrium, while stellar evolution depletes the core of mass and

hence the potential energy decreases and the result is again an expansion of the core.

While three-body interactions are important during all the life of the SC, stellar evolution

influences SC fate only in the first ∼ 50 Myr since the birth of a SC. In fact, supernovae

explosions occur less than ∼ 50 Myr from the birth of a star, and most stars which can

produce strong winds already evolved, too. The remaining stars are slowly evolving.

By calling tse the time at which most of the massive stars has already evolved, we

can observe that if trel . tse stellar evolution can only delay core collapse [6, 86] but if

trel � tse stellar evolution can expand the SC before the gravothermal instability begins.

In the second case the SC can become so sparse that it can evaporate without evolving

towards core collapse [17]. Initially segregated systems [110] and high stellar metallicity

(e.g. [65, 87]) can even increase this effect.

1.3.5 A summary of star cluster dynamical evolution

In the previous sections we described the physical processes that rule the evolution of a

SC: two-body interactions are responsible for the SC relaxation and drive the SC to the

core collapse. In this scenario binaries represent an internal energy source for the SC

and through three-body interactions can stop and also invert the core-collapse making

the core re-expand. Another feedback effect against core collapse is the stellar evolution
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Figure 1.6: Typical behaviour of the core radius rc, binary half-mass radius rh,b and
single star half-mass radius rh,s when the SC experiences gravothermal oscillations [29].

(see Sec. 1.3.4). In this section we want to put together all these processes in order to

understand the fate of a SC.

Putting all physical processes (two-body encounters, three-body interactions, and stellar

evolution) together, we can describe the fate of a SC. The evolution of a SC is primarily

ruled by two-body interactions which drive the system to the gravothermal catastrophe

and to core collapse – the process is faster with an initial broad mass distribution. But,

stellar evolution can slow down this process in the first 50 Myr or even prevent it in

the case the SC has a very high relaxation time. So, after a phase of collapse, the

SC re-expands. In this first phase, if primordial binaries are present 3, they greatly

contribute to slow down the core collapse [54]. After the SC gets a new condition of

virial equilibrium, two-body interactions are still in action. As a consequence, the SC

suffers again a contraction phase. The effect of stellar evolution is now negligible since

supernova explosions have already occurred as more massive stars have already evolved

and no significant stellar winds are in action. So, the only remaining feedback effect

against collapse is the three-body interaction. In conclusion, after the first core collapse

the SC experiences several phases of expansion and contraction (see Fig. 1.6) called

gravothermal oscillations since gravothermal instability is considered as the cause of

both the phases 4 [70].

3If there are no primordial binaries, it is anyway possible to demonstrate that they will surely form
during the approach to core collapse [78].

4It is actually debated whether also the re-expansion phase is of gravothermal nature. A compet-
itive explanation is that binaries or massive stars may be ejected from the core by strong three-body
interactions [56, 73].
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MYSCE code description

In this Chapter we first describe the different numerical methods used to simulate SCs,

then, we present our modified Hénon Monte Carlo approach on which our code MYSCE

is based.

2.1 Numerical methods to simulate Star Clusters

As far as the methods to simulate SCs are concerned, four main approaches have been

adopted in the literature: (i) the N -body method, (ii) a fluid dynamic approach, (iii) a

statistical description of the system based on a distribution function, and (iv) the Monte

Carlo method (for a review of the methods see i.e. [30, 49]).

The N -body method is basically the numerical integration of the equations of motion

of N bodies, starting from assigned initial conditions. This approach allows to follow

the evolution of each star in the SC and its interaction (two- and three-body encoun-

ters) with each other star in the system. As a consequence, it is the most accurate and

allows to have control over both the global and microscopic characteristics of the SC.

The disadvantage is its computational burden: the time required for the computation

of the mutual forces is proportional to N2, and as N increases, close interactions be-

come more frequent and the time step must be accordingly reduced. The number of

steps per crossing time is proportional to N and by remembering that the relaxation

time is proportional N times the crossing time (see Eq. (1.4)), as a result, the total

computational time is proportional to N4 [112]. It is possible to improve the situation

by using individual time steps for the stars in the different regions of the system [1],

or by introducing a binary three in order to reduce the burden of calculations of the

far interactions [55]. Anyway, the time step remains a fraction of the crossing time (for

29
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reasons of accuracy) and the computational burden still remains very high: as a result,

it is currently difficult to simulate systems of N > 105 stars with this method. An

alternative solution would be to use results obtained from systems of a limited number

of stars and extrapolate them to a large value of N . However, the different processes in

a SC (relaxation, evaporation, stellar evolution) depend in different ways on N so that

this extrapolation may be at least risky [2, 48, 74].

In the second approach SCs containing an extremely large number of stars are considered

as a fluid [38, 63, 64, 67, 68]. This approach is based on the treatment of the collisional

Boltzmann equation (Eq. (1.15)). The main disadvantage of this approach is that a

precise model and integration of collisions is very difficult because of the continuous

nature of the method.

The third approach uses a distribution function f(r,v,m, t) to describe the system in

a statistical fashion, where r is the position,v the velocity, m the mass of a star and t

is the time. f satisfies the Fokker-Planck equation [93], which is numerically integrated

[12]. Again, the main problem is the treatment of collisions which cause an increase of

the complexity of the method since they would require a modification of the distribution

function f .

The forth approach to study SCs is the so-called Monte Carlo (hereafter MC) method.

The underlining hypothesis in the MC scheme is similar to the method that solves

the Fokker-Planck equation: in fact, we start by considering a distribution function

f(r,v,m, t). However, the MC method is based on particles, and in this sense it is

similar to the N -body method. Actually, two different MC schemes exist: the so-

called Princeton method [99–102] that numerically integrates the orbit of each star and

allows the simulation of fast physical processes, and the Hénon method developed in

[49, 50] which does not follow the orbit of any star and recalculates the radial position

of stars at the end of each time step with a sample procedure (for more details see Sec.

2.2.8). While the first method can be used also for violent and fast processes (the time

step is a fraction of the dynamical time), the second one is less time consuming and

allows to include several physical processes such as stellar collisions, and a stellar mass

distribution – which would instead slow down too much the first approach. The MC

method is an intermediate approach between N -body and statistical methods and tries

to combine their advantages. N -body method gives an amount of information about

the motion of single stars that is not necessary since we are interested in the global

properties of the SC (such as the Lagrangian radii evolution or the variation of the

stellar velocity dispersion). Moreover, the N -body method does not make any theoretical

hypothesis or simplifications, while the MC scheme can reduce the computational burden

by considering the symmetry of the problem and by making appropriate theoretical
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assumptions. In the Hénon scheme a SC is a spherical system that evolves on the scale

of the relaxation time 1, so that the time step should be a small fraction of that time scale

instead of a small fraction of the crossing time, as happens in the N -body simulations.

By using such information we can simplify the problem and decrease the computational

burden without losing accuracy in the results about SC global properties. The evolution

of the spherical SC is computed by following a sample of test-stars representing spherical

star shells. The gravitational field is divided in two parts: a main smooth field, and a

small fluctuating field. The smooth potential is calculated by using the assumption

of spherical symmetry. During a time step the motion of a star is ruled only by the

smooth potential. The fluctuating field is important on larger time scales (∼ relaxation

time) and allows us to simulate relaxation. Its origin is the perturbation due to two-

body interactions: we should consider for each star its interaction with all the others.

This would drive us back to the N -body approach. So we apply the MC tactics: first,

we randomly consider only a particular point in the test star orbit where we calculate

the perturbation instead of integrating it along all its orbit, second, we take a single

field star as representative of all interactions with the test star and we multiply this

perturbation by a factor that takes into account all perturbations and their duration.

In this way, we do not get the correct perturbation of the test star but we can maintain

the correctness of its statistical properties. The computational time of a MC method is

roughly proportional to N−N2 compared to N3−N4 of a N -body method: a first factor

N is saved since perturbations are calculated in only a point of the orbit, and a second

one since the interaction is calculated with only a single field star, rather than N . As a

result, we can consider the evolution of the system without integrating stellar orbits (as

in a statistical method); but, we can describe collisional interactions with some accuracy

(since the MC scheme is a particle method like the N -body method). In fact, despite

the much lower computational burden, the accuracy about the global properties of the

SC is comparable to the one obtained with a N -body integration (and much better than

what can be obtained with statistical methods).

2.2 Outline of the MYSCE algorithm

2.2.1 Overview

The MYSCE code is based on a MC method since our aim is to simulate SCs composed

by a number of stars in a broad range (104 − 107) – which would be impossible with a

1This approach cannot be applied to the initial phases of the life of the cluster, where it evolves on
the crossing time scale; instead, the Princeton scheme is well suited for followig these rapidly evolving
phases.
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N -body method (limited to N . 105 particles), and because we want to include a good

description of two- and three-body interactions – which would be impossible with a pure

statistical method. Moreover, we choose a MC method since it allows to include stellar

evolution, and metallicity dependence in a easier and more accurate way than a pure

statistical method. Among the different MC methods [49, 95, 99], we choose the one

developed by Hénon [49, 50] because it allows to reduce drastically the computational

burden not requiring orbit integration and since it allows the use of time steps which

are fractions of the relaxation time instead of fractions of the dynamical time. This

method is widely used to simulate SCs [30, 57]. MYSCE is indeed based on a modified

version of the Monte Carlo method developed by Hénon [49, 50] and successively used

and improved by [40, 104, 105].

Four main aspects differ our method from the original one described by [50]:

1. In the original implementation, each particle is a superstar representing some stars

with similar properties, whereas in our version each particle is a single star –

which allows us to represent in a more realistic way star initial mass distribution,

interaction, and evolution.

2. MYSCE generally uses a time step which is a smaller fraction of the relaxation time

than what was originally suggested by [49, 50], because we wish to follow in deeper

detail SC evolution (in particular the SC core, where processes are faster).

3. We use a few-body integrator to treat three-body interactions in order to have

an higher accuracy than statistical or semi-analytical approaches. Obviously, the

exact integration of the three-body encounters increases the whole computational

time of a simulation but the reason for this choice is that such interactions are

crucial for the SC evolution (see Chapter 1 Sec. 1.3.5).

4. Monte Carlo methods suffer a known numerical problem, the spurious relaxation:

even in the absence of physical interactions (two- and three-body interactions) the

system tends to a “numerical relaxation” (inner Lagrangian radii tend to shrink,

the outer ones to widen). We include in MYSCE a spurious relaxation correction

that, in principle, completely removes the problem. For a deeper discussion of the

spurious relaxation and for the method adopted for its solution, see Sec. 2.2.10

and Appendix A.

The scheme of our algorithm is represented in the block diagram of Fig. 2.1. For a

system with spherical symmetry and containing N particles (stars) the method can be

summarized as follows. Each star is generated with an appropriate value of mass m,

distance from the centre r, radial velocity vr, and tangential velocity vt according to
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Figure 2.1: Block diagram of the modified Monte Carlo method used in the code
MYSCE.

appropriate distributions (for more details see Chapter 3). Before entering into the loop

of repetition and performing all the calculations pertaining to each time step, energy

and angular momentum of each star are evaluated. At the beginning of the time step the

gravitational potential is calculated; then, the effects of two-body interactions among

stars are calculated using an “on average” (Monte Carlo) procedure which perturbates

energy and angular momentum of each star. Next, three-body interactions are calcu-

lated by means of a few-body integrator. Afterwards, possible single star-single star

and/or single star-binary mergers are treated. Stars having positive total energy after

interactions and are therefore unbound (by the SC) are removed from the system. Once

new energy and angular momentum are assigned to each star, the entire system is up-

dated by giving to each star a new position and velocity consistent with the constants

of motion. The new position is chosen randomly but weighted by the time spent by the

star along its orbit. Star evolution (stellar winds, red giant, white dwarf, neutron star,

BH formation, etc.) is then considered. At the end of the step we add the spurious

relaxation correction mechanism.

As far as the code implementation is concerned, we decided to parallelize both the entire

time step and, inside each time step, three-body interactions since these latter are the

most computationally burdensome operations in our code.
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2.2.2 Time step

The time step ∆t must be short enough to simulate the two-body relaxation in the core,

otherwise, for too large time steps the system is under-relaxed. In order to obtain this

goal we take for all the SC a small fraction of the relaxation time in the core trel,core

[103] (see Eq. (1.51)) that reads

trel,core ∼
0.3

ln Λ

σ3
core

G2νcore〈m〉
, (2.1)

where lnΛ is the Coulomb logarithm, σcore is the core dispersion velocity, G is the

gravitational constant, νcore is the star number density in the core, and 〈m〉 is the

average mass for a star in the core.

2.2.3 Gravitational potential

Thanks to spherical symmetry, the angular positions of stars do not matter for the

calculation of the gravitational potential which depends only on radial position of stars.

After sorting all the N stars according to their distance from the SC centre, and calling

rk and rk+1 the position of two consecutive stars the potential Φ at r with rk < r < rk+1

reads

Φ(r) = G

(
− 1

r

k∑
i=1

mi −
N∑

i=k+1

mi

ri

)
, (2.2)

where mi is the mass of the i-th star.

The gravitational potential is normally calculated only once at the beginning of the

time step and few times after the spurious relaxation correction (see Sec. 2.2.10 and

Appendix A for more details): in fact the most frequent physical interaction is the two-

body relaxation which is however supposed to perturb only the star velocity but not the

star position. The only cases when potential is updated during the time step is in the

case of mergers and in the case of star exchange in three-body encounters.

2.2.4 Two-body interactions

In order to treat two-body relaxation in a Monte Carlo fashion we should first select at

random the position of each star along its orbit. Anyway, this is not necessary neither

in the first step (since positions are chosen randomly according to an initial distribution

function) nor in successive steps (since positions are again selected in a random way but

weighted by the time spent by the stars along their orbit, see Sec. 2.2.8 for more details).

Therefore, each star is considered as a test star which interacts with only another star
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representative of the field stars. Since the greatest part of the two-body perturbation

on a star is given by the closest stars, it is safe and convenient to choose the closest

one (according to the radial distance) as representative of the field stars. The role of

the test star and of the star representing the field stars can be inverted so that star

perturbations are calculated in couple.

Following the notation introduced by Hénon, the properties of the test stars are described

by (r, vr, vt,m) while the star representative of the field stars by (r′, v′r, v
′
t,m

′). We

define v the total velocity of the test star and v′ the total velocity of the field star.

By considering a reference frame where the centre of mass of the test star and the field

star are at rest, the norm of the velocity of the test star remains unchanged after the

encounter, and only its direction is deflected by an angle β defined by

tan
β

2
=
G(m+m′)

w2l
, (2.3)

where w ≡ ||w|| ≡ ||v′ − v|| is the relative velocity and l is the impact parameter that

reads

l =
1√

2πw∆tνlnN
, (2.4)

where ν is the local (around the test star) number density of field stars (for more details,

see [50]2 and references therein). In addition to the impact parameter we must know

also the angle ψ which the plane of relative motion (r′ − r,v′ − v) forms with some

reference plane. To obtain this goal we can take ψ randomly in the interval [0, 2π) with

an uniform distribution. Then, we consider an orthogonal reference frame such that r

is parallel to the z-axis and v is parallel to the (x, z) plane. Since the two stars are

supposed to be as close as possible each to the other, we can impose, without any loss of

generality, that r′ ‖ r. Consequently, v′r and vr are aligned but v′t and vt can be directed

randomly in the plane (x, z): we define the x-axis to be parallel to vt, while v′t lies in

a random direction in the (x, z) plane. So we can write the total velocities of the two

stars v and v′ as

v = (vt, 0, vr), v′ = (v′tcosφ, v′tsinφ, v
′
r), (2.5)

where φ is randomly chosen in the interval [0, 2π) with an uniform distribution. The

relative velocity w = (wx, wy, wz) reads

w = (v′tcosφ− vt, v′tsinφ, v′r − vr). (2.6)

2In our method ν is not estimated, it is actually calculated since the number N of stars in the SC is
high enough to perform a suitable evaluation.
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Then we build an orthogonal reference frame (w,w1,w2). w1 and w2 are defined

w1 = (wyw/wp,−wxw/wp, 0), (2.7)

w2 = (−wxwz/wp,−wywz/wp, wp), (2.8)

where w is the norm of the vector w and wp = (w2
x + w2

y)
1/2. By assuming that ψ is

measured in the plane (w1,w2) the relative velocity w∗ after the encounter is

w∗ = wcosβ + w1sinβcosψ + w2sinβcosψ. (2.9)

The new velocities v∗ and v′∗ of the two stars after the encounter can be written as

v∗ = v − m′

m+m′
(w∗ −w), (2.10)

v′∗ = v′ +
m

m+m′
(w∗ −w). (2.11)

Since we assume that the two stars do not change position during the interaction, also

the direction of the radial velocity does not change (only its norm does change): hence,

by using Eq. (2.10) for the first star we get

v∗r = v∗z , v∗t =
√
v∗2x + v∗2y ; (2.12)

its energy E∗ and angular momentum J∗ are therefore

E∗ = Φ(r) +
1

2
(v∗2r + v∗2t ), J∗ = rv∗t . (2.13)

Similar equations can be written for the second star.

2.2.5 Three-body interactions

In MYSCE, a binary is completely described by the mass m1 of the more massive star,

the mass m2 of the less massive star, the semi-major axis a and its eccentricity e. These

properties are used only for the three-body interactions, while, throughout the rest of

the code, a binary is considered as a single star with mass m = m1 + m2, and with

position and velocity equal to those of the binary centre of mass.

At each time step we must select which single stars interact with a particular binary. The

only condition which a single star should satisfy is that its impact parameter with the

binary is less than a threshold value (more details further). Anyway, such a calculation

for all the single stars would be extremely inefficient and computationally onerous. This

is the reason why we introduce preliminary conditions to be met. We follow the same
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convention of Sec. 2.2.4. Here, not-primed quantities are related to the binary and

defined with respect to its centre of mass (m = m1 +m2 is the total mass of the binary),

while primed quantities refer to the single star. We evaluate two conditions

||r′ − r|| < 3

√
1

νloc(r)
, (2.14)

||r′ − r||√
v′2r + v

′2
t

< 0.1Tbin, (2.15)

where νloc is the local (around the binary) star number density, and Tbin is the binary

orbital period. Condition (2.14) ensures that the single star is close enough to the

binary. Condition (2.15) ensures that the single star is fast enough when approaching

to the binary, so that this latter does not move too much within the SC. As a first

step, stars which do not satisfy condition (2.14) or condition (2.15) where r and r′ are

substituted with the radial distances r and r′ are not considered anymore. If a single star

overcomes this first selection, by assuming binary position along the x-axis, we evaluate

the position of the single star by generating two random angles: δ such that cosδ is

uniformly distributed in the interval [−1, 1) and ε in the interval [0, 2π). Consequently,

r and r′ read

r = (r, 0, 0), r′ = (r′sinδcosε, r′sinδsinε, r′cosδ). (2.16)

Then, we check if the single star satisfies, with the calculation of the real distance, both

condition (2.14) and condition (2.15): if this is the case we proceed further. Then, we

consider also the direction of motion of the centre of mass of the binary and of the single

star: we suppose that the tangential velocity of the centre of mass of the binary is along

the y-axis. So its total velocity reads

v = (vr, vt, 0). (2.17)

The calculation of the total velocity of the single star is more complicated. Its radial

velocity v′r reads

v′r = (v′rsinδcosε, v′rsinδsinε, v
′
rcosδ). (2.18)

The tangential velocity v′t must be orthogonal to v′r, so we can define the subsidiary

vector v′t,aux (orthogonal to v′r)

v′t,aux =
(0, v′t, v

′
ttanδsinε)√

1 + (tanδsinε)2
. (2.19)

v′t,aux cannot be the correct tangential velocity since we chose a particular direction: we

do not know the direction of v′t. In order to calculate the correct v′t we must generate a
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random angle ζ uniformly distributed in the interval [0, 2π) and make a rotationR(v′r, ζ)

of v′t,aux around the axis of direction v′r such that

v′t = R(v′r, ζ)v′t,aux, (2.20)

where

R(v′r, ζ) ≡


cz +

v
′2
r,x

v′2r
(1− cz)

v
′
r,xv

′
r,y

v′2r
(1− cz)−

v
′
r,z

v′2r
sz

v
′
r,xv

′
r,z

v′2r
(1− cz) +

v
′
r,x

v′2r
sz

v
′
r,xv

′
r,y

v′2r
(1− cz) +

v
′
r,z

v′2r
sz cz +

v
′2
r,y

v′2r
(1− cz)

v
′
r,yv
′
r,z

v′2r
(1 + cz)−

v
′
r,x

v′2r
sz

v
′
r,xv

′
r,z

v′2r
(1− cz)−

v
′
r,x

v′2r
sz

v
′
r,yv
′
r,z

v′2r
(1 + cz) +

v
′
r,x

v′2r
sz cz +

v
′2
r,z

v′2r
(1− cz)

 ,

(2.21)

where cz = cosζ and sz = sinζ. Finally, we can write the total velocity of the single star

v′ as

v′ = v′r + v′t. (2.22)

Afterwards, we calculate the maximum impact parameter bmax [53]

bmax =

(
Cvc

||v′ − v||
+D

)
a, (2.23)

where a is the binary semi major axis and

v2
c = G

m1m2(m1 +m2 +m′)

m′(m1 +m2)a
, (2.24)

is the critical velocity for which the total energy of the three-body system vanishes, and

C and D are suitable parameters. A good choice to explore all possible outcomes of

three-body interactions (flyby, exchange, and ionization) is C = 4 and D = 0.6(1 + e),

where e is the eccentricity of the binary [53]. Then, we calculate the impact parameter

b defined as the perpendicular distance between the path of a projectile star and the

centre of mass of the binary.

In order to completely define the three-body system we must know the three masses of

the stars m1, m2, and m′, the initial eccentricity of the binary e, the relative velocity

vrel = ||v′ − v||, the impact parameter b, the two impact direction angles θ and φ, the

impact orientation ψ, and the binary initial phase f (see Fig. 2.2). Among the previous

quantities θ and φ are easily calculated by writing vrel in spherical coordinates, ψ is

randomly generated in the interval [0, 2π) with an uniform distribution. f is randomly

generated in the interval [0, 2π) but with a distribution taking into account the time

fraction which the system spends at each particular orbital phase (for a description of a

good method to obtain f see [53]).
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Figure 2.2: Scheme of a three-body interaction between a binary and a single star
(figure by [53]). Here, V is the relative velocity, m3 is the mass of the single star and
ρ is the impact parameter. In the text we called these quantities: vrel, m

′, and b,
respectively.

If b < bmax, the three-body interaction does happen, and we proceed with the integration

of the system by using the few-body code developed by [71]. After the integration of the

three-body system we obtain new values for the velocities v and v′ and consequently

for the radial and tangential velocities vr, vt, v
′
r, and v′t, for the semi major axis a and

the eccentricity e. We assume that the positions are conserved: in the case of ionization

nothing changes as regard position (for a complete ionization we take for both the stars

once forming the binary the position of the centre of mass of the old binary), instead in

the case of exchange we put the star exiting out of the binary in the position belonging

to the intruder star before the interaction.

For more details about the initial setting of the three-body system and for the solution

method in a N -body fashion see [71].

2.2.6 Possible mergers

Two- and three-body interactions and stellar evolution 3 can give rise to conditions

suitable for stellar mergers. While single star-single star merger is more and more

probable as SC density grows in later stages of its evolution, merger in three-body

encounters can happen also in the first phases.

3A star can increase its radius during its evolution phases (red giant). As a result, in a binary, such
star can become at contact with the other star.
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The basic idea is that two stars coalesce if they touch i.e. if during their motion the

distance between their centres become less than the sum of their radii. We start by

considering single star-single star merger. We know only the radial distance of stars

which are sorted according to their distance from the SC centre. In order to be as

efficient as possible we start from the star closest to the centre and we investigate

(following the sorting) which stars have a difference of radial distance less than the sum

of their radii. For the stars surviving the last condition we calculate the real distance by

generating two random angles: δ such that cosδ is equally chosen in the interval [−1, 1)

and ε in the interval [0, 2π). We use the same convention of Sec. 2.2.4. Therefore the

position r of the current star and the position r′ of the star candidate to merge read

r = (0, 0, r), r′ = (r′sinδcosε, r′sinδsinε, r′cosδ). (2.25)

By calling R and R′ the stellar radii of the two stars, these latter merge if

||r′ − r|| < R′ +R. (2.26)

Since condition (2.26) can be met only if the distance of the two stars is much smaller

than the size of the cluster (and, usually, than ||r||), we can suppose (without loss

of generality) that r′ ‖ r, i.e. only stars with δ ∼ 0 are good candidate to merge.

With this in mind we infer that Eq. (2.5) represents the velocities of the two stars

with, again, φ randomly chosen in the interval [0, 2π) since we do not know relative

direction of the tangential velocities. Position, radial velocity, tangential velocity, and

mass (rM, vr,M, vt,M,mM) of the new star after the merger read

rM =
mr +m′r′

m+m′
, (2.27)

vr,M =
mvr +m′v′r
m+m′

, (2.28)

vt,M =

√
(mvt +m′v′tcosφ)2 + (m′v′tsinφ)2

m+m′
, (2.29)

mM = α(m+m′), (2.30)

where α is a parameter measuring the efficiency of the merger. In the simulations

performed in this thesis, we always take α = 1 but we plan to modify it in the near

future in order to describe the merger process with greater accuracy.

Merger during three-body interaction can happen between the single star (intruder)

and one of the star forming the binary or between the two stars of the binary which

become so tight to coalesce. In order to inquire these possibilities, during the integration

of the three-body system (see Sec. 2.2.5) mutual distances among the three stars are
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monitored and if condition (2.26) between two of the three stars is satisfied their merger

is considered.

In the case of merger between the single star and a star of the binary the merger

procedure is only slightly different with respect to the one described above (single star-

single star merger). If now, not-primed quantities are referred to the binary and primed

quantities to the single star, r is the position of the centre of mass of the binary, vr

and vt are the radial and tangential velocities of the centre of mass of the binary and m

is its total mass. We obtain rM = r since the single star is close to the binary during

three-body interaction. As soon as radial and tangential velocity are concerned, Eq.

(2.28) and Eq. (2.29) are still in use with the new meaning of the not-primed quantities.

As regard the mass of the new star resulting from the merger, Eq. (2.30) is still valid

but in this particular case m represent the mass of the binary component which suffers

the merger with the single star.

Also the initial semi major axis ai of the binary is modified by the merger. By calling

Ek,i = 0.5m(v2
r + v2

t ) + 0.5m′(v′2r + v′2t ) the initial kinetic energy, Eb,i = −Gm1m2/2ai

the initial binary binding energy (m1 and m2 are the masses of the two binary stars),

and Ek,f = 0.5mM(v2
r,M + v2

t,M) the final kinetic energy, the final binding energy Eb,f

arises from the energy conservation so that Eb,f = Ek,i + Eb,i − Ek,f . Hence, the final

semi major axis af reads

af = −G(m1 +m′)m2

2Eb,f
or af = −Gm1(m2 +m′)

2Eb,f
, (2.31)

in the case the single star merges with the first star of the binary or with the second

one, respectively.

When the two stars forming the binary merge, the calculation is even simpler: in fact the

new star has the position, radial and tangential velocity of the binary centre of mass and

mass equal to the total binary mass (with eventual mass loss), i.e. rM = r, vr,M = vr,

vt,M = vt, and mM = α(m1 +m2).

2.2.7 Removal of unbound stars

Once energy and angular momentum perturbations due to two- and three-body interac-

tions are calculated stars may have a positive total energy. If this is the case they are

unbound and are assumed to leave the SC within a crossing time. As a consequence we

immediately remove them from the simulation since our time step is a fraction of the

relaxation time which is always orders of magnitude greater than the crossing time.
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2.2.8 Star position and velocity recalculation

The perturbations induced by two- and three-body interactions give a new energy E and

angular momentum J to each particle, so that a new realization of the entire system

must be calculated: new position r, radial velocity vr, and tangential velocity vt are

randomly assigned to each star according to the new constants of motion. The position

and corresponding velocity are chosen such that the position is weighted by the amount

of time spent by the star at that location. Each star describes a rosette orbit with r

oscillating between the periapsis rmin and the apoapsis rmax. rmin and rmax are the loci

of points where vr = 0 and are therefore solution of

Q(r) = 2E − 2Φ(r)− J2

r2
= 0. (2.32)

A general discussion is present in [12], while for details about a method of solution of

Eq. (2.32), see [50].

The new position r of the star is randomly chosen between the two extremes rmin and

rmax with a distribution dictated by the time spent by the star at each radial distance

dr from the centre of the cluster

dt

T
=

dr/|vr|∫ rmax

rmin
dr/|vr|

. (2.33)

where T is the orbital period and the radial velocity vr is given by

|vr| =
√

2E − 2Φ(r)− J2

r2
=
√
Q(r). (2.34)

The classical von Neumann rejection technique [45] could in principle determine a suit-

able value for r according to a distribution function proportional to f(r) = 1/|vr|.
However f(r) diverges in the two extremes rmin and rmax where vr = 0. A solution for

this problem in to apply a change of variable by introducing the new variable s linked

to r by an appropriate relation r = r(s). The new distribution function is proportional

to

g(s) =
1

|vr|
dr

ds
. (2.35)

By applying now the von Neumann rejection technique to Eq. (2.35) an appropriate

value for the star position r can be obtained (for a deeper discussion see [50]). The new

radial velocity vr is calculated by means of Eq. (2.34), while the tangential velocity vt

is obtained by vt = J/r.
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2.2.9 Stellar evolution

In the future we plan to make evolve stars in function of initial metallicity by using

results obtained by [15]. We will be able to follow the initial mass loss of massive stars

(M > 10 M�) due to stellar winds, their path through the main sequence until they

become red giants, white dwarfs, neutron stars, or BHs. Suitable changes in the value

of stellar mass and radius will be taken into account in each time step.

2.2.10 Spurious relaxation

Spurious relaxation is a numerical artefact first discovered by [50] which tends to relax

the SC even in the absence of physical interactions (two- and three-body interactions):

inner Lagrangian radii shrink while outer ones widen. The reason for this behaviour

lies in the random nature of the MC algorithm: even in the absence of any interaction

at each time step a new random realization of the system is generated and this latter

differs from any previous one. Each new realization generates small random fluctuations

in the new gravitational potential and consequently in the energy of each star (see Eq.

(2.13)). By using the potential calculated at the beginning throughout the time step

a mismatch between total energy, gravitational potential, and kinetic energy forms –

which provokes the spurious relaxation. In order to eliminate spurious relaxation effects,

after generating the set of new stellar position r we calculate the new potential and we

estimate the radial velocity vr with Eq. (2.34) but by inserting the new potential instead

of the one calculated at the beginning of the time step. This procedure is performed for

each star and totally removes the spurious relaxation problem. For a deeper discussion

about spurious relaxation and for more details about our solution of the problem, see

Appendix A.





Chapter 3

Initial conditions

In this Chapter we describe the initial conditions that we use to describe the SCs simu-

lated with our Monte Carlo code MYSCE (see Chapter 2). We use a Plummer model [88]

to describe the stellar position and velocity distribution, a Salpeter initial mass function

(hereafter IMF) [94], and the initial condition reported in [82] to describe primordial

binaries.

3.1 Star position and velocity distribution

To describe the distribution of the stellar positions and velocities in the SC we use a

Plummer model with n = 5 (see Chapter 1 Sec. 1.2) [88]. The corresponding distribution

function reads

f(E) =

{
F1E7/2, E > 0

0, E ≤ 0
, (3.1)

where F1 is a normalization constant. E reads

E = Ψ(r)− 1

2
v2 , (3.2)

where Ψ(r) is the relative potential (see Eq. (1.25)) for the Plummer model (see Eq.

(1.31)) calculated for a star at the position r and with a velocity v. Fig. 3.1 represents

the probability distribution associated to the distribution function of the Plummer model

of Eq. (3.1). Once the probability distribution is calculated, it is possible to generate

N stars with positions and velocities distributed according to Eq. (3.1) by generating

random numbers – i.e. in a Monte Carlo fashion. The stellar spatial distribution for a

SC of N = 104 stars and scale radius a = 1 pc is plotted in Fig. 3.2. Fig. 3.3 shows

the star radius probability density, while Fig. 3.4 the star velocity probability density

45
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Figure 3.1: Probability distribution associated to the distribution function of the
Plummer model for a SC of N = 104 stars and with a scale radius a = 1 pc.

Figure 3.2: Spatial distribution of stars according to the Plummer model for a SC of
N = 104 stars and with a scale radius a = 1 pc.

at different radii. We choose a Plummer model for two reasons: first, it is a very good

approximation of star distribution in a SC, and second, this model has an analytical

description for the potential (see Eq. 1.31), the density distribution (see Eq. 1.32), and

velocity dispersion (see Eq. 1.33).
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Figure 3.3: Radius probability density according to the Plummer model for a SC of
N = 104 stars and with a scale radius a = 1 pc.

Figure 3.4: Velocity probability density at different radii (at 0.25, 0.5 times the scale
radius, at scale radius and at two times the scale radius, from left to right, respectively)
according to the Plummer model for a SC of N = 104 stars and with a scale radius

a = 1 pc.

3.2 Initial mass function

We choose a Salpeter IMF [94]

f(m) = F2m
−2.35 , (3.3)

with low limit mmin = 0.2 M� and high limit mmax = 120 M�, and where F2 is a

normalization constant. By generating random numbers, the procedure to obtain the

appropriate mass distribution is the same of Sec. 3.1. The mass probability density
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Figure 3.5: Mass probability density according to the Salpeter IMF for a SC of
N = 104 stars and with a scale radius a = 1 pc.

associated to the Salpeter IMF is reported in Fig. 3.5. We choose the Salpeter IMF

since it generates a mass distribution very close to the observed one. It is a matter

of fact that the Salpeter IMF does not differ so much from other used IMFs, such as

the Kroupa IMF [61], except at masses . 1 M�, where the Kroupa IMF is flatter (i.e.,

predicts less low-mass stars) than the Salpeter IMF.

3.3 Primordial binary initial conditions

A binary is completely described by the mass m1 of the more massive star, the mass m2

of the less massive star, the semi-major axis a and its eccentricity e. We introduce also

the ratio between the lighter and the heavier star q = m2/m1.

Since we do not know the initial condition of binaries we generate q, a, and e according

to distributions functions which are in agreement with observations [82].

Going into more details, we first choose at random a star in the system and we consider

it as the more massive star. Then we calculate the value of q to generate the mass of

the second star. The mass ratio is generated following the distribution function

f(q) = F3
1

(1 + q)2
, (3.4)

with qmin = 0.1 and qmax = 1, with F3 a normalization constant. We do not choose

qmin = 0 in order to avoid unrealistic values for the mass of the least massive component

of the binary. For the same reason, if the star selected at the beginning as the more

massive star in the binary has mass < 0.5 M�, this star is considered to be the lighter

one and we take q−1 to generate the mass of the heavier star.
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The semi major axis is generated following the distribution function

f(a) = F4
1

a
, (3.5)

with F4 a normalization constant. The upper and lower limits of the semi major axis

amin and amax depend on the initial hardness of the binary in the SC. Typical values are

amin = 0.5 AU and amax = 103 AU.

The eccentricity is generated following the distribution function

f(e) = F5e , (3.6)

with low limit emin = 0 and high limit emax = 1, and with F5 a normalization constant.

By generating random numbers, the procedure to obtain the appropriate mass ratio,

semi major axis, and eccentricity distribution is the same as in Secs. 3.1 and 3.2.





Chapter 4

Gas infall into star clusters

In this Chapter we explore the consequences of gas infall inside SCs. In the first section

we shortly review the mechanisms for the formation of IMBHs and SMBH seeds, as

discussed in the literature. In particular, we focus on the importance of gas infall to

help the formation of IMBHs and SMBH seeds inside SCs. In the second section we

study the response of the stellar system to a infall of gas, and we compute the increase

in the velocity dispersion and in the stellar density. In the third part we study the

consequences of gas infall on the dynamics of SCs: in particular, we want to understand

if and in which conditions the gas infall is able to destroy primordial binaries and favour

the runaway merger of stars/BHs [21].

4.1 State of the art

BHs exist in Nature with a very broad range of masses (1 − 109 M�). BHs with mass

between 1 M� and 100 M� are the result of the evolution of massive stars. BHs in the

mass range 105 − 109 M� (SMBHs) are located in the centre of many galaxies. The

existence of BHs in the intermediate range of masses 103 − 105 M� (IMBHs) is still

debated. IMBHs are proposed as an explanation of several observations [19, 35, 36,

71, 108], but their existence is not demonstrated. Beside the speculation about the

formation of IMBH at present epochs (redshift z = 0), IMBHs are considered as good

candidates to be SMBH seeds in the past (z > 6).

One of the most likely mechanisms for the formation of IMBHs at the present epoch is

that they can form from the collapse of very massive stars produced inside YSCs by the

runaway merger of main-sequence stars via direct physical collisions [26, 43, 44, 83, 85].

Such runaway merger is expected to happen in YSCs whose segregation time is smaller
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than the stellar evolution time of the most massive stars, a condition necessary to prevent

feedback effects due to stellar evolution (for more details on SC evolution see Chapter 1

Sec. 1.3). One or two very massive stars can form in function of the primordial binary

fraction [44], while metallicity and possible gas infall can drastically change YSC fate

(Chapter 1 Sec. 1.3). This mechanism can be extended in the past to SCs with similar

properties as YSCs. In this fashion, this channel can be considered also for the formation

of SMBH seeds.

There are two main mechanisms for the formation of IMBHs in the past (z > 6) or SMBH

seeds (∼ 105 M�), as discussed in the literature, but they suffer some problems: Popula-

tion III stars [69, 111] definitely existed and were likely more massive than present-day

stars, but the mass of the resulting stellar-mass BHs is likely too low (Msbh < 300 M�);

quasi-stars [10, 66] are much more massive (� 1000 M�), but their existence is very

much debated.

An alternative approach is considered in [21]. The main idea is that a massive and

dense SC can undergo core collapse, producing a massive central BH through mergers

of compact objects. This process is inefficient in SCs with little or no gas [89].

A SC undergoes core collapse due to two-body relaxation, and at the same time segre-

gation of the most massive stars occurs towards the cluster centre. As a result, a very

dense core of massive stars forms at the centre – in evolved systems the core is mainly

composed of BHs and other collapsed objects. The core is dynamically decoupled from

the rest of the cluster. However, the presence of binaries complicates this scenario, as

they represent an internal energy source for the cluster. Depending on the fraction

of hard binaries, they can prevent the formation of SMBH seeds via stellar-mass BH

runaway merger.

If BH binaries are not present at the centre, the BH-main sequence star binaries will

quickly undergo exchange interactions that replace the lighter star companion with a

heavier BH [97]. As a result the core is almost completely composed by single BHs

and BH binaries. Dynamical interactions involving BH binaries and single BHs have a

tremendous impact on the fate of the SC core. In fact, in a BH subcluster of a typical

SC, interactions involving hard BH binaries will eventually lead to the ejection of the

BHs from the subcluster. Recoil and ejections lead to complete evaporation of the BH

core on a timescale ∼ 109 yr for typical globular cluster parameters [23, 24, 80]. This

process goes on until there are only a few BHs in the subsystem and this latter relaxes.

In addition, the subsystem can experience BH binary mergers because of orbital decay

driven by gravitational radiation. In this case, a moderate BH growth can be possible.

However, the time scale for merger by gravitational wave emission is usually longer
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than the interaction time in the BH cluster. BH binaries interact before they can

coalesce. As a result, most BH binaries are ejected. Furthermore, even if coalescence

can happen before three-body interaction we must consider the merger recoil speed. In

fact, approaching to coalescence, the merger product receive a kick due to the asymmetric

emission of gravitational radiation. If the merger recoil speed is higher than the escape

speed, the merger product is ejected, and no more BH growth can happen.

We can conclude that a typical SC can hardly experience stellar-mass BH runaway

merger to produce a SMBH seed. A suitable cluster for this process to happen should

have wide BH binaries (semi major axes > 0.5 AU, wider than the those typically ob-

served): in this way, they would be unable to heat the cluster core and three-body

interactions would not so strong to eject BH binaries from the cluster. Alternatively,

the SC should arise with an extremely high single star average kinetic energy at its birth.

While the former condition is quite exotic, the latter can be obtained during SC evolution

through gas infall. In fact, [21] suggested that a large gas infall might speed up the

process, and lead to the formation of seeds as massive as 105 M� in a short time scale.

It is conjectured that at high redshifts (z ∼ 10) gas infalls of up to 10 times the mass

of the SC are common, because of instabilities arising during galaxy mergers or evo-

lution of the galactic discs [11, 72]. The addition of the gas makes the potential well

deeper, and shrinks Lagrangian radii, increasing the central stellar density and the in-

teraction/merger rate. Furthermore, the increase in the average kinetic energies due to

the additional mass will make many hard binaries soft, removing much of the energy

source that initially prevented/slowed the core collapse and approaching the case of a

binary-free core, where (according to [22]) stellar-mass BH runaway mergers should be

possible.

In order to be more quantitative, three conditions must be met to allow for the collapse of

the BH subcluster into a SMBH seed: (i) BH binaries must be softened to an extent that

BH binaries which are soft after the gas infall are destroyed by three-body interaction;

(ii) the timescale of gravitational radiation inspiral must be faster than the interaction

timescale for binaries which remain hard after gas infall (i.e., binaries merge/are dis-

rupted before they can heat the cluster); (iii) BH-BH merger products must be retained

within the SC (i.e. the escape velocity must be high enough). The last two conditions

are met if the SC velocity dispersion is ∼ 500 km/s [21] – however, such a high value is

rather extreme.

We focus on gas infall mechanism [21] in order to understand if and in which conditions

it can prevent binary heating in a massive SC helping SMBH seed formation via BH

runaway merger. We extend also the possibility of gas infall to YSCs in order to inquire
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if the gas infall can help the formation of an IMBH via the collapse of a very massive

star produced by the runaway merger of main-sequence stars [26, 43, 44, 83, 85].

4.2 Gas infall in the absence of physical interactions

In this section we want to study the infall of gas inside a spherical SC. We model the

distribution of stars within the SC using a Plummer density profile [88] (see Chapter

3 Sec. 3.1) with initial scale radius a∗,i. We suppose that the gas profile (supposed to

have a spherical distribution) can be described by a Plummer profile as well: we call aG

the gas scale radius. We use a Salpeter IMF [94] (see Chapter 3 Sec. 3.2) for the stellar

mass distribution 1. The potential associated to the stellar distribution reads

φ∗,i(r) = − M∗G√
a2
∗,i + r2

, (4.1)

where M∗ is the total stellar mass, G is the gravitational constant and r is the radial

distance from the centre of the cluster. A similar equation can be written to describe

the gas potential φG by substituting a∗,i with aG and M∗ with MG,0, where MG,0 is

the total amount of gas falling inside the SC. We define φG the gravitational potential

associated to the gas. The total initial potential φi ≡ φ∗,i since gas has not fallen inside

the SC yet.

Our aim is to provide an analytical estimate of the value of the stellar scale radius

after the infall of a mass MG,0 of gas settling on a gas scale radius aG. We call a∗,f

the final stellar scale radius and σ∗,i and σ∗,f the initial and final velocity dispersion,

respectively. We can easily write the final gravitational potential φf as the sum of the

final star potential and of the gas potential

φf (r) = − M∗G√
a2
∗,f + r2

−
MG,0G√
a2

G + r2
. (4.2)

We start by considering the conservation of the angular momentum of a star which

has an initial distance Ri = a∗,i from the centre and will have, for consistence, a final

distance Rf = a∗,f after the gas infall

Vcirc,f (a∗,f )a∗,f = Vcirc,i(a∗,i)a∗,i, (4.3)

where Vcirc,i and Vcirc,f are the velocities of the considered star in a circular orbit at

radius a∗,i and a∗,f before and after the gas infall, respectively. In general, the circular

1By definition, for the case of absence of physical interactions each result is independent by the choice
of the IMF.
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velocity Vcirc of a test particle in a circular orbit at radius r is related to the norm of

the gravitational field ||g||

||g|| = V 2
circ

r
. (4.4)

Thanks to the spherical symmetry of the system we observe that the gravitational po-

tential φ is function only of the radial distance r and can be easily related to the norm

of the gravitational field (||g|| = dφ/dr). So, we obtain the link between the potential φ

and circular velocity Vcirc

V 2
circ = r

dφ

dr
. (4.5)

By calculating Vcirc,i and Vcirc,f by using Eq. (4.5), we can exploit the angular momentum

conservation of Eq. (4.3) and, in this way, we obtain an implicit expression that links

the stellar scale radius a∗,f after the gas infall with a∗,i (before the infall)

a4
∗,f (aG,MG,0) =

M∗

23/2

(
M∗

23/2a3
∗,f (aG,MG,0)

+
MG,0

(a2
∗,f (aG,MG,0) + a2

G)3/2

)−1

a∗,i. (4.6)

By defining

α∗ =
a∗,f
a∗,i

, αG =
aG
a∗,i

, β∗ =
σ∗,f
σ∗,i

, WG =
MG,0

M∗
, (4.7)

Eq. (4.6) can be rewritten in the dimensionless form

α4
∗(αG,WG) =

1

23/2

(
1

23/2α3
∗(αG,WG)

+
WG

(α2
∗(αG,WG) + α2

G)3/2

)−1

. (4.8)

Eq. (4.8) relates the relative reduction of the scale radius α∗ (with respect to a generic

a∗,i) with the relative gas scale radius αG (with respect to a generic a∗,i) as a function of

different relative amounts of gas WG (with respect to a generic M∗). For completeness,

β∗ represents the relative increase of the velocity dispersion (with respect to a generic

σ∗,i). In this way, we obtain an expression (4.8) which is valid for a SC of whatever mass

M∗ and scale radius a∗,i.

The implicit equation (4.8) can be solved numerically.

We model the gas infall as

MG(t) =
MG,0

2

[
1 + erf

(
t− t0√

2τ

)]
, (4.9)

where MG,0 is the total amount of gas falling in the SC, t0 is the time at which the

gas infall happens and τ measures the infall duration. We tried several choices for the

duration τ (from small fractions of the crossing time to small fractions of the relaxation

time) but there is no appreciable difference in the final results.
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The analytic treatment allows us to infer a∗,f , but other information is still missing.

For example, we do not know how does the velocity dispersion evolve and how the SC

as a whole does contract. In order to obtain this information, we performed several

simulations of SCs with the properties mentioned above by using the code MYSCE which

is based on the Monte Carlo method presented in Chapter 2. We considered SCs of

N = 104 stars with initial scale radius a∗,i = 1 pc. For these simulations we turned off

two- and three-body interactions in MYSCE. In our simulations we introduced an amount

of gas equal, two times, five times, and ten times the total stellar mass of the SC. The

left, and the right panel of Fig. 4.1 show the behaviour of the stellar scale radius after

the infall of the gas with different choices of the gas scale radius and of the total amount

of gas in our analytical estimate and in our performed simulation, respectively. Fig. 4.2

shows the simulated behaviour of the velocity dispersion of the cluster stars once gas

infall occurs as a function of the gas scale radius and of the total amount of gas.

We can have a zero-order check of the correctness of the behaviour of β∗ thanks to the

virial theorem. The SC is in virial equilibrium both before and after the gas infall. As

a consequence, by calling Ek,i ∼ 0.5M∗σ
2
∗,i and Ek,f ∼ 0.5M∗β

2
∗σ

2
∗,i the initial and final

(after the gas infall) SC kinetic energy and Ui ∼ −GM2
∗ /a∗,i and Uf ∼ −GM2

∗ (1 +

WG)/(α∗a∗,i) the initial and final (after the gas infall) SC potential energy, from Eq.

(1.8) we infer

β2
∗σ

2
∗,i = G

M∗(1 +WG)

α∗a∗,i
, σ2
∗,i = G

M∗
a∗,i

. (4.10)

By dividing the first expression by the second one we get

β∗ =

√
1 +WG

α∗
. (4.11)

This zero-order estimate is in a rather good agreement with Fig. 4.2 for low values

of αG, between 10−2 and 10−1. For higher values, Eq. (4.11) becomes progressively

less accurate since the gas is less concentrated and WG becomes a function of αG. We

can explain the right part of Fig. 4.2 by observing that a gas with a very low density

(with respect to the SC one) is unable to shrink the system and increase its velocity

dispersion. For values of αG between 10−2 and 10−1 (where the analytical estimate

makes sense) the relative error between data from simulation and analytical estimate

reads |β∗,theor − β∗,simul|/β∗,theor ∼ 0.1− 0.15.

We conclude this section by considering a measure of the efficiency of the gas infall to

shrink the SC and to increase its velocity dispersion. We can relate a∗,f with a∗,i, M∗,
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and MG,0 and define the contraction parameter according to

a∗,f (aG,MG) = a∗,i

(
M∗ +MG,0

M∗

)−ξ(aG,MG,0)

. (4.12)

The behaviour of the simulated contraction parameter ξ as a function of different values

of the gas scale radius and of the total amount of gas is shown in Fig. 4.3. We can also

relate σ∗,f with σ∗,i, M∗, and MG,0 and define the velocity gain parameter according to

σ∗,f (aG,MG) = σ∗,i

(
M∗ +MG,0

M∗

)η(aG,MG,0)

. (4.13)

The behaviour of the simulated velocity gain parameter η as a function of different values

of the gas scale radius and of the total amount of gas is shown in Fig. 4.4.

In the absence of other physical interactions (two- and three-body interactions), gas

infall is able to shrink the SC allowing an increase of its density and velocity dispersion.

By taking aG = a∗,i, a glance at Fig. 4.1 allows us to infer that a gas infall of MG,0

interior to the orbit of a star is unable to shrink the orbit of M∗/MG,0 times its initial

size (i.e. before the gas infall). In order to obtain a major contraction for the SC,

lower values of aG must be considered. A similar conclusion can be inferred for the

velocity dispersion σ∗,f : Fig. 4.2 demonstrates that only a large amount of concentrated

gas (aG < a∗,i) can increase the initial velocity dispersion σ∗,i more than one order of

magnitude. Fig. 4.3 shows that a low gas infall is more efficient in shrinking the SC

allowing higher values for the parameter ξ.

Figure 4.1: Theoretical estimate (left panel) and simulation results (right panel) of
the final stellar scale radius a∗,f after gas infall for different choices of the gas scale
radius aG. a∗,f and aG are in units of the initial stellar scale radius a∗,i. From top to

bottom curves refer to MG,0 = 1, 2, 5, 10M∗.
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Figure 4.2: Final stellar velocity dispersion σ∗,f after gas infall for different choices
of the gas scale radius aG, as obtained from the numerical simulations. σ∗,f is in units
of the initial stellar velocity dispersion σ∗,i and aG is in units of the initial stellar scale

radius a∗,i. From bottom to top curves refer to MG,0 = 1, 2, 5, 10M∗.

Figure 4.3: Contraction parameter ξ after gas infall for different choices of the gas
scale radius aG, as obtained from the numerical simulations. aG is in units of the initial

stellar scale radius a∗,i. From top to bottom curves refer to MG,0 = 1, 2, 5, 10M∗.

4.3 Gas infall in the presence of physical interactions

In this section we want to inquire the consequences of gas infall on different types of

SCs when two- and three-body interactions are considered. In particular, we want

to understand if a physically reasonable gas infall is able to increase the SC velocity

dispersion to the extent that hard binaries cannot heat the system and slow down the

core collapse. If this were the case, conditions for stellar/BH runaway merging [21]

would be possible. While in [21] only very massive SCs (∼ 106 M�) are considered,
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Figure 4.4: Velocity gain parameter η after gas infall for different choices of the gas
scale radius aG, as obtained from the numerical simulations. aG is in units of the initial

stellar scale radius a∗,i. From top to bottom curves refer to MG,0 = 1, 2, 5, 10M∗.

we extend this possibility also to YSCs (∼ 104 − 105 M�). In particular, we want to

understand if the mechanism [21] may be used to produce IMBHs inside unevolved YSCs

(i.e. before feedback effects due to stellar evolution happen – with characteristic time

tse ∼ 3 − 5 Myr for the Salpeter IMF upper limit ∼ 120 M�) – helping the mechanism

of runaway merging of main-sequence stars [26, 43, 44, 83, 85] – and/or it may be used

to form SMBH seeds (∼ 104 − 105 M�) inside already evolved massive SCs (∼ 106 M�)

via runaway merging of compact objects [21].

We describe all the SCs by a Plummer model. As a first step, we do not consider three-

body interactions: in this case, we can estimate the variation of the core collapse time

tcc after the gas infall by using the expression of the local relaxation time trel of Eq.

(1.51), recalling that the core collapse time tcc ' 0.15 − 0.2 trel for multi-mass systems

(see Chapter 1 Sec. 1.3.2) and using information about the decrease of the stellar radius

and increase of velocity dispersion due to the gas infall (see Figs. 4.1 and 4.2). The

results are plotted in Fig. 4.5: we infer that tcc decreases in the presence of gas infall

with a mass MG,0 in the range 1− 10M∗ and a gas scale radius aG = 0.1− 1 a∗,i and in

the absence of three-body interactions – three-body encounters could heat the SC and

increase the core-collapse time estimated without them. The rate of decrease of tcc slows

down as the total mass of the gas falling into the SCs grows.

Let us now consider also three-body interactions by starting from YSCs analyzed at

their birth – when more massive stars have not evolved yet.
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Figure 4.5: Core-collapse time (calculated in the absence of three-body interactions)
after gas infall as a function of the mass MG,0 of the gas and of the gas scale radius aG.
The final core-collapse time tcc,f is in units of the initial core-collapse time tcc,i. Lower

curve refers to the case αG = 0.1, upper curve to the case αG = 1

4.3.1 Young star clusters

We consider two YSCs of N = 104 and N = 105 stars. Both the YSCs are described by

a Plummer profile with initial scale radius a∗,i = 1 pc, a Salpeter IMF in the mass range

0.2− 120 M�, initial velocity dispersion σ∗,i ∼ 3.5 km/s for N = 104 and σ∗,i ∼ 10 km/s

for N = 105 stars 2 and a ratio of 10% of (primordial) binaries with semi major axis a

in the range 0.5− 103 AU 3 (for more details about initial conditions see Chapter 3).

We consider the best possible physically consistent case of gas infall: a gas infall of

mass MG,0 equal to ten times the total stellar mass of the cluster (MG,0 ∼ 105 M� for

the YSC of N = 104 stars and MG,0 ∼ 106 M� for the YSC of N = 105 stars) and a

gas scale radius aG equal to one tenth of a∗,i (aG = 0.1 pc). For these values of gas

infall we can estimate the reduction of the stellar scale radius and the increase of the

stellar velocity dispersion from Figs. 4.1 and 4.2. We have α∗ ∼ 0.1 and β∗ ∼ 10 and

from Eqs. (4.7) we expect a final stellar scale radius a∗,f ∼ 0.1 pc and final velocity

dispersion σ∗,f ∼ 35 km/s for N = 104 stars and σ∗,f ∼ 100 km/s for N = 105 stars

after the gas infall. Higher gas masses and/or higher gas concentrations appear to be

2These are typical values for YSCs [103].
3These are plausible values for semi major axes distribution [21]. Harder primordial binaries (a down

to ∼ 0.001 AU [25, 60]) are used in the literature. Anyway, the real semi major axis distribution remains
rather uncertain. We use a softer initial distribution in order to avoid starting from extreme initial
conditions. In fact, if this were instead the case, a physical reasonable gas infall could not destroy hard
binaries.
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Table 4.1: Calculation of the relaxation time trel, core-collapse time tcc and single
star-binary interaction time t2+1 (m1 = 10 M�,m2 = m3 = 1 M�) for the two cases of
a YSCs of N = 104 and 105 stars in the presence/absence of gas infall (MG,0 = 10M∗,
aG = 0.1 a∗,i). a∗ and σ∗ are the initial scale radius (gas, no) and after gas infall (gas,
yes). We consider the two cases: (i) we calculate the hardness ratio x starting from the
semi major axis lower limit a = 0.5 AU (initial condition) and (ii) we calculate which

is a for the case x = 1.

N a∗ [pc] σ∗ [km/s] trel [yr] tcc [yr] a [AU] x t2+1 [yr] gas

104 1 3.5 5 · 107 8 · 106 0.5 1500 109 no
104 1 3.5 5 · 107 8 · 106 700 1 6 · 105 no
104 0.1 35 3 · 107 5 · 106 0.5 15 104 yes
104 0.1 35 3 · 107 5 · 106 7 1 6 · 102 yes

105 1 10 108 1.5 · 107 0.5 200 6 · 108 no
105 1 10 108 1.5 · 107 100 1 2 · 106 no
105 0.1 100 6 · 107 107 0.5 2 5 · 103 yes
105 0.1 100 6 · 107 107 1 1 2 · 103 yes

physically rather unreasonable at present epoch (redshift z ∼ 0) 4. We assume that gas

falls in the SC in the first ∼ 3 − 5 Myr so that feedback effects due to stellar evolution

(i.e. supernova explosions) have not happened yet. As a result, we can ignore stellar

evolution and metallicity effects.

By using Eq. (1.51) we can calculate the relaxation time before, trel,i, and after, trel,f ,

the gas infall and by remembering tcc ' 0.15 − 0.2 trel for multi-mass systems (see

Chapter 1 Sec. 1.3.2) we can evaluate the corresponding core-collapse time (calculated

in the absence of three-body interactions) tcc,i and tcc,f . By using Eq. (1.57) and (1.61)

we can evaluate the hardness ratio before, xi, and after, xf , the gas infall and the

corresponding single star-binary interaction time t2+1,i and t2+1,f . For the calculation

of the hardness ratio and of the single star-binary interaction time we consider a typical

single star of m3 = 1 M� and relative velocity of the order of the velocity dispersion,

and a typical binary with stellar masses m1 = 10 M� and m2 = 1 M�. In Table 4.1

we report all these quantities before and after gas infall for both the YSCs of N = 104

and N = 105 stars. For the SC with N = 104 stars and for the same choice of m1,

m2 and m3 in Fig. 4.6 we plot the interaction time as a function of different relative

velocities (∼ velocity dispersion) for the semi major axes lower (a = 0.5 AU) and upper

(a = 1000 AU) limits and for the fixed hardness ratio x = 1.

From Table 4.1 and Fig. 4.6 we infer that in the case N = 104 without gas infall, we

4We restrict to the simulations by [72] which suggest that self-gravitating gas is subject to instabilities
that drive it to the SC centre with low angular momentum: the bulk of the gas gets as close as 0.2 pc
or even closer to the centre. Turbulence prevents the gas from fragmentation into stars. Other authors
claim that such possibility is however quite difficult to get [27].
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Figure 4.6: Interaction time as a function of different relative velocities (∼ velocity
dispersion) for the semi major axes lower (a = 0.5 AU) and upper (a = 1000 AU)
limits and for the fixed hardness ratio x = 1, for the SC with N = 104 stars and
for m1 = 10 M�, m2 = m3 = 1 M�. Open circle represents the core-collapse time
(calculated in the absence of three-body interactions) before gas infall. Filled circle
represents the core-collapse time (calculated in the absence of three-body interactions)

after gas infall.

expect the system to experience the core collapse at a time ∼ tcc,i
5 since the hardest

binaries have an extremely long interaction time t2+1,i – they do not interact with single

stars before core collapse – and the moderate-hard binaries (xi & 1) are only a few

because of the initial semi-major axis distribution (see Chapter 3 Sec. 3.3). As a result,

binaries cannot heat the system. If we consider gas infall, we reduce the initial core-

collapse time tcc,i (calculated in the absence of three-body interaction) and we reduce the

binary hardness ratio (xf � xi). However, also the final single star-binary interaction

time t2+1,f is smaller than the initial one t2+1,i and also than tcc,f (see Table 4.1 and Fig.

4.6). As a result, all binaries that are still hard (xf > 1) after gas infall now interact

with the single stars (see Fig. 4.6) and the core collapse is slowed down.

From this simple scaling we find that gas infall does not help the runaway merger

of main sequence stars [26, 43, 44, 83, 85]. In fact, the bulk of stellar collisions and

mergers happens when approaching deep core collapse but this latter is slowed down by

binaries which heat the system. The resulting core-collapse time grows to an extent that

it becomes greater than the most massive star evolution time tse (see Chapter 1 Sec.

1.3.5): if we included metallicity dependence and stellar evolution, feedback effects due

5In a SC of N = 104 stars we expect the most massive stars to have mass . 30 M�. Moreover, the
number of massive stars (> 10 M�) is very low because of the Salpeter IMF (see Chapter 3 Sec. 3.2).
As a consequence, the actual tse is greater than 10 Myr (the value tse ∼ 3 − 5 Myr is calculated for the
Salpeter IMF upper limit ∼ 120 M� – but, so massive stars are not present inside a SC of N = 104

stars). In conclusion, tcc,i (∼ 8 Myr, see Table 4.1) is smaller than the actual tse (> 10 Myr) for a SC of
N = 104 stars.
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Table 4.2: Same as Table 4.1 but with a gas infall of MG,0 = 5M∗ and aG = a∗,i.

N a∗ [pc] σ∗ [km/s] trel [yr] tcc [yr] a [AU] x t2+1 [yr] gas

104 1 3.5 5 · 107 8 · 106 0.5 1500 109 no
104 1 3.5 5 · 107 8 · 106 700 1 6 · 105 no
104 0.4 7 3 · 107 4 · 106 0.5 350 4 · 107 yes
104 0.4 7 3 · 107 4 · 106 180 1 7 · 104 yes

105 1 10 108 1.5 · 107 0.5 200 6 · 108 no
105 1 10 108 1.5 · 107 100 1 2 · 106 no
105 0.4 20 5 · 107 8 · 106 0.5 50 2 · 107 yes
105 0.4 20 5 · 107 8 · 106 20 1 3 · 105 yes

to the most massive stars would prevent the system from reaching a deep core collapse

(see Chapter 1 Sec. 1.3.5). As a result, the runaway merger of main sequence stars is

excluded.

All conclusions for the system with N = 104 stars can be applied to the case N = 105.

In addition, in this case, the final core-collapse time tcc,f (even not considering three-

body heating which would slow down the resulting core-collapse time) is longer than the

stellar evolution time (tse ∼ 3− 5 Myr), so that it is impossible for the SC to experience

a runaway growth of main-sequence stars before feedback effects due to stellar evolution

halt the core collapse [26, 43, 44, 83, 85]. In this case, the gas is unable to soften

efficiently the binaries but even if this were the case, the core-collapse time would be

too long (tcc,f > tse).

We considered also a more conservative case of gas infall (MG,0 = 5M∗, aG = a∗,i) but

our conclusions are the same both for the system of N = 104 stars and N = 105 stars

(see Table 4.2).

We performed a simulation with our code MYSCE in the case N = 104 and a gas infall of

MG,0 = 10M∗ and with aG = 0.1 a∗,i to test our conclusions. The evolution of binary

semi major axes is shown in Fig. 4.7 in the absence of gas infall and in Fig. 4.8 in the

presence of gas infall. The evolution of SC Lagrangian radii is shown in Fig. 4.9 in the

absence of gas infall and in Fig. 4.10 in the presence of gas infall. We observe that our

predictions are confirmed: from Figs. 4.9 and 4.10 we observe that the core collapse-time

in the absence of gas infall happens at ∼ 8 Myr (as calculated in Table 4.1) while the

gas infall increases this time to ∼ 30 Myr. By comparing Figs. 4.7 and 4.8 we conclude

that only a few binaries are destroyed by the gas infall. A larger fraction of them can

interact with single stars since the interaction time gets reduced (see Table 4.1). This

is why the core-collapse time is increased after gas infall. By comparing Figs. 4.7 and

4.8 we observe that gas infall reduces the number of hard binaries (x > 1): in fact, the

vertical line (x = 1) of Fig. 4.7 moves to the left in Fig. 4.8. In both Figs. 4.7 (in the
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absence of gas infall) and 4.8 (in the presence of gas infall) binaries with x < 1 (i.e. to

the right of the x = 1 line) are soft and tend to be destroyed by three-body encounters

as the right panels of Figs. 4.7 and 4.8 show. By comparing right panels of Figs. 4.7 and

4.8 we observe that in the presence of gas infall the final number of binaries decreases.

The reason for this decrease is that in the presence of gas infall all binaries interact

and a higher number is now soft and can be destroyed. Moreover, in our simulation we

observe that in the presence of gas infall a greater number of stellar systems (single or

binary – both hard and soft) can become unbound and leave the SC (see Chapter 2 Sec.

2.2.7) 6. As already stressed the remaining hard binaries, now interacting, slow down

the core-collapse time.

Figure 4.7: Evolution of the binary semi major axes a in a YSC of N = 104 stars,
with a∗,i = 1 pc without gas infall. a is in units of a0 = 1 AU. Left panel represents
the initial semi major axis distribution, right panel represents the semi major axis
distribution at core-collapse time (∼ 8 Myr, see Fig. 4.9). The vertical dashed line
represents the boundary (x = 1) between hard (x > 1, on the left) and soft (x < 1, on

the right) binaries.

We can conclude that the mechanism proposed by [21] is not efficient to improve the

runaway merger of main-sequence stars [26, 43, 44, 83, 85]. As a result, a gas infall with

the properties considered here cannot help in the formation of IMBHs inside YSCs.

4.3.2 Massive star clusters

In this section we study the case of a massive SC of N = 106 stars (i.e. a very massive

GC) with the same strategy used for the YSC case. However, we do not perform a

6The reason for this higher evaporation rate could be explained as follows. Even in the absence of
gas infall in each time step a very small number of stars can have positive total energy. These stars are
removed from the system because they become unbound (for more details see Chapter 2 Sec. 2.2.7).
The rate of evaporation is roughly proportional to the number of stars in a system. Therefore, systems
with a higher number of stars have a higher number of unbound stars in each step. Gas infall increases
velocity dispersion and, in this way, makes the evolution of a system of N stars similar to that of a
system with a much higher number of stars. As a result, the system experiences a higher evaporation
rate.
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Figure 4.8: Same as Fig. 4.7 but now in the presence of a gas infall with MG,0 = 10M∗
and aG = 0.1 pc. In the right panel we plot semi major axis distribution at core-collapse

time (∼ 30 Myr, see Fig. 4.10).

Figure 4.9: Evolution of the Lagrangian radii of a YSC of N = 104 stars, with
a∗,i = 1 pc without gas infall. From bottom to top, lines represent the Lagrangian radii
corresponding to 0.5%, 5%, 10%, 20%, 30%, 50%, 70%, 90%, 95% of the mass of the

system, respectively.

simulation for reasons of computational time (more further). We consider this system

so as to inquire if it can be a possible environment for the formation of SMBH seeds

(∼ 105 M�). A caveat is necessary: we now consider an evolved system, where the most

massive stars have already produced stellar-mass BHs which are located in the centre

because of the mass segregation process (see Chapter 1 Sec. 1.3.2). The result is the

formation of a subcluster formed by stellar-mass BHs in the centre. The evolution of the

most massive stars has another important consequence on SCs: the mass range is greatly

reduced. If for young systems stellar masses are distributed between ∼ 0.2 − 120 M�,

now they are in the range ∼ 0.2 − 2 M�. Instead, the BH subcluster should contain

BHs with a mass range ∼ 5 − 20 M�. The consequence of the reduction of the width

of the mass range is an increase of the core-collapse time (calculated in the absence
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Figure 4.10: Same as Fig. 4.9 but now in the presence of a gas infall with MG,0 =
10M∗ and aG = 0.1 pc.

of three-body interactions). We must remember that three-body interactions involving

hard BH binaries can lead to the ejection of BHs from the subcluster and that this

process can lead to complete evaporation of the BH core within ∼ 109 yr (see Sec. 4.1)

[23, 24, 80]. As a result, gas infall must happen at an epoch between the segregation

time (so that the BH subcluster has already formed) and the BH subcluster evaporation

time (in order to play efficiently its role). Therefore, we consider this massive SC in the

past (at redshift z ∼ 6).

The SC we study is described by a Plummer profile with initial scale radius a∗,i = 1 pc,

initial velocity dispersion σ∗,i ∼ 30 km/s 7. The subcluster of BHs is very dense (with

a scale radius aBH,i ∼ 0.1 pc) and formed by NBH ∼ 103 BHs. Its velocity dispersion is

σBH,i ∼ 35 km/s. For the BH subscuster we consider a mass function constant between

5 M� and 20 M�. We take a ratio of 10% of subcluster BH binaries with semi major axis

a in the range 0.1− 100 AU 8. We concentrate on the evolution of the BH subcluster.

We consider the best possible physically consistent case of gas infall: a gas infall of

mass MG,0 equal to ten times the total stellar mass of the cluster (MG,0 ∼ 107 M�) and

a gas scale radius aG equal to two tenths of a∗,i (aG = 0.2 pc). We want to consider

the effects of the gas infall on the BH subcluster: we get α∗ ∼ 0.15 and β∗ ∼ 6 (see

Figs. 4.1 and 4.2) and from Eqs. (4.7) we get a final BH scale radius aBH,f ∼ 0.02 pc

and final velocity dispersion σBH,f ∼ 200 km/s. Higher gas masses and/or higher gas

concentrations appear to be physically rather unreasonable at epoch z ∼ 6. In this case,

we limit to aG = 0.2 pc since with MG,0 = 107 M� the gas reaches central densities of

7These are plausible values for a very massive SC of N = 106 stars [103].
8These are plausible values for such SCs [21]. Harder BH binaries [23, 24] are also considered in the

literature. We use a softer initial distribution for the same reason of Footnote 3.



Chapter 4 Gas infall into star clusters 67

Table 4.3: Same as Table 4.1 but with a gas infall of MG,0 = 10M∗ and aG = 0.2 a∗,i).
In this case the SC is an evolved system, more massive stars have already gone out of
the main-sequence. As a result, several BHs formed: we consider typical BH binaries
(m1 = m2 = 10 M�) in the centre (a, x, t2+1 are referred to them). We calculate also
the BH binary coalescence time for gravitational radiation inspiral tgr. In addition, we

calculate the segregation time tseg instead of the core-collapse time.

N a∗ [pc] σ∗ [km/s] trel [yr] tseg [yr] a [AU] x t2+1 [yr] tgr [yr] gas

106 1 30 3 · 108 3 · 107 0.1 100 4 · 109 7 · 107 no
106 1 30 3 · 108 3 · 107 10 1 3 · 107 7 · 1015 no
106 0.15 200 2 · 108 2 · 107 0.1 3 2 · 105 7 · 107 yes
106 0.15 200 2 · 108 2 · 107 0.3 1 8 · 104 6 · 109 yes

∼ 109 M�/pc3 – higher densities look unreasonable 9. The gas infall duration is about

∼ 3 Myr. Since we consider evolved SCs we can ignore stellar evolution and metallicity

effects in first approximation.

Following the same strategy we used for the YSC case, we can infer the relaxation

time, the segregation time (see Eq. (1.55) referred to a BH, we take 〈m〉 = 1 M� and

m∗ = MBH = 10 M�), the hardness ratio and the single star/BH-BH binary interaction

time before and after the gas infall. The SC core collapse may have happened during

the mass segregation phase but we are now interested to the BH subcluster. Since we

consider BH binaries, we must consider also the binary coalescence time for gravitational

radiation inspiral defined by [81] as

tgr '
1028

2

(
mBH

1M�

)(
1km/s

vrel

)8

x−4(1− e2)7/2, (4.14)

where mBH is the BH mass – we take mBH = 10 M� – vrel is the relative velocity which

is of the order of the velocity dispersion, and e is the binary eccentricity – we take the

median eccentricity emed = 1/
√

2. For the calculation of the hardness ratio and of the

single star-binary interaction time we consider a typical single BH of m3 = 10 M� and

relative velocity of the order of the velocity dispersion, and a typical binary with BH

masses m1 = m2 = 10 M�. In Table 4.3 we report all these quantities before and after

the gas infall for the BH subcluster. For the same choice of m1, m2 and m3 in Fig. 4.11

we plot the interaction time and the gravitational radiation inspiral time as a function

of different relative velocities (∼ velocity dispersion). We consider two values for the

semi major axes, i.e. the lower (a = 0.1 AU) and upper (a = 100 AU) limits of the

distribution we adopt; finally, we consider the hardness ratio x = 1.

From Table 4.3 and Fig. 4.11 we observe that, in the absence of gas infall, the hardest

binaries (a ∼ 0.1 AU) have a gravitational radiation inspiral time tgr smaller than their

9We consider [72], see Footnote 4. In addition such gas infalls are frequent at high redshift [11].
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Figure 4.11: Interaction time (broken black line and light grey area) and gravitational
radiation inspiral time (solid black line and dark grey area) as a function of different
relative velocities (∼ velocity dispersion) for the semi major axes lower (a = 0.1 AU)
and upper (a = 100 AU) limits and for the fixed hardness ratio x = 1, for a SC of

N = 106 stars and for m1 = m2 = m3 = 10 M�.

initial interaction time t2+1,i so that they coalesce before they can heat the SC. However,

we expect anyway that, in the absence of gas infall, moderate-hard BH binaries (xi & 1)

can heat the cluster, and produce BH ejection from the BH subcluster, through three-

body interactions. In this way, they prevent the runaway merger of BHs in the dark core

since their single star/BH-BH binary interaction time t2+1,i is smaller than tgr. In fact,

tgr for these moderate-hard binaries is too high to suppose that they coalesce before

they can heat the cluster. If we consider gas infall, we observe that the hardness ratio

gets reduced (xf < xi) and that the single star/BH-BH binary interaction time t2+1,f is

smaller than the initial one t2+1,i for all binaries. tgr remains constant, as expected and

becomes much higher than the final interaction time t2+1,f for all binaries (see Table 4.3

and Fig. 4.11) so that single stars/BHs interact with BH binaries before they coalesce

through gravitational radiation inspiral. We can conclude that a non-negligible fraction

of hard BH binaries (xf > 1) remains – however, they are not so hard (xf . 3). In

other words, the gas infall can help the BH runaway merger only if it is able to make

BH binaries soft enough, otherwise they surely interact with single stars/BHs since

t2+1,f � tgr for all binaries. If the BH binaries are still hard enough after the gas infall,

they prevent the formation of a SMBH seed via BH runaway merger. The question is

as to whether these survived hard binaries can heat the subcluster and produce BH

ejection from the BH subcluster.

We plan to perform a simulation with our code MYSCE to test our conclusions and give

a definitive answer to our question. Unfortunately, the computational time of our code
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in its serial version is too high to perform such a simulation – the bottle neck consists of

the three-body interactions. This is the reason why we are now parallelizing our code.

We must remember that our starting assumption on the hardness of the BH binaries is

very conservative – a higher initial hardness ratio is not only possible but also probable

[23, 24]. In conclusion, a physical reasonable gas infall may help the runaway merger of

BHs [21] only with very particular BH binary initial conditions.

4.3.3 An extreme case

In this section we follow the same strategy of Sec. 4.3.2 by taking an extreme case in

order to inquire if with an extreme gas infall it is possible to soften all binaries and to

form a SMBH seed via BH runaway merger. In this fashion, we consider a SC of N = 107

stars with the same properties of the SC in Sec. 4.3.2. This SC is described by a Plummer

profile with initial scale radius a∗,i = 1 pc, initial velocity dispersion σ∗,i ∼ 100 km/s.

The subcluster of BHs is very dense (with a scale radius aBH,i ∼ 0.1 pc) and formed by

NBH ∼ 104 BHs. Its velocity dispersion is σBH,i ∼ 110 km/s. For the BH subscuster

we consider a mass function constant between 5 M� and 20 M�. We take a ratio of

10% of subcluster BH binaries with semi major axis a in the range 0.1 − 100 AU. We

concentrate on the evolution of the BH subcluster.

We consider an extreme gas infall: a gas infall of mass MG,0 equal to ten times the

total stellar mass of the cluster (MG,0 ∼ 108 M�) and a gas scale radius aG equal to

one tenth of a∗,i (aG = 0.1 pc). We want to consider the effects of the gas infall on

the BH subcluster: we get α∗ ∼ 0.1 and β∗ ∼ 10 (see Figs. 4.1 and 4.2) and from

Eqs. (4.7) we get a final BH scale radius aBH,f ∼ 0.01 pc and final velocity dispersion

σBH,f ∼ 1000 km/s.

In Table 4.4 we report the relaxation time, the segregation time, the hardness ratio,

the single star/BH-BH binary interaction time and the binary coalescence time for

gravitational radiation inspiral before and after the gas infall. We take 〈m〉 = 1 M�,

m∗ = MBH = 10 M�, m1 = m2 = m3 = 10 M�. For the same choice of m1, m2 and m3

in Fig. 4.12 we plot the interaction time and the gravitational radiation inspiral time

as a function of different relative velocities (∼ velocity dispersion) for the semi major

axes lower (a = 0.1 AU) and upper (a = 100 AU) limits and for the fixed hardness ratio

x = 1.

From Table 4.4 and Fig. 4.12 we observe that, in the absence of gas infall, we get roughly

the same conclusions of Sec. 4.3.2. If we consider gas infall, we observe that the hardness
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Table 4.4: Same as Table 4.3 but for a SC of N = 107 stars and with a gas infall of
MG,0 = 10M∗ and aG = 0.1 a∗,i.

N a∗ [pc] σ∗ [km/s] trel [yr] tseg [yr] a [AU] x t2+1 [yr] tgr [yr] gas

107 1 100 8 · 108 8 · 107 0.1 10 9 · 108 7 · 107 no
107 1 100 8 · 108 8 · 107 1 1 6 · 107 7 · 1011 no
107 0.1 1000 5 · 108 5 · 107 0.1 0.1 103 7 · 107 yes
107 0.1 1000 5 · 108 5 · 107 0.01 1 6 · 104 7 · 103 yes

Figure 4.12: Same as Fig. 4.11 for a SC of N = 107 stars.

ratio is reduced (xf < xi) to an extent that all binaries are soft. The final single star/BH-

BH binary interaction time t2+1,f is smaller than the initial interaction time t2+1,i for

all binaries. tgr remains constant, becomes much higher than the final interaction time

t2+1,f for all binaries (see Table 4.4 and Fig. 4.12) so that single stars/BHs interact with

BH binaries before they coalesce through gravitational radiation inspiral. However, in

this case, even if all binaries interact, they are all soft, and they are disrupted by three-

body interactions so that they cannot prevent the formation of a SMBH seed via BH

runaway merger and cannot produce BH ejection from the BH subcluster.

In conclusion, this is a case where gas infall is able to favour the formation of a SMBH

seed via BH runaway merger. The gas infall considered here has extreme properties,

leading to central densities ∼ 1011 M�/pc3 ' 7 · 10−12 g/cm3. The question is as to

whether a gas with these characteristics could have existed in the past (redshift z ∼ 6),

and could have avoided fragmentation and/or to collapse into stars/quasi-stars: this

remains an open question. If this were the case, a massive SC of 107 stars with a gas

infall like that considered in this section could be the best environment for the formation

of a SMBH seed via BH runaway merger.



Conclusions

In the first part of this thesis we studied SCs (for more details see Chapter 1) as favoured

environments for the formation of BHs of intermediate mass. In order to achieve this

goal we developed a new code called MYSCE based on a modified Monte Carlo method.

In Chapter 2 we presented several numerical methods existing in the literature to sim-

ulate the SC equilibrium properties and evolution: the N -body method (see e.g. [55]),

statistical methods (see e.g. [63]) and the MC approach (see e.g. [49, 99]). We adopted

the MC scheme since it inherits some of the advantages of the methods mentioned

above, and at the same time it allows to simulate systems with a larger number (& 106)

of stars with respect to the N -body method with an accuracy better than a pure statis-

tical approach and similar to a N -body method when dealing with SC global properties

(Lagrangian radii, dispersion velocity, etc.).

We presented also our code MYSCE which is based on the Hénon MC scheme but with

some differences and improvements. We chose the Hénon approach since among the

MC methods is the fastest (since it allows to take a time step fraction of the relax-

ation time instead of a fraction of the crossing time) and the easiest to adapt (since

it allows to introduce stellar evolution, stellar merger, etc.). The disadvantage is that

it cannot be used to treat violent initial phases in SC evolution (such as, the violent

relaxation). We modified the classical scheme in four aspects: (i) we considered each

particle as a star (instead of as a superstar) in order to study stellar interactions and

stellar evolution effects in detail, (ii) we adopted a smaller time step in order to follow

the interaction processes in the core with more accuracy, (iii) we introduced a few-body

integrator to study three-body interaction in order to be more precise than the results of

a statistical/semi-analytical approach, (iv) we added a mechanism to solve a numerical

problem, the spurious relaxation.

In Appendix A we discussed the spurious relaxation problem which is basically a nu-

merical artefact first discovered by [50] that introduces an additional relaxation to the

system beyond the physical one.
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An important result of the first part of this thesis is that we solved the spurious relaxation

problem basically by correcting the mismatch (which forms and accumulates at each time

step) among total energy, gravitational potential, and kinetic energy of each star. As a

result, we can simulate a system for a much longer time than previously possible and/or

consider shorter time steps so that we can be more accurate in simulating processes

occurring on short timescales.

In Chapter 4 we applied our code MYSCE to the study of SCs with a wide mass range

104 − 107 M� in order to inquire if they are suitable environments for the formation of

BHs of very high mass.

In Chapter 4 we presented several mechanisms for the formation of IMBHs (103−105 M�)

and SMBH seeds (∼ 105 M�). Then, we quantitatively analyzed if a gas infall similar

to the one proposed by [21] can help and accelerate the formation of very-massive stars

(which will collapse to form IMBHs) via runaway collision of main-sequence stars in

YSCs [26, 43, 44, 83, 85]. We studied also if a gas infall in massive SCs (∼ 106 M�)

can decrease the BH binary fraction to an extent that a central SMBH seed can form

through mergers of compact objects [21].

Our results can be summarized as follows.

Gas infall in YSCs is unable to help the formation of very-massive stars. The reason

is that the hardening time is extremely reduced after gas infall for those hard binaries

which had a single star-binary interaction time higher than the core-collapse time before

gas infall. As a result, binaries can heat the cluster after gas infall and the core collapse

time is increased to an extent that it becomes longer than the evolution time of most

massive stars. In this way, feedback effects due to stellar evolution prevent the SC from

a deep core collapse. As a consequence, the runaway merger of main-sequence stars

[26, 43, 44, 83, 85] is prevented (since the bulk of mergers happens during the deep core

collapse phase).

The effects of gas infall in massive SCs (∼ 106 M�) with regard to the formation of SMBH

seeds is more debated. Gas infall can reduce the hardness ratio of the BH binaries, but

after gas infall, the hardest BH binaries can interact with the single stars/BHs since gas

infall reduces their interaction time (after gas infall all BH binaries interact before they

can coalesce through gravitational radiation inspiral). However, their hardness ratio is

not so high (. 3). As a result, it is not clear whether they can heat the cluster and,

in this way, produce BH ejection from the BH subcluster and prevent the BH runaway

merger for the formation of a SMBH seed. We would like to perform a simulation of

this SC configuration in order to get a definite answer. In order to obtain this goal we

need to parallelize our code since a system of 106 stars is currently too computationally
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burdensome because of the three-body encounter integration time. However, our starting

assumption on the hardness of the BH binaries is very conservative. In fact, it is possible

and even likely to have massive SCs with a higher initial hardness ratio [23, 24]. We can

conclude that a physical reasonable gas infall may help the runaway merger of BHs [21]

only with very particular BH binary initial conditions.

We considered also an extreme case: a very massive SC of 107 stars. In this case, gas

infall is able to help the formation of a SMBH seed via BH runaway merger. After gas

infall, binary interaction time is smaller than the coalescence time for all binaries so

that they interact with single stars/BHs before binaries coalesce. However, the hardness

ratio is reduced to an extent that all binaries are soft: as a result, they are disrupted by

three-body interactions so that they cannot eject BHs from the BH subcluster and the

formation of a SMBH seed via BH runaway merger may happen. The open question is as

to whether a gas infall with these characteristics could have existed in the past (redshift

z ∼ 6), and could have avoided fragmentation and/or to collapse into stars/quasi-stars.

Future work

In the near future we plan to parallelize our Monte Carlo code MYSCE: in this way, we

will be able to simulate SCs with a very high number of stars (> 106 − 107). As a

result, we will be able to give a definitive answer about the importance of gas infall

for the formation of SMBH seeds inside massive SCs [21]. We plan also to explore the

parameter space of YSCs by including in our simulation stellar metallicity and evolution

in order to test the formation of IMBHs inside YSCs though the collapse of very-massive

stars formed via runaway collision of main-sequence stars [26, 43, 44, 83, 85].





Appendix A

Spurious relaxation

One of the problems of Monte Carlo (hereafter MC) simulations of star clusters is the

so-called “spurious relaxation” (hereafter, SR): because of a numerical inconsistencies,

simulated clusters are found to evolve (e.g. Lagrangian radii change with time) even

when close interactions (which are responsible for exchanges of energy and angular mo-

mentum among particles) are switched off, i.e. even when the energy and angular mo-

mentum of each particle should be conserved. Here we report a modification to the basic

algorithm described by [49], that largely reduces the effects of the SR.

A.1 Overview

Many physical mechanisms change the stellar distribution and density within a star

cluster. The most important are the two-body and three-body interactions (i.e. interac-

tions between a binary star and an “intruder”). Two-body interactions are responsible

for the relaxation of the system, which moves towards the equipartition of kinetic en-

ergy: this should cause mass segregation, and other possible processes (such as a core

collapse), which can be eventually stopped by feedback effects (e.g. because of stellar

evolution). Three-body interactions can reduce the speed of the above-mentioned pro-

cesses since they can extract the internal energy of binaries, converting it into kinetic

energy; therefore, they might be able to prevent the core collapse and/or the relaxation

of the system.

In MC codes assuming spherical symmetry, particles are mainly subject to the central

force from the cluster potential. Therefore, in the absence of the perturbations rep-

resenting few-body interactions (i.e., in the absence of non-central forces), the system

must remain in a globally stationary state: single stars move along their orbits, but
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these do not evolve, and global properties such as gravitational potential, density, ve-

locity dispersion, Lagrangian radii etc. must remain constant. Unfortunately, this is

not what happens in the standard MC algorithm. In fact, if non-central interactions are

turned off, SR occurs. This numerical artifact was first discovered by [50]: the cluster

undergoes a residual numerical relaxation, so that the inner Lagrangian radii tend to

shrink, and the outer Lagrangian radii tend to expand (see e.g. Fig. A.1)

The reason for this behaviour lies in the randomness of the MC algorithm: at each time

step, the algorithm generates a different realization of an underlying distribution (e.g., of

radial distances), and such realizations differ from each other even when the underlying

distribution does not evolve. For example, in MC simulations of spherically symmetric

objects the gravitational potential is calculated at the beginning of each time step, using

the approximation that the mass mi of the i-th particle is distributed in a zero-thickness

spherical shell of radius ri (where ri is the distance of the particle from the centre of the

system). However, since the values of ri are the results of a random process (albeit one

that takes into account physical constraints), the potential undergoes (small) random

fluctuations at each time step. Such fluctuations lead to SR, and the effect becomes

more and more dramatic as the core shrinks and high central densities develop.

As pointed out by [50], it is possible to estimate the “SR time scale” tSR over which SR

effects become important, as

tSR = N∆t, (A.1)

where N represents the number of particles in the system, and ∆t is the average length

of the time steps. Such equation can be interpreted in terms of the number of time steps:

SR effects become important in simulations where the number of time steps exceeds the

number of particles. Alternatively, we can compare tSR to the relaxation time trel of the

system: the effects of the SR are negligible if

tSR � trel, (A.2)

since in this case the two body relaxation is dominant over the unwanted effect of the

SR.

A.2 Spurious relaxation correction

A.2.1 Previous approaches

Several solutions were proposed to deal with SR:
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1. Increase the number N of particles in the system, so as to increase tSR [30, 31, 57].

The most important limitation to this approach is that there are many cases where

N is essentially fixed by the nature of the problem (e.g., in the case of a stellar

clusters we should choose N as the number of stars).

2. Increase the average duration ∆t of time steps [43, 106, 107]. However, ∆t cannot

be longer than the time scale of the fastest physical processes considered in the

simulation, which in many cases is � trel/N .

3. [50] considered a more fundamental solution, i.e. re-normalize the system after

each time step, so as to keep the total energy constant. However, it was immedi-

ately understood that this procedure is unable to eliminate SR. In fact, SR effects

are stronger near the center, while the renormalization process acts uniformly on

the entire system: the result is that the renormalization slows down (but does

not eliminate) the contraction of the inner Lagrangian radii, whereas the outer

Lagrangian radii artificially contract.

4. Finally, another solution considered by [50] is to recalculate the potential after the

displacement of each star. In codes like the one by [49], this approach is quite

impractical, because it requires N recalculations of the potential at each time step

(rather than 1), so that the MC algorithm would lose its computational edge.

However, [30, 31] were able to efficiently implement this strategy by using a binary

tree: their tests show that SR is still present, although its level is significantly

lower than for other MC codes (see their Fig. D.1).

No one of the above solutions can be considered satisfactory, since there are many cases

where the two first suggestions cannot be applied, whereas the third reduces but does

not eliminate SR, and the fourth is too expensive in its original formulation – and again,

reduces but does not eliminate SR.

A.2.2 A possible effective correction

In order to understand the correction to the MC algorithm that we propose, we inves-

tigate in detail the causes of SR.

In the MC method (applied to a system with spherical symmetry), the sets of radial

positions {ri} and of masses {mi} of the particles at the start of the step is used to

calculate the cluster gravitational potential P (r). On this basis, the code generates the

radial position r̃i that each particle will have in the next step. This is done using its

radial and tangential velocities (vR,i, and vT,i), as well as P (r): in fact, the particle is
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assumed to move on a rosette orbit in the central cluster potential, so that its radial

position oscillates between two values rmin,i and rmax,i (periapis and apoapsis), which

are the roots of [50]:

Qi(r) = 0, (A.3)

where

Qi(r) ≡ 2Ei − 2P (r)−A2
i /r

2 (A.4)

with Ei ≡ P (ri) + (v2
R,i + v2

T,i)/2 (total energy per unit mass of the particle), and

Ai ≡ rvT,i (angular momentum per unit mass). After the new radial position r̃i is

generated (according to an appropriate distribution keeping into account the amount

of time that the particle spends at each radius), the new velocities are calculated as

ṽT,i = Ai/r̃i, ṽR,i = ±
√
Qi(r̃i) (the sign is assigned randomly).

Because of random fluctuations, the potential P̃ (r) which can be calculated on the basis

of the set of the {r̃i} is slightly different from the potential P (r) which is used throughout

the step. This is a problem, because in the next step the energy (per unit mass) of the

particles will be Ẽi ≡ P̃ (r̃i) + (ṽ2
R,i + ṽ2

T,i)/2 ' Ei + P̃ (r̃i)−P (r̃i)
1. The small difference

between Ẽi and Ei is the main cause of SR.

We verified that this is the case by implementing in our MC code MYSCE (see Chapter

2) a simple variation of the above algorithm that reduces to 0 the above difference. The

basic idea is that after generating the set of the {r̃i} we calculate the new potential

P̃ (r), and estimate ṽR,i as ±
√
Q̃i(r̃i), where Q̃i(r) ≡ 2Ei − 2P̃ (r)−A2

i /r
2. In this way,

Ẽi remains ' Ei.

The actual procedure is made slightly more complicated by the fact that for a small

number of particles the argument of the square root might be negative: in fact, the

roots r̃min,i and r̃max,i of the equation Q̃i(r) = 0 are slightly different from rmin,i and

rmax,i, and it is possible that some values of r̃i fall outside the new range (by a small

amount, since P̃ (r) is close to P (r)). Since this happens only for a tiny fraction of

the particles, we slightly move these particles to the closest extreme of the r̃min,i–r̃max,i

range. After that, we recalculate P̃ (r) on the basis of the modified {r̃i}, and repeat

the process until we have that Q̃i(r̃i) ≥ 0 ∀ i, i.e. until we can assign radial velocities

to all the particles. Such condition is usually achieved in ≤ 2 iterations. Therefore,

the computational cost of this process is relatively small: for each step, it requires 1-2

additional recalculations of the potential, and 1-2 assignments of the N radial velocities

of the particles.

1In the codes of [40, 105] we have instead Ẽi ' Ei + (1/2)[P̃ (r̃i)− P (r̃i)] + (1/2)[P̃ (ri)− P (ri)].
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Table A.1: Ratio between final and initial Lagrangian radii at 0.5%, 5%, 10%, 20%,
30%, 50%, 70%, 90%, 95% of the total mass of the system when SR correction is

neglected after a number of time steps equal to the number of stars.

NO SR CORRECTION RL(T )/RL(0)

stars steps 0.5% 5% 10% 20% 30% 50% 70% 90% 95%

2000 2000 0.029 0.073 0.15 0.25 0.31 0.70 1.44 4.65 9.94
5000 5000 0.055 0.15 0.22 0.30 0.42 0.76 1.49 3.81 6.42
10000 10000 0.11 0.16 0.19 0.28 0.39 0.61 1.45 3.37 5.19

A.2.3 Tests

The tests consisted in simulating stellar clusters of various sizes with two versions of

MYSCE. We simulated three stellar clusters with 2000, 5000, and 10000 stars with total

mass of about 1400, 3400, and 6700 solar masses, respectively. We chose a Salpeter

initial mass function. All clusters are described by a Plummer initial density profile

with a scale radius of 1 pc (see Chapter 3). In both versions we switched off all few-

body interactions (i.e. all non-central forces), but in one of them we used the “standard”

MC algorithm, whereas in the other we corrected the MC algorithm as described above.

In the case of the standard MC algorithm the system was simulated for a number of steps

equal to the number of stars, whereas in the presence of SR correction we performed

a number of steps equal to the number of stars and equal to ten times the number of

stars.

The results of tests are given in Table A.1 and in Table A.2, and Figs. A.1 and A.2 show

the evolution of Lagrangian radii for a particular cluster in the two cases. It is apparent

that in the “corrected” version of MYSCE Lagrangian radii are much more stable, and

remain constant even after a number of steps which is of the order of N or even greater.

We can also perform a raw comparison with the tests of [30]: looking at their Fig. D.1,

we estimate that in 4000 (average) steps, the Lagrangian radius including 0.5% of the

mass of a 4000 (super)star cluster reduced by ∼ 15 − 20%; whereas the Lagrangian

radius including 95% of the mass of the same cluster expands by ∼ 25 − 30%. This is

a remarkable improvement with respect to the values reported in Table A.1; but Table

A.2 shows that the correction we are proposing can achieve even better results: in a

similar cluster (5000 particles) these two Lagrangian radii change by less than 7%, even

after 50000 steps.



80 Appendix A Spurious relaxation

Table A.2: Ratio between final and initial Lagrangian radii at 0.5%, 5%, 10%, 20%,
30%, 50%, 70%, 90%, 95% of the total mass of the system when SR correction is
considered after a number of time steps equal to the number of stars and equal to ten

times the number of stars.

SR CORRECTION RL(T )/RL(0)

stars steps 0.5% 5% 10% 20% 30% 50% 70% 90% 95%

2000 2000 1.13 0.89 1.10 1.18 1.41 1.21 1.06 0.97 0.97
5000 5000 1.07 1.09 1.08 1.09 0.99 1.05 1.02 0.99 1.02
10000 10000 0.99 0.98 1.02 1.04 1.06 0.95 0.98 0.99 1.00

2000 20000 1.19 1.39 1.29 1.35 1.31 1.12 0.99 1.04 0.97
5000 50000 1.07 1.19 1.24 1.12 1.09 0.98 0.96 0.97 1.01
10000 100000 0.95 0.96 0.90 0.89 0.87 0.94 0.97 0.97 0.99

A.3 Discussion

We have described a new method to minimize the SR problem that affects MC codes.

This solution largely removes the problem since at each time step it corrects the mis-

match between total energy, gravitational potential, and kinetic energy that is due to

the recalculation of the potential. This method allows to simulate a system with a rela-

tively small number of particles (stars) for a much longer time than previously possible

(in fact, the number of time steps can be increased by a factor of at least 10–100, as

demonstrated by Table A.2), and/or to consider shorter time steps, so as to simulate

the evolution of a system for a long time while following processes occurring on short

timescales. SR correction is fundamental in order to simulate, for example, a large

number of small star clusters.
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Figure A.1: Evolution of the Lagrangian radii within a 5000 particles system, as a
function of the number of time steps. The simulations were performed with MYSCE in
the absence of non-radial forces (e.g. few-body interactions), and in the absence of
the proposed SR correction. From bottom to top, lines represent the Lagrangian radii
corresponding to 0.5%, 5%, 10%, 20%, 30%, 50%, 70%, 90%, 95% of the mass of the

system, respectively.

Figure A.2: Same as Fig. A.1, but in this case the simulations included the proposed
SR correction. For clarity of visualization, data are binned: each point is the average
of ten real steps. Note that the scales are different from Fig. A.1, as we plot a much

larger number of time steps, over a smaller vertical range.
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[50] Hénon, M. H. 1971, Ap&SS, 14, 151
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Introduction

The Standard Model (SM) of strong, weak and electromagnetic interactions with three

sequential families of quarks and leptons provides a satisfactory description of the ex-

perimental results concerning elementary-particle physics at energies up to about the

Fermi scale of weak interactions G
−1/2
F ' 250 GeV, and the recent discovery of the Higgs

boson with the right properties has fully confirmed the correctness of the SM.

Yet, nobody would seriously regard the SM as the ultimate theory of fundamental pro-

cesses. Apart from more or less aesthetic reasons and some anomalies like the g−2 value

of the muon and the forward-backward asymmetry of the top quark, such an expecta-

tion is made compelling by the observational evidence for non-baryonic dark matter

ultimately responsible for the formation of structure in the Universe as well as for dark

energy presumably triggering the present accelerated cosmic expansion.

So, the SM is presently viewed as the low-energy manifestation of some more funda-

mental and complete theory of all elementary-particle interactions including gravity.

Every specific approach to extend the SM in such a way is characterized by a set of new

particles along with their mass spectrum and their interactions with the standard world.

Although it is presently impossible to tell which proposal out of so many ones has any

chance to successfully describe Nature, it looks remarkable that attempts along very

different directions such as four-dimensional ordinary and supersymmetric models [1],

Kaluza-Klein theories [2, 3] and especially superstring theories [4–6] all suggest the

existence of axion-like particles (ALPs) (for a review, see [7]). A general argument

supporting this conclusion will be given in Chapter 1.

ALPs are very light pseudo-scalar spin-zero bosons denoted by a characterized by a

two-photon coupling aγγ. As the name itself suggests, they are a sort of generalization

of the axion, the pseudo-Goldstone boson associated with the Peccei-Quinn symmetry

proposed as a natural solution to the strong CP problem [8–11]. But while the axion

is constrained by a strict relationship between its mass and the aγγ coupling constant,

these two parameters are regarded as unrelated for ALPs. In fact, depending on the
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actual values of their mass and aγγ coupling constant, ALPs can play an important

role in cosmology, either as cold dark matter particles [12] or as quintessential dark

energy [13].

A remarkable consequence of the aγγ coupling is the phenomenon of photon-ALP mix-

ing, which takes place in the presence of an external electromagnetic field and leads to

two distinct effects. One is photon-ALP oscillations [14, 15], which is quite similar to

the oscillations of massive neutrinos with different flavours. The other consists in the

change of the polarization state of photons travelling in a magnetic field [15, 16].

It turns out that ALPs are extremely elusive in high-energy experiments and the only

way to look for them in the laboratory requires very careful polarimetric measurements

to be carried out on a laser beam [17] or alternatively a photon regeneration experiment

to be performed [18]. Successful detection of ALPs in present-day experiments of this

kind is possible in either case for a fairly large aγγ coupling.

Astrophysical manifestations of ALPs appear the best strategy to discover their exis-

tence, since they can give rise to observable effects even for values of the aγγ coupling

constant much smaller than those tested so far in laboratory experiments. Indeed, it is

known since a long time that for values of the aγγ coupling constant that look hopelessly

small to be probed today in the laboratory the stellar evolution would be dramatically

altered [19] and this fact sets a strong upper bound on the coupling in question, which

is consistent with the robust negative result of the CAST experiment at CERN [20].

In the last few years it has been realized that photon-ALP oscillations triggered by

intervening cosmic magnetic fields along the line of sight can produce detectable effects

in observations of bright X-ray and γ-ray sources [21–30, 32]. The effect becomes larger

as the distance of the sources increases: blazars, which are Active Galactic Nuclei (AGN)

with the beam pointing towards us, constitute the most distant long-lasting gamma-ray

sources observed, and are thus the most obvious case study. In order to bring out most

simply the relevance of ALPs in the present context, we neglect cosmological effects at

this introductory level.

The mean free path of very-high-energy (VHE) photons – namely with energy above

100 GeV – is limited by their interaction with background photons in the Universe

through the process γγ → e+e−. A high energy photon from a distant blazar has a

nonnegligible probability to scatter off background photons in the optical/near infrared

band permeating the Universe – the so-called extragalactic background light (EBL) –

thereby disappearing into an e+e− pair [33, 34]. The VHE photon mean free path

depends on the EBL density. Recently it has become possible to model accurately such

density: several parametrizations are available, essentially coincident, and throughout
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this thesis we employ the recent EBL model of Franceschini, Rodighiero and Vaccari

(FRV) [35]). Fig. 3 shows the pair-production mean free path λγ of a VHE photon as

a function of its energy E within the FRV model.

Figure 3: The pair-production mean free path λγ of a VHE photon is plotted versus
its energy E within the EBL model of FRV. Only conventional physics is assumed and

in particular the possibility of photon-ALP oscillations is ignored.

The effects of the photon-ALP oscillations on the gamma yield from blazars can be

summarized as follows:

• For E < 100 GeV we infer from Fig. 3 that λγ(E) is comparable with the Hubble

radius, and so EBL absorption is negligible. In such a situation photon-ALP

oscillations can only give rise to a source dimming above a certain energy threshold

E′. Hence a characteristic distortion of the source spectrum around E′ is the

observable prediction, which can be searched for with the Fermi/LAT mission if

E′ happens to lie in the instrument energy range, namely for 30 MeV < E′ <

300 GeV [23].

• For E > 100 GeV Fig. 3 shows that EBL effects become important since now λγ(E)

quickly decreases as E increases. Once emitted, photons can convert into ALPs and

next reconvert back into photons before reaching the Earth. A possibility is that

photon-ALP oscillations take place in intergalactic space and the resulting scenario

has been called DARMA (acronym for De Angelis, Roncadelli and Mansutti) [24–

26]. Alternatively, the γ → a conversion can occur inside the blazar while the

a → γ reconversion can happen in the Milky Way [27]. Of course, also both

options can be realized [30]. Finally, if the blazar happens to be inside a cluster of

galaxies – where a magnetic field of order 1µG is invariably present – the γ → a

conversion can take place in the cluster whereas the a→ γ conversion still happens

in the Milky Way [31]. In any case, photons acquire a split identity, travelling for
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some time as real photons and for some time as ALPs. However, they suffer

EBL absorption only when they are real photons, which means that the effective

photon mean free path λγ,eff(E) is actually larger than λγ(E) as predicted by

conventional physics (see Fig. 3). Since the photon survival probability depends

exponentially on minus the optical depth – which in turn goes like the source

distance divided by λγ,eff(E) – even a slight increase of λγ,eff(E) with respect to

λγ(E) produces a substantial enhancement of the photon survival probability and

so of the observed flux. Note that for a given detector sensitivity a larger photon

survival probability just means that a larger distance can be probed, so that the

VHE Universe becomes more transparent than generally believed. Actually, since

the EBL absorption increases with energy whereas the photon-ALP oscillation

probability is energy-independent, the observed flux enhancement gets larger and

larger as the energy increases. As a consequence, the observed spectra are harder

than currently expected.

Thus – depending on the values of the free parameters – a hardening of the observed

blazar spectra is the main prediction of photon-ALP oscillations concerning the VHE

band between 100 GeV and 100 TeV, which can be probed by Imaging Atmospheric

Cherenkov Telescopes (IACTs). More in detail, the presently operating IACTs H.E.S.S.,

MAGIC and VERITAS can reach up ∼ 20 TeV with difficulty, whereas the planned

Cherenkov Telescope Array (CTA) and the HAWC water Cherenkov γ-ray observatory

will be able to explore the whole VHE band with a much larger sensitivity. We should

add that the VHE range can also be analyzed by other available detectors, like the

Extensive Air Shower arrays ARGO-YBJ and MILAGRO.

Our aim is to investigate the DARMA scenario in great detail by employing the EBL

model of FRV [35], and systematically working out all its implications for VHE blazar

observations (Chapters 1-5). Everything is calculated starting from first principles.

More specifically, our primary goal is to evaluate the photon survival probability within

the DARMA scenario, which allows in turn to quantify the resulting hardening of VHE

blazar spectra and to determine how much the Universe becomes more transparent to

VHE photons than usually thought.

We find that these effects can be quite substantial for the free parameters in allowed

realistic ranges provided that the ALP mass satisfies the condition m < 5 · 10−10 eV.

Actually, our prediction can become spectacular above an energy threshold which is well

below the upper detection limit of the CTA and the HAWC observatory. Denoting by E10

the energy at which the photon survival probability is 10 times larger than that dictated

by conventional physics, E10 turns out to decrease as the source redshift z increases. In
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the most favourable case, we get E10 ' 30 TeV for Mrk 421 at z = 0.030, E10 ' 8 TeV

for 1ES 0347-121 at z = 0.188, E10 ' 2 TeV for 3C 66A at z = 0.444 and E10 ' 2 TeV

for 3C 279 at z = 0.536. In addition, it follows from the above considerations that for

energies larger than E10 the photon survival probability gets even more enhanced.

In spite of the fact that only future observations can provide a clear-cut check of the

DARMA scenario – and so ultimately of the existence of an ALP lighter than 5·10−10 eV

– it looks natural to inquire whether available data from IACTs contain some hints in

favour of this scenario. As we shall see, the emitted as well as the observed spectra

of VHE blazars detected so far have to a good approximation a single power-law be-

haviour 2, so that they are characterized by their slope, which – up to a minus sign – is

the emitted Γem and observed Γobs spectral index, respectively. So, we can rephrase the

above conclusion by stating that for a fixed value of Γem pertaining to a given source the

DARMA scenario predicts that under suitable conditions Γobs should be smaller than

within conventional physics.

In 2006 the H.E.S.S. collaboration reported some evidence that the spectra of the two

blazars H 2356-309 and 1ES 1101-232 have Γobs smaller than expected and this fact was

interpreted as strongly suggesting an EBL attenuation lower than currently believed [37].

A similar conclusion emerged in 2007 with the discovery of the blazar 3C 279 by the

MAGIC collaboration [38]. Based on preliminary data [39] and a specific EBL model [40],

the DARMA model [24] has shown for the first time that the mechanism of photon-ALP

oscillations can substantially reduce the EBL attenuation for distant blazars and in

particular that it can successfully explain the observed spectrum of 3C 279 for allowed

realistic values of the free parameters.

Subsequent developments have demonstrated that realistic EBL models account for VHE

blazar observations without the need of any unconventional physics, provided that the

large spread in the values of Γobs is fully traced back to an equally large spread in the

values of Γem. Further, far-away sources – for which EBL absorption is a large effect –

turn out to have energy spectra similar to those of some nearby blazars, for which EBL

attenuation is negligible. This means that for distant sources Γem has to be considerably

smaller than for nearby ones. Even though a physical explanation for the occurrence of

very small values of Γem has recently been proposed [41–43], one is nevertheless led to

the cosmic opacity problem, namely to wonder why these physical effects are important

for distant blazars only. Nevertheless, two hints have been put forward suggesting the

existence of photon-ALP oscillation in extragalactic space.

2Although the actual spectra exhibit some curvature due to the bump related to Inverse Compton
(see later), power-law approximations, both from an observational and theoretical point of view, are
good over the energy range used in this thesis, namely 0.2-2 TeV, as emphasized by [36].
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One of them concerns the so-called pair-production anomaly. Basically, depending on the

distance of the source, the Universe should be opaque to VHE photons above a certain

energy. However, indications exist that the Universe is more transparent than previously

thought. A recent careful statistical analysis of a large sample of VHE spectra shows

that the correction for absorption with current EBL models is too strong for the data

points with the highest attenuation [44–47]. The phenomenon of photon-ALP oscillation

in extragalactic space would naturally solve this problem.

The other hint has to do with the observed low value of the extragalactic magnetic field

as determined from observations of blazars [48]. According to the authors, a possible

solution consists in the photon-ALP oscillation mechanism.

We show that within the DARMA scenario the situation is quite different. As a result of

the competition between EBL attenuation and photon-ALP oscillations, two important

conclusions emerge:

• The values of Γem for far-away VHE blazars are in the same ballpark of nearby

ones, so that the cosmic opacity problem is solved.

• The observed large spread in the values of Γobs arises mainly from the wide spread

in the source distances while the required scatter in the values of Γem is small.

Subsequently, we move our attention on flat spectrum radio quasars (FSRQs), and in

particular on PKS 1222+216 (Chapters 6-7). The recent evidence of VHE emission by

FSRQs poses a quite serious challenge. The surrounding of the inner jet in FSRQs is

rich of optical/ultraviolet photons emitted by the broad line region (BLR), necessarily

implying a huge optical depth for γ rays above 10 – 20 GeV (see e.g. [141, 160]). There-

fore, the observation of some FSRQs at TeV energies raised great surprise [38, 161, 162].

Moreover, the detection of an intense VHE emission from PKS 1222+216 at redshift

z = 0.432 in the energy range 70 – 400 GeV [161] observed by MAGIC to double its flux

in only about 10 minutes – thereby flagging the extreme compactness of the emitting

region – is very difficult to fit within the standard blazar models [142].

So far, the only possibility to solve the apparent contradiction with conventional ex-

pectations arising from both the detection of the intense and relatively hard VHE flux

and the rapid variation appears to invoke the existence of very small (r ∼ 1014 cm)

emitting regions (or beams of particles) beyond the BLR (R ∼ 1018 cm), that is at a

large distance from the central engine [142, 151, 163].

An additional question is that PKS 1222+216 has also been simultaneously detected by

Fermi/LAT in the energy range 0.3− 3 GeV [150].
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So, one would like not only to understand why the VHE γ rays are actually emitted

by PKS 1222+216 but also to find a realistic and physically motivated spectral energy

distribution (SED) that fits both the observed Fermi/LAT and the MAGIC spectra,

which is a logically distinct and more ambitious task.

Our proposal to naturally explain all these observations assumes the validity of a stan-

dard blazar model for photon production, but we add the new assumption that photon-

ALP oscillations take place inside the source in such a way that a considerable fraction

of VHE photons can leave it, indeed much in the same fashion that a sizable amount

of VHE photons emitted by blazars largely avoid EBL absorption if extragalactic space

is permeated by a large-scale magnetic field in the nG range. More specifically, we

envisage that the γ → a conversion occurs before most of the VHE photons reach the

BLR. Accordingly, ALPs traverse this region unimpeded and outside it the re-conversion

a→ γ takes place either in the same magnetic field of the source or in that of the host

galaxy. Thus, our proposal differs from any previously considered one. Moreover, we

find that for observationally allowed values of the parameters of our model the resulting

SED looks quite realistic and nicely fits the Fermi/LAT and MAGIC spectra observed

at the same time.

Thereafter, we critically analyze a result obtained by D. Wouters and P. Brun (WB)

[156] (Chapter 8). The authors claim that an observable effect in the spectra of distant

VHE blazars arises as a consequence of oscillations of photons into ALPs in the presence

of random extragalactic magnetic fields. WB state that in a pretty small range about the

energy Ethr ≡ E∗ (defined in Chapter 1 Sec. 1.5) that marks the transition from the weak

to the strong mixing regime the photon survival probability along every single trajectory

that the beam can follow exhibits fluctuations, which are claimed to be an observable

signature of the existence of photon-ALP oscillations. We show that they consider an

initially polarized beam, whereas a physically correct treatment demands the beam to

be initially unpolarized. As a consequence, the result of WB changes substantially (with

correct physical treatment of the beam) to an extent that their result can only make

bounds at the 3σ level, which cannot rule out the existence of an ALP (in this field a

detection should be at the 5σ level).

Finally, we stress that ALPs with the right properties to produce the above effects can

be discovered in the near future by the planned upgrade of the photon regeneration

experiment ALPS at DESY [49] or with the Cherenkov Telescope Array (CTA). Thus,

it looks amazing that the discovery of a new particle – besides very important in its own

right – would also provide a sort of glasses that allow us to watch much farther out into

the γ-ray Universe.
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Plan of the second part of the thesis

The second part of this thesis is organized as follows. In Chapter 1 we review the

motivation and the main properties of ALPs. Particular attention is paid to the prop-

agation of a photon/ALP beam in the presence of a homogeneous magnetic field. Also

the astrophysical and cosmological constraints on the ALP parameters are considered.

In Chapter 2 we carefully evaluate the transparency of the Universe to gamma rays in

the energy range 10−1013 GeV using the most recent observational data concerning the

EBL and the Radio Background (RB). Chapter 3 addresses in great detail the proper-

ties of VHE blazar spectra. Everything in this Chapter is discussed within conventional

physics and at this stage ALPs are totally neglected. The cosmic opacity is also ad-

dressed. In Chapter 4 the main conclusions drawn in Chapters 1, 2 and 3 are combined

together to build up the DARMA scenario which considers photon-ALP oscillations in

the presence of EBL absorption as well as for a domain-like configuration typical of

large-scale magnetic fields. The photon survival probability is ultimately computed by

a numerical code and it arises as an average over 5000 random realizations of the beam

propagation from the source to us, each corresponding to randomly chosen directions of

the magnetic field inside every domain. Chapter 5 is devoted to the discussion of the

implications of the DARMA scenario for VHE blazar observations. We calculate the

photon survival probability for some representative values of the free parameters and we

offer a new interpretation of the observed VHE blazars, which solves the cosmic opacity

problem and traces the large spread in the values of Γobs mainly to the wide spread in

the source distances while the required scatter in the values of Γem is small. In Chapter

6 we describe our model for the FSRQ PKS 1222+216 and we show that we naturally

solve the problem within standard AGN models with the additional assumption of the

existence of photon/ALP oscillations. In Chapter 7 we provide a specific picture which

gives rise to the required SED for the FSRQ PKS 1222+216 and we compare our results

to others present in the literature. In Chapter 8 we critically analyze a result obtained by

D. Wouters and P. Brun about a clamed observable effect in the blazar spectra which is

consequence of oscillations of photons into ALPs and we show that a physically correct

treatment of the photon/ALP beam substantially changes their result. A convenient

method to solve the Schödinger-like equation with constant coefficients describing the

photon/ALP beam propagation is presented in Appendix A, whereas an approximate

analytic evaluation of the optical depth within the FRV model of the EBL is reported

in Appendix B.

The matter described in the second part of this thesis is reported also in the following

publications:
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• [ax1] De Angelis, A., Galanti, G., & Roncadelli, M., “Relevance of axionlike par-

ticles for very-high-energy astrophysics”, Phys. Rev. D, 84, 105030 (2011)

• [ax2] Tavecchio, F., Roncadelli, M., Galanti, G., & Bonnoli, G., “Evidence for an

axion-like particle from PKS 1222+216?”, Phys. Rev. D, 86, 085036 (2012)

• [ax3] Galanti, G., & Roncadelli, M., “Comment on: Irregularity in gamma ray

source spectra as a signature of axion-like particles”, arXiv:1305.2114, submitted

to Phys. Rev. D (2013)

• [ax4] De Angelis, A., Galanti, G., & Roncadelli, M., “Transparency of the Universe

to gamma-rays”, Mon. Not. R. Astron. Soc. 432, 3245 (2013)

In particular, [ax1] deals with the topics of Chapters 1, 3, 4 and 5, Appendixes A and

B; [ax2] treats the matter developed in Chapters 6 and 7; [ax3] discusses the subject of

Chapter 2; [ax4] deals with the topic of Chapter 8.





Chapter 1

Axion-like particles (ALPs)

We review the conceptual motivations in favour of ALPs as well as their properties

that are most relevant for our further needs. Natural Lorentz-Heaviside units with

~ = c = kB = 1 are employed throughout this thesis unless otherwise stated.

1.1 Motivation

As already stressed, the SM of particle physics is presently regarded as the low-energy

manifestation of some more fundamental theory (FT) characterized by a very large

energy scale Λ � G
−1/2
F , with G

−1/2
F ' 250 GeV. We collectively denote by φ the SM

particles together with possibly new undetected particles with mass smaller than G
−1/2
F ,

while all particles much heavier than G
−1/2
F that are present in the FT are collectively

represented by Φ. Correspondingly, the FT is defined by a Lagrangian of the form

LFT(φ,Φ) and the generating functional for the corresponding Green’s functions reads

ZFT[J,K] = N

∫
Dφ
∫
DΦ exp

(
i

∫
d4x

[
LFT(φ,Φ) + φJ + ΦK

])
, (1.1)

where J and K are external sources and N is a normalization constant. The result-

ing low-energy effective theory then emerges by integrating out the heavy particles in

ZFT[J,K], and so the low-energy effective Lagrangian Leff(φ) is defined by

exp

(
i

∫
d4xLeff(φ)

)
≡
∫
DΦ exp

(
i

∫
d4xLFT(φ,Φ)

)
. (1.2)

Evidently, the SM Lagrangian is contained in Leff(φ), and – in the absence of any

new physics below G
−1/2
F – it will differ from Leff(φ) only by non-renormalizable terms

involving the φ particles alone, that are suppressed by inverse powers of Λ.
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In any theory with a sufficiently rich gauge structure – which is certainly the case of the

FT – some global symmetry G invariably shows up as an accidental consequence of gauge

invariance. Since the Higgs fields which spontaneously break gauge symmetries carry

nontrivial global quantum numbers, it follows that the group G undergoes spontaneous

symmetry breaking as well. As a consequence, some Goldstone bosons – which are

collectively denoted by a if G is non-abelian – are expected to appear in the physical

spectrum and their interactions are described by the low-energy effective Lagrangian, in

spite of the fact that G is an invariance of the FT. We stress that Goldstone bosons are

necessarily pseudo-scalar particles [50].

As far as our main line of development is concerned, the FT is supposed to describe

quantum gravitational effects and it is a common lore that they always explicitly break

global symmetries [51]. In fact, this point can be understood in an intuitive fashion.

Since black holes do not possess any definite global charges, global symmetries are

violated in any scattering process involving black holes. So, we end up with the general

conclusion that provided that the Lagrangian of the FT possesses some spontaneously

broken global symmetry then pseudo-Goldstone bosons with mass much smaller than

G
−1/2
F are necessarily present in the low-energy effective Lagrangian.

Therefore, by splitting up the set φ into the set of SM particles φSM plus the pseudo-

Goldstone bosons a, the low-energy effective Lagrangian has the structure

Leff(φSM, a) = LSM(φSM) + Lnonren(φSM) + Lren(a) + Lren(φSM, a) + Lnonren(φSM, a) ,

(1.3)

where Lren(φSM, a) stands for renormalizable soft-breaking terms that can be present

whenever G is not an automatic symmetry of the low-energy effective theory 1.

Needless to say, it can well happen that between G
−1/2
F and Λ other relevant mass scales

Λ1, Λ2, ... exists. In such a situation the above scheme remains true, but then G may

be spontaneously broken at such an intermediate scale.

Finally, we would like to stress that a very thoroughly analysis by Arvanitaki et al. [6]

in the context of superstring theories and by Turok [3] in fundamental theories with

compact extra dimensions have made the above conclusion more specific, showing that

in either case the pseudo-Goldstone bosons are actually ALPs.

1We recall that by automatic symmetry it is meant any global symmetry which is present in the most
general renormalizable Lagrangian invariant under the gauge group.
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1.2 Axion as a prototype

A characteristic feature of the SM is that non-perturbative effects produce the term

∆Lθ = θg2Gµνa G̃aµν/32π2 in the QCD Lagrangian, where θ is an angle, g and Gµνa are

the gauge coupling constant and the gauge field strength of SUc(3), respectively, and

G̃µνa ≡ 1
2ε
µνρσGaρσ. All values of θ are allowed and theoretically on the same footing, but

nonvanishing θ values produce a P and CP violation in the strong sector of the SM. An

additional source of CP violation comes from the chiral transformation needed to bring

the quark mass matrix Mq into diagonal form, and so the total strong CP violation is

parametrized by θ̄ = θ + arg DetMq. Observationally, a nonvanishing θ̄ would show

up in an electric dipole moment dn for the neutron. Consistency with the experimental

upper bound |dn| < 3 · 10−26 e cm requires |θ̄| < 10−9 (for a review, see [11]). Thus,

the question arises as to why |θ̄| is so unexpectedly small. A natural way out of this

fine-tuning problem – which is the strong CP problem – was proposed by Peccei and

Quinn [8] over 30 years ago. Basically, the idea is to make the SM Lagrangian invariant

under an additional global U(1)PQ symmetry in such a way that the ∆Lθ term can be

rotated away. While this strategy can be successfully implemented, it turns out that

the U(1)PQ is spontaneously broken and then a Goldstone boson is necessarily present

in the physical spectrum. Things are slightly more complicated, because U(1)PQ is also

explicitly broken by the same non-perturbative effects which give rise to ∆Lθ. Therefore,

the would-be Goldstone boson becomes a pseudo-Goldstone boson – the original axion [9]

– with nonvanishing mass given by

m ' 0.6

(
107 GeV

fa

)
eV , (1.4)

where fa denotes the scale at which U(1)PQ is spontaneously broken. Qualitatively, the

axion is quite similar to the pion and it possesses Yukawa couplings to quarks which go

like the inverse of fa. Moreover – just like for the pion – a two-photon coupling aγγ of

the axion a is generated at one-loop via the triangle graph with internal fermion lines,

which is described by the effective Lagrangian

Laγγ = − 1

4M
Fµν F̃µν a =

1

M
E ·B a , (1.5)

where Fµν ≡ (E,B) ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength and

F̃µν ≡ 1
2ε
µνρσFρσ. The constant M entering Eq. (1.5) has the dimension of an energy

and is given by

M = 1.2 · 1010 k

(
fa

107 GeV

)
GeV , (1.6)
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with k a model-dependent parameter of order one [52]. Note that M ∝ fa and turns out

to be independent of the mass of the fermions running in the loop. Hence, the axion is

characterized by a strict relation between its mass and two-photon coupling

m = 0.7 k

(
1010 GeV

M

)
eV . (1.7)

In the original proposal [8], U(1)PQ is spontaneously broken by two Higgs doublets which

also break SUw(2) × Uy(1) spontaneously, so that fa ≤ G
−1/2
F . Correspondingly, from

Eq. (1.4) we get m ≥ 24 KeV. In addition, the axion is rather strongly coupled to quarks

and induces observable nuclear de-excitation effects [53]. In fact, it was soon realized

that the original axion was experimentally ruled out [54].

A slight change in perspective led shortly thereafter to the resurrection of the axion

strategy. Conflict with experiment arises because the original axion is too strongly

coupled and too massive. But, given the fact that both m and all axion couplings go

like the inverse of fa the axion becomes weakly coupled and sufficiently light provided

that one arranges fa � G
−1/2
F . This is straightforwardly achieved by performing the

spontaneous breakdown of U(1)PQ with a Higgs field which is a singlet under SUw(2)×
Uy(1) [10]. Note that we are thereby led to the conclusion that the U(1)PQ symmetry

has nothing to do with the low-energy effective theory to which the axion belongs, but

rather it arises within an underlying more fundamental theory.

Thus, we see that the axion strategy provides a particular realization of the general

scenario outlined in Sec. 1.1, with G = U(1)PQ, Λ1 = fa and Lnonren(φSM, a) including

Laγγ among other terms involving the SM fermions. This fact also entails that new

physics should lurk around the scale at which U(1)PQ is spontaneously broken. The

same conclusion is reached from the recognition that the Peccei-Quinn symmetry is

dramatically unstable against a tiny perturbation – even at the Planck scale – unless it is

protected by some discrete gauge symmetry which can only arise in a more fundamental

theory [55].

1.3 Beyond the axion: ALPs

A generic feature of many extensions of the SM along the lines discussed in the In-

troduction is the prediction of ALPs. Generally speaking, ALPs are a straightforward

generalization of the axion but important differences exist between the axion and ALPs

mainly because the axion arises in a very specific context while in dealing with ALPs

the aim is to bring out their properties in a model-independent fashion as much as

possible [7]. This attitude has two main consequences:
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• Only ALP-photon interaction terms are taken into account. Therefore, any other

possible coupling of ALPs to SM particles is presently discarded and this entails

that Lnonren(φSM, a) in Eq. (1.3) only includes Laγγ as defined by Eq. (1.5).

Observe that such an ALP coupling to two photons aγγ is just supposed to exist

without further worrying about its origin.

• The parameters m and M are to be regarded as unrelated for ALPs, and it is

merely assumed that m� G
−1/2
F and M � G

−1/2
F .

As a result, ALPs are described by the Lagrangian

LALP =
1

2
∂µa ∂µa−

1

2
m2 a2− 1

4M
FµνF̃

µνa =
1

2
∂µa ∂µa−

1

2
m2 a2 +

1

M
E ·B a. (1.8)

1.4 Photon-ALP mixing

What ultimately characterizes ALPs is the trilinear aγγ vertex in LALP, which gives rise

to photon-ALP mixing in the presence of an external magnetic field B. More specifically,

what happens can be described as follows.

In such a situation, an off-diagonal element in the mass matrix for the photon-ALP

system shows up. Therefore, the interaction eigenstates differ from the propagation

eigenstates and the phenomenon of photon-ALP oscillations shows up [14, 15]. This is

analogous to what takes place in the case of massive neutrinos with different flavours,

apart from an important difference. All neutrinos have equal spin, and so neutrino

oscillations can freely occur. Instead, ALPs are supposed to have spin zero whereas the

photon has spin one, hence one of them can transform into the other only if the spin

mismatch is compensated for by an external magnetic field. Note that the strength of

this effect depends on the ratio B/M and not on B and M separately.

We denote by E the electric field and by k the wave vector of a propagating photon at

a given space-time point. Further, let BL and BT be the components of the external

magnetic field B along k and perpendicular to k, respectively. Because E is orthogonal

to k it follows that only the term E ·BT survives in LALP. We next split up E into two

components, one E‖ in the plane defined by k and B and the other E⊥ perpendicular

to that plane. By construction, E⊥ is orthogonal to BT , and so the aγγ coupling in

LALP goes like E‖BT a, which exhibits two characteristic properties of ALPs. First,

the photon-ALP mixing depends only on the transverse component BT of the external

magnetic field; for notational simplicity we will write B rather than BT in the following.

Second, only photons linearly polarized along E‖ actually mix with ALPs, whereas

photons with polarization E⊥ do not mix. As a consequence, the aγγ coupling acts
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like a polarimeter, in the sense that it gives rise to a change of the photon polarization

state. This effect can be used to look for ALPs both in high-precision polarimetric

measurements performed in the laboratory [17] and in certain astrophysical observations

in which the polarization state of the detected photons can be measured [32].

1.5 Photon/ALP beam propagation

We shall be concerned throughout with a monochromatic, unpolarized photon/ALP

beam of energy E and wave vector k propagating in a cold medium which is both

magnetized and ionized (from now on E denotes the energy, and since the electric field

will never be considered again no confusion arises). We suppose for the moment that

the external magnetic field B is homogeneous and we denote by ne the electron number

density. We employ an orthogonal reference frame with the y-axis along k, while the x

and z axes are chosen arbitrarily.

It can be shown that in this case the beam propagation equation following from LALP

can be written as [15] (
d2

dy2
+ E2 + 2EM0

)
ψ(y) = 0 (1.9)

with

ψ(y) ≡


Ax(y)

Az(y)

a(y)

 , (1.10)

where Ax(y) and Az(y) denote the photon amplitudes with polarization (electric field)

along the x- and z-axis, respectively, while a(y) is the amplitude associated with the

ALP. It is useful to introduce the basis {|γx〉, |γz〉, |a〉} defined by

|γx〉 ≡


1

0

0

 , (1.11)

|γz〉 ≡


0

1

0

 , (1.12)

|a〉 ≡


0

0

1

 , (1.13)
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where |γx〉 and |γz〉 represent the two photon linear polarization states along the x- and

z-axis, respectively, and |a〉 denotes the ALP state. Accordingly, we can rewrite ψ(y) as

ψ(y) = Ax(y) |γx〉+Az(y) |γz〉+ a(y) |a〉 , (1.14)

and the real, symmetric photon-ALP mixing matrixM0 entering Eq. (1.9) has the form

M0 =


∆xx ∆xz ∆x

aγ

∆zx ∆zz ∆z
aγ

∆x
aγ ∆z

aγ ∆aa

 , (1.15)

where we have set

∆x
aγ ≡

Bx
2M

, (1.16)

∆z
aγ ≡

Bz
2M

, (1.17)

∆aa ≡ −
m2

2E
. (1.18)

While the terms appearing in the third row and column of M0 are dictated by LALP

and have an evident physical meaning, the other ∆-terms require some explanation.

They reflect the properties of the medium – which are not included in LALP – and the

off-diagonal ∆-terms directly mix the photon polarization states giving rise to Faraday

rotation.

In the present thesis we are interested in the situation where the photon/ALP energy

is much larger than the ALP mass, namely E � m. As a consequence, the short-

wavelength approximation can be successfully employed and can be implemented as [15](
d2

dy2
+ E2

)
ψ(y) =

(
i
d

dy
+ E

)(
−i d
dy

+ E

)
ψ(y) = 2E

(
i
d

dy
+ E

)
ψ(y) , (1.19)

which turns the second-order beam propagation equation (1.9) into the first-order one(
i
d

dy
+ E +M0

)
ψ(y) = 0 . (1.20)

We see that a remarkable picture emerges, wherein the beam looks formally like a three-

state nonrelativistic quantum system. Explicitly, they are the two photon polarization

states and the ALP state. The evolution of the pure beam states is then described by

the three-dimensional wave function ψ(y) – with the y-coordinate replacing time – which

obeys the Schödinger-like equation (1.20) with Hamiltonian

H0 ≡ − (E +M0) . (1.21)
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Denoting by U0(y, y0) the transfer matrix – namely the solution of Eq. (1.20) with initial

condition U0(y0, y0) = 1 – the propagation of a generic wave function can be represented

as

ψ(y) = U0(y, y0)ψ(y0) . (1.22)

Moreover, we have

U0(y, y0) = eiE(y−y0) U0(y, y0) , (1.23)

where U0(y, y0) is the transfer matrix associated with the reduced Schödinger-like equa-

tion (
i
d

dy
+M0

)
ψ(y) = 0 . (1.24)

Because B is supposed to be homogeneous, we have the freedom to choose the z-axis

along B, so that Bx = 0. The diagonal ∆-terms receive in principle two different contri-

butions. One comes from the Heisenberg-Euler-Weisskopf (HEW) effective lagrangian

LHEW =
2α2

45m4
e

[(
E2 −B2

)2
+ 7 (E ·B)2

]
, (1.25)

accounting for the photon one-loop vacuum polarization in the presence of an external

magnetic field (α is the fine-structure constant and me is the electron mass) [56]. Hence,

we can define the two terms

∆QED
xx =

2αE

45π

( B

Bcr

)2
, (1.26)

∆QED
zz =

7αE

90π

( B

Bcr

)2
, (1.27)

where Bcr ' 4.41 · 1013 G is the critical magnetic field. The other contribution arises

from the fact that the beam is supposed to propagate in a cold plasma, where charge

screening produces an effective photon mass resulting in the plasma frequency

ωpl =

(
4παne
me

)1/2

, (1.28)

which entails

∆pl = −
ω2

pl

2E
. (1.29)

Finally, the ∆xz, ∆zx terms account for Faraday rotation, but since we are going to take

E in the VHE γ-ray band Faraday rotation is negligible. Altogether, the mixing matrix

becomes

M(0)
0 =


∆QED
xx + ∆pl 0 0

0 ∆QED
zz + ∆pl ∆aγ

0 ∆aγ ∆aa

 , (1.30)
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with the superscript (0) recalling the present choice of the coordinate system and

∆aγ ≡
B

2M
. (1.31)

We see that Ax decouples away while only Az mixes with a, showing that in the present

approximation plasma effects do not change the qualitative features previously found in

vacuo.

Application of the discussion reported in Appendix A with M → M(0)
0 yields for the

corresponding eigenvalues

λ0,1 = ∆QED
xx + ∆pl , (1.32)

λ0,2 =
1

2

(
∆QED
zz + ∆pl + ∆aa −∆osc

)
, (1.33)

λ0,3 =
1

2

(
∆QED
zz + ∆pl + ∆aa + ∆osc

)
, (1.34)

where we have set

∆osc ≡
[(

∆QED
zz + ∆pl −∆aa

)2
+4 (∆aγ)2

]1/2
=

[(
∆zz +

m2

2E

)2

+

(
B

M

)2
]1/2

. (1.35)

As a consequence, the transfer matrix associated with Eq. (1.24) with mixing matrix

M(0)
0 can be written with the help of Eq. (A.16) as

U0(y, y0; 0) = eiλ1(y−y0) T0,1(0) + eiλ2(y−y0) T0,2(0) + eiλ3(y−y0) T0,3(0) , (1.36)

where the matrices T0,1(0), T0,2(0) and T0,3(0) are just those defined by Eqs. (A.17),

(A.18) and (A.19) as specialized to the present situation. Actually, a simplification is

brought about by introducing the photon-ALP mixing angle

α =
1

2
arctg

(
2 ∆aγ

∆QED
zz + ∆pl −∆aa

)
, (1.37)

since then simple trigonometric manipulations allow us to express the above matrices in

the simpler form

T0,1(0) ≡


1 0 0

0 0 0

0 0 0

 , (1.38)

T0,2(0) ≡


0 0 0

0 sin2 α − sinα cosα

0 − sinα cosα cos2 α

 , (1.39)
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T0,3(0) ≡


0 0 0

0 cos2 α sinα cosα

0 sinα cosα sin2 α

 . (1.40)

Now, the probability that a photon polarized along the z-axis oscillates into an ALP

after a distance y is evidently

P
(0)
0,γz→a(y) = |〈a|U0(y, 0; 0)|γz〉|2 (1.41)

and in complete analogy with the case of neutrino oscillations [19] it reads

P
(0)
0,γz→a(y) = sin22α sin2

(
∆osc y

2

)
, (1.42)

which shows that ∆osc plays the role of oscillation wave number, thereby implying that

the oscillation length is Losc = 2π/∆osc. Owing to Eq. (1.37), Eq. (1.42) can be

rewritten as

P
(0)
0,γz→a(y) =

(
B

M ∆osc

)2

sin2

(
∆osc y

2

)
, (1.43)

which shows that the photon-ALP oscillation probability becomes both maximal and

energy-independent for

∆osc '
B

M
, (1.44)

and explicitly reads

P
(0)
0,γz→a(y) ' sin2

(
By

2M

)
. (1.45)

This is the strong-mixing regime, which – from the comparison of Eqs. (1.35) and (1.44)

– turns out to be characterized by the condition

∣∣∣∆zz +
m2

2E

∣∣∣� B

M
, (1.46)

and so it takes place in the energy range

E∗ � E � E∗∗ , (1.47)

where

E∗ ≡
|m2 − ω2

pl|M
2B

, (1.48)

and

E∗∗ ≡
90π

7α

B2
cr

BM
. (1.49)

Outside the range E∗ � E � E∗∗ the photon-ALP oscillation probability becomes

energy-dependent and vanishingly small.
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So far, our discussion was confined to the case in which the beam is in a pure polariza-

tion state. This assumption possesses the advantage of making the resulting equations

particularly transparent but it has the drawback that it is too restrictive for our analysis.

For, photon polarization cannot be measured in the VHE γ-ray band, and so we have to

treat the beam as unpolarized. As a consequence, it will be described by a generalized

polarization density matrix

ρ(y) =


Ax(y)

Az(y)

a(y)

⊗ ( Ax(y) Az(y) a(y)
)∗

(1.50)

rather than by a wave function ψ(y). Remarkably, the analogy with non-relativistic

quantum mechanics entails that ρ(y) obeys the Von Neumann-like equation

i
dρ

dy
= [ρ,M0] (1.51)

associated with Eq. (1.24). Thus, the propagation of a generic ρ(y) is given by

ρ(y) = U0(y, y0) ρ(y0)U†0(y, y0) (1.52)

and the probability that a photon/ALP beam initially in the state ρ1 will be found in

the state ρ2 after a distance y is

P0,ρ1→ρ2(y) = Tr
(
ρ2 U0(y, 0) ρ1 U†0(y, 0)

)
, (1.53)

since we are assuming as usual that Trρ1 = Trρ2 = 1. Observe that in Eqs. (1.51),

(1.52) and (1.53) we have dropped the superscript (0) in M0 and replaced U0(y, y0; 0)

by U0(y, y0) because they retain their form for an arbitrary choice of the coordinate

system.

In view of our subsequent discussion it proves essential to deal with the general case in

which B is not aligned with the z-axis but forms a nonvanishing angle ψ with it. Cor-

respondingly, the mixing matrix M0 presently arises from M(0)
0 through the similarity

transformation

M0 = V †(ψ)M(0)
0 V (ψ) (1.54)

operated by the rotation matrix in the x–z plane, namely

V (ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (1.55)
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This leads to [28]

M0 =


∆QED
xx + ∆pl 0 ∆aγ sinψ

0 ∆QED
zz + ∆pl ∆aγ cosψ

∆aγ sinψ ∆aγ cosψ ∆aa

 , (1.56)

indeed in agreement with Eq. (1.15) within the considered approximation. Therefore

the transfer matrix reads

U0(y, y0;ψ) = V †(ψ)U0(y, y0; 0)V (ψ) (1.57)

and its explicit representation turns out to be

U0(y, y0;ψ) = eiλ1(y−y0) T0,1(ψ) + eiλ2(y−y0) T0,2(ψ) + eiλ3(y−y0) T0,3(ψ) , (1.58)

with

T0,1(ψ) ≡


cos2 ψ − sinψ cosψ 0

− sinψ cosψ sin2 ψ 0

0 0 0

 , (1.59)

T0,2(ψ) ≡


sin2 θ sin2 ψ sin2 α sinψ cosψ − sinα cosα sinψ

sin2 α sinψ cosψ sin2 α cos2 ψ − sinα cosα cosψ

− sinα cosα sinψ − sinα cosα cosψ cos2 α

 , (1.60)

T0,3(ψ) ≡


sin2 ψ cos2 α sinψ cosψ cos2 α sinα cosα sinψ

sinψ cosψ cos2 α cos2 ψ cos2 α sinα cosα cosψ

sinψ cosα sinα cosψ sinα cosα sin2 α

 . (1.61)

1.6 Astrophysical and cosmological constraints

Astrophysics has turned out to be quite effective in setting an upper bound on the aγγ

vertex in LALP, which therefore holds for the axion as well as for ALPs.

In the first place, the failure to detect ALPs emitted by the Sun in the CAST experiment

at CERN has led to

M > 1.14 · 1010 GeV (1.62)

for m < 0.02 eV [20].

On the theoretical side, the most reliable method concerns ALP photo-production

through the Primakoff process, which takes place when an incoming photon scatters

on a charged particle and becomes an ALP upon the exchange of a virtual photon.
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Hot, dense plasmas in stellar cores are ideal environments wherein the Primakoff pro-

cess involving thermal photons can occur. Once produced, the ALPs escape because

their mean free path is much larger than the stellar radius, thereby carrying off energy.

Owing to the virial equilibrium, the stellar core has a negative specific heat. Therefore

it reacts to such an energy loss by getting hotter. As a result, the rate of nuclear reac-

tions sharply increases, bringing about a substantial change in the observed properties

of stars. Since current models of stellar evolution are in fairly good agreement with

observations, M has to be large enough to provide a sufficient suppression of unwanted

ALP effects. This argument has been applied systematically in a quantitative fashion

to the Sun, to main-sequence stars and to red-giants stars in globular clusters, with the

result [19]

M > 1010 GeV . (1.63)

A consequence of photon-ALP oscillations is that a lower bound on M stronger than

conditions (1.62) and (1.63) – even if much less robust – can be derived for m < 10−10 eV.

In this connections, two methods have been put forward. One is based on the observation

of a time-lag between opposite-polarization modes in pulsar radio emission and yields [57]

M > 5 · 1010 GeV . (1.64)

The other involves ALPs emitted by the supernova SN1987A, which would convert them

into γ-rays in the magnetic field of the Galaxy. Using the absence of these photons in

the Solar Maximum Mission Gamma-Ray Detector, the lower bound

M > 1011 GeV (1.65)

has been derived [58]. We stress however that condition (1.65) is affected by large

uncertainties, reflecting the lack of precise knowledge of the Galactic magnetic field as

well as of the energy dependence of the detector response.

Let us next turn our attention to the cosmological constraints on ALPs. At variance

with the previous astrophysical analysis, the case of the axion differs drastically from

that of generic ALPs.

We recall that cosmology sets strong constraints on the axion properties because of

their coupling to quarks and gluons (indeed necessary in order to solve the strong CP

problem). Basically, both thermal and non-thermal mechanisms can produce axions

in the early Universe. Since this issue is not directly relevant for our discussion, we

cursorily summarize the main results remarking that the situation is in reality much

more complex than sketched here. Recalling that fa denotes the scale at which U(1)PQ
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is spontaneously broken, only the range

0.6 · 107 GeV < fa < 0.6 · 1013 GeV (1.66)

is cosmologically allowed. Thanks to Eqs. (1.4) and (1.6), this constraint translates into

the conditions

10−6 eV < m < 1 eV (1.67)

and

0.7 · 1010 GeV < M < 0.7 · 1016 GeV , (1.68)

respectively (we have taken for simplicity k = 1 in Eq. (1.6)). We stress that these

bounds should be regarded merely as order-of-magnitude estimates. Moreover, the axion

is a very good candidate for dark matter. More specifically, for m close to 10−6 eV

non-thermal production dominates and it behaves as a cold dark matter candidate,

whereas for m close to 1 eV thermal production dominates and it is a hot dark matter

particle [12]. Searches for axionic dark matter are currently underway with the ADMX

experiment [59]. Finally, it has recently been realized that cold dark matter axions ought

to form a Bose-Einstein condensate [60].

Clearly, all these considerations do not apply to ALPs, since they are supposed to interact

with the rest of the world through the two-photon coupling only. As a consequence, they

can be produced in the early Universe only thermally through the processes e± γ → e± a

and e+ e− → γ a. It has been shown that in the case m � 1 eV – which is the one

relevant for us as we shall see later – ALPs are relativistic today and their abundance

is anyway smaller than that of CMB photons [61]. Hence, we are led to the conclusion

that the ALP considered in this thesis are totally unconstrained by cosmology and play

no role for the dark matter problem.



Chapter 2

Transparency of the Universe to γ

rays

VHE astrophysics is on the verge to enter its golden age. Planned ground-based detectors

like CTA (Cherenkov Telescope Array) [126], HAWC (High Altitude Water Cherenkov

Experiment) [127] and HiSCORE (Hundred Square-km Cosmic ORigin Explorer) [128]

will probe within the next few years the energy range from 10 GeV up to 105 GeV (CTA

and HAWC) and even up to 109 GeV (HiSCORE) with unprecedented sensitivity.

Unfortunately, a stumbling block along this exciting avenue is the existence of a soft

photon background in the Universe which leads to a strong suppression of the observed

flux through the γγ → e+e− pair-production process. The onset of this process depends

both on the observed energy and on the source redshift, as it will become apparent

later. Specifically, it is mostly due to the EBL – i.e. to the background in the infrared,

visible and ultraviolet region – in the energy range 10 GeV − 105 GeV, to the Cosmic

Microwave Background (CMB) in the range 105 GeV − 1010 GeV and to the RB in the

range 1010 GeV − 1013 GeV. Moreover, even though the SED of the EBL has remained

quite uncertain for a long time, a remarkable agreement among the various EBL models

has been reached recently, and also the RB has been measured in 2008 with considerably

better precision than before.

All this prompts us to carefully evaluate the optical depth – which quantifies the photon

absorption due to the above pair-production process – in the energy range 10 GeV −
1013 GeV for a source redshift up to zs = 3. As a particular case, we derive the photon

mean free path for γγ → e+e− as a function of energy in the local Universe (zs ' 0) in

order to compare it with that obtained by Coppi and Aharonian (CA) in 1997 [123]. A

less detailed but similar result was independently derived at the same time by Phrotheroe

and Biermann [129].

115
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2.1 Evaluation of the pair-production cross-section

We start by recalling that the photon survival probability Pγ→γ(E0, zs) is currently

parameterized as

Pγ→γ(E0, zs) = e−τγ(E0,zs) , (2.1)

where E0 is the observed energy and τγ(E0, zs) is the optical depth that quantifies the

dimming of the source at redshift zs. Clearly τγ(E0, zs) increases with zs, since a greater

source distance implies a larger probability for a photon to disappear. Apart from

atmospheric effects, one typically has τγ(E0, zs) < 1 for zs not too large, in which case

the Universe is optically thin all the way out to the source. But depending on E0 it can

happen that τγ(E0, zs) > 1, and so at some point the Universe becomes optically thick

along the line of sight to the source. The value zh such that τγ(E0, zh) = 1 defines the

γ-ray horizon for a given E0, and sources beyond the horizon (namely with zs > zh)

tend to become progressively invisible as zs further increases past zh.

Whenever dust effects can be neglected, photon depletion arises solely when hard photons

of energy E scatter off soft background photons of energy ε permeating the Universe,

which gives rise to hard photon absorption. Let us proceed to quantify this issue.

Regarding E as an independent variable, the process is kinematically allowed for

ε > εthr(E,ϕ) ≡ 2m2
e c

4

E (1− cosϕ)
, (2.2)

where ϕ denotes the scattering angle and me is the electron mass. Note that E and ε

change along the line of sight in proportion of 1 + z because of the cosmic expansion.

The corresponding Breit-Wheeler cross-section is [62]

σγγ(E, ε, ϕ) =
2πα2

3m2
e

W (β) (2.3)

' 1.25 · 10−25W (β) cm2 ,

with

W (β) =
(
1− β2

) [
2β
(
β2 − 2

)
+
(
3− β4

)
ln

(
1 + β

1− β

)]
.

The cross-section depends on E, ε and ϕ only through the speed β – in natural units –

of the electron and of the positron in the center-of-mass

β(E, ε, ϕ) ≡
[
1− 2m2

e c
4

Eε (1− cosϕ)

]1/2

, (2.4)

and Eq. (2.2) implies that the process is kinematically allowed for β2 > 0. The cross-

section σγγ(E, ε, ϕ) reaches its maximum σmax
γγ ' 1.70·10−25 cm2 for β ' 0.70. Assuming
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head-on collisions for definiteness (ϕ = π), it follows that σγγ(E, ε, π) gets maximized

for the background photon energy

ε(E) '
(

500 GeV

E

)
eV , (2.5)

where E and ε correspond to the same redshift. For an isotropic background of photons,

the cross-section is maximized for background photons of energy [133]

ε(E) '
(

900 GeV

E

)
eV . (2.6)

Explicitly, the situation can be summarized as follows.

• For 10 GeV ≤ E < 105 GeV the EBL plays the leading role. In particular, for

E ∼ 10 GeV σγγ(E, ε) – integrated over an isotropic distribution of background

photons – is maximal for ε ∼ 90 eV, corresponding to far-ultraviolet soft photons,

whereas for E ∼ 105 GeV σγγ(E, ε) is maximal for ε ∼ 9 · 10−3 eV, corresponding

to soft photons in the far-infrared.

• For 105 GeV ≤ E < 1010 GeV the interaction with the CMB becomes dominant.

• For E ≥ 1010 GeV the main source of opacity of the Universe is the RB.

2.2 Evaluation of the optical depth

Within the standard ΛCDM cosmological model τγ(E0, zs) arises by first convolving the

spectral number density nγ(ε(z), z) of background photons at a generic redshift z with

σγγ(E(z), ε(z), ϕ) for fixed values of z, ϕ and ε(z), and next integrating over all these

variables [33]. Hence, we have

τγ(E0, zs) =

∫ zs

0
dz

dl(z)

dz

∫ 1

−1
d(cosϕ)

1− cosϕ

2
× (2.7)

×
∫ ∞
εthr(E(z),ϕ)

dε(z)nγ(ε(z), z)σγγ
(
E(z), ε(z), ϕ

)
,

where the distance travelled by a photon per unit redshift at redshift z is given by

dl(z)

dz
=

c

H0

1

(1 + z)
[
ΩΛ + ΩM (1 + z)3

]1/2
, (2.8)
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with Hubble constant H0 ' 70 km s−1 Mpc−1, while ΩΛ ' 0.7 and ΩM ' 0.3 represent

the average cosmic density of matter and dark energy, respectively, in units of the critical

density ρcr ' 0.97 · 10−29 g cm−3.

Once nγ(ε(z), z) is known, τγ(E0, z) can be computed exactly; generally the integration

over ε(z) in Eq. (2.7) must be performed numerically.

Finally, in order to get a feeling about the considered physical situation, it looks suitable

to discard cosmological effects, which evidently makes sense only for zs small enough.

Accordingly, zs is best expressed in terms of the source distance D = czs/H0, and the

optical depth becomes 1

τγ =
D

λγ(E)
, (2.9)

where λγ(E) = D/τγ(E,DH0/c) is the photon mean free path for γγ → e+e− referring

to the present cosmic epoch. As a consequence, Eq. (2.1) becomes

Pγ→γ(E,D) = e−D/λγ(E) . (2.10)

2.3 Soft photon background

Our main goal is at this point the determination of nγ(ε(z), z). For the sake of clarity,

we consider separately the EBL, the CMB, and the RB.

The EBL density nγ(ε(z), z) is in principle affected by large uncertainties arising mainly

from foreground contamination produced by zodiacal light which is various orders of

magnitude larger than the EBL itself [91]. Below, we sketch schematically the different

approaches that have been pursued, without any pretension of completeness.

• Forward evolution – This is the most ambitious approach, since it starts from

first principles, namely from semi-analytic models of galaxy formation in order to

predict the time evolution of the galaxy luminosity function [92].

• Backward evolution – This begins from observations of the present galaxy popu-

lation and extrapolates the galaxy luminosity function backward in time. Among

others, this strategy has been followed by Stecker, Malkan and Scully [94] – whose

result has unfortunately been ruled out by the measurements by Fermi/LAT [130]

– and by FRV [35].

1Since in this case the energy is independent of the source distance, we simply write the observed
energy as E instead of E0.
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• Inferred evolution – This approach models the EBL by using quantities like the

star formation rate, the initial mass function and the dust extinction as inferred

from observations [40, 95].

• Observed evolution – This method developed by Dominguez and collaborators (D)

relies on observations by using a very rich sample of galaxies extending over the

redshift range 0 ≤ zs ≤ 2 [97].

• Compared observations – This technique has been implemented in two different

ways. One consists in comparing observations of the EBL itself with blazar obser-

vations with Imaging Atmospheric Cherenkov Telescopes (IACTs) and deducing

the EBL level from the VHE photon dimming [98]. The other starts from some

γ-ray observations of a given blazar below 100 GeV where EBL absorption is neg-

ligible – typically using Fermi/LAT data – and infers the EBL level by comparing

the IACT observations of the same blazar with the source spectrum as extrap-

olated from former observations [99] (but see also [131]). In the latter case the

main assumption is that the emission mechanism is presumed to be determined

with great accuracy. In either case, the crucial unstated assumption is that photon

propagation in the VHE band is governed by conventional physics.

• Empirical determination – A newer method of determining the EBL, made possible

by recent extensive deep galaxy surveys, is to use the observed luminosity densities

at different wavelengths together with observational error bars to directly deter-

mine the EBL and opacity without the need of any theoretical assumption [132].

• Minimal EBL model – Its aim is to provide a strict lower limit on the EBL level.

It relies on the same strategy underlying the inferred evolution, but with the pa-

rameters tuned in such a way to reproduce the EBL measurements from galaxy

counts [96].

Quite remarkably, all methods – apart obviously from the last one – yield basically the

same results in the redshift range where they overlap, so that at variance with the time

when the CA analysis was done (1997) nowadays the SED of the EBL is fixed to a very

good extent. We will employ here the FRV model [35] but we shall check our results using

the D model [97]. As far as the CMB is concerned we take the standard temperature

value T = 2.73 K; due to the large density of CMB photons, this background corresponds

to the minimum mean-free-path [133, 134]. Finally, the most recent available data for

the RB are employed [135], with a low-frequency cutoff taken at 2 MHz.
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2.4 Results

Taking into account the EBL, the CMB, and the RB, we directly evaluate τγ(E0, zs)

over the energy range 10 GeV ≤ E0 ≤ 1013 GeV and within the source redshift interval

10−3 ≤ zs ≤ 3, which is the range where the FRV model yields the contribution of the

EBL to τγ(E0, zs) (the D model is restricted to 10−2 ≤ zs ≤ 2). We linearly extrapolate

τγ(E0, DH0/c) down to D ' 4 kpc. Such an extrapolation looks quite reliable not

only since τγ(E0, DH0/c) behaves linearly already in the range 4 Mpc ≤ D ≤ 43 Mpc,

but mainly because at such low distances Eq. (2.9) indeed implies τγ(E0, DH0/c) ∝
DH0/c. Moreover, we stress that the extrapolation in question does not practically

affect our result. As it is evident from Fig. 2.1, for D < 4 Mpc the energies E0 for

which τγ(E0, DH0/c) takes our prescribed values exceed ∼ 105 GeV, which means that

our result for D ' 4 Mpc is dominated by the CMB and the RB rather than by the

EBL. Although we have computed τγ(E0, zs) using the FRV model, we have checked

that it basically remains unaffected by employing the D model in the redshift range

where they overlap. This is our main result, which is plotted in Fig. 2.1, where the

solid line corresponds to τγ(E0, zs) = 1, the dot-dashed line corresponds to τγ(E0, zs) =

2, the dashed line corresponds to τγ(E0, zs) = 3 and the dotted line corresponds to

τγ(E0, zs) = 4.6, which give rise to an observed flux dimming of about 0.37, 0.14, 0.05

and 0.01, respectively. For D ≤ 8 kpc it turns out that τγ(E0, DH0/c) < 1 for any value

of E0.

In order to compare our finding with the CA result, we disregard cosmological effects

thereby computing the γγ → e+e− mean free path λγ(E) in the local Universe (zs ' 0)

by using Eq. (2.9) with τγ(E0, zs) evaluated by means of Eq. (2.7) with D ' 4 Mpc

(formally zs ' 10−6).

To facilitate the comparison between our and the CA results we have superposed in

Fig. 2.2 the behavior of λγ(E) as found with the above procedure – represented by red

dot-dashed line – over Fig. 1 of CA, where the black lines represent the similar results

derived by them (see captions). There is of course little surprise that at zs ' 0 our

result is barely in agreement with that of CA at zs = 0. Still, it should be appreciated

that the improved behaviour of λγ(E) found here is in disagreement with the one arising

from a single choice of the EBL model in the CA analysis. In addition, while the CMB

contribution is obviously identical in both cases, as far as the RB is concerned our curve –

which corresponds to a low-frequency cutoff of 2 MHz – lies between those corresponding

to the low-frequency cutoffs of 2 MHz and 1 MHz, respectively, of the CA result.
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Figure 2.1: Source redshifts zs at which the optical depth takes fixed values as a
function of the observed hard photon energy E0; the y-scale on the right side shows
the distance in Mpc for nearby sources. The curves from bottom to top correspond to
a photon survival probability of e−1 ' 0.37 (the horizon), e−2 ' 0.14, e−3 ' 0.05 and
e−4.6 ' 0.01. For D ' 8 kpc the photon survival probability is larger than 0.37 for any

value of E0.

Figure 2.2: Comparison of the mean free path λγ for γγ → e+e− as derived in the
text using a low-frequency cutoff at 2 MHz (red dot-dashed line) with the one obtained
by CA in the local Universe (zs = 0) as a function of the observed energy E. The CA
black lines labelled by a, b, c represent three different EBL models, the black solid line
corresponds to the CMB, the black lines labelled by 1, 2, 3 represent a model of the
RB with low-frequency cutoff at 5, 2 and 1 MHz, respectively, and the black triangles

correspond to the RB under the assumption that it is completely extragalactic.
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2.5 Discussion

We have quantified by means of the optical depth the photon absorption caused by the

pair-production process in the observed energy range 10 GeV ≤ E0 ≤ 1013 GeV and for

a source redshift up to zs = 3. We have found that depending on E0 the absorption can

be quite large, and becomes dramatic around 106 GeV. However, for a source distance

D ≤ 8 kpc the absorption is irrelevant for any value of E0.

As it is clear from Fig. 2.1, our conclusion is of great importance for the planned VHE

detectors like CTA, HAWC and HiSCORE.

Moreover, we have specialized our analysis to the local Universe (zs ' 0) where the

optical depth is more conveniently replaced by the mean free path, and we have compared

it with the same quantity as evaluated by Coppi and Aharonian in 1997.

It has been realized that the blazars observed so far by IACTs give rise to the pair-

production anomaly. The H.E.S.S. collaboration [37] first observed that the SED from

the blazars H 2356-309 and 1ES 1101-232, at redshifts zs = 0.165 and zs = 0.186,

respectively, could be explained by a very low EBL level; subsequently, the MAGIC

collaboration [38] have reinforced this evidence with the data from the AGN 3C279 at

zs = 0.54. Later, De Angelis et al. [25] have observed this effect in the spectral indices

at VHE of a sample of AGN at zs > 0.2. Recently a statistical analysis of the SED from

all blazars observed at VHE indicates a level of the EBL lower than that predicted even

by the minimal EBL model; the indication remains at a confidence level between 2.6

and 4.3 depending on the adopted EBL model [44, 45]. Among many other things, we

find it very interesting to see whether this effect persists also at energies much higher

than those presently explored by IACTs, and our result looks essential as a benchmark

for comparison.

We plan to carry out a similar analysis in the near future taking ALPs into account, since

photon-ALP oscillations tend to drastically reduce photon absorption effects of the kind

considered here, thereby considerably enlarging the γ-ray horizon at the VHEs that CTA,

HAWC and HiSCORE will be able to probe (see Chapters 4 and 5). Moreover, it has

very recently been pointed out that such a mechanism would explain the pair-production

anomaly in a natural fashion and works for values of the photon-ALP coupling in the

reach of the planned upgrade of the ALPS experiment at DESY [46].

Another possible mechanism to explain the apparent reduction of the cosmic gamma-

opacity contemplates an additional contribution of secondary gamma rays arising from

interactions along the line of sight of high energy cosmic rays produced by the source [136].



Chapter 3

Very-high energy blazar spectra

Among the many achievements of IACTs is the determination of blazar spectra at en-

ergies above 100 GeV, and to date this task has been accomplished for about 30 sources

with redshift up to z = 0.536 for 3C 279. Most of these blazars are listed in Table 3.1.

In view of our later analysis, we carefully address the propagation of a monochromatic

photon beam emitted by a blazar at redshift z and detected at energy E0 within the

standard ΛCDM cosmological model, so that the emitted energy is E0(1 + z) owing to

the cosmic expansion. Clearly – regardless of the actual physics responsible for photon

propagation – the observed and emitted differential photon number fluxes – namely

dN/dE – are related by

Φobs(E0, z) = Pγ→γ(E0, z) Φem (E0(1 + z)) , (3.1)

where Pγ→γ(E0, z) is the photon survival probability throughout the whole travel from

the source to us. We suppose hereafter that E0 lies in the VHE γ-ray band, and through-

out this Chapter we employ cgs units for clarity.

3.1 Blazars

Blazars are associated with accreting supermassive black holes at the center of active

galaxies that host AGN (see Fig. 3.1). They dominate the extragalactic γ-ray sky,

both at high energy (> 100 MeV) and at VHE. Their powerful non-thermal emission,

spanning the entire electromagnetic spectrum, is produced in a relativistic jet pointing

toward the Earth. Their SED shows two well defined “humps”. The first one – peaking

somewhere between the IR and the X-ray bands – derives from the synchrotron emission

123
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Source z Observed energy range Γobs Reference Γem

3C 66B 0.022 120 GeV < E0 < 1.8 TeV 3.10± 0.37 [63] 3.00
Mrk 421 0.030 140 GeV < E0 < 6 TeV 2.33± 0.22 [64] 2.16
Mrk 501 0.034 150 GeV < E0 < 6 TeV 2.09± 0.20 [65] 1.90
Mrk 501 0.034 150 GeV < E0 < 3 TeV 2.20± 0.20 [65] 2.03

1ES 2344+514 0.044 180 GeV < E0 < 4 TeV 2.95± 0.23 [66] 2.70
Mrk 180 0.045 180 GeV < E0 < 1.4 TeV 3.30± 0.70 [67] 3.07

1ES 1959+650 0.047 190 GeV < E0 < 6 TeV 2.72± 0.24 [68] 2.43
BL Lacertae 0.069 170 GeV < E0 < 700 GeV 3.60± 0.54 [69] 3.27

PKS 0548-322 0.069 440 GeV < E0 < 2.2 TeV 2.80± 0.32 [70] 2.39
PKS 2005-489 0.071 230 GeV < E0 < 2.3 TeV 4.00± 0.41 [71] 3.59

RGB J0152+017 0.080 320 GeV < E0 < 3 TeV 2.95± 0.41 [72] 2.47
W Comae 0.102 270 GeV < E0 < 1.2 TeV 3.81± 0.49 [73] 3.18

PKS 2155-304 0.117 230 GeV < E0 < 3 TeV 3.37± 0.12 [74] 2.67
RGB J0710+591 0.125 ? 2.80± 0.30 [75] ?

H 1426+428 0.129 800 GeV < E0 < 10 TeV 2.60± 0.61 [76] 0.85
1ES 0806+524 0.138 320 GeV < E0 < 630 GeV 3.60± 1.04 [77] 2.70
1ES 0229+200 0.140 580 GeV < E0 < 12 TeV 2.50± 0.21 [78] 0.41

H 2356-309 0.165 220 GeV < E0 < 900 GeV 3.09± 0.26 [79] 2.06
1ES 1218+304 0.182 180 GeV < E0 < 1.5 TeV 3.08± 0.39 [80] 2.00
1ES 1101-232 0.186 280 GeV < E0 < 3.2 TeV 2.94± 0.20 [81] 1.72
1ES 0347-121 0.188 300 GeV < E0 < 3.0 TeV 3.10± 0.25 [82] 1.87
1ES 1011+496 0.212 160 GeV < E0 < 600 GeV 4.00± 0.54 [83] 2.90
S5 0716+714 0.31 180 GeV < E0 < 680 GeV 3.45± 0.58 [84] 1.60
PG 1553+113 0.40 95 GeV < E0 < 620 GeV 4.27± 0.14 [85] 2.48
PKS 1222+216 0.432 80 GeV < E0 < 360 GeV 3.75± 0.34 [86] 2.47

3C 66A 0.444 230 GeV < E0 < 470 GeV 4.10± 0.72 [87] 1.28
PKS 1424+240 0.5 140 GeV < E0 < 500 GeV 3.80± 0.58 [88] 1.16

3C 279 0.536 80 GeV < E0 < 480 GeV 4.10± 0.73 [89] 2.05
∆Γem 3.18
〈Γem〉 2.22

Table 3.1: Blazars observed so far with the IACTs with known redshift z, measured
energy range, measured spectral index Γobs, and unfolded spectral index at emission
Γem using the FRV model of the EBL. Statistical and systematic errors are added in
quadrature to produce the total error reported on the measured spectral index. When
only statistical errors are quoted, systematic errors are taken to be 0.1 for H.E.S.S.
and 0.2 for MAGIC. The last two rows show the spread ∆Γem of the values of Γem

discarding errors and the average value 〈Γem〉 including errors, respectively.
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Figure 3.1: Schematic structure of an AGN.

of relativistic electrons (or, more generally, e+e− pairs) in the jet. The origin of the sec-

ond component which exhibits a maximum at γ-ray energies is more debated. Leptonic

models with the synchro-self-Compton (SSC) mechanism [137] attribute it to the inverse

Compton emission of the same electrons responsible for the lower energy bump (with

the possible additional contribution from external photons). Hadronic models with the

hadronic pion production (HPP) mechanism (for a review, see [34]), instead, assume that

the γ rays are the leftover of reactions involving relativistic hadrons.

Blazars are further divided into two broad groups, BL Lac objects and FSRQs [138]. BL

Lacs are defined by the weakness (or even absence) of thermal features (most notably

broad emission lines) in their optical spectra. This evidence leads to the common belief

that the nuclear region of BL Lacs, where the jet forms and accelerates, is rather poor of

soft photons. On the contrary, FSRQs display luminous broad (v > 1000 km s−1) emis-

sion lines, indicating the existence of photo-ionized clouds rapidly rotating around the

central black hole and organized in the so-called broad line region (BLR) (see e.g. [147]).

Besides their importance for the study of the structure and functioning of relativistic

jets, growing interest for blazars is motivated by the use of their intense γ-ray beam as

a probe of the EBL (see e.g. [37]) and of the large-scale magnetic fields (see e.g. [139]),

and even more fundamentally for the study of new physical phenomena beyond the SM

– like indeed ALPs – along with quite radical departures from conventional physics such

as violation of Lorentz invariance (for a review, see [140]).
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3.2 Conventional photon propagation

Within conventional physics the photon survival probability PCP
γ→γ(E0, z) is usually

parametrized as

PCP
γ→γ(E0, z) = e−τγ(E0,z) , (3.2)

where τγ(E0, z) is the optical depth, defined in Chapter 2, Sec. 2.1 and Sec. 2.2. Owing

to Eq. (3.2), Eq. (3.1) becomes

Φobs(E0, z) = e−τγ(E0,z) Φem (E0(1 + z)) . (3.3)

When cosmological effects (which evidently makes sense for z small enough) can be

neglected, z is best expressed in terms of the source distance D = cz/H0 and the optical

depth and PCP
γ→γ(E0, z) are expressed by Eq. (2.9) and by Eq. (2.10), respectively.

Hence, Eq. (3.3) reduces to

Φobs(E,D) = e−D/λγ(E) Φem(E) . (3.4)

Note that we have dropped the subscript 0 for simplicity.

Blazars detected or detectable in the near future with IACTs lie in the VHE range

100 GeV < E0 < 100 TeV, and so from Eq. (2.5) it follows that the resulting dimming is

expected to be maximal for a background photon energy in the range 0.005 eV < ε0 <

5 eV (corresponding to the frequency range 1.21 · 103 GHz < ν0 < 1.21 · 105 GHz and to

the wavelength range 2.48µm < λ0 < 2.48 · 102 µm), extending from the ultraviolet to

the far-infrared. This is just the EBL. We stress that at variance with the case of the

CMB, the EBL has nothing to do with the Big Bang. It is instead produced by stars in

galaxies during the whole history of the Universe and possibly by a first generation of

stars formed before galaxies were assembled. Therefore, a lower limit to the EBL level

can be derived from integrated galaxy counts [90].

We sketch schematically the different approaches that have been pursued to describe

the EBL spectral number density nγ(ε(z), z), without any pretension of completeness,

in Chapter 2, Sec. 2.3.

Throughout this thesis, we adopt the FRV model mainly because it supplies a very

detailed numerical evaluation of the optical depth based on Eq. (2.7), which will hence-

forth be denoted by τFRV
γ (E0, z)

1). Regretfully, the errors affecting τFRV
γ (E0, z) are

unknown.

1These tables can be found on the WEB site [101]
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3.3 Understanding observed VHE blazar spectra

As a preliminary step to find out the potential relevance of the DARMA scenario for

available observations of VHE blazars, we consider in some detail the energy range

0.2 TeV < E0 < 2 TeV where most of the blazars in question have been detected. It

follows from Eq. (2.5) that the EBL energy band where σγγ(E0, ε0, π) becomes maximal

is 0.25 eV < ε0 < 2.5 eV (corresponding to 6.07 · 104 GHz < ν0 < 6.07 · 105 GHz and

0.50µm < λ0 < 4.94µm).

The two models – leptonic and hadronic (see Sec 3.1) – proposed to give rise to the

emission of VHE photons lead to emission spectra which are so far observationally

indistinguishable, and in particular within the energy range 0.2 TeV < E < 2 TeV they

both predict a single power-law behaviour for blazar emitted spectra

Φem(E) = KE−Γem , (3.5)

where K is a suitable constant.

We next turn our attention to the observed energy spectra. It follows directly from

observations that blazar spectra are successfully fitted by a single power law 2

Φobs(E0, z) = KE
−Γobs(z)
0 . (3.6)

As a consequence, the observed spectra of all blazars detected so far are characterized

by the observed spectral index Γobs, which is reported in Table 3.1 for every source. It

is also very useful to plot Γobs versus the source redshift z for all detected VHE blazars

in Fig. 3.2 (blobs with error bars).

Let us first try to understand what Fig. 3.2 is telling us leaving aside any theoretical

prejudice. A striking feature is that the horizontal strip 3.5 < Γobs < 4.5 is almost

uniformly populated for all considered redshifts, which would suggest that Γobs is inde-

pendent of z. However, things are different for the lower strip 2.5 < Γobs < 3.5. Because

it is populated only up to z ' 0.2 (with the exception of a single source close to z ' 0.3),

the above interpretations is ruled out and we are forced to conclude that Γobs correlates

with z. Actually, when looking at Fig. 3.2 from this viewpoint a simple trend is easily

recognized: Γobs increases linearly from 2.5 – 3 at 0.1 < z < 0.2 to roughly 3.5 – 4 at

0.3 < z < 0.6. Similarly, also for Γobs > 3 a linear increase is found – even if with

a different slope – but the number of sources with Γobs > 3 following this behaviour

decreases as z increases until it vanishes for z > 0.25.

2Because Eq. (3.5) has to reduce to Eq. (3.6) in the limit z → 0, the constant K is the same in both
equations.
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Figure 3.2: The observed values of the observed spectral index Γobs versus the source
redshift for all blazars detected so far in the VHE band are represented by dots and

corresponding error bars.

A qualitative understanding of this situation emerges naturally by taking the EBL at-

tenuation into account. We stress in the first place that rather nearby blazars – such

as those at z < 0.05 – do not practically suffer EBL absorption at the energies probed

so far, thereby implying that the shape of their observed VHE spectra should be the

same as that of the emitted spectra, namely Γobs ' Γem. This is an important fact,

since it allows us to see directly the blazar spectra at emission. In addition, we show in

Appendix B that an approximate analytic expression for the optical depth within the

FRV model is given by

τapp
γ (E0, z) ' 2.25α

(
E0

500 GeV

)0.85

I(z) , (3.7)

with 0.9 ≤ α ≤ 3.6 and roughly I(z) ∼ z. Hence, by combining Eqs. (3.3), (3.5) and

(3.7) the expected observed flux is

Φapp
obs (E0, z) = K exp

{
− 2.25α

(
E0

500 GeV

)0.85

I(z)

}
E−Γem

0 (1 + z)−Γem . (3.8)

Now, Eq. (3.8) possesses to two conceptually distinct implications:

• Φapp
obs (E0, z) is exponentially damped as the energy increases, thereby entailing that

it gets much softer than the emitted flux.

• Φapp
obs (E0, z) is exponentially suppressed as the distance increases, so that suffi-

ciently far-away sources tend to become invisible.
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Although Eq. (3.8) holds up to 2 TeV only, one can check that these conclusions remain

true under the replacement τapp
γ (E0, z)→ τFRV

γ (E0, z) up to 100 TeV.

We can relate the expected observed spectral index Γexp
obs(z) to Γem and z by best-fitting

the l.h.s. of Eq. (3.8) to the power-law expression (3.6) over the energy range where the

considered source is observed, which is reported in Table 3.1.

Because I(z) is independent of E0, it is unaffected by the considered best-fitting pro-

cedure, and so we have Γexp
obs(z) ∼ I(z) ∼ z up to logarithmic corrections. This indeed

explains in a qualitative fashion both why nearby sources with 2.5 < Γobs < 3 get re-

placed by sources with 3.5 < Γobs < 4 at larger redshift according to a linear trend and

why nearby sources with Γobs > 3 follow a similar linear behaviour up to a point where

Γobs would be so large that the source becomes invisible at sufficiently large distances,

thereby disappearing from Fig. 3.2 for z large enough.

An intrinsic correlation – due to an observational bias – between the spectral index

and the distance, however, cannot be excluded on the basis of the experimental data.

In addition, given the blazar sequence [102], the fact that the Inverse Compton bump

moves according to luminosity might give a bias related to the fact that for the same

energy range we are actually sampling different regions of the spectral energy distribu-

tion. Finally, the fact that the upper limit of the energy sampled decreases with energy

might introduce in itself a bias. However, a direct search for spectral index hardening

associated with blazar variability gave no evidence [103]. Attempts are presently done

(see for example [104]) to analyze individually blazars and derive their spectral energy

distribution from multi-wavelength data. We hope that in a near future this work will

be made more precise. However, the models have presently a large uncertainty, since, in

order to have reasonably constrained fits, one must assume a purely leptonic emission

and a 1-zone SSC emission mechanism, while we have indications that the situation can

be more complicated for most blazars we know in detail.

In order to derive the exact value of Γem for the various blazars from observations the

use of Eq. (3.8) with Φapp
obs (E0, z) → Φobs(E0, z) combined with Eq. (3.6) would be

unsuited because of its approximate character. A better strategy consists in first de-

absorbing Γobs for every source by employing Eq. (3.3) with τγ(E0, z) → τFRV
γ (E0, z)

combined with Eq. (3.6), and next inferring Γem by best-fitting the resulting Φem(E)

to the power-law expression (3.5) over the energy range where the considered source is

observed (see Table 3.1). Observe that since Γem depends linearly on Γobs, the derived

values of Γem have the same error bars of Γobs as reported in Table 3.1 to the extent

that errors in τFRV
γ (E0, z) are neglected (they are actually unknown because they are not

quoted by the authors). We are of course well aware that the correct procedure would

be to first de-absorb each point of the observed spectrum of a given source and next
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best-fit these points to a power-law. Unfortunately, the observed energy points with

related error bars are not available from published papers, and this explains why we

have simply de-absorbed Γobs – hence Γem has to be understood as the average emitted

spectral index for the source in question – but we want to remark that for our purposes

this simplified approach is adequate. The same strategy has been used for a different

model of the EBL [93]. Our results are listed in Table 3.1, along with the spread ∆Γem

of the value of Γem discarding errors and the average value 〈Γem〉 including errors.

3.4 The cosmic opacity problem

It is evident from Table 3.1 that the values of Γem for some far-away sources are consid-

erably smaller than those for nearby blazars, with the exception of the two sources H

1426+428 and 1ES 0229+200.

As a consequence, the cosmic opacity problem arises concerning the physical mechanism

responsible for such a behaviour involving Γem and z.

Certainly cosmology does not help, because no important evolutionary effect is expected

to take place for redshifts up to z ' 0.54 at which the most distant blazar has been

detected.

Alternatively, one might guess that it is due to a volume selection effect, since intrinsi-

cally brighter sources are the exception rather than the rule. However, the emitted flux

depends not only on the slope but also on the normalization factor, which varies by three

orders of magnitude over the sample of considered sources. Actually, the existence of

the two rather nearby blazars H 1426+428 and 1ES 0229+200 with the hardest emitted

spectrum explicitly shows that small Γem does not mean large z. So, also this attempt

is unsatisfactory.

Yet another possible explanation consists in assuming that far-away blazars are in-

trinsically different from nearby ones, but to the best of our knowledge no convincing

explanation of this circumstance has been put forward so far.

One might also argue that a solution could come from the fact that some observed

blazars are in a quiescent state whereas others are flaring. In fact, because of EBL

absorption we might be seeing progressively more distant blazars only during stronger

flares (but not all distant blazars are flaring, like e.g. PG 1553+113 which has been

observed to have nearly the same luminosity for five years). As a consequence – working

within the SSC mechanism for definiteness – we could run the risk to compare Γem for

different sources at different positions on the Compton peak, since flaring causes this
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peak which normally lies below 100 GeV to slightly shift towards higher energies [105].

Clearly, the slope near the bottom of the pick is steeper than close to the tip, and this

circumstance would produce a harder emission spectrum for flaring sources. However,

such a possibility seems to us quite unlikely. For, the observed energy range of flaring

sources is generally considerably wider that the width of the peak [105] and observations

above 100 GeV invariably show that a single power law behaviour provides an excellent

fit to the data. Hence, we see that we are inferring the spectral index well below the

pick whether or not a flare takes place.

In conclusion, no satisfactory explanation for the considered behaviour involving Γem

and z seems to emerge.

As a matter of fact, shifting from the astronomical to the physical point of view makes

the issue more clear-cut. It is known since a long time that Γem = 1.5 arises from the

first-order Fermi acceleration mechanism with newtonian shocks for an electron injection

spectrum equal to 2 [106]. For this reason, when the cosmic opacity problem was first

perceived in 2006 it was thought that the inferred values of Γem were too small to

agree with conventional physics assuming current EBL models [37], and indeed values

Γem < 1.5 were considered unphysical e.g. by the H.E.S.S. collaboration. However, it

has recently been shown that the required low values of Γem can be achieved in the

presence of strong relativistic shocks [41], because of photon self-absorption inside the

source [42] or by the inverse Compton scattering of CMB photons by shock-accelerated

electrons in the jet [43].

While these results are gratifying, one still wonders why this kind of physical effects are

important for distant blazars only. Just as before, an answer seems hardly in sight.

So, either way it is argued no simple solution to the cosmic opacity problem emerges

within conventional physics.

Now, what the discussion in Sec. 3.3 has shown is that the origin of this cosmic opacity

problem is not qualitative – the z-dependence of Γobs(z) comes out right – but purely

numerical, namely because the EBL level predicted by conventional physics is too high.

Were the EBL level somewhat smaller, the cosmic opacity problem would automatically

disappear.

A way out of the cosmic opacity problem appears therefore to call for some sort of

unconventional photon propagation which ultimately reduces the cosmic opacity arising

from the EBL, thereby bringing the values of Γem for distant blazars in the same ballpark

of those for close ones.
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Various attempts at reducing the cosmic opacity along these lines have been proposed

and they are schematically summarized below:

• A revolutionary option contemplates a breakdown of Lorentz invariance [107].

• An alternative possibility concerns the emission of cosmic rays from blazars –

rather than photons – with energy smaller than 50 EeV. These cosmic rays can

travel unimpeded over cosmological distances and they can interact with the EBL

well before reaching our galaxy. In such an interaction secondary photons are

produced, that are ultimately detected by the IACTs [108].

• A different proposal relies upon photon-ALP oscillations, which requires the pres-

ence of magnetic fields somewhere along the line of sight. As already pointed

out, two concrete realizations of this idea have been investigated. One of them –

the DARMA scenario [24–26] – assumes that photon-ALP oscillations take place

during propagation in intergalactic space, where large-scale magnetic fields in

the nano-Gauss range are supposed to exist. Large-scale magnetic fields of this

strength are consistent with current upper bounds and even with the results of

the AUGER observatory (more about this, later). The other is in a sense com-

plementary, because it presupposes a γ → a conversion inside the blazar and a

a → γ conversion in the Milky way [27]. Although the properties of the Galactic

magnetic field are rather well known, those of the magnetic field in the blazar are

not, and so it is not clear whether the first step of this mechanism actually takes

place and if so how large is its efficiency [29].



Chapter 4

DARMA scenario

Our aim is to offer a detailed description of the structure of the DARMA scenario, and in

particular to show how the photon survival probability PDARMA
γ→γ (E0, z) can be computed

in terms of the properties of the intergalactic medium in which the photon/ALP beam

propagates.

4.1 An intuitive insight

We find it instructive to restate in a slightly different fashion the reason why the mecha-

nism of photon-ALP oscillations allows to substantially reduce the EBL absorption. We

neglect here cosmological effects for simplicity.

We suppose that VHE photons are both emitted and detected as usual, but that along

their way to us they convert into ALPs and back into photons. Accordingly, the num-

ber Nc of either γ → a or a → γ conversions must necessarily be even, and we may

schematically regard the beam propagation in large-scale magnetic fields as a succession

of such conversions. Assuming ideally that each conversion occurs suddenly at some

space point, the source distance D gets divided into a number Nc + 1 of steps of equal

length L, over which a beam particle behaves either as a real photon or as an ALP.

Hence, a beam particle exhibits an overall behaviour as a real photon over a total length

equal to

Dγ =
Nc + 2

2 (Nc + 1)
D =

(
1− Nc

2Nc + 2

)
D . (4.1)

We intuitively expect Nc to increase with the photon-ALP oscillation probability –

and so with B/M – which leads in turn to a slight decrease of Dγ starting from D.

Correspondingly, since ALPs do not suffer EBL absorption Eq. (2.10) gets presently

133
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replaced by

PDARMA
γ→γ (E,D) = e−Dγ/λγ(E) = e

−
(

1− Nc
2Nc+2

)
D/λγ(E)

, (4.2)

and thanks to its exponential dependence onDγ/λγ(E) even a small decrease ofDγ start-

ing from D produces a large enhancement of PDARMA
γ→γ (E,D) as compared to PCP

γ→γ(E,D)

referring to conventional physics and given by Eq. (2.10) 1.

4.2 General strategy

Our ultimate goal consists in the evaluation of the photon survival probability PDARMA
γ→γ (E0, z)

from a blazar at redshift z to us when allowance is made for photon-ALP oscillations as

well as for EBL photon absorption. It is indeed clear that the considerations developed

in Chapter 3 can be extended to account for photon-ALP oscillations by the replacement

PCP
γ→γ(E0, z)→ PDARMA

γ→γ (E0, z).

An exact treatment would however be impossible because of the large uncertainty af-

fecting the configuration of the magnetic field ultimately responsible for photon-ALP

oscillations.

As a matter of fact, the line of sight to a distant blazar is expected to traverse magnetic

fields extending over a variety of scales. A magnetic field is certainly present inside

the source [109]. Furthermore, the Milky Way magnetic field can give a nontrivial

contribution to the effect under consideration [110], and the same is true if the line of

sight happens to cross a cluster of galaxies because intracluster magnetic fields are known

to exist with a strength similar to that of the Galactic field [111]. Finally, large-scale

magnetic fields can play a key role [112, 113]. Here, our attention will be restricted to

magnetic fields of the latter sort.

Unfortunately, almost nothing is known about the morphology of large-scale magnetic

fields, which reflects both their origin and the evolutionary history of baryonic matter.

While it is evident that their coherence length cannot be arbitrarily large, no reliable

estimate of its value is presently available. As far as our analysis is concerned, this

means that we cannot suppose that large-scale magnetic fields are homogeneous over

the whole distance to the source, but their spatial dependence is largely unknown. The

usual way out of this difficulty amounts to suppose that large-scale magnetic fields B

have a domain-like structure. That is, B is assumed to be homogeneous over a domain

of size Ldom equal to its coherence length, with B randomly changing its direction from

one domain to another but keeping approximately the same strength [112, 113].

1We will see later that the situation is more involved, but at this stage we can safely ignore additional
complications.
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Thus, the whole propagation process of the considered photon/ALP beam can be recov-

ered by iterating the propagation over a single domain as many times as the number of

domains crossed by the beam, taking each time a random value for the angle ψ between

B and a fixed fiducial direction equal for all domains. In this way, we are effectively led

to the much easier problem of photon-ALP oscillations in a homogeneous magnetic field

(solved exactly in Chapter 1 Sec. 1.5).

What still remains to be done at this point is to take photon absorption into account.

This is easy because photon absorption is independent of the properties of the photon-

ALP oscillation mechanism and vice-versa.

So, our strategy can be implemented through the following steps [21]:

• We work within the strong-mixing regime so as to ensure that the photon-ALP

oscillation probability is both maximal and energy-independent. We have seen

that such a condition requires E∗ < E < E∗∗, with the energy thresholds E∗

and E∗∗ defined by Eqs. (1.48) and (1.49), respectively. But demanding the

strong-mixing regime to take place for E > 100 GeV evidently requires E∗ <

100 GeV, which sets an upper bound on the ALP mass. The upper bound E∗∗ is at

energies well above the ones considered for the photon/ALP beam propagation in

the intergalactic medium since cosmic magnetic fields are very weak. As a result,

for the propagation in the intergalactic medium the QED vacuum polarization

terms ∆QED
xx and ∆QED

zz of Eqs. (1.26) and (1.27) are totally negligible. But this

is not true in general: in fact in Chapters 6 and 7 we will find a situation where

the QED vacuum polarization terms cannot be discarded.

• We evaluate the transfer matrix across the generic n-th domain Un(E0, ψn), where

ψn accounts for the random orientation of B in the domain in question. Note

that Un(E0, ψn) depends on E0 only because of the energy-dependence of EBL

absorption.

• Iteration of the latter result over the total number Nd of domains crossed by the

beam from the blazar to us yields the total transfer matrix U(E0, z;ψ1, ..., ψNd),

from which the photon survival probability Pγ→γ(E0, z;ψ1, ..., ψNd) can be com-

puted for fixed values of the angles ψ1, ..., ψNd in every domain.

• Finally, PDARMA
γ→γ (E0, z) emerges by averaging Pγ→γ(E0, z;ψ1, ..., ψNd) over all an-

gles ψ1, ..., ψNd .

Our discussion is framed within the ΛCDM cosmological setting, and so the redshift

z is the obvious parameter to express distances. Because the proper length per unit
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redshift at redshift z is still given by Eq. (2.8), a generic proper length extending over

the redshift interval [za, zb] (za < zb) is

L(za, zb) =

∫ zb

za

dz
dl(z)

dz
' 4.29 · 103

∫ zb

za

dz

(1 + z)
[
0.7 + 0.3 (1 + z)3

]1/2
Mpc , (4.3)

which approximately reads

L(za, zb) ' 2.96 · 103 ln

(
1 + 1.45 zb
1 + 1.45 za

)
Mpc . (4.4)

This result will be applied in particular to evaluate the size of the magnetic domains.

4.3 Photon absorption

We proceed to extend the discussion in Chapter 1 Sec. 1.5) so as to take EBL absorp-

tion into account. This task is greatly facilitated by the fact that the latter effect is

independent of the photon-ALP conversion mechanism.

We have seen that the propagation of a monochromatic photon/ALP beam is formally

described as a three-level non-relativistic quantum system with Hamiltonian H0 given

by Eq. (1.21) and expressed in terms of the mixing matrixM0. Taking advantage from

this fact, the inclusion of EBL absorption amounts to suppose that the photon/ALP

beam is actually analogous to an unstable quantum system with decay probability

Pdecay = e−y/λγ(E) , (4.5)

where λγ(E) denotes the photon mean free path. As is well known, such a decay prob-

ability arises from the inclusion of an absorbitive term −∆abs into the Hamiltonian,

with

∆abs ≡
i

2λγ(E)
. (4.6)

More specifically, since photons undergo absorption but ALPs do not,M(0)
0 in Eq. (1.30)

becomes

M(0) =


∆QED
xx + ∆pl + ∆abs 0 0

0 ∆QED
zz + ∆pl + ∆abs ∆aγ

0 ∆aγ ∆aa

 , (4.7)

where – in parallel with the treatment of Chapter 1 Sec. 1.5) – we are first supposing

that B lies along the z-axis.
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As we said, we work throughout within the strong-mixing regime and therefore condition

(1.46) has to be met. Recalling the explicit expression for the various ∆-terms entering

Eq. (4.7) and defined in Chapter 1 Sec. 1.5), M(0) takes the simpler form

M(0) =


∆abs 0 0

0 ∆abs ∆aγ

0 ∆aγ 0

 , (4.8)

which is denoted by the same symbol for notational simplicity (only Eq. (4.8) will be

used hereafter). Note that m and ωpl presently drop out ofM(0). Just as before, use of

the results contained in Appendix A with M→M(0) directly gives the corresponding

eigenvalues

λ1 =
i

2λγ(E)
, (4.9)

λ2 =
i

4λγ(E)

(
1−

√
1− 4 δ2

)
, (4.10)

λ3 =
i

4λγ(E)

(
1 +

√
1− 4 δ2

)
, (4.11)

where we have set

δ ≡ B λγ(E)

M
, (4.12)

roughly measuring the ratio of the photon mean free path to the photon-ALP oscillation

length. Hence, the transfer matrix associated with the reduced Schödinger-like equation

(1.24) with M0 →M(0) reads

U(y, y0; 0) = eiλ1(y−y0) T1(0) + eiλ2(y−y0) T2(0) + eiλ3(y−y0) T3(0) , (4.13)

with the matrices T1(0), T2(0) and T3(0) dictated by Eqs. (A.17), (A.18) and (A.19) as

specialized to the present case. Explicitly

T1(0) ≡


1 0 0

0 0 0

0 0 0

 , (4.14)

T2(0) ≡


0 0 0

0 −1+
√

1−4δ2

2
√

1−4δ2
iδ√

1−4δ2

0 iδ√
1−4δ2

1+
√

1−4δ2

2
√

1−4δ2

 , (4.15)

T3(0) ≡


0 0 0

0 1+
√

1−4δ2

2
√

1−4δ2
− iδ√

1−4δ2

0 − iδ√
1−4δ2

−1+
√

1−4δ2

2
√

1−4δ2

 . (4.16)
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Clearly, we will need the generalization of this result to the case in which B forms an

arbitrary angle ψ with the z-axis. Proceeding exactly like in Chapter 1 Sec. 1.5), we

find

M = V †(ψ)M(0) V (ψ) , (4.17)

where the matrix V (ψ) is given by Eq. (1.55). This yields

M =


∆abs 0 ∆aγ sinψ

0 ∆abs ∆aγ cosψ

∆aγ sinψ ∆aγ cosψ 0

 , (4.18)

and now the resulting transfer matrix evidently reads

U(y, y0;ψ) = V †(ψ)U(y, y0; 0)V (ψ) , (4.19)

whose explicit form arises by inserting Eq. (4.13) into Eq. (4.19). We obtain

U(y, y0;ψ) = eiλ1(y−y0) T1(ψ) + eiλ2(y−y0) T2(ψ) + eiλ3(y−y0) T3(ψ) , (4.20)

with

T1(ψ) ≡


cos2 ψ − sinψ cosψ 0

− sinψ cosψ sin2 ψ 0

0 0 0

 , (4.21)

T2(ψ) ≡


−1+

√
1−4δ2

2
√

1−4δ2
sin2 ψ −1+

√
1−4δ2

2
√

1−4δ2
sinψ cosψ iδ√

1−4δ2
sinψ

−1+
√

1−4δ2

2
√

1−4δ2
sinψ cosψ −1+

√
1−4δ2

2
√

1−4δ2
cos2 ψ iδ√

1−4δ2
cosψ

iδ√
1−4δ2

sinψ iδ√
1−4δ2

cosψ 1+
√

1−4δ2

2
√

1−4δ2

 , (4.22)

T3(ψ) ≡


1+
√

1−4δ2

2
√

1−4δ2
sin2 ψ 1+

√
1−4δ2

2
√

1−4δ2
sinψ cosψ −iδ√

1−4δ2
sinψ

1+
√

1−4δ2

2
√

1−4δ2
sinψ cosψ 1+

√
1−4δ2

2
√

1−4δ2
cos2 ψ −iδ√

1−4δ2
cosψ

−iδ√
1−4δ2

sinψ −iδ√
1−4δ2

cosψ −1+
√

1−4δ2

2
√

1−4δ2

 . (4.23)

We stress that due to the imaginary nature of ∆abs the mixing matrix M is not self-

adjoint, and so the transfer matrix U(y, y0;ψ) fails to be unitary. In addition, the Von

Neumann-like equation (1.51) becomes

i
dρ

dy
= ρM† −Mρ . (4.24)

Still, it is straightforward to check that Eq. (1.52) remains valid with U0(y, y0) →
U(y, y0;ψ) in spite of the fact thatM† 6=M. Since we now have ρ(y)† 6= ρ(y), it follows

that in general Trρ(y) 6= 1, and so the probability that a photon/ALP beam initially in
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the state ρ1 will be found in the state ρ2 after a distance y is presently given by

Pρ1→ρ2(y) = Tr
(
ρ2 U(y, 0;ψ) ρ1 U†(y, 0;ψ)

)
, (4.25)

where we assume Trρ1 = Trρ2 = 1 as before.

4.4 Intergalactic medium (IGM)

As is well known, the absence of the Gunn-Peterson effect [114] is generally regarded

as evidence that the IGM is ionized, and from the resulting high electrical conductivity

it follows that the electron number density ne(z) traces the cosmic mass distribution.

Because of this fact, we have

ne(z) = n̄e,0(1 + δ(z))(1 + z)3 , (4.26)

where δ(z) ≡ (ρ(z) − ρ̄(z))/ρ̄(z) is the mass density contrast and n̄e,0 is the average

electron number density. As a consequence, Eq. (1.28) entails for the plasma frequency

ωpl(z) = ω̄pl,0(1 + δ(z))1/2 (1 + z)3/2 , (4.27)

with ω̄pl,0 obviously corresponding to n̄e,0.

Observations of the primordial abundance of the light elements yields n̄e,0 ' 1.8 ·
10−7 cm−3, but it has been argued that in the z < 1 Universe which is relevant for

us ne(z) ought to be smaller than n̄e,0 by a factor 15 [115]. Correspondingly, from Eqs.

(1.28) and (4.27) we get

ωpl(z) ' 4.04 · 10−15 (1 + z)3/2 eV , (4.28)

where the (1 + δ(z))1/2 factor has been dropped because irrelevant.

A crucial issue concerns the large-scale magnetic fields traversed by the beam, whose

origin and structure is still unknown to a large extent. A possibility is that very small

magnetic fields present in the early Universe were subsequently amplified by the process

of structure formation [116]. An alternative option is that the considered magnetic fields

have been generated in the low-redshift Universe by energetic quasar outflows [117].

Finally, it has been suggested that large-scale magnetic fields originated from the so-

called Biermann battery effect [118], namely from electric currents driven by merger

shocks during the structure formation processes. Presumably, all these mechanisms can
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take place, even if it is presently impossible to assess their relative importance [112, 113].

At any rate, we suppose that magnetic fields already exist out to the redshift z = 1.

Owing to the high conductivity of the IGM, the magnetic flux lines can be thought as

frozen inside the IGM. Therefore, flux conservation during the cosmic expansion entails

that B scales like the volume to the power 2/3, thereby implying the magnetic field

strength in a domain at redshift z is [113]

B = B0 (1 + z)2 . (4.29)

In 2007 the AUGER collaboration reported positive evidence for a correlation between

charged cosmic rays and candidate sites for emission [119]. More in detail, the AUGER

collaboration found that 20 out of the 27 recorded events with energy larger than 57 EeV

are located within 3.1◦ of an AGN closer than 75 Mpc from Earth. The conclusion drown

from the AUGER collaboration is that such a result is inconsistent with the hypothesis

of an isotropic distribution of these cosmic rays with at least a 99 % confidence level

from a prescribed a-priori test. As explained elsewhere, this fact supports the existence

of large-scale magnetic fields with coherence length Ldom in the range 1 − 10 Mpc and

strength B0 in the range 0.1 − 1 nG at z = 0 [120]. However, such a correlation has

become considerably weaker when a larger data set (69 events, including the events

on which the previous publication was based) has been recorded and analyzed by the

AUGER collaboration [121]. The fraction of events correlated to a nearby AGN is in

the most recent publication of 38 % – to be compared with an expected value of 21 %

in the case of no correlation – and no a-priori probability estimate is provided in the

new paper. The present situation appears to us unclear, even though the conclusions

obtained from the first AUGER results are still statistically consistent with the more

recent ones.

For this reason, we prefer to avoid committing ourselves with any conclusion relying

upon the AUGER data and we consider only well-established upper bounds. They de-

pend on the size of their domain-like structure Ldom and within the current cosmological

setting they take the form [122]

B0 < 3.8 nG for Ldom = 50 Mpc , (4.30)

B0 < 6.3 nG for Ldom = 1 Mpc . (4.31)
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It is usually supposed that 1 Mpc ≤ Ldom ≤ 10 Mpc, and so we will assume throughout

B0 < 6 nG . (4.32)

Within the cosmological context, the overall structure of the cellular configuration of

large-scale magnetic fields is naturally described by a uniform mesh in redshift space

with elementary step ∆z, which can be constructed as follows. The magnetic domain

closest to us and labelled by n = 1 extends from 0 to ∆z. Hence, its size L
(1)
dom can also

be written as

L
(1)
dom = L(0,∆z) =

(
L

(1)
dom

5 Mpc

)
5 Mpc , (4.33)

where L(0,∆z) is the domain’s proper size and the second equality stresses our preferred

choice for L
(1)
dom. By combining Eqs. (4.4) and (4.33) we infer

∆z ' 1.17 · 10−3

(
L

(1)
dom

5 Mpc

)
, (4.34)

indeed in agreement with the linear Hubble law. Because our mesh in redshift space

is uniform, ∆z sets the redshift size of all magnetic domains. Therefore for a source

at redshift z the total number Nd of magnetic domains crossed by the beam can be

estimated as

Nd '
z

∆z
' 0.85 · 103

(
5 Mpc

L
(1)
dom

)
z (4.35)

and since we are assuming z < 0.54 we have Nd ≤ 0.46 ·103(5 Mpc/L
(1)
dom). Furthermore,

the n-th domain extends from z = (n − 1)∆z to z = n∆z and its proper size can be

written as L
(n)
dom = L((n− 1)∆z, n∆z). Thanks again to Eq. (4.4), it reads

L
(n)
dom ' 2.96 · 103 ln

(
1 +

1.45 ∆z

1 + 1.45 (n− 1)∆z

)
Mpc ' (4.36)

' 4.29 · 103∆z

1 + 1.45 (n− 1)∆z
Mpc ,

where the last equality is justified by the fact that our analysis is confined to z < 0.54

in conjunction with Eq. (4.35).

4.5 Propagation over a single domain

We are now in position to describe the propagation of the considered photon/ALP beam

across the n-th magnetic domain.
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The transfer matrix is directly supplied by Eq. (4.20), which for notational convenience

we rewrite as

Un(En, ψn) ≡ ei
(
λ

(n)
1 L

(n)
dom

)
T1(ψn) + e

i
(
λ

(n)
2 L

(n)
dom

)
T2(ψn) + e

i
(
λ

(n)
3 L

(n)
dom

)
T3(ψn) , (4.37)

with

T1(ψn) ≡


cos2 ψn − sinψn cosψn 0

− sinψn cosψn sin2 ψn 0

0 0 0

 , (4.38)

T2(ψn) ≡


−1+
√

1−4δ2
n

2
√

1−4δ2
n

sin2 ψn
−1+
√

1−4δ2
n

2
√

1−4δ2
n

sinψn cosψn
iδn√
1−4δ2

n

sinψn

−1+
√

1−4δ2
n

2
√

1−4δ2
n

sinψn cosψn
−1+
√

1−4δ2
n

2
√

1−4δ2
n

cos2 ψn
iδn√
1−4δ2

n

cosψn

iδn√
1−4δ2

n

sinψn
iδn√

1−4δn
2

cosψn
1+
√

1−4δ2
n

2
√

1−4δ2
n

 ,

(4.39)

T3(ψn) ≡


1+
√

1−4δ2
n

2
√

1−4δ2
n

sin2 ψn
1+
√

1−4δ2
n

2
√

1−4δ2
n

sinψn cosψn
−iδn√
1−4δ2

n

sinψn

1+
√

1−4δ2
n

2
√

1−4δ2
n

sinψn cosψn
1+
√

1−4δ2
n

2
√

1−4δ2
n

cos2 ψn
−iδn√
1−4δ2

n

cosψn

−iδn√
1−4δ2

n

sinψn
−iδn√
1−4δ2

n

cosψn
−1+
√

1−4δ2
n

2
√

1−4δ2
n

 ,

(4.40)

where ψn denotes the angle between Bn and the z-axis, which is fixed for all domains.

Moreover, we have set

λ
(n)
1 ≡ i

2λ
(n)
γ (E0)

, (4.41)

λ
(n)
2 ≡ i

4λ
(n)
γ

(
1−

√
1− 4 δ2

n

)
, (4.42)

λ
(n)
3 ≡ i

4λ
(n)
γ

(
1 +

√
1− 4 δ2

n

)
, (4.43)

with

En ≡ E0

[
1 + (n− 1) ∆z)

]
, (4.44)

δn ≡
Bn λ

(n)
γ (E0)

M
(4.45)

and we have introduced the shorthand

λ(n)
γ (E0) ≡ λγ (En) . (4.46)

In addition, Eq. (4.29) implies

Bn = B0

[
1 + (n− 1) ∆z)

]2
. (4.47)
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What remains to be done in to evaluate the photon mean free path λ
(n)
γ (E0). A conve-

nient procedure is as follows. Let us suppose to observe two hypothetical sources located

at both edges of the n-th domain. Then we apply Eq. (3.3) to either source. With the

notational simplifications Φobs(E0, z) → Φ(E0) and Φem (E0(1 + z)) → Φ (E0(1 + z)),

we have

Φ(E0) = e−τγ(E0,(n−1)∆z) Φ (En) , (4.48)

Φ(E0) = e−τγ(E0,n∆z) Φ (En+1) , (4.49)

and so the flux change across the considered domain is

Φ (En) = e−[τγ(E0,n∆z)−τγ(E0,(n−1)∆z)] Φ (En+1) . (4.50)

Now, since ∆z ∼ 10−3 evolutionary effects can be neglected inside a single domain and

only accounted for when jumping from one domain to the next. As a consequence –

owing to Eq. (3.4) – Eq. (4.50) reduces to

Φ (En) = e−L
(n)
dom/λ

(n)
γ (E0) Φ (En+1) , (4.51)

and the comparison of Eqs. (4.50) and (4.51) yields

λ(n)
γ (E0) =

L
(n)
dom

τγ (E0, n∆z)− τγ (E0, (n− 1)∆z)
. (4.52)

Further, by inserting Eq. (4.36) into Eq. (4.52), we get the desired photon mean free

path

λ(n)
γ (E0) =

(
4.29 · 103

1 + 1.45 (n− 1)∆z

)(
∆z

τγ (E0, n∆z)− τγ (E0, (n− 1)∆z)

)
Mpc . (4.53)

4.6 Propagation over many domains

We are finally ready to carry the strategy outlined in Sec. 4.2 to completion, namely

to evaluate the photon survival probability PDARMA
γ→γ (E0, z) for a monochromatic beam

emitted by a blazar at redshift z and detected at energy E0.

This task can be accomplished by first noticing that for a considered blazar at redshift

z the overall behaviour of the photon/ALP beam is described by the following transfer

matrix

U (E0, z;ψ1, ..., ψNd) =

Nd∏
n=1

Un (En, ψn) . (4.54)
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According to Eq. (4.25), the probability that a photon/ALP beam emitted by a blazar

at z in the state ρ1 will be detected in the state ρ2 for fixed orientations ψ1, ..., ψNd of

B in every domain is

Pρ1→ρ2 (E0, z;ψ1, ..., ψNd) = Tr
(
ρ2 U (E0, z;ψ1, ..., ψNd) ρ1 U† (E0, z;ψ1, ..., ψNd)

)
,

(4.55)

where it is assumed that Trρ1 = Trρ2 = 1. As a consequence, the actual detection

probability for the beam in question emerges by averaging the above expression over all

angles, namely

Pρ1→ρ2 (E0, z) =
〈
Pρ1→ρ2 (E0, z;ψ1, ..., ψNd)

〉
ψ1,...,ψNd

. (4.56)

Because of the fact that the photon polarization cannot be measured at the energies

considered here we have to sum this result over the two final polarization states

ρx =


1 0 0

0 0 0

0 0 0

 , (4.57)

ρz =


0 0 0

0 1 0

0 0 0

 . (4.58)

Moreover, we suppose for simplicity that the emitted beam consists 100 % of unpolarized

photons, so that the initial beam state is described by

ρunpol =
1

2


1 0 0

0 1 0

0 0 0

 . (4.59)

Hence, we ultimately have

PDARMA
γ→γ (E0, z) =

〈
Pρunpol→ρx (E0, z;ψ1, ..., ψNd)

〉
ψ1,...,ψNd

+ (4.60)

+
〈
Pρunpol→ρz (E0, z;ψ1, ..., ψNd)

〉
ψ1,...,ψNd

.

We implement this procedure as follows. In the first place, we arbitrarily choose the angle

ψn in the n-th domain and we evaluate the corresponding transfer matrix Un (En, ψn)

for a given value of E0, keeping Eq. (4.44) in mind. Next, the application of Eqs. (4.54)

and (4.55) yields the corresponding photon survival probabilities entering Eq. (4.60) for

a single realization of the propagation process. We repeat these steps 5000 times, by
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randomly varying all angles ψn each time, thereby generating 5000 random realizations of

the propagation process. Finally, we average the resulting photon survival probabilities

over all these realizations of the propagation process, thereby accomplishing the average

process in Eq. (4.60). We find in this way the physical photon survival probability

PDARMA
γ→γ (E0, z).





Chapter 5

ALP consequences on blazar

spectra

Let us proceed to investigate the implications of the DARMA scenario for VHE blazars

observations.

We begin by stressing that all its physical predictions depend solely on B/M and not

on B and M separately (this was true for photon-ALP oscillations and it remains true

in general, because absorption does not depend on these quantities). For this reason, it

is quite useful to introduce the dimensionless parameter

ξ ≡
(
B0

nG

)(
1011 GeV

M

)
. (5.1)

Owing to conditions (1.65) and (4.32), it will be assumed

ξ < 6 (5.2)

throughout our discussion. Specifically, we will focus our attention on the representative

cases ξ = 5.0, ξ = 1.0, ξ = 0.5, ξ = 0.1, taking both Ldom = 4 Mpc and Ldom = 10 Mpc

at z = 0. Nevertheless, it is important to keep under control which values of B0 and

M are allowed in each case. From the constraints (1.65) and (4.32) we find the allowed

ranges reported in Table 5.1.

Next, we have to make sure that we stay within the strong-coupling regime all the way

up to the source for E0 > 100 GeV. Therefore, by combining Eq. (1.48) with the

requirement E∗ < 100 GeV the resulting upper bound on m can be expressed as

|m2 − ω2
pl|1/2 < 1.97 · 10−10

(
B

nG

)1/2(1011 GeV

M

)1/2

eV , (5.3)

147
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ξ M/(1011 GeV) B0/nG

0.1 1 – 60 0.1 – 6
0.5 1 – 12 0.5 – 6
1.0 1 – 6.0 1 – 6
5.0 1 – 1.2 5 – 6

Table 5.1: Allowed values of M and B0 in the considered cases.

Upper bound on m Value of the ξ parameter

4.40 · 10−10 eV ξ = 5.0
1.97 · 10−10 eV ξ = 1.0
1.39 · 10−10 eV ξ = 0.5
0.62 · 10−10 eV ξ = 0.1

Table 5.2: Upper bounds on the ALP mass in the considered cases.

which – on account of Eqs. (4.28) and (5.1) – can be more suitably rewritten in the

form ∣∣∣∣( m

10−10 eV

)2
−
(
1.14 · 10−4

)2∣∣∣∣1/2 < 1.97 ξ1/2 (5.4)

valid for all sources considered here 1. Thanks to condition (5.2), we see that within the

DARMA scenario ALPs have to be very light, with mass never exceeding 5 · 10−10 eV.

In particular, the axion needed to solve the strong CP problem is therefore ruled out by

several orders of magnitude. Observe that for m < 1.14 · 10−14 eV the plasma frequency

dominates, so that even massless ALPs behave as if their mass where equal to the plasma

frequency. The upper bounds on m corresponding to the cases under consideration are

reported in Table 5.2.

As far as EBL absorption is concerned, we will take for the optical depth entering Eq.

(4.53) the exact expression τFRV
γ (E0, z) provided by the FRV model [101].

A general expectation is that – because in the absence of EBL absorption photon-

ALP oscillations only produce a dimming [23] – an enhancement of the photon survival

probability with respect to the case of conventional physics shows up only at sufficiently

high energy, where EBL absorption becomes substantial. Therefore, close enough to

100 GeV a dimming rather than an enhancement should occur.

1Because ωpl increases with z, we have evaluated it at z = 1 to be conservative. Similarly, since also
B increases with z, we have conservatively taken B0 rather than B in the r.h.s. of condition (5.4).
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5.1 Predictions for future observations

The best way to figure out the relevance of the DARMA scenario for future observations

to be performed with the CTA and with the HAWC water Cherenkov γ-ray observatory

is to compare the photon survival probability PDARMA
γ→γ (E0, z) with the one predicted by

conventional physics PCP
γ→γ(E0, z), with the EBL described in either case by the FRV

model.

We do that for a sample of different redshifts, like z = 0.031, z = 0.188, z = 0.444 and

z = 0.536. We remark that the case of z = 0.031 may look somewhat academic, since its

location inside the Local Group is likely to make the morphology of the magnetic field

crossed by its line of sight more complicated than assumed in this thesis. Nevertheless,

we include z = 0.031 in the present analysis in order to see what happens for a very

nearby blazar even if a drastic simplifying assumption is made.

The results are displayed in Figs. 5.1. For each of the selected sources, we consider

the above choices for ξ, which are represented by a solid black line (ξ = 5.0), a dotted-

dashed line (ξ = 1.0), a dashed line (ξ = 0.5) and a dotted line (ξ = 0.1), while the

solid grey line corresponds to conventional physics. We take both Ldom = 4 Mpc and

Ldom = 10 Mpc for the domain size at z = 0.

All plots show one common trend. At energies only slightly in excess of 100 GeV,

PCP
γ→γ(E0, z) is larger than PDARMA

γ→γ (E0, z), indeed in agreement with expectations. As

the energy further increases, the situation reverses and PDARMA
γ→γ (E0, z) gets progres-

sively larger and larger than PCP
γ→γ(E0, z) until the value 100 TeV is attained which is

the highest energy value considered in the present analysis.

A somewhat surprising result emerges at large enough energies. Indeed, since ξ sets

the strength of the photon-ALP oscillation mechanism, it would be natural to expect

PDARMA
γ→γ (E0, z) to monotonically increase with ξ. However, this is not the case. More

specifically, for ξ = 5.0 the behaviour of PDARMA
γ→γ (E0, z) as a function of E0 resembles

closely that of PCP
γ→γ(E0, z) – apart from an overall shift towards higher energies – and it

is practically independent of Ldom apart from the case of z = 0.031 which exhibits a mild

Ldom-dependence. Moreover, at sufficiently high energies the values of PDARMA
γ→γ (E0, z)

corresponding to ξ = 5.0 are the lowest predicted by the DARMA scenario for all sources.

The case ξ = 1.0 is different, since the resulting values of PDARMA
γ→γ (E0, z) are among

the highest predicted at low redshift but become among the lowest at high redshift even

though they always exceed those corresponding to ξ = 5.0. In addition – with the

exception of z = 0.031 – PDARMA
γ→γ (E0, z) strongly increases as Ldom decreases. As ξ

decreases the trend exhibits a radical modification. Actually, the case ξ = 0.5 shows a

mild Ldom-dependence for all considered sources, and with the exception of z = 0.031
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Figure 5.1: Behaviour of PDARMA
γ→γ versus the observed energy E0 for: z = 0.031 (top

row), z = 0.188 (second row), z = 0.444 (third row), z = 0.536 (bottom row). The solid
black line corresponds to ξ = 5.0, the dotted-dashed line to ξ = 1.0, the dashed line to
ξ = 0.5, the dotted line to ξ = 0.1 and the solid grey line to conventional physics. We

have taken Ldom = 4 Mpc (left column) and Ldom = 10 Mpc (right column).
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it leads to the largest values of PDARMA
γ→γ (E0, z) for Ldom = 4 Mpc. Finally, the case

ξ = 0.1 depends more strongly on Ldom and – again with the exception of z = 0.031 –

for some energy values it can make PDARMA
γ→γ (E0, z) larger than in the case ξ = 0.5 for

Ldom = 10 Mpc, but this never occurs for Ldom = 4 Mpc. We observe that the different

situation found for z = 0.031 as compared to the other blazars should not come as a

surprise, owing to the above remarks.

What is the reason for such a behaviour?

Owing to the random structure of the considered magnetic field, coherence is maintained

only within one domain and so PDARMA
γ→γ (E0, z) is ultimately controlled by two quantities:

the photon-ALP conversion probability over a single domain Pγ→a(Ldom) and the photon

absorption probability in Eq. (4.5). In order to clarify this issue in an intuitive fashion,

we argue as follows, discarding cosmological effects for simplicity.

As far as Pγ→a(Ldom) is concerned, we have seen that it is given by Eq. (1.45) in the

case of photons linearly polarized in the direction parallel to B. This is not true in the

present situation where the beam photons are assumed to be unpolarized, but for the

sake of an order-of-magnitude estimate we can still suppose that Pγ→a(Ldom) has the

form (1.45) and therefore we write it as

Pγ→a(Ldom) ' sin2

[
1.6 · 10−2 ξ

(
Ldom

Mpc

)]
. (5.5)

We distinguish two cases and we discuss them in turn:

• As long as ξ � 60 (Mpc/Ldom), Eq. (5.5) yields Pγ→a(Ldom) � 1 which entails

that the fraction of ALPs produced over a single domain is very small. Since we

are supposing the beam to be initially fully made of photons, it takes a length

much larger than Ldom before a sizeable fraction of the beam consists of ALPs.

In the same fashion, once such a situation is realized, a similar long length is

needed in order for the beam to contain a sizeable amount of photons. Moreover,

it follows from Eq. (5.5) that presently Pγ→a(Ldom) becomes a quadratic function

of ξ which therefore increases monotonically with ξ. Accordingly, the picture

outlined in Chapter 4 Sec. 4.1 is expected to emerge straightforwardly and this

is confirmed by a numerical simulation in which ξ takes the above values but we

assume Ldom = 0.05 Mpc, which yields the behaviour shown in the plots reported

in Figs. 5.2.

• When condition ξ � 60 (Mpc/Ldom) is not fulfilled the situation becomes consider-

ably more complicated. In the first place, Pγ→a(Ldom) fails to be a monotonically
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Figure 5.2: Behaviour of PDARMA
γ→γ versus the observed energy E0 for: z = 0.031

(top row left), z = 0.188 (top row right), z = 0.444 (bottom row left), z = 0.536
(bottom row right) for Ldom = 0.05 Mpc. The solid black line corresponds to ξ = 5.0,
the dotted-dashed line to ξ = 1.0, the dashed line to ξ = 0.5, the dotted line to ξ = 0.1

and the solid grey line to conventional physics.

increasing function of ξ and it becomes oscillatory. So, depending on the actual

value of Ldom it follows that Pγ→a(Ldom) can decrease as ξ increases. As stressed

above, Eq. (5.5) can be taken at most to provide an order-of-magnitude estimate

but it is clear that condition ξ � 60 (Mpc/Ldom) fails to be met for Ldom = 4 Mpc

and Ldom = 10 Mpc along with the considered values of ξ. Hence, for a fixed

source distance the behaviour exhibited in the plots in Figs. 5.1 can arise. Still,

this is not the end of the story, since in the present situation even after the do-

main closest to the source a relevant fraction of the beam consists of ALPs. In

other words, a large enough number of γ → a and a → γ transitions take place

inside a single domain. So, the overall effect is to have a larger number of photons

per unit length between the source and us as compared to the previous case. As a

consequence, EBL absorption is now more effective thereby giving rise to a smaller

observed photon flux. Moreover, this dimming evidently increases with the source

distance, which explains why PDARMA
γ→γ (E0, z) tends to decrease as z increases at

fixed energy and eventually it behaves like PCP
γ→γ(E0, z), which indeed occurs for

ξ = 5.0.

In conclusion, it is evident from Figs. 5.1 that in the most favourable case a boost factor

of 10 in PDARMA
γ→γ (E0, z) occurs at progressively lower energies as the source distance
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increases. Explicitly, for z = 0.031, z = 0.188, z = 0.444, z = 0.536 it takes place at

E10 ' 30 TeV, 8 TeV, 2 TeV, 1.2 TeV, respectively. Above E10 the boost factor can be

much larger.

5.2 A new interpretation of observed VHE blazars

Observed VHE blazars provide a great deal of information which can challenge the

DARMA scenario. Within conventional physics the values of Γem have to be tuned for

every source in such a way to reproduce the corresponding values of Γobs. No rational

lies behind this procedure and a large spread in the values of Γem is demanded in order to

account for the equally large spread in the values of Γobs. While this procedure does not

pose any technical problem, such a systematic fine-tuning lacks any conceptual appeal

and moreover leads to the cosmic opacity problem.

Thus, it looks natural to inquire whether the DARMA scenario sheds some light on this

issue.

The most straightforward way to investigate this question is to proceed somehow in

parallel with the treatment followed in Chapter 3 Sec. 3.3, namely to de-absorb the

values of Γobs within the present context.

Our starting point is the general relation between the observed and emitted fluxes ex-

pressed by Eq. (3.1), which presently reads

Φobs(E0, z) = PDARMA
γ→γ (E0, z) Φem (E0(1 + z)) . (5.6)

Thanks to Eq. (3.6), we first rewrite Eq. (5.6) as

KE
−Γobs(z)
0 = PDARMA

γ→γ (E0, z) Φem (E0(1 + z)) , (5.7)

from which we get Φem (E0(1 + z)) for every detected VHE blazar. We next best-fit this

function to the power-law expression (3.5), namely

Φem (E0(1 + z)) = K
[
E0(1 + z)

]−ΓDARMA
em

(5.8)

over the energy range where the considered source is observed (see Table 3.1). We obtain

in this way the values of ΓDARMA
em .

We stress that for a given choice of ξ and Ldom the photon survival probability PDARMA
γ→γ (E0, z)

is uniquely fixed, apart from errors affecting τFRV
γ (E0, z) which are unknown and there-

fore again ignored. Since ΓDARMA
em is linearly related to Γobs, the associated error bars
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are the same even in the present context (see Table 3.1) and so they will not be explicitly

exhibited.

We implement the considered procedure by taking for the free parameters ξ and Ldom

the same representative values chosen above. The resulting numerical values of ΓDARMA
em

for the various cases are reported in Tables 5.3 and 5.4, together with the corresponding

spread ∆ΓDARMA
em of the value of Γem neglecting errors and the average value 〈ΓDARMA

em 〉
including errors.

Let us consider first what happens as ξ increases from ξ = 0.1 to ξ = 5.0 assuming

Ldom = 4 Mpc. As long as ξ = 0.1 the difference between the DARMA scenario and

conventional physics strictly vanishes up to z = 0.138 and becomes negligible at larger

redshifts. However, as soon as the regime ξ = 0.5 is attained the DARMA scenario starts

to differ drastically from conventional physics. As ξ increases from 0.5 to 5.0 it is found

that 〈ΓDARMA
em 〉 monotonically increases, even if at a rate that slows down for increasing

ξ, which entails that no improvement is to be expected for ξ > 5.0 regardless of any

other consideration. On the other hand, ∆ΓDARMA
em decreases for ξ = 0.1→ ξ = 1.0 but

next increases for ξ = 1.0→ ξ = 5.0.

A somewhat similar pattern is found for Ldom = 10 Mpc. Again for ξ = 0.1 the difference

between the DARMA scenario and conventional physics strictly vanishes up to z = 0.116

and remains negligible at larger redshifts. A big difference shows up around ξ = 0.5.

As before, 〈ΓDARMA
em 〉 increases monotonically, but its rate slows down for increasing ξ

and just vanishes in the step ξ = 1.0 → ξ = 5.0. Here ∆ΓDARMA
em still decreases for

ξ = 0.1→ ξ = 0.5 but then increases for ξ = 0.5→ ξ = 5.0.

Let us next find out what happens in the change Ldom = 4 Mpc → Ldom = 10 Mpc at

fixed ξ. As far as ∆ΓDARMA
em is concerned, it decreases for ξ = 0.1 and ξ = 0.5 but it

increases for ξ = 1.0 while it remains practically unchanged for ξ = 5.0. The behaviour

of 〈ΓDARMA
em 〉 is slightly different, since only in the case ξ = 0.5 it shows a slight variation.

Physically, all this means that for ξ = 0.1 DARMA effects are negligible, but they

suddenly become important shortly before ξ = 0.5 is reached and they remain more

or less unchanged up to ξ = 5.0. This conclusion is in remarkable agreement with

our previous results concerning the behaviour of PDARMA
γ→γ (E0, z). In this connection,

two points should be stressed. It follows from Eqs. (5.7) and (5.8) that at fixed z

ΓDARMA
em depends logarithmically on PDARMA

γ→γ (E0, z), which makes its dependence on

ξ, E0 and Ldom much shallower than that of PDARMA
γ→γ (E0, z) itself. Consequently, the

sharp differences found in Sec. 5.1 among the cases with different ξ get smoothed out

here, apart from one thing: since in the case ξ = 0.1 the photon survival probability

is nearly the same in conventional physics and within the DARMA scenario over the
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Source ΓCP
em ΓDARMA

em ΓDARMA
em ΓDARMA

em ΓDARMA
em

ξ = 0.1 ξ = 0.5 ξ = 1.0 ξ = 5.0

3C 66B 3.00 3.00 3.00 3.00 3.03
Mrk 421 2.16 2.16 2.16 2.17 2.21
Mrk 501 1.90 1.90 1.90 1.91 1.96
Mrk 501 2.03 2.03 2.03 2.04 2.08

1ES 2344+514 2.70 2.70 2.71 2.73 2.78
Mrk 180 3.07 3.07 3.07 3.09 3.14

1ES 1959+650 2.43 2.43 2.44 2.46 2.53
BL Lacertae 3.27 3.27 3.28 3.32 3.38

PKS 0548-322 2.39 2.39 2.40 2.45 2.52
PKS 2005-489 3.59 3.59 3.60 3.66 3.73

RGB J0152+017 2.47 2.47 2.48 2.56 2.63
W Comae 3.18 3.18 3.21 3.32 3.39

PKS 2155-304 2.67 2.67 2.72 2.85 2.90
RGB J0710+591 ? ? ? ? ?

H 1426+428 0.85 0.85 1.28 1.57 1.44
1ES 0806+524 2.70 2.70 2.77 2.93 3.00
1ES 0229+200 0.41 0.42 1.15 1.37 1.13

H 2356-309 2.06 2.06 2.17 2.35 2.40
1ES 1218+304 2.00 2.00 2.15 2.32 2.36
1ES 1101-232 1.72 1.73 1.96 2.13 2.13
1ES 0347-121 1.87 1.87 2.11 2.28 2.28
1ES 1011+496 2.90 2.90 3.06 3.22 3.26
S5 0716+714 1.60 1.61 2.07 2.22 2.22
PG 1553+113 2.48 2.49 3.00 3.08 3.08
PKS 1222+216 2.47 2.47 2.80 2.88 2.90

3C 66A 1.28 1.30 2.19 2.25 2.22
PKS 1424+240 1.16 1.18 2.03 2.06 2.04

3C 279 2.05 2.06 2.71 2.74 2.73
∆Γem 3.18 3.17 2.45 2.29 2.60
〈Γem〉 2.22 2.23 2.41 2.51 2.52

Table 5.3: We have inferred the emitted spectral index Γem by de-absorbing within
the DARMA scenario the observed value of Γobs for every source neglecting errors. This
procedure has been carried out for the choice of parameters ξ = 0.1, ξ = 0.5, ξ = 1.0
and ξ = 5.0. In all cases, we have taken Ldom = 4 Mpc. The similar values obtained
in Chapter 3 Sec. 3.3 within conventional physics have been quoted for comparison
and are denoted by ΓCP

em . The last two lines report the spread ∆Γem of the value of
Γem discarding errors and the average value 〈Γem〉 including errors, respectively, for the

various cases.

energy range 0.2 TeV < E0 < 2 TeV where most blazars are observed, the same is

evidently true for the values of Γem. In addition, the marked difference among the cases

ξ = 0.1, 0.5, 1.0, 5.0 discovered in Sec. 5.1 takes place at energies considerably larger than

those in the presently considered range, which explains why the cases ξ = 0.5, 1.0, 5.0

exhibit a fairly similar behaviour for the observed blazars.
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Source ΓCP
em ΓDARMA

em ΓDARMA
em ΓDARMA

em ΓDARMA
em

ξ = 0.1 ξ = 0.5 ξ = 1.0 ξ = 5.0

3C 66B 3.00 3.00 3.03 3.01 3.03
Mrk 421 2.16 2.16 2.16 2.18 2.21
Mrk 501 1.90 1.90 1.90 1.93 1.96
Mrk 501 2.03 2.03 2.03 2.06 2.08

1ES 2344+514 2.70 2.70 2.72 2.76 2.79
Mrk 180 3.07 3.07 3.08 3.11 3.14

1ES 1959+650 2.43 2.43 2.45 2.50 2.53
BL Lacertae 3.27 3.27 3.30 3.36 3.38

PKS 0548-322 2.39 2.39 2.43 2.50 2.52
PKS 2005-489 3.59 3.59 3.63 3.70 3.73

RGB J0152+017 2.47 2.47 2.53 2.61 2.63
W Comae 3.18 3.18 3.28 3.37 3.39

PKS 2155-304 2.67 2.67 2.81 2.89 2.90
RGB J0710+591 ? ? ? ? ?

H 1426+428 0.85 0.86 1.53 1.53 1.44
1ES 0806+524 2.70 2.71 2.88 2.98 3.00
1ES 0229+200 0.41 0.48 1.36 1.27 1.12

H 2356-309 2.06 2.06 2.31 2.39 2.40
1ES 1218+304 2.00 2.00 2.29 2.35 2.36
1ES 1101-232 1.72 1.73 2.10 2.14 2.13
1ES 0347-121 1.87 1.88 2.26 2.29 2.28
1ES 1011+496 2.90 2.90 3.19 3.25 3.26
S5 0716+714 1.60 1.62 2.20 2.22 2.22
PG 1553+113 2.48 2.52 3.07 3.08 3.08
PKS 1222+216 2.47 2.49 2.87 2.89 2.90

3C 66A 1.28 1.36 2.25 2.23 2.22
PKS 1424+240 1.16 1.26 2.07 2.05 2.04

3C 279 2.05 2.13 2.74 2.74 2.73
∆Γem 3.18 3.11 2.27 2.43 2.61
〈Γem〉 2.22 2.24 2.49 2.52 2.52

Table 5.4: Same as Table 5.3 but with Ldom = 10 Mpc.

5.2.1 Solution of the cosmic opacity problem

A glance at Tables 5.3 and 5.4 shows that the values of ΓDARMA
em for all VHE blazars

happen to be in the same ballpark, thereby implying that within the DARMA scenario

the observations can be explained with the same physical mechanism operating in all

blazars – as a consequence, there is no cosmic opacity problem.

5.2.2 Fitting individual sources

The foregoing analysis has shown that the gist of the DARMA scenario for the observed

VHE blazars is to drastically reduce the spread in the values of Γem as compared with
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what happens in conventional physics, thereby tracing the large spread in the values of

Γobs to the wide spread in the blazar distances.

It seems therefore worthwhile to investigate this point in a quantitative fashion according

the following strategy:

• As a zero-order approximation, we suppose that all blazars have the same value of

ΓDARMA
em , which for definiteness is taken to be the average value over all observed

sources 〈ΓDARMA
em 〉 for a given choice of ξ and Ldom.

• As a first-order correction – which is meant to improve on the above idealized

situation – we allow for a small spread around 〈ΓDARMA
em 〉, which we tentatively

take to be ± 0.2.

In order to keep the situation under control, we focus our attention on the single case

ξ = 1.0 and Ldom = 4 Mpc which we regard as the most favourable one not only because

∆ΓDARMA
em is very small – the case ξ = 0.5 and Ldom = 10 Mpc would be even better

in this respect – but also because we feel that Ldom = 4 Mpc is more realistic than

Ldom = 10 Mpc. This amounts to take 〈ΓDARMA
em 〉 = 2.51, which entails in turn 2.31 <

ΓDARMA
em < 2.71 for all observed VHE blazars. The value 2.51 is close to the value 2.40

that we used in a previous discussion of the DARMA scenario [25], as well as to 2.47

which is the average value for the observed VHE blazars with z < 0.05 that undergo a

negligible EBL attenuation.

Next, we evaluate for every source the expected observed spectral index Γexp
obs(z). Ba-

sically, this amounts to run backwards the same procedure whereby we have got the

values of ΓDARMA
em reported in Table 5.3 for ξ = 1.0. Explicitly, by combining Eqs. (5.6)

and (5.8) we can write

Φexp
obs(E0, z) = PDARMA

γ→γ (E0, z)K
[
E0(1 + z)

]−2.51
. (5.9)

Since PDARMA
γ→γ (E0, z) is known, Φexp

obs(E0, z) can be computed exactly. Then we best-fit

this function to the power-law expression (3.6), namely

Φexp
obs(E0, z) = KE

−Γexp
obs (z)

0 (5.10)

over the energy range where each source is observed. We find in this way the values

of Γexp
obs(z) for every source. As repeatedly stressed, the observed and emitted spectral

indices are linearly related, and so they have the same error bars.

We are now ready to check this view by performing a fit to all observed VHE blazars.

This is shown in Figs. 5.3 to 5.7, where the solid black line corresponds to Γexp
obs(z) while
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the grey strip represents the range Γexp
obs(z)± 0.2. We stress that Γexp

obs(z) is different for

different sources, owing to the different observed energy range.

A look at those Figures shows that by assuming that all VHE blazars have Γem in a range

of 2.51 ± 0.2 allows to fit observations of 19 sources out of a total of 27 ones. The role

of photon-ALP oscillations is to partially offset EBL absorption, and thus the DARMA

scenario departs from conventional physics only to the extent that EBL attenuation

becomes important; for z ≥ 0.1 12 sources out of a total of 16 ones are successfully

fitted, and for z ≥ 0.138 the fit is successful for 10 blazars out of a total of 11.
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Figure 5.3: Behaviour of ΓDARMA
obs for the blazars 3C 66B, Mrk 421, Mrk 501 (with

the two measurements of Γobs in the literature), 1ES 2344+514 and Mrk 180. The
solid black line corresponds to ΓDARMA

em = 2.51 and the grey strip represents the range
2.31 < ΓDARMA

em < 2.71.
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Figure 5.4: Behaviour of ΓDARMA
obs for the blazars 1ES 1959+650, BL Lacertae, PKS

0548-322, PKS 2005-489, RGB J0152+017 and W Comae. The solid black line corre-
sponds to ΓDARMA

em = 2.51 and the grey strip represents the range 2.31 < ΓDARMA
em <

2.71.
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Figure 5.5: Behaviour of ΓDARMA
obs for the blazars PKS 2155-304, H 1426+428, 1ES

0806+524, 1ES 0229+200, H 2356-309 and 1ES 1218+304. The solid black line corre-
sponds to ΓDARMA

em = 2.51 and the grey strip represents the range 2.31 < ΓDARMA
em <

2.71.
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Figure 5.6: Behaviour of ΓDARMA
obs for the blazars 1ES 1101-232, 1ES 0347-121,

1ES 1011+496, S5 0716+714, PG 1553+113 and PKS 1222+216. The solid black
line corresponds to ΓDARMA

em = 2.51 and the grey strip represents the range 2.31 <
ΓDARMA
em < 2.71.
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Figure 5.7: Behaviour of ΓDARMA
obs for the blazars 3C 66A, PKS 1424+240 and 3C

279. The solid black line corresponds to ΓDARMA
em = 2.51 and the grey strip represents

the range 2.31 < ΓDARMA
em < 2.71.





Chapter 6

A model for the FSRQ PKS

1222+216

In this Chapter we proceed to build up our model for PKS 1222+216. We start by

explicitly showing why it should not be observed by MAGIC according to conventional

physics. We next proceed to discuss photon-ALP conversions in the beam propagation

from the central region of PKS 1222+216 to the Earth. Basically, four different regions

crossed by the beam are identified, and in each of them we evaluate the relevant transfer

matrix. All these pieces of information will be put together in Chapter 7 in order to

find out the resulting physical effect.

We stress that in this investigation we will make some rather rough assumptions even

because of the lack of knowledge of a few properties of the source (we defer a more

detailed modelling to a future publication).

6.1 Observations and setup

In the first place we need to know the relevant physical parameters. We assume a disk

luminosity LD ' 1.5 · 1046 erg s−1, a radius of the BLR RBLR ' 0.23 pc, and standard

values for cloud number density nc ' 1010 cm−3 and temperature Tc ' 104 K of the BLR

(see e.g. [141]). The adopted disk luminosity (a factor of ∼ 3 less than that derived in

[142] by the observed optical-UV continuum interpreted as the direct emission from the

disk) is calculated – following the method outlined in e.g. [143] – from the luminosity of

the broad emission lines (Hα, Hβ, MgII) recently obtained in [144] using several optical

spectra taken in the period 2008-2011. The adopted value of RBLR is derived from the

measured line width and the black hole mass again in [144].

165
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Since the filling factor of the clouds is small, the average electron number density ne

relevant for the beam propagation is much smaller than nc. Models attributing the

confinement of the clouds to a hot Te ' 107−8 K external medium in pressure equilibrium

with the clouds yield ne ' 106−7 cm−3 (see e.g. [145]). However, the presence of such a

hot confining medium is disfavored by the lack of the necessarily expected bright X-ray

emission. So, an extra contribution to the pressure confining the BLR clouds is expected

and the most likely one is due to a magnetic field with strength B ∼ 1 G [146] (for a

review, see [147]). As a consequence, ne gets considerably reduced, perhaps to values as

low as ne ' 104 cm−3.

In order to bring out quite explicitly the problem posed by the VHE observation of PKS

1222+216, we compute the optical depth τ(E) of the beam photons in the BLR according

to conventional physics, which amounts to consider only the process γγ → e+e−. We

follow the same procedure developed in [141], to which the reader is referred for a full

description. The optical depth is given by (Eq. 2.7) but now nγ is the spectral number

density of the BLR. nγ is calculated using the standard photo-ionization code CLOUDY

as in [148] using the input parameters listed above.

The result is plotted as the blue long-dashed line in Fig. 6.1, which shows that PKS

1222+216 should indeed be totally invisible in the energy range 70− 400 GeV where it

has instead been detected by MAGIC.

Figure 6.1: Effective optical depth plotted as a function of rest-frame energy for
VHE photons propagating in the BLR of PKS 1222+216. The blue long-dashed line
corresponds to the process γγ → e+e−. The other three lines pertain to our model con-
taining ALPs. Specifically, the violet dashed-dotted line corresponds to (B = 2 G,M =
4 · 1011 GeV), the green short-dashed line to (B = 0.4 G,M = 1.5 · 1011 GeV) and the
red solid line to (B = 0.2 G,M = 7 · 1010 GeV) (more about this, later and in Chapter

7 Sec. 7.1).
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The derived τ(E) is affected by some degree of uncertainty, which is a direct consequence

of the uncertainty associated with some of the input parameters, in particular the lumi-

nosity of the disk and the radius of the BLR. For instance, a disk luminosity smaller by a

factor of ∼ 3 was derived in [150] based on the luminosity of the broad Hβ line measured

from an old optical spectrum. Moreover, an uncertainty in LD also affects the value of

the radius of the BLR, since it is customarily estimated by assuming the empirical rela-

tion RBLR ∝ L1/2
D (see e.g. [149] and references therein). We can roughly summarize the

effect of the error associated with LD and RBLR on the optical depth by the following

chain involving only the relevant quantities: τ ∝ RBLR nph ∝ RBLR LBLR/R
2
BLR ∝ L

1/2
D ,

which indeed leads to τ ∝ L1/2
D . Therefore, the final impact of these uncertainties is mod-

erate. In fact, assuming LD ' 5 · 1045 erg s−1 as in [150], an optical depth comparable

to our result is obtained in [151].

A possible complication is the presence within the BLR of disk photons scattered by the

high-temperature gas assumed to fill the region between the clouds. The total scattering

optical depth associated with such a gas with the density ne ' 104 cm−3 assumed above

is τsc = σTRBLRne ' 2.5 · 10−3. A detailed calculation of the optical depth of γ rays

associated with the scattered disk photons has been made in [151], where it is found that

the maximum absorption caused by this component is localized at ∼ 200 GeV, with a

corresponding optical depth τ ∼ 70 τsc. Clearly τsc = 2.5 · 10−3 entails τ ' 0.2, thus

showing that this contribution to the total τ(E) can be safely neglected.

As pointed out in the Introduction, our proposal to avoid the problem of the huge optical

depth is framed within the standard blazar model for photon production, but in addition

we assume the existence of ALPs a with parameters allowing for efficient conversions

γ → a and a→ γ. Basically, we envisage that a large fraction of VHE photons produced

as usual near the central engine become ALPs before reaching the BLR, thereby crossing

it totally unimpeded. Outside the BLR most of the ALPs are supposed to become VHE

photons again in the large scale jet and in the host galaxy. Because the beam traverses

the extragalactic space, the possibility of photon-ALP oscillations in this region has also

to be taken into account. Finally, we recall that the external magnetic field is the crucial

quantity that triggers photon-ALP conversions.

As a preliminary step, we find it very useful to rewrite Eqs. (1.48) and (1.49) in the

following more convenient form

E∗ ' 25

∣∣∣∣( m

10−10 eV

)2
− 0.13

( ne
cm−3

)∣∣∣∣ ( G

BT

)(
M

1011 GeV

)
eV (6.1)

and

E∗∗ ' 2.1

(
G

BT

)(
1011 GeV

M

)
GeV , (6.2)
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so that we can very easily find out when the strong-mixing regime occurs. Moreover, we

observe that in the mixing matrix the plasma contribution is negligible with respect to

the QED one-loop contribution for

ne � 7.8 · 1011

(
E

100 GeV

)2(BT
G

)2

cm−3 , (6.3)

thanks to Eqs. (1.27), (1.28), and (1.29). Of course, condition (6.3) is relevant outside

the strong-mixing regime.

Below, we will address photon-ALP conversions in the various regions crossed by the

beam.

6.2 Oscillations in the inhomogeneous magnetic field

As we will see, in the present model of PKS 1222+216 the beam crosses four regions

with very different properties before being detected, and only in the first one B can be

taken as homogeneous in first approximation. In the second region, B has a smooth

y-dependence and in this case the beam propagation equation can be solved exactly

owing to a drastic simplification of the ∆ terms entering the mixing matrix (we find

it more natural to address this issue in Sec. 6.4 where the properties of the region in

question are discussed, which in turn dictate the form of the ∆ terms). In the third

region B possesses a turbulent structure which is currently modeled as random domain-

like network, and this may or may not be the case in the fourth region (more about this,

later).

Specifically, in the simplest situation all domains have the same size set by the coherence

length of the magnetic field and the strength of B is the same in every domain, but the

orientation of B changes randomly from one domain to the next (however a more general

situation has to be considered in the cosmological context, but these complications will

be discussed later). Therefore, inside the n-th generic domain (1 ≤ n ≤ N) the mixing

matrix in Eq. (1.20) takes the form

Mn(E,ψn) ≡


∆xx(E,ψn) ∆xz(E,ψn) ∆aγ sinψn

∆zx(E,ψn) ∆zz(E,ψn) ∆aγ cosψn

∆aγ sinψn ∆aγ cosψn ∆aa(E)

 , (6.4)

where the various ∆(E,ψn) quantities are described in Chapter 1, Sec. 1.5. Manifestly

ψn is the angle between B
(n)
T and the a fiducial z axis taken to be the same for all

domains. Denoting by Un (E;ψn) the transfer matrix in the n-th domain – which is
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derived through the same steps as in Chapter 4 Sec. 4.5 – its explicit form just follows

from Eq. (1.57) with y − y0 denoting the domain size.

Moreover, according to quantum mechanics the transfer matrix for the whole network

of N domains is

Urandom (E;ψ1, ..., ψN ) =
N∏
n=1

Un (E;ψn) . (6.5)

Further, it proves convenient to denote by Usmooth(E) the transfer matrix correspond-

ing to the first two regions. Hence, the overall beam propagation is described by

Urandom (E;ψ1, ..., ψN ) Usmooth(E). As a consequence, the probability that the beam

emitted in the state ρin at y0 will be detected in the state ρfin at y for fixed orientations

ψ1, ..., ψN of B in every domain is

Pρin→ρfin
(y, y0;E;ψ1, ..., ψN ) = (6.6)

= Tr
(
ρfin Urandom (E;ψ1, ..., ψN ) Usmooth(E) ρin U†smooth(E)U†random (E;ψ1, ..., ψN )

)
,

where it is assumed again that Tr ρin = Tr ρfin = 1.

Now, owing to the turbulent nature of the magnetic field in question the angles ψn (1 ≤
n ≤ N) are to be regarded as independent random variables in the range 1 ≤ ψn ≤ 2π.

As a consequence, the physical detection probability for the considered beam arises by

averaging the last equation over all angles, namely we have

Pρin→ρfin
(y, y0;E) =

〈
Pρin→ρfin

(y, y0;E;ψ1, ..., ψN )
〉
ψ1,...,ψN

. (6.7)

More specifically, since the photon polarization cannot be measured at the considered

energies, we have to sum Eq. (6.7) over the two final polarization states ρx and ρz given

by Eqs. (4.57) and (4.58). In addition, we suppose for simplicity that the emitted beam

consists 100 % of unpolarized photons, so that the initial beam state is described by Eq.

(4.59). Therefore Eq. (6.7) ultimately takes the form

Pγ→γ(y, y0;E) =
〈
Pρunpol→ρx (y, y0;E;ψ1, ..., ψN )

〉
ψ1,...,ψN

+ (6.8)

+
〈
Pρunpol→ρz (y, y0;E;ψ1, ..., ψN )

〉
ψ1,...,ψN

,

which gives the photon survival probability.

The actual evaluation of Pγ→γ (E) goes as follows. In the first place we have to know

Usmooth(E). Next, we arbitrarily choose ψn in each domain and so we can evaluate

Un (ψn, E) for a given energy E. Thanks to Eq. (6.5) and the next one, we find the

photon survival probability for a single realization of the propagation process. We
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repeat these steps 5000 times, by randomly varying all angles ψn each time, thereby

generating 5000 random realizations of the propagation process. Finally, we average

the resulting photon survival probabilities over all these realizations of the propagation

process, thereby accomplishing the average process in the last equation. We find in this

way the physical photon survival probability PALP
γ→γ (E) when ALP effects are included.

6.3 Photon-ALP oscillations before the BLR

We start by considering the inner part of the blazar, namely the region extending from

the centre to RBLR ' 0.23 pc, to be referred to as region 1.

The magnetic field profile along the jet is well known to decrease outwards but unfor-

tunately the presence of strong shocks and relativistic winds makes a precise estimate

of the strength profile of B for distances smaller than RBLR practically impossible. An

analysis based on a highly idealized description relying on a one-zone, homogeneous

leptonic model with external photons yields for the strength of B at the base of the jet

B ' 2.2 G [152]. Therefore, we feel it realistic in this investigation to assume its strength

to be constant and equal to its average value from the centre to the BLR, which we take

for definiteness B ' 0.2 G. Moreover, owing to the complicated morphology of B, we

similarly suppose that its average direction from the centre to the BLR is nonvanish-

ing and we assume it to be the same everywhere in the considered region (equal to its

average direction), so that we are dealing with a homogeneous B having an unknown

direction. Because the photon-ALP conversions vanish if B is just along the beam while

it is maximal for B transverse to the beam, we suppose in line with our heuristic attitude

that B is on average at an angle of 45◦ with the beam direction. Therefore we have

BT ' 0.14 G.

A natural question is to find out the energy range E∗ < E < E∗∗ in which the strong-

mixing regime takes place. As a working hypothesis we assume m < ωpl, so that E∗

becomes independent of m, and in addition it follows that we are dealing with a very

light ALP just like in previous work [23–27, 30] (see also Chapters 4 and 5) (more

about this, later). Hence from Eq. (6.1) we find E∗ ' 0.23 MeV for ne ' 104 cm−3 while

E∗ ' 0.23 GeV for ne ' 107 cm−3. Further, thanks to Eq. (6.2) the robust CAST bound

entails E∗∗ < 136 GeV and the controversial SN 1987A bound implies E∗∗ < 15 GeV.

Thus, we end up with the conclusion that for Fermi/LAT observations we are in the

strong-mixing regime but for MAGIC observations we are not. Yet, we will see that the

latter fact does not undermine the relevance of photon-ALP oscillations well above E∗∗.

Below, we put ourselves in the general case where the strong-mixing regime does not

take place in order to have a uniform treatment for both the Fermi/LAT and MAGIC
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observations: Of course, the simplifications characteristic of the strong-mixing regime

automatically show up whenever it takes place.

An additional issue concerns the relevance of the QED one-loop effect. We know that it is

negligible in the strong-mixing regime, but otherwise it can be important. Since photon

absorption is independent of B it can presently be discarded, so that the relevant B-

dependent quantity governing the photon-ALP conversion probability is the oscillation

wavenumber ∆osc(E). Then a look at Eq. (1.35) immediately shows that the QED

one-loop is unimportant with respect to the standard magnetic contribution at energies

E < E∗∗, namely for

E < 15

(
1011 GeV

M

)
GeV , (6.9)

as expected. So, for M rather close to 1011 GeV – which we will see to be indeed our

case – the QED one-loop effect is negligible for Fermi/LAT observations (0.3− 3 GeV)

but of paramount importance for MAGIC observations (70− 400 GeV).

Now, owing to Eq. (1.28) ne ' 104 cm−3 gives ωpl ' 3.69 · 10−9 eV whereas ne '
107 cm−3 yields ωpl ' 1.17 · 10−7 eV, which correspondingly imply m < 3.69 · 10−9 eV

and m < 1.17 · 10−7 eV. Furthermore, for our choice BT ' 0.14 G condition (6.3)

implies that the plasma contribution is always negligible with respect to the QED one-

loop contribution both for Fermi/LAT and for MAGIC observations (of course in the

former case the plasma contribution is a fortiori negligible with respect to the standard

magnetic contribution). Hence in the mixing matrix the plasma effect can be discarded.

Manifestly, within the strong-mixing regime the ALP mass term in the mixing matrix

has to be neglected, but it is easy to check that for the above choice of the parameters the

same situation is true to leading order even at higher energies where the strong-mixing

regime does not occur.

Finally, we have

λγ(E) =
RBLR

τ(E)
, (6.10)

where τ(E) is the optical depth for γγ → e+e− plotted by the blue long-dashed line in

Fig. 6.1 and evaluated as in [141].

Thus, on account of Eqs. (1.16), (1.17), (1.18), (1.26), (1.27), (1.29), (4.6) and (6.10) we

find that to leading order the elements of the mixing matrix (4.7) (see also Eq. (1.15)

for matrix element definition) are

∆xx(E) =
2αE

45π

(
BT
Bcr

)2

+
i τ(E)

2RBLR
' 10−24

[(
E

GeV

)
+ 13.9 i τ(E)

]
eV , (6.11)

∆zz(E) =
3.5αE

45π

(
BT
Bcr

)2

+
i τ(E)

2RBLR
' 10−24

[
1.75

(
E

GeV

)
+ 13.9 i τ(E)

]
eV , (6.12)
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∆aγ =
BT
2M
' 1.37 · 10−23

(
1011 GeV

M

)
eV , (6.13)

∆aa(E) = 0 . (6.14)

It is now a matter of simple algebra to evaluate the corresponding eigenvalues λ1(E),

λ2(E) and λ3(E) as well as the matrices T1(E, 0), T2(E, 0) and T3(E, 0) entering Eq.

(4.13), so that we ultimately get the transfer matrix U1(RBLR, 0;E).

6.4 Photon-ALP oscillations in the large scale jet

Let us next focus our attention on the region surrounding the BLR along the line of

sight – to be referred to as region 2 – namely on the jet beyond the parsec scale or more

precisely beyond RBLR. The main question concerns the behavior of B. At variance

with the inner region, shocks and winds are expected to be here less relevant so that

we can attempt to figure out the y-dependence of B. As is well known, a poloidal field

behaves as B(y) ∝ y−2 whereas a toroidal field goes like B(y) ∝ y−1 [153]. Clearly, since

we are at a sufficiently large distance from the centre the toroidal field dominates, and

so it seems more plausible to assume B(y) ∝ y−1 (see also [154]). As a consequence, in

the region 2 we adopt the profile

BT (y) ' 0.14

(
RBLR

y

)
G ' 3.22 · 10−2

(
pc

y

)
G . (6.15)

However, we have checked that even by taking B(y) ∝ y−2 the corresponding change is

small, thereby showing that the choice of the exact profile of B has a minor impact on

the final result.

What is the actual size of the region 2? As we shall see, the typical strength of the

turbulent magnetic field in the host elliptical galaxy is about 5µG, and so it looks

natural to define the outer edge R∗ of region 2 as the galactocentric distance where

BT (y) in Eq. (6.15) reaches the value of 5µG. Accordingly, we get R∗ ' 6.7 kpc.

A relevant question is whether the strong-mixing regime takes place throughout the

whole energy range – namely for 0.3 GeV < E < 400 GeV – over region 2. For this

to be the case, we must have both E∗ < 0.3 GeV and E∗∗ > 400 GeV. Explicitly, by

combining Eqs. (6.1) and (6.2) with Eq. (6.15) we obtain

y < 3 · 103

(
cm−3

ne

)(
1011 GeV

M

)
kpc (6.16)

and

y > 6.1

(
M

1011 GeV

)
pc . (6.17)
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So, we see that even by taking the average electron density as large as ne ' 102 cm−3 we

reach the conclusion that the strong-mixing regime takes place over more than 99 % of re-

gion 2 for M rather close to 1011 GeV. Thus, it will be assumed tout court. Consequently,

the plasma contribution, the ALP mass term and the QED one-loop contribution should

be dropped.

Since in region 2 absorption effects are negligible, owing to the above conclusions from

Eqs. (1.16), (1.17), (1.18), (1.26), (1.27), (1.29) and (4.6) we ultimately obtain

∆xx(E) = 0 , (6.18)

∆zz(E) = 0 , (6.19)

∆aγ =
BT
2M
' 3.1 · 10−24

(
pc

y

)(
1011 GeV

M

)
eV , (6.20)

∆aa(E) = 0 . (6.21)

In this case, the transfer matrix can be directly obtaining by explicitly solving the beam

propagation equation and reads

U2(R∗, RBLR;E) =


1 0 0

0 cos
(
BT (RBLR)RBLR

2M ln R∗
RBLR

)
i sin

(
BT (RBLR)RBLR

2M ln R∗
RBLR

)
0 i sin

(
BT (RBLR)RBLR

2M ln R∗
RBLR

)
cos
(
BT (RBLR)RBLR

2M ln R∗
RBLR

)
 ,

(6.22)

where of course BT (RBLR) is supplied by Eq. (6.15).

6.5 Photon-ALP oscillations in the host galaxy

FSRQs are hosted by elliptical galaxies, whose B is very poorly known. Nevertheless,

it has been argued [155] that supernova explosions and stellar motion give rise to a

turbulent B which can be modeled by a domain-like structure, with average strength

5µG and domain size equal to 150 pc. We stress that these two quantities are the same

for all domains. Correspondingly, we define region 3 as the spherical section with inner

radius R∗ ' 6.7 kpc and outer radius Rhost.

Because absorption is presently irrelevant, the transfer matrix U3 (Rhost, R∗;E;φ1, ..., φN3)

just follows from the discussion in Sec. 6.2 with ψn → φn and N → N3. Furthermore,

it is trivial to check that in region 3 the strong-mixing regime takes place and so the

plasma contribution, the ALP mass term and the QED one-loop contribution are totally

irrelevant. Hence, from Eqs. (1.16), (1.17), (1.18), (1.26), (1.27), (1.29) and (4.6) in
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every domain we have

∆xx(E) = 0 , (6.23)

∆zz(E) = 0 , (6.24)

∆aγ =
BT
2M
' 3.4 · 10−28

(
1011 GeV

M

)
eV , (6.25)

∆aa(E) = 0 , (6.26)

and so in the n-th generic domain (1 ≤ n ≤ N3) the mixing matrix (6.4) takes the

explicit form

Mn(E, φn) =


0 0 (BT /2M) sinφn

0 0 (BT /2M) cosφn

(BT /2M) sinφn (BT /2M) cosφn 0

 . (6.27)

Denoting as in Sec. 6.2 by Un(E, φn) the associated transfer matrix with y−y0 = 150 pc,

the transfer matrix describing the beam propagation over region 3 just follows from Eq.

(6.5), namely

U3 (Rhost, R∗;E;φ1, ..., φN3) =

N3∏
n=1

Un(E;φn) . (6.28)

We should however remark that such an effect plays a very minor role, and even ignoring

it the final result is practically unaffected. This means that the back conversions a→ γ

effectively take place in region 2.

6.6 Photon-ALP oscillations in extragalactic space

What remains to be done is to address the beam propagation in extragalactic space,

which is referred to as our region 4.

The propagation of the beam in region 4 is described by the DARMA scenario which is

presented in Chapter 4, to which we address the reader for a full treatment – we report

here only the final results for completeness.

The discussion is similar to the one treated in Sec. 6.2 with ψn → ϕn and N → N4, but

in the cosmological setting: the overall domain-like network of the large-scale magnetic

field is described by a uniform mesh in redshift space rather than in ordinary space and

the magnetic field B is not exactly the same in all domains (see Chapter 4 for more

details).
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The DARMA scenario assumes that this is indeed the case for E∗ ' 100 GeV, but we can

just as well require E∗ ' 70 GeV (the QED one-loop effect is here ridiculously small).

Correspondingly, recalling Eq. (6.1) the following constraint has to be met∣∣∣∣( m

10−10 eV

)2
− 0.13

( ne
cm−3

)∣∣∣∣ (nGBT
)(

M

1011 GeV

)
< 2.8 . (6.29)

Under such an assumption, the plasma contribution and the ALP mass term should be

dropped and from Eqs. (1.16), (1.17), (1.18), (1.26), (1.27), (1.29) and (4.6) we find for

the ∆ terms the following expressions

∆(n)
xx (E0) =

i

2λ
(n)
γ (E0)

, (6.30)

∆(n)
zz (E0) =

i

2λ
(n)
γ (E0)

, (6.31)

∆(n)
aγ =

B
(n)
T

2M
, (6.32)

∆(n)
aa (E0) = 0 , (6.33)

thereby implying that in the n-th generic domain (1 ≤ n ≤ N4) the mixing matrix (6.4)

takes the explicit form

Mn(E0, ϕn) =


i

2λ
(n)
γ (E0)

0
B

(n)
T

2M sinϕn

0 i

2λ
(n)
γ (E0)

B
(n)
T

2M cosϕn

B
(n)
T

2M sinϕn
B

(n)
T

2M cosϕn 0

 . (6.34)

After some tedious algebra, following the discussion in Chapter 4 the transfer matrix

associated with the n-th domain is found to be

Un(E0, ϕn) = e
i
(
λ

(n)
1 L

(n)
dom

)
T1(ϕn) + e

i
(
λ

(n)
2 L

(n)
dom

)
T2(ϕn) + e

i
(
λ

(n)
3 L

(n)
dom

)
T3(ϕn) , (6.35)

with T1(ϕn), T2(ϕn) and T3(ϕn) given by Eqs. (4.38), (4.39) and (4.40). The transfer

matrix describing the beam propagation over region 4 just follows from Eq. (6.5), namely

U4 (D,Rhost;E0;ϕ1, ..., ϕN4) =

N4∏
n=1

Un(E0, ϕn) , (6.36)

where D denotes the distance of PKS 1222+216.





Chapter 7

Spectral energy distribution of

PKS 1222+216

Let us now focus our attention on the overall effect of ALPs on the beam propagation

from the central region of PKS 1222+216 to the Earth. This amounts to compute the

photon survival probability PALP
γ→γ (E), which allows us in turn to figure out how the

intrinsic VHE blazar emitted spectrum looks like. We will consider separately the cases

in which photon-ALP occur or not in extragalactic space.

7.1 No oscillations in extragalactic space

We first suppose that for whatever reason (too small large-scale magnetic fields, too

large ALP mass, an so on) the effect of photon-ALP oscillations in extragalactic space

is negligible or even absent altogether. In this way, we can concentrate ourselves on the

relevance of γ → a and a→ γ conversions inside the source and around it.

Now, in the first place we EBL-deabsorb the observed flux Fobs(E0, z) obtained by

MAGIC as usual, so as to get the flux at the edge of the host galaxy. Owing to Eqs.

(3.1), (3.2) and (3.3) (we substitute Φ → F in order not to confound the flux with the

angle), we find

FRhost
(E) =

Fobs(E0, z)

PCP
γ→γ(E0, z)

= eτγ(E0,z) Fobs(E0, z) , (7.1)

with E = E0(1 + z), where E0 denotes the observed energy and z = 0.432 for PKS

1222+216. Manifestly, FRhost
(E) would be the intrinsic emitted flux Fem (E) in the

absence of BLR absorption. We exhibit FRhost
(E) in Fig. 7.1 together with the observed

Fermi/LAT spectrum.

177
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Figure 7.1: Red points at high and VHE are the spectrum of PKS 1222+216 recorded
by Fermi/LAT and the one detected by MAGIC but EBL-deabsorbed according to

conventional physics using Eq. (7.1).

Since we know the transfer matrices U1(RBLR, 0;E), U2(R∗, RBLR;E) and U3 (Rhost, R∗;E;φ1, ..., φN3),

we can apply the results of our general discussion presented in Chapter 6.

Recalling the definitions of Usmooth(E) and Urandom (E;ψ1, ..., ψN ) just after Eq. (6.5),

we presently have

Usmooth(E) = U2(R∗, RBLR;E)U1(RBLR, 0;E) , (7.2)

Urandom (E;φ1, ..., φN3) = U3 (Rhost, R∗;E;φ1, ..., φN3) , (7.3)

in terms of which we can use Eq. (6.6) to get the explicit expression of Eq. (6.7) and

ultimately of Eq. (6.8), namely

PALP
γ→γ (Rhost, 0;E) =

〈
Pρunpol→ρx (Rhost, 0;E;φ1, ..., φN3)

〉
φ1,...,φN3

+ (7.4)

+
〈
Pρunpol→ρz (Rhost, 0;E;φ1, ..., φN3)

〉
φ1,...,φN3

.

Therefore, in terms of FRhost
(E) as dictated by Eq. (7.1), according to our model

Fem (E) is given by

Fem (E) =
FRhost

(E)

PALP
γ→γ (Rhost, 0;E)

. (7.5)

Manifestly, what we have to do at this stage is to make a choice for M (consistent with

the bound M > 1.14 · 1010 GeV set by CAST), and even though we have fixed the

magnetic field inside the source before the BLR at B = 0.2 G this value is uncertain to

some extent.
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Since the principal motivation of the present analysis is to explain why a substantial

fraction of VHE photons escape from the BLR, we feel that a deeper insight into the

suitable values of M and B can be gained by addressing the effective optical depth

τeff(E) concerning the photon propagation from the central region to the edge of the

host galaxy, which is defined in terms of PALP
γ→γ (Rhost, 0;E) as

PALP
γ→γ (Rhost, 0;E) = e−τeff(E) . (7.6)

After some attempts, we have been led to select for definiteness three benchmark cases:

(B = 0.2 G,M = 7 · 1010 GeV), (B = 0.4 G,M = 1.5 · 1011 GeV) and (B = 2 G,M =

4 · 1011 GeV). We report the corresponding curves for τeff(E) in Fig. 6.1, where the red

solid line corresponds to (B = 0.2 G,M = 7 · 1010 GeV), the green short-dashed line to

(B = 0.4 G,M = 1.5 · 1011 GeV) and the violet dashed-dotted line to (B = 2 G,M =

4 · 1011 GeV), while the blue long-dashed line corresponds to conventional physics (as

in [141]). The effect of the photon-ALP oscillations on the beam propagation can readily

be appreciated. Indeed, photon-ALP oscillations lead to a drastic reduction of the optical

depth in the optically thick range. Our best case in this respect is (B = 0.2 G,M =

7 · 1010 GeV), where in the MAGIC band the effective optical depth is almost constant

at about τeff ' 4, corresponding to a survival probability of about 2%. On the contrary,

in the optically thin region below ∼ 30 GeV the optical depth in the presence of photon-

ALP oscillations is larger than the standard one, which instead goes rapidly to zero

below 10 GeV. This behaviour can be simply understood: A fraction around 10% of the

γ rays originally emitted by the source and converted into ALPs do not reconvert back

to photons, therefore leading to a reduction of the observed photon flux.

Still, our goal is not merely to explain why MAGIC has observed PKS 1222+216 but

also to find a realistic and physically motivated SED that fits both Fermi/LAT and

MAGIC spectra. So, it is not enough that photon-ALP oscillations allow for a large

photon fraction to avoid the BLR absorption but they also have to give rise to a SED

with the above features. In order to settle this issue we find it illuminating to proceed

as follows. As we said, our source has been observed by Fermi/LAT in the energy range

0.3−3 GeV and by MAGIC in the band 70−400 GeV. Therefore we focus our attention

on the energies E = 1 GeV and E = 300 GeV as representative of the two kinds of

measurements. Hence it is useful to define the ratio

Π ≡ log

(
PALP
γ→γ (Rhost, 0; 1 GeV)

PALP
γ→γ (Rhost, 0; 300 GeV)

)
. (7.7)

A glance to Fig. 7.1 shows that in order to have an acceptable shape for the emitted

VHE component of the SED we need to have Π as low as possible. Moreover, since the

photon-ALP conversion is in any case small in the Fermi/LAT energy range, a small
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Π would imply a huge correction of the flux in the MAGIC spectrum. Therefore, Π

allows us to have an effective control of the effects of the photon-ALP oscillations on the

corrected SED. We show in Fig. 7.2 Π as a function of B and M in order to find out

how strongly Π depends on these two parameters. Incidentally, the oscillatory behavior

displayed by Π in Fig. 7.2 arises from Pγ→γ(1 GeV) which is in the strong-mixing and

absorption-free regime, even though outside RBLR B first decreases and then has a

random domain-like structure. The oscillatory behavior makes the derived probability a

rather complex function of the two parameters. As a general trend, low values of Π are

associated with low B and M values (lower left corner). On the contrary, large B and

M (upper right corner) result in large Π. Our three benchmark cases are represented

by the three white blobs in Fig. 7.2.

Figure 7.2: The quantity Π as a function of B and M . The three white blobs
correspond to our benchmark cases.

Quite remarkably, we see that the trend found in Fig. 6.1 is reproduced in Fig. 7.2, in the

sense to a progressively increasing τ(E) there correspond higher values of Π. Thus, we

are led to the conclusion that the case (B = 0.2 G,M = 7 ·1010 GeV) is expected to have

also a most realistic SED. Besides, also the cases (B = 0.4 G,M = 1.5 · 1011 GeV and

B = 2 G,M = 4 · 1011 GeV look promising as far as the shape of the SED is concerned

even if the corresponding behavior of τeff(E) looks rather high especially at the highest

energies, thereby implying a rather hard intrinsic spectrum. We shall come back to a

thorough discussion of the SED in Sec. 7.3.

Let us next explicitly address the impact of our model for the emitted spectrum of PKS

1222+216, which is shown in Figs. 7.3 and 7.4 for the cases (B = 0.2 G,M = 7·1010 GeV)

and (B = 0.4 G,M = 1.5 · 1011 GeV), respectively, where the EBL-deabsorbed MAGIC

points according to Eq. (7.1) and the observed Fermi/LAT points are reported in red

whereas the black points are correspondingly obtained by means of Eq. (7.5). We do
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not report the Figure pertaining to the case (B = 2 G,M = 4 · 1011 GeV) because the

γ-ray peak would give an unacceptably large value for νFν .

7.2 Oscillations in extragalactic space

We now consider the possibility that photon-ALP oscillations efficiently occur also in

extragalactic space, which is possible only within the strong-mixing regime so that con-

dition (6.29) has to be met. Let us consider first the case (B = 0.2 G,M = 7 ·1010 GeV),

assuming a domain-like large-scale magnetic field with strength B = 0.7 nG and co-

herence length Ldom = 4 Mpc, a situation corresponding to the most favorable case

considered within the DARMA scenario (see Chapters 4 and 5).

Accordingly, condition (6.29) is satisfied for m < 1.7 · 10−10 eV, which is consistent with

the upper bound found above.

The form of Usmooth(E) as given by Eq. (7.2) remains unchanged, but that of Urandom (E;ψ1, ..., ψN )

now becomes

Urandom (E;φ1, ..., φN3 ;ϕ1, ..., ϕN4) = U4 (D,Rhost;E0;ϕ1, ..., ϕN4) U3 (Rhost, R∗;E;φ1, ..., φN3) ,

(7.8)

Figure 7.3: Red points at high energy and VHE are the spectrum of PKS 1222+216
recorded by Fermi/LAT and the one detected by MAGIC but EBL-deabsorbed accord-
ing to conventional physics using Eq. (7.1). The black points represent the same data
once further corrected for the photon-ALP oscillation effect employing Eq. (7.5) in the
case (B = 0.2 G,M = 7 · 1010 GeV). The gray data points below 1020 Hz are irrelevant

for the present discussion (details can be found in [142].
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Figure 7.4: Red points at high energy and VHE are the spectrum of PKS 1222+216
recorded by Fermi/LAT and the one detected by MAGIC but EBL-deabsorbed accord-
ing to conventional physics using Eq. (7.1). The black points represent the same data
once further corrected for the photon-ALP oscillation effect employing Eq. (7.5) in the
case (B = 0.4 G,M = 1.5 ·1011 GeV). The gray data points below 1020 Hz are irrelevant

for the present discussion (details can be found in [142].

with E = E0(1+z). Just as before, we use these equations to find the explicit expression

of Eq. (6.7) and finally of Eq. (6.8), which presently reads

PALP
γ→γ (D, 0;E) =

〈
Pρunpol→ρx (D, 0;E;φ1, ..., φN3 ;ϕ1, ..., ϕN4)

〉
φ1,...,φN3

;ϕ1,...,ϕN4

+ (7.9)

+
〈
Pρunpol→ρz (D, 0;E;φ1, ..., φN3 ;ϕ1, ..., ϕN4)

〉
φ1,...,φN3

;ϕ1,...,ϕN4

.

However, at variance with the previous treatment, the intrinsic flux emitted by the

source – which is represented in Fig. 7.5 by black dots – is obtained directly from the

one observed by MAGIC and represented in Fig. 7.5 by open red squares through the

relation

Fem(E) =
Fobs(E0, z)

PALP
γ→γ (D, 0;E)

. (7.10)

The comparison of Figs. 7.3 and 7.5 reveals that the inclusion of the photon-ALP

oscillations in extragalactic space does not lead to a dramatic effect. Although the

derived intrinsic spectrum is softer, the peak energy and the luminosity of the high

energy peak are roughly the same in either case.

A very similar situation concerns the cases (B = 0.4 G,M = 1.5 · 1011 GeV) and (B =

2 G,M = 4 · 1011 GeV), and so we do not find it useful to report also these results in

a Figure (in particular photon-ALP oscillations in extragalactic space do not save the

case (B = 2 G,M = 4 · 1011 GeV) so that it remains ruled out).
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Figure 7.5: Red points at high energy and open red squares at VHE are the spectrum
of PKS 1222+216 recorded by Fermi/LAT and the one observed by MAGIC and not
EBL-deabsorbed. The black points represent the same data once further corrected for
the photon-ALP oscillation effect in the case (B = 0.2 G,M = 7 · 1010 GeV) includ-
ing also photon-ALP oscillations in extragalactic space, where a magnetic field with
strength B = 0.7 nG is supposed to exist. So, they are obtained from the red points
and the open red squares by means of Eq. (7.10). The gray data points below 1020 Hz

are irrelevant for the present discussion (details can be found in [142]).

We conclude that in the context of our model for PKS 1222+216 photon-ALP oscillations

in the extragalactic space are allowed but not compelling.

7.3 Spectral energy distribution (SED)

Our final step consists in showing that the emitted spectra in the whole γ-ray band

obtained in Secs. 7.1 and 7.2 indeed lie on the SED of a realistic and physically motivated

blazar model, thereby closing the circle. We stress that this problem does not have a

unique solution, in the sense that it is quite conceivable that various leptonic and even

hadronic models can work. Nevertheless, from a methodological point of view the present

work would be incomplete without the presentation of an explicit emission model.

As already remarked, in an attempt to explain the observed MAGIC emission of PKS

1222+216 within conventional physics a particular model has been put forward [142],

which consists in a larger blob located inside the source responsible for the emission from

IR to X-rays and a much smaller very compact blob accounting for the rapidly varying

γ-ray emission detected by MAGIC. In order to avoid the BLR photon absorption, the

smaller blob has been located well outside the BLR, namely at a large distance from

the centre (we refer to the original paper [142] for a full discussion of the problems
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and a detailed description of this model). Hence it looks natural to inquire whether a

similar two-blob model can produce the SED needed in the present context – namely

to fit the black points in Figs. 7.3, 7.4 and 7.5 – with the key difference that now the

smaller blob lies close to the central engine. Remarkably, this scenario works provided

that the following parameters are chosen. Briefly, each region is specified by its size

r, magnetic field B, bulk Lorentz factor Γ, electron normalization K, minimum, break

and maximum Lorentz factors γmin, γb, γmax and slopes n1, n2. The electrons radiate

through synchrotron and inverse Compton processes (considering both the internally

produced synchrotron radiation and the external radiation of the BLR). For the larger

region we use the same parameters of the original model while for the compact γ-ray

blob region we have:

• Case (B = 0.2 G,M = 7·1010 GeV) without photon-ALP oscillations in extragalac-

tic space (see Fig. 7.6) : r = 2.2 · 1014 cm, B = 0.008 G, Γ = 17.5, K = 6.2 · 109,

γmin = 4 · 103, γb = 2.5 · 105, γmax = 4.9 · 105 and slopes n1 = 2.1, n2 = 3.5;

• Case (B = 0.4 G,M = 1.5 · 1011 GeV) without photon-ALP oscillations in extra-

galactic space (see Fig. 7.7): r = 2.2·1014 cm, B = 0.0004 G, Γ = 17.5, K = 2·1011,

γmin = 5 · 104, γb = 2.5 · 106, γmax = 4.9 · 106 and slopes n1 = 2.1, n2 = 3.2.

• Case (B = 0.2 G,M = 7 · 1010 GeV) with photon-ALP oscillations in extragalactic

space (see Fig. 7.8): r = 2.2 · 1014 cm, B = 0.008 G, Γ = 17.5, K = 6.7 · 109,

γmin = 3 · 103, γb = 1.2 · 105, γmax = 4.9 · 105 and slopes n1 = 2.1, n2 = 3.5.

Also here the relative position of the two regions is not relevant for the emission prop-

erties.

The resulting SED is exhibited in Figs. 7.6, 7.7 for the cases (B = 0.2 G,M = 7 ·
1010 GeV) and (B = 0.4 G,M = 1.5 · 1011 GeV) without photon-ALP oscillations in

extragalactic space, respectively, and in Fig. 7.8 for the case (B = 0.2 G,M = 7 ·
1010 GeV) with photon-ALP oscillations in extragalactic space.

We find that an optimal choice to explain both Fermi/LAT and MAGIC observations

corresponds to the case (B = 0.2 G,M = 7 · 1010 GeV) without photon-ALP oscillations

in extragalactic space, for which we obtain through Eq. (7.5) the black points shown in

Fig. 7.6. This result looks completely satisfactory, with the Fermi/LAT and MAGIC

data well described by a high-energy bump peaking around 50 GeV and a height νFν '
10−8 erg cm−2 s−1 corresponding to a luminosity Lγ = 6 · 1048 erg s−1. On the other end,

the case (B = 0.4 G,M = 1.5 · 1011 GeV) looks satisfactory as far as the shape of the

SED is concerned with the high-energy peak close to 500 GeV as it can be seen from

Fig. 7.7, but the implied luminosity of the γ-ray emission approaches Lγ = 1051 erg s−1
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Figure 7.6: Same as Fig. 7.3 for the case (B = 0.2 G,M = 7 · 1010 GeV) without
photon-ALP oscillations in extragalactic space, but in addition the dashed and solid
curves show the SED resulting from the considered two blobs which account for the

γ-ray emission at high energy and VHE, respectively.

which appears unrealistic, since it is about 100 times larger than that of the most γ-ray

bright blazars (see e.g. [164]). So, this result is unsatisfactory. We recall that the case

(B = 2 G,M = 4 ·1011 GeV) has already been ruled out due to the by far too high γ-ray

peak. Finally, the inclusion of photon-ALP oscillations in extragalactic space makes the

emitted spectrum slightly softer as it is evident from Fig. 7.8, but the situation still

remains completely satisfactory.

In conclusion, we find it a highly nontrivial circumstance that the benchmark case

(B = 0.2 G and M = 7 · 1010 GeV) turns out to be the best one concerning both

the efficiency for VHE photons to escape from the BLR and the SED of the particular

two-blob model that we have adopted. Thus, it turns out to be by far our best option.
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Figure 7.7: Same as Fig. 7.4 for the case (B = 0.4 G,M = 1.5 · 1011 GeV) without
photon-ALP oscillations in extragalactic space, but in addition the dashed and solid
curves show the SED resulting from the considered two blobs which account for the

γ-ray emission at high energy and VHE, respectively.

Figure 7.8: Same as Fig. 7.5 for the case (B = 0.2 G,M = 7 ·1010 GeV) with photon-
ALP oscillations in extragalactic space, but in addition the dashed and solid curves
show the SED resulting from the considered two blobs which account for the γ-ray

emission at high energy and VHE, respectively.



Chapter 8

ALPs from irregularities in γ ray

source spectra?

Recently, Wouters and Brun (WB) [156] proposed a method to detect photon-ALP

oscillations taking place in random extragalactic magnetic fields when VHE observations

of blazars are performed. Actually, such a method is not new, even though it was

introduced in a slightly different context [157].

As discussed in Chapter 4 Sec. 4.2, the extra-galactic magnetic field B is supposed to

have a domain-like structure, with its direction randomly changing from one domain

to the next and strength either equal in all domains or with a Kolmogorov spectrum.

For simplicity, we shall restrict our attention throughout this thesis to the first option.

Manifestly, in such a situation the propagation process of the photon/ALP beam from

the source to us becomes a stochastic process. While it is obvious that the beam follows a

single trajectory at once joining the source to us, the exact behaviour of the beam cannot

be predicted but only its mean properties can be evaluated, and this requires an average

over a very large number of possible trajectories followed by the beam (realizations

of the stochastic process in question). Among these properties, the simplest ones are

the average photon survival probability [24, 25] (see also Chapters 4 and 5) and its

variance [26].

The main point made by WB is that in a pretty small range about the energy Ethr (E∗

with our definition, see Chapter 1 Sec. 1.5) that marks the transition from the weak to

the strong mixing regime the photon survival probability along every single trajectory

that the beam can follow exhibits fluctuations, which show up in the observed energy

spectrum and are claimed to be an observable signature of the existence of photon-ALP

oscillations.

187
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WB do not state explicitly their assumptions, neither they provide any information

about the way they evaluate the photon survival probability along a single trajectory.

Do they consider a polarized beam or an unpolarized one? As we will see below, this

point is of crucial importance because it changes drastically the result, but nothing is

said about that by WB.

We explicitly show that they consider an initially polarized beam, whereas a physically

correct treatment would demand the beam to be initially unpolarized. As a consequence,

the result of WB changes substantially.

In the following sections we recall some equations of Chapters 1 and 4 and we rewrite

them since we uniform to WB conventions and for the convenience of the reader – we

send the reader to the above-mentioned Chapters for a complete discussion.

8.1 Setting the stage

Specifically, writing the photon-ALP Lagrangian as

Laγ = − 1

4
g FµνF̃

µνa = gE ·B a , (8.1)

the definition of Ethr is

Ethr ≡
|m2

a − ω2
pl|

2g BT
, (8.2)

where ma is the ALP mass, ωpl is the plasma frequency and BT is the component of

the magnetic field transverse to the beam (WB write B sin θ in place of BT ), which is

supposed to be monochromatic of energy E.

A very remarkable fact is that under the assumption E � ma the beam propagation

equation in a generic magnetic domain n takes a Schrödinger-like form in the variable z

along the beam [15], to wit (
i
d

dz
+ E +M(φn)

)
ψn(z) = 0 (8.3)

with the wave function of the form

ψn(z) ≡


A1,n(z)

A2,n(z)

an(z)

 , (8.4)

where A1,n(z) and A2,n(z) denote the photon amplitudes with polarization (electric field)

along the x- and y-axis, respectively, while an(z) is the amplitude associated with the
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ALP in the n-th domain. Further, we let φn be the angle between BT and the fixed x̂

direction – equal for all domains – in the n-th domain. In the general case in which the

EBL is important a fraction of photons gets absorbed through the process γγ → e+e−

and the mixing matrix M(φn) reads

M(φn) =


∆11 + i∆abs 0 ∆B cosφn

0 ∆22 + i∆abs ∆B sinφn

∆B cosφn ∆B sinφn ∆a

 . (8.5)

The various delta terms are defined as follows: ∆11 = ∆22 ≡ −ω2
pl/2E, ∆a ≡ −m2

a/2E,

∆B ≡ g BT /2 and ∆abs ≡ 1/2λ with λ being the photon means free path for γγ → e+e−

scattering [21].

Hence, we see that inside every domain the considered beam is formally described as a

three-level unstable non-relativistic quantum system.

In the simplest case of a single domain with B homogeneous, ωpl = 0, λ = ∞ and

φn = π/2 the γ → a conversion probability is

Pγ→a =
α∆2

B

∆2
osc

sin2

(
∆osc z

2

)
, (8.6)

having set ∆2
osc ≡ ∆2

a + 4∆2
B. For a photon beam linearly polarized along BT we have

α = 4, for a linear polarization perpendicular to BT we get α = 0, whereas for an

unpolarized beam it turns out that α = 2. Moreover, Eq. (8.6) shows that for E

sufficiently larger than Ethr Pγ→a becomes maximal and energy-independent, which is

indeed the strong mixing regime.

So, we see that the question whether the beam is polarized or not is of crucial importance

because it changes drastically the conclusion.

8.2 Probabilities for polarized and unpolarized beams

Our main criticism indeed concerns the beam polarization. We want to emphasize that

the beam polarization is unknown. A reason is that it is not clear whether the emission

mechanism is leptonic or hadronic, and for instance in the pure synchro-self-Compton

model (without external electrons) the polarization of the emitted photons decreases

both with the electron energy and the viewing angle, so that it is vanishingly small for

the TeV BL Lacs [158]. Another reason is that the polarization cannot be measured in

the γ-ray band. So, in the lack of any information about the beam polarization the only

sensible option is to suppose that the beam is initially unpolarized.
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Hence, according to quantum mechanics in the n-th domain the beam must be described

by a polarization density matrix, namely

ρn(z) =


An,1(z)

An,2(z)

an(z)

⊗ ( An,1(z) An,2(z) an(z)
)∗

(8.7)

rather than by a wave function ψn(z) like the one in Eq. (8.4). Moreover, the analogy

with non-relativistic quantum mechanics entails that ρn(z) obeys the Von Neumann-like

equation

i
dρn
dz

= ρnM†(φn)−M(φn) ρn . (8.8)

associated with Eq. (8.3) (see Chapters 4 and 5). Observe that even though the hamil-

tonian is not self-adjoint, we nevertheless have

ρn(z) = Un(z, 0) ρn(0)U†n(z, 0) , (8.9)

where Un(z, 0) is the transfer matrix, namely the solution of Eq. (8.3) subject to the

initial condition Un(0, 0) = 1. Assuming that the number of domains is N , the transfer

matrix describing the whole propagation process is

U(z, 0) =
N∏
n=1

Un(zn, zn−1) (8.10)

with z0 = 0 and zN = z, and the photon survival probability along a single realization

of the unpolarized beam corresponding to φ1, φ2, ..., φN is given by (see Chapters 4 and

5)

P unpolarized
γ→γ (z, 0;φ1, φ2, ..., φN ) =

∑
i=1,2

Tr
(
ρi U(z, 0) ρunpol U†(z, 0)

)
, (8.11)

while the analogous probability in the case of a polarized beam along the x-axis reads 1

P polarized
γ→γ (z, 0;φ1, φ2, ..., φN ) =

∑
i=1,2

Tr
(
ρi U(z, 0) ρ1 U†(z, 0)

)
, (8.12)

where

ρ1 =


1 0 0

0 0 0

0 0 0

 , ρ2 =


0 0 0

0 1 0

0 0 0

 , ρunpol =
1

2


1 0 0

0 1 0

0 0 0

 . (8.13)

1Needless to say, a similar result arises for a polarized beam along the y direction.
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8.3 A particular case

Let us consider first the case in which EBL absorption is absent, so that the hamiltonian

is self-adjoint and the transfer matrix must be unitary. Since we cannot know the specific

trajectory followed by the beam during its propagation, this has to be true for any

trajectory. Now, by inserting Eqs. (8.13) into Eq. (8.11) and working out the resulting

expression we find

Pγ→γ(z, 0;φ1, φ2, ..., φN ) =
1

2

(
|u11|2 + |u12|2 + |u21|2 + |u22|2

)
. (8.14)

But owing to the unitarity of U , the condition U U† = 1 implies

|u11|2+|u12|2+|u13|2 = 1 , |u21|2+|u22|2+|u23|2 = 1 , |u31|2+|u32|2+|u33|2 = 1 , (8.15)

whereas the condition U† U = 1 entails

|u11|2+|u21|2+|u31|2 = 1 , |u12|2+|u22|2+|u32|2 = 1 , |u13|2+|u23|2+|u33|2 = 1 , (8.16)

which upon insertion into Eq. (8.14) yield

Pγ→γ(z, 0;φ1, φ2, ..., φN ) =
1

2
+

1

2
|u33|2 ≥

1

2
. (8.17)

This conclusion is in blatant contradiction with the result of WB reported in the upper

panel of their Fig. 2, and so we infer that WB consider an initially polarized beam.

8.4 Photon survival probability

From now on we address the case in which the EBL absorption is present.

As a benchmark for comparison, we start by dealing with the photon survival probability

along a single randomly chosen trajectory of the considered stochastic process in the case

of an initially polarized beam. For the sake of comparison with WB, we take the same

values of the parameters adopted by them, namely a source at redshift zs = 0.1 (not to be

confused with the coordinate along the beam), the magnetic field strength B = 1 nG, the

size of a magnetic domain equal to 1 Mpc, the photo-ALP coupling g = 8 · 10−11 GeV−1

and the ALP mass ma = 2 neV. Using Eq. (8.12), we find the result plotted in the upper

panel of Fig. 8.1. Manifestly the upper panel of Fig. 8.1 is qualitatively identical to the

lower panel of Fig. 2 of WB. This circumstance confirms that WB indeed consider an

initially polarized beam.
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Figure 8.1: The upper panel corresponds to the case of an initially polarized beam,
while the lower panel corresponds to the case of an initially unpolarized beam. The solid
black line represents the photon survival probability along a single randomly chosen
trajectory followed by the beam in the presence of ALPs for a source at zs = 0.1, using
B = 1 nG, the size of a magnetic domain equal to 1 Mpc, g = 8 · 10−11 GeV−1 and
ma = 2 neV. The dashed red line represents the same quantity with ALPs discarded

(conventional physics).

Let us next address the analogous probability – for the same values of the parameters – in

the case of an initially unpolarized beam, which is the physically correct case. Employing

now Eq. (8.11), the corresponding result is exhibited in the lower panel of Fig. 8.1.

Evidently the size of the fluctuations is drastically reduced in the unpolarized case with

respect to the polarized one.

8.5 Observed flux

As a further step, we follow as closely as possible the same lines of Sec. III of WB.

Explicitly, as a first step we generate photons by a Monte Carlo method according to a

log-parabola probability distribution – shape of the initial spectrum – with an integrated

flux in the TeV band at the Crab level. We simulate an observation of 50 h with an

effective area of 105 m2, which amounts to about 100000 photons. We suppose that 10

observations of 5 h each are performed, so that everyone collects about 10000 photons.

Assuming that the observations are performed in the energy band 5 · 102 GeV − 7 TeV,

we divide this range into 33 energy bins. At this point, we bin the 10 observations,

computing both the mean and the variance pertaining to the 10 observations for each

of the 33 energy bins. Next, we perform a log-log best fit of the binned points and we
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evaluate the fit residuals. Finally, we compute the variance of the fit residuals. All this

is obtained by averaging over 5000 realizations, as in the case of WB.

We proceed in parallel with the discussion in Sec. 8.4, which amounts to implement

such a strategy first in the case of an initially polarized beam and next in the case of

an initially unpolarized one. We show in the upper panel of Fig. 8.2 the unbinned and

binned spectra in the case of a polarized beam when EBL absorption and photon-ALP

oscillations are considered. The model parameters are the same as before. The lower

panel of Fig. 8.2 represents the case of an unpolarized beam. In either case, the solid

black line represents the unbinned spectrum and the red lines the binned spectrum in

the situation of photon-ALP oscillations. The dashed black line corresponds to the best

fit to the bins (regardless of the underlying physics).

Figure 8.2: The upper panel corresponds to the case of a polarized beam, while
the lower panel corresponds to the case of an unpolarized beam. The solid black line
represents the unbinned spectrum and the broken red line the binned spectrum, both
in the case of photon-ALP oscillations. The dashed black line corresponds to the best

fit to the bins (regardless of the underlying physics).

As before, the difference between the upper panel and the lower panel of Fig. 8.2 is great:

while in the polarized case the amplitude of the oscillations is large, in the unpolarized

one their size gets drastically reduced. The actual physical difference between the two

cases is confirmed by the distribution of the residuals – displayed in Fig. 8.3 – where red

blobs and green stars represent the cases of a polarized and unpolarized beam, respec-

tively in the presence of photon-ALP oscillations. For comparison, the blue triangles

correspond to the situation of conventional physics.

Finally, we report in Table 8.1 the predicted values of the variance of the fit residuals

for the above choice of the model parameters.
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Figure 8.3: Distribution of the residuals in three cases. Polarized beam with ALP
effects: red blobs. Unpolarized beam with ALP effects: green stars. Conventional

physics: blue triangles.

Model Variance of the fit residuals

No ALPs 0.03± 0.01
Unpolarized ALPs 0.09± 0.03

Polarized ALPs 0.21± 0.06

Table 8.1: Values of the variance to the fit residuals for the various cases considered
in the text.

8.6 Discussion

We have critically analyzed the claim put forward by WB [156] that an observable effect

in the spectra of distant VHE blazars arises as a consequence of oscillations of photons

into ALPs in the presence of random extragalactic magnetic fields. In practice, we have

redone the same analysis of WB in order to understand whether their result concerning

potentially observable fluctuations in the spectra of blazars in the presence of photon-

ALP oscillations are derived for a polarized or unpolarized photon/ALP beam, since this

point is absolutely unclear from their paper. We have reproduced all their results in the

case of an initially polarized beam, which however looks physically irrelevant to current

observations. But we have shown that for the physically relevant case of an initially

unpolarized beam the claimed effect is drastically reduced.

As a matter of fact, WB themselves point out that from Table 8.1 our result is at

3σ level [159]. This is precisely the crucial point. For, in the community of very-

high-energy astrophysics a result is considered reliable only if it is at 5σ level (neglecting

systematic errors, which lead to an additional smearing but are very difficult to estimate,
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thereby explaining such a requirement). In other words, the difference between the case

of conventional physics and that of an unpolarized photon beam with ALPs is not

sufficiently robust to be believable. We propose instead to turn the argument around,

in the sense that if such an effect is seen and cannot be explained by conventional

astrophysics, then it should be interpreted as evidence for ALPs.





Conclusions

Very light ALPs are a generic prediction of many attempts to extend the Standard

Model along different directions towards a more satisfactory fundamental theory of all

elementary-particle interactions including gravity. In this thesis we have studied ALPs

properties, their interaction with photons giving rise to photon-ALP oscillations and

their consequences on VHE astrophysics.

In particular, in Chapters 1-6 we have systematically investigated the DARMA scenario

in which the mechanism of photon-ALP oscillations triggered by large-scale magnetic

fields is regarded as a means to effectively reduce the EBL attenuation affecting blazar

observations above 100 GeV. Our assumptions can be summarized as follows:

• Large-scale magnetic fields exist with a cellular morphology characterized by a

coherence lenth in the 1− 10 Mpc range and a strength not much smaller than the

available upper bound B0 < 6 nG.

• ALPs have to be very light in order to ensure that the strong-mixing regime is

realized. The upper bound on their mass depends on the adopted value of the

aγγ coupling constant B0/M – see Table 5.2 – but in any case the condition

m < 5 ·10−10 eV has to be met. This prevents the axion needed to solve the strong

CP problem from playing any role in the present context.

• The parameter M is consistent but fairly close to the strongest upper bound

M > 1011 GeV coming from observations of supernova SN1987a. We remark that

this bound is however affected by a large uncertainty and exceeds by one order of

magnitude the robust bound M > 1010 GeV coming both from theoretical consid-

erations of star cooling and from the negative result of the CAST collaboration.

We predict that a boost factor of 10 in the photon survival probability with respect to

conventional physics takes place for all VHE blazars observed so far well below the upper

detection threshold of the planned CTA and HAWC water Cherenkov γ-ray observatory.

Moreover, the energy E10 at which such a boost factor occurs decreases as the source
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distance increases and becomes e.g. as low as 2 TeV for the blazar 3C 279 at z = 0.536.

Hence, our prediction can certainly be tested with the above planned detectors and

possibly also with currently operating IACTs H.E.S.S., MAGIC, VERITAS as well as

with the Extensive Air Shower arrays ARGO-YBJ and MILAGRO.

We find it a remarkable fact that the DARMA scenario also offers a new interpretation

of the observed VHE blazars, according to which the values of Γem for far-away VHE

blazars are in the same ballpark of nearby ones and the large spread in the values of

Γobs is mainly traced to the wide spread in the source distances.

Our predicted lower-than-expected transparency of the Universe in the VHE band is

supported by an independent result [125] which rests upon a new statistical analysis of

all VHE blazars based on a Kolmogorov-Smirnov test in conjunction with the minimal

EBL model [96].

In Chapter 2 we have evaluated the transparency of the Universe to gamma rays in the

energy range 10GeV−1013GeV using the most recent observational data concerning the

EBL and the RB. The present calculation is of paramount relevance for the planned

ground-based detectors like CTA, HAWC and HiSCORE.

In Chapters 6-7 we have focused on the FSRQ PKS 1222+216. We have shown that

the surprising γ-ray detection of PKS 1222+216 by MAGIC can be explained – consis-

tently with the simultaneous results by Fermi/LAT – within a standard blazar model by

adding the new assumption that inside the source photons can oscillate into ALPs. Our

explanation assumes an average magnetic field with strength B ' 0.2 G in the jet up to

the BLR and a value M = 7 ·1010 GeV for the inverse coupling γγa. We remark that the

emission model presented here is merely an example, and different and possibly more

realistic scenarios can be constructed along similar lines. The main point we want to

make is that with the photon-ALP oscillation mechanism at work the emission can well

originate inside the BLR just like in conventional BL Lac models. As far as photon-ALP

oscillations are concerned, their crucial role takes place in the source region before and

just after the BLR.

Needless to say, our scenario naturally applies also to the other FSRQs detected at

VHE like 3C279 and PKS 1510-089 [38, 162, 165], although these cases appear less

problematic for the external emission scenario due to the absence of evident rapid (t < 1

day) variability.

As already mentioned some alternative scenarios accounting for the puzzling features of

PKS 1222+216 have been recently appeared in the literature. For instance, in [163] it is

proposed that the VHE emission arises in the parsec-scale jet through the production of

collimated beams of high-energy electrons by fast relativistic magnetic reconnection (see
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also [166]). Alternatively, in [151, 167] it is assumed the existence of collimated beams

of neutral particles produced in the inner jet through photo-meson reactions of ultra-

high energy protons. Neutral particles can freely propagate to distances larger than the

BLR and then produce ultra-relativistic leptons interacting with the IR radiation of the

dusty torus. In turn, the collimated leptons would produce highly beamed synchrotron

emission. If the magnetic field at pc scale is small enough, not exceeding 1 mG, the

VHE synchrotron radiation preserves the rapid variability of the inner engine at the pc

scale (but in this case the confinement of the clouds of the BLR looks problematic).

It appears to us remarkable that our proposed model lends itself to an observational test.

Because photon-ALP oscillations can mitigate – but not completely avoid – the γ-ray

absorption inside the BLR, a natural prediction is that at the optically-thin/optically

thick transition around 30 GeV (in the source frame) the spectrum should display a

feature. So, the absence of such a feature would be hard to explain in our model but

would directly support scenarios in which the emission occurs outside the BLR as those

discussed above.

We find it quite tantalizing that precisely the most favourable value M = 7 · 1010 GeV

for the effect considered in the study of the source PKS 1222+216 corresponds to the

most favourable case for a large-scale magnetic field of B = 0.7 nG in the DARMA

scenario that enlarges the “γ-ray horizon” and provides a natural solution to the cosmic

opacity problem (see Chapters 4 and 5) (the DARMA scenario requires for the ALP

mass m < 1.7 · 10−10 eV which is consistent with the present model).

In Chapter 8 we have critically analyzed a result obtained by D. Wouters and P. Brun

[156]. They claim potentially observable fluctuations in the spectra of blazars in the

presence of photon-ALP oscillations. What is unclear in their paper is if their results

are derived for a polarized or unpolarized photon/ALP beam. We have demonstrated

that they use a polarized photon/ALP beam while the correct treatment of the problem

should imply the use of an unpolarized one. We have reproduced all their results both

in the case of an initially polarized beam – which however looks physically irrelevant to

current observations – and in the case of an initially unpolarized one – which should be

the correct approach to the problem. As a result, in the case of an initially unpolarized

beam the claimed effect is drastically reduced to an extent that their result can only

make bounds at the 3σ level, which cannot rule out the existence of ALPs.

As is well known, weakly interacting massive particles (WIMPs) can be detected either

indirectly through astrophysical effects or directly at the Large Hadron Collider (LHC).

The situation of ALPs characteristic of the DARMA scenario is in a sense similar.

Besides being detectable indirectly through the astrophysical effects discussed in this

thesis, they lend themselves to a direct detection in the near future with the planned
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upgrade of the photon regeneration experiment ALPS at DESY [49] and with the next

generation of solar axion detectors like IAXO [168], or with the Cherenkov Telescope

Array (CTA).

We want also to point out that it has recently been shown that ALPs with precisely the

properties needed in our model naturally emerge in the Large Volume Scenario of IIB

string compactifications [169]. In addition, a very light ALP of the kind considered here

is a viable candidate for the quintessential dark energy [13].

Future work

In the future, we plan to study from a theoretical point of view the photon-ALP mixing

taking into account all the terms in the mixing matrix including the absorption term

in order to complete the theoretical background and to give an analytical description of

the photon/ALP conversion probability and to understand the different mixing regimes

(in the presence of absorption). We want also to study in greater detail the parameter

space of the DARMA scenario in order to clarify completely the effects of a change

of the values of the magnetic field, of the magnetic field domain length, and of the

coupling constant. Then, we want to calculate the transparency of the Universe to

gamma rays when photon-ALP mixing is considered. We would also like to analyze

deeper the cosmic opacity problem and consider the possibility of correlations between

blazar spectral indexes and blazar redshift.



Appendix A

Schödinger-like equation with

constant coefficients

We solve here the mathematical problem of finding the transfer matrix U(y, y0; 0) asso-

ciated with the reduced Schödinger-like equation(
i
d

dy
+M

)
ψ(y) = 0 , (A.1)

with

ψ(y) ≡


Ax(y)

Az(y)

a(y)

 (A.2)

as in the text, and mixing matrix of the form

M =


s 0 0

0 t v

0 v u

 , (A.3)

where the coefficients s, t, u and v are supposed to be complex numbers.

We start by diagonalizing M. Its eigenvalues are

λ1 = s , (A.4)

λ2 =
1

2

(
t+ u−

√
(t− u)2 + 4 v2

)
, (A.5)

λ3 =
1

2

(
t+ u+

√
(t− u)2 + 4 v2

)
, (A.6)
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and it is straightforward to check that the corresponding eigenvectors can be taken to

be

X1 =


1

0

0

 , (A.7)

X2 =


0

v

λ2 − t

 , (A.8)

X3 =


0

v

λ3 − t

 . (A.9)

Correspondingly, any solution of Eq. (A.1) can be represented in the form

ψ(y) = c1X1 e
iλ1 (y−y0) + c2X2 e

iλ2 (y−y0) + c3X3 e
iλ3 (y−y0) , (A.10)

where c1, c2, c3 and y0 are arbitrary constants. As a consequence, the solution with

initial condition

ψ(y0) ≡


Ax(y0)

Az(y0)

a(y0)

 (A.11)

emerges from Eq. (A.10) for

c1 = Ax(y0) , (A.12)

c2 =
λ3 − t

v(λ3 − λ2)
Az(y0)− 1

λ3 − λ2
a(y0) , (A.13)

c3 = − λ2 − t
v(λ3 − λ2)

Az(y0) +
1

λ3 − λ2
a(y0) . (A.14)

It is a simple exercise to recast the considered solution into the form

ψ(y) = U(y, y0; 0)ψ(y0) (A.15)

with

U(y, y0; 0) = eiλ1(y−y0) T1(0) + eiλ2(y−y0) T2(0) + eiλ3(y−y0) T3(0) , (A.16)

where we have set

T1(0) ≡


1 0 0

0 0 0

0 0 0

 , (A.17)
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T2(0) ≡


0 0 0

0 λ3−t
λ3−λ2

− v
λ3−λ2

0 (λ2−t)(λ3−t)
v(λ3−λ2) − λ2−t

λ3−λ2

 , (A.18)

T3(0) ≡


0 0 0

0 − λ2−t
λ3−λ2

v
λ3−λ2

0 − (λ2−t)(λ3−t)
v(λ3−λ2)

λ3−t
λ3−λ2

 , (A.19)

from which it follows that the desired transfer matrix is just U(y, y0; 0) as given by Eq.

(A.16).





Appendix B

Approximate EBL behaviour

It proves very useful for illustrative purposes to have the approximate behaviour of

τγ(E0, z) in an analytic form. This goal can be achieved by taking advantage from the

fact that σγγ(E, ε, ϕ) is maximized when condition (2.5) is met (we restrict ourselves to

head-on collisions for simplicity).

Accordingly, the crudest attempt to estimate the dominant contribution to the opti-

cal depth would be to approximate the ε(z) integration by the product of σmax
γγ times

nγ(ε(z), z) as evaluated for that particular value of ε(z) selected by condition (2.5) for

fixed E. This amounts to insert the Dirac delta δ(ε(z′)/eV − 500 GeV/E(z′)) into the

r.h.s. of Eq. (2.7), which leads to

τγ(E0, z) ' 2.25 · 103

∫ z

0
dz

nγ (ε(z), z)

(1 + z)
[
0.7 + 0.3 (1 + z)3

]1/2
cm3 eV , (B.1)

with

ε(z) ' 1

1 + z

(
500 GeV

E0

)
eV . (B.2)

Unfortunately, experience with this problem shows that the resulting E0-dependence of

τγ(E0, z) is too steep, and since PCP
γ→γ(E0, z) depends exponentially on τγ(E0, z) this

approximation is doomed to failure.

A more satisfactory conclusion emerges by exploiting a popular approximation [123]

which amounts to replace the ε(z) integration in Eq. (2.7) by the product of σmax
γγ times

ε(z)nγ(ε(z), z) at the particular value of ε(z) dictated by condition (2.5) for fixed E.
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Figure B.1: The spectral photon number density in the present Universe nγ(·, 0) is
plotted versus the energy ε0 in the energy range 0.25−2.5 eV. The solid line represents
the result of the FRV model. The dotted and dashed lines correspond to the lower
(α = 0.9) and upper (α = 3.6) limit, respectively, of our power-law approximation

defined in Eq. (B.4).

We find in this way

τγ(E0, z) ' 2.25 · 103

(
500 GeV

E0

)∫ z

0

dz

(1 + z)2
[
0.7 + 0.3 (1 + z)3

]1/2
× (B.3)

×nγ
(

(500 GeV/E0) eV

1 + z
, z

)
cm3 eV ,

where Eq. (B.2) has been used.

Owing to Eq. (B.3), the derivation of an approximate analytic behaviour of the optical

depth requires an approximate analytic expression for nγ(ε(z), z). Unfortunately, the

FRV model does not give an analytic form for nγ(ε0, 0) but provides a plot of ε0 nγ(ε0, 0)

versus ε0 (see their Fig. 4). The corresponding plot of nγ(ε0, 0) as a function of ε0 is

reproduced by the solid line in Fig. B.1 for the EBL energy range relevant for the

observed blazas, namely 0.25 eV < ε0 < 2.5 eV. A look at Fig. B.1 shows that within

the considered energy range the SED of the EBL departs from a power-law behaviour,

owing to the emission bump resulting from the integrated emission of the low-mass stellar

population that remained close to the main-sequence over cosmological times. For this

reason, we approximate the FRV result for nγ(ε0, 0) with the shadowed linear strip

shown in Fig. B.1 enveloping the exact behaviour, which is expressed by the following

power-law representation

napp
γ (ε0, 0) ' 10−3 α

(
eV

ε0

)1.85

cm−3 eV−1 , (B.4)

with the constant α in the range 0.9 ≤ α ≤ 3.6 so as to enclose the FRV curve.
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Evolutionary effects in the EBL SED can be taken into account as follows. Besides

redshifting all energies in proportion of 1 + z, the cosmic expansion dilutes the EBL

by a factor (1 + z)3 similarly to what happens for the CMB. But in addition the EBL

spectral photon number density changes because of the intrinsic evolution of the galactic

population over cosmic times. A quantitative analysis [124] shows that the EBL photon

number density acquires an extra factor (1+z)−1.2 as long as z < 1, which is appropriate

to our case. On the whole, the spectral photon number density napp
γ (ε(z), z) of the EBL

at redshift z is related to napp
γ (ε0, 0) by

napp
γ (ε(z), z) dε(z) ' (1 + z)1.8 napp

γ (ε0, 0) dε0 , (B.5)

which yields

napp
γ (ε(z), z) ' (1 + z)0.8 napp

γ

(
ε(z)

1 + z
, 0

)
, (B.6)

namely

napp
γ

(
(500 GeV/E0) eV

1 + z
, z

)
' (1 + z)0.8 napp

γ

(
(500 GeV/E0) eV

(1 + z)2 , 0

)
, (B.7)

thanks to Eq. (B.2). In particular, Eq. (B.4) leads to

napp
γ

(
(500 GeV/E0) eV

1 + z
, z

)
' 10−3 α

(
E0

500 GeV

)1.85

(1 + z)4.5 cm−3 eV−1 . (B.8)

The approximate evaluation of the optical depth τapp
γ (E0, z) amounts to insert Eq. (B.8)

into Eq. (B.3). Correspondingly, we get

τapp
γ (E0, z) ' 2.25α

(
E0

500 GeV

)0.85

I(z) , (B.9)

where we have set

I(z) ≡
∫ z

0
dz′

(1 + z′)2.5[
0.7 + 0.3 (1 + z′)3

]1/2
. (B.10)

This integral has been evaluated numerically and its behaviour is depicted in Fig. B.2,

which shows that up to z ' 0.1 it goes linearly with z but it increases more rapidly for

larger redshifts.

Before leaving this issue it is worthwhile to show how Eq. (2.9) is recovered in the limit

of small z where cosmological effects become irrelevant. In such a situation the source

distance is D = cz/H0, which allows us to write the optical depth as

τapp
γ (E,D) = 5.25 · 10−4 α

(
E

500 GeV

)0.85( D

Mpc

)
, (B.11)
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Figure B.2: Plot of the behaviour of I(z).

Figure B.3: The approximate pair-production mean free path λappγ of a VHE photon
is plotted versus its energy E and it is represented by the shadowed area as the param-
eter α varies in the range 0.9 – 3.6. The dotted and dashed lines correspond to α = 0.9
and α = 3.6, respectively. Superimposed is the exact result obtained within the FRV

model and shown in Fig. 3.

with the replacement E0 → E. So, we see that τapp
γ (E,D) ∝ D in agreement with Eq.

(2.9), which entails that in the present approximation the mean free path for γγ → e+e−

is given by

λapp
γ (E) = 1.90 · 103 α−1

(
500 GeV

E

)0.85

Mpc . (B.12)

This quantity is plotted in Fig. B.3 as a function of E, where it is represented by the

shadowed region between the dotted line corresponding to α = 0.9 and the dashed line

corresponding to α = 3.6. The solid curve yields λγ(E) as evaluated exactly within the

FRV model and exhibited in Fig. 3. We see that the present approximation is indeed

consistent with the result of the FRV model for 0.2 TeV < E < 2 TeV.
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