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Introduction

Partial Differential Equations (PDE) are extensively used in Physics, Engineering and Applied Sciences in

order to model real-world problems. A closed form for the analytical solution of such PDE is normally

not available and, even in the few cases in which it is available, it often reduces to a non-informative

representation formula, completely useless from a practical viewpoint (think for example to the solution of

the heat equation ...). It is therefore of fundamental importance to approximate the solution u of a PDE by

means of some numerical method.

Despite the differences that allow one to distinguish among the various numerical methods, the principle

on which all of them are based is essentially the same: they first discretize the continuous PDE by introducing

a mesh, related to some discretization parameter n, and then they compute the corresponding numerical

solution un, which will converge in some topology to the solution u of the PDE when n→ ∞, i.e., when the

mesh is progressively refined.

Now, if the considered PDE and the chosen numerical method are both linear, the actual computation

of the numerical solution un reduces to solving a certain linear system Anun = fn whose size dn increases

with n and tends to infinity when n → ∞. Hence, what we actually have is not just a single linear system,

but a whole sequence of linear systems with increasing dimensions. Furthermore, what is often verified

in practice is that, when n → ∞, the sequence of discretization matrices An enjoys an asymptotic spectral

distribution, which is somehow related to the spectrum of the differential operator L associated with the

PDE. More in detail, it often happens that, for a large set of test functions F (usually, for all continuous

functions F with bounded support), the following limit relation holds:

lim
n→∞

1

dn

dn∑
j=1

F(λ j(An)) =
1

md(D)

∫
D

∑s
i=1 F(λi(f(x)))

s
dx, (1)

where λ j(An), j = 1, . . . , dn, are the eigenvalues of An, md is the Lebesgue measure in Rd
, and λi(f(x)), i =

1, . . . , s, are the eigenvalues of a certain matrix-valued function

f : D ⊆ Rd → Cs×s. (2)

In this situation, f is called the spectral symbol (or simply the symbol) of the sequence of matrices An, and

it provides a ‘compact’ description of the asymptotic spectral distribution of An; see Remark 1.2 below.

The identification and the study of the symbol f are, of course, two interesting issues in themselves,

because they provide a quite accurate information about the asymptotic global behavior of the eigenvalues

of An. In particular, an often successful guesstimate for the spectral condition number κ(An), at least in

the case where An is Hermitian positive definite, can be obtained by analyzing the eigenvalue functions

λmin(f(x)) and λmax(f(x)) (especially, the number and the orders of the zeros of λmin(f(x)), if any). Moreover,

the number s, indentifying the space Cs×s
in which the symbol f takes values, coincides with the number of

‘branches’ that compose the asymptotic spectrum of An; refer again to Remark 1.2 for details and see [32]

for recent findings, concerning the number of spectral branches that characterize the large discretization

matrices associated with Galerkin-type approximations of the Laplacian eigenvalue problem −∆u = λu.
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At this point, we should say that the knowledge of the symbol f and of its properties is not only

interesting in itself, but can also be used for practical purposes. In particular, the symbol can be used either

to perform a convergence analysis and predict the behavior of preconditioned Krylov and multigrid methods

applied to An, or to design effective preconditioners and multigrid solvers for the associated linear systems.

The reason is clear: the convergence properties of preconditioned Krylov and multigrid methods strongly

depend on the spectral features of the matrix to which they are applied. Hence, the spectral information

provided by the symbol f can be conveniently used for designing fast solvers of this kind and/or analyzing

their convergence properties. In this respect, we recall that recent estimates of the superlinear convergence

of the Conjugate Gradient (CG) method are strictly related to the asymptotic spectral distribution of the

matrices to which the CG method is applied; see [5].

The purpose of this thesis is to present some specific examples in which the above philosophical discussion

comes to life. As our model PDE, we consider classical second-order elliptic differential equations; see (3.1),

(4.1) and (5.1) below. Concerning the numerical methods that we employ for their solution, we make three

choices: the classical Qp Lagrangian Finite Element Method (FEM), the Galerkin Isogeometric Analysis (IgA)

based on B-splines, and the IgA Collocation Method based on B-splines. The first method is a classical

approximation technique and, consequently, there is not much to say about it: we just refer the reader

to the wide literature on the subject (see, e.g., [47, 48, 49, 18, 55]). As for the second two methods, they

will be described in Chapters 4 and 5, respectively. However, we anticipate here that both of them are

based on the IgA paradigm, whose goal is to improve the connection between numerical simulation of

PDE and Computer Aided Design (CAD) systems, the latter being widely employed in Engineering. In its

original formulation, the main idea in IgA is to use directly the geometry provided by CAD systems and to

approximate the unknown solutions of differential equations by the same type of functions. Tensor-product

B-splines and their rational extension, the so-called NURBS, are the dominant technology in CAD systems

used in Engineering, and thus also in IgA. The reader is referred to [33, Section 1.2] for a quick overview

of the IgA paradigm and to [41, 19] for a detailed introduction to this fascinating subject, which has been

developed by T. J. R. Hughes and his research team since 2005 and is now emerging on the international

scene.

Despite the specific features of the three mentioned numerical methods, all of them, as well as our elliptic

PDE, are linear. As a consequence, the actual computation of the numerical solution un reduces to solving a

linear system Anun = fn whose size dn tends to infinity when the discretization parameter n→ ∞. Therefore,

we are precisely in the framework described at the beginning, and we may be interested in computing the

symbol f characterizing the asymptotic spectrum of the matrices An in the sense (1). This will be done, for

the three numerical methods under investigation, in Chapters 3–5, where we will also study the properties

of the symbol. After this, in Chapters 6–7, the properties of the symbol will be used in order to design fast

iterative solvers for the discretization matrices An associated with the two numerical methods based on IgA

(the Galerkin IgA and the IgA Collocation Method). The design of fast iterative solvers for the discretization

matrices An associated with the Lagrangian FEM approximation is an harder task, due to the ‘bad’ features

of the related symbol, and so it will be the subject of future research.

We now describe in more details the content of Chapters 3–7, which form the core of this thesis.

Nonetheless, Chapters 1–2 are also important. Indeed, Chapter 1 provides the fundamental background that

is necessary for understanding the subsequent chapters, while Chapter 2 presents new tools for computing

spectral distributions, some of which are used in Chapter 3.

• In Chapter 3, we shall see that the symbol f of the Qp Lagrangian FEM stiffness matrices approximating

the elliptic PDE (3.1) is a (Hermitian) matrix-valued function of the form (2) with s = N(p) :=
∏d

i=1 pi,

where pi is the polynomial approximation degree in the direction xi; see Section 3.1 for more details.

In particular, this means that the (asymptotic) spectrum of the Lagrangian FEM stiffness matrices is

split into N(p) spectral branches (cf. Remark 1.2). We will also study the properties of the symbol f,
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and we shall see that its eigenvalues λi(f(x)), i = 1, . . . ,N(p), presents an ‘exponential scattering’ with

p. This makes it difficult to design effective iterative solvers for the Lagrangian FEM stiffness matrices

when the approximation parameters p are large, and, indeed, such solvers are not yet available: finding

them will be the subject of future research.

• In Chapter 4, we will compute the symbol of the stiffness matrices arising from the Galerkin IgA

approximation based on (tensor-product) B-splines of degree p = (p
1
, . . . , pd) of the elliptic PDE (4.1),

where again pi is the spline approximation degree in the i-th direction (see Section 4.1). This time, the

symbol is a real-valued function f , i.e., it is of the form (2) with s = 1 and C replaced by R. Therefore,
unlike the FEM matrices, the Galerkin IgA matrices have a unique spectral branch. The properties of

the symbol f are deeply studied in Chapter 4 and will be used in Chapter 6 to design a fast iterative

solver for the Galerkin IgA matrices.

• In Chapter 5, we will compute the symbol of the collocation matrices associated with the isogeometric

collocation approximation based on (tensor-product) B-splines of degree p = (p
1
, . . . , pd) of the full

elliptic PDE (5.1). Note that such PDE is more complicated than the one considered in Chapters 3–4,

and, in fact, the symbol f has a more complex structure. However, f is still a real-valued function,

as in the case of the Galerkin IgA approximation considered in Chapter 4, meaning that the IgA

collocation matrices have a unique spectral branch like the Galerkin IgA matrices. The properties of

f will be carefully studied in Chapter 5 and will be exploited in Chapter 7 in order to design a fast

iterative solver for the IgA collocation matrices.

• Chapter 6 is devoted to the design of a fast iterative solver of multigrid type for the Galerkin IgA

matrices, whose symbol has been indentified and studied in Chapter 4. We point out that here the

word ‘fast’ has a twofold meaning: first, the convergence rate of the solver must be optimal, i.e.,

independent of the matrix size and of the discretization parameter n; second, the convergence rate

must be robust, i.e., independent of the spline approximation parameter p = (p
1
, . . . , pd). Using the

properties of the symbol provided in Chapter 4, we will succeed in designing a fast solver with these

characteristics for the Galerkin IgA matrices.

• Chapter 7 is completely analogous to Chapter 6: using the properties of the symbol studied in Chapter 5,

we design a fast iterative solver for the IgA collocation matrices, where the word ‘fast’ has again the

same meaning as in Chapter 6 (see previous item).

The papers that supplied material for this thesis are [24, 25, 26, 27, 33, 34, 35, 36]. It should be

emphasized, however, that Chapters 4 and 5 contain some non-trivial extensions of the results presented in

the corresponding papers [33] and [26]. In order to keep the presentation concise and focused on a single

subject, the results of [28, 29, 30, 31] have been eventually excluded. The only paper that has not been

inserted here (because it is not finished yet), but whose content fits perfectly in the framework of this thesis,

is [32]. Let us then conclude this introduction with a brief discussion about it.

In [32], we consider the Laplacian eigenvalue problem:{
−∆u = λu in Ω := (0, 1)d

,

u = 0 on ∂Ω.

(3)

For its numerical approximation, we use the Galerkin method, in which the Galerkin approximation space is

chosen as the space generated by (tensor-product) B-splines of degree p ≥ 1 and smoothness k ∈ {0, . . . , p− 1}
in each direction xi, i = 1, . . . , d. The choice k = 0 corresponds to the classical FEM with C0

B-spline

basis (instead of the Lagrangian basis used in Chapter 3), while the choice k = p − 1 corresponds to the

Galerkin IgA approximation considered in Chapter 4, which uses Cp−1
B-splines as basis functions. In this
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context, the resulting sequence of discretization matrices An enjoys an asymptotic spectral distribution in

the sense (1), and the associated symbol f is of the form (2) with s = (p − k)d
. It follows that the asymptotic

spectrum of An is split into (p − k)d
spectral branches. One of these branches is known in Engineering as

‘acoustical branch’, while the others are the so-called ‘optical branches’; see, e.g., the appendix of [42] where

this terminology is employed. In particular, in the case k = 0 the number of branches is pd
, while in the

case k = p − 1 the number of branches is 1. This is consistent with our findings in Chapters 3–4; see the

discussion in the first two items above.
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Chapter 1

Notation, definitions and mathematical background

1.1 Notation

• Rm×n
(resp. Cm×n

) is the space of real (resp. complex) m × n matrices.

• If X is a matrix and α is a scalar, the matrix αX is sometimes denoted by Xα.

• If x is a vector and X is a matrix, then xT
and x∗ (resp. XT

and X∗) are the transpose and the transpose

conjugate of x (resp. X).

• Om and Im denote, respectively, the m × m zero matrix and the m × m identity matrix. Sometimes, when

the dimension m is clear from the context, O and I are used instead of Om and Im.

• Given X ∈ Cm×m, Λ(X) is the spectrum of X (the set of all the eigenvalues of X) and ρ(X) is the spectral

radius of X, i.e. ρ(X) := maxλ∈Λ(X) |λ|. The eigenvalues of X are denoted by λ j(X), j = 1, . . . ,m.

• Let X ∈ Cm×m
be a matrix with only real eigenvalues (e.g., a Hermitian matrix). We denote by λmin(X)

and λmax(X) the minimal and the maximal eigenvalue of X, respectively. Unless otherwise stated, it is

understood that the eigenvalues of X are labeled in non-increasing order: λmax(X) = λ
1
(X) ≥ . . . ≥ λm(X) =

λmin(X); in addition, we set λ j(X) = +∞ if j < 1 and λ j(X) = −∞ if j > m (this convention simplifies the

presentation, as we shall see later).

• HPD and SPD stand for ‘Hermitian Positive Definite’ and ‘Symmetric Positive Definite’, respectively. Sim-

ilarly, HPSD and SPSD stand for ‘Hermitian Positive SemiDefinite’ and ‘Symmetric Positive SemiDefinite’,

respectively.

• If X ∈ Cm×n
, we denote by σ j(X), j = 1, . . . ,min(m, n), the singular values of X labeled, as usual, in

non-increasing order: σ
1
(X) ≥ . . . ≥ σmin(m,n)(X). σ

1
(X) and σmin(m,n)(X) are also denoted by σmax(X) and

σmin(X).

• If p ∈ [1,∞], the symbol ‖ · ‖p is used to denote both the p-norm of vectors and matrices:

‖x‖p :=
{ (∑m

i=1 |xi|
p)1/p

if 1 ≤ p < ∞,

maxi=1,...,m |xi| if p = ∞,

x ∈ Cm,

‖X‖p := max
x∈Cm

x,0

‖Xx‖p

‖x‖p
, X ∈ Cm×m.

‖ · ‖
2
is often referred to as the spectral or Euclidean norm and is also denoted by ‖ · ‖.
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• If p ∈ [1,∞], the Schatten p-norm of a matrix X ∈ Cm×m
is defined as the p-norm of the vector σ(X) =

(σ
1
(X), . . . , σm(X)) formed by the singular values of X; see [7]. We denote this norm by ||| · |||p:

|||X|||p :=
{ (∑m

i=1 σi(X)p)1/p
if 1 ≤ p < ∞,

σmax(X) if p = ∞,

X ∈ Cm×m.

The Schatten 1-norm is also called trace-norm.
1

• R(X) and I(X) are, respectively, the real and the imaginary part of the (square) matrix X:

R(X) :=
X + X∗

2

, I(X) :=
X − X∗

2i

(i is the imaginary unit, i
2 = −1).

• κp(X) is the condition number of the (invertible) matrix X, measured in the p-norm:

κp(X) := ‖X‖p‖X−1‖p.

κ
2
(X) is often referred to as the spectral or Euclidean condition number and is also denoted by κ(X).

• If X,Y ∈ Cm×m
, X ≥ Y (resp. X > Y) means that X,Y are Hermitian and X−Y is nonnegative definite (resp.

positive definite).

• If wi : Di → C, i = 1, . . . , d, are functions, then w
1
⊗ · · · ⊗wd : D

1
× · · · ×Dd → C denotes the tensor-product

function

(w
1
⊗ · · · ⊗ wd)(ξ

1
, . . . , ξd) := w

1
(ξ

1
) · · ·wd(ξd), ξi ∈ Di, i = 1, . . . , d.

More generally, if wi : Di → Csi×si , i = 1, . . . , d, are matrix-valued functions, then w
1
⊗ · · · ⊗ wd :

D
1
× · · · × Dd → C

(s1···sd)×(s1···sd)
is defined as

(w
1
⊗ · · · ⊗wd)(ξ

1
, . . . , ξd) := w

1
(ξ

1
) ⊗ · · · ⊗wd(ξd), ξi ∈ Di, i = 1, . . . , d.

• md (a slanted lowercase m with subscript d) denotes the Lebesgue measure in Rd
. The Lebesgue measure

in R, m
1
, is also denoted by m. Throughout this thesis, the words ‘measure’, ‘measurable’, ‘a.e.’, etc. always

refer to the Lebesgue measure.

• Cc(C) (resp. Cc(R)) is the space of complex-valued continuous functions defined over C (resp. R) and with

bounded support. Moreover, C1

c(R) := Cc(R)∩C1(R), where C1(R) is the space of complex-valued functions

F defined on R and such that the real and imaginary parts, R(F) and I(F), are of class C1
over R in the

classical sense.

• For z ∈ C and ε > 0, we denote by D(z, ε) the disk centered at z and with radius ε, i.e. D(z, ε) :=
{w ∈ C : |w − z| < ε}. For S ⊆ C and ε > 0, we denote by D(S , ε) the ε-expansion of S , defined as

D(S , ε) :=
⋃

z∈S D(z, ε).

• The words ‘matrix-sequence’, ‘matrix-sequences’, ‘matrix-family’, ‘matrix-families’ stand for ‘sequence of

matrices’, ‘sequences of matrices’, ‘family of matrices’, ‘families of matrices’, respectively.

• A matrix-valued function f : D→ Cs×s
, defined on a measurable set D ⊆ Rd

, is said to be measurable (resp.

continuous, in Lp(D)) if all its components fi j : D → C, i, j = 1, . . . , s, are measurable (resp. continuous,

in Lp(D)). The space of functions f : D→ Cs×s
belonging to Lp(D) is sometimes denoted by Lp(D,Cs×s).

1
My choice of using the symbol ||| · |||p to denote the Schatten p-norm was inspired by the fact that Bhatia, in his book [7], uses

the symbol ||| · ||| for the unitarily invariant norms. Note that the Schatten p-norms are unitarily invariant, being defined in terms

of singular values.
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• Pp is the space of polynomials of degree less than or equal to p.

• Qd
+ := {q ∈ Qd : qi > 0 for all i = 1, . . . , d}.

• Given two sequences {an} and {bn} with an, bn ≥ 0 for all n, the notation

an = O(bn)

means that there exists a constant C, independent of n, such that an ≤ Cbn for all n.

• Given two sequences {an} and {bn} with an, bn , 0 for all sufficiently large n, the notation

an
n→∞
∼ bn

means that an/bn → 1 as n→ ∞.

1.1.1 Multi-index notation

Throughout the thesis, we will systematically use the multi-index notation, expounded by Tyrtyshnikov in

[70, Section 6]. When discretizing a linear PDE defined over a d-dimensional domain Ω ⊂ Rd
by means of a

linear numerical method, the actual computation of the numerical solution reduces to solving a certain linear

system, whose coefficient matrix usually shows a d-level structure; see [70, Section 6] for the corresponding

definition. As we shall see in Chapters 3–5, the multi-index notation is a powerful tool that allows us to

give a compact expression of this matrix, treating the dimensionality parameter d as any other parameter

involved in the considered numerical method. In this way, the dependency of the matrix structure from d
is highlighted and a compact presentation is made possible.

A multi-index i is simply a vector in Zd
; its components are denoted by i

1
, . . . , id. A multi-index i ∈ Zd

is

also called a d-index.

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be clear from the context).

• If i, j are d-indices, i ≤ j means that i` ≤ j` for all ` = 1, . . . , d.

• If h, k are d-indices such that h ≤ k, the multi-index range h, . . . , k is the set { j ∈ Zd : h ≤ j ≤ k}. We

assume for the multi-index range h, . . . , k the standard lexicographic ordering:[
. . .

[ [
( j

1
, . . . , jd)

]
jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]

j1=h1,...,k1
. (1.1)

For instance, in the case d = 2 the ordering is

(h
1
, h

2
), (h

1
, h

2
+1), . . . , (h

1
, k

2
), (h

1
+1, h

2
), (h

1
+1, h

2
+1), . . . , (h

1
+1, k

2
), . . . . . . , (k

1
, h

2
), (k

1
, h

2
+1), . . . , (k

1
, k

2
).

• When a d-index j varies over a multi-index range h, . . . , k (this is sometimes written as j = h, . . . , k
or ( j

1
, . . . , jd) = (h

1
, . . . , hd), . . . , (k

1
, . . . , kd)), it is always understood that j varies from h to k following

the specific ordering (1.1). For instance, if m ∈ Nd
and if we write X = [xi j]m

i, j=1, then X is a matrix in

C(m1···md)×(m1···md)
whose components are indexed by two d-indices i, j, both varying over the multi-index

range 1, . . . ,m according to (1.1). Similarly, if x = [xi]m
i=1 then x is a vector in Cm1···md

whose components

xi, i = 1, . . . ,m, are ordered in accordance with (1.1): the first component is x1 = x(1,...,1,1), the second

component is x(1,...,1,2), and so on until the last component, which is xm = x(m1,...,md).
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• If i, j ∈ Zd
are multi-indices, i � j means that i precedes (or equals) j in the lexicographic ordering (which

is a total ordering on Zd
). Moreover, we define

i ∧ j :=
{

i if i � j,
j if i � j. (1.2)

Note that i ∧ j is the minimum among i and j with respect to the lexicographic ordering.

• Given h, k ∈ Zd
with h ≤ k, the notation

∑k
j=h indicates the summation over all j in the multi-index range

h, . . . , k.

• For a multi-index m ∈ Nd
, N(m) :=

∏d
j=1 m j and m→ ∞ means that min(m

1
, . . . ,md)→ ∞.

• Operations involving multi-indices that do not have a meaning when considering multi-indices as normal

vectors must be always understood in the componentwise sense. For instance, np = (n
1
p
1
, . . . , nd pd), αi/ j =

(αi
1
/ j

1
, . . . , αid/ jd) for all α ∈ C (of course, the division is defined when j

1
, . . . , jd , 0), i2 = (i2

1
, . . . , i2d),

imod m = (i
1
modm

1
, . . . , id modmd), and so on.

• When a multi-index appears as subscript or superscript, we often suppress the parentheses to simplify

the notation. For instance, the component of the vector x = [xi]m
i=1 corresponding to the multi-index i is

denoted by xi or by xi1,...,id , and we preferably avoid the heavy notation x(i1,...,id).

1.2 Preliminaries on Linear Algebra and Matrix Analysis

We recall in this section some results from Linear Algebra and Matrix Analysis that will be used later on.

Most of the results that we are going to see can be found in [7] or [8].

For every X ∈ Cm×m
, ‖X‖

1
is the maximum among the 1-norms of the column vectors of X, while ‖X‖∞ is

the maximum among the 1-norms of the row vectors of X. As a consequence, ‖X‖
1

= ‖XT ‖∞. An important

relation between the p-norms with p = 1, 2,∞ is the following:

‖X‖ = ‖X‖
2
≤

√
‖X‖

1
‖X‖∞ =

√
‖X‖∞‖XT ‖∞; (1.3)

see [8, p. 121].

Given X ∈ Cm×m
, we know from the Singular Value Decomposition (SVD) that rank(X) is the number of

nonzero singular values of X and

‖X‖ = σmax(X) = max
‖u‖=‖v‖=1

u∗Xv. (1.4)

As a consequence, |||X|||∞ = ‖X‖ and

|||X|||
1

=

m∑
i=1

σi(X) ≤ rank(X)‖X‖ ≤ m‖X‖, ∀X ∈ Cm×m. (1.5)

From the SVD we also know that the formula ‖X−1‖
2

= 1

σmin(X) holds whenever X is invertible, hence

κ(X) =
σmax(X)
σmin(X)

, for all invertible matrices X. (1.6)

If X ∈ Cm×m
is a normal matrix, i.e. XX∗ = X∗X, then X is unitarily diagonalizable, meaning that there

exist a unitary matrix U and a diagonal matrix D such that X = UDU∗. Using this, it can be shown that

the singular values of X coincide with the moduli of the eigenvalues, |λ j(X)|, j = 1, . . . ,m. Consequently,
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‖X‖ = ρ(X) and |||X|||
1

=
∑m

j=1 |λ j(X)|. Note that, if X is Hermitian (X∗ = X) or skew-Hermitian (X∗ = −X),

then X is normal.

For any square matrix X, R(X) and I(X) are Hermitian matrices and X = R(X) + iI(X). If λ is an

eigenvalue of X and x is a corresponding eigenvector, then, by the minimax principle [7, 8], we have

λ =
x∗Xx
x∗x

=
x∗R(X)x

x∗x
+ i

x∗I(X)x
x∗x

∈ [λmin(R(X)), λmax(R(X))] × [λmin(I(X)), λmax(I(X))] ⊂ C.

This implies that

Λ(X) ⊆ [λmin(R(X)), λmax(R(X))] × [λmin(I(X)), λmax(I(X))] , for all square matrices X. (1.7)

Other consequences of the minimax principle are the following:

λmin(X + Y) ≥ λmin(X) + λmin(Y), for all Hermitian matrices X,Y, (1.8)

λmax(X + Y) ≤ λmax(X) + λmax(Y), for all Hermitian matrices X,Y, (1.9)

λ j(X) ≥ λ j(Y), ∀ j = 1, . . . ,m, for all Hermitian matrices X,Y ∈ Cm×m
such that X ≥ Y. (1.10)

An important relation between the singular values of X and the eigenvalues of R(X) is provided by the

Fan-Hoffman theorem [7, Proposition III.5.1]. We report below the corresponding statement, together with

the statement of the Ky-Fan theorem [7, Proposition III.5.3]. The latter provides a relation between the

real parts of the eigenvalues of X and the eigenvalues of R(X). Recall that the eigenvalues of a Hermitian

matrix, such as R(X), are labeled in non-increasing order (see Section 1.1).

Theorem 1.1 (Fan-Hoffman). Let X ∈ Cm×m, then

σ j(X) ≥ λ j(R(X)), ∀ j = 1, . . . ,m.

We shall see in Chapters 3–4 that the Fan-Hoffman theorem is very useful for estimating the spectral

condition number (1.6) of a non-singular matrix X coming from the numerical approximation of a PDE.

Theorem 1.2 (Ky-Fan). Let X ∈ Cm×m and label the eigenvalues of X so that R(λ
1
(X)) ≥ . . . ≥ R(λm(X)). Then

k∑
j=1

R(λ j(X)) ≤
k∑

j=1

λ j(R(X)), (1.11)

for all k = 1, . . . ,m. Moreover, for k = m, the equality holds in (1.11).
We now provide the statement of two classical interlacing theorems; see [7, Corollary III.1.5] for the

first one and [7, p. 63] for the second one. We recall that Y is a principal submatrix of X ∈ Cm×m
if there

exists E ⊂ {1, . . . ,m} such that Y is obtained from X by removing the rows and columns corresponding to

indices i ∈ E. In this case, Y is called the principal submatrix of X corresponding to the set of indices

F = {1, . . . ,m}\E.

Theorem 1.3 (Cauchy’s interlacing theorem). Let X ∈ Cm×m be Hermitian and let Y be a principal submatrix
of X of order `. Then

λ j(X) ≥ λ j(Y) ≥ λ j+m−`(X), ∀ j = 1, . . . , `.

In the statement of Theorem 1.4 we use the convention introduced in Section 1.1 for a matrix X ∈ Cm×m

with only real eigenvalues, namely λi(X) = −∞ if i < 1 and λi(X) = +∞ if i > m.

Theorem 1.4. Let Y = X + E, where X, E ∈ Cm×m are Hermitian. Let k+, k− ≥ 0 be respectively the number of
positive and the number of negative eigenvalues of E, i.e.

k+ := #{ j ∈ {1, . . . ,m} : λ j(E) > 0}, k− := #{ j ∈ {1, . . . ,m} : λ j(E) < 0}.

Then
λ j−k+(X) ≥ λ j(Y) ≥ λ j+k−(X), ∀ j = 1, . . . ,m.
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1.2.1 Tensor products and direct sums

If X,Y are matrices of any dimension, say X ∈ Cm1×m2
and Y ∈ C`1×`2 , then

• X ⊗ Y is the tensor (or Kronecker) product of X and Y , that is the m
1
`
1
× m

2
`
2
matrix

X ⊗ Y := [xi jY] i=1,...,m1

j=1,...,m2

=


x
11

Y · · · x
1m2

Y
...

...
xm11

Y · · · xm1m2
Y

 ;

• X ⊕ Y is the direct sum of X and Y , that is the (m
1
+ `

1
) × (m

2
+ `

2
) matrix

X ⊕ Y :=
[

X O
O Y

]
.

Tensor products and direct sums possess a lot of nice algebraic properties.

(i) Associativity: for all matrices X,Y,Z, (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z) and (X ⊕ Y) ⊕ Z = X ⊕ (Y ⊕ Z). This

means that we can omit parentheses in expressions like X
1
⊗ X

2
⊗ · · · ⊗ Xd or X

1
⊕ X

2
⊕ · · · ⊕ Xd.

(ii) Multi-index notation (for tensor products): if we have d matrices Xk ∈ C
mk×mk , k = 1, . . . , d, then

(X
1
⊗ X

2
⊗ · · · ⊗ Xd)i j = (X

1
)i1 j1(X2

)i2 j2 · · · (Xd)id jd , ∀i, j = 1, . . . ,m, (1.12)

where m := (m
1
,m

2
, . . . ,md). This means that, for all i, j in the multi-index range 1, . . . ,m, the (i, j)-th

entry of X
1
⊗ X

2
⊗ · · · ⊗ Xd is given by (1.12). Note that it makes sense to talk about the (i, j)-th entry

of X
1
⊗ X

2
⊗ · · · ⊗ Xd, because we have fixed for the set 1, . . . ,m the lexicographic ordering (1.1). Note

also that (1.12) can be rewritten as

X
1
⊗ · · · ⊗ Xd =

[
(X

1
)i1 j1(X2

)i2 j2 · · · (Xd)id jd

]m

i, j=1
.

The equality (1.12) is of fundamental importance and, indeed, it motivates the introduction of multi-

indices for indexing the entries of a matrix formed by a sum of one or more tensor products. To

understand better the importance of (1.12), try to write the (i, j)-th entry of X
1
⊗ X

2
⊗ · · · ⊗ Xd as a

function of two linear indices i, j = 1, . . . ,N(m).

(iii) The relations (X
1
⊗ Y

1
)(X

2
⊗ Y

2
) = (X

1
X
2
) ⊗ (Y

1
Y
2
) and (X

1
⊕ Y

1
)(X

2
⊕ Y

2
) = (X

1
X
2
) ⊕ (Y

1
Y
2
) hold whenever

X
1
, X

2
can be multiplied and Y

1
,Y

2
can be multiplied.

(iv) For all matrices X,Y , (X⊗Y)∗ = X∗⊗Y∗, (X⊕Y)∗ = X∗⊕Y∗ and (X⊗Y)T = XT ⊗YT , (X⊕Y)T = XT ⊕YT
.

(v) Bilinearity (of tensor products): (α
1
X
1
+α

2
X
2
)⊗(β

1
Y
1
+β

2
Y
2
) = α

1
β
1
(X

1
⊗Y

1
)+α

1
β
2
(X

1
⊗Y

2
)+α

2
β
1
(X

2
⊗Y

1
)+

α
2
β
2
(X

2
⊗ Y

2
) for all α

1
, α

2
, β

1
, β

2
∈ C and for all matrices X

1
, X

2
,Y

1
,Y

2
such that X

1
, X

2
are summable

and Y
1
,Y

2
are summable.

From (i)–(v), a lot of other interesting properties follow. We recall some of them. If X,Y are invertible, then

X ⊗ Y is invertible, its inverse being X−1 ⊗ Y−1. If X,Y are normal (resp. Hermitian, symmetric, unitary)

then X ⊗ Y is also normal (resp. Hermitian, symmetric, unitary). If X ∈ Cm×m
and Y ∈ C`×`, then the

eigenvalues and the singular values of X ⊗ Y (resp. X ⊕ Y) are {λi(X)λ j(Y) : i = 1, . . . ,m, j = 1, . . . , `} and
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{σi(X)σ j(Y) : i = 1, . . . ,m, j = 1, . . . , `} (resp. {λi(X) : i = 1, . . . ,m}
⋃
{λ j(Y) : j = 1, . . . , `}, and {σi(X) : i =

1, . . . ,m}
⋃
{σ j(Y) : j = 1, . . . , `}). As a consequence, for all X ∈ Cm×m

and Y ∈ C`×`,

‖X ⊗ Y‖ = ‖X‖ ‖Y‖, ‖X ⊕ Y‖ = max(‖X‖, ‖Y‖), (1.13)

|||X ⊗ Y |||
1

= |||X|||
1
|||Y |||

1
, |||X ⊕ Y |||

1
= |||X|||

1
+ |||Y |||

1
, (1.14)

rank(X ⊗ Y) = rank(X)rank(Y), rank(X ⊕ Y) = rank(X) + rank(Y), (1.15)

and if X,Y are HPD (resp. HPSD), then X ⊗ Y is HPD (resp. HPSD), with

λmin(X ⊗ Y) = λmin(X)λmin(Y), λmax(X ⊗ Y) = λmax(X)λmax(Y). (1.16)

In particular,

X ⊗ Y ≥ X′ ⊗ Y ′, for all HPSD matrices X,Y, X′,Y ′ such that X ≥ X′ and Y ≥ Y ′, (1.17)

because X ⊗ Y − X′ ⊗ Y ′ = (X − X′) ⊗ Y + X′ ⊗ (Y − Y ′) is a sum of two HPSD matrices. We also point out

the following property: suppose we are given 2d matrices X
1
, . . . , Xd,Y1

, . . . ,Yd with Xi,Yi ∈ C
mi×mi

for all

i = 1, . . . , d, then

rank(X
1
⊗ · · · ⊗ Xd − Y

1
⊗ · · · ⊗ Yd) ≤

d∑
i=1

rank(Xi − Yi)m1
· · ·mi−1mi+1 · · ·md = N(m)

d∑
i=1

rank(Xi − Yi)
mi

, (1.18)

where, of course, m = (m
1
, . . . ,md). This is true because

rank(X
1
⊗ · · · ⊗ Xd − Y

1
⊗ · · · ⊗ Yd) = rank

 d∑
i=1

Y
1
⊗ · · · ⊗ Yi−1 ⊗ (Xi − Yi) ⊗ Xi+1 ⊗ · · · ⊗ Xd


≤

d∑
i=1

rank (Y
1
⊗ · · · ⊗ Yi−1 ⊗ (Xi − Yi) ⊗ Xi+1 ⊗ · · · ⊗ Xd)

=

d∑
i=1

rank(Y
1
⊗ · · · ⊗ Yi−1)rank(Xi − Yi)rank(Xi+1 ⊗ · · · ⊗ Xd)

≤

d∑
i=1

m
1
· · ·mi−1rank(Xi − Yi)mi+1 · · ·md.

A property of tensor products, which can be deduced from the definition but is not as popular as the

previous ones, is given in Lemma 1.1; see also [38].

Lemma 1.1. For all m ∈ N2 there exists a permutation matrix Πm ∈ C
N(m)×N(m) such that

X
2
⊗ X

1
= Πm(X

1
⊗ X

2
)ΠT

m, ∀X
1
∈ Cm1×m1 , ∀X

2
∈ Cm2×m2 . (1.19)

Proof. Let Πm be the permutation matrix associated with the permutation σ of {1, . . . ,m
1
m

2
} given by

σ := [1,m
2

+ 1, 2m
2

+ 1, . . . , (m
1
− 1)m

2
+ 1, 2,m

2
+ 2, 2m

2
+ 2, . . . , (m

1
− 1)m

2
+ 2, . . . . . . ,m

2
, 2m

2
, 3m

2
. . . ,m

1
m

2
],

i.e., by

σ(i) := ((i − 1)modm
1
)m

2
+

⌊
i − 1

m
1

⌋
+ 1, i = 1, . . . ,m

1
m

2
.

In other words, Πm is the matrix whose rows are (in this order) eσ(i), i = 1, . . . ,m
1
m

2
, where ei, i = 1, . . . ,m

1
m

2
,

are the vectors of the canonical basis of Cm1m2
. It can be verified that Πm defined in this way satisfies (1.19)

for all X
1
∈ Cm1×m1

and X
2
∈ Cm2×m2

. The verification can be done componentwise, by showing that the (i, j)-th
entry of the first matrix in (1.19) is equal to the (i, j)-th entry of the second matrix, for all i, j = 1, . . . ,m

1
m

2
. �
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Lemma 1.1 says that the tensor product of two matrices is ‘almost’ commutative. It is important to notice

that the permutation matrix Πm depend only on m and not on the specific matrices X
1
, X

2
. By induction, we

now extend the result of Lemma 1.1 to the case of tensor products with more than two factors.

Lemma 1.2. For all m ∈ Nd and all permutations σ of the set {1, . . . , d}, there exists a permutation matrix
Πm;σ ∈ C

N(m)×N(m) such that

Xσ(1) ⊗ · · · ⊗ Xσ(d) = Πm;σ(X
1
⊗ · · · ⊗ Xd)ΠT

m;σ, ∀X
1
∈ Cm1×m1 , . . . ,∀Xd ∈ C

md×md .

Proof. The case d = 1 is trivial. For d = 2, the result is clear when σ is the identity, and it has been proved

in Lemma 1.1 when σ = [2, 1]. Now we fix d ≥ 3, we assume the result is true for d − 1, and we prove

that it is true also for d. Let m ∈ Nd
and let σ be a permutation of {1, . . . , d}. Denote by i the index such

that σ(i) = d, and let τ be the permutation of {1, . . . , d − 1} defined as τ( j) := σ( j) for j = 1, . . . , i − 1 and

τ( j) := σ( j + 1) for j = i, . . . , d − 1. Then, keeping in mind the properties of tensor products, for all X
1
, . . . , Xd

with X j ∈ C
m j×m j , j = 1, . . . , d, we have

Xσ(1) ⊗ · · · ⊗ Xσ(d) = Xσ(1) ⊗ · · · ⊗ Xσ(i−1) ⊗ Xd ⊗ Xσ(i+1) ⊗ · · · ⊗ Xσ(d)

= Xσ(1) ⊗ · · · ⊗ Xσ(i−1) ⊗
[
Π(mσ(i+1)···mσ(d),md)(Xσ(i+1) ⊗ · · · ⊗ Xσ(d) ⊗ Xd)ΠT

(mσ(i+1)···mσ(d),md)

]
(Lemma 1.1)

=
(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

)
(Xσ(1) ⊗ · · · ⊗ Xσ(i−1) ⊗ Xσ(i+1) ⊗ · · · ⊗ Xσ(d) ⊗ Xd)

(
Imσ(1)···mσ(i−1) ⊗ ΠT

(mσ(i+1)···mσ(d),md)

)
=

(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

)
(Xτ(1) ⊗ · · · ⊗ Xτ(d−1) ⊗ Xd)

(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

)T

=
(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

) {[
Π(m1,...,md−1);τ(X1

⊗ · · · ⊗ Xd−1)ΠT
(m1,...,md−1);τ

]
⊗ Xd

}
·

·
(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

)T
(induction hypothesis)

=
(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

) (
Π(m1,...,md−1);τ ⊗ Imd

)
(X

1
⊗ · · · ⊗ Xd−1 ⊗ Xd)

(
Π(m1,...,md−1);τ ⊗ Imd

)T
·

·
(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

)T
= Πm;σ(X

1
⊗ · · · ⊗ Xd)ΠT

m;σ,

where Πm;σ :=
(
Imσ(1)···mσ(i−1) ⊗ Π(mσ(i+1)···mσ(d),md)

) (
Π(m1,...,md−1);τ ⊗ Imd

)
is a permutation matrix, being a product of

two permutation matrices. �

Now we turn to the ‘distributive properties’ of tensor products with respect to direct sums. Again, it turns

out that these properties hold modulo permutation transformations which depend only on the dimensions

of the involved matrices.

Remark 1.1. From the definition of tensor products and direct sums, for all matrices X
1
, . . . , Xd,Y we have

(X
1
⊕ X

2
⊕ · · · ⊕ Xd) ⊗ Y = (X

1
⊗ Y) ⊕ (X

2
⊗ Y) ⊕ · · · ⊕ (Xd ⊗ Y).

Lemma 1.3. For all ` ∈ N and m ∈ N2 there exists a permutation matrix Q`,m ∈ C
`(m1+m2)×`(m1+m2) such that

X ⊗ (Y
1
⊕ Y

2
) = Q`,m [(X ⊗ Y

1
) ⊕ (X ⊗ Y

2
)] QT

`,m, ∀X ∈ C`×`, ∀Y
1
∈ Cm1×m1 , ∀Y

2
∈ Cm2×m2 .

Proof. Let X ∈ C`×`, Y
1
∈ Cm1×m1 , Y

2
∈ Cm2×m2

. Then, keeping in mind the properties of tensor products and

direct sums,

X ⊗ (Y
1
⊕ Y

2
) = Π(m1+m2,`) [(Y

1
⊕ Y

2
) ⊗ X] ΠT

(m1+m2,`) (Lemma 1.1)

= Π(m1+m2,`) [(Y
1
⊗ X) ⊕ (Y

2
⊗ X)] ΠT

(m1+m2,`) (Remark 1.1)

= Π(m1+m2,`)

{[
Π(`,m1)(X ⊗ Y

1
)ΠT

(`,m1)

]
⊕

[
Π(`,m2)(X ⊗ Y

2
)ΠT

(`,m2)

]}
ΠT

(m1+m2,`) (Lemma 1.1)
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= Π(m1+m2,`)

{
(Π(`,m1) ⊕ Π(`,m2)) [(X ⊗ Y

1
) ⊕ (X ⊗ Y

2
)] (Π(`,m1) ⊕ Π(`,m2))T

}
ΠT

(m1+m2,`)

= Q`,m [(X ⊗ Y
1
) ⊕ (X ⊗ Y

2
)] QT

`,m,

where Q`,m := Π(m1+m2,`)(Π(`,m1)⊕Π(`,m2)) is a permutation matrix, being a product of two permutation matrices.

�

Lemma 1.4. For all ` ∈ N and m ∈ Nd there exists a permutation matrix Q`,m ∈ C
`(m1+...+md)×`(m1+...+md) such that

X ⊗ (Y
1
⊕ · · · ⊕ Yd) = Q`,m[(X ⊗ Y

1
) ⊕ · · · ⊕ (X ⊗ Yd)]QT

`,m, ∀X ∈ C`×`, ∀Y
1
∈ Cm1×m1 , . . . , ∀Yd ∈ C

md×md .

Proof. The case d = 1 is trivial. For d = 2 the result has been proved in Lemma 1.3. Now we fix d ≥ 3, we

assume the result is true for d − 1, and we prove that it is true also for d. Let ` ∈ N, m ∈ Nd
. Then, for all

X ∈ C`×` and all Y
1
, . . . ,Yd with Y j ∈ C

m j×m j , j = 1, . . . , d, we have

X ⊗ (Y
1
⊕ · · · ⊕ Yd) = Q`,(m1,m2+...+md) {(X ⊗ Y

1
) ⊕ [X ⊗ (Y

2
⊕ · · · ⊕ Yd)]}QT

`,(m1,m2+...+md) (Lemma 1.3)

= Q`,(m1,m2+...+md)

{
(X ⊗ Y

1
) ⊕ [Q`,(m2,...,md)((X ⊗ Y

2
) ⊕ · · · ⊕ (X ⊗ Yd))QT

`,(m2,...,md)]
}

QT
`,(m1,m2+...+md) (induction hypothesis)

= Q`,(m1,m2+...+md)

{
(I`m1

⊕ Q`,(m2,...,md))[(X ⊗ Y
1
) ⊕ (X ⊗ Y

2
) ⊕ · · · ⊕ (X ⊗ Yd)](I`m1

⊕ Q`,(m2,...,md))T
}

QT
`,(m1,m2+...+md)

= Q`,m[(X ⊗ Y
1
) ⊕ · · · ⊕ (X ⊗ Yd)]QT

`,m,

where Q`,m := Q`,(m1,m2+...+md)(I`m1
⊕ Q`,(m2,...,md)). �

Lemma 1.5. For all n(k)
1
, n(k)

2
∈ N, k = 1, . . . , d, there exists a permutation matrix Pn(1)

1
,n(1)

2
,n(2)

1
,n(2)

2
,...,n(d)

1
,n(d)

2

of
dimension

∏d
k=1(n

(k)
1

+ n(k)
2

) such that

d⊗
k=1

(X(k)
1
⊕ X(k)

2
) = Pn(1)

1
,n(1)

2
,n(2)

1
,n(2)

2
,...,n(d)

1
,n(d)

2

 2⊕
i1=1

· · ·

2⊕
id=1

(X(1)
i1
⊗ · · · ⊗ X(d)

id
)

 PT
n(1)
1
,n(1)

2
,n(2)

1
,n(2)

2
,...,n(d)

1
,n(d)

2

,

for all matrices X(k)
1
, X(k)

2
, k = 1, . . . , d, with X(k)

1
∈ Cn(k)

1
×n(k)

1 and X(k)
2
∈ Cn(k)

2
×n(k)

2 .

Proof. For d = 1 the result is clear. Fix d ≥ 2, assume the result holds for d − 1, and let us prove it for d.
We have

d⊗
k=1

(X(k)
1
⊕ X(k)

2
) = (X(1)

1
⊕ X(1)

2
) ⊗

 d⊗
k=2

(X(k)
1
⊕ X(k)

2
)


= (X(1)

1
⊕ X(1)

2
) ⊗

Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

 2⊕
i2=1

· · ·

2⊕
id=1

(X(2)
i2
⊗ · · · ⊗ X(d)

id
)

 PT
n(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

 (induction hypothesis)

=

(
In(1)

1
+n(1)

2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

) (X(1)
1
⊕ X(1)

2
) ⊗

 2⊕
i2=1

· · ·

2⊕
id=1

(X(2)
i2
⊗ · · · ⊗ X(d)

id
)


 (

In(1)
1

+n(1)
2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

)T

=

(
In(1)

1
+n(1)

2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

) 
X(1)

1
⊗

 2⊕
i2=1

· · ·

2⊕
id=1

(X(2)
i2
⊗ · · · ⊗ X(d)

id
)




⊕

X(1)
2
⊗

 2⊕
i2=1

· · ·

2⊕
id=1

(X(2)
i2
⊗ · · · ⊗ X(d)

id
)



 (

In(1)
1

+n(1)
2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

)T
(Remark 1.1)

=

(
In(1)

1
+n(1)

2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

) 
Qn(1)

1
,η

 2⊕
i2=1

· · ·

2⊕
id=1

(X(1)
1
⊗ X(2)

i2
⊗ · · · ⊗ X(d)

id
)

 QT
n(1)
1
,η


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⊕

Qn(1)
2
,η

 2⊕
i2=1

· · ·

2⊕
id=1

(X(1)
2
⊗ X(2)

i2
⊗ · · · ⊗ X(d)

id
)

 QT
n(1)
2
,η


 (

In(1)
1

+n(1)
2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

)T

(we used Lemma 1.4; η := (n(2)
i2
· · · n(d)

id
)(i2,...,id)=(1,...,1),...,(2,...,2) is a multi-index, recall the multi-index notation)

=

(
In(1)

1
+n(1)

2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

) (
Qn(1)

1
,η ⊕ Qn(1)

2
,η

) 
 2⊕

i2=1

· · ·

2⊕
id=1

(X(1)
1
⊗ X(2)

i2
⊗ · · · ⊗ X(d)

id
)


⊕

 2⊕
i2=1

· · ·

2⊕
id=1

(X(1)
2
⊗ X(2)

i2
⊗ · · · ⊗ X(d)

id
)


 (

Qn(1)
1
,η ⊕ Qn(1)

2
,η

)T (
In(1)

1
+n(1)

2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

)T

= Pn(1)
1
,n(1)

2
,n(2)

1
,n(2)

2
,...,n(d)

1
,n(d)

2

 2⊕
i1=1

· · ·

2⊕
id=1

(X(1)
i1
⊗ · · · ⊗ X(d)

id
)

 PT
n(1)
1
,n(1)

2
,n(2)

1
,n(2)

2
,...,n(d)

1
,n(d)

2

,

where Pn(1)
1
,n(1)

2
,n(2)

1
,n(2)

2
,...,n(d)

1
,n(d)

2

:=
(
In(1)

1
+n(1)

2

⊗ Pn(2)
1
,n(2)

2
,...,n(d)

1
,n(d)

2

) (
Qn(1)

1
,η ⊕ Qn(1)

2
,η

)
. �

Before concluding this subsection, we stress that a lot of other properties involving tensor products and

direct sums can be proved by using techniques similar to those illustrated above. Here we have supplied

only the results needed later on.

1.2.2 Hadamard product

The Hadamard product of two matrices X,Y of the same dimensions, say X,Y ∈ Cm×`
, is denoted by X ◦ Y

and is nothing else than the componentwise product of X,Y :

(X ◦ Y)i j = xi jyi j, i = 1, . . . ,m, j = 1, . . . , `.

If X,Y are Hermitian, then X ◦ Y is Hermitian as well. This property does not hold for the usual matrix

product, because, if X,Y are Hermitian, XY may fail to be Hermitian. Moreover, if X,Y are square matrices,

then X ◦ Y is a principal submatrix of X ⊗ Y . More precisely, if X,Y ∈ Cm×m
, then X ◦ Y is the principal

submatrix of X ⊗ Y corresponding to the set of indices F = {1,m + 1, 2m + 1, . . . , (m − 1)m + 1}. From this

observation, some important properties of the Hadamard product can be deduced. We collect some of them

in Lemma 1.6 for future purposes.

Lemma 1.6. The Hadamard product possesses the following properties.

1. ‖X ◦ Y‖ ≤ ‖X‖ ‖Y‖ for all square matrices X,Y ∈ Cm×m.

2. If X,Y are HPD (resp. HPSD), then X ◦ Y is HPD (resp. HPSD).

3. If X ≥ X′ ≥ O and Y ≥ Y ′ ≥ O, then X ◦ Y ≥ X′ ◦ Y ′.

Proof. 1. Since X ◦Y is a principal submatrix of X ⊗Y , we have {‖(X ◦Y)x‖ : ‖x‖ = 1} ⊆ {‖(X ⊗Y)y‖ : ‖y‖ = 1}.

Indeed, fixed x ∈ Cm
with ‖x‖ = 1, if we take y ∈ Cm2

such that yi = xi if i ∈ F = {1,m+1, 2m+1, . . . , (m−1)m+1}

and yi = 0 otherwise, then ‖y‖ = 1 and ‖(X ⊗ Y)y‖ = ‖(X ◦ Y)x‖. Therefore,

‖X ◦ Y‖ = max
‖x‖=1
‖(X ◦ Y)x‖ ≤ max

‖y‖=1
‖(X ⊗ Y)y‖ = ‖X ⊗ Y‖ ≤ ‖X‖‖Y‖,

where the last inequality holds by (1.13).

2. If X,Y are HPD (HPSD), then X ⊗ Y is HPD (HPSD) and X ◦ Y is also HPD (HPSD), being a principal

submatrix of the HPD (HPSD) matrix X ⊗ Y .
3. If X ≥ X′ ≥ O and Y ≥ Y ′ ≥ O, then X ◦ Y − X′ ◦ Y ′ = (X − X′) ◦ Y + X′ ◦ (Y − Y ′) ≥ O by item 2, and so

X ◦ Y ≥ X′ ◦ Y ′. �
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1.3 Spectral distribution, spectral symbol, clustering

We introduce in this section the fundamental definitions and tools for analyzing the asymptotic spectrum

of matrix-sequences. All the notions defined here can be found in [37].

Definition 1.1 (Spectral distribution of a matrix-sequence, spectral symbol). Let {Xn} be a sequence of

matrices, with Xn of size dn tending to infinity, and let f : D→ Cs×s
be a measurable matrix-valued function,

defined on a measurable set D ⊂ Rd
with 0 < md(D) < ∞.

• We say that {Xn} is distributed like f in the sense of the eigenvalues, in symbols {Xn} ∼λ f, if

lim
n→∞

1

dn

dn∑
j=1

F(λ j(Xn)) =
1

md(D)

∫
D

∑s
i=1 F (λi(f(x)))

s
dx, ∀F ∈ Cc(C), (1.20)

where x = (x
1
, . . . , xd) and λi(f(x)), i = 1, . . . , s, are the eigenvalues of f(x). In this case, f is referred

to as the spectral symbol (or simply the symbol) of the matrix-sequence {Xn}.

• We say that {Xn} is distributed like f in the sense of the singular values, in symbols {Xn} ∼σ f, if

lim
n→∞

1

dn

dn∑
j=1

F(σ j(Xn)) =
1

md(D)

∫
D

∑s
i=1 F (σi(f(x)))

s
dx, ∀F ∈ Cc(R), (1.21)

where σi(f(x)), i = 1, . . . , s, are the singular values of f(x).

Note that, in the case s = 1, the function f : D → C is scalar-valued (so it will be denoted by f instead

of f), and the limit relations (1.20)–(1.21) become

lim
n→∞

1

dn

dn∑
j=1

F(λ j(Xn)) =
1

md(D)

∫
D

F( f (x))dx, ∀F ∈ Cc(C), (1.22)

lim
n→∞

1

dn

dn∑
j=1

F(σ j(Xn)) =
1

md(D)

∫
D

F(| f (x)|)dx, ∀F ∈ Cc(R). (1.23)

Remark 1.2. The informal meaning behind (1.20) is the following. Assuming that f is continuous, if

(1.20) holds, then a suitable ordering of the eigenvalues {λ j(Xn)} j=1,...,dn , assigned in correspondence of an

equispaced grid on D, reconstructs approximately the s hypersurfaces x → λi(f(x)), i = 1, . . . , s, when n is

large. In particular, we may think about the eigenvalues of Xn as if they were split into s different subsets

(or ‘branches’) of the same cardinality, in which the i-th subset is given by a uniform sampling over D of

the i-th eigenvalue function λi(f(x)). For instance, if f is continuous, d = 1, dn = ns, and D = [a, b], then
the eigenvalues of Xn are approximately equal to λi(f(a + j(b − a)/n)), j = 1, . . . , n, i = 1, . . . , s. Analogously,

if f is continuous, d = 2, dn = n2s, and D = [a
1
, b

1
] × [a

2
, b

2
], then the eigenvalues of Xn are approximately

equal to λi(f(a1
+ j

1
(b

1
− a

1
)/n, a

2
+ j

2
(b

2
− a

2
)/n)), j

1
, j

2
= 1, . . . , n, i = 1, . . . , s (and so on in a d-dimensional

setting).

For the convenience of the reader, we also report the definition of spectral distribution (and singular

value distribution) of a matrix-family {Xn}n∈Nd parameterized by a multi-index.

Definition 1.2 (Spectral distribution of a matrix-family, spectral symbol). Let {Xn}n∈Nd be a family of

matrices, with Xn of size dn tending to infinity as n→ ∞, and let f : D→ Cs×s
be a measurable matrix-valued

function, defined on a measurable set D ⊂ Rd
with 0 < md(D) < ∞.
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• We say that {Xn}n∈Nd is distributed like f in the sense of the eigenvalues, in symbols {Xn}n∈Nd ∼λ f, if

lim
n→∞

1

dn

dn∑
j=1

F(λ j(Xn)) =
1

md(D)

∫
D

∑s
i=1 F (λi(f(x)))

s
dx, ∀F ∈ Cc(C). (1.24)

In this case, f is referred to as the spectral symbol (or the symbol) of the matrix-family {Xn}n∈Nd . Note

that (1.24) says that f is indeed the symbol, in the sense of Definition 1.1, of any matrix-sequence of

the form {Xn(n)(f)}n, with n(n) → ∞ as n → ∞ (recall from Subsection 1.1.1 that a multi-index tends to

infinity when all its components tend to infinity; in particular, n(n)→ ∞ means min j=1,...,d n j(n)→ ∞).

• We say that {Xn}n∈Nd is distributed like f in the sense of the singular values, in symbols {Xn}n∈Nd ∼σ f,
if {Xn(n)}n ∼σ f in the sense of Definition 1.1 for every sequence of multi-indices {n(n)}n such that

n(n)→ ∞. Equivalently, {Xn}n∈Nd ∼σ f if

lim
n→∞

1

dn

dn∑
j=1

F(σ j(Xn)) =
1

md(D)

∫
D

∑s
i=1 F (σi(f(x)))

s
dx, ∀F ∈ Cc(R). (1.25)

Now we turn to the definition of clustering. Recall that, according to our notation (see Section 1.1),

D(S , ε) denotes the ε-expansion of the subset S ⊆ C.

Definition 1.3 (Clustering of a matrix-sequence at a closed subset of C). Let {Xn} be a sequence of

matrices, with Xn of size dn tending to infinity, and let S ⊆ C be a nonempty closed subset of C. We say that

{Xn} is strongly clustered at S in the sense of the eigenvalues if, for every ε > 0, the number of eigenvalues

of Xn outside D(S , ε) is bounded by a constant Cε independent of n. In other words,

qε(n, S ) := #{ j ∈ {1, . . . , dn} : λ j(Xn) < D(S , ε)} = O(1), as n→ ∞. (1.26)

We say that {Xn} is weakly clustered at S in the sense of the eigenvalues if, for every ε > 0,

qε(n, S ) = o(dn), as n→ ∞.

If {Xn} is strongly or weakly clustered at S and S is not connected, then the connected components of S are

called sub-clusters.

By replacing ‘eigenvalues’ with ‘singular values’ and λ j(Xn) with σ j(Xn) in (1.26), we obtain the definitions

of a matrix-sequence strongly or weakly clustered at a closed subset of C in the sense of the singular values.

Throughout the thesis, when we speak of strong/weak cluster, matrix-sequence strongly/weakly clustered,

etc., without further specifications, it is always understood ‘in the sense of the eigenvalues’ (when the

clustering is intended in the sense of the singular values, this is specified every time).

It is worth noting that, since the singular values are always nonnegative, any matrix-sequence is strongly

clustered in the sense of the singular values at a certain S ⊆ [0,∞). Similarly, any matrix-sequence formed

by matrices with only real eigenvalues (e.g., by Hermitian matrices) is strongly clustered at some S ⊆ R in

the sense of the eigenvalues.

Definition 1.4 (Spectral attraction). Let {Xn} be a sequence of matrices, with Xn of size dn tending to

infinity, and let z ∈ C. We say that z strongly attracts the spectrum Λ(Xn) with infinite order if, once we

have ordered the eigenvalues of Xn according to their distance from z, i.e.

|λ
1
(Xn) − z| ≤ |λ

2
(Xn) − z| ≤ . . . ≤ |λdn(Xn) − z|,

the following limit relation holds for each fixed j:

lim
n→∞
|λ j(Xn) − z| = 0.
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It is now time to introduce the notion of essential range of a matrix-valued function f. For a measurable

scalar function f : D → C, defined on a measurable set D ⊆ Rd, the essential range of f , ER( f ), is defined

as the set of points z ∈ C such that, for every ε > 0, the measure of { f ∈ D(z, ε)} := {x ∈ D : f (x) ∈ D(z, ε)}
is positive. In symbols,

ER( f ) := {z ∈ C : md({ f ∈ D(z, ε)}) > 0, ∀ε > 0}.

Note that ER( f ) is always closed (the complement is open). Moreover, it can be shown that f (x) ∈ ER( f ) for

almost every x ∈ D, i.e., f ∈ ER( f ) a.e. In addition, whenever f is continuous and D is sufficiently regular

(say, D is contained in the closure of its interior), then ER( f ) coincides with the closure of the image of f .

Definition 1.5 (Essential range of a matrix-valued function). Given a measurable matrix-valued func-

tion f : D → Cs×s
, defined on some measurable set D ⊆ Rd

, the essential range of f, denoted by ER(f), is
defined as

ER(f) := {z ∈ C : md({∃ j : λ j(f) ∈ D(z, ε)}) > 0, ∀ε > 0},

where {∃ j : λ j(f) ∈ D(z, ε)} := {x ∈ D : ∃ j ∈ {1, . . . , s} such that λ j(f(x)) ∈ D(z, ε)}.

We point out that ER(f) is well-defined, because the set {∃ j : λ j(f) ∈ D(z, ε)} is measurable for every

z ∈ C and ε > 0. Moreover, ER(f) is closed, since its complement is open. Finally, in the case where the

eigenvalue functions λ j(f) : D→ C, j = 1, . . . , s, are measurable, we have

ER( f ) =

s⋃
j=1

ER(λ j(f)).

The following result is stated in [37, Theorem 4.2] and can be proved by using the same arguments

shown in the proof of [37, Theorem 2.4].

Theorem 1.5. Assume that {Xn} ∼λ f, with {Xn}, f as in Definition 1.1. Then {Xn} is weakly clustered at ER(f)
and every point z ∈ ER(f) strongly attracts Λ(Xn) with infinite order.

We end this section by providing some useful theorems for proving asymptotic spectral distribution and

clustering results. For their proof, see [37, Theorems 3.4 and 3.5]. In Chapeter 2 (Theorem 2.7), we will

prove a generalization of Theorem 1.6 to the case where the scalar function f is replaced by a matrix-valued

function f.

Theorem 1.6. Let {Xn}, {Yn} be sequences of matrices with Xn, Yn ∈ C
dn×dn and dn tending to infinity, and

assume the following.

• Every Xn is Hermitian and {Xn} ∼λ f , where f : D ⊂ Rd → R is a measurable function defined on a
measurable set D with 0 < md(D) < ∞;

• ‖Xn‖, ‖Yn‖ ≤ C for all n, with C a constant independent of n;

• |||Yn|||1 = o(dn) as n→ ∞.

Then, setting Zn := Xn + Yn, we have {Zn} ∼λ f .

Theorem 1.7. Let {Xn}, {Yn} be sequences of matrices with Xn, Yn ∈ C
dn×dn and dn tending to infinity, and

assume the following.

• Every Xn is Hermitian and {Xn} ∼λ f , where f : D ⊂ Rd → R is a measurable function defined on a
measurable set D with 0 < md(D) < ∞;

• ‖Xn‖, |||Yn|||1 ≤ C for all n, with C a constant independent of n.

Then, setting Zn := Xn + Yn, we have {Zn} ∼λ f and {Zn} is strongly clustered at ER( f ).
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1.4 Toeplitz matrices and related topics

In this section, we provide the definition and some properties of multilevel block Toeplitz and circulant

matrices. We first focus on multilevel block Toeplitz matrices [11] in Subsection 1.4.1, and then we con-

sider the case of multilevel block circulant matrices [20] in Subsection 1.4.2. Concerning circulant matrices,

besides the classical reference book by Davis [20], the reader is referred to [16] for an applicative view-

point, in particular in connection with the approximation/preconditioning of Toeplitz matrices. We end in

Subsection 1.4.3 by reporting some properties of the so-called Generalized Locally Toeplitz (GLT) sequences

[68, 63, 64], which will be used in Chapter 5 together with Theorem 1.6 in order to derive an important

spectral distribution result.

1.4.1 Multilevel block Toeplitz matrices

Given m ∈ Nd
, a matrix of the form

[Ai− j]m
i, j=1 ∈ C

N(m)s×N(m)s, (1.27)

with blocks Ak ∈ C
s×s, k = −(m−1), . . . ,m−1, is called a multilevel block Toeplitz matrix, or, more precisely,

a d-level block Toeplitz matrix. Given a function f : [−π, π]d → Cs×s
in L1([−π, π]d), we denote its Fourier

coefficients by

fk =
1

(2π)d

∫
[−π,π]d

f(θ)e−ik·θdθ ∈ Cs×s, k ∈ Zd, (1.28)

where the integrals are computed componentwise and k · θ = k
1
θ
1
+ . . . + kdθd. For every m ∈ Nd

, the m-th

Toeplitz matrix associated with f is defined as

Tm(f) := [fi− j]m
i, j=1. (1.29)

We call {Tm(f)}m∈Nd the family of (multilevel block) Toeplitz matrices associated with f, which, in turn, is

called the generating function of {Tm(f)}m∈Nd .

For each fixed s ≥ 1 and m ∈ Nd
, the map Tm(·) : L1([−π, π]d,Cs×s)→ CN(m)s×N(m)s

is linear: for all α, β ∈ C
and f, g ∈ L1([−π, π]d,Cs×s),

Tm(αf + βg) = αTm(f) + βTm(g).

This follows from the relation (αf + βg)k = αfk + βgk, k ∈ Zd, which is a consequence of the linearity of the

integral in (1.28). We now observe that, in general, for every f ∈ L1([−π, π]d,Cs×s), the Fourier coefficients of

f are related to those of f∗ by

(f j)∗ =

(
1

(2π)d

∫
[−π,π]d

f(θ)e−i j·θdθ
)∗

=
1

(2π)d

∫
[−π,π]d

f(θ)∗ei j·θdθ = (f∗)− j, j ∈ Zd.

Therefore, for all i, j = 1, . . . ,m,

[Tm(f∗)]i j = (f∗)i− j = (f j−i)∗ = [Tm(f)∗]i j,

i.e.,

Tm(f∗) = Tm(f)∗.
From this identity, which holds for all m ∈ Nd

and all f ∈ L1([−π, π]d,Cs×s), we infer that, if f is a

Hermitian matrix-valued function, i.e. f(θ) is Hermitian for almost every θ ∈ [−π, π]d
, then all the matrices

Tm(f), m ∈ Nd, are Hermitian.

Theorem 1.8 is a fundamental result concerning multilevel block Toeplitz matrices generated by Hermitian

matrix-valued functions. In particular, item 3 in Theorem 1.8 is the Szegö–Tilli theorem; see [11] for a rich

account concerning the history of the Szegö theorem, originally appeared in [39]. Item 4 is actually a

consequence of item 3, while items 1, 2 can be proved by using the minimax principle.
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Theorem 1.8. Let f : [−π, π]d → Cs×s be a Hermitian matrix-valued function in L1([−π, π]d). Define

mf := ess inf

θ∈[−π,π]d
λmin(f(θ)), Mf := ess sup

θ∈[−π,π]d
λmax(f(θ)).

Then the following properties hold.

1. Tm(f) is Hermitian and Λ(Tm(f)) ⊆ [mf,Mf] for all m ∈ Nd.

2. If λmin(f(θ)) is not a.e. constant then Λ(Tm(f)) ⊂ (mf,Mf] for all m ∈ Nd.
If λmax(f(θ)) is not a.e. constant then Λ(Tm(f)) ⊂ [mf,Mf) for all m ∈ Nd.
In particular, if f ≥ O a.e. and md({θ ∈ [−π, π]d : f(θ) > O}) > 0, then Tm(f) > O for all m ∈ Nd.

3. We have {Tm(f)}m∈Nd ∼λ f, i.e.

lim
m→∞

1

N(m)s

N(m)s∑
k=1

F(λk(Tm(f))) =
1

(2π)d

∫
[−π,π]d

∑s
j=1 F(λ j(f(θ)))

s
dθ, ∀F ∈ Cc(C). (1.30)

Hence, f is the symbol of the Toeplitz family {Tm(f)}m∈Nd .

4. For each fixed j ≥ 1, the j-th largest and smallest eigenvalue of Tm(f) satisfy

λ j(Tm(f))→ Mf, λN(m)s− j+1(Tm(f))→ mf

when m→ ∞.

Proof. 1. By the minimax principle, since every Tm(f) is Hermitian (because f is a Hermitian matrix-valued

function), in order to prove that Λ(Tm(f)) ⊆ [mf,Mf] it suffices to show that

mf‖x‖22 ≤ x∗Tm(f)x ≤ Mf‖x‖22, ∀x ∈ CN(m)s. (1.31)

Let x ∈ CN(m)s
and partition x as follows: x = [xi]m

i=1, where each xi ∈ C
s
. Then

x∗Tm(f)x = x∗[fi− j]m
i, j=1x =

m∑
i, j=1

x∗i fi− jx j =

m∑
i, j=1

1

(2π)d x∗i

(∫
[−π,π]d

f(θ)e−i(i− j)·θdθ
)
x j

=

m∑
i, j=1

1

(2π)d

s∑
k,`=1

(∫
[−π,π]d

fk`(θ)e−i(i− j)·θdθ
)

(x∗i )k(x j)` =

m∑
i, j=1

1

(2π)d

∫
[−π,π]d

 s∑
k,`=1

fk`(θ)(x∗i )k(x j)`

 e−ii·θei j·θdθ

=

m∑
i, j=1

1

(2π)d

∫
[−π,π]d

x∗i f(θ)x je
−ii·θ

e
i j·θdθ =

1

(2π)d

∫
[−π,π]d

 m∑
i, j=1

x∗i f(θ)x je
−ii·θ

e
i j·θ

 dθ

=
1

(2π)d

∫
[−π,π]d

qx(θ)∗f(θ)qx(θ)dθ, (1.32)

where qx(θ) :=
∑m

j=1 x je
i j·θ

satisfies

1

(2π)d

∫
[−π,π]d

‖qx(θ)‖2
2
dθ =

1

(2π)d

∫
[−π,π]d

 m∑
i=1

xie
ii·θ

∗
 m∑

j=1

x je
i j·θ

 dθ

=
1

(2π)d

∫
[−π,π]d

m∑
i, j=1

x∗ix je
−ii·θ

e
i j·θdθ =

m∑
i, j=1

x∗ix j
1

(2π)d

∫
[−π,π]d

e
−ii·θ

e
i j·θdθ

=

m∑
i, j=1

x∗ix j
1

(2π)d

(
e
ii·θ, ei j·θ

)
L2([−π,π]d)

=

m∑
i=1

‖xi‖
2

2
= ‖x‖2

2
. (1.33)
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In the last passages, we have used the fact that

(
e
ii·θ, ei j·θ

)
L2([−π,π]d)

equals (2π)d
if i = j and 0 otherwise, due

to the L2
-orthogonality of the Fourier frequencies e

ii·θ, i ∈ Zd
. From (1.32) and the minimax principle, we

get

1

(2π)d

∫
[−π,π]d

λmin(f(θ))‖qx(θ)‖2
2
dθ ≤ x∗Tm(f)x ≤

1

(2π)d

∫
[−π,π]d

λmax(f(θ))‖qx(θ)‖2
2
dθ, (1.34)

and (1.31) follows from (1.33)–(1.34) and from the definitions of mf and Mf.

2. Assume that λmin(f(θ)) is not a.e. constant and fix m ∈ Nd
. We show that

x∗Tm(f)x > mf, ∀x ∈ CN(m)s
with ‖x‖

2
= 1. (1.35)

Once we have proved (1.35), from the minimax principle we have

λmin(Tm(f)) = min
‖x‖2=1

x∗Tm(f)x > mf,

which, in combination with item 1, yields the first statement in item 2. The second statement is proved in

the same way, while the third statement follows from the first one. To prove (1.35), assume by contradiction

that there exists a vector x̂ with ‖x̂‖
2

= 1, such that

x̂∗Tm(f)x̂ = mf.

Note that x̂∗Tm(f)x̂ cannot be less than mf by item 1. Since ‖x̂‖
2

= 1, by (1.33)–(1.34) we have

mf =
1

(2π)d

∫
[−π,π]d

mf‖qx̂(θ)‖2
2
dθ ≤

1

(2π)d

∫
[−π,π]d

λmin(f(θ))‖qx̂(θ)‖2
2
dθ ≤ x̂∗Tm(f)x̂.

Recalling that x̂∗Tm(f)x̂ = mf, all the previous inequalities are actually equalities and we obtain∫
[−π,π]d

(λmin(f(θ)) − mf)‖qx̂(θ)‖2
2
dθ = 0. (1.36)

Now, since qx̂(θ) is a d-variate trigonometric polynomial, it vanishes at most in a set of zero Lebesgue

measure (we omit the details of this proof). Therefore, from (1.36) we deduce that λmin(f(θ)) − mf = 0 a.e.,

i.e., λmin(f(θ)) = mf a.e. This is a contradiction to the assumption that λmin(f(θ)) is not a.e. constant.

3. For the proof of item 3, see [67] (see also Subsection 2.1.1, where we provide a proof in the case

d = s = 1, which can be extended to the general case without significant difficulties).

4. Fixed j ≥ 1, we prove that λ j(Tm(f)) → Mf as m → ∞ (the proof that λN(m)s− j+1 → mf is similar).

Assume by contradiction that λ j(Tm(f)) does not converge to Mf as m → ∞. This means that there exists

a sequence {Tm(n)(f)}n such that m(n) → ∞ and λ j(Tm(n)(f)) ≤ M < Mf and for all n. By definition of Mf,

we can choose an interval [α, β] ⊂ (M,∞) such that md({θ ∈ [−π, π]d : α ≤ λmax(f(θ)) ≤ β}) > 0 and a test

function F ∈ Cc(C) such that 0 ≤ F ≤ 1 on R, F = 0 on (−∞,M] and F = 1 on [α, β]. For this test function

we have F(λi(Tm(n)(f))) = 0 for i = j, . . . ,N(m(n))s, and so

0 ≤
1

N(m(n))s

N(m)s∑
i=1

F(λi(Tm(n)(f))) ≤
j − 1

N(m(n))s
→ 0.

24



This is a contradiction to the fact that, by item 3, we have

lim
m→∞

1

N(m)s

N(m)s∑
i=1

F(λi(Tm(f))) =
1

(2π)d

∫
[−π,π]d

∑s
i=1 F(λi(f(θ)))

s
dθ

≥
1

(2π)d

∫
{θ∈[−π,π]d: α≤λmax(f(θ))≤β}

F(λmax(f(θ)))
s

dθ

=
1

(2π)d s

∫
{θ∈[−π,π]d: α≤λmax(f(θ))≤β}

dθ

=
md({θ ∈ [−π, π]d : α ≤ λmax(f(θ)) ≤ β})

(2π)d s
> 0.

�

From Theorem 1.8 we derive the following proposition, which states that the operator Tm(·) is monotone.

Proposition 1.1. Let f, g : [−π, π]d → Cs×s be Hermitian matrix-valued functions in L1([−π, π]d) with f(θ) ≥
g(θ) a.e. Then Tm(f) ≥ Tm(g) for all m ∈ Nd.

Proof. We just observe that, by linearity, Tm(f) ≥ Tm(g) is equivalent to Tm(f − g) ≥ O. The latter is satisfied

by Theorem 1.8, since f(θ) − g(θ) ≥ O a.e. by hypothesis and hence mf−g ≥ 0. �

Important inequalities involving Toeplitz matrices and Schatten p-norms can be found in [61, Corol-

lary 3.5]. In Lemma 1.7, we report one of these inequalities of interest later on.

Lemma 1.7. For f ∈ L∞([−π, π]d,Cs×s) and m ∈ Nd,

‖Tm(f)‖ ≤ ess sup

θ∈[−π,π]d
‖f(θ)‖. (1.37)

Proof. From (1.4) we know that

‖Tm(f)‖ = max
‖u‖=‖v‖=1

u∗Tm(f)v.

By performing some computations completely analogous to the ones in the proof of Theorem 1.8, see in

particular the chain of equalities (1.32)–(1.33), we see that

u∗Tm(f)v =
1

(2π)d

∫
[−π,π]d

qu(θ)∗f(θ)qv(θ)dθ,

where

1

(2π)d

∫
[−π,π]d

‖qu(θ)‖2dθ = ‖u‖2 = 1,
1

(2π)d

∫
[−π,π]d

‖qv(θ)‖2dθ = ‖v‖2 = 1.

Using the Cauchy-Schwarz inequality, we obtain

|u∗Tm(f)v| ≤
1

(2π)d

∫
[−π,π]d

|qu(θ)∗f(θ)qv(θ)| dθ ≤
1

(2π)d

∫
[−π,π]d

‖qu(θ)‖ ‖f(θ)‖ ‖qv(θ)‖dθ

≤ ess sup

θ∈[−π,π]d
‖f(θ)‖

1

(2π)d

∫
[−π,π]d

‖qu(θ)‖ ‖qv(θ)‖dθ

≤ ess sup

θ∈[−π,π]d
‖f(θ)‖

1

(2π)d

(∫
[−π,π]d

‖qu(θ)‖2dθ
)
1/2 (∫

[−π,π]d
‖qv(θ)‖2dθ

)
1/2

= ess sup

θ∈[−π,π]d
‖f(θ)‖,

and the thesis follows. �
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Note that (1.37) can be reformulated in terms of the Schatten ∞-norm as follows:

|||Tm(f)|||∞ ≤ ‖ |||f(θ)|||∞ ‖L∞([−π,π]d).

From this reformulation, we see that (1.37) coincides with the inequality (28) in [61] for p = ∞.

Theorem 1.9. Let

X =


b c

a . . .
. . .

. . .
. . . c
a b

 = Tridiagonal(a, b, c)

be an m × m real Toeplitz tridiagonal matrix such that ac > 0. Then, X has m real distinct eigenvalues

λ j(X) = b + 2

√
ac cos

jπ
m + 1

, j = 1, . . . ,m.

Proof. See [9, p. 35] or [66, p. 154]. �

The next result concerns the exact asymptotics of the j-th smallest eigenvalue of Tm( f ), for j fixed and

m → ∞. This result is due to Parter [45] (see also [46] for a generalization). It shows that, under the

assumption that f is continuous and f −min f has a unique zero θmin, λm− j+1(Tm( f )) converges to m f = min f
as m→ ∞ with asymptotic speed dictated by the order of the zero θmin.

Theorem 1.10 (Parter). Let f : R → R be continuous and 2π-periodic. Let m f := minθ∈R f (θ) = f (θmin) and
let θmin be the unique zero of f − m f in (−π, π]. Assume there exists s ≥ 1 such that f has 2s continuous
derivatives in (θmin − ε, θmin + ε) for some ε > 0 and f (2s)(θmin) > 0 is the first non-vanishing derivative of f at
θmin. Then, for each fixed j ≥ 1,

λm− j+1(Tm( f )) − m f ∼ cs, j
f (2s)(θmin)

(2s)!
1

m2s , as m→ ∞, (1.38)

i.e., lim
m→∞

m2s
(
λm− j+1(Tm( f )) − m f

)
= cs, j

f (2s)(θmin)
(2s)!

, where cs, j > 0 is a constant depending only on s and j.

Remark 1.3. The constant cs, j is the j-th smallest eigenvalue of the boundary value problem{
(−1)su(2s)(x) = f (x), for 0 < x < 1,
u(0) = u′(0) = . . . = u(s−1)(0) = 0, u(1) = u′(1) = . . . = u(s−1)(1) = 0; (1.39)

see [45, p. 191]. This means that cs, j is the j-th smallest number satisfying (−1)su(2s)(x) = cs, j u(x) for some

(nonzero) function u belonging to an ‘appropriate functional space’ associated with (1.39). In particular, cs,1

is the minimum eigenvalue of (1.39). The sequence {cs,1} was investigated in [12], where it was shown that

the numbers c
1,1, c2,1, c3,1, . . . appear in many situations and the following asymptotic formula holds:

cs,1 =
√
8πs

(
4s
e

)
2s [

1 + O
(

1

√
s

)]
, as s→ ∞.

Remark 1.4. When s = 1, the boundary value problem (1.39) becomes{
−u′′(x) = f (x), 0 < x < 1,
u(0) = u(1) = 0,

(1.40)
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and its eigenvalues can be computed explicitly, because they coincide with the eigenvalues of the unidimen-

sional negative Laplacian operator − d2

dx2 with homogeneous Dirichlet boundary conditions:

−
d2

dx2
: H2

0
(0, 1) ⊂ L2(0, 1)→ L2(0, 1). (1.41)

The mentioned ‘appropriate functional space’ is in this case H2

0
(0, 1). The eigenvalues of (1.41) are j2π2, j =

1, 2, . . . , and an eigenfunction corresponding to the j-th eigenvalue j2π2 is u j(x) = sin( jπx): −u′′j (x) =

j2π2u j(x). Thus, by Remark 1.3, we find that c
1, j = j2π2 for all j ≥ 1.

Remark 1.5. Parter’s theorem applies to the function f (θ) = (2 − 2 cos θ)s
, s ≥ 1. Indeed, it can be proved

that this function satisfies all the hypotheses of Theorem 1.10 with m f = 0, θmin = 0, and the number s
appearing in Theorem 1.10 being exactly the exponent s in the definition of f . Moreover, f (2s)(θmin) = (2s)!
Therefore, by (1.38) we obtain that, for each fixed j ≥ 1,

λm− j+1(Tm((2 − 2 cos θ)s)) ∼
cs, j

m2s , as m→ ∞.

On the other hand, for the case s = 1, noting that Tm(2 − 2 cos θ) = Tridiagonal(−1, 2,−1) and using Theo-

rem 1.9, we get

λm− j+1(Tm(2 − 2 cos θ)) = 4

(
sin

jπ
2(m + 1)

)
2

∼
j2π2

m2

, as m→ ∞,

and so we find again c
1, j = j2π2 for all j ≥ 1.

The last results relate tensor products and Toeplitz matrices. In particular, in Lemma 1.9 we show that

a tensor product of unilevel block Toeplitz matrices generated by (matrix-valued) trigonometric polynomials

coincides (modulo permutation transformations) with the multilevel block Toeplitz matrix generated by the

tensor product of the trigonometric polynomials.

Lemma 1.8. Let f
1
, . . . , fd ∈ L1([−π, π]) and let m = (m

1
, . . . ,md) ∈ Nd. Then,

Tm1
( f

1
) ⊗ · · · ⊗ Tmd ( fd) = Tm( f

1
⊗ · · · ⊗ fd) (1.42)

(note that the tensor-product function f
1
⊗ · · · ⊗ fd : [−π, π]d → C belongs to L1([−π, π]d) by Fubini’s theorem).

Proof. The proof is simple if we use the fundamental property (1.12). Noting that the Fourier coefficients of

f
1
⊗ · · · ⊗ fd are given by

( f
1
⊗ · · · ⊗ fd)k = ( f

1
)k1 · · · ( fd)kd , k ∈ Zd,

for all i, j = 1, . . . ,m we have[
Tm1

( f
1
) ⊗ · · · ⊗ Tmd ( fd)

]
i j =

[
Tm1

( f
1
)
]
i1 j1 · · ·

[
Tmd ( fd)

]
id jd = ( f

1
)i1− j1 · · · ( fd)id− jd = ( f

1
⊗ · · · ⊗ fd)i− j

= [Tm( f
1
⊗ · · · ⊗ fd)]i j,

and so (1.42) holds. �

A matrix-valued function of the form p(θ) =
∑N

k=−N Ake
ikθ
, with Ak ∈ C

s×s, k = −N, . . . ,N, is called

(matrix-valued) trigonometric polynomial.

Lemma 1.9. For every m, s ∈ Nd there exists a permutation matrix Γm,s of size
∏d

j=1(m js j) such that

Tm1
(p

1
) ⊗ · · · ⊗ Tmd (pd) = Γm,s [Tm(p

1
⊗ · · · ⊗ pd)] ΓT

m,s,

for any choice of trigonometric polynomials p j : [−π, π]→ Cs j×s j , j = 1, . . . , d.
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Proof. For k ∈ Zd
and A ∈ Cs×s

, it can be shown by direct computation that

Tm(Aeik·θ) = Tm(eik·θ) ⊗ A = Tm1
(eik1θ1) ⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A.

Therefore, for any choice of the trigonometric polynomials

p j(θ) :=
N j∑

k=−N j

A( j)
k e

ikθ, j = 1, . . . , d (A( j)
k ∈ C

s j×s j , j = 1, . . . , d, k = −N j, . . . ,N j),

by the bilinearity of ⊗ and the linearity of Tm(·), we have

Tm(p
1
(θ

1
) ⊗ · · · ⊗ pd(θd)) = Tm

 N1∑
k1=−N1

. . .

Nd∑
kd=−Nd

A(1)
k1
⊗ · · · ⊗ A(d)

kd
e
ik·θ

 =

N1∑
k1=−N1

. . .

Nd∑
kd=−Nd

Tm(A(1)
k1
⊗ · · · ⊗ A(d)

kd
e
ik·θ)

=

N∑
k=−N

Tm1
(eik1θ1) ⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A(1)

k1
⊗ · · · ⊗ A(d)

kd
.

On the other hand,

Tm1
(p

1
(θ

1
)) ⊗ · · · ⊗ Tmd (pd(θd)) = Tm1

 N1∑
k1=−N1

A(1)
k1
e
ik1θ1

 ⊗ · · · ⊗ Tmd

 Nd∑
kd=−Nd

A(d)
kd
e
ikdθd


=

 N1∑
k1=−N1

Tm1
(eik1θ1) ⊗ A(1)

k1

 ⊗ · · · ⊗
 Nd∑

kd=−Nd

Tmd (eikdθd ) ⊗ A(d)
kd


=

N∑
k=−N

Tm1
(eik1θ1) ⊗ A(1)

k1
⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A(d)

kd
.

By Lemma 1.2, there exists the permutation matrix Γm,s := Π(m,s);σ, where σ := [1, d + 1, 2, d + 2, . . . , d, 2d],
which depends only on m, s and satisfies

Tm1
(eik1θ1) ⊗ A(1)

k1
⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A(d)

kd
= Γm,s

[
Tm1

(eik1θ1) ⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A(1)
k1
⊗ · · · ⊗ A(d)

kd

]
ΓT

m,s.

Hence,

Tm1
(p

1
(θ

1
)) ⊗ · · · ⊗ Tmd (pd(θd)) =

N∑
k=−N

Γm,s

[
Tm1

(eik1θ1) ⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A(1)
k1
⊗ · · · ⊗ A(d)

kd

]
ΓT

m,s

= Γm,s

 N∑
k=−N

Tm1
(eik1θ1) ⊗ · · · ⊗ Tmd (eikdθd ) ⊗ A(1)

k1
⊗ · · · ⊗ A(d)

kd

 ΓT
m,s

= Γm,sTm(p
1
(θ

1
) ⊗ · · · ⊗ pd(θd))ΓT

m,s.

�

Lemma 1.9 shows that the operators Tm(·) and ⊗ are interchangeable, modulo permutation transforma-

tions which only depend on the dimensions of the involved matrices. The same result is true also for the

operators Tm(·) and ⊕; see [29, Theorem 2].
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1.4.2 Multilevel block circulant matrices

Given m ∈ Nd
, a matrix of the form

[A(i− j)mod m]m
i, j=1 ∈ C

N(m)s×N(m)s, (1.43)

with blocks Ak ∈ C
s×s, k = 0, . . . ,m − 1, is called a multilevel block circulant matrix, or, more precisely, a

d-level block circulant matrix. The fundamental theorem concerning multilevel block circulant matrices is

the following. For m ∈ Nd
we denote by Fm the unitary d-level Fourier transform, i.e. Fm := Fm1

⊗ · · · ⊗ Fmd ,

where Fm := 1
√

m (e−2πi jk/m)m−1
j,k=0 = 1

√
m (e−2πi( j−1)(k−1)/m)m

j,k=1 is the standard unitary Fourier transform of order m
(F∗mFm = Im).

Theorem 1.11. The matrix (1.43) has the following block spectral decomposition:

[A(i− j)mod m]m
i, j=1 = (Fm ⊗ Is) diag

j=0,...,m−1

[
g
(
2π j
m

)]
(Fm ⊗ Is)∗, (1.44)

where g(θ) :=
∑m−1

k=0 Ake
ik·θ. In particular, the spectrum of [A(i− j)mod m]m

i, j=1 is given by the union of the spectra
of the diagonal blocks g(2π j/m) ∈ Cs×s, j = 0, . . . ,m− 1.

Proof. The proof of this theorem is a good exercise on the multi-index notation. It consists of four steps.

1. Consider the m × m matrix

Zm :=



0 1

1

. . .

. . .
. . .
. . .

. . .

. . .
. . .

1 0


= [δ(i− j−1)modm]m

i, j=1,

where δr := 1 if r = 0 and δr := 0 otherwise. The matrix Zm is called the generator of unilevel circulant

matrices of order m. This name is due to the fact that the powers of Zm are

Z2

m =



0 1 0

0

. . . 1

1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 0 0


, Z3

m =



0 1 0 0

0

. . . 1 0

0

. . .
. . . 1

1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

1 0 0 0


, . . . , Zm

m = Im,

or, in formulas,

(Zk
m)i j = δ(i− j−k)modm, i, j = 1, . . . ,m, k = 0, . . . ,m − 1. (1.45)

Therefore, any unilevel circulant matrix of order m can be written as a linear combination of powers of Zm:

[a(i− j)modm]m
i, j=1 =



a
0

am−1 a
2

a
1

a
1

. . .
. . . a

2

a
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . am−1

am−1 a
2

a
1

a
0


=

m−1∑
k=0

akZk
m.
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Note also that any unilevel block circulant matrix [A(i− j)modm]m
i, j=1 can be written as

[A(i− j)modm]m
i, j=1 =



A
0

Am−1 A
2

A
1

A
1

. . .
. . . A

2

A
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . Am−1

Am−1 A
2

A
1

A
0


=

m−1∑
k=0

Zk
m ⊗ Ak.

2. The spectral decomposition of Zm is explicitly known and is given by

Zm = FmDmF∗m, Dm := diag

j=0,...,m−1
(e2πi j/m) = diag

j=1,...,m
(e2πi( j−1)/m).

This can be verified by direct computation: for all i, j = 1, . . . ,m, we have

(F∗mZm)i j =

m∑
k=1

e
2πi(i−1)(k−1)/mδ(k− j−1)modm = e

2πi(i−1) j/m = (DmF∗m)i j.

Therefore, defining Zk
m := Zk1

m1
⊗ Zk2

m2
⊗ · · · ⊗ Zkd

md , k,m ∈ Nd
, also the spectral decomposition of Z k

m is known.

Indeed, using the properties of tensor products in Subsection 1.2.1, we obtain

Z k
m = Zk1

m1

⊗ Zk2
m2

⊗ · · · ⊗ Zkd
md

= (Fm1
Dk1

m1

F∗m1

) ⊗ (Fm2
Dk2

m2

F∗m2

) ⊗ · · · ⊗ (Fmd Dkd
md

F∗md
)

= (Fm1
⊗ Fm2

⊗ · · · ⊗ Fmd )(Dk1
m1

⊗ Dk2
m2

⊗ · · · ⊗ Dkd
md

)(Fm1
⊗ Fm2

⊗ · · · ⊗ Fmd )∗ = FmDk
mF∗m, (1.46)

where

Dk
m := Dk1

m1

⊗ Dk2
m2

⊗ · · · ⊗ Dkd
md

= diag

j=0,...,m−1
(e2πi

∑d
r=1 jrkr/mr ) = diag

j=0,...,m−1
(e2πi( j/m)·k).

3. The multilevel block circulant matrix [A(i− j)mod m]m
i, j=1 in (1.43) has the following expression:

[A(i− j)mod m]m
i, j=1 =

m−1∑
k=0

Zk
m ⊗ Ak. (1.47)

To prove (1.47), we first notice that, by the fundamental property (1.12) and by (1.45), for all i, j = 1, . . . ,m
we have

(Z k
m)i j = (Zk1

m1

)i1 j1(Z
k2
m2

)i2 j2 · · · (Z
kd
md

)id jd = δ(i1− j1−k1)modm1
δ(i2− j2−k2)modm2

· · · δ(id− jd−kd)modmd = δ(i− j−k)mod m,

where δr = 1 if r = 0 and δr = 0 otherwise. The equality (1.47) is then proved ‘blockwise’, by showing that,

for all i, j = 1, . . . ,m, the block in position (i, j) of the first matrix is equal to the block in position (i, j) of

the second matrix. Indeed, for all i, j = 1, . . . ,m, we havem−1∑
k=0

Zk
m ⊗ Ak


i j

=

m−1∑
k=0

(Z k
m ⊗ Ak)i j =

m−1∑
k=0

(Z k
m)i jAk =

m−1∑
k=0

δ(i− j−k)mod mAk = A(i− j)mod m.
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4. Using the identity (1.47), the spectral decomposition (1.46), and the properties of tensor products in

Subsection 1.2.1, we obtain

[A(i− j)mod m]m
i, j=1 =

m−1∑
k=0

Z k
m ⊗ Ak =

m−1∑
k=0

(FmDmF∗m) ⊗ Ak =

m−1∑
k=0

(Fm ⊗ Is)(Dk
m ⊗ Ak)(Fm ⊗ Is)∗

= (Fm ⊗ Is)

m−1∑
k=0

Dk
m ⊗ Ak

 (Fm ⊗ Is)∗ = (Fm ⊗ Is)

m−1∑
k=0

diag

j=0,...,m−1
(e2πi( j/m)·k) ⊗ Ak

 (Fm ⊗ Is)∗

= (Fm ⊗ Is)

m−1∑
k=0

diag

j=0,...,m−1
(e2πi( j/m)·kAk)

 (Fm ⊗ Is)∗ = (Fm ⊗ Is) diag

j=0,...,m−1

m−1∑
k=0

e
2πi( j/m)·kAk

 (Fm ⊗ Is)∗,

and the thesis follows, since

∑m−1
k=0 e

2πi( j/m)·kAk = g(2π j/m). �

We remark that an identity like (1.47) also holds for multilevel block Toeplitz matrices. Indeed, it can be

shown that the multilevel block Toeplitz matrix in (1.27) has the following expression:

[Ai− j]m
i, j=1 =

m−1∑
k=−(m−1)

J(k)
m ⊗ Ak, (1.48)

where

J(k)
m := J(k1)

m1

⊗ J(k2)
m2

⊗ · · · ⊗ J(kd)
md

and J(k)
m is the m × m matrix such that (J(k)

m )i j = 1 if i − j = k and (J(k)
m )i j = 0 otherwise:

(J(k)
m )i j = δi− j−k, i, j = 1, . . . ,m, k = −(m − 1), . . . ,m − 1.

1.4.3 GLT sequences

We now focus on the spectral distribution of sequences of matrices obtained from a combination of some

algebraic operations on multilevel block Toeplitz matrices and diagonal sampling matrices. These matrix-

sequences are particular instances of Generalized Locally Toeplitz (GLT) sequences and, consequently, they

belong to the noteworthy GLT algebra. We do not pretend to cover here all the details of this fascinating

subject, and so we refer the reader to [68, 63, 64]. We just say that the GLT algebra virtually includes all

the matrix-sequences coming from ‘regular’ discretizations of PDE. We should also say, however, that the

spectral distribution of GLT sequences is still under investigation; the latest findings in this direction can

be found in [28, 29] (see in particular Theorem 5 in [28] and Theorems 9–10 in [29]).

For every Riemann integrable function a : [0, 1]d → C and every m ∈ Nd
, we define the d-level diagonal

sampling matrix Dm(a) ∈ CN(m)×N(m)
in the following way:

Dm(a) := diag

j=0,...,m−1
a
(

j
m

)
= diag

j=1,...,m
a
(

j − 1
m

)
, (1.49)

where, as always, the multi-index j varies from 1 to m− 1 following the lexicographic ordering (1.1).

Theorem 1.12. For every k ∈ {1, . . . , η} and l ∈ {1, . . . , ζk}, with η, ζ1, . . . , ζη positive integers, let {B(k,l)
m }m∈Nd be

either {Dm(a(k,l))}m∈Nd or {Tm( f (k,l))}m∈Nd .2 Then, setting

Xm :=
η∑

k=1

ζk∏
l=1

B(k,l)
m ,

2
It is understood that a(k,l)

is a Riemann integrable function defined on [0, 1]d
and f (k,l) ∈ L1([−π, π]d).
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we have

{Xm}m∈Nd ∼σ

η∑
k=1

ζk∏
l=1

b(k,l),

where b(k,l) : [0, 1]d × [−π, π]d → C is defined as

b(k,l)(x
1
, . . . , xd; θ

1
, . . . , θd) :=

{
a(k,l)(x

1
, . . . , xd) if {B(k,l)

m } = {Dm(a(k,l))},
f (k,l)(θ

1
, . . . , θd) if {B(k,l)

m } = {Tm( f (k,l))}.

Moreover, if every Xm is Hermitian, then

{Xm}m∈Nd ∼λ

η∑
k=1

ζk∏
l=1

b(k,l).

The above theorem combines results from [64, Theorem 2.2] and [63, Theorems 4.5 and 4.8]. These

results are formulated in the more general setting of GLT sequences and are based on the a.c.s. notion

given in [59] and reported in Section 2.1, but already present in the seminal work by Tilli [68]. Theorem 1.12

could also be extended by including the (pseudo-)inverse of matrices under mild assumptions on the function

b(k,l)
, namely that the set where b(k,l)

vanishes has zero Lebesgue measure; see [64, Theorem 2.2].

We now focus on a specific application of Theorem 1.12 which will be of interest in Chapter 5. Given a

d-level diagonal sampling matrix Dm(a) associated with a Riemann integrable function a : [0, 1]d → C, we

define the symmetric matrix D̃m(a) as

[D̃m(a)]i, j := [Dm(a)]min(i, j),min(i, j) =

{
[Dm(a)]i,i if i ≤ j,
[Dm(a)] j, j if i > j, i, j = 1, . . . ,N(m). (1.50)

In multi-index notation,

[D̃m(a)]i, j = [Dm(a)]i∧ j,i∧ j =

{
[Dm(a)]i,i if i � j,
[Dm(a)] j, j if i � j, , i, j = 1, . . . ,m. (1.51)

We recall that a d-variate trigonometric polynomial is just a finite linear combination of the Fourier

frequencies {ei j·θ : j ∈ Zd}.

Corollary 1.1. Let {Tm( fi)}m∈Nd , i = 1, . . . , µ, be families of d-level Toeplitz matrices associated with d-variate
trigonometric polynomials fi, i = 1, . . . , µ, and let {D̃m(ai)}m∈Nd , i = 1, . . . , µ, be families of matrices associated
with Riemann integrable functions ai : [0, 1]d → C, with D̃m(ai) defined as in (1.50)–(1.51). Then, µ∑

i=1

D̃m(ai) ◦ Tm( fi)


m∈Nd

∼σ

µ∑
i=1

ai ⊗ fi. (1.52)

Moreover, if ai and fi are real-valued for all i = 1, . . . , µ, then µ∑
i=1

D̃m(ai) ◦ Tm( fi)


m∈Nd

∼λ

µ∑
i=1

ai ⊗ fi. (1.53)

Proof. We decompose the Toeplitz matrix Tm( fi) as

Tm( fi) = T D
m( fi) + T L

m( fi) + T U
m( fi),
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where T D
m( fi), T L

m( fi) and T U
m( fi) form the diagonal, lower and upper triangular matrix of Tm( fi), respectively.

The matrices T D
m( fi), T L

m( fi) and T U
m( fi) are also d-level Toeplitz matrices associated with certain trigonometric

polynomials f D
i , f L

i and f U
i such that fi = f D

i + f L
i + f U

i . More precisely, we have

T D
m( fi) = [ai− j]m

i, j=1, where ak :=
{

( fi)k if k = 0,
0 otherwise

⇒ T D
m( fi) = Tm( f D

i ), with f D
i (θ) = ( fi)0,

T L
m( fi) = [bi− j]m

i, j=1, where bk :=
{

( fi)k if k ≺ 0,
0 otherwise

⇒ T L
m( fi) = Tm( f L

i ), with f L
i (θ) =

∑
k≺0

( fi)ke
ik·θ,

T U
m( fi) = [ci− j]m

i, j=1, where ck :=
{

( fi)k if k � 0,
0 otherwise

⇒ T U
m( fi) = Tm( f U

i ), with f U
i (θ) =

∑
k�0

( fi)ke
ik·θ;

since fi is a trigonometric polynomial, the number of nonzero Fourier coefficients is finite, f L
i and f U

i are

well-defined and fi = f D
i + f L

i + f U
i .

Now, the matrix D̃m(ai) ◦ Tm( fi) can be decomposed as

D̃m(ai) ◦ Tm( fi) = D̃m(ai) ◦ T L
m( fi) + D̃m(ai) ◦ T D

m( fi) + D̃m(ai) ◦ T U
m( fi)

= T L
m( fi)Dm(ai) + Dm(ai)T D

m( fi) + Dm(ai)T U
m( fi)

= Tm( f L
i )Dm(ai) + Dm(ai)Tm( f D

i ) + Dm(ai)Tm( f U
i ), (1.54)

where Dm(ai) is the diagonal sampling matrix associated with ai, defined in (1.49), and used in the definition

of D̃m(ai). Because of this decomposition, (1.52) follows from Theorem 1.12 (we have η = 3µ and ζk = 2

for all k = 1, . . . , 3µ). In addition, if ai and fi are real-valued for all i = 1, . . . , µ, then D̃m(ai) and Tm( fi)
are Hermitian, and so D̃m(ai) ◦ Tm( fi) is Hermitian as well. Hence, again by the decomposition (1.54), the

spectral distribution result (1.53) follows from Theorem 1.12. �
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Chapter 2

Some new tools for computing spectral distributions

In this chapter, we present new tools, taken from [34, 35], for determining the asymptotic spectral distribution

and the symbol of a sequence of matrices. In Section 2.1 we focus on Hermitian matrix-sequences, while in

Section 2.2 we address the non-Hermitian case.

2.1 Tools for determining the spectral distribution of Hermitian matrix-sequences
and applications

In this section, we provide a general tool for deducing the spectral distribution of a ‘difficult’ sequence

{An}n formed by Hermitian matrices, starting from the one of ‘simpler’ sequences {Bn,m}n, again formed by

Hermitian matrices, that approximate {An}n when m→ ∞. The tool is based on the notion of approximating

class of sequences (a.c.s.), which was inspired by the work of Paolo Tilli and Stefano Serra-Capizzano,

and is applied here in a more general setting. An a.c.s.-based proof of the famous Szegö theorem on the

spectral distribution of Toeplitz matrices (item 3 of Theorem 1.8 in the case d = s = 1) is finally presented

in Subsection 2.1.1. We begin by introducing the notion of approximating class of sequences in the next

definition; see [59, Definition 2.1].

Definition 2.1 (approximating class of sequences). Let {An}n be a matrix-sequence, with An of size dn

tending to infinity. An approximating class of sequences (a.c.s.) for {An}n is a sequence of matrix-sequences

{{Bn,m}n : m} such that, for every m,

An = Bn,m + Rn,m + Nn,m ∀n ≥ nm (2.1)

where rank(Rn,m) ≤ %(m)dn, ‖Nn,m‖ ≤ ν(m), the quantities nm, %(m), ν(m) depend only on m and lim
m→∞

%(m) =

lim
m→∞

ν(m) = 0.

Roughly speaking, saying that {{Bn,m}n : m} is an a.c.s. for {An}n means that An is equal to Bn,m plus a

small-rank matrix (with respect to the size dn) plus a small-norm matrix. Lemma 2.1 shows that, if An and

Bn,m are Hermitian, then the small-rank matrix Rn,m and the small-norm matrix Nn,m in the splitting (2.1)

may be supposed Hermitian.

Lemma 2.1. Let {An}n be a sequence of Hermitian matrices, with An of size dn → ∞, and let {{Bn,m}n : m} be
an a.c.s. for {An}n formed by Hermitian matrices (i.e. every Bn,m is Hermitian). Then, for every m, we have

An = Bn,m + Rn,m + Nn,m ∀n ≥ nm

where Rn,m,Nn,m are Hermitian, rank(Rn,m) ≤ %(m)dn, ‖Nn,m‖ ≤ ν(m), the quantities nm, %(m), ν(m) depend only
on m and lim

m→∞
%(m) = lim

m→∞
ν(m) = 0.
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Proof. Take the real part in (2.1) and use the inequalities rank(R(X)) ≤ 2 rank(X) and ‖R(X)‖ ≤ ‖X‖ to

conclude that, by replacing Rn,m,Nn,m with R(Rn,m),R(Nn,m) (if necessary), we can assume Rn,m,Nn,m to be

Hermitian. �

Now we turn to the main theorems of this section (Theorems 2.1 and 2.3), which provide a general tool

for determining the spectral distribution of a ‘difficult’ matrix-sequence {An}n formed by Hermitian matrices,

starting from the knowledge of the spectral distribution of simpler matrix-sequences {Bn,m}n, m = 1, 2, 3, . . . ,
again formed by Hermitian matrices. Recall that, for any Hermitian matrix X ∈ Cm×m

, the eigenvalues of X
are arranged in non-increasing order: λ

1
(X) ≥ . . . ≥ λm(X); moreover, λ j(X) = +∞ if j ≤ 0 and λ j(X) = −∞ if

j ≥ m + 1 (see Section 1.1). If H : R→ R, we define H(∞) := lim
x→∞

H(x) (whenever the limit exists). Similarly,

H(−∞) := lim
x→−∞

H(x).

Theorem 2.1. Let {An}n be a sequence of Hermitian matrices, with An of size dn → ∞. Assume that

1. {{Bn,m}n : m} is an a.c.s. for {An}n formed by Hermitian matrices;

2. for every m and every F ∈ C1

c(R), there exists lim
n→∞

1

dn

dn∑
j=1

F(λ j(Bn,m)) =: φm(F) ∈ C;

3. for every F ∈ C1

c(R), there exists lim
m→∞

φm(F) =: φ(F) ∈ C.

Then, for all F ∈ C1

c(R),

∃ lim
n→∞

1

dn

dn∑
j=1

F(λ j(An)) = φ(F). (2.2)

Proof. The technique of this proof is taken from [59, Proposition 2.3], where an analogous result was proved

for the singular values instead of the eigenvalues. We first observe that it suffices to prove (2.2) for those

test functions F ∈ C1

c(R) that are real-valued. Indeed, any (complex-valued) F ∈ C1

c(R) can be decomposed as

F = R(F) + iI(F), where R(F), I(F) ∈ C1

c(R). Thus, once we have proved (2.2) for all real-valued functions

in C1

c(R), we have

lim
n→∞

1

dn

dn∑
j=1

F(λ j(An)) = lim
n→∞

1

dn

dn∑
j=1

[
R(F(λ j(An))) + iI(F(λ j(An)))

]
= φ(R(F)) + iφ(I(F)) = φ(F),

where the last equality holds by the linearity of the functional φ, which follows from its definition.

Now, let F ∈ C1

c(R) be real-valued. For all n,m we have∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) − φ(F)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) −
1

dn

dn∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Bn,m)) − φm(F)

∣∣∣∣∣∣∣+ |φm(F)−φ(F)|.

(2.3)

By hypothesis, the second term in the right-hand side tends to 0 for n→ ∞, while the third one tends to 0

for m→ ∞. Therefore, if we prove that

lim
m→∞

lim sup
n→∞

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) −
1

dn

dn∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣∣∣ = 0, (2.4)

then, passing first to the lim sup
n→∞

and then to the lim
m→∞

in (2.3), we get the thesis.
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In conclusion, we only have to prove (2.4). To this end, we recall that {{Bn,m}n : m} is an a.c.s. for {An}n

and that An, Bn,m are Hermitian as in Lemma 2.1. Hence, for every m,

An = Bn,m + Rn,m + Nn,m ∀n ≥ nm

where Rn,m,Nn,m are Hermitian, rank(Rn,m) ≤ %(m)dn, ‖Nn,m‖ ≤ ν(m), the quantities nm, %(m), ν(m) depend only

on m and lim
m→∞

%(m) = lim
m→∞

ν(m) = 0. We can then write, for every m and every n ≥ nm,∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) −
1

dn

dn∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) −
1

dn

dn∑
j=1

F(λ j(Bn,m + Rn,m))

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Bn,m + Rn,m)) −
1

dn

dn∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣∣∣ . (2.5)

We will consider separately the two terms in the right-hand side of (2.5), and we will show that each of

them is bounded from above by a quantity depending only on m and tending to 0 as m → ∞. After this,

(2.4) is proved and the thesis follows.

In order to estimate the first term in the right-hand side of (2.5), we use the Weyl’s perturbation theorem;

see [7, p. 63]. We have∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) −
1

dn

dn∑
j=1

F(λ j(Bn,m + Rn,m))

∣∣∣∣∣∣∣ ≤ 1

dn

dn∑
j=1

∣∣∣F(λ j(An)) − F(λ j(Bn,m + Rn,m))
∣∣∣

≤
1

dn

dn∑
j=1

‖F′‖∞
∣∣∣λ j(An) − λ j(Bn,m + Rn,m)

∣∣∣ ≤ ‖F′‖∞‖An − Bn,m − Rn,m‖ = ‖F′‖∞‖Nn,m‖ ≤ ‖F′‖∞ν(m),

which tends to 0 as m→ ∞.

In order to estimate the second term in the right-hand side of (2.5), we will use the interlacing Theo-

rem 1.4. We first observe that F can be expressed as the difference between two nonnegative, non-decreasing,

bounded functions:

F = H − K, H(x) :=
∫ x

−∞

(F′)+(t)dt, K(x) :=
∫ x

−∞

(F′)−(t)dt,

where (F′)+ := max(F′, 0) and (F′)− := max(−F′, 0). Hence, for the second term in the right-hand side of

(2.5) we have∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Bn,m + Rn,m)) −
1

dn

dn∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

H(λ j(Bn,m + Rn,m)) −
1

dn

dn∑
j=1

H(λ j(Bn,m))

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

K(λ j(Bn,m + Rn,m)) −
1

dn

dn∑
j=1

K(λ j(Bn,m))

∣∣∣∣∣∣∣ . (2.6)

Defining rn,m := rank(Rn,m) ≤ %(m)dn, Theorem 1.4 gives

λ j−rn,m(Bn,m) ≥ λ j(Bn,m + Rn,m) ≥ λ j+rn,m(Bn,m), ∀ j = 1, . . . , dn,

and, moreover, it is clear from our notation that

λ j−rn,m(Bn,m) ≥ λ j(Bn,m) ≥ λ j+rn,m(Bn,m), ∀ j = 1, . . . , dn.
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Therefore, recalling the monotonicity and nonnegativity of H,∣∣∣∣∣∣∣ 1dn

dn∑
j=1

H(λ j(Bn,m + Rn,m)) −
1

dn

dn∑
j=1

H(λ j(Bn,m))

∣∣∣∣∣∣∣ ≤ 1

dn

dn∑
j=1

∣∣∣H(λ j(Bn,m + Rn,m)) − H(λ j(Bn,m))
∣∣∣

≤
1

dn

dn∑
j=1

∣∣∣H(λ j−rn,m(Bn,m)) − H(λ j+rn,m(Bn,m))
∣∣∣ =

1

dn

dn∑
j=1

H(λ j−rn,m(Bn,m)) −
1

dn

dn∑
j=1

H(λ j+rn,m(Bn,m))

=
1

dn

dn−rn,m∑
j=1−rn,m

H(λ j(Bn,m)) −
1

dn

dn+rn,m∑
j=1+rn,m

H(λ j(Bn,m)) =
1

dn

rn,m∑
j=1−rn,m

H(λ j(Bn,m)) −
1

dn

dn+rn,m∑
j=dn−rn,m+1

H(λ j(Bn,m))

≤
1

dn

rn,m∑
j=1−rn,m

H(λ j(Bn,m)) ≤
2rn,mH(∞)

dn
≤ 2%(m)‖H‖∞.

Similarly, one can show that the second term in the right-hand side of (2.6) is bounded from above by

2%(m)‖K‖∞, implying that the quantity in (2.6), namely the second term in the right-hand side of (2.5), is

less than or equal to 2(‖H‖∞ + ‖K‖∞)%(m). Since the latter tends to 0 as m→ ∞, the thesis is proved. �

The only unpleasant point about Theorem 2.1 is that, in traditional formulations of asymptotic spectral

distribution results, the usual set of test functions F is Cc(C) or Cc(R), but not C1

c(R); see also Definitions 1.1–

1.2. However, this point is readily settled in Theorem 2.3, where we prove that, under the same hypotheses

of Theorem 2.1, if the second and third assumptions are met for every F ∈ Cc(R), then (2.2) holds for every

F ∈ Cc(R). For the proof of Theorem 2.3, we shall use the following corollary of the Banach-Steinhaus

theorem [50].

Theorem 2.2. Let E ,F be normed vector spaces, with E a Banach space, and let Tn : E → F be a sequence
of continuous linear operators. Assume that, for all x ∈ E , there exists lim

n→∞
Tnx =: T x ∈ F . Then,

• sup ‖Tn‖ < ∞;

• T : E → F is a continuous linear operator with ‖T‖ ≤ lim inf

n→∞
‖Tn‖.

Theorem 2.3. Let {An}n be a sequence of Hermitian matrices, with An of size dn → ∞. Assume that

1. {{Bn,m}n : m} is an a.c.s. for {An}n formed by Hermitian matrices;

2. for every m and every F ∈ Cc(R), there exists lim
n→∞

1

dn

dn∑
j=1

F(λ j(Bn,m)) =: φm(F) ∈ C;

3. for every F ∈ Cc(R), there exists lim
m→∞

φm(F) =: φ(F) ∈ C.

Then φ : (Cc(R), ‖ · ‖∞)→ C is a continuous linear functional with ‖φ‖ ≤ 1, and, for all F ∈ Cc(R),

∃ lim
n→∞

1

dn

dn∑
j=1

F(λ j(An)) = φ(F). (2.7)

Proof. For fixed n,m, let

φn,m(F) :=
1

dn

dn∑
j=1

F(λ j(Bn,m)) : (Cc(R), ‖ · ‖∞)→ C.
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It is clear that each φn,m is a continuous linear functional on (Cc(R), ‖ · ‖∞) with ‖φn,m‖ ≤ 1. Indeed, the

linearity of φn,m is obvious and the inequality |φn,m(F)| ≤ ‖F‖∞, which is satisfied for all F ∈ Cc(R), yields
the continuity of φn,m as well as the bound ‖φn,m‖ ≤ 1. The functional φm is the pointwise limit of φn,m as

n → ∞. Hence, by Theorem 2.2, φm : (Cc(R), ‖ · ‖∞) → C is a continuous linear functional on (Cc(R), ‖ · ‖∞)
with ‖φm‖ ≤ 1. The functional φ is the pointwise limit of φm as m → ∞. Hence, again by Theorem 2.2, φ is

a continuous linear functional on (Cc(R), ‖ · ‖∞) with ‖φ‖ ≤ 1.

Now, fix F ∈ Cc(R). For all ε > 0 we can find Fε ∈ C1

c(R) such that ‖F − Fε‖∞ ≤ ε. As a consequence, for

all ε > 0 and all n we have∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) − φ(F)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) −
1

dn

dn∑
j=1

Fε(λ j(An))

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

Fε(λ j(An)) − φ(Fε)

∣∣∣∣∣∣∣ + |φ(Fε) − φ(F)|

≤ ‖F − Fε‖∞ +

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

Fε(λ j(An)) − φ(Fε)

∣∣∣∣∣∣∣ + |φ(Fε) − φ(F)|.

Considering that (2.7) holds for Fε by Theorem 2.1, we have

lim sup
n→∞

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) − φ(F)

∣∣∣∣∣∣∣ ≤ ε + |φ(Fε) − φ(F)|.

Passing to the limit as ε → 0 and taking into account the continuity of φ, we obtain

lim sup
n→∞

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(An)) − φ(F)

∣∣∣∣∣∣∣ = 0,

which means that (2.7) holds for every F ∈ Cc(R). �

2.1.1 An a.c.s.-based proof of the Szegö theorem on the spectral distribution of Toeplitz matrices

As an application of Theorem 2.3, we present in this subsection a new proof of the famous Szegö theorem

on the spectral distribution of Toeplitz matrices, which is nothing else than item 3 of Theorem 1.8 in the

case d = s = 1. This theorem, originally appeared in [39], has undergone several extensions [70, 11] until

the final version by Tilli [67], which includes all the others as particular cases. For the proof of the various

extensions, other arguments, different from the one used in [39], have been proposed. In particular, Tilli’s

argument [67] is similar to the one that we are going to present, but it does not make use of the concept of

a.c.s., which was introduced later. To our knowledge, an a.c.s.-based proof, like the one that we are going

to see in the following, has never appeared in the literature. Such proof is particularly useful to understand

how the a.c.s. notion can be seen as a fundamental definition that sets the basis for an approximation theory

for matrix-sequences, of which Theorems 2.1 and 2.3 are fundamental stones.

Let us start with reformulating Definition 1.1 in terms of functionals φ and in the case where the symbol

f is a univariate scalar function f (i.e., in the case d = s = 1).

Definition 2.2. Let {An}n be a sequence of matrices, with An of size dn → ∞, and let f : D → C be a

measurable function, defined on a measurable set D ⊂ R with 0 < m(D) < ∞. We say that {An}n has an

asymptotic spectral distribution described by f , in symbols {An}n ∼λ f , if

lim
n→∞

1

dn

dn∑
j=1

F(λ j(An)) = φ f (F), ∀F ∈ Cc(C), (2.8)

where

φ f (F) :=
1

m(D)

∫
D

F( f (x))dx. (2.9)

38



In the case where {An}n is formed by Hermitian matrices and f is real-valued, all the eigenvalues of An

are real and writing {An}n ∼λ f is equivalent to saying that (2.8) is verified for every test function F ∈ Cc(R),
with φ f still defined by (2.9). Concerning the functional φ f , we record the following property, of interest

later on.

Lemma 2.2. Let fm : D→ C be a sequence of measurable functions, defined on a measurable set D ⊂ R with
0 < m(D) < ∞, and assume that fm converges in measure to some measurable function f : D→ C. Then,

φ fm(F)→ φ f (F), ∀F ∈ Cc(C). (2.10)

In particular, if fm, f are real-valued then

φ fm(F)→ φ f (F), ∀F ∈ Cc(R). (2.11)

Proof. Let F ∈ Cc(C) and ε > 0. Defining {| fm − f | ≥ ε} := {x ∈ D : | fm(x) − f (x)| ≥ ε} and {| fm − f | < ε} :=
{x ∈ D : | fm(x) − f (x)| < ε}, we have

|φ fm(F) − φ f (F)| ≤
1

m(D)

∫
D
|F( fm(x)) − F( f (x))|dx

=
1

m(D)

∫
{| fm− f |≥ε}

|F( fm(x)) − F( f (x))|dx +
1

m(D)

∫
{| fm− f |<ε}

|F( fm(x)) − F( f (x))|dx

≤
2‖F‖∞m({| fm − f | ≥ ε})

m(D)
+ ωF(ε), (2.12)

where ωF is the modulus of continuity of F. Note that lim
m→∞

m({| fm− f | ≥ ε}) = 0 (because fm → f in measure)

and lim
ε→0

ωF(ε) = 0 (because F is uniformly continuous by the Heine-Cantor theorem). Hence, passing first

to the lim sup
m→∞

and then to the lim
ε→0

in (2.12), we get (2.10). In the case where fm, f are real-valued, (2.10)

immediately implies (2.11), because every F ∈ Cc(R) is obtained as the restriction to R of some F̃ ∈ Cc(C). �

Now, let f : [−π, π]→ C be a function in L1([−π, π]), and denote its Fourier coefficients by

f j :=
1

2π

∫ π

−π

f (x)e−i jxdx, j ∈ Z.

We recall from Subsection 1.4.1 that, for every n ≥ 1, the n-th Toeplitz matrix associated with f is defined as

Tn( f ) := [ fi− j]n
i, j=1.

In the case where f is real-valued, all the matrices Tn( f ) are Hermitian and the following result holds.

Theorem 2.4 (Szegö). Let f be a real-valued function in L1([−π, π]), then {Tn( f )}n ∼λ f .

Our goal is to provide a proof of Theorem 2.4 based on the notion of a.c.s. and, especially, on Theorem 2.3.

To this end, we need some auxiliary lemmas. If f ∈ L1([−π, π]), we set

‖ f ‖L1([−π,π]) :=
∫ π

−π

| f (x)|dx.

Lemma 2.3. Let f ∈ L1([−π, π]) and n ∈ N, then

|||Tn( f )|||
1
≤ Cn‖ f ‖L1([−π,π]), (2.13)

where C = 1/π.
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Proof. The proof is taken from [67, Lemma 3.1]. We first observe that, if f ≥ 0, then Tn( f ) is HPSD by

Theorem 1.8 and, consequently, the singular values and the eigenvalues of Tn( f ) coincide. Thus,

|||Tn( f )|||
1

=

n∑
j=1

λ j(Tn( f )) = trace(Tn( f )) = n f
0

=
n
2π
‖ f ‖L1([−π,π]), (2.14)

which proves the thesis whenever f is nonnegative.

Now suppose that f ∈ L1([−π, π]) is arbitrary, and consider the following nonnegative functions:

R( f )+(x) = max(R( f (x)), 0), R( f )−(x) = max(−R( f (x)), 0),
I( f )+(x) = max(I( f (x)), 0), I( f )−(x) = max(−I( f (x)), 0).

Then

f = R( f )+ − R( f )− + iI( f )+ − iI( f )−

and

Tn( f ) = Tn(R( f )+) − Tn(R( f )−) + iTn(I( f )+) − iTn(I( f )−).

Since R( f )+, R( f )−, I( f )+, I( f )− are nonnegative, by (2.14) we have

|||Tn( f )|||
1
≤

∣∣∣∣∣∣∣∣∣Tn(R( f )+)
∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣Tn(R( f )−)

∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣Tn(I( f )+)

∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣Tn(I( f )−)

∣∣∣∣∣∣∣∣∣
1

=
n
2π

∫ π

−π

R( f )+(x)dx +
n
2π

∫ π

−π

R( f )−(x)dx +
n
2π

∫ π

−π

I( f )+(x)dx +
n
2π

∫ π

−π

I( f )−(x)dx

=
n
2π

∫ π

−π

[
R( f )+(x) + R( f )−(x) + I( f )+(x) + I( f )−(x)

]
dx =

n
2π

∫ π

−π

[
|R( f (x))| + |I( f (x))|

]
dx

≤
n
2π

∫ π

−π

2| f (x)|dx.

�

The inequality (2.13) is part of a large family of inequalities involving Toeplitz matrices and Schatten

p-norms. In particular, in a finer version of (2.13), the constant C = 1/π is replaced by C = 1/(2π), which is

precisely the constant obtained in (2.14), in the case where f is nonnegative. We refer the interested reader

to [61, Corollary 3.5].

Lemma 2.4. Let Zn,m be a matrix of size n, and assume that, for every m,∣∣∣∣∣∣∣∣∣Zn,m

∣∣∣∣∣∣∣∣∣
1

≤ α(m)n, ∀n ≥ nm,

where α(m), nm depend only on m. Then, for every m,

Zn,m = Rn,m + Nn,m, ∀n ≥ nm,

where rank(Rn,m) ≤
√
α(m) n and ‖Nn,m‖ ≤

√
α(m).

Proof. The thesis may be somehow derived from the results in [60] (see in particular Theorem 4.4 and

Corollaries 4.1–4.2). However, since the derivation is not so plain, we include a short and direct proof for

the sake of the reader.

Fix m and n ≥ nm. Since

∣∣∣∣∣∣∣∣∣Zn,m

∣∣∣∣∣∣∣∣∣
1

≤ α(m)n, the number of singular values of Zn,m that exceed

√
α(m)

cannot be larger than

√
α(m) n. Let Zn,m = Un,mΣn,mV∗n,m be a singular value decomposition of Zn,m and write

Zn,m = Un,mΣn,mV∗n,m = Un,mΣ(1)
n,mV∗n,m + Un,mΣ(2)

n,mV∗n,m,
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where Σ
(1)
n,m is obtained from Σn,m by setting to 0 all the singular values that are less than or equal to

√
α(m),

while Σ
(2)
n,m := Σn,m−Σ

(1)
n,m is obtained from Σn,m by setting to 0 all the singular values that exceed

√
α(m). Then

Zn,m = Rn,m + Nn,m,

where Rn,m := Un,mΣ
(1)
n,mV∗n,m and Nn,m := Un,mΣ

(2)
n,mV∗n,m satisfy rank(Rn,m) ≤

√
α(m) n and ‖Nn,m‖ ≤

√
α(m). �

The next lemma shows that Theorem 2.4 holds in the case where f is a trigonometric polynomial.

Lemma 2.5. Let p be a real-valued trigonometric polynomial, then {Tn(p)}n ∼λ p.

Proof. Let p(x) :=
∑s

j=−s p je
i jx

be a real-valued trigonometric polynomial. Note that p− j = p j for all j =

−s, . . . , s, because p is real. For every n ≥ 2s + 1, consider the following decomposition of Tn(p):

Tn(p) =



p
0
· · · p−s ps · · · p

1

...
. . .

. . .
. . .

...

ps
. . .

. . . ps
. . .

. . .
. . .

. . .
. . .

. . .

p−s
. . .

. . . p−s
...

. . .
. . .

. . .
...

p−1 · · · p−s ps · · · p
0



−



ps · · · p
1

. . .
...

ps

p−s
...

. . .

p−1 · · · p−s



=: Cn(p) − Zn(p).

(2.15)

Cn(p) is a (Hermitian) circulant matrix and hence its eigenvalues are explicitly known (see Theorem 1.11):

λ j(Cn(p)) = p
(
2π( j − 1)

n

)
, j = 1, . . . , n.

Therefore, for every test function F ∈ Cc(R), we have

lim
n→∞

1

n

n∑
j=1

F(λ j(Cn(p))) = lim
n→∞

1

n

n−1∑
j=0

F
(
p
(
2π j
n

))
=

1

2π

∫
2π

0

F(p(x))dx =
1

2π

∫ π

−π

F(p(x))dx,

where the last equality holds because p is periodic with period 2π, while the second equality is due to the

fact that
2π
n

∑n−1
j=0 F(p( 2π j

n )) is a quadrature formula for approximating

∫
2π

0

F(p(x))dx and converges to this

integral as n→ ∞, because the function F(p(x)) is continuous on [0, 2π]. Thus, {Cn(p)}n ∼λ p.
Now, for every n,m, set An := Tn(p) and Bn,m := Cn(p). We have just proved that {Bn,m}n ∼λ p for every

m. All the hypotheses of Theorem 2.3 are then satisfied (with φm = φ = φp, as given by (2.9) for f = p) if

{{Bn,m}n : m} is an a.c.s. for {An}n. But this is clearly true, because, in view of (2.15), for every m we have

An = Bn,m + Rn,m + Nn,m, ∀n ≥ nm,

where Nn,m is the zero matrix and Rn,m := −Zn(p) satisfies rank(Rn,m) ≤ 2s ≤ %(m)n for all n ≥ nm, provided

that we choose nm = m and %(m) = 2s/m. All the hypotheses of Theorem 2.3 are then satisfied and so

{Tn(p)}n ∼λ p. �
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Proof of Theorem 2.4. Take a sequence of real trigonometric polynomials pm such that pm → f in L1([−π, π]).
We prove that the assumptions of Theorem 2.3 are satisfied with

An = Tn( f ), Bn,m = Tn(pm), φm = φpm , φ = φp.

We first note that Tn( f ) and Tn(pm) are Hermitian, because f and pm are real. By Lemma 2.5, for every m
we have {Tn(pm)}n ∼λ pm. By Lemma 2.2, φpm(F) → φp(F) for all F ∈ Cc(R), because pm → f in L1([−π, π])
and hence, a fortiori, pm → f in measure. It remains to show that {{Tn(pm)}n : m} is an a.c.s. for {Tn( f )}n.

By Lemma 2.3, for every n,m we have

|||Tn( f ) − Tn(pm)|||
1

= |||Tn( f − pm)|||
1
≤ (n/π)‖ f − pm‖L1([−π,π]) = α(m)n,

where α(m) := (1/π)‖ f − pm‖L1([−π,π]). Thus, by Lemma 2.4, for every n,m we have

Tn( f ) − Tn(pm) = Rn,m + Nn,m,

where rank(Rn,m) ≤
√
α(m) n and ‖Nn,m‖ ≤

√
α(m). Since α(m)→ 0 as m→ ∞, {{Tn(pm)}n : m} is an a.c.s. for

{Tn( f )}n. The thesis now follows from Theorem 2.3. �

We conclude by saying that a completely analogous proof as the one presented in this subsection

can be given also for the multilevel block version of the Szegö theorem stated in item 3 of Theorem 1.8.

Here, we decided to address only the monolevel scalar case in order to avoid technicalities and notational

complications, so as to make more clear the ‘a.c.s. idea’ and the way in which Theorem 2.3 is applied in

practice.

2.2 Tools for determining the spectral distribution of non-Hermitian perturba-
tions of Hermitian matrix-sequences and applications

The tools presented in this section serve to determine the spectral distribution of a matrix-sequence of the

form {Xn+Yn}, where Xn is Hermitian and Yn is a perturbation of Xn with small trace-norm with respect to the

matrix size dn. More precisely, given a matrix-sequence {Xn}, with Xn Hermitian of size dn tending to infinity,

we consider the sequence {Xn + Yn}, where {Yn} is an arbitrary (non-Hermitian) perturbation of {Xn}. In this

section, we prove that {Xn + Yn} has an asymptotic spectral distribution if: {Xn} has an asymptotic spectral

distribution, the spectral norms ‖Xn‖, ‖Yn‖ are uniformly bounded with respect to n, and |||Yn|||1 = o(dn).
Furthermore, under the above assumptions, the functional φ identifying the asymptotic spectral distribution

is the same for {Xn + Yn} and {Xn}. This result extends Theorem 1.6, where the functional φ identifying

the asymptotic spectral distribution of both {Xn} and {Yn} is given by φ(F) := 1

md(D)

∫
D

F( f (x))dx, to the case

where the spectral distribution of {Xn} and {Yn} is described by more general functionals φ. We mention

some examples of applications, including the case of matrix-sequences with spectral distributions described

by matrix-valued functions and the approximation by Qp Finite Element Methods of convection-diffusion

equations. The latter application will be developed in full details in Chapter 3.

2.2.1 Main results

Our main result, briefly summarized above, is Theorem 2.6. In order to prove it, we need some preliminary

work. If S ⊂ C is compact and F is continuous over S , we set ‖F‖∞,S := maxz∈S |F(z)|.

Theorem 2.5. Let {Zn} be a sequence of matrices, with Zn of size dn tending to infinity, and assume the
following.
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1. {Zn} is weakly clustered at a compact set S ⊂ C with C\S connected.

2. ρ(Zn) ≤ C for all n, with C a constant independent of n.

3. For some radius R and for all functions p ∈ Cc(C) coinciding over D(0,R) with a complex polynomial
in C[z], there exists lim

n→∞
1

dn

∑dn
j=1 p(λ j(Zn)) = φ(p), where φ : Cc(C) → C satisfies the following ‘continuity

property’:

∀F ∈ Cc(C), ∀ε > 0 ∃δ := δε,F > 0 : |φ(F) − φ(G)| ≤ ε ∀G ∈ Cc(C) with ‖F −G‖∞,S ≤ δ. (2.16)

Then, for all F ∈ Cc(C) holomorphic in the interior of S there exists

lim
n→∞

1

dn

dn∑
j=1

F(λ j(Zn)) = φ(F). (2.17)

In particular, if the interior of S is empty, (2.17) holds for all F ∈ Cc(C).

Proof. Let F ∈ Cc(C) be holomorphic in the interior of S and let ε ∈ (0, 1). By the hypothesis on φ, there
exists δ := δε,F > 0 such that |φ(F)−φ(G)| ≤ ε for all G ∈ Cc(C) with ‖F−G‖∞,S ≤ δ. Without loss of generality,

we may assume δ ≤ ε. By the Mergelyan theorem [50], there exists a polynomial q(z) := qε,F(z) ∈ C[z] such

that ‖q − F‖∞,S ≤ δ. Let p := pε,F be a function in Cc(C) coinciding with q over S ∪ D(0,R), and note that

‖p − F‖∞,S ≤ δ ≤ ε and |φ(p) − φ(F)| ≤ ε. Then, for all n we have∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Zn)) − φ(F)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Zn)) −
1

dn

dn∑
j=1

p(λ j(Zn))

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

p(λ j(Zn)) − φ(p)

∣∣∣∣∣∣∣ + |φ(p) − φ(F)|.

(2.18)

The second term in the right-hand side tends to 0 as n→ ∞ (by the third assumption), while the third term

is bounded from above by ε. For the first term we have∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Zn)) −
1

dn

dn∑
j=1

p(λ j(Zn))

∣∣∣∣∣∣∣ ≤ 1

dn

dn∑
j=1

|F(λ j(Zn)) − p(λ j(Zn))|

=
1

dn

∑
j: λ j(Zn)<D(S ,ε)

|F(λ j(Zn)) − p(λ j(Zn))| +
1

dn

∑
j: λ j(Zn)∈D(S ,ε)\S

|F(λ j(Zn)) − p(λ j(Zn))|

+
1

dn

∑
j: λ j(Zn)∈S

|F(λ j(Zn)) − p(λ j(Zn))|. (2.19)

Now observe that the spectrum Λ(Zn) is contained in D(0,C) for all n, because the spectral radii ρ(Zn) are

all bounded from above by C (second assumption). Moreover, by definition of D(S , ε) (see Section 1.1), for

all n and all j ∈ {1, . . . , dn} such that λ j(Zn) ∈ D(S , ε) we can find a point µ j,n ∈ S such that |λ j(Zn) − µ j,n| ≤ ε.

Let ωF and ωp be the moduli of continuity of F and p over D(S , 1), and note that D(S , 1) ⊇ D(S , ε), because
we have fixed ε ∈ (0, 1). Then, the three summands in (2.19) can be bounded as follows:

1

dn

∑
j: λ j(Zn)<D(S ,ε)

|F(λ j(Zn)) − p(λ j(Zn))| ≤
‖F − p‖

∞,D(0,C) #{ j ∈ {1, . . . , dn} : λ j(Zn) < D(S , ε)}

dn
≤ c

qε(n, S )
dn

,
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with qε(n, S ) := #{ j ∈ {1, . . . , dn} : λ j(Zn) < D(S , ε)} as in Definition 1.3 and c a constant independent of n;

1

dn

∑
j: λ j(Zn)∈D(S ,ε)\S

|F(λ j(Zn)) − p(λ j(Zn))|

≤
1

dn

∑
j: λ j(Zn)∈D(S ,ε)\S

(
|F(λ j(Zn)) − F(µ j,n)| + |F(µ j,n) − p(µ j,n)| + |p(µ j,n) − p(λ j(Zn))|

)
≤

1

dn

∑
j: λ j(Zn)∈D(S ,ε)\S

(
ωF(ε) + δ + ωp(ε)

)
≤ ωF(ε) + ε + ωp(ε);

1

dn

∑
j: λ j(Zn)∈S

|F(λ j(Zn)) − p(λ j(Zn))| ≤ ‖F − p‖∞,S ≤ δ ≤ ε.

Passing to the limit as n→ ∞ in (2.18) and recalling that {Zn} is weakly clustered at S , we get

lim sup
n→∞

∣∣∣∣∣∣∣ 1dn

dn∑
j=1

F(λ j(Zn)) − φ(F)

∣∣∣∣∣∣∣ ≤ ωF(ε) + ε + ωp(ε) + ε + ε,

and the thesis follows from the fact that the right-hand side tends to 0 as ε → 0, since F, p are continuous

(and hence uniformly continuous) over D(S , 1). �

Remark 2.1. We note that, if φ : Cc(C) → C is a functional satisfying (2.16) for a compact set S and if K
is a compact set containing S , then φ satisfies (2.16) also for the compact set K.

Lemma 2.6. |trace(Z)| ≤ |||Z|||
1
for all square matrices Z.

Proof. This is Weyl’s majorization theorem for p = 1; see, e.g., [7, Theorem II.3.6, Eq. (II.23)]. For the reader’s

convenience, we include a short and direct proof. Let Z ∈ Cm×m
be a square matrix and let Z = UΣV be a

singular value decomposition of Z. Then,

|trace(Z)| =

∣∣∣∣∣∣∣
m∑

i=1

(UΣV)ii

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑

i=1

m∑
k=1

uikσk(Z)vki

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑

k=1

σk(Z)
m∑

i=1

uikvki

∣∣∣∣∣∣∣ ≤
m∑

k=1

σk(Z)
m∑

i=1

|uik||vki| ≤

m∑
k=1

σk(Z) = |||Z|||
1
,

where the latter inequality follows from the Cauchy-Schwarz inequality and from the fact that the Euclidean

norm of the vectors uk := [u
1k, . . . , umk] and vk := [vk1, . . . , vkm] is 1 (the matrices U,V are unitary). �

Lemma 2.7. Let {Zn} be a sequence of matrices, with Zn of size dn tending to infinity, and assume that
|||I(Zn)|||

1
= o(dn) and Λ(R(Zn)) ⊆ [c, d] for all n, with c, d independent of n. Then {Zn} is weakly clustered at

[c, d].

Proof. The Lemma follows from [37, Corollary 3.3]. We may also derive it directly from [37, Lemma 3.2]. �

Theorem 2.6. Let {Xn}, {Yn} be sequences of matrices with Xn,Yn ∈ C
dn×dn and dn tending to infinity, and

assume the following.

1. ‖Xn‖, ‖Yn‖ ≤ C for all n, with C a constant independent of n.

2. Every Xn is Hermitian and, for some radius R and for all functions p ∈ Cc(C) coinciding over D(0,R) with
a complex polynomial in C[z], there exists lim

n→∞
1

dn

∑dn
j=1 p(λ j(Xn)) = φ(p), where φ : Cc(C) → C satisfies

(2.16) for some compact set S ⊂ R.

3. |||Yn|||1 = o(dn) as n→ ∞.
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Then, setting Zn := Xn + Yn, for every F ∈ Cc(C) there exists

lim
n→∞

1

dn

dn∑
j=1

F(λ j(Zn)) = φ(F).

Proof. Let K be a compact subset of R containing both S and [−2C, 2C]. Note that K does not disconnect

C and has empty interior. Moreover, φ satisfies (2.16) for the compact set S and hence also for the compact

set K, by Remark 2.1. We show that the sequence {Zn} satisfies the assumptions of Theorem 2.5 with K in

place of S , after which the proof is finished.

1. We have Zn = Xn + R(Yn) + iI(Yn), where R(Zn) = Xn + R(Yn) has all the eigenvalues in [−2C, 2C],
because ‖R(Zn)‖ ≤ ‖Xn‖ + ‖R(Yn)‖ ≤ ‖Xn‖ + ‖Yn‖ ≤ 2C, while |||I(Zn)|||

1
= |||I(Yn)|||

1
≤ |||Yn|||1 = o(dn). Hence, {Zn}

is weakly clustered at [−2C, 2C] by Lemma 2.7, and, a fortiori, is weakly clustered at K ⊇ [−2C, 2C].
2. ρ(Zn) ≤ ‖Zn‖ ≤ ‖Xn‖ + ‖Yn‖ ≤ 2C for all n.
3. We show that limn→∞

1

dn

∑dn
j=1 p(λ j(Zn)) = φ(p) for all functions p ∈ Cc(C) coinciding with a polynomial

over D(0, 2C + R). Note first that, for a monomial zk, k ≥ 0, we have

Zk
n = (Xn + Yn)k = Xk

n + Rn,k,

where Rn,k := (Xn + Yn)k − Xk
n satisfies

∣∣∣∣∣∣∣∣∣Rn,k

∣∣∣∣∣∣∣∣∣
1

= o(dn). This follows from the third assumption, from the

fact that ‖Xn‖, ‖Yn‖ are bounded from above by a constant C independent of n, and from the Hölder-type

inequality |||XY |||
1
≤ ‖X‖ |||Y |||

1
satisfied by the trace-norm (see [7, Problem III.6.2 and Corollary IV.2.6] for the

Hölder-type inequalities satisfied by the Schatten p-norms and by the unitarily invariant norms in general).

Therefore, for every polynomial q(z) := q
0

+ q
1
z + . . . + qmzm ∈ C[z] we have q(Zn) = q(Xn) + Rn,q(z), where

Rn,q(z) :=
∑m

k=0 qkRn,k satisfies

∣∣∣∣∣∣∣∣∣Rn,q(z)

∣∣∣∣∣∣∣∣∣
1

= o(dn). By Lemma 2.6 we then obtain

|trace(q(Zn)) − trace(q(Xn))| = |trace(q(Zn) − q(Xn))| = |trace(Rn,q(z))| ≤
∣∣∣∣∣∣∣∣∣Rn,q(z)

∣∣∣∣∣∣∣∣∣
1

= o(dn),

implying that the sequence

1

dn
trace(q(Zn)) =

1

dn

dn∑
j=1

q(λ j(Zn))

converges to the same limit of the sequence

1

dn
trace(q(Xn)) =

1

dn

dn∑
j=1

q(λ j(Xn))

(provided the latter exists). To conclude, note that Λ(Zn), Λ(Xn) ⊆ D(0, 2C + R) for all n. This implies that,

for all p ∈ Cc(C) coinciding over D(0, 2C + R) with a polynomial qp(z) ∈ C[z], we have

lim
n→∞

1

dn

dn∑
j=1

p(λ j(Zn)) = lim
n→∞

1

dn

dn∑
j=1

qp(λ j(Zn)) = lim
n→∞

1

dn

dn∑
j=1

qp(λ j(Xn)) = lim
n→∞

1

dn

dn∑
j=1

p(λ j(Xn)) = φ(p),

where the last equality follows from the second assumption. �

2.2.2 Some applications

In this subsection, we discuss some applications of Theorem 2.6: the case of matrix-sequences with asymp-

totic spectral distributions described by matrix-valued functions and the approximation by Qp Finite Element

Methods of convection-diffusion equations.
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Matrix-sequences with asymptotic spectral distributions described by matrix-valued functions

From Theorem 2.6 we obtain the following generalization of Theorem 1.6. As we shall see, this generaliza-

tion serves in particular to determine the asymptotic spectral distribution of matrix-sequences of the form

{Tn(n)(f) + Yn}n, where f is some Hermitian matrix-valued function in L∞, n(n) → ∞ as n → ∞, and {Yn}

satisfies the assumptions of Theorem 2.7.

Theorem 2.7. Let {Xn}, {Yn} be sequences of matrices with Xn,Yn ∈ C
dn×dn and dn tending to infinity, and

assume the following.

1. ‖Xn‖, ‖Yn‖ ≤ C for all n, with C a constant independent of n.

2. Every Xn is Hermitian and {Xn} ∼λ f, where f : D → Cs×s is a measurable function defined on a
measurable set D ⊂ Rd with 0 < md(D) < ∞.

3. |||Yn|||1 = o(dn) as n→ ∞.

Then
⋃

n Λ(Xn) ⊆ [−C,C], λ
1
(f), . . . , λs(f) ∈

⋃
n Λ(Xn) a.e., and {Zn} ∼λ f, where Zn := Xn + Yn.

Proof. Let K :=
⋃

n Λ(Xn). Since every Xn is Hermitian with ‖Xn‖ ≤ C, we have K ⊆ [−C,C]. We

show that λ
1
(f), . . . , λs(f) ∈ K a.e. Assume by contradiction that this is not the case. Then, we can

find a disk D(z, r) such that D(z, r) ∩ K is empty and md({∃ j : λ j(f) ∈ D(z, r)}) > 0, where {∃ j : λ j(f) ∈
D(z, r)} := {x ∈ D : ∃ j ∈ {1, . . . , s} such that λ j(f(x)) ∈ D(z, r)}. Choose a test function F ∈ Cc(C) such

that F = 1 over D(z, r), F = 0 over K, and 0 ≤ F ≤ 1 over C. For this test function the limit relation

limn→∞
1

dn

∑dn
j=1 F(λ j(Xn)) = 1

md(D)

∫
D

1

s

∑s
j=1 F(λ j(f(x))) dx cannot hold, because the first term is 0 while the

second is positive. This is a contradiction to the second hypothesis. We conclude that λ
1
(f), . . . , λs(f) ∈ K

a.e.

Now, let φ : Cc(C)→ C be the functional defined as

φ(F) :=
1

md(D)

∫
D

1

s

s∑
j=1

F(λ j(f(x))) dx.

This functional satisfies (2.16) with S = [−C,C], because λ
1
(f), . . . , λs(f) ∈ [−C,C] a.e. and hence, for all

F,G ∈ Cc(C),

|φ(F) − φ(G)| ≤
1

md(D)

∫
D

1

s

s∑
j=1

∣∣∣F(λ j(f(x))) −G(λ j(f(x)))
∣∣∣ dx ≤ ‖F −G‖∞,[−C,C].

All the hypotheses of Theorem 2.6 are then satisfied and the thesis follows. �

Corollary 2.1. Let f : [−π, π]d → Cs×s be a Hermitian matrix-valued function in L∞([−π, π]d), let {n(n)}n ⊆ Nd

be a sequence of multi-indices such that n(n) → ∞ as n → ∞, and let {Yn} be a sequence of matrices
such that Yn has size N(n(n))s, ‖Yn‖ is uniformly bounded with respect to n, and |||Yn|||1 = o(N(n(n))). Then
{Tn(n)(f) + Yn}n ∼λ f.

Proof. Defining Xn := Tn(n)(f), all the assumptions of Theorem 2.7 are met, thanks to Theorem 1.8 and to the

inequality (1.37), which ensures ‖Tn(n)(f)‖ to be uniformly bounded with respect to n. �
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Approximation by Qp Finite Element Methods of a model convection-diffusion equation

Let us consider the boundary value problem{
−∆u + β · ∇u + γu = f in Ω,
u = 0 on ∂Ω,

(2.20)

where Ω = (0, 1)d
, f ∈ L2(Ω), β := (β

1
, . . . , βd), and γ, β j, j = 1, . . . , d, are functions in L∞(Ω) with γ ≥ 0.

We approximate (2.20) by using the standard Qp Lagrangian Finite Element Method on the uniform mesh

determined by the hypercubes whose vertices are ( j
1
/n, . . . , jd/n), j

1
, . . . , jd = 0, . . . , n. We refer the reader to

Chapter 3 for the details on this method. Denote by An the stiffness matrix, of size (np − 1)d, resulting from

this approximation technique. It can be proved that the (np)d × (np)d
matrix nd−2An ⊕ O(np)d−(np−1)d , obtained

from An by adding zeros, is similar, through a permutation transformation, to Tn(n)(fp) + Yn, where:

• n(n) := (n, . . . , n) (d components);

• fp : [−π, π]d → Cpd×pd
is a Hermitian matrix-valued function, continuous over [−π, π]d

, which is also

positive semidefinite over [−π, π]d
, because v∗fp(x)v ≥ 0 for all v ∈ Cpd×pd

and for all x ∈ [−π, π]d
;

• the matrix-sequence {Yn} is real and non-symmetric (due to the presence of the convection term), but

satisfies the assumptions that the trace-norm is o((np)d) when n→ ∞ and that the spectral norm ‖Yn‖

is uniformly bounded with respect to n.

Therefore, by Corollary 2.1 we have {nd−2An ⊕ O(np)d−(np−1)d} ∼λ fp. This implies that {nd−2An} ∼λ fp by

Definition 1.1, because the eigenvalues of nd−2An ⊕ O(np)d−(np−1)d are precisely those of nd−2An, with only

(np)d − (np − 1)d = o((np)d) extra eigenvalues equal to 0.

A detailed spectral analysis of the stiffness matrices coming from the Qp Lagrangian Finite Element

approximation of classical convection-diffusion equations like (2.20), including the formal proof of the

results cited above and the study of the properties of the matrix-valued function fp, will be the subject of

Chapter 3. Here, we have just mentioned the application of the theoretical tools obtained in this section for

determining the asymptotic spectral distribution of such matrices.
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Chapter 3

Spectral analysis and spectral symbol of Qp Lagrangian FEM
stiffness matrices

This chapter is devoted to the (asymptotic) spectral analysis of the stiffness matrices arising from the Qp
Lagrangian Finite Element approximation of the following second-order d-dimensional elliptic differential

problem: {
−∆u + β · ∇u + γu = f in Ω := (0, 1)d,
u = 0 on ∂Ω,

(3.1)

where f ∈ L2(Ω), β = (β
1
, . . . , βd), and γ, β j, j = 1, . . . , d, are functions in L∞(Ω) with γ ≥ 0 over Ω.

The multi-index p := (p
1
, . . . , pd) ∈ Nd

, which appears as subscript of Qp, is related to the Finite Element

approximation order and, more specifically, p j is the polynomial approximation degree in the j-th direction.

We will provide in Section 3.1 all the necessary details for understanding the Qp Lagrangian Finite Element

Method (FEM), but we also refer the reader to [47, 48, 49, 18, 55, 14, 15] for a wide account on this numerical

technique and its evolution.

After presenting a construction of the Qp FEM stiffness matrices, we investigate the behavior of the

extremal eigenvalues, the conditioning, and the asymptotic spectral distribution when the mesh is refined and

the matrix size goes to infinity; in particular, we find out the associated spectral symbol (see Definition 1.1).

We also study the properties of the symbol, which turns out to be a d-variate function taking values in the

space of N(p) × N(p) Hermitian matrices. Looking at Remark 1.2, this means that the spectrum of our FEM

matrices is (asymptotically) described by N(p) different functions, that is the N(p) eigenvalues of the symbol,

which give rise to N(p) different ‘spectral branches’. Unfortunately, as we shall see in Subsection 3.4.3, the

eigenvalues of the symbol are well-separated, far away, and exponentially diverging with respect to p and

d, implying that the eigenvalues of the FEM matrices behave in the same way. Even in the case d = 1

and p = 3, we see from Figure 3.2 that the maximum eigenvalue of the symbol is rather distant from the

minimum eigenvalue. This very involved picture provides an explanation of:

(a) the difficulties encountered in designing robust solvers for the Qp FEM stiffness matrices, with con-

vergence speed independent of the matrix size, of the approximation parameters p, and of the dimen-

sionality d;

(b) the possible convergence deterioration of known iterative methods, already for moderate p and d.

3.1 Galerkin method and Qp Lagrangian FEM

The weak (variational) form of the elliptic differential equation (3.1) can be stated as follows: find u ∈ H1

0
(Ω)

such that

a(u, v) = 〈 f , v〉, ∀v ∈ H1

0
(Ω), (3.2)

where a(u, v) :=
∫

Ω
(∇u · ∇v + β · ∇u v + γuv) and 〈 f , v〉 :=

∫
Ω

f v.
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In the standard Galerkin approach, we find an approximation of u by choosing a finite dimensional

subspace W ⊂ H1

0
(Ω), called the approximation space, and by solving the following (Galerkin) problem: find

uW ∈ W such that

a(uW , v) = 〈 f , v〉, ∀v ∈ W.1 (3.3)

If dim W = N and we fix a basis {ϕ
1
, . . . , ϕN} for W, then we can expand every function v ∈ W as a linear

combination of the form v =
∑N

j=1 v jϕ j, and the computation of uW =
∑N

j=1 u jϕ j is reduced to solving the

linear system

Au = f, (3.4)

where A = [a(ϕ j, ϕi)]N
i, j=1 is the stiffness matrix and f = [〈 f , ϕi〉]N

i=1. Once we find u, we know uW =
∑N

j=1 u jϕ j.

In the context of Qp Lagrangian FEM, W is chosen as a space of continuous piecewise polynomial

functions vanishing on the boundary of Ω. More precisely, define for p, n ≥ 1 the spaces

V (p)
n :=

{
s ∈ C([0, 1]) : s|[ i

n ,
i+1
n ) ∈ Pp ∀i = 0, . . . , n − 1

}
,

W (p)
n := {s ∈ V (p)

n : s(0) = s(1) = 0} ⊂ H1

0
(0, 1).

It is known that dim V (p)
n = np + 1 and dim W (p)

n = np − 1. Consider for V (p)
n the Lagrangian basis

{`
0,(p), . . . , `np,(p)} on the uniform knot sequence ξi = i

np , i = 0, . . . , np. This means that ` j,(p) is the unique

function in V (p)
n taking the value 1 at ξ j and 0 at ξi for i , j:

` j,(p)(ξi) = δi j, ∀i, j = 0, . . . , np.

Since `
1,(p), . . . , `np−1,(p) vanish at the boundary of [0, 1], we infer that {`

1,(p), . . . , `np−1,(p)} is a basis for W (p)
n

(the Lagrangian basis of W (p)
n ). For later purposes, we report the explicit expressions of the basis functions

`
1,(p), . . . , `np−1,(p) and of their (Sobolev) derivatives in terms of the Lagrange polynomials L

0
, . . . , Lp associated

with the knots tk = k
p , k = 0, . . . , p, which are given by

Lh(t) =

p∏
k=0
k,h

t − tk

th − tk
=

p∏
k=0
k,h

pt − k
h − k

, ∀h = 0, . . . , p, Lh(tk) = δhk, ∀h, k = 0, . . . , p. (3.5)

If j is a multiple of p, then the support of ` j,(p) is supp(` j,(p)) = [ξ j−p, ξ j+p],

` j,(p)(x) =


Lp

(
x − ξ j−p

ξ j − ξ j−p

)
ξ j−p ≤ x ≤ ξ j,

L
0

(
x − ξ j

ξ j+p − ξ j

)
ξ j ≤ x ≤ ξ j+p,

0 otherwise,

=


Lp(nx − nξ j−p) ξ j−p ≤ x ≤ ξ j,

L
0
(nx − nξ j) ξ j ≤ x ≤ ξ j+p,

0 otherwise,

(3.6)

and the derivative of ` j,(p) is

`′j,(p)(x) =


nL′p(nx − nξ j−p) ξ j−p < x < ξ j,

nL′
0
(nx − nξ j) ξ j < x < ξ j+p,

0 otherwise.

(3.7)

1
In the case where the bilinear form a(u, v) is coercive, both the solution uW of (3.3) and the solution u of (3.2) are unique;

see [13]. In particular, they are unique if β is constant, because in this case a(u, v) is coercive; see [47, Chapter 5, p. 140].
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If j is not a multiple of p, let jp = jmod p ∈ {1, . . . , p − 1}. Then supp(` j,(p)) = [ξ j− jp , ξ j− jp+p],

` j,(p)(x) =

 L jp

(
x − ξ j− jp

ξ j− jp+p − ξ j− jp

)
ξ j− jp ≤ x ≤ ξ j− jp+p,

0 otherwise,

=

{
L jp(nx − nξ j− jp) ξ j− jp ≤ x ≤ ξ j− jp+p,

0 otherwise,

(3.8)

and the derivative of ` j,(p) is

`′j,(p)(x) =

 nL′jp
(nx − nξ j− jp) ξ j− jp < x < ξ j− jp+p,

0 otherwise.

(3.9)

Figure 3.1 reports the graph of `
1,(p), . . . , `np−1,(p) in the case p = 2, n = 3, together with the graph of the

Lagrange polynomials L
0
, . . . , Lp in (3.5) for p = 2. Now, for any pair of multi-indices p, n ∈ Nd, let

W (p)
n := W (p1)

n1

⊗ · · · ⊗W (pd)
nd

:= span

(
` j,(p) : j = 1, . . . , np− 1

)
⊂ H1

0
(Ω), (3.10)

where ` j,(p) := ` j1,(p1) ⊗ · · · ⊗ ` jd ,(pd).

In the framework of Qp Lagrangian FEM, the subspace W in the Galerkin problem (3.3) is chosen as W (p)
n

for some p, n ∈ Nd
(usually p = (p, . . . , p) for some p ≥ 1), and for W (p)

n we choose the tensor Lagrangian

basis in (3.10), ordered according to the standard lexicographic ordering (1.1) for the multi-index range

1, . . . , np− 1. With these choices, we obtain in (3.4) a stiffness matrix A, which henceforth will be denoted

by A(p)
n in order to emphasize its dependence on p and n:

A(p)
n :=

[
a(` j,(p), `i,(p))

]np−1

i, j=1
. (3.11)

Let us consider the following split of the matrix, according to the diffusion, advection and reaction

terms, respectively:

A(p)
n =

[∫
Ω

∇` j,(p) · ∇`i,(p)

]np−1

i, j=1
+

[∫
Ω

β · ∇` j,(p) `i,(p)

]np−1

i, j=1
+

[∫
Ω

γ ` j,(p)`i,(p)

]np−1

i, j=1
. (3.12)

For obvious reasons, the first matrix in the right-hand side of (3.12) is called diffusion matrix, the second

advection matrix, and the third reaction matrix. With expressive notation, we denote these three matrices

by A(p)
n,D, A

(p)
n,A, A

(p)
n,R, respectively:

A(p)
n,D :=

[∫
Ω

∇` j,(p) · ∇`i,(p)

]np−1

i, j=1
, A(p)

n,A :=
[∫

Ω

β · ∇` j,(p) `i,(p)

]np−1

i, j=1
, A(p)

n,R :=
[∫

Ω

γ ` j,(p)`i,(p)

]np−1

i, j=1
. (3.13)

The diffusion matrix is SPD, the reaction matrix is SPSD (SPD if γ , 0 a.e.), while the advection matrix

is not symmetric and is responsible for the non-symmetry of A(p)
n . The following lemma provides an upper

bound for the spectral norm ‖A(p)
n,A‖. In all this chapter, the symbol γ∗ will denote a nonnegative constant

such that γ ≥ γ∗ a.e. on Ω. Moreover, ‖β‖L∞(Ω) := max j=1,...,d ‖β j‖L∞(Ω).

Lemma 3.1. Let p ∈ Nd, then there is a constant Bp, depending only on p, such that

‖A(p)
n,A‖ ≤ Bp‖β‖L∞(Ω)

∑d
k=1 nk

n
1
· · · nd

, ∀n ∈ Nd. (3.14)

Proof. By (1.3) we have ‖A(p)
n,A‖ ≤

√
‖A(p)

n,A‖∞‖A
(p)
n,A‖1. Recalling that the ∞-norm of a matrix is the maximum

1-norm of its row vectors and that the 1-norm of a matrix is the maximum 1-norm of its column vectors, if

we show that
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Figure 3.1: graph of the Lagrangian basis functions `
1,(p), . . . , `np−1,(p) in the case p = 2, n = 3, and of the

Lagrange polynomials L
0
, . . . , Lp in (3.5) for p = 2.
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(a) each entry of A(p)
n,A is bounded from above by B̃p‖β‖L∞(Ω)

∑d
k=1

nk

n1···nd
for some constant B̃p depending only on

p,

(b) each row and column of A(p)
n,A contains a number of nonzero entries bounded from above by some

constant B̂p depending only on p,

then the thesis follows with Bp = B̂pB̃p.

For all p ≥ 1, set Up := max{‖L j‖L∞(0,1), ‖L′j‖L∞(0,1) : j = 0, . . . , p}, where L
0
, . . . , Lp are the Lagrange

polynomials (3.5). From the expressions of `
1,(p), . . . , `np−1,(p) and of their derivatives given in (3.6)–(3.9), and

taking into account the supports of `
1,(p), . . . , `np−1,(p), for all p, n ≥ 1 and for all i, j = 1, . . . , np − 1 we have∫

(0,1)
|` j,(p)||`i,(p)| ≤

{
2U2

p/n if |i − j| ≤ p,
0 otherwise,

∫
(0,1)
|`′j,(p)||`i,(p)| ≤

{
2U2

p if |i − j| ≤ p,
0 otherwise.

Now, for p, n ∈ Nd
, for i, j = 1, . . . , np − 1 and for k = 1, . . . , d, since ` j,(p) = ` j1,(p1) ⊗ · · · ⊗ ` jd ,(pd) and

Ω = (0, 1)d
is rectangular, we have

∂` j,(p)

∂xk
= ` j1,(p1) ⊗ · · · ⊗ ` jk−1,(pk−1) ⊗ `

′
jk ,(pk) ⊗ ` jk+1,(pk+1) ⊗ · · · ⊗ ` jd ,(pd),∫

Ω

∣∣∣∣∣∣∂` j,(p)

∂xk

∣∣∣∣∣∣ |`i,(p)| =

∫
(0,1)
|` j1,(p1)||`i1,(p1)| · · ·

∫
(0,1)
|` jk−1,(pk−1)||`ik−1,(pk−1)|

∫
(0,1)
|`′jk ,(pk)||`ik ,(pk)|

·

∫
(0,1)
|` jk+1,(pk+1)||`ik+1,(pk+1)| · · ·

∫
(0,1)
|` jd ,(pd)||`id ,(pd)|

≤

 2U2

p
1

n1

· · ·
2U2

pk−1
nk−1
· 2U2

pk
·
2U2

pk+1

nk+1
· · ·

2U2

pd
nd

if |i
1
− j

1
| ≤ p

1
, . . . , |id − jd| ≤ pd

0 otherwise

≤

{
Up

nk
n1···nd

if ‖i − j‖∞ ≤ ‖p‖∞
0 otherwise

where Up := 2
d ∏d

i=1 U2

pi
. Hence,

∣∣∣[A(p)
n,A]i, j

∣∣∣ =

∣∣∣∣∣∫
Ω

β · ∇` j,(p) `i,(p)

∣∣∣∣∣ ≤ ∫
Ω

∣∣∣β · ∇` j,(p) `i,(p)

∣∣∣ ≤ ∫
Ω

‖β‖L∞(Ω)

d∑
k=1

∣∣∣∣∣∣∂` j,(p)

∂xk

∣∣∣∣∣∣ |`i,(p)|

= ‖β‖L∞(Ω)

d∑
k=1

∫
Ω

∣∣∣∣∣∣∂` j,(p)

∂xk

∣∣∣∣∣∣ |`i,(p)| ≤

 B̃p‖β‖L∞(Ω)

∑d
k=1

nk

n1···nd
if ‖i − j‖∞ ≤ ‖p‖∞

0 otherwise

where B̃p := Up. This implies that, for a fixed i ∈ {1, . . . , np − 1}, the i-th row of the matrix A(p)
n,A contains

at most B̂p :=
∏d

i=1(2pi + 1) nonzero entries (those corresponding to the column multi-indices j such that

‖i − j‖∞ ≤ ‖p‖∞), and every nonzero entry is bounded from above by B̃p‖β‖L∞(Ω)

∑d
k=1

nk

n1···nd
. Similarly, for a fixed

j ∈ {1, . . . , np − 1}, the j-th column of A(p)
n,A contains at most B̂p nonzero entries (those corresponding to

the row multi-indices i such that ‖i − j‖∞ ≤ ‖p‖∞), and every nonzero entry is bounded from above by

B̃p‖β‖L∞(Ω)

∑d
k=1

nk

n1···nd
. The conditions (a) and (b) are then satisfied and the thesis follows. �

Now we introduce the mass matrix

N(p)
n :=

[∫
Ω

` j,(p)`i,(p)

]np−1

i, j=1
.
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This matrix is of interest because

γ∗N
(p)
n ≤ A(p)

n,R ≤ ‖γ‖L∞(Ω)N
(p)
n . (3.15)

Since all the matrices in (3.15) are SPSD, their spectral norm equals their maximal eigenvalue. Therefore

γ∗‖N
(p)
n ‖ ≤ ‖A

(p)
n,R‖ ≤ ‖γ‖L∞(Ω)‖N

(p)
n ‖. (3.16)

3.2 Construction of the Qp Lagrangian FEM stiffness matrices A(p)
n

Taking into account the tensor structure of the Qp Lagrangian basis {` j,(p) : j = 1, . . . , np − 1} and the

rectangularity of the domain Ω, we now prove the following result, which highlights the tensor structure of

the Qp Lagrangian FEM diffusion and mass matrices.

Theorem 3.1. Let p, n ∈ Nd, then

A(p)
n,D =

d∑
k=1

1

n
1

M(p1)
n1

⊗ · · · ⊗
1

nk−1
M(pk−1)

nk−1
⊗ nkK(pk)

nk
⊗

1

nk+1

M(pk+1)
nk+1
⊗ · · · ⊗

1

nd
M(pd)

nd
, (3.17)

N(p)
n =

1

n
1

M(p1)
n1

⊗ · · · ⊗
1

nd
M(pd)

nd
, (3.18)

where, for p, n ≥ 1, K(p)
n and M(p)

n are the SPD matrices given by

nK(p)
n :=

[∫
(0,1)

`′j,(p)`
′
i,(p)

]np−1

i, j=1

,
1

n
M(p)

n :=
[∫

(0,1)
` j,(p)`i,(p)

]np−1

i, j=1

. (3.19)

Proof. The proof is very simple if we use the multi-index language and, especially, the fundamental property

(1.12). We could say that this proof is an exemplification of the power of the multi-index notation over the

conventional linear indexing whenever one has to deal with matrices formed by a sum of tensor products,

like A(p)
n,D and N(p)

n . We only prove (3.17), because (3.18) is proved in the same way. For all i, j = 1, . . . , np−1,
we have

(A(p)
n,D)i j =

∫
Ω

∇` j,(p) · ∇`i,(p)

=

∫
(0,1)d

d∑
k=1

` j1,(p1)(x
1
)`i1,(p1)(x

1
) · · · ` jk−1,(pk−1)(xk−1)`ik−1,(pk−1)(xk−1) · `′jk ,(pk)(xk)`′ik ,(pk)(xk)

· ` jk+1,(pk+1)(xk+1)`ik+1,(pk+1)(xk+1) · · · ` jd ,(pd)(xd)`id ,(pd)(xd)dx
1
· · · dxd

=

d∑
k=1

∫
(0,1)

` j1,(p1)(x
1
)`i1,(p1)(x

1
)dx

1
· · ·

∫
(0,1)

` jk−1,(pk−1)(xk−1)`ik−1,(pk−1)(xk−1)dxk−1 ·

∫
(0,1)

`′jk ,(pk)(xk)`′ik ,(pk)(xk)dxk

·

∫
(0,1)

` jk+1,(pk+1)(xk+1)`ik+1,(pk+1)(xk+1)dxk+1 · · ·

∫
(0,1)

` jd ,(pd)(xd)`id ,(pd)(xd)dxd

=

d∑
k=1

[
1

n
1

M(p1)
n1

⊗ · · · ⊗
1

nk−1
M(pk−1)

nk−1
⊗ nkK(pk)

nk
⊗

1

nk+1

M(pk+1)
nk+1
⊗ · · · ⊗

1

nd
M(pd)

nd

]
i j

=

 d∑
k=1

1

n
1

M(p1)
n1

⊗ · · · ⊗
1

nk−1
M(pk−1)

nk−1
⊗ nkK(pk)

nk
⊗

1

nk+1

M(pk+1)
nk+1
⊗ · · · ⊗

1

nd
M(pd)

nd


i j

,

where the fourth equality holds by (1.12) and by definition of nK(p)
n and

1

n
M(p)

n . �
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3.2.1 Construction of K(p)
n , M(p)

n

This subsection is devoted to the proof of the following theorem. From now on, until the end of this chapter,

the symbol 〈 , 〉 will be used to denote the scalar product in L2(0, 1), i.e. 〈ϕ, ψ〉 :=
∫

(0,1)
ϕψ for all ϕ, ψ ∈ L2(0, 1).

Theorem 3.2. Let p, n ≥ 1. Then

K(p)
n =


K

0
KT

1

K
1

. . .
. . .

. . .
. . . KT

1

K
1

K
0


−

, M(p)
n =


M

0
MT

1

M
1

. . .
. . .

. . .
. . . MT

1

M
1

M
0


−

, (3.20)

where the subscripts ‘−’ mean that the last row and column of the matrices in square brackets are deleted,
while K

0
,K

1
,M

0
,M

1
are p × p blocks given by

K
0

=


〈L′

1
, L′

1
〉 · · · 〈L′p−1, L

′
1
〉 〈L′p, L

′
1
〉

...
...

...
〈L′

1
, L′p−1〉 · · · 〈L

′
p−1, L

′
p−1〉 〈L′p, L

′
p−1〉

〈L′
1
, L′p〉 · · · 〈L′p−1, L

′
p〉 〈L′p, L

′
p〉 + 〈L

′
0
, L′

0
〉

 , K
1

=


0 0 · · · 0 〈L′

0
, L′

1
〉

0 0 · · · 0 〈L′
0
, L′

2
〉

...
...

...
...

0 0 · · · 0 〈L′
0
, L′p〉

 , (3.21)

M
0

=


〈L

1
, L

1
〉 · · · 〈Lp−1, L1

〉 〈Lp, L1
〉

...
...

...
〈L

1
, Lp−1〉 · · · 〈Lp−1, Lp−1〉 〈Lp, Lp−1〉

〈L
1
, Lp〉 · · · 〈Lp−1, Lp〉 〈Lp, Lp〉 + 〈L0

, L
0
〉

 , M
1

=


0 0 · · · 0 〈L

0
, L

1
〉

0 0 · · · 0 〈L
0
, L

2
〉

...
...

...
...

0 0 · · · 0 〈L
0
, Lp〉

 , (3.22)

where L
0
, . . . , Lp are the Lagrange polynomials (3.5). In particular, K(p)

n ,M(p)
n are the leading principal subma-

trices of order np − 1 of the block Toeplitz matrices Tn(fp),Tn(hp), respectively, where fp,hp : [−π, π] → Cp×p

are Hermitian matrix-valued functions given by

fp(θ) := K
0

+ K
1
e
iθ + KT

1
e
−iθ

=


〈L′

1
, L′

1
〉 · · · 〈L′p−1, L

′
1
〉 〈L′p, L

′
1
〉 + 〈L′

0
, L′

1
〉eiθ

...
...

...
〈L′

1
, L′p−1〉 · · · 〈L′p−1, L

′
p−1〉 〈L′p, L

′
p−1〉 + 〈L

′
0
, L′p−1〉e

iθ

〈L′
1
, L′p〉 + 〈L

′
0
, L′

1
〉e−iθ · · · 〈L′p−1, L

′
p〉 + 〈L

′
0
, L′p−1〉e

−iθ 〈L′p, L
′
p〉 + 〈L

′
0
, L′

0
〉 + 2〈L′

0
, L′p〉 cos θ


=

 [〈L′j, L
′
i〉]

p−1
i, j=1

[
〈L′p, L

′
i〉 + 〈L

′
0
, L′i〉e

iθ
]p−1

i=1[
〈L′p, L

′
i〉 + 〈L

′
0
, L′i〉e

−iθ
]p−1

i=1
〈L′p, L

′
p〉 + 〈L

′
0
, L′

0
〉 + 2〈L′

0
, L′p〉 cos θ

 , (3.23)

hp(θ) := M
0

+ M
1
e
iθ + MT

1
e
−iθ

=


〈L

1
, L

1
〉 · · · 〈Lp−1, L1

〉 〈Lp, L1
〉 + 〈L

0
, L

1
〉eiθ

...
...

...
〈L

1
, Lp−1〉 · · · 〈Lp−1, Lp−1〉 〈Lp, Lp−1〉 + 〈L0

, Lp−1〉e
iθ

〈L
1
, Lp〉 + 〈L0

, L
1
〉e−iθ · · · 〈Lp−1, Lp〉 + 〈L0

, Lp−1〉e
−iθ 〈Lp, Lp〉 + 〈L0

, L
0
〉 + 2〈L

0
, Lp〉 cos θ


=

 [〈L j, Li〉]
p−1
i, j=1

[
〈Lp, Li〉 + 〈L0

, Li〉e
iθ
]p−1

i=1[
〈Lp, Li〉 + 〈L0

, Li〉e
−iθ

]p−1

i=1
〈Lp, Lp〉 + 〈L0

, L
0
〉 + 2〈L

0
, Lp〉 cos θ

 . (3.24)
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Proof. We only give the construction of K(p)
n , since the construction of M(p)

n is similar. For convenience,

denote by K the matrix in the right-hand side of the first equality in (3.20): we have to show that K(p)
n = K.

Since both K(p)
n and K are symmetric, it suffices to show that

(K(p)
n )i j = Ki j ∀i, j = 1, . . . , np − 1 with i ≥ j. (3.25)

As in Section 3.1, set ξi = i
np for i = 0, . . . , np and let {`

1,(p), . . . , `np−1,(p)} be the Lagrangian basis for W (p)
n . For

all integers j, let jp = jmod p ∈ {0, . . . , p − 1}. To prove (3.25), we first notice that, for all i, j = 1, . . . , np − 1

with i ≥ j,

Ki j =



〈L′p, L
′
p〉 + 〈L

′
0
, L′

0
〉 if j is a multiple of p and i = j

〈L′
0
, L′ip
〉 if j is a multiple of p and j < i < j + p

〈L′
0
, L′p〉 if j is a multiple of p and i = j + p

0 if j is a multiple of p and i > j + p
〈L′jp

, L′ip
〉 if j is not a multiple of p and j ≤ i < j − jp + p

〈L′jp
, L′p〉 if j is not a multiple of p and i = j − jp + p

0 if j is not a multiple of p and i > j − jp + p

(3.26)

We verify that (3.25) holds by considering the seven cases in (3.26). The verification is plain: it suffices to

use the expressions of `
1,(p), . . . , `np−1,(p) and of their derivatives given in (3.6)–(3.9). For completeness, we

include this verification.

(i) If j is a multiple of p and i = j, then

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)2dx = n
∫ ξ j

ξ j−p

L′p(nx − nξ j−p)2dx + n
∫ ξ j+p

ξ j

L′
0
(nx − nξ j)2dx (by (3.7))

=

∫
1

0

L′p(t)2dt +

∫
1

0

L′
0
(t)2dt = 〈L′p, L

′
p〉 + 〈L

′
0
, L′

0
〉 = Ki j.

(ii) If j is a multiple of p and j < i < j + p, then i is not a multiple of p, i − ip = j, supp(`i,(p)) = [ξ j, ξ j+p]
and

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)`′i,(p)(x)dx = n
∫ ξ j+p

ξ j

L′
0
(nx − nξ j)L′ip

(nx − nξ j)dx (by (3.7) and (3.9))

=

∫
1

0

L′
0
(t)L′ip

(t)dt = 〈L′
0
, L′ip
〉 = Ki j.

(iii) If j is a multiple of p and i = j + p, then i is a multiple of p, supp(`i,(p)) ∩ supp(` j,(p)) = [ξi−p, ξi+p] ∩
[ξ j−p, ξ j+p] = [ξ j, ξ j+2p] ∩ [ξ j−p, ξ j+p] = [ξ j, ξ j+p] and

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)`′i,(p)(x)dx = n
∫ ξ j+p

ξ j

L′
0
(nx − nξ j)L′p(nx − nξ j)dx (by (3.7))

=

∫
1

0

L′
0
(t)L′p(t)dt = 〈L′

0
, L′p〉 = Ki j.

(iv) If j is a multiple of p and i > j + p, then supp(`i,(p)) ⊆ [ξ j+p, 1] and supp(` j,(p)) = [ξ j−p, ξ j+p], and so

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)`′i,(p)(x)dx = 0 = Ki j.
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(v) If j is not a multiple of p and j ≤ i < j − jp + p, then i is not a multiple of p, i − ip = j − jp,

supp(`i,(p)) = [ξi−ip , ξi−ip+p] = [ξ j− jp , ξ j− jp+p] = supp(` j,(p)) and

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)`′i,(p)(x)dx = n
∫ ξ j− jp+p

ξ j− jp

L′jp
(nx − nξ j− jp)L

′
ip

(nx − nξ j− jp)dx (by (3.9))

=

∫
1

0

L′jp
(t)L′ip

(t)dt = 〈L′jp
, L′ip
〉 = Ki j.

(vi) If j is not a multiple of p and i = j− jp+p, then i is a multiple of p, i−p = j− jp, supp(`i,(p))∩supp(` j,(p)) =

[ξi−p, ξi+p] ∩ [ξ j− jp , ξ j− jp+p] = [ξ j− jp , ξ j− jp+2p] ∩ [ξ j− jp , ξ j− jp+p] = [ξ j− jp , ξ j− jp+p] and

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)`′i,(p)(x)dx = n
∫ ξ j− jp+p

ξ j− jp

L′jp
(nx − nξ j− jp)L

′
p(nx − nξ j− jp)dx (by (3.9))

=

∫
1

0

L′jp
(t)L′p(t)dt = 〈L′jp

, L′p〉 = Ki j.

(vii) If j is not a multiple of p and i > j− jp + p, then supp(`i,(p)) ⊆ [ξ j− jp+p, 1] and supp(` j,(p)) = [ξ j− jp , ξ j− jp+p],
and so

(K(p)
n )i j =

1

n

∫
1

0

`′j,(p)(x)`′i,(p)(x)dx = 0 = Ki j.

�

We note that, if L
0
, . . . , Lp are the Lagrange polynomials (3.5), then, for every h = 0, . . . , p and every t ∈ R,

a direct verification shows that Lh(1− t) = Lp−h(t). As a consequence, the equalities 〈Li, L j〉 = 〈Lp−i, Lp− j〉 and

〈L′i , L
′
j〉 = 〈L′p−i, L

′
p− j〉 hold for all i, j = 0, . . . , p. These relations may be used to give alternative expressions

for the entries of the blocks K
0
,K

1
,M

0
,M

1
in (3.21)–(3.22).

3.3 Properties of fp(θ) and hp(θ)

In this section we derive some properties of the Hermitian matrix-valued functions fp(θ), hp(θ) defined in

(3.23)–(3.24). We need some results concerning the Lagrange polynomials.

Lemma 3.2. Let p ≥ 1 and let L
0
, . . . , Lp be the Lagrange polynomials (3.5). Then

p∑
j=1

jL′j = p identically, (3.27)

p∑
j=0

L′j = 0 identically, (3.28)

while every proper subset of {L′
0
, . . . , L′p} is linearly independent.

Proof. (3.27) holds because

∑p
j=1 jL j =

∑p
j=0 jL j is the interpolating polynomial which takes the value j over

the knot t j =
j
p for j = 0, . . . , p, and hence

∑p
j=1 jL j(t) = pt identically. (3.28) holds because

∑p
j=0 L j is the

interpolating polynomial which takes the value 1 over the uniform knots tk = k
p , k = 0, . . . , p, and hence∑p

j=0 L j = 1 identically.

We prove that every proper subset of {L′
0
, . . . , L′p} is linearly independent. To this end, it suffices to prove

that every proper subset of {L′
0
, . . . , L′p} with cardinality p is linearly independent. Actually, we will only
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prove that {L′
1
, . . . , L′p} is linearly independent, since the proof for the other subsets is similar. Let α

1
, . . . , αp

be numbers such that

∑p
i=1 αiL′i =

(∑p
i=1 αiLi

)′
= 0 identically. Then there exists a constant C such that

p∑
i=1

αiLi = C identically. (3.29)

By evaluating (3.29) in tk = k
p , k = 0, . . . , p, and by remembering (3.5), we find that C = 0 and α

1
= . . . =

αp = C, which yields α
1

= . . . = αp = 0. Thus L′
1
, . . . , L′p are linearly independent. �

Lemma 3.3. Let p ≥ 1 and set dp := det([〈L′j, L
′
i〉]

p
i, j=1), where L

0
, . . . , Lp are the Lagrange polynomials (3.5).

Then dp > 0 and dp = det([〈L′j, L
′
i〉]

p−1
i, j=1).

2

Proof. The lemma is true if p = 1, because L
1
(t) = t, L′

1
(t) = 1, and d

1
= 〈L′

1
, L′

1
〉 = 1. In the following we

assume p ≥ 2. We have dp > 0 because the matrix [〈L′j, L
′
i〉]

p
i, j=1 is SPD, due to the fact that L′

1
, . . . , L′p are

linearly independent (Lemma 3.2).

We want to show that dp = det(L ), where L := [〈L′j, L
′
i〉]

p−1
i, j=1. To this end, we perform the block Gauss

transformation that creates zeros in the first p − 1 components of the last row and column of [〈L′j, L
′
i〉]

p
i, j=1.

Setting

G :=


Ip−1 0

−[〈L′
1
, L′p〉 · · · 〈L

′
p−1, L

′
p〉]L

−1
1

 ,
we have

G[〈L′j, L
′
i〉]

p
i, j=1G

T = G


〈L′p, L

′
1
〉

L
...

〈L′p, L
′
p−1〉

〈L′
1
, L′p〉 · · · 〈L

′
p−1, L

′
p〉 〈L′p, L

′
p〉

GT =


L 0

0T s

 =: Z,

where s := 〈L′p, L
′
p〉 − [〈L′

1
, L′p〉 · · · 〈L

′
p−1, L

′
p〉]L

−1


〈L′p, L

′
1
〉

...
〈L′p, L

′
p−1〉

 is the Schur complement of L . Since det(G) =

det(GT ) = 1, we have dp = det(Z) = det(L )s, and so the lemma is proved if we show that s = 1. To prove

this, we note that L −1


〈L′p, L

′
1
〉

...
〈L′p, L

′
p−1〉

 is the solution of the linear system L u =


〈L′p, L

′
1
〉

...
〈L′p, L

′
p−1〉

 , which is easily

seen to be u :=
[
− 1

p ,−
2

p , . . . ,−
p−1

p

]T
. Indeed, by Lemma 3.2, for all i = 1, . . . , p − 1 we have

(L u)i =

p−1∑
j=1

〈L′j, L
′
i〉u j = −

1

p

p−1∑
j=1

j〈L′j, L
′
i〉 = −

1

p

〈 p−1∑
j=1

jL′j, L
′
i

〉
= −

1

p
〈p − pL′p, L

′
i〉 = −〈1, L′i〉 + 〈L

′
p, L

′
i〉

= −

∫
1

0

L′i(t)dt + 〈L′p, L
′
i〉 = −Li(1) + Li(0) + 〈L′p, L

′
i〉 = 〈L′p, L

′
i〉,

2
We use the (standard) convention that the determinant of the empty matrix is 1, so that the latter formula gives d1 = 1.
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where the last equality is due to the fact that Li(0) = Li(1) = 0 for i = 1, . . . , p − 1. Using again Lemma 3.2,

we obtain

s = 〈L′p, L
′
p〉 − [〈L′

1
, L′p〉 · · · 〈L

′
p−1, L

′
p〉]L

−1


〈L′p, L

′
1
〉

...
〈L′p, L

′
p−1〉

 = 〈L′p, L
′
p〉 − [〈L′

1
, L′p〉 · · · 〈L

′
p−1, L

′
p〉]u

= 〈L′p, L
′
p〉 −

p−1∑
j=1

〈L′j, L
′
p〉u j = 〈L′p, L

′
p〉 +

〈 p−1∑
j=1

j
p

L′j, L
′
p

〉
=

〈 p∑
j=1

j
p

L′j, L
′
p

〉
= 〈1, L′p〉

=

∫
1

0

L′p(t)dt = Lp(1) − Lp(0) = 1,

which concludes the proof. �

Theorem 3.3. Let p ≥ 1, then
det(fp(θ)) = dp(2 − 2 cos θ), (3.30)

where dp is defined in Lemma 3.3.

Proof. The theorem is true if p = 1, because d
1

= 1 and f
1
(θ) = 2− 2 cos θ. In the following we assume p ≥ 2.

By (3.23) and by the linearity of the determinant with respect to each row and column, we have

det(fp(θ)) =

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′p, L

′
i〉 + 〈L

′
0
, L′i〉e

iθ]p−1
i=1[

〈L′p, L
′
i〉 + 〈L

′
0
, L′i〉e

−iθ
]p−1

i=1
〈L′p, L

′
p〉 + 〈L

′
0
, L′

0
〉 + 2〈L′

0
, L′p〉 cos θ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′p, L

′
i〉]

p−1
i=1[

〈L′p, L
′
i〉 + 〈L

′
0
, L′i〉e

−iθ
]p−1

i=1
〈L′p, L

′
p〉 + 〈L

′
0
, L′p〉e

−iθ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′

0
, L′i〉e

iθ]p−1
i=1[

〈L′p, L
′
i〉 + 〈L

′
0
, L′i〉e

−iθ
]p−1

i=1
〈L′

0
, L′

0
〉 + 〈L′

0
, L′p〉e

iθ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′p, L

′
i〉]

p−1
i=1[

〈L′p, L
′
i〉
]p−1

i=1
〈L′p, L

′
p〉

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′p, L

′
i〉]

p−1
i=1[

〈L′
0
, L′i〉e

−iθ
]p−1

i=1
〈L′

0
, L′p〉e

−iθ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′

0
, L′i〉e

iθ]p−1
i=1[

〈L′p, L
′
i〉
]p−1

i=1
〈L′

0
, L′p〉e

iθ

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′

0
, L′i〉e

iθ]p−1
i=1[

〈L′
0
, L′i〉e

−iθ
]p−1

i=1
〈L′

0
, L′

0
〉

∣∣∣∣∣∣∣∣
= dp + e

−iθ

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′p, L

′
i〉]

p−1
i=1[

〈L′
0
, L′i〉

]p−1

i=1
〈L′

0
, L′p〉

∣∣∣∣∣∣∣∣ + e
iθ

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′

0
, L′i〉]

p−1
i=1[

〈L′p, L
′
i〉
]p−1

i=1
〈L′

0
, L′p〉

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
[〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′

0
, L′i〉]

p−1
i=1[

〈L′
0
, L′i〉

]p−1

i=1
〈L′

0
, L′

0
〉

∣∣∣∣∣∣∣∣ =: dp + e
−iθd′p + e

iθd′p + d′′p = dp + 2d′p cos θ + d′′p . (3.31)

We prove that

det(fp(0)) = dp + 2d′p + d′′p = 0, (3.32)

dp + d′p = 0, (3.33)

after which (3.30) follows from (3.31). By (3.23) we have

fp(0) =

 [〈L′j, L
′
i〉]

p−1
i, j=1 [〈L′

0
+ L′p, L

′
i〉]

p−1
i=1

[〈L′
0

+ L′p, L
′
i〉]

p−1
i=1 〈L′

0
+ L′p, L

′
0

+ L′p〉

 =: [〈N′j,N
′
i 〉]

p
i, j=1,
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where Ni := Li for i = 1, . . . , p − 1 and Np := L
0

+ Lp. Since

∑p
i=1 N′i =

∑p
i=0 L′i = 0 identically (Lemma 3.2), it

follows that N′
1
, . . . ,N′p are linearly dependent, fp(0) is singular, and (3.32) holds. To prove (3.33) we simply

note that

dp + d′p =

∣∣∣∣∣∣∣ [〈L′j, L
′
i〉]

p−1
i, j=1 [〈L′p, L

′
i〉]

p−1
i=1

[〈L′p, L
′
i〉]

p−1
i=1 〈L′p, L

′
p〉

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ [〈L′j, L

′
i〉]

p−1
i, j=1 [〈L′

0
, L′i〉]

p−1
i=1

[〈L′p, L
′
i〉]

p−1
i=1 〈L′

0
, L′p〉

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ [〈L′j, L
′
i〉]

p−1
i, j=1 [〈L′p + L′

0
, L′i〉]

p−1
i=1

[〈L′p, L
′
i〉]

p−1
i=1 〈L′p + L′

0
, L′p〉

∣∣∣∣∣∣∣ = 0,

where the latter is a consequence of the fact that, by Lemma 3.2, L′p + L′
0
is a linear combination of

L′
1
, . . . , L′p−1, which implies that the last column of dp + d′p is a linear combination of the others. �

Theorem 3.4. Let p ∈ {1, . . . , 15}, then

det(hp(θ)) = ap

(
1 +

(−1)p+1

p + 1

cos θ
)
, (3.34)

where ap = det(hp(π
2
)) > 0.

Proof. The result has been verified by direct computation using M. �

Although the result of Theorem 3.4 has not been proved for all p ≥ 1, we can certainly formulate the

following conjecture.

Conjecture 3.1. Theorem 3.4 holds for all p ≥ 1.

Remark 3.1. Using the same computations as in the proof of Theorem 3.3, it is not difficult to see that

det(hp(θ)) = ap + bp cos θ for some constant ap, bp independent of θ. Thus, Eq. (3.34) is proved if we are able

to show that bp = ap
(−1)p+1

p+1
. Once we have proved this, we do not need to prove also that ap = det(hp(π

2
)) > 0.

Indeed, if (3.34) holds with some constant ap, then, by evaluating both sides at θ = π
2
, we immediately get

ap = det(hp(π
2
)); moreover, ap > 0. To see this, note that hp(0) = [〈N j,Ni〉]

p
i, j=1 with Ni := Li for i = 1, . . . , p− 1

and Np := L
0

+ Lp. Since N
1
, . . . ,Np are linearly independent, due to the linear independence of L

0
, . . . , Lp,

it follows that hp(0) > O. Hence, det(hp(0)) > 0 and

ap =
det(hp(0))(
1 +

(−1)p+1

p+1

) > 0.

From now on, we will assume that Conjecture 3.1 holds. The results relying on this conjecture are

certainly true for p = 1, . . . , 15.
In the following, for p ≥ 2 we denote by µ

(p)
1
≥ . . . ≥ µ

(p)
p−1 > 0 and η

(p)
1
≥ . . . ≥ η

(p)
p−1 > 0 the eigenvalues of

the SPD matrices [〈L′j, L
′
i〉]

p−1
i, j=1 and [〈L j, Li〉]

p−1
i, j=1, respectively, where L

0
, . . . , Lp are the Lagrange polynomials

(3.5). Moreover, we define

mfp := min
θ∈[−π,π]

λmin(fp(θ)), Mfp := max
θ∈[−π,π]

λmax(fp(θ)),

mhp := min
θ∈[−π,π]

λmin(hp(θ)), Mhp := max
θ∈[−π,π]

λmax(hp(θ)).

Corollary 3.1. The following properties hold.

1. Let p ≥ 2, then λ
1
(fp(θ)) ≥ µ(p)

1
≥ λ

2
(fp(θ)) ≥ µ(p)

2
≥ . . . ≥ λp−1(fp(θ)) ≥ µ(p)

p−1 ≥ λp(fp(θ)) for all θ.
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2. Let p ≥ 1, then there exists a constant cp > 0 such that, for all θ,

cp(2 − 2 cos θ) ≤ λmin(fp(θ)) ≤ 2 − 2 cos θ. (3.35)

In (3.35) we can take c
1

= 1 and cp =
µ

(p)
p−1

Mfp

for p ≥ 2. In particular, mfp = 0, fp(θ) ≥ O for all θ ∈ [−π, π],

and fp(θ) > O for all nonzero θ ∈ [−π, π].

Proof. For p = 1 the corollary can be directly verified, because f
1
(θ) = 2 − 2 cos θ. Assume p ≥ 2. Item 1

follows from the Cauchy interlacing theorem and from the fact that [〈L′j, L
′
i〉]

p−1
i, j=1 is the leading principal

submatrix of fp(θ) for all θ. To prove item 2, observe that, by Theorem 3.3,

λ
1
(fp(θ)) · · · λp(fp(θ)) = det(fp(θ)) = dp(2 − 2 cos θ) ⇒ λmin(fp(θ)) =

dp

λ
1
(fp(θ)) · · · λp−1(fp(θ))

(2 − 2 cos θ).

Furthermore, by item 1 and Lemma 3.3, for all θ we have

λ
1
(fp(θ)) · · · λp−1(fp(θ)) ≥ µ(p)

1
· · · µ

(p)
p−1 = det([〈L′j, L

′
i〉]

p−1
i, j=1) = dp,

λ
1
(fp(θ)) · · · λp−1(fp(θ)) ≤ Mfpµ

(p)
1
· · · µ

(p)
p−2 =

Mfpµ
(p)
1
· · · µ

(p)
p−1

µ
(p)
p−1

=
Mfpdp

µ
(p)
p−1

,

and item 2 follows. �

Corollary 3.2. The following properties hold.

1. Let p ≥ 2, then λ
1
(hp(θ)) ≥ η(p)

1
≥ λ

2
(hp(θ)) ≥ η(p)

2
≥ . . . ≥ λp−1(hp(θ)) ≥ η(p)

p−1 ≥ λp(hp(θ)) for all θ.

2. Let p ≥ 1, then mhp > 0. In particular, hp(θ) > O for all θ. In addition, mh1
= 1

3
, while for p ≥ 2 we have

mhp ≥
papη

(p)
p−1

(p + 1)η(p)
1
· · · η

(p)
p−1

, where ap = det(hp(π
2
)) > 0.

Proof. For p = 1 the corollary can be directly verified, because h
1
(θ) = 2

3
+ 1

3
cos θ. Assume p ≥ 2. Item 1

follows from the Cauchy interlacing theorem and from the fact that [〈L j, Li〉]
p−1
i, j=1 is the leading principal

submatrix of hp(θ) for all θ. To prove item 2, we simply note that, by item 1 and Conjecture 3.1,

λ
1
(hp(θ)) · · · λp(hp(θ)) = det(hp(θ)) = ap

(
1 +

(−1)p+1

p + 1

cos θ
)

⇒ λmin(hp(θ)) =
ap

λ
1
(hp(θ)) · · · λp−1(hp(θ))

(
1 +

(−1)p+1

p + 1

cos θ
)
≥

ap

Mhpη
(p)
1
· · · η

(p)
p−2

(
1 −

1

p + 1

)
.

�

Item 1 in Corollary 3.1 has the following geometric interpretation: the p − 1 horizontal lines in the plane

with ordinates µ
(p)
j , j = 1, . . . , p − 1, are ‘separating lines’ for the eigenvalues of fp(θ). This is illustrated in

Figure 3.2 for the cases p = 2, 3. Item 1 in Corollary 3.2 has an analogous geometric interpretation.
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Figure 3.2: left: graph of the eigenvalue functions θ 7→ λ j(f2(θ)), j = 1, 2 (solid lines), and of the separating

line with ordinate
16

3
(dashed line); right: graph of the eigenvalue functions θ 7→ λ j(f3(θ)), j = 1, 2, 3 (solid

lines), and of the separating lines with ordinates
729

40
and

27

8
(dashed lines).

3.4 Spectral analysis and spectral symbol

In this section we study the spectral properties of the stiffness matrix A(p)
n in (3.11), focusing on the asymptotic

behavior as the fineness parameters n→ ∞. In particular, we give estimates for the eigenvalues and for the

spectral condition number κ(A(p)
n ). Moreover, assuming n = νn = (ν

1
n, . . . , νdn) ∈ Nd

for a fixed ν ∈ Qd
+, we

prove that the sequence {nd−2A(p)
n }n has an asymptotic spectral distribution characterized by the Hermitian

matrix-valued function

f(ν)
p (θ) : [−π, π]d → CN(p)×N(p)

f(ν)
p (θ) :=

d∑
k=1

ck(ν) hp1
(θ

1
) ⊗ · · · ⊗ hpk−1(θk−1) ⊗ fpk(θk) ⊗ hpk+1

(θk+1) ⊗ · · · ⊗ hpd (θd), (3.36)

where fp and hp are given in (3.23)–(3.24), and

ck(ν) :=
νk

ν
1
· · · νk−1νk+1 · · · νd

, k = 1, . . . , d. (3.37)

Unfortunately, it turns out that the spectrum of f(ν)
p presents an exponential scattering with respect to p

and d, and this implies a substantial numerical difficulty in treating the linear systems associated with the

matrix nd−2A(p)
n , already for moderate p and d. In the last subsection, still assuming that n = νn for some

ν ∈ Qd
+, we investigate the clustering properties of the sequence {nd−2A(p)

n }n and we show that {nd−2A(p)
n }n is

strongly clustered at [0,Mf(ν)
p

], where Mf(ν)
p

:= maxθ∈[−π,π]d λmax(f(ν)
p (θ)).

3.4.1 Estimates for the eigenvalues, localization of the spectrum and conditioning of A(p)
n

We first provide estimates for the eigenvalues of K(p)
n ,M(p)

n . This is fundamental for estimating the condition

number κ(A(p)
n ). By Theorem 3.2, the matrices K(p)

n ,M(p)
n are the leading principal submatrices of order np− 1

61



of the Hermitian block Toeplitz matrices Tn(fp),Tn(hp), respectively. Moreover, Tn−1(fp),Tn−1(hp) are the

leading principal submatrices of order np − p of K(p)
n ,M(p)

n , respectively. Hence, by Theorem 1.3 we have, for

all j,
λ j(Tn(fp)) ≥ λ j(K(p)

n ) ≥ λ j+1(Tn(fp)), λ j(K(p)
n ) ≥ λ j(Tn−1(fp)) ≥ λ j+p−1(K(p)

n ), (3.38)

λ j(Tn(hp)) ≥ λ j(M(p)
n ) ≥ λ j+1(Tn(hp)), λ j(M(p)

n ) ≥ λ j(Tn−1(hp)) ≥ λ j+p−1(M(p)
n ). (3.39)

By (3.38)–(3.39), by Theorem 1.8, and by recalling that mfp = 0 (Corollary 3.1), we have

Λ(K(p)
n ) ⊂ (0,Mfp], Λ(M(p)

n ) ⊂ [mhp ,Mhp]. (3.40)

Note that the point 0 is excluded from Λ(K(p)
n ) either because K(p)

n is positive definite (see Theorem 3.1),

or because, by Corollary 3.1, λmin(fp(θ)) is not constant and so Theorem 1.8 excludes 0 from Λ(Tn(fp)).
Furthermore, Theorem 1.8 and (3.38)–(3.39) imply that, for each fixed j ≥ 1, when n→ ∞ we have

λ j(K(p)
n )↗ Mfp , λ j(M(p)

n )↗ Mhp ,

λnp− j(K(p)
n )↘ 0, λnp− j(M(p)

n )↘ mhp , (3.41)

where the convergence is monotone by Theorem 1.3 and by the fact that K(p)
n (resp. M(p)

n ) is a leading

principal submatrix of K(p)
n+1

(resp. M(p)
n+1

) for every n. Relation (3.41) says that, for fixed p, the matrix K(p)
n is

ill-conditioned for large n, while M(p)
n is not (recall that mhp > 0 by Corollary 3.2). Theorem 3.5 allows us

to understand ‘how much’ K(p)
n is ill-conditioned. Before proving it, we provide two useful lemmas.

Lemma 3.4 (Poincaré’s inequality). For all v ∈ H1

0
(0, 1),

‖v‖L2(0,1) ≤
1

π
‖v′‖L2(0,1). (3.42)

In [12] we find that

1

π
=

√
1

c
1,1

is the best constant such that (3.42) is satisfied for all v ∈ H1

0
(0, 1). Here,

c
1,1 is the number appearing in (1.38) for s = j = 1; see also Remarks 1.3–1.5.

Lemma 3.5. For all p, n ≥ 1,

K(p)
n ≥

π2

n2

M(p)
n . (3.43)

Proof. By using the definition of K(p)
n , see (3.19), for all y ∈ Rnp−1

we have

yT
(
nK(p)

n

)
y =

np−1∑
i, j=1

yiy j

∫
(0,1)

`′j,(p)`
′
i,(p) =

∫
(0,1)

np−1∑
i=1

yi`
′
i,(p)

np−1∑
j=1

y j`
′
j,(p) =

∥∥∥∥∥∥∥
np−1∑
i=1

yi`
′
i,(p)

∥∥∥∥∥∥∥
2

L2(0,1)

= ‖v′y‖
2

L2(0,1),

where vy :=
∑np−1

i=1 yi`i,(p) ∈ W (p)
n ; see Section 3.1 for the definition of W (p)

n . Similarly,

yT

(
1

n
M(p)

n

)
y = ‖vy‖2L2(0,1).

By the Poincaré inequality (3.42), we have ‖v′y‖
2

L2(0,1) ≥ π
2‖vy‖2L2(0,1). It follows that

yT
(
nK(p)

n

)
y ≥ π2yT

(
1

n
M(p)

n

)
y,

i.e., the matrix inequality (3.43). �

62



Note that the argument shown in the proof of Lemma 3.5 is quite general and, in particular, it does

not depend on the specific basis {`i,(p) : i = 1, . . . , np − 1}. In fact, a version of Lemma 3.5 holds in a more

general setting; see [31, Proposition 1].

Theorem 3.5. Let p, n ≥ 1 and let cp > 0 be a constant satisfying (3.35). Then the following properties hold.

1. We have

λ j(K(p)
n ) ≥ max

(
π2

n2

λ j(M(p)
n ), cpλ j+1(Tn(2 − 2 cos θ) ⊗ Ip)

)
∀ j = 1, . . . , np − 1, (3.44)

λmin(K(p)
n ) ≥ max

(
π2

n2

mhp , 4cp sin2

(
π

2n + 2

))
n→∞
∼

π2 max(mhp , cp)
n2

. (3.45)

2. If n ≥ 3, we have

λ j+2(C(p)
n ) ≤ λ j(K(p)

n ) ≤ λ j−1(C(p)
n ) ∀ j = 1, . . . , np − 1, (3.46)

λmin(K(p)
n ) ≤ 4 sin2

(
π

n

)
n→∞
∼

4π2

n2

, (3.47)

where C(p)
n is the Hermitian block circulant matrix of order np defined in (3.48).

Proof. 1. By Lemma 3.5 and by (1.10) it holds that λ j(K
(p)
n ) ≥ π2

n2
λ j(M(p)

n ) for all j = 1, . . . , np − 1. Moreover,

by (3.35), for all θ we have

fp(θ) ≥ cp(2 − 2 cos θ)Ip.

By Proposition 1.1, this implies that

Tn(fp) ≥ Tn(cp(2 − 2 cos θ)Ip) = cpTn(2 − 2 cos θ) ⊗ Ip,

where the last equality follows from the definitions of tensor product and Tn(cp(2 − 2 cos θ)Ip). By (1.10) we

deduce that

λ j(Tn(fp)) ≥ cpλ j(Tn(2 − 2 cos θ) ⊗ Ip) ∀ j = 1, . . . , np,

and consequently, by (3.38),

λ j(K(p)
n ) ≥ cpλ j+1(Tn(2 − 2 cos θ) ⊗ Ip) ∀ j = 1, . . . , np − 1.

This completes the proof of (3.44). Relation (3.45) is obtained from (3.44) by setting j = np − 1. To see this,

note that λmin(M(p)
n ) ≥ mhp by (3.40); moreover,

λmin(Tn(2 − 2 cos θ) ⊗ Ip) = λmin(Tn(2 − 2 cos θ)) = 4 sin2

(
π

2n + 2

)
,

where the last equality holds because the eigenvalues of Tn(2 − 2 cos θ) are known and, in particular, the

minimal eigenvalue equals 2 − 2 cos π
n+1

= 4 sin2

(
π

2n+2

)
; see Theorem 1.9.

2. Let n ≥ 3. With the notation of Theorem 3.2, we have

Tn(fp) =


K

0
KT

1

K
1

. . .
. . .

. . .
. . . KT

1

K
1

K
0

 =


K

0
KT

1
K

1

K
1

. . .
. . .

. . .
. . . KT

1

KT
1

K
1

K
0

 −


K
1

KT
1

 =: C(p)
n − E(p)

n , (3.48)
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where C(p)
n is a block circulant matrix, while E(p)

n is Hermitian with rank(E(p)
n ) = 2. The latter is true because

rank(K
1
) = 1.

3
Therefore, E(p)

n has exactly two nonzero eigenvalues λ, µ, which are one the opposite of the

other because λ + µ = trace(E(p)
n ) = 0. Thus, we can apply Theorem 1.4 with k+ = k− = 1 and we obtain

λ j−1(C(p)
n ) ≥ λ j(Tn(fp)) ≥ λ j+1(C(p)

n ) ∀ j = 1, . . . , np. (3.49)

The inequalities (3.46) follow from (3.49),(3.38). To obtain (3.47), note that the spectral decomposition of

C(p)
n is known (Theorem 1.11) and, when applying Theorem 1.11 to C(p)

n , the function g in (1.44) satisfies

g
(
2π j
n

)
= fp

(
2π j
n

)
for all j = 0, . . . , n − 1. Moreover, by Corollary 3.1, λmin(fp(θ)) ≤ 2 − 2 cos θ for all θ, and

λmin(fp(θ)) is ‘well-separated’ from the other eigenvalue functions λ j(fp(θ)), j = 1, . . . , p− 1, by the separating

line µ
(p)
p−1. Hence, for j = np − 1, from (3.46) we obtain

λmin(K(p)
n ) ≤ λnp−2(C(p)

n ) = the third smallest number in the set

{
λmin

(
fp

(
2π j
n

))}
j=0,...,n−1

≤ the third smallest number in the set

{
2 − 2 cos 2π j

n

}
j=0,...,n−1

= 2 − 2 cos 2π
n = 4 sin2(πn ).

�

Remark 3.2. The argument used for proving (3.49) can be generalized to the case where fp is replaced by

any Hermitian matrix-valued trigonometric polynomial. To be precise, let q(θ) =
∑m

k=−m qke
ikθ : [−π, π]→ Cp×p

be a Hermitian matrix-valued trigonometric polynomial. Then q− j = q∗j for every j = 0, . . . ,m and Tn(q) is

Hermitian for all n ≥ 1 (see Subsection 1.4.1). For every n ≥ 2m + 1 we can write Tn(q) = Cn − En, where

Cn := Tn(q) + En is a block circulant matrix and the matrix En, given by

En :=

 O O B
O O O
B∗ O O

 , B :=


qm · · · q

1

. . .
...
qm

 ,
is Hermitian with rank(En) ≤ 2mp. It can be shown that the nonzero eigenvalues of En coincide with the

nonzero singular values of B together with their negatives; see [7, p. 35]. Hence, En has the same number

mp of positive and negative eigenvalues and so, by Theorem 1.4, we get

λ j−mp(Cn) ≥ λ j(Tn(q)) ≥ λ j+mp(Cn), ∀ j = 1, . . . , np.

Notice also that the spectral decomposition of Cn for n ≥ 2m + 1 is given by (1.44) with

g(θ) =

m∑
k=0

qke
ikθ +

n−1∑
k=n−m

qk−ne
ikθ =

m∑
k=0

qke
ikθ +

−1∑
`=−m

q`ei(`+n)θ =

m∑
k=0

qke
ikθ + e

inθ
−1∑

`=−m

q`ei`θ,

hence g
(
2π j
n

)
= q

(
2π j
n

)
for every j = 0, . . . , n − 1.

Table 3.1 shows the results of some numerical experiments. They confirm that λmin(K(p)
n ) goes to 0 as 1/n2

when n→ ∞, in accordance with Theorem 3.5, and they also allow us to formulate the following conjecture.

Conjecture 3.2. For every p, j ≥ 1 we have

lim
n→∞

pn2λnp− j(K(p)
n ) = j2π2, (3.50)

where we recall that the eigenvalues of any Hermitian matrix like K(p)
n are arranged in non-increasing order,

so that λnp− j(K
(p)
n ) is the j-th smallest eigenvalue of K(p)

n .
3
Note that K1 , O, otherwise we would have 〈L′

0
, L′

1
〉 = . . . = 〈L′

0
, L′p〉 = 0, implying 〈L′

0
, L′

1
+ . . . + L′p〉 = 0 and, by Lemma 3.2,

−〈L′
0
, L′

0
〉 = 0: this is impossible, because L′

0
is not identically 0.
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n 2n2λ2n−1(K
(2)
n ) 3n2λ3n−1(K

(3)
n ) 2n2λ2n−2(K

(2)
n ) 3n2λ3n−2(K

(3)
n ) 2n2λ2n−3(K(2)

n ) 3n2λ3n−3(K(3)
n )

20 9.8683332 9.8693541 39.4579402 39.4744220 88.7216045 88.8062922

40 9.8692871 9.8695418 39.4733327 39.4774163 88.8006247 88.8213755

80 9.8695251 9.8695887 39.4771485 39.4781671 88.8200104 88.8251718

160 9.8695846 9.8696005 39.4781005 39.4783550 88.8248338 88.8261226

320 9.8695994 9.8696034 39.4783383 39.4784019 88.8260383 88.8263603

640 9.8696032 9.8696042 39.4783978 39.4784137 88.8263393 88.8264198

Table 3.1: computation of pn2λnp− j(K
(p)
n ) for p = 2, 3, j = 1, 2, 3, and for increasing values of n.

The limit relation (3.50) is verified for p = 2, 3 and j = 1, 2, 3 in Table 3.1. Moreover, it certainly holds

for p = 1 and j ≥ 1, since K(1)
n = Tn−1(2− 2 cos θ) and it is known that λn− j(K

(1)
n ) = 2− 2 cos jπ

n , j = 1, . . . , n− 1;
see Theorem 1.9.

Conjecture 3.2 can be motivated as follows. The matrix K(p)
n is associated with the Finite Element

discretization of the 1D boundary value problem (1.40), because nK(p)
n coincides with the univariate Qp

Lagrangian FEM stiffness matrix A(p)
n = A(p)

n,D in the case β = γ = 0; see (3.12)–(3.13) and the definition of K(p)
n

in (3.19). The numbers j2π2, j = 1, 2, . . ., are precisely the eigenvalues of (1.40); see Remark 1.4. The matrices

Tm(2 − 2 cos θ), m = 1, 2, . . ., are also associated with the (Finite Difference) discretization of (1.40) and for

these matrices Theorem 1.10 estabilishes the analogous limit relation lim
m→∞

(
m2 λm− j+1(Tm(2 − 2 cos θ))

)
= j2π2

for each fixed j ≥ 1; see Remark 1.5.

We now provide a localization of the spectrum of A(p)
n and an estimate of its condition number under

the assumption that β ∈ Rd
is constant. In this case, the advection matrix A(p)

n,A in (3.13) is skew-symmetric

and, consequently, the real and imaginary parts of A(p)
n are explicitly given by

R(A(p)
n ) = A(p)

n,D + A(p)
n,R, (3.51)

I(A(p)
n ) = −iA(p)

n,A. (3.52)

Note that, from (3.51), (3.15), (3.17)–(3.18), we obtain

R(A(p)
n ) ≥

d∑
k=1

1

n
1

M(p1)
n1

⊗ · · · ⊗
1

nk−1
M(pk−1)

nk−1
⊗ nkK(pk)

nk
⊗

1

nk+1

M(pk+1)
nk+1
⊗ · · · ⊗

1

nd
M(pd)

nd
+ γ∗

1

n
1

Mn1
⊗ · · · ⊗

1

nd
Mnd , (3.53)

R(A(p)
n ) ≤

d∑
k=1

1

n
1

M(p1)
n1

⊗ · · · ⊗
1

nk−1
M(pk−1)

nk−1
⊗ nkK(pk)

nk
⊗

1

nk+1

M(pk+1)
nk+1
⊗ · · · ⊗

1

nd
M(pd)

nd
+ ‖γ‖L∞(Ω)

1

n
1

Mn1
⊗ · · · ⊗

1

nd
Mnd .

(3.54)

In particular, (1.17) combined with Lemma 3.5 yields R(A(p)
n ) ≥

π2d + γ∗
n
1
· · · nd

M(p1)
n1

⊗ · · · ⊗ M(pd)
nd
.

Lemma 3.6 (localization of the spectrum of R(A(p)
n )). Assume that β ∈ Rd is constant and, for p, n ≥ 1,

define ζn,p := max
(
π2,

4cp

mhp

n2 sin
(

π

2n + 2

))
, where cp > 0 is a constant satisfying (3.35). Then, for every

n, p ∈ Nd,

λmin

(
R(A(p)

n )
)
≥

∑d
k=1 ζnk ,pk + γ∗

n
1
· · · nd

Gp ≥
π2d + γ∗
n
1
· · · nd

Gp, (3.55)

λmax(R(A(p)
n )) ≤

∑d
k=1 n2

k(Mfpk
/Mhpk

) + ‖γ‖L∞(Ω)

n
1
· · · nd

S p, (3.56)

where Gp := mhp
1

· · ·mhpd
and S p := Mhp

1

· · ·Mhpd
.
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Proof. Apply (1.8),(1.16),(3.40),(3.45) in (3.53) to obtain (3.55). Then, apply (1.9),(1.16),(3.40) in (3.54) to obtain

(3.56). �

Theorem 3.6 (localization of the spectrum of A(p)
n ). Assume that β ∈ Rd is constant and, for p, n ≥ 1, let

ζn,p be as in Lemma 3.6. Then, for every n, p ∈ Nd,

Λ(A(p)
n ) ⊆ [λmin(R(A(p)

n )), λmax(R(A(p)
n ))] × [λmin(I(A(p)

n )), λmax(I(A(p)
n ))]

⊆

∑d
k=1 ζnk ,pk + γ∗

n
1
· · · nd

Gp,

∑d
k=1 n2

k(Mfpk
/Mhpk

) + ‖γ‖L∞(Ω)

n
1
· · · nd

S p

 × [
−Bp‖β‖∞

∑d
k=1 nk

n
1
· · · nd

, Bp‖β‖∞

∑d
k=1 nk

n
1
· · · nd

]
,

where Gp := mhp
1

· · ·mhpd
, S p := Mhp

1

· · ·Mhpd
, and Bp is a constant satisfying (3.14).

Proof. From Lemma 3.6 we have∑d
k=1 ζnk ,pk + γ∗

n
1
· · · nd

Gp ≤ λmin(R(A(p)
n )) ≤ λmax(R(A(p)

n )) ≤

∑d
k=1 n2

k(Mfpk
/Mhpk

) + ‖γ‖L∞(Ω)

n
1
· · · nd

S p,

and from Lemma 3.1, combined with (3.52) and with the fact that β is constant, we have

−Bp‖β‖∞

∑d
k=1 nk

n
1
· · · nd

≤ −‖I(A(p)
n )‖ ≤ λmin(I(A(p)

n )) ≤ λmax(I(A(p)
n )) ≤ ‖I(A(p)

n )‖ ≤ Bp‖β‖∞

∑d
k=1 nk

n
1
· · · nd

.

The thesis follows from (1.7). �

Theorem 3.7 (conditioning). Assume that β is constant. Then, for every p ∈ Nd there exists a constant αp
such that, for all n ∈ Nd,

κ(A(p)
n ) ≤ αp

d∑
k=1

n2

k. (3.57)

Proof. From A(p)
n = R(A(p)

n ) + iI(A(p)
n ) and from the fact that R(A(p)

n ), I(A(p)
n ) are Hermitian, we have

σmax(A(p)
n ) = ‖A(p)

n ‖ ≤ ‖R(A(p)
n )‖ + ‖I(A(p)

n )‖ = ρ(R(A(p)
n )) + ρ(I(A(p)

n )).

Hence, by Theorem 3.6 we see that

‖A(p)
n ‖ ≤ α̂p

∑d
k=1 n2

k

n
1
· · · nd

,

for some constant α̂p independent of n. Furthermore, by Lemma 3.6 and by the Fan-Hoffman theorem,

σmin(A(p)
n ) ≥ λmin(R(A(p)

n )) ≥
α̃p

n
1
· · · nd

,

for some constant α̃p > 0 independent of n. Thus, κ(A(p)
n ) =

σmax(A(p)
n )

σmin(A(p)
n )
≤ αp

∑d
k=1 n2

k, with αp = α̂p/α̃p. �

(3.57) says that κ(A(p)
n ) is bounded from above by max(n2) = max(n2

1
, . . . , n2

d) multiplied by some constant

independent of n (for instance αpd). This upper bound is the sharpest possible, as shown by the numerical

experiments in Table 3.2, where we fixed d = 2, β = 0, γ = 0, p = (2, 2), and we computed κ(A(p)
n ) = κ(A(p)

n,D)
(normalized by n2

) for n = (n, log
2

n) and for increasing values of n. For a nice comparison with Finite

Differences (FD), in the third column of Table 3.2 we reported the values of κ(An)/n2
for d = 2 and for

n = (n, log
2

n), where

An :=
d∑

k=1

n2

k In1−1 ⊗ · · · ⊗ Ink−1−1 ⊗ Tnk−1(2 − 2 cos θ) ⊗ Ink+1−1 ⊗ · · · ⊗ Ind−1 = Tn−1

 d∑
k=1

n2

k(2 − 2 cos θk)

 (3.58)

is the (diffusion) matrix coming from the standard centered FD approximation of (3.1) on the mesh j/n, j =

0, . . . , n, in the case β = 0, γ = 0.
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n κ(A(p)
n )/n2 κ(An)/n2

8 1.2597 0.2278

16 1.2573 0.2173

32 1.2553 0.2101

64 1.2543 0.2065

128 1.2539 0.2049

256 1.2538 0.2041

Table 3.2: computation of κ(A(p)
n )/n2

and κ(An)/n2
in the case d = 2, β = 0, γ = 0, p = (2, 2), n = (n, log

2
n),

for increasing values of n. Note that we are in the presence of a non-uniform mesh refinement.

3.4.2 Spectral distribution and symbol of the normalized sequence {nd−2A(p)
n }n

In this subsection we assume that n j = ν jn for all j = 1, . . . , d, i.e. n = νn = (ν
1
n, . . . , νdn) ∈ Nd

, where

ν ∈ Qd
+ is fixed and n varies in the set of natural numbers such that n ∈ Nd

. Under this assumption, from

(3.12)–(3.13) and (3.17) we have

nd−2A(p)
n = nd−2A(p)

n,D + nd−2A(p)
n,A + nd−2A(p)

n,R

=

d∑
k=1

ck(ν) M(p1)
n1

⊗ · · · ⊗ M(pk−1)
nk−1
⊗ K(pk)

nk
⊗ M(pk+1)

nk+1
⊗ · · · ⊗ M(pd)

nd
+ nd−2A(p)

n,A + nd−2A(p)
n,R, (3.59)

where the values ck(ν), k = 1, . . . , d, are given in (3.37). Recall from (3.11) that A(p)
n is of size N(np − 1) =

(n
1
p
1
− 1) · · · (nd pd − 1).

In Theorem 3.8 we prove that the sequence of matrices {nd−2A(p)
n }n in (3.59) is distributed, in the sense

of the eigenvalues, like the Hermitian matrix-valued function f(ν)
p in (3.36), which is therefore the symbol of

the sequence {nd−2A(p)
n }n. Note that {nd−2A(p)

n }n is really a sequence of matrices, due to the assumption n = νn.
This assumption must be kept in mind while reading this subsection.

Before stating and proving Theorem 3.8, let us observe that, by the properties of fp(θ) and hp(θ), see

Corollaries 3.1–3.2, and by the properties of tensor products, see Subsection 1.2.1, f(ν)
p (θ) ≥ O for all θ ∈ [−π, π]d

and f(ν)
p (θ) > O for all θ ∈ [−π, π]d\{0}.

Theorem 3.8. Let p ∈ Nd, ν ∈ Qd
+ and n = νn, then {nd−2A(p)

n }n ∼λ f(ν)
p . In particular, {nd−2A(p)

n }n is weakly
clustered at the essential range ER(f(ν)

p ) and every point z ∈ ER(f(ν)
p ) strongly attracts Λ(nd−2A(p)

n ) with infinite
order (see Theorem 1.5).

Proof. For all p, n ≥ 1, define the following matrices, of size np:

K̃(p)
n := K(p)

n ⊕ [0], M̃(p)
n := M(p)

n ⊕ [0].

Let nd−2Ã(p)
n,D be the matrix of size N(np) = n

1
p
1
· · · nd pd = (ν

1
p
1
· · · νd pd)nd = N(νp)nd

obtained from nd−2A(p)
n,D

by replacing the symbols K,M appearing in its expression (3.59) with K̃, M̃:

nd−2Ã(p)
n,D =

d∑
k=1

ck(ν) M̃(p1)
n1

⊗ · · · ⊗ M̃(pk−1)
nk−1
⊗ K̃(pk)

nk
⊗ M̃(pk+1)

nk+1
⊗ · · · ⊗ M̃(pd)

nd
.

By Lemma 1.5, there exists the permutation matrix Pn,p := Pn1p1−1,1,n2p2−1,1,...,nd pd−1,1, depending only on n, p,
such that

nd−2Ã(p)
n,D = Pn,p[(nd−2A(p)

n,D) ⊕ O]PT
n,p,

where O is the zero matrix of order n
1
p
1
· · · nd pd − (n

1
p
1
− 1) · · · (nd pd − 1) = o(nd). Hence,

nd−2Ã(p)
n := Pn,p

[
(nd−2A(p)

n ) ⊕ O
]

PT
n,p = Pn,p[nd−2A(p)

n,D ⊕ O + nd−2A(p)
n,A ⊕ O + nd−2A(p)

n,R ⊕ O]PT
n,p
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= nd−2Ã(p)
n,D + nd−2Ã(p)

n,A + nd−2Ã(p)
n,R,

where nd−2Ã(p)
n,A := Pn,p[(nd−2A(p)

n,A) ⊕ O]PT
n,p and nd−2Ã(p)

n,R := Pn,p[(nd−2A(p)
n,R) ⊕ O]PT

n,p. The eigenvalues of nd−2Ã(p)
n

are those of nd−2A(p)
n with only o(nd) extra eigenvalues equal to 0. Consequently, by Definition 1.1, if we

prove that {nd−2Ã(p)
n }n ∼λ f(ν)

p then {nd−2A(p)
n }n ∼λ f(ν)

p .

Now, let

T (p)
n :=

d∑
k=1

ck(ν) Tn1
(hp1

) ⊗ · · · ⊗ Tnk−1(hpk−1) ⊗ Tnk(fpk) ⊗ Tnk+1
(hpk+1

) ⊗ · · · ⊗ Tnd (hpd ). (3.60)

To show that {nd−2Ã(p)
n }n ∼λ f(ν)

p , we prove that the hypotheses of Theorem 2.7 are satisfied with Xn := T (p)
n ,

Yn := nd−2Ã(p)
n − T (p)

n and f = f(ν)
p .

Note that each T (p)
n is Hermitian because fp, hp are Hermitian matrix-valued functions for all p ≥ 1. By

Lemma 1.9, T (p)
n is also similar to Tn(f(ν)

p ), and, by Theorem 1.8, {Tn(f(ν)
p )}n ∼λ f(ν)

p , implying {T (p)
n }n ∼λ f(ν)

p .

Now observe that, since K(p)
n , M(p)

n , K̃(p)
n , M̃(p)

n , Tn(fp), Tn(hp) are normal for all p, n ≥ 1, we have

‖K̃(p)
n ‖ = ρ(K̃(p)

n ) = ρ(K(p)
n ) = ‖K(p)

n ‖ ≤ Mfp , ‖Tn(fp)‖ = ρ(Tn(fp)) ≤ Mfp , (3.61)

‖M̃(p)
n ‖ = ρ(M̃(p)

n ) = ρ(M(p)
n ) = ‖M(p)

n ‖ ≤ Mhp , ‖Tn(hp)‖ = ρ(Tn(hp)) ≤ Mhp . (3.62)

From (3.61)–(3.62), from the triangle inequality, and from (1.13), it follows that the norms ‖T (p)
n ‖, ‖nd−2Ã(p)

n,D‖ =

‖nd−2A(p)
n,D‖ are bounded from above by some constant independent of n. Moreover, from Lemma 3.1 and

(3.16), (3.18), (3.62), (1.13), we have

‖nd−2Ã(p)
n,A‖ = ‖nd−2A(p)

n,A‖ ≤
nd−2Bp‖β‖L∞(Ω)

∑d
k=1 nk

n
1
· · · nd

=
Bp‖β‖L∞(Ω)

∑d
k=1 νk

ν
1
· · · νdn

, (3.63)

‖nd−2Ã(p)
n,R‖ = ‖nd−2A(p)

n,R‖ ≤
nd−2‖γ‖L∞(Ω)S p

n
1
· · · nd

=
‖γ‖L∞(Ω)S p

ν
1
· · · νdn2

, (3.64)

where S p := Mhp
1

· · ·Mhpd
. Therefore, taking into account the triangle inequality

‖nd−2Ã(p)
n ‖ ≤ ‖nd−2Ã(p)

n,D‖ + ‖nd−2Ã(p)
n,A‖ + ‖nd−2Ã(p)

n,R‖,

we conclude that ‖nd−2Ã(p)
n ‖ is bounded from above by some constant independent of n. Hence,

‖T (p)
n ‖, ‖nd−2Ã(p)

n,D‖, ‖n
d−2Ã(p)

n,A‖, ‖n
d−2Ã(p)

n,R‖, ‖n
d−2Ã(p)

n ‖, ‖nd−2Ã(p)
n − T (p)

n ‖ ≤ C, (3.65)

for some C independent of n. To finish the proof, we have to show that

∣∣∣∣∣∣∣∣∣nd−2Ã(p)
n − T (p)

n

∣∣∣∣∣∣∣∣∣
1

= o(nd) as n→ ∞.

Note that, for all p, n ≥ 1,

rank(K̃(p)
n − Tn(fp)) ≤ 2, rank(M̃(p)

n − Tn(hp)) ≤ 2.

Therefore, by (1.5) and by the property (1.18) of tensor products we infer∣∣∣∣∣∣∣∣∣nd−2Ã(p)
n − T (p)

n

∣∣∣∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣∣∣∣nd−2Ã(p)

n,D − T (p)
n

∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣nd−2Ã(p)

n,A

∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣nd−2Ã(p)

n,R

∣∣∣∣∣∣∣∣∣
1

≤

d d∑
i=1

2n
1
p
1
· · · ni−1pi−1ni+1pi+1 · · · nd pd

 ∥∥∥nd−2Ã(p)
n,D − T (p)

n

∥∥∥
+ n

1
p
1
· · · nd pd

∥∥∥nd−2Ã(p)
n,A

∥∥∥ + n
1
p
1
· · · nd pd

∥∥∥nd−2Ã(p)
n,R

∥∥∥ ,
and the latter is o(nd), thanks to (3.63)–(3.65). �
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p 2 3 4 5 6 7 8 9 10

φ(1)
p,1 1.33 5.78 1.84 · 10 5.45 · 10 1.59 · 102

4.84 · 102
1.54 · 103

5.12 · 103
1.77 · 104

[φ(1)
p,1]

1/p
1.15 1.79 2.07 2.22 2.33 2.42 2.50 2.58 2.66

Table 3.3: computation of φ(ν)
p,d and [φ(ν)

p,d]1/N(p)
in the case d = 1, p = p, ν = 1, for p = 2, . . . , 10. Note that in

this case f(ν)
p (θ) is nothing else than fp(θ).

p 2 3 4 5 6 7 8 9 10

φ(1,1)
(p,p),2 2.13 9.72 3.44 · 10 1.54 · 102

7.47 · 102
4.39 · 103

3.01 · 104
2.42 · 105

2.17 · 106

[φ(1,1)
(p,p),2]

1/p2

1.21 1.29 1.25 1.22 1.20 1.19 1.17 1.17 1.16

Table 3.4: computation of φ(ν)
p,d and [φ(ν)

p,d]1/N(p)
in the case d = 2, p = (p, p), ν = (1, 1), for p = 2, . . . , 10.

3.4.3 Exponential scattering and ill-conditioning of the symbol

The discussion on the exponential ill-conditioning of the symbol contained in this subsection is based on

the informal meaning behind the definition of spectral distribution. According to Remark 1.2, the spectral

information contained in the symbol f(ν)
p can be summarized as follows: the eigenvalues of nd−2A(p)

n are

approximately given by a uniform sampling of the eigenvalue functions λi(f(ν)
p ) over an equispaced grid in

the domain [−π, π]d
. To fix the ideas, assume that the equispaced grid is

−π +
2 jπ

n
=

(
−π +

2 j
1
π

n
1

, . . . ,−π +
2 jdπ

nd

)
, j = 0, . . . , n− 1,

where π := (π, . . . , π). Then, the eigenvalues of nd−2A(p)
n are approximately given by

4

λi

(
f(ν)

p

(
−π +

2 jπ
n

))
, j = 0, . . . , n− 1, i = 1, . . . ,N(p). (3.66)

From (3.66) we infer that the ratio

φ(ν)
p,d :=

minθ∈[−π,π]d λmax(f(ν)
p (θ))

maxθ∈[−π,π]d λmin(f(ν)
p (θ))

is an index of the scattering of the eigenvalues of nd−2A(p)
n . Indeed, if φ(ν)

p,d is large (resp. small), then

the eigenvalues of nd−2A(p)
n obtained from (3.66) for i = 1, which correspond to the maximal eigenvalue

function of the symbol, are far away from (resp. very close to) the eigenvalues obtained for i = N(p),
which correspond to the minimal eigenvalue function of the symbol. Furthermore, in the case where φ(ν)

p,d is

large, the ‘ill-conditioned subspace’, that is the subspace corresponding to the largest eigenvalues of nd−2A(p)
n

obtained by setting i = 1 in (3.66), is very large: its dimension is about

#
{
λmax

(
f(ν)

p

(
−π +

2 jπ
n

))
: j = 0, . . . , n− 1

}
=

N(n)
N(p)

=
n
1
· · · nd

p
1
· · · pd

. (3.67)

Tables 3.3–3.4 shows, for d = 1, 2, the behavior of φ(ν)
p,d in the case p = (p, . . . , p), ν = (1, . . . , 1), for different

values of p. Not only we observe an exponential ill-conditioning with p and d, as already proved in [44],

but we can also predict, on the base of (3.67), that the subspace where this exponential ill-conditioning

occurs is very large: for the case displayed in Tables 3.3–3.4, the size of such subspace is approximately

4
Ignore the mismatch with the size of nd−2A(p)

n : the reasoning that we are following in this subsection is heuristic. Think of

nd−2A(p)
n as if it were exactly the Toeplitz matrix Tn(f(ν)

p ) generated by the symbol f(ν)
p .
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nd/pd, d = 1, 2. This involved picture shows that the numerical solution of the linear systems associated

with the matrix nd−2A(p)
n is a really hard problem for large p and d, not only because of the exponential

ill-conditioning, but also for the large size of the subspace where this ill-conditioning is attained.

3.4.4 Clustering of the normalized sequence {nd−2A(p)
n }n

In this subsection, we still assume that n = νn, where ν ∈ Qd
+ is fixed and n varies in the set of natural

numbers such that n ∈ Nd
. In this situation, we have seen in Theorem 3.8 that {nd−2A(p)

n }n ∼λ f(ν)
p and,

consequently, {nd−2A(p)
n }n is weakly clustered at the essential range of f(ν)

p , given by the union of the es-

sential ranges of the eigenvalue functions λi(f(ν)
p ), i = 1, . . . ,N(p), that is ER(f(ν)

p ) =
⋃N(p)

i=1 ER(λi(f(ν)
p )); see

Theorem 1.5. Note that f(ν)
p is continuous over [−π, π]d

, hence the eigenvalue functions are continuous over

[−π, π]d
, which means that their essential ranges coincide exactly with their images. Being weakly clustered

at ER(f(ν)
p ), the sequence {nd−2A(p)

n }n is a fortiori weakly clustered at the convex hull of ER(f(ν)
p ), which is

given by [0,Mf(ν)
p

], Mf(ν)
p

:= maxθ∈[−π,π]d f(ν)
p (θ). We are going to see that actually {nd−2A(p)

n }n is strongly clustered

at [0,Mf(ν)
p

], in the case where β is constant.

Theorem 3.9. We have Λ(nd−2A(p)
n,D) ⊂ (0,Mf(ν)

p
], and, moreover, for each fixed j and for n→ ∞ we have

λN(np−1)− j(nd−2A(p)
n,D)→ 0, λ j(nd−2A(p)

n,D)→ Mf(ν)
p
. (3.68)

Proof. Since A(p)
n,D is SPD, λmin(nd−2A(p)

n,D) > 0. To prove the inclusion Λ(nd−2A(p)
n,D) ⊂ (0,Mf(ν)

p
], recall that in

the proof of Theorem 3.8 we have defined the Hermitian matrix T (p)
n , see Eq. (3.60), and we have noticed

that T (p)
n is similar to Tn(f(ν)

p ). We show that for every x ∈ CN(np−1)
there exists y ∈ CN(np)

with ‖y‖ = ‖x‖
such that

x∗(nd−2A(p)
n,D)x = y∗T (p)

n y, (3.69)

which implies, by the minimax principle,

λmax(nd−2A(p)
n,D) = max

‖x‖=1
(x∗(nd−2A(p)

n,D)x) ≤ max
‖y‖=1

(y∗T (p)
n y) = λmax(T (p)

n ) = λmax(Tn(f(ν)
p )) ≤ Mf(ν)

p
,

the last inequality being justified by Theorem 1.8.

In order to prove (3.69), it is convenient to index vectors and matrices using multi-indices in Nd
, with

the standard lexicographic ordering on them; see Subsection 1.1.1. For every x ∈ CN(np−1)
we have

x∗(nd−2A(p)
n,D)x =

np−1∑
i, j=1

xi(nd−2A(p)
n,D)i jx j =

∑
i, j∈{1,...,np−1}

xi(nd−2A(p)
n,D)i jx j.

Define y ∈ CN(np)
in the following way:

yi = xi if i ∈ {1, . . . , np− 1}, yi = 0 if i ∈ {1, . . . , np}\{1, . . . , np− 1}.

Then ‖y‖ = ‖x‖ and, moreover,

x∗(nd−2A(p)
n,D)x =

∑
i, j∈{1,...,np−1}

xi(nd−2A(p)
n,D)i jx j =

∑
i, j∈{1,...,np}

yi(T
(p)
n )i jy j = y∗T (p)

n y. (3.70)

This concludes the proof of the inclusion Λ(nd−2A(p)
n,D) ⊂ (0,Mf(ν)

p
], but we wish to prove in some more detail

the central equality in (3.70).
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• If i ∈ {1, . . . , np}\{1, . . . , np− 1} or j ∈ {1, . . . , np}\{1, . . . , np− 1}, the (i, j) term in the right-hand side of

the central equality is 0, due to the definition of y.

• If i ∈ {1, . . . , np− 1} and j ∈ {1, . . . , np− 1}, the (i, j) term in the right-hand side of the central equality

is yi(T
(p)
n )i jy j = xi(nd−2A(p)

n,D)i jx j, because yi = xi, y j = x j, and, recalling the fundamental equality (1.12) and

the fact that K(p)
n and M(p)

n are the leading principal submatrices of order np − 1 of Tn(fp) and Tn(hp),
respectively, we have

(T (p)
n )i j =

d∑
k=1

ck(ν) [Tn1
(hp1

) ⊗ · · · ⊗ Tnk−1(hpk−1) ⊗ Tnk(fpk) ⊗ Tnk+1
(hpk+1

) ⊗ · · · ⊗ Tnd (hpd )]i j

=

d∑
k=1

ck(ν) [Tn1
(hp1

)]i1 j1 · · · [Tnk−1(hpk−1)]ik−1 jk−1[Tnk(fpk)]ik jk[Tnk+1
(hpk+1

)]ik+1 jk+1
· · · [Tnd (hpd )]id jd

=

d∑
k=1

ck(ν) [M(p1)
n1

]i1 j1 · · · [M(pk−1)
nk−1

]ik−1 jk−1[K
(pk)
nk

]ik jk[M(pk+1)
nk+1

]ik+1 jk+1
· · · [M(pd)

nd
]id jd

=

d∑
k=1

ck(ν) [M(p1)
n1

⊗ · · · ⊗ M(pk−1)
nk−1
⊗ K(pk)

nk
⊗ M(pk+1)

nk+1
⊗ · · · ⊗ M(pd)

nd
]i j = (nd−2A(p)

n,D)i j.

This concludes the proof of the central equality in (3.70) and the proof of the inclusion Λ(nd−2A(p)
n,D) ⊂ (0,Mf(ν)

p
].

Relation (3.68) follows from this inclusion and from the fact that {nd−2A(p)
n,D}n ∼λ f

(ν)
p (by Theorem 3.8 applied

with β = 0 and γ = 0). We omit the formal proof of (3.68), because it is based on the same argument used

for proving that items 1 and 3 in Theorem 1.8 imply item 4. �

Theorem 3.10. Assume that β is constant. Then

Λ(nd−2A(p)
n ) ⊂

∑d
k=1 ζnk ,pk + γ∗

n2

Gp,Mf(ν)
p

+
‖γ‖L∞(Ω)

ν
1
· · · νdn2

S p

 × −Bp‖β‖∞
∑d

k=1 νk

ν
1
· · · νdn

,
Bp‖β‖∞

∑d
k=1 νk

ν
1
· · · νdn

 ,
with ζn,p, Gp, S p, Bp as in Theorem 3.6. In particular, {nd−2A(p)

n }n is strongly clustered at [0,Mf(ν)
p

].

Proof. The real and imaginary parts of nd−2A(p)
n are

R(nd−2A(p)
n ) = nd−2A(p)

n,D + nd−2A(p)
n,R, I(nd−2A(p)

n ) = −i nd−2A(p)
n,A;

cf. (3.51)–(3.52). By Theorem 3.6, Theorem 3.9, (1.9) and (3.64) we have∑d
k=1 ζnk ,pk + γ∗

ν
1
· · · νdn2

Gp ≤ λmin(R(nd−2A(p)
n )) ≤ λmax(R(nd−2A(p)

n )) ≤ λmax(nd−2A(p)
n,D) + λmax(nd−2A(p)

n,R) ≤ Mf(ν)
p

+
‖γ‖L∞(Ω)S p

ν
1
· · · νdn2

.

By (3.63) we have

−
Bp‖β‖∞

∑d
k=1 νk

ν
1
· · · νdn

≤ λmin(I(nd−2A(p)
n )) ≤ λmax(I(nd−2A(p)

n )) ≤
Bp‖β‖∞

∑d
k=1 νk

ν
1
· · · νdn

.

The thesis follows from (1.7). �
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Chapter 4

Spectral analysis and spectral symbol of Galerkin B-spline IgA
stiffness matrices

In this chapter, we perform a spectral analysis completely analogous to the one carried out in Chapter 3: we

choose again a model problem like (3.1), we introduce a numerical method for approximating its solution,

and we study the spectral properties of the discretization matrices associated with this numerical method,

with particular attention to the conditioning, the behavior of the extremal eigenvalues, the asymptotic

spectral distribution when the matrix size goes to infinity, and the properties of the spectral symbol. The

only significant difference with respect to Chapter 3 is that the approximation technique investigated in

this chapter is the so-called Galerkin B-spline Isogeometric Analysis (IgA). We refer the reader to [33,

Section 1.2] for a quick overview of the IgA paradigm and to [19, 41] for a more detailed introduction to

this fascinating subject. Here, we limit to say that the goal of IgA is to improve the connection between

numerical simulation of PDE and Computer Aided Design (CAD) systems, the latter being widely employed

in Engineering.

As already pointed out in the Introduction of this thesis, we emphasize once again that the (asymptotic)

spectral analysis in this chapter is a preliminary step for designing efficient preconditioners and iterative

solvers for the Galerkin B-spline IgA stiffness matrices. In particular, the knowledge of the symbol and of

its properties is fundamental to this purpose. The design of fast iterative solvers for the Galerkin B-spline

IgA stiffness matrices will be the subject of Chapter 6, where we will use the specific features of the symbol

studied in this chapter to obtain a robust and optimal multi-iterative multigrid method, whose convergence

rate will be substantially independent not only of the matrix size and the fineness parameters, but also of

the spline approximation degrees and the dimensionality d of the considered model problem.

4.1 Problem setting and Galerkin B-spline IgA

Let us consider as our model problem the following second-order elliptic differential equation with homo-

geneous Dirichlet boundary conditions:{
−∆u + β · ∇u + γu = f in Ω := (0, 1)d,
u = 0 on ∂Ω,

(4.1)

where f ∈ L2(Ω), β = (β
1
, . . . , βd) ∈ Rd

and γ ≥ 0. The only difference with respect to the model problem (3.1)

considered in Chapter 3 is that now we assume β and γ constant. This assumption is made only to simplify

the presentation because, in fact, nothing significant would change if β
1
, . . . , βd, γ were only assumed to be

in L∞(Ω), as in Chapter 3. The weak form of (4.1) and the Galerkin method for approximating its solution

u have already been described in Section 3.1, see (3.2)–(3.4), and so we do not repeat them here. We just

point out that, since we have assumed β constant, the bilinear form a(·, ·) in (3.2)–(3.3) is coercive; see the

footnote in correspondence of Eq. (3.3). Therefore, the matrix A in (3.4) is positive definite, in the sense that
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Figure 4.1: graph of the basis functions Ni,[p](x), i = 2, . . . , n+ p−1, for p = 3 and n = 10. The blue functions

Ni,[p], i = p+1, . . . , n, are the so-called ‘central basis functions’; see Subsection 4.3.1 and, especially, Eq. (4.42).

vT Av > 0 for all v ∈ RN\{0}; see [48, Theorem 4.1]. If moreover β = 0, then the bilinear form a(·, ·) is also

symmetric and A is SPD.

In the context of IgA based on B-splines of degree p, the approximation space W in the Galerkin method

is chosen as a space of Cp−1
-continuous piecewise polynomial functions vanishing on the boundary of Ω.

More precisely, define for p, n ≥ 1 the spline spaces

V [p]
n :=

{
s ∈ Cp−1([0, 1]) : s|[ i

n ,
i+1
n ) ∈ Pp ∀i = 0, . . . , n − 1

}
,

W [p]
n :=

{
s ∈ V [p]

n : s(0) = s(1) = 0

}
⊂ H1

0
(0, 1).

It is known that dim V [p]
n = n + p and dim W [p]

n = n + p − 2. We consider for V [p]
n the B-spline basis

{N
1,[p], . . . ,Nn+p,[p]}, which is defined recursively as follows; see also [21].

Definition 4.1 (B-spline basis). Consider the knot sequence

t
1

= . . . = tp+1 = 0 < tp+2 < . . . < tp+n < 1 = tp+n+1 = . . . = t
2p+n+1, (4.2)

where

tp+i+1 :=
i
n
, i = 0, . . . , n. (4.3)

Using the convention that a fraction with zero denominator is zero, for every (k, i) with 0 ≤ k ≤ p and

1 ≤ i ≤ (n + p) + p − k, define the function Ni,[k] : [0, 1]→ R as follows:

Ni,[0](x) :=
{

1 if x ∈ [ti, ti+1),
0 elsewhere,

and, if k > 0,

Ni,[k](x) :=
x − ti

ti+k − ti
Ni,[k−1](x) +

ti+k+1 − x
ti+k+1 − ti+1

Ni+1,[k−1](x). (4.4)

The functions N
1,[p], . . . ,Nn+p,[p] constructed in this way form a basis for V [p]

n (the B-spline basis of V [p]
n );

see [21]. Moreover, since we have [21]

Ni,[p](0) = Ni,[p](1) = 0, ∀i = 2, . . . , n + p − 1,

{N
2,[p], . . . ,Nn+p−1,[p]} is a basis for W [p]

n (the B-spline basis of W [p]
n ). Figure 4.1 shows the graph of the basis

functions N
2,[p], . . . ,Nn+p−1,[p] in the case p = 3 and n = 10.
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Now, for any pair of multi-indices p, n ∈ Nd
, we define

W [p]
n := W [p1]

n1

⊗ · · · ⊗W [pd]
nd

:= span(Ni,[p] : i = 2, . . . , n + p− 1) ⊂ H1

0
(Ω), (4.5)

where Ni,[p] := Ni1,[p1] ⊗ · · · ⊗ Nid ,[pd].

In the framework of Galerkin B-spline IgA, the model problem (4.1) is approximated by the standard

Galerkin method, the approximation space W in the Galerkin problem (3.3) is chosen as W [p]
n for some

n, p ∈ Nd
(usually p = (p, . . . , p) for some p ≥ 1), and the basis for W [p]

n is chosen as the tensor-product

B-spline basis in (4.5), ordered according to the standard lexicographic ordering (1.1) for the multi-index

range 2, . . . , n + p− 1. With these choices, we obtain in (3.4) a stiffness matrix A, which henceforth will be

denoted by A[p]
n in order to emphasize its dependence on p and n:

A[p]
n :=

[
a(N j,[p],Ni,[p])

]n+p−1

i, j=2
=

[
a(N j+1,[p],Ni+1,[p])

]n+p−2

i, j=1
. (4.6)

Let us consider the following split of the matrix A[p]
n , according to the diffusion, advection and reaction

terms, respectively:

A[p]
n =

[∫
Ω

∇N j+1,[p] · ∇Ni+1,[p]

]n+p−2

i, j=1
+

[∫
Ω

β · ∇N j+1,[p] Ni+1,[p]

]n+p−2

i, j=1
+

[∫
Ω

γ N j+1,[p]Ni+1,[p]

]n+p−2

i, j=1
. (4.7)

For obvious reasons, the first matrix in the right-hand side of (4.7) is called diffusion matrix, the second

advection matrix, and the third reaction matrix. With expressive notation, we denote these three matrices

by A[p]
n,D, A

[p]
n,A, A

[p]
n,R, respectively:

A[p]
n,D :=

[∫
Ω

∇N j+1,[p] · ∇Ni+1,[p]

]n+p−2

i, j=1
, (4.8)

A[p]
n,A :=

[∫
Ω

β · ∇N j+1,[p] Ni+1,[p]

]n+p−2

i, j=1
, (4.9)

A[p]
n,R :=

[∫
Ω

γ N j+1,[p]Ni+1,[p]

]n+p−2

i, j=1
. (4.10)

The diffusion matrix is SPD, the reaction matrix is SPSD (SPD if γ , 0), while the advection matrix is

skew-symmetric and is responsible for the non-symmetry of A[p]
n . The real and imaginary parts of A[p]

n are

R(A[p]
n ) = A[p]

n,D + A[p]
n,R, (4.11)

I(A[p]
n ) = −iA[p]

n,A. (4.12)

Before providing a construction of the Galerkin B-spline IgA stiffness matrix A[p]
n , we introduce in the

next section the cardinal B-splines. We also study some of their properties which are relevant for our

purposes and, in particular, for obtaining a simplified expression of A[p]
n .

4.2 Cardinal B-splines

The cardinal B-spline of degree p over the uniform knot sequence {0, 1, . . . , p + 1} is denoted by φ[p] and is

defined recursively as follows [21]:

φ[0](t) :=
{

1 if t ∈ [0, 1),
0 elsewhere,

(4.13)
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Figure 4.2: graph of the cubic cardinal B-spline φ[3].

and

φ[p](t) :=
t
p
φ[p−1](t) +

p + 1 − t
p

φ[p−1](t − 1), p ≥ 1. (4.14)

The cardinal B-spline can also be expressed in terms of truncated powers [21]:

φ[p](t) =
1

p!

p+1∑
i=0

(−1)i

(
p + 1

i

)
(t − i)p

+, (4.15)

where (t)r
+ := (max(t, 0))r

. Figure 4.2 shows the graph of the cubic cardinal B-spline φ[3]. As usual in the

literature, we will refer to cardinal B-splines of degree p as the set of integer translates of φ[p], that is

{φ[p](· − k), k ∈ Z}. In the next subsections we collect some properties of cardinal B-splines and their Fourier

transform that will be useful later on.

4.2.1 Properties of cardinal B-splines

It is known that φ[p] ∈ Cp−1(R) and φ[p] coincides with a polynomial in Pp over the intervals [i, i + 1], i =

0, . . . , p. Moreover, φ[p] possesses certain fundamental properties, some of which are briefly summarized

below; see [21, 17].

• Positivity:
φ[p](t) ≥ 0, t ∈ R. (4.16)

• Minimal support:
supp(φ[p]) = [0, p + 1] ⇒ φ[p](t) = 0, t < [0, p + 1]. (4.17)

• Symmetry:

φ[p]

(
p + 1

2

+ t
)

= φ[p]

(
p + 1

2

− t
)
. (4.18)

• Partition of unity: ∑
k∈Z

φ[p](t − k) = 1, (4.19)

which gives, in combination with the local support and continuity,

p∑
k=1

φ[p](k) = 1, p ≥ 1. (4.20)
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• Recurrence relation for derivatives:

φ(r)
[p](t) = φ(r−1)

[p−1](t) − φ
(r−1)
[p−1](t − 1). (4.21)

• Convolution relation:

φ[p](t) = (φ[p−1] ∗ φ[0])(t) :=
∫
R

φ[p−1](t − s)φ[0](s) ds =

∫
1

0

φ[p−1](t − s) ds. (4.22)

In the remainder of this subsection we derive from the previous properties some results that are needed

in later sections. The next lemma generalizes the symmetry property to derivatives of any order of the

cardinal B-splines.

Lemma 4.1. We have
φ(r)

[p]

(
p + 1

2

+ t
)

= (−1)r φ(r)
[p]

(
p + 1

2

− t
)
.

Proof. The result follows from repeated differentiations of the symmetry property (4.18). We can also prove

it by induction on the order of derivatives using the recurrence relation (4.21), as outlined below. The base

case (r = 0) is just the symmetry property (4.18). As inductive step we increase the order of derivative by

one, i.e., r → r + 1. Using the recurrence relation for derivatives (4.21) and the induction hypothesis, we

have

φ(r+1)
[p]

(
p + 1

2

+ t
)

= φ(r)
[p−1]

(
p + 1

2

+ t
)
− φ(r)

[p−1]

(
p + 1

2

+ t − 1

)
= (−1)r

(
φ(r)

[p−1]

(
p + 1

2

− t − 1

)
− φ(r)

[p−1]

(
p + 1

2

− t
))

= (−1)r+1 φ(r+1)
[p]

(
p + 1

2

− t
)
.

�

The following lemma provides an expression for inner products of derivatives of the cardinal B-spline

and its integer translates. It generalizes the result given in [17, p. 89].

Lemma 4.2. We have∫
R

φ(r)
[p1]

(t) φ(s)
[p2](t + k) dt = (−1)r φ(r+s)

[p1+p2+1]
(p

1
+ 1 + k) = (−1)s φ(r+s)

[p1+p2+1]
(p

2
+ 1 − k). (4.23)

Proof. Because of the (anti-)symmetry of the higher order derivatives of the B-splines given by Lemma 4.1,

we have

(−1)r φ(r+s)
[p1+p2+1]

(p
1
+ 1 + k) = (−1)r φ(r+s)

[p1+p2+1]

(
p
1
+ p

2
+ 2

2

+
p
1
− p

2

2

+ k
)

= (−1)r (−1)r+s φ(r+s)
[p1+p2+1]

(
p
1
+ p

2
+ 2

2

−
p
1
− p

2

2

− k
)

= (−1)s φ(r+s)
[p1+p2+1]

(p
2

+ 1 − k).

So, we only have to show one of the two equalities in (4.23).

We first address the case r = s = 0, namely∫
R

φ[p1](t)φ[p2](t + k) dt = φ[p1+p2+1](p
2

+ 1 − k). (4.24)
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Using the convolution relation of cardinal B-splines (4.22), we obtain

φ[p1+p2+1](p
2
+ 1− k) =

∫
1

0

φ[p1+p2](p
2
+ 1− k − t

1
) dt

1
=

∫
1

0

. . .

∫
1

0

φ[p2](p
2
+ 1− k − (t

1
+ t

2
+ . . .+ tp1+1)) dt

1
. . . dtp1+1.

From [17, p. 85] we also know that for every continuous function f it holds∫
R

f (t)φ[p](t) dt =

∫
1

0

. . .

∫
1

0

f (t
1
+ t

2
+ . . . + tp+1) dt

1
. . . dtp+1,

and hence

φ[p1+p2+1](p
2

+ 1 − k) =

∫
R

φ[p2](p
2

+ 1 − k − t)φ[p1](t) dt. (4.25)

Moreover, by symmetry of the cardinal B-splines, see (4.18), we have

φ[p2](p
2

+ 1 − k − t) = φ[p2](k + t). (4.26)

The combination of (4.25) and (4.26) results in (4.24).

We now prove the general case, i.e.,∫
R

φ(r)
[p1]

(t) φ(s)
[p2](t + k) dt = (−1)r φ(r+s)

[p1+p2+1]
(p

1
+ 1 + k), (4.27)

by induction on the order of derivatives. We consider two inductive steps: in the first inductive step we

increase the order of derivative of φ[p1] by one, i.e., r → r + 1, and in the second inductive step we increase

the order of derivative of φ[p2] by one, i.e., s→ s + 1.

1. (r → r + 1). Using (4.21) and the induction hypothesis, we have∫
R

φ(r+1)
[p1]

(t) φ(s)
[p2](t + k) dt =

∫
R

(
φ(r)

[p1−1]
(t) − φ(r)

[p1−1]
(t − 1)

)
φ(s)

[p2](t + k) dt

=

∫
R

φ(r)
[p1−1]

(t)φ(s)
[p2](t + k) dt −

∫
R

φ(r)
[p1−1]

(t − 1)φ(s)
[p2](t + k) dt

=

∫
R

φ(r)
[p1−1]

(t)φ(s)
[p2](t + k) dt −

∫
R

φ(r)
[p1−1]

(t)φ(s)
[p2](t + k + 1) dt

= (−1)r
(
φ(r+s)

[p1+p2](p
1
+ k) − φ(r+s)

[p1+p2](p
1
+ 1 + k)

)
= (−1)r+1 φ(r+s+1)

[p1+p2+1]
(p

1
+ 1 + k).

2. (s → s + 1). This inductive step can be proved in a completely analogous way as the first inductive

step.

�

Finally, we provide some relations about second derivatives of cardinal B-splines. We will denote by

φ̇[p] and φ̈[p] the first and second derivative of φ[p].

Lemma 4.3. We have
p∑

k=1

φ̈[2p+1](p + 1 − k) = φ̇[2p](p) = −
1

2

φ̈[2p+1](p + 1),
p∑

k=1

k2 φ̈[2p+1](p + 1 − k) = 1.
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Proof. We first note that by (4.21) and (4.18) we have

−φ̈[2p+1](p + 1) = −2φ̇[2p](p + 1) = 2φ̇[2p](p) > 0. (4.28)

Using (4.21) and φ[2p−1](−1) = φ[2p−1](0) = 0, we obtain

p∑
k=1

φ̈[2p+1](p + 1 − k) =

p∑
k=1

(φ[2p−1](p + 1 − k) − 2φ[2p−1](p − k) + φ[2p−1](p − 1 − k))

= φ[2p−1](p) − φ[2p−1](p − 1) = φ̇[2p](p).

In a similar way, taking into account that

k2 − 2(k + 1)2 + (k + 2)2 = 2, k ≥ 0,

we find that

p∑
k=1

k2 φ̈[2p+1](p + 1 − k) =

p∑
k=1

k2 (φ[2p−1](p + 1 − k) − 2φ[2p−1](p − k) + φ[2p−1](p − 1 − k))

= φ[2p−1](p) + 2

p∑
k=2

φ[2p−1](p + 1 − k) =

p∑
k=−p+2

φ[2p−1](p + 1 − k) =

2p−1∑
k=1

φ[2p−1](k) = 1.

The last equalities follow from the symmetry property (4.18) and the partition of unity property (4.20) of

cardinal B-splines. �

4.2.2 Fourier transform of cardinal B-splines

In this subsection we will address some relations between inner products of cardinal B-splines, and the

Fourier transform of the cardinal B-spline. We will need the following result; see [17, Theorem 2.28]. Recall

that, given any two functions ξ, ζ : R→ C, the notation ‘ξ(t) = O(ζ(t)) as |t| → ∞’ means that ‘|ξ(t)| ≤ C|ζ(t)|
for |t| ≥ T ’, where C,T are positive constant independent of t.

Theorem 4.1. Let ψ ∈ L2(R) and its Fourier transform ψ̂ satisfy

ψ(t) = O(|t|−a), a > 1, as |t| → ∞, (4.29)

and
ψ̂(θ) = O(|θ|−b), b >

1

2

, as |θ| → ∞. (4.30)

Then, ∑
k∈Z

(∫
R

ψ(t − k)ψ(t) dt
)
e
ikθ =

∑
k∈Z

∣∣∣ψ̂(θ + 2kπ)
∣∣∣2 , ∀θ ∈ [−π, π]. (4.31)

By using the convolution relation (4.22), one can easily obtain a simple expression for the Fourier

transform of the cardinal B-spline φ[p] (see [17, p. 56]):

φ̂[p](θ) =

(
1 − e

−iθ

iθ

)
φ̂[p−1](θ) =

(
φ̂[0](θ)

)p+1
=

(
1 − e

−iθ

iθ

)p+1

. (4.32)

It follows that ∣∣∣φ̂[p](θ)
∣∣∣ =

∣∣∣φ̂[0](θ)
∣∣∣p+1

=

(
2 − 2 cos θ

θ2

) p+1
2

=

∣∣∣∣∣sin(θ/2)
θ/2

∣∣∣∣∣p+1

. (4.33)
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We also note that for the symmetrized function φ∗[0](t) := φ[0](t + 1/2), we have

φ̂∗[0](θ) =
sin(θ/2)
θ/2

. (4.34)

Concerning the Fourier transform of φ̇[p], using the recurrence relation for derivatives (4.21), we obtain

̂̇φ[p](θ) = iθφ̂[p](θ) =
(
1 − e

−iθ
)
φ̂[p−1](θ). (4.35)

From (4.17) and (4.33) it follows that the cardinal B-spline φ[p] satisfies the conditions (4.29)–(4.30).

When using φ[p] as the function ψ in Theorem 4.1, we can express the right-hand side in (4.31) by means of

(4.33). This implies∑
k∈Z

∣∣∣φ̂[p](θ + 2kπ)
∣∣∣2 ≥ ∣∣∣φ̂[p](θ)

∣∣∣2 =

(
2 − 2 cos θ

θ2

)p+1

≥

(
4

π2

)p+1

, ∀θ ∈ [−π, π]. (4.36)

A sharper lower bound can be found in [17]. It is formulated in terms of the roots of the so-called Euler-

Frobenius polynomials of degree 2p, but these roots are not provided in a closed form expression. On the

other hand, to obtain an upper bound for (4.31), we make use of relations (4.24), (4.31) and the partition of

unity property (4.19). In this way, we obtain∑
k∈Z

∣∣∣φ̂[p](θ + 2kπ)
∣∣∣2 =

∑
k∈Z

φ[2p+1](p + 1 − k) eikθ ≤
∑
k∈Z

φ[2p+1](p + 1 − k) |eikθ| = 1. (4.37)

Note that for the cardinal B-spline of degree p the left-hand side in (4.31) is a finite sum consisting of 2p+ 1

terms.

4.3 Construction of the Galerkin B-spline IgA stiffness matrices A[p]
n

Using the tensor structure of the tensor-product B-spline basis {N j+1,[p] : j = 1, . . . , n + p − 2} and the

rectangularity of the domain Ω, we now prove the following result, analogous to Theorem 3.1, which

highlights the tensor structure of the Galerkin B-spline IgA matrices (4.8)–(4.10).

Theorem 4.2. Let p, n ∈ Nd, then

A[p]
n,D =

d∑
k=1

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nk−1
M[pk−1]

nk−1
⊗ nkK[pk]

nk
⊗

1

nk+1

M[pk+1]
nk+1
⊗ · · · ⊗

1

nd
M[pd]

nd
, (4.38)

A[p]
n,A =

d∑
k=1

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nk−1
M[pk−1]

nk−1
⊗ βkH[pk]

nk
⊗

1

nk+1

M[pk+1]
nk+1
⊗ · · · ⊗

1

nd
M[pd]

nd
, (4.39)

A[p]
n,R = γ

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nd
M[pd]

nd
, (4.40)

where, for p, n ≥ 1, K[p]
n , H[p]

n , M[p]
n are given by

nK[p]
n :=

[∫
(0,1)

N′j+1,[p]N
′
i+1,[p]

]n+p−2

i, j=1

, H[p]
n :=

[∫
(0,1)

N′j+1,[p]Ni+1,[p]

]n+p−2

i, j=1

,
1

n
M[p]

n :=
[∫

(0,1)
N j+1,[p]Ni+1,[p]

]n+p−2

i, j=1

,

(4.41)

and we note that K[p]
n and M[p]

n are SPD, while H[p]
n is skew-symmetric.

Proof. Copy the proof of Theorem 3.1. �
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4.3.1 Construction of K[p]
n , H[p]

n , M[p]
n

We now provide the construction of the ‘pieces’ that compose the Galerkin B-spline IgA stiffness matrix

A[p]
n , i.e., the matrices defined in (4.41). We begin with some observations concerning the B-spline basis

functions Ni,[p], j = 2, . . . , n + p − 1. First, using the notation introduced in Definition 4.1, the support of

Ni,[p] is [ti, ti+p+1]; see [21]. This immediately implies that K[p]
n , H[p]

n , M[p]
n have a (2p + 1)-band structure,

because the nonzero entries in the i-th row of these matrices are at most the entries with column index

j ∈ {i − p, . . . , i + p}. Second, the ‘central’ basis functions Ni,[p], i = p + 1, . . . , n, are ‘uniformly shifted and

scaled versions’ of the cardinal B-spline φ[p]. More precisely, we have

Ni,[p](x) = φ[p](nx − i + p + 1), i = p + 1, . . . , n, (4.42)

and

N′i,[p](x) = nφ̇[p](nx − i + p + 1), i = p + 1, . . . , n.

We now focus on the construction of the ‘central part’ of the matrices K[p]
n , H[p]

n , M[p]
n , which is the part

determined only by the central basis functions in (4.42). In other words, we focus on the submatrices

[(K[p]
n )i j]n−1

i, j=p, [(H[p]
n )i j]n−1

i, j=p, [(M[p]
n )i j]n−1

i, j=p, (4.43)

which are nonempty for n ≥ p + 1. For i, j = p, . . . , n − 1,

(K[p]
n )i j =

1

n

∫
1

0

N′j+1,[p](x)N′i+1,[p](x)dx = n
∫

1

0

φ̇[p](nx − j + p)φ̇[p](nx − i + p)dx =

∫ n−i+p

−i+p
φ̇[p](t + i − j)φ̇[p](t)dt

=

∫
R

φ̇[p](t + i − j)φ̇[p](t)dt (because [−i + p, n − i + p] ⊇ [0, p + 1] = supp(φ[p]), since i ∈ {p, . . . , n − 1})

= −φ̈[2p+1](p + 1 + i − j) (by Lemma 4.2)

= −φ̈[2p+1](p + 1 − i + j) (by Lemma 4.1),

and similarly we obtain

(H[p]
n )i j = φ̇[2p+1](p + 1 + i − j) = −φ̇[2p+1](p + 1 − i + j),

(M[p]
n )i j = φ[2p+1](p + 1 + i − j) = φ[2p+1](p + 1 − i + j).

Since the entries of the submatrices (4.43) only depend on the difference i− j, these submatrices are (1-level)

Toeplitz matrices. In particular, we have

[(K[p]
n )i j]n−1

i, j=p = [−φ̈[2p+1](p + 1 − i + j)]n−1
i, j=p = Tn−p( fp), (4.44)

[(M[p]
n )i j]n−1

i, j=p = [φ[2p+1](p + 1 − i + j)]n−1
i, j=p = Tn−p(hp), (4.45)

where

fp(θ) :=
∑
k∈Z

−φ̈[2p+1](p + 1 − k)eikθ = −φ̈[2p+1](p + 1) − 2

p∑
k=1

φ̈[2p+1](p + 1 − k) cos(kθ), (4.46)

hp(θ) :=
∑
k∈Z

φ[2p+1](p + 1 − k)eikθ = φ[2p+1](p + 1) + 2

p∑
k=1

φ[2p+1](p + 1 − k) cos(kθ). (4.47)

We end this subsection by giving the definition of ‘central rows’ of K[p]
n , H[p]

n , M[p]
n . They are defined

as the rows corresponding to an index i such that {i − p, . . . , i + p} ⊆ {p, . . . , n − 1} or, equivalently, i ∈
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{2p, . . . , n− p− 1}. Clearly, a central row exists if and only if n ≥ 3p + 1. As observed above, {i− p, . . . , i + p}
is the set of column indices j corresponding to the nonzero entries of K[p]

n , H[p]
n , M[p]

n in the i-th row, while

{p, . . . , n− 1} is the range of indices identifying the submatrices (4.43). Therefore, the generic central row of

K[p]
n can be expressed as[

0 · · · 0 −φ̈[2p+1](1) · · · −φ̈[2p+1](p) −φ̈[2p+1](p + 1) −φ̈[2p+1](p) · · · −φ̈[2p+1](1) 0 · · · 0

]
, (4.48)

and in particular, by (4.28), the diagonal element can be expressed as (K[p]
n )ii = 2φ̇[2p](p) > 0. The generic

central row of H[p]
n can be expressed as[

0 · · · 0 −φ̇[2p+1](1) · · · −φ̇[2p+1](p) 0 φ̇[2p+1](p) · · · φ̇[2p+1](1) 0 · · · 0

]
, (4.49)

where we remark that (H[p]
n )ii = φ̇[2p+1](p + 1) = 0 (see Lemma 4.1). The generic central row of M[p]

n can be

expressed as[
0 · · · 0 φ[2p+1](1) · · · φ[2p+1](p) φ[2p+1](p + 1) φ[2p+1](p) · · · φ[2p+1](1) 0 · · · 0

]
. (4.50)

We note that, for all i = 2p, . . . , n − p − 1, the i-th central row of K[p]
n coincides with the i-th row of the

Toeplitz matrix Tn+p−2( fp). Similarly, the i-th central row of M[p]
n coincide with the i-th row of Tn+p−2(hp).

Remark 4.1. Considering the recurrence relations for derivatives (4.21), for the computation of the matrix

elements in (4.48)–(4.50) we only need to evaluate cardinal B-splines at integer points. We sum up some

possibilities to evaluate φ[p] at integer positions.

1. The values of φ[p] at the integers can be obtained by using the recurrence relation (4.14): we have

φ[0](k) = δ
0k and φ[1](k) = δ

1k for all k ∈ Z, and

φ[p](k) =
k
p
φ[p−1](k) +

p + 1 − k
p

φ[p−1](k − 1), k ∈ Z, p ≥ 1.

2. From (4.15) it follows that the non-zero values of φ[p] at the integers are equal to

φ[p](k) =
1

p!

k−1∑
i=0

(
p + 1

i

)
(−1)i(k − i)p, k = 1, . . . , p.

4.4 Properties of fp(θ) and hp(θ)

The results in this section provide some interesting properties of the functions fp(θ) and hp(θ). We shall see

later that these functions appear in the expression of the spectral symbol that characterizes the asymptotic

spectral distribution of the Galerkin B-spline IgA stiffness matrices.

We begin with the observation that fp(θ) and hp(θ) are defined for all p ≥ 1 by (4.46)–(4.47). However,

the right-hand side of (4.47) is well-defined also in the case p = 0, and we take it as the definition of h
0
(θ):

h
0
(θ) := 1.

On the contrary, we cannot extend the definition of fp(θ) to the case p = 0, because the right-hand side of

(4.46) has no meaning for p = 0, since φ̈[1](1) is not defined. So, while hp(θ) is now defined for all p ≥ 0,

fp(θ) is still defined only for p ≥ 1.

Lemma 4.4. Let p ≥ 0, let hp : [−π, π] → R be the function defined in (4.47), and let mhp := minθ∈[−π,π] hp(θ).
Then the following properties hold.
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1. hp(θ) =
∑

k∈Z

∣∣∣φ̂[p](θ + 2kπ)
∣∣∣2.

2. maxθ∈[−π,π] hp(θ) = hp(0) = 1 and mhp ≥
(
4

π2

)p+1
.

3. hp(π
2
) = 2

php(π). In particular, hp(π)→ 0 exponentially as p→ ∞.

Proof. From the symmetry property (4.18), relation (4.24) and Theorem 4.1, it follows that

hp(θ) =
∑
k∈Z

φ[2p+1](p + 1 − k)eikθ =
∑
k∈Z

(∫
R

φ[p](t)φ[p](t − k)dt
)
e
ikθ =

∑
k∈Z

∣∣∣φ̂[p](θ + 2kπ)
∣∣∣2 .

The inequalities (4.36)–(4.37) imply that(
4

π2

)p+1

≤ hp(θ) ≤ 1, θ ∈ [−π, π]. (4.51)

In addition, by the partition of unity property (4.20) we get

hp(0) = φ[2p+1](p + 1) + 2

p∑
k=1

φ[2p+1](p + 1 − k) =

2p+1∑
k=1

φ[2p+1](k) = 1.

We now prove item 3. From item 1 and (4.33) we know that

hp(θ) =
∑
k∈Z

∣∣∣φ̂[p](θ + 2kπ)
∣∣∣2 =

∑
k∈Z

(
2 − 2 cos θ
(θ + 2kπ)2

)p+1

.

Hence,

hp

(
π

2

)
=

∑
k∈Z

(
2

(π
2

+ 2kπ)2

)p+1

=
2
3p+3

π2p+2

∑
k∈Z

1

(4k + 1)2p+2
, (4.52)

hp(π) =
∑
k∈Z

(
4

(π + 2kπ)2

)p+1

=
2
2p+2

π2p+2

∑
k∈Z

1

(2k + 1)2p+2
. (4.53)

By splitting the latter sum into a sum over the even integers and a sum over the odd integers, we get∑
k∈Z

1

(2k + 1)2p+2
=

∑
l∈Z

1

(4l + 1)2p+2
+

∑
l∈Z

1

(4l + 3)2p+2
=

∑
l∈Z

1

(4l + 1)2p+2
+

∑
m∈Z

1

(−4m − 1)2p+2

=
∑
l∈Z

1

(4l + 1)2p+2
+

∑
m∈Z

1

(4m + 1)2p+2
= 2

∑
k∈Z

1

(4k + 1)2p+2
. (4.54)

Therefore, by combining (4.54) with (4.52) and (4.53), we obtain

hp(π
2
)

hp(π)
=

2
3p+3

2
2p+2

∑
k∈Z

1

(4k+1)2p+2

2

∑
k∈Z

1

(4k+1)2p+2

= 2
p.

�

Lemma 4.5. Let p ≥ 1, let fp : [−π, π] → R be the function defined in (4.46), and let M fp := maxθ∈[−π,π] fp(θ).
Then the following properties hold.
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1. For all θ ∈ [−π, π],

fp(θ) = (2 − 2 cos θ)
∑
k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣2 = (2 − 2 cos θ)hp−1(θ), (4.55)

and
(2 − 2 cos θ)

(
4

π2

)p

≤ fp(θ) ≤ min
(
2 − 2 cos θ, (2 − 2 cos θ)p+1

(
1

θ2p +
1

6 π2p−2

))
.

2. minθ∈[−π,π] fp(θ) = fp(0) = 0, θ = 0 is the unique zero of fp over [−π, π] and it has order 2, because

lim
θ→0

fp(θ)
θ2

= 1. (4.56)

Moreover,

M fp ≤ min

4, 8

p + 1

+
2π2

3

(
4

π2

)p

, 2φ̇[2p](p) + 2

p∑
k=1

∣∣∣φ̈[2p+1](p + 1 − k)
∣∣∣ .

In particular, M fp → 0 as p→ ∞.

3. fp

(
π
2

)
= 2

p−2 fp(π). In particular,
fp(π)
M fp

→ 0 exponentially as p→ ∞.

Proof. 1. We recall from (4.35) that, for every θ ∈ [−π, π],

̂̇φ[p](θ) = (1 − e
−iθ)φ̂[p−1](θ)

and ∣∣∣∣̂̇φ[p](θ)
∣∣∣∣2 = (2 − 2 cos θ)

∣∣∣φ̂[p−1](θ)
∣∣∣2 .

This implies that ∑
k∈Z

∣∣∣∣̂̇φ[p](θ + 2kπ)
∣∣∣∣2 = (2 − 2 cos θ)

∑
k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣2 . (4.57)

The equality (4.55) follows from (4.23), Theorem 4.1 and (4.57) in the following way:

fp(θ) =
∑
k∈Z

−φ̈[2p+1](p + 1 − k)eikθ =
∑
k∈Z

(∫
R

φ̇[p](t)φ̇[p](t − k)dt
)
e
ikθ

=
∑
k∈Z

∣∣∣∣̂̇φ[p](θ + 2kπ)
∣∣∣∣2 = (2 − 2 cos θ)

∑
k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣2 .

From (4.55) and from the inequalities (4.36)–(4.37), we get

(2 − 2 cos θ)
(
4

π2

)p

≤ fp(θ) ≤ 2 − 2 cos θ, ∀θ ∈ [−π, π]. (4.58)

Furthermore, using (4.33) in the expression of fp(θ) given by (4.55), we obtain

fp(θ) = (2 − 2 cos θ)
∑
k∈Z

(
2 − 2 cos(θ + 2kπ)

(θ + 2kπ)2

)p

= (2 − 2 cos θ)p+1
∑
k∈Z

1

(θ + 2kπ)2p . (4.59)

83



Figure 4.3: graph of fp/M fp for p = 1, . . . , 5.

p 1 2 3 4 5 6 7 8 9 10 11 12

fp(π)
M fp

1.0000 0.8889 0.4941 0.2494 0.1209 0.0570 0.0264 0.0120 0.0054 0.0024 0.0011 0.0005

fp( 2π
3

)
M fp

0.7500 1.0000 0.9034 0.7613 0.6209 0.4939 0.3853 0.2960 0.2247 0.1689 0.1259 0.0932

Table 4.1: values of fp(π)/M fp and fp( 2π
3

)/M fp for p = 1, . . . , 12.

Now observe that∑
k∈Z

1

(θ + 2kπ)2p =
1

θ2p +

∞∑
k=1

1

(θ + 2kπ)2p +

∞∑
k=1

1

(−θ + 2kπ)2p ≤
1

θ2p +

∞∑
k=1

1

(2kπ)2p +

∞∑
k=1

1

(−π + 2kπ)2p

≤
1

θ2p +
1

π2p

 ∞∑
k=1

1

(2k)2
+

∞∑
k=1

1

(2k − 1)2

 =
1

θ2p +
1

6 π2p−2 .

By (4.59), the latter inequality yields

fp(θ) ≤ (2 − 2 cos θ)p+1

(
1

θ2p +
1

6 π2p−2

)
, ∀θ ∈ [−π, π]. (4.60)

This proves the first statement in the lemma.

2. The inequalities in (4.58) imply that minθ∈[−π,π] fp(θ) = fp(0) = 0, that θ = 0 is the only zero of fp, and

that M fp ≤ 4. Moreover, (4.55) together with the fact that hp−1(0) = 1, gives (4.56). In order to prove that

M fp ≤
8

p+1
+ 2π2

3

(
4

π2

)p
, we use the inequalities

2 − 2 cos θ ≤ θ2 −
θ4

18

≤ θ2, ∀θ ∈ [−π, π].

It follows that

(2 − 2 cos θ)
(
2 − 2 cos θ

θ2

)p

≤ θ2
(
1 −

θ2

18

)p

, ∀θ ∈ [−π, π].
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If p ≥ 2, the maximum of θ2
(
1 −

θ2

18

)p

over [−π, π] is located at θ2 = 18

p+1
and its value is given by

18

p + 1

(
1 −

1

p + 1

)p

≤
8

p + 1

.

Therefore, if p ≥ 2, we have

(2 − 2 cos θ)p+1

θ2p ≤
8

p + 1

, ∀θ ∈ [−π, π]. (4.61)

Moreover,

(2 − 2 cos θ)p+1

6 π2p−2 ≤
4

p+1

6 π2p−2 , ∀θ ∈ [−π, π]. (4.62)

Recalling (4.60), the inequalities (4.61)–(4.62) prove that, for p ≥ 2,

M fp ≤
8

p + 1

+
2π2

3

(
4

π2

)p

. (4.63)

In addition, (4.63) holds for p = 1 too, because f
1
(θ) = 2 − 2 cos θ and M f1 = 4. To complete the proof of the

second statement, we still have to show that

M fp ≤ 2φ̇[2p](p) + 2

p∑
k=1

|φ̈[2p+1](p + 1 − k)|, (4.64)

which is easily obtained by using (4.28) and (4.46).

3. Item 3 follows from item 1 and item 3 in Lemma 4.4. �

Using item 1 in Lemma 4.5 and the definition (4.47) of hp−1, we see that

fp(θ) = (2 − 2 cos θ)hp−1(θ) = (2 − 2 cos θ)

φ[2p−1](p) + 2

p−1∑
k=1

φ[2p−1](p − k) cos(kθ)

 .
This is a more elegant and efficient formula to evaluate fp.

Figure 4.3 shows the graph of fp normalized by its maximum M fp , for p = 1, . . . , 5. As predicted by

Lemma 4.5, the value fp(π)/M fp decreases exponentially to zero as p→ ∞; cf. Table 4.1. From a numerical

viewpoint, we can say that, for large p, the normalized function fp/M fp vanishes not only at θ = 0 but also

at θ = π. In reality, we see from Figure 4.3 and Table 4.1 that fp/M fp approaches zero for very large p in a

whole interval containing [2π/3, π].
Figure 4.4 shows the graph of hp for p = 0, . . . , 4. We see that the behavior of hp over the interval

[2π/3, π] is analogous to the one of fp/M fp over the same interval.

4.5 Spectral analysis and spectral symbol

In this section we follow the same program as in Section 3.4. We study the spectral properties of the

stiffness matrix A[p]
n in (4.6), focusing on the asymptotic behavior as the fineness parameters n → ∞. In

particular, we give estimates for the eigenvalues and for the spectral condition number κ(A[p]
n ). Moreover,

assuming n = νn = (ν
1
n, . . . , νdn) ∈ Nd

for a fixed ν ∈ Qd
+, we prove that the sequence {nd−2A[p]

n }n has an

asymptotic spectral distribution characterized by the real function f (ν)
p : [−π, π]d → R,

f (ν)
p (θ) :=

d∑
k=1

ck(ν) (hp1
⊗ · · · ⊗ hpk−1 ⊗ fpk ⊗ hpk+1

⊗ · · · ⊗ hpd )(θ),

=

d∑
k=1

ck(ν) hp1
(θ

1
) · · · hpk−1(θk−1) fpk(θk)hpk+1

(θk+1) · · · hpd (θd), (4.65)
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Figure 4.4: graph of hp for p = 0, . . . , 4.

where fp and hp are defined in in (4.46)–(4.47) and

ck(ν) :=
νk

ν
1
· · · νk−1νk+1 · · · νd

, k = 1, . . . , d. (4.66)

4.5.1 Estimates for the eigenvalues, localization of the spectrum and conditioning of A[p]
n

We first provide suitable estimates for the minimal eigenvalues of M[p]
n and K[p]

n . These will be employed to

obtain a lower bound for λmin(R(A[p]
n )), which, in turn, will be used in combination with the Fan-Hoffman

theorem (Theorem 1.1) to obtain an upper bound for the spectral condition number κ(A[p]
n ). We begin with

the following result [54].

Lemma 4.6. Let p, n ≥ 1 and x = (x
1
, . . . , xn+p−2) ∈ Rn+p−2, then

Cp
‖x‖2

n
≤

∥∥∥∥∥∥∥
n+p−2∑

i=1

xiNi+1,[p]

∥∥∥∥∥∥∥
2

L2(0,1)

≤ C̄p
‖x‖2

n
, (4.67)

where Cp, C̄p > 0 are constants that do not depend on n and x.

The inequalities in (4.67) are a special instance for the L2
-norm of the results stated in [54, Theorem 9.27].

We remark that the quantity ∆̄ used in the cited theorem in our context has the value
1

n ; see [54, Eq. (6.3)].

Theorem 4.3. Let Cp > 0 be a constant for which the left inequality in (4.67) is satisfied. Then, for all p, n ≥ 1

the following properties hold.

1. λmin(M[p]
n ) ≥ Cp.

2. K[p]
n ≥

π2

n2

M[p]
n and λmin(K[p]

n ) ≥
π2Cp

n2

.
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Proof. Using the definition of M[p]
n , see (4.41), for all y ∈ Rn+p−2

we have

yT

(
1

n
M[p]

n

)
y =

n+p−2∑
i, j=1

(
1

n
M[p]

n

)
i, j

yiy j =

n+p−2∑
i, j=1

∫
1

0

yiy jN j+1,[p](x)Ni+1,[p](x)dx

=

∫
1

0

n+p−2∑
i=1

yiNi+1,[p](x)
n+p−2∑

j=1

y jN j+1,[p](x)dx =

∫
1

0

n+p−2∑
i=1

yiNi+1,[p](x)


2

dx

=

∥∥∥∥∥∥∥
n+p−2∑

i=1

yiNi+1,[p]

∥∥∥∥∥∥∥
2

L2(0,1)

≥ Cp
‖y‖2

n
, (4.68)

where the last inequality holds by (4.67). Hence, we get yT M[p]
n y ≥ Cp‖y‖2, and from the minimax principle

it follows that

λmin(M[p]
n ) = min

y,0

yT M[p]
n y

‖y‖2
≥ Cp. (4.69)

This proves the first statement. To prove the second statement, we follow the same argument used in the

proof of Lemma 3.5, which, in fact, can be extended to a much more general setting; see [31, Proposition 1].

Using the definition of K[p]
n , see (4.41), for all y ∈ Rn+p−2

we obtain

yT
(
nK[p]

n

)
y =

n+p−2∑
i, j=1

(
nK[p]

n

)
i, j

yiy j =

n+p−2∑
i, j=1

∫
1

0

yiy jN′j+1,[p](x)N′i+1,[p](x)dx

=

∫
1

0

n+p−2∑
i=1

yiN′i+1,[p](x)
n+p−2∑

j=1

y jN′j+1,[p](x)dx =

∫
1

0

n+p−2∑
i=1

yiN′i+1,[p](x)


2

dx

=

∥∥∥∥∥∥∥
n+p−2∑

i=1

yiN′i+1,[p]

∥∥∥∥∥∥∥
2

L2(0,1)

= ‖v′y‖
2

L2(0,1), (4.70)

where vy :=
∑n+p−2

i=1 yiNi+1,[p] ∈ W [p]
n ; see Section 4.1 for the definition of W [p]

n . Since W [p]
n ⊂ H1

0
(0, 1), we may

apply the Poincaré inequality (3.42). From (3.42) and (4.68) it follows that

yT
(
nK[p]

n

)
y = ‖v′y‖

2

L2(0,1) ≥ π
2‖vy‖2L2(0,1) = yT

(
π2

n
M[p]

n

)
y.

Dividing both sides by n we obtain, for all y ∈ Rn+p−2
,

yT K[p]
n y ≥ yT

(
π2

n2

M[p]
n

)
y.

This proves that K[p]
n ≥

π2

n2
M[p]

n . The application of the minimax principle and (4.69) yields

λmin(K[p]
n ) = min

y,0

yT K[p]
n y

‖y‖2
≥ min

y,0

yT
(
π2

n2
M[p]

n

)
y

‖y‖2
=
π2

n2

λmin(M[p]
n ) ≥

π2Cp

n2

,

which concludes the proof. �

Remark 4.2. Suppose that, for a given p ≥ 1, we are able to find a constant C̃p > 0 such that
1

λmin(M[p]
n ) ≥ C̃p.

1
Such a constant C̃p may be found, e.g., by using the Gershgorin theorems [8]. We refer to Remark 4.6 for an example.
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n λmin(M[2]
n ) λmin(M[3]

n ) λmin(M[4]
n ) n2 λmin(K[2]

n ) n2 λmin(K[3]
n ) n2 λmin(K[4]

n )
20 0.1333333 0.0482607 0.0171864 9.8089070 9.7834046 9.7507398

40 0.1333333 0.0486447 0.0173795 9.8543957 9.8486563 9.8419964

80 0.1333333 0.0486538 0.0173821 9.8658001 9.8644478 9.8629796

160 0.1333333 0.0486538 0.0173821 9.8686532 9.8683256 9.8679834

320 0.1333333 0.0486538 0.0173821 9.8693666 9.8692860 9.8692036

640 0.1333333 0.0486538 0.0173821 9.8695450 9.8695250 9.8695048

1280 0.1333333 0.0486538 0.0173821 9.8695896 9.8695846 9.8695796

Table 4.2: computation of λmin(M[p]
n ) and n2 λmin(K[p]

n ) for p = 2, 3, 4 and for increasing values of n.

In this case, items 1 and 2 in Theorem 4.3 hold with C̃p in place of Cp. Moreover, the left inequality in

(4.67) also holds with C̃p in place of Cp. Indeed, by using a similar argument as in the proof of Theorem 4.3,

we obtain

n
∥∥∥∑n+p−2

i=1 xiNi+1,[p]

∥∥∥2
L2(0,1)

‖x‖2
=

xT M[p]
n x

‖x‖2
≥ min

y,0

yT M[p]
n y

‖y‖2
= λmin(M[p]

n ) ≥ C̃p.

Table 4.2 shows the results of some numerical experiments performed on the matrices M[p]
n and K[p]

n for

p = 2, 3, 4 and for increasing values of n. From these results it seems that

λmin(M[p]
n ) n→∞

∼ m̃p, (4.71)

with m̃
2

= 2

15
, m̃

3
≈ 0.0486538 and m̃

4
≈ 0.0173821. Apparently, the sequence λmin(M[p]

n ) converges to m̃p very

quickly as n→ ∞. In addition, it seems that
2

λmin(K[p]
n ) n→∞

∼
π2

n2

. (4.72)

Since K[1]
n = Tridiagonal(−1, 2,−1) ∈ R(n−1)×(n−1)

, we note that for λmin(K[1]
n ) the asymptotic formula (4.72) holds,

because it is known that

λmin(K[1]
n ) = 4

(
sin

π

2n

)
2

n→∞
∼

π2

n2

;

see Theorem 1.9. The numerical experiments show that, for p = 2, 3, 4, the eigenvalue λmin(K[p]
n ) converges

to 0 as n−2, which means that the lower estimate
π2Cp

n2
obtained in Theorem 4.3 is asymptotically of the same

order as λmin(K[p]
n ) when n→ ∞.

In addition, referring to Table 4.3, we can formulate a deeper conjecture than (4.72).

Conjecture 4.1. For every p ≥ 1 and for each fixed j ≥ 1,

lim
n→∞

n2 λn+p−1− j(K[p]
n ) = j2π2, (4.73)

where λn+p−1− j(K
[p]
n ) is the j-th smallest eigenvalue of K[p]

n (recall that K[p]
n has size n + p−2 and its eigenvalues

are arranged in non-increasing order). This conjecture has a motivation completely analogous to the one given
in Conjecture 3.2.

We now derive upper bounds for the infinity norms of K[p]
n , H[p]

n , M[p]
n . They are needed for giving a

localization of the spectrum of A[p]
n and for providing an upper bound for the spectral condition number

κ(A[p]
n ).

2
The constant π2 is precisely c1,1; see Remarks 1.3–1.5.
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n n2λn−1(K
[2]
n ) n2λn(K[3]

n ) n2λn+1(K
[4]
n ) n2λn−2(K

[2]
n ) n2λn−1(K

[3]
n ) n2λn(K[4]

n )
20 38.51599640 38.11745811 37.61719616 84.02689324 82.08515027 79.68696933

40 39.23562801 39.14429699 39.03869339 87.60193868 87.14374691 86.61710221

80 39.41758280 39.39597383 39.37252923 88.51875348 88.40959481 88.29129852

160 39.46320030 39.45796001 39.45248834 88.74942017 88.72290521 88.69522615

320 39.47461274 39.47332339 39.47200503 88.80717862 88.80065213 88.79397917

640 39.47746635 39.47714663 39.47682328 88.82162398 88.82000545 88.81836856

1280 39.47817979 39.47810019 39.47802013 88.82523569 88.82483270 88.82442742

Table 4.3: computation of n2λn+p−1− j(K
[p]
n ) for p = 2, 3, 4, for j = 2, 3 and for increasing values of n.

Lemma 4.7. Let p, n ≥ 1, then

‖M[p]
n ‖∞ ≤ 1, ‖H[p]

n ‖∞ ≤ 2, ‖K[p]
n ‖∞ ≤ 4p.

Proof. We first note that the derivative and integral of a B-spline Ni,[p](x) are given by

N′i,[p](x) = p
(

Ni,[p−1](x)
ti+p − ti

−
Ni+1,[p−1](x)
ti+p+1 − ti+1

)
(4.74)

and ∫
R

Ni,[p](x) dx =
ti+p+1 − ti

p + 1

; (4.75)

see [21, 54]. The sequence of knots (4.2)–(4.3) implies that the maximum length of the support of any Ni,[p]

is
p+1

n . Recalling (4.41), by the positivity property and the partition of unity property of B-splines, we obtain∥∥∥∥∥ 1n M[p]
n

∥∥∥∥∥
∞

= max
i=1,...,n+p−2

n+p−2∑
j=1

∫
1

0

N j+1,[p](x)Ni+1,[p](x) dx = max
i=1,...,n+p−2

∫
1

0

n+p−2∑
j=1

N j+1,[p](x)

 Ni+1,[p](x) dx

≤ max
i=1,...,n+p−2

∫
1

0

Ni+1,[p](x) dx = max
i=1,...,n+p−2

ti+p+2 − ti+1

p + 1

≤
1

n
.

Recalling (4.41) and using the skew-symmetry of the matrix H[p]
n , we obtain

‖H[p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣∣∣∣
∫

1

0

N j+1,[p](x)N′i+1,[p](x) dx

∣∣∣∣∣∣
= max

i=1,...,n+p−2
p

n+p−2∑
j=1

∣∣∣∣∣∣
∫

1

0

N j+1,[p](x)
(

Ni+1,[p−1](x)
ti+p+1 − ti+1

−
Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx

∣∣∣∣∣∣ . (4.76)

Using the partition of unity property and (4.75), we have

n+p−2∑
j=1

∫
1

0

N j+1,[p](x)
Ni+1,[p−1](x)
ti+p+1 − ti+1

dx =

∫
1

0

n+p−2∑
j=1

N j+1,[p](x)

 Ni+1,[p−1](x)
ti+p+1 − ti+1

dx ≤
1

p
,

and a similar bound holds for the remaining term in (4.76). It follows that ‖H[p]
n ‖∞ ≤ 2.

Recalling (4.41), we obtain

‖nK[p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣∣∣∣
∫

1

0

N′j+1,[p](x)N′i+1,[p](x) dx

∣∣∣∣∣∣
= max

i=1,...,n+p−2
p2

n+p−2∑
j=1

∣∣∣∣∣∣
∫

1

0

(
N j+1,[p−1](x)
t j+p+1 − t j+1

−
N j+2,[p−1](x)
t j+p+2 − t j+2

) (
Ni+1,[p−1](x)
ti+p+1 − ti+1

−
Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx

∣∣∣∣∣∣ . (4.77)
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In addition, we have

n+p−2∑
j=1

∫
1

0

N j+1,[p−1](x)
t j+p+1 − t j+1

Ni+1,[p−1](x)
ti+p+1 − ti+1

dx =

∫
1

0

n+p−2∑
j=1

N j+1,[p−1](x)
t j+p+1 − t j+1

 Ni+1,[p−1](x)
ti+p+1 − ti+1

dx ≤ n
∫

1

0

Ni+1,[p−1](x)
ti+p+1 − ti+1

dx =
n
p
,

and in a similar way we can also bound the remaining terms in (4.77). This results in

‖nK[p]
n ‖∞ ≤ max

i=1,...,n+p−2
p2

(
4

n
p

)
= 4pn.

�

Remark 4.3. A consequence of Lemma 4.7 is that we can take C̄p = 1 in (4.67), independently of p. Indeed,
Lemma 4.7 implies that λmax(M[p]

n ) ≤ ‖M[p]
n ‖∞ ≤ 1 for all p, n ≥ 1. Thus, by the minimax principle,

n
∥∥∥∑n+p−2

i=1 xiNi+1,[p]

∥∥∥2
L2(0,1)

‖x‖2
=

xT M[p]
n x

‖x‖2
≤ max

y,0

yT M[p]
n y

‖y‖2
= λmax(M[p]

n ) ≤ 1.

Theorem 4.4 (localization of the spectrum of R(A[p]
n )). Let p, n ∈ Nd, then

λmin(R(A[p]
n )) ≥

π2d + γ

n
1
· · · nd

Cp1
· · ·Cpd , (4.78)

λmax(R(A[p]
n )) ≤

∑d
k=1 4pkn2

k + γ

n
1
· · · nd

, (4.79)

where Cp is a constant satisfying the left inequality in Lemma 4.6.

Proof. We recall from (4.11) and Theorem 4.2 that

R(A[p]
n ) =

d∑
k=1

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nk−1
M[pk−1]

nk−1
⊗ nkK[pk]

nk
⊗

1

nk+1

M[pk+1]
nk+1
⊗ · · · ⊗

1

nd
M[pd]

nd
+ γ

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nd
M[pd]

nd
.

Now apply (1.8), (1.16) and Theorem 4.3 to obtain (4.78). Then, apply (1.9), (1.16) and Lemma 4.7 to obtain

(4.79). �

Theorem 4.5 (localization of the spectrum of A[p]
n ). Let p, n ∈ Nd, then

Λ(A[p]
n ) ⊆

[
λmin(R(A[p]

n )), λmax(R(A[p]
n ))

]
×

[
λmin(I(A[p]

n )), λmax(I(A[p]
n ))

]
⊆

π2d + γ

n
1
· · · nd

Cp1
· · ·Cpd ,

∑d
k=1 4pkn2

k + γ

n
1
· · · nd

 × [
−
2

∑d
k=1 |βk|nk

n
1
· · · nd

,
2

∑d
k=1 |βk|nk

n
1
· · · nd

]
,

where Cp is a constant satisfying the left inequality in Lemma 4.6.

Proof. From Theorem 4.4 we have

π2d + γ

n
1
· · · nd

Cp1
· · ·Cpd ≤ λmin(R(A[p]

n )) ≤ λmax(R(A[p]
n )) ≤

∑d
k=1 4pkn2

k + γ

n
1
· · · nd

. (4.80)

Taking into account that H[p]
n is normal, we have ‖H[p]

n ‖ = ρ(H[p]
n ) ≤ ‖H[p]

n ‖∞. Similarly, ‖M[p]
n ‖ = ρ(M[p]

n ) ≤
‖M[p]

n ‖∞. Therefore, using (4.12), (4.39), (1.13) and Lemma 4.7, we get

‖I(A[p]
n )‖ = ‖A[p]

n,A‖ =

∥∥∥∥∥∥∥
d∑

k=1

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nk−1
M[pk−1]

nk−1
⊗ βkH[pk]

nk
⊗

1

nk+1

M[pk+1]
nk+1
⊗ · · · ⊗

1

nd
M[pd]

nd

∥∥∥∥∥∥∥
≤

1

n
1
· · · nd

d∑
k=1

‖M[p1]
n1

‖ · · · ‖M[pk−1]
nk−1
‖ nk |βk| ‖H[pk]

nk
‖ ‖M[pk+1]

nk+1
‖ · · · ‖M[pd]

nd
‖ ≤

2

∑d
k=1 |βk|nk

n
1
· · · nd

.
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n κ(A[p]
n )/n2 κ(An)/n2 κ(A(p)

n )/n2

8 0.0916 0.2278 1.2597

16 0.0772 0.2173 1.2573

32 0.0763 0.2101 1.2553

64 0.0761 0.2065 1.2543

128 0.0760 0.2049 1.2539

256 0.0760 0.2041 1.2538

Table 4.4: computation of κ(A[p]
n )/n2

, κ(An)/n2
and κ(A(p)

n )/n2
in the case d = 2, β = 0, γ = 0, p = (2, 2),

n = (n, log
2

n), for increasing values of n. Note that we are in the presence of a non-uniform mesh refinement.

It follows that

−
2

∑d
k=1 |βk|nk

n
1
· · · nd

≤ −‖I(A[p]
n )‖ ≤ λmin(I(A[p]

n )) ≤ λmax(I(A[p]
n )) ≤ ‖I(A[p]

n )‖ ≤
2

∑d
k=1 |βk|nk

n
1
· · · nd

. (4.81)

Combining (4.80)–(4.81) with (1.7) we get the thesis. �

Theorem 4.6 (conditioning). For every p ∈ Nd there exists a constant αp such that, for all n ∈ Nd,

κ(A[p]
n ) ≤ αp

d∑
k=1

n2

k. (4.82)

Proof. The proof is exactly the same as the proof of Theorem 3.7. From A[p]
n = R(A[p]

n ) + iI(A[p]
n ) and from

the fact that R(A[p]
n ), I(A[p]

n ) are Hermitian, we have

σmax(A[p]
n ) = ‖A[p]

n ‖ ≤ ‖R(A[p]
n )‖ + ‖I(A[p]

n )‖ = ρ(R(A[p]
n )) + ρ(I(A[p]

n )).

Hence, by Theorem 4.5,

‖A[p]
n ‖ ≤ α̂p

∑d
k=1 n2

k

n
1
· · · nd

for some constant α̂p independent of n. Furthermore, by Theorem 4.4 and by the Fan-Hoffman theorem,

σmin(A[p]
n ) ≥ λmin(R(A[p]

n )) ≥
α̃p

n
1
· · · nd

for some constant α̃p > 0 independent of n. Thus, κ(A[p]
n ) =

σmax(A[p]
n )

σmin(A[p]
n )
≤ αp

∑d
k=1 n2

k, with αp = α̂p/α̃p. �

(4.82) says that κ(A[p]
n ) is bounded from above by max(n2) = max(n2

1
, . . . , n2

d) multiplied by some constant

independent of n (for instance αpd). This upper bound is the sharpest possible, as shown by the numerical

experiments in Table 4.4, where we fixed d = 2, β = 0, γ = 0, p = (2, 2), and we computed κ(A[p]
n ) = κ(A[p]

n,D)
(normalized by n2

) for n = (n, log
2

n) and for increasing values of n. For a nice comparison with Finite

Differences and Lagrangian Finite Elements, in the third and fourth column of Table 4.4 we reported the

values of κ(An)/n2
and κ(A[p]

n )/n2
, with An and A[p]

n as in Table 3.2; see also (3.58) for the expression of

the FD diffusion matrix An. We note that the smallest asymptotic growth of the condition number when

n → ∞ is obtained in correspondence of the Galerkin IgA stiffness matrices A[p]
n . Note also that the best

asymptotic constant 0.0760 is about 0.06 times the worst asymptotic constant 1.2538, associated with the

Finite Element stiffness matrices A(p)
n .
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4.5.2 Spectral distribution and symbol of the normalized sequence {nd−2A[p]
n }n

In this subsection we assume that n j = ν jn for all j = 1, . . . , d, i.e. n = νn = (ν
1
n, . . . , νdn) ∈ Nd

, where ν ∈ Qd
+

is fixed and n varies in the set of natural numbers such that n ∈ Nd
. In Theorem 4.7 we prove that the

sequence of matrices {nd−2A[p]
n }n is distributed, in the sense of the eigenvalues, like the real function f (ν)

p in

(4.65), which is therefore the symbol of the sequence {nd−2A[p]
n }n. Note that {nd−2A[p]

n }n is really a sequence

of matrices, due to the assumption n = νn, which must be kept in mind while reading this subsection. Note

also that, by the properties of fp and hp obtained in Section 4.4, f (ν)
p (θ) ≥ 0 for all θ ∈ [−π, π]d

and f (ν)
p (θ) > 0

for all θ ∈ [−π, π]d\{0}.
In order to prove Theorem 4.7, some preliminary work is needed. Let us decompose the matrix K[p]

n into

K[p]
n = Tn+p−2( fp) + R[p]

n , (4.83)

where Tn+p−2( fp), the (n + p − 2)-th Toeplitz matrix associated with fp, is nothing else than the symmetric

(2p + 1)-band matrix whose generic central row is given by (4.48), while R[p]
n := K[p]

n − Tn+p−2( fp) is a

low-rank correction term. Indeed, we know from Subsection 4.3.1, see (4.44), that [K[p]
n ]n−1

i, j=p = Tn−p( fp) =

[Tn+p−2( fp)]n−1
i, j=p, hence

rank(R[p]
n ) ≤ 4(p − 1). (4.84)

Similarly, we decompose the matrix M[p]
n into

M[p]
n = Tn+p−2(hp) + S [p]

n , (4.85)

where Tn+p−2(hp) is just the symmetric (2p + 1)-band matrix whose generic central row is given by (4.50),

while S [p]
n := M[p]

n − Tn+p−2(hp) is a low-rank correction term analogous to R[p]
n :

rank(S [p]
n ) ≤ 4(p − 1). (4.86)

The next lemma analyzes the spectral properties of Tn+p−2( fp). Besides being interesting in its own right,

some of the given properties are needed for the proof of Theorem 4.7, which yields the spectral distribution

of the sequence {nd−2A[p]
n }n.

Lemma 4.8. Let fp and M fp be defined as in Lemma 4.5. Then, the following properties hold.

1. Λ(Tn+p−2( fp)) ⊂ (0,M fp) for all n.

2. λmin(Tn+p−2( fp))↘ 0 and λmax(Tn+p−2( fp))↗ M fp as n→ ∞.

3. {Tn+p−2( fp)}n ∼λ fp.

4. For each fixed j ≥ 1,

λn+p−1− j(Tn+p−2( fp)) n→∞
∼

j2π2

n2

.

Proof. The first three statements are consequences of Theorem 1.8 and Lemma 4.5, except for the monotone

convergence in item 2, which, however, follows from the Cauchy interlacing Theorem 1.3 and from the fact

that Tn+p−2( fp) is a principal submatrix of T(n+1)+p−2( fp).
We now prove the last statement. From Lemma 4.5 we know that θ = 0 is the unique zero of fp over

[−π, π]. Furthermore, from the definition of fp, see (4.46), it follows immediately that f ′p(0) = 0. Moreover,

by using Lemma 4.3, we get

f ′′p (0) = 2

p∑
k=1

k2φ̈[2p+1](p + 1 − k) = 2.
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This means that the function fp satisfies all the hypotheses of Theorem 1.10 with s = 1, θmin = 0 and

f (2s)
p (θmin) = 2. Then, for each fixed j ≥ 1,

λn+p−1− j(Tn+p−2( fp)) n→∞
∼

c
1, j

(n + p − 2)2
n→∞
∼

j2π2

n2

,

where the last asymptotic equivalence holds because c
1, j = j2π2; see Remarks 1.4–1.5. �

Remark 4.4. In Subsection 4.5.1, looking at the numerical results summarized in the Tables 4.2–4.3, we con-

jectured that (4.73) holds for all p, j ≥ 1. In Lemma 4.8 we have seen that (4.73) holds with λn+p−1− j(Tn+p−2( fp))
in place of λn+p−1− j(K

[p]
n ). Furthermore, using the Cauchy interlacing Theorem 1.3 and the fact that Tn+p−2( fp)

is a principal submatrix of K[p]
n+2p−2, we have

λ j(K
[p]
n+2p−2) ≥ λ j(Tn+p−2( fp)) ≥ λ j+2p−2(K

[p]
n+2p−2), ∀p, n ≥ 1, ∀ j = 1, . . . , n + p − 2.

Hence, if, for a fixed j ≥ 1, there exists a constant k̃p, j such that

λn+p−1− j(K[p]
n ) n→∞

∼
k̃p, j

n2

,

then

λ(n+p−1− j)+2p−2(K
[p]
n+2p−2) = λn+p−1−( j−2p+2)(K

[p]
n+2p−2) = λ(n+2p−2)+p−1− j(K

[p]
n+2p−2)

n→∞
∼

k̃p, j

n2

,

and it follows that:

• k̃p, j ≤ j2π2;

• if j > 2p − 2, then k̃p, j ≥ ( j − 2p + 2)2.

Theorem 4.7. Let p ∈ Nd, ν ∈ Qd
+ and n = νn, then {nd−2A[p]

n }n ∼λ f (ν)
p , with f (ν)

p defined in (4.65). In particular,
{nd−2A[p]

n }n is weakly clustered at the range [0,M f (ν)
p

] of f (ν)
p , where M f (ν)

p
:= maxθ∈[−π,π]d f (ν)

p (θ), and every point
of [0,M f (ν)

p
] strongly attracts Λ(nd−2A[p]

n ) with infinite order (cf. Theorem 1.5).

Proof. From (4.7)–(4.10) we have

nd−2A[p]
n = nd−2A[p]

n,D + nd−2A[p]
n,A + nd−2A[p]

n,R

= Tn+p−2( f (ν)
p ) + nd−2A[p]

n,D − Tn+p−2( f (ν)
p ) + nd−2A[p]

n,A + nd−2A[p]
n,R. (4.87)

We prove that the hypotheses of Theorem 1.6 are satisfied with

Zn = nd−2A[p]
n , Xn = Tn+p−2( f (ν)

p ), Yn = nd−2A[p]
n − Tn+p−2( f (ν)

p ) = nd−2A[p]
n,D − Tn+p−2( f (ν)

p ) + nd−2A[p]
n,A + nd−2A[p]

n,R.
(4.88)

Clearly, by Theorem 1.8 we have {Tn+p−2( f (ν)
p )}n ∼λ f (ν)

p . Moreover, Tn+p−2( f (ν)
p ) is Hermitian (because f (ν)

p is

real-valued) and (1.37) ensures that

‖Tn+p−2( f (ν)
p )‖ ≤ M f (ν)

p
, (4.89)

where M f (ν)
p

is defined in the statement of the theorem and is a constant independent of n.

Concerning the spectral norms of nd−2A[p]
n,D, nd−2A[p]

n,A, nd−2A[p]
n,R, we have the following bounds, which were

obtained by using (4.38)–(4.40), the equality n = νn, the property (1.13), the fact that K[p]
n , H[p]

n , M[p]
n are
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normal and Lemma 4.7.

‖nd−2A[p]
n,D‖ =

∥∥∥∥∥∥∥
d∑

k=1

nd−2nk

n
1
· · · nk−1nk+1 · · · nd

M[p1]
n1

⊗ · · · ⊗ M[pk−1]
nk−1
⊗ K[pk]

nk
⊗ M[pk+1]

nk+1
⊗ · · · ⊗ M[pd]

nd

∥∥∥∥∥∥∥
≤ 4

d∑
k=1

pkck(ν), (see (4.66) for the definition of ck(ν)) (4.90)

‖nd−2A[p]
n,A‖ =

∥∥∥∥∥∥∥
d∑

k=1

nd−2

n
1
· · · nk−1nk+1 · · · nd

M[p1]
n1

⊗ · · · ⊗ M[pk−1]
nk−1
⊗ βkH[pk]

nk
⊗ M[pk+1]

nk+1
⊗ · · · ⊗ M[pd]

nd

∥∥∥∥∥∥∥
≤

2

n

d∑
k=1

1

ν
1
· · · νk−1νk+1 · · · νd

|βk| =
2

∑d
k=1 νk|βk|

ν
1
· · · νdn

, (4.91)

‖nd−2A[p]
n,R‖ =

∥∥∥∥∥∥ nd−2

n
1
· · · nd

M[p1]
n1

⊗ · · · ⊗ M[pd]
nd

∥∥∥∥∥∥ ≤ 1

ν
1
· · · νdn2

. (4.92)

From (4.90)–(4.92), it follows that ‖nd−2A[p]
n ‖ ≤ C for some constant C independent of n.

To complete the proof, it only remains to show that

∣∣∣∣∣∣∣∣∣nd−2A[p]
n − Tn+p−2( f (ν)

p )
∣∣∣∣∣∣∣∣∣ = o(N(n + p − 2)) = o(nd),

where we recall that N(n + p − 2) =
∏d

i=1(ni + pi − 2) is the size of A[p]
n and n = νn. We first note that, by

definition of f (ν)
p , see (4.65), by the linearity of Tn+p−2(·) and by Lemma 1.8, we have

Tn+p−2( f (ν)
p ) = Tn+p−2

 d∑
k=1

ck(ν) hp1
⊗ · · · ⊗ hpk−1 ⊗ fpk ⊗ hpk+1

⊗ · · · ⊗ hpd


=

d∑
k=1

ck(ν) Tn1+p1−2(hp1
) ⊗ · · · ⊗ Tnk−1+pk−1−2(hpk−1) ⊗ Tnk+pk−2( fpk) ⊗ Tnk+1+pk+1−2(hpk+1

) ⊗ · · · ⊗ Tnd+pd−2(hpd ).

Moreover,

nd−2A[p]
n,D =

d∑
k=1

ck(ν) M[p1]
n1

⊗ · · · ⊗ M[pk−1]
nk−1
⊗ K[pk]

nk
⊗ M[pk+1]

nk+1
⊗ · · · ⊗ M[pd]

nd
,

and we recall from (4.84), (4.86) that

rank(K[p]
n − Tn+p−2( fp)) ≤ 4(p − 1), rank(M[p]

n − Tn+p−2(hp)) ≤ 4(p − 1).

Therefore, by (1.5) and by the property (1.18) of tensor products we obtain∣∣∣∣∣∣∣∣∣nd−2A[p]
n − Tn+p−2( f (ν)

p )
∣∣∣∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣∣∣∣nd−2A[p]

n,D − Tn+p−2( f (ν)
p )

∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣nd−2A[p]

n,A

∣∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∣∣∣A[p]

n,R

∣∣∣∣∣∣∣∣∣
1

≤ d N(n + p− 2)
d∑

i=1

4(pi − 1)
ni + pi − 2

∥∥∥nd−2A[p]
n,D − Tn+p−2( f (ν)

p )
∥∥∥ + N(n + p− 2)

∥∥∥nd−2A[p]
n,A

∥∥∥ + N(n + p− 2)
∥∥∥nd−2A[p]

n,R

∥∥∥
(4.93)

and the latter is o(nd) by (4.89)–(4.92). �

Remark 4.5. In Theorem 4.7, assume that d = 1 and take p = p, ν = 1. Then n = n, f (ν)
p (θ) = fp(θ) is just

the function analyzed in Section 4.4, and Theorem 4.7 gives { 1n A[p]
n }n ∼λ fp, where

A[p]
n = nK[p]

n + βH[p]
n +

γ

n
M[p]

n , n = 1, 2, . . .
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is the sequence of 1D Galerkin B-spline IgA stiffness matrices.
3
Moreover, (4.93) together with (4.89)–(4.92)

shows that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 1nA[p]
n − Tn+p−2( fp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

≤ C

for some constant C independent of n. Then, all the hypotheses of Theorem 1.7 are satisfied with Zn, Xn, Yn

as in (4.88), and so { 1n A[p]
n }n is strongly clustered at [0,M fp].

In the next subsections, we will consider some cases that will be analyzed in more detail. We first focus

on the spectral properties of the matrices
1

n A[p]
n associated with the linear (p = 1) and quadratic (p = 2)

B-spline IgA approximation of problem (4.1) in 1D. Then, we will address the 2D discretization matrices

A[p1,p2]
n1,n2

associated with the bilinear (p
1

= p
2

= 1) and biquadratic (p
1

= p
2

= 2) B-spline IgA approximation of

(4.1).

4.5.3 The linear case p = 1

In the case p = 1, the matrix A[1]
n is of size (n − 1) × (n − 1) and is given by

A[1]
n = nK[1]

n + βH[1]
n +

γ

n
M[1]

n , (4.94)

where, for n ≥ 4,

K[1]
n =


2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2


, H[1]

n =
1

2


0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0


, M[1]

n =
1

6


4 1

1 4 1

. . .
. . .

. . .

1 4 1

1 4


.

The matrix A[1]
n is nothing else than the stiffness matrix arising from classical FEM with linear elements. In

other words, using the notation of Chapter 3, we have A[1]
n = A(1)

n . Observe that the scaled matrix

1

n
A[1]

n = K[1]
n +

β

n
H[1]

n +
γ

n2

M[1]
n (4.95)

is a real Toeplitz tridiagonal matrix, which is given explicitly by

1

n
A[1]

n = Tridiagonal

(
−1 −

β

2n
+

γ

6n2

, 2 +
2γ

3n2

, −1 +
β

2n
+

γ

6n2

)
.

Moreover, for n large enough, the elements −1−
β

2n +
γ

6n2
and −1+

β

2n +
γ

6n2
are both negative. This means that,

for n large enough, all the eigenvalues of
1

n A[p]
n are real and can be computed by means of Theorem 1.9.

Proposition 4.1. Let n ≥ 4 be such that −1− β

2n +
γ

6n2
and −1+

β

2n +
γ

6n2
are both negative. Then, 1

n A[1]
n has n− 1

real distinct eigenvalues

λ j

(
1

n
A[1]

n

)
= 2 +

2γ

3n2

+ 2

√
1 −

(
γ

3

+
β2

4

)
1

n2

+
γ2

36n4

cos
jπ
n
, j = 1, . . . , n − 1. (4.96)

3A[p]
n is given by (4.6)–(4.10) and Theorem 4.2 for d = 1, n = n, p = p, β = β.

95



By using the expression (4.96) for the eigenvalues, it can be proved by direct computation (without even

invoking Theorem 4.7 or Remark 4.5) that the sequence { 1n A[1]
n } is distributed like the function f

1
(θ) = 2−2 cos θ

in the sense of the eigenvalues. In addition, by using (4.96) and some asymptotic expansion, one can prove

that

λmin

(
1

n
A[1]

n

)
≥ 4

(
sin

π

2n

)
2

+
2γ

3n2

.

Furthermore, by Gershgorin’s first theorem [8], we have λmin( 1

n A[1]
n ) ≥ γ

n2
. Hence,

Λ

(
1

n
A[1]

n

)
⊂

[
max

(
4

(
sin

π

2n

)
2

+
2γ

3n2

,
γ

n2

)
, 4 +

γ

3n2

)
.

This gives a sharper lower bound for λmin( 1

n A[p]
n ) than the one provided in Theorem 4.5, if we take into

account that C
1

= 1

3
is the best constant satisfying (4.67) for p = 1. The latter is true because:

• λmin(M[1]
n ) = λmin(Tn−1( 2

3
+ 1

3
cos θ)) ↘ 1

3
= minθ∈[−π,π]( 2

3
+ 1

3
cos θ) when n → ∞ (this follows from

Theorems 1.8 and 1.3);

• if C
1
is a constant satisfying the left-hand side inequality in (4.67), then λmin(M[1]

n ) ≥ C
1
for all n (see

Theorem 4.3);

• if C
1
is a constant satisfying λmin(M[1]

n ) ≥ C
1
for all n, then it also satisfies the left-hand side inequality

in (4.67) (see Remark 4.2).

From (4.96) it also follows that

n2λmin

(
1

n
A[1]

n

)
= n2λn−1

(
1

n
A[1]

n

)
n→∞
−→ π2 + γ +

β2

4

,

n2

(
4 − λmax

(
1

n
A[1]

n

))
= n2

(
4 − λ

1

(
1

n
A[1]

n

))
n→∞
−→ π2 −

γ

3

+
β2

4

.

In particular, { 1n A[1]
n } is strongly clustered at [0, 4] according to Definition 1.3. Note that [0, 4] is precisely

the range of the function f
1
(θ) = 2 − 2 cos θ (cf. Remark 4.5).

We conclude this subsection by collecting in the next lemma some results which can be derived by the

Gershgorin theorems and will be used later on.

Lemma 4.9. For all n ≥ 4,

• H[1]
n is skew-symmetric, irreducible, and Λ(H[1]

n ) ⊂ {0} × (−1, 1) ;

• M[1]
n is symmetric, irreducible, and Λ(M[1]

n ) ⊂
(
1

3
, 1

)
.

4.5.4 The quadratic case p = 2

The spectral analysis of
1

n A[1]
n has not been difficult because Theorem 1.9 provided us with the explicit

expression (4.96) for the eigenvalues of
1

n A[1]
n . For p ≥ 2 such an expression for the eigenvalues of

1

n A[p]
n is

not available and so our spectral analysis must rely on other considerations. In the case p = 2, the matrix

1

n A[2]
n is of size n × n and is given by

1

n
A[2]

n = K[2]
n +

β

n
H[2]

n +
γ

n2

M[2]
n ,
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where, for n ≥ 5,

K[2]
n =

1

6



8 −1 −1

−1 6 −2 −1

−1 −2 6 −2 −1

. . .
. . .

. . .
. . .

. . .

−1 −2 6 −2 −1

−1 −2 6 −1

−1 −1 8


, H[2]

n =
1

24



0 9 1

−9 0 10 1

−1 −10 0 10 1

. . .
. . .

. . .
. . .

. . .

−1 −10 0 10 1

−1 −10 0 9

−1 −9 0


,

M[2]
n =

1

120



40 25 1

25 66 26 1

1 26 66 26 1

. . .
. . .

. . .
. . .

. . .

1 26 66 26 1

1 26 66 25

1 25 40


.

For the case p = 2, Theorem 4.7 (or Remark 4.5) gives { 1n A[2]
n } ∼λ f

2
, with

f
2
(θ) = 1 −

2

3

cos θ −
1

3

cos(2θ).

Moreover, { 1n A[2]
n } is strongly clustered at

[
0, 3

2

]
, which is the range of f

2
(see Remark 4.5). In the remainder

of this subsection we provide more specific results about the spectral properties of
1

n A[2]
n .

Localization of the eigenvalues

We look for a more precise localization of Λ( 1

n A[2]
n ) than the one provided by Theorem 4.5. We first note

that, by using the Gershgorin theorems, we can derive the following bounds for the spectra of the matrices

K[2]
n , H[2]

n and M[2]
n .

Lemma 4.10. For all n ≥ 5,

• K[2]
n is symmetric, irreducible, and Λ(K[2]

n ) ⊂ (0, 2) ;

• H[2]
n is skew-symmetric, irreducible, and Λ(H[2]

n ) ⊂ {0} ×
(
− 11

12
, 11

12

)
;

• M[2]
n is symmetric, irreducible, and Λ(M[2]

n ) ⊂
(

1

10
, 1

)
;

• if 25γ

120n2
< 1

6
, then K[2]

n +
γ

n2
M[2]

n is symmetric, irreducible, and

Λ

(
K[2]

n +
γ

n2

M[2]
n

)
⊂

(
γ

n2

, 2 +
γ

10n2

)
.

Remark 4.6. Lemma 4.10 implies that λmin(M[2]
n ) > 1

10
for all n ≥ 5. Using the arguments shown in

Remark 4.2 and Theorem 4.3, it follows that

λmin(K[2]
n ) >

π2

10n2

, ∀n ≥ 5, (4.97)∥∥∥∥∥∥∥
n∑

i=1

xiNi+1,[2]

∥∥∥∥∥∥∥
2

L2(0,1)

>
‖x‖2

10n
, ∀n ≥ 5, ∀x ∈ Rn.

In particular, the left-hand side inequality in (4.67) holds for p = 2 with C
2

= 1

10
.
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Using the constant C
2

= 1

10
, the localization of Λ( 1

n A[2]
n ) provided by Theorem 4.5 gives

Λ

(
1

n
A[2]

n

)
⊆

[
π2 + γ

n2

1

10

, 8 +
γ

n2

]
×

[
−
2|β|

n
,
2|β|

n

]
. (4.98)

We will prove in Theorem 4.8 a better localization of Λ( 1

n A[2]
n ) than (4.98).

Lemma 4.11. Let R[2]
n be the low-rank matrix R[2]

n introduced in (4.83). Then, for every n ≥ 5,

R[2]
n =

1

6


2 1

1 0

0 1

1 2

 ∈ R
n×n,

and the characteristic polynomial of R[2]
n is given by 1

1296
λn−4(36λ2 − 12λ − 1)2. Hence, the eigenvalues of R[2]

n

are 1+
√
2

6
(with multiplicity 2), 1−

√
2

6
(with multiplicity 2) and 0 (with multiplicity n − 4).

Theorem 4.8. For every n ≥ 5 such that 25γ

120n2
< 1

6
,

Λ

(
1

n
A[2]

n

)
⊂

max
(
γ

n2

,
π2 + γ

10n2

)
,min

3
2

+
1 +
√
2

6

+
γ

n2

, 2 +
γ

10n2

 × [
−
11|β|

12n
,
11|β|

12n

]
. (4.99)

Proof. Fix n ≥ 5 such that the condition
25γ

120n2
< 1

6
is met. The real and imaginary part of

1

n A[2]
n are given by

R

(
1

n
A[2]

n

)
= K[2]

n +
γ

n2

M[2]
n = Tn+p−2( fp) + R[2]

n +
γ

n2

M[2]
n , I

(
1

n
A[2]

n

)
=
β

in
H[2]

n .

We aim at localizing the spectra Λ(R( 1

n A[2]
n )) and Λ(I( 1

n A[2]
n )). We begin with Λ(R( 1

n A[2]
n )). Since n satisfies

the condition
25γ

120n2
< 1

6
, by Lemma 4.10 we have

Λ

(
R

(
1

n
A[2]

n

))
⊂

(
γ

n2

, 2 +
γ

10n2

)
. (4.100)

We can improve (4.100) as follows. By combining (1.9) with Lemmas 4.8, 4.10 and 4.11, and taking into

account that M f2 = 3

2
, we obtain

λmax

(
R

(
1

n
A[2]

n

))
= λmax

(
Tn+p−2( fp) + R[2]

n +
γ

n2

M[2]
n

)
≤ λmax(Tn+p−2( fp)) + λmax(R[2]

n ) +
γ

n2

λmax(M[2]
n )

<
3

2

+
1 +
√
2

6

+
γ

n2

.

Similarly, by using (4.97) and Lemma 4.10,

λmin

(
R

(
1

n
A[2]

n

))
= λmin

(
K[2]

n +
γ

n2

M[2]
n

)
≥ λmin(K[2]

n ) +
γ

n2

λmin(M[2]
n ) >

π2 + γ

10n2

.

Thus, we can replace (4.100) with

Λ

(
R

(
1

n
A[2]

n

))
⊂

max
(
γ

n2

,
π2 + γ

10n2

)
,min

3
2

+
1 +
√
2

6

+
γ

n2

, 2 +
γ

10n2

 . (4.101)
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Now we localize the spectrum Λ(I( 1

n A[2]
n )). Since I( 1

n A[2]
n ) is Hermitian, from Lemma 4.10 we obtain

4

Λ

(
I

(
1

n
A[2]

n

))
⊂

[
−
11|β|

12n
,
11|β|

12n

]
. (4.102)

Combining (4.101)–(4.102) with (1.7), we obtain (4.99). �

Clustering

We now deal with the clustering properties of the sequence { 1n A[2]
n }. We have already mentioned that { 1n A[2]

n }

is strongly clustered at

[
0, 3

2

]
, but we have no bounds on the number of outliers, i.e., those eigenvalues

of
1

n A[2]
n lying outside the rectangular ε-expansion

[
0, 3

2

]
ε

=
[
−ε, 3

2
+ ε

]
× [−ε, ε]. Theorem 4.9 allows us to

provide an estimate for the number of outliers.

Theorem 4.9. For all ε ∈ (0, 1) and n ≥ max(5,
√
2γ

ε
), it holds that

q+
n (ε) ≤

1 +
√
2

3ε
, (4.103)

where q+
n (ε) is the number of eigenvalues of 1

n A[2]
n whose real parts are ≥ 3

2
+ ε.

Proof. For every n ≥ 5, we consider again the decomposition K[2]
n = Tn( f

2
) + R[2]

n introduced in (4.83). The

matrix R[2]
n is symmetric and we know the eigenvalues of R[2]

n from Lemma 4.11. In particular, R[2]
n has two

positive and two negative eigenvalues, and so, by Theorem 1.4,

λ j−2(Tn( f
2
)) ≥ λ j(K[2]

n ) ≥ λ j+2(Tn( f
2
)), j = 3, . . . , n − 2.

From Lemma 4.8 and M f2 = 3

2
, we have Λ(Tn( f

2
)) ⊂

(
0, 3

2

)
, hence

3

2

> λ
1
(Tn( f

2
)) ≥ λ

3
(K[2]

n ) ≥ . . . ≥ λn(K[2]
n ) > 0, (4.104)

where the last inequality is a consequence of Lemma 4.10 (or, simply, of the positive definiteness of K[2]
n ;

see Theorem 4.2). Moreover, by (1.9),

λmax(K[2]
n ) = λmax(Tn( f

2
) + R[2]

n ) ≤ λmax(Tn( f
2
)) + λmax(R[2]

n ) <
3

2

+
1 +
√
2

6

. (4.105)

Finally, recalling from that λmax(M[2]
n ) ≤ 1 and applying the minimax principle, for every j = 1, . . . , n we have

λ j(R( 1

n A[2]
n )) = min

V⊆Cn

dim V=n+1− j

max
x∈V
‖x‖=1

(
x∗R( 1

n A[2]
n ) x

)
= min

V⊆Cn

dim V=n+1− j

max
x∈V
‖x‖=1

(
x∗(K[2]

n +
γ

n2

M[2]
n )x

)
< min

V⊆Cn

dim V=n+1− j

max
x∈V
‖x‖=1

(
x∗K[2]

n x +
γ

n2

)
= λ j(K[2]

n ) +
γ

n2

, j = 1, . . . , n. (4.106)

Now fix ε > 0 and let q+
n (ε) be the number of eigenvalues of

1

n A[2]
n whose real parts are ≥ 3

2
+ ε. Label

the eigenvalues of
1

n A[2]
n and R( 1

n A[2]
n ) in the following way:

R
(
λ
1

(
1

n A[2]
n

))
≥ . . . ≥ R

(
λn

(
1

n A[2]
n

))
,

4
If β , 0 then I( 1

n A[2]
n ) is irreducible and Λ(I( 1

n A[2]
n )) ⊂ (− 11|β|

12n ,
11|β|
12n ). In (4.102) we have included the endpoints ±

11|β|
12n to cover

the case β = 0.
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and

λ
1

(
R

(
1

n A[2]
n

))
≥ . . . ≥ λn

(
R

(
1

n A[2]
n

))
.

Following the argument used in [37, proof of Theorem 3.5] and keeping in mind (4.104)–(4.106), we apply

the Ky-Fan Theorem 1.2 to obtain(
3

2

+ ε

)
q+

n (ε) ≤
q+

n (ε)∑
j=1

R

(
λ j

(
1

n
A[2]

n

))
≤

q+
n (ε)∑
j=1

λ j

(
R

(
1

n
A[2]

n

))
≤

q+
n (ε)∑
j=1

(
λ j(K[2]

n ) +
γ

n2

)

=

q+
n (ε)∑
j=1

λ j(K[2]
n ) +

γ q+
n (ε)
n2

= λ
1
(K[2]

n ) + λ
2
(K[2]

n ) +

q+
n (ε)∑
j=3

λ j(K[2]
n ) +

γ q+
n (ε)
n2

< 2

3
2

+
1 +
√
2

6

 + (q+
n (ε) − 2)

3

2

+
γ q+

n (ε)
n2

=

(
3

2

+
γ

n2

)
q+

n (ε) +
1 +
√
2

3

,

and so, for every ε > 0 and n ≥ 5 such that
γ

n2
< ε, we have

q+
n (ε) <

1 +
√
2

3

(
ε − γ

n2

) . (4.107)

If 0 < ε < 1 and n > max
(
5,

√
γ

ε

)
, then

1 +
√
2

3

(
ε − γ

n2

) ≤ 1 +
√
2

3ε
+ 1 ⇔ n ≥

√
(1 +

√
2 + 3ε)γ
3ε2

.

From the inequality √
(1 +

√
2 + 3ε)γ
3ε2

≤

√
2γ

ε
,

and from (4.107) it follows that (4.103) holds ∀ε ∈ (0, 1) and ∀n ≥ max(5,
√
2γ

ε
). �

Let qn(ε) be the number of eigenvalues of
1

n A[2]
n lying outside the rectangular ε-expansion

[
0, 3

2

]
ε
. By

combining (4.99) and (4.103), we are able to find an upper bound for qn(ε). Indeed, ∀ε ∈ (0, 1) and

∀n > max
(
5, 11|β|

12ε
,
√
2γ

ε

)
= O

(
1

ε

)
,

qn(ε) ≤
1 +
√
2

3ε
.

Note that, by Theorem 4.8, ∀ε ∈ (0, 1) and ∀n ≥ max
(
5, 11|β|

12ε
,
√

5γ

4ε

)
, there are no eigenvalues of

1

n A[2]
n lying

outside the ε-expansion
[
0, 3

2
+ 1+

√
2

6

]
ε
. Thus, ∀ε ∈ (0, 1) and ∀n ≥ max

(
5, 11|β|

12ε
,
√
2γ

ε

)
, qn(ε) is just the number

of eigenvalues of
1

n A[2]
n lying in[

0, 3
2

+ 1+
√
2

6

]
ε
\
[
0, 3

2

]
ε

=
(
3

2
+ ε, 3

2
+ 1+

√
2

6
+ ε

]
× [−ε, ε] .
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4.5.5 The bilinear case p
1

= p
2

= 1

In the case p
1

= p
2

= 1, the matrix A[1,1]
n,n is (n − 1)2 × (n − 1)2 and is given by

A[1,1]
n,n = A[1,1]

n,n,D +
β
1

n
H[1]

n ⊗ M[1]
n +

β
2

n
M[1]

n ⊗ H[1]
n +

γ

n2

M[1]
n ⊗ M[1]

n , (4.108)

where

A[1,1]
n,n,D = K[1]

n ⊗ M[1]
n + M[1]

n ⊗ K[1]
n .

In this case, Theorem 4.7 gives {A[1,1]
n,n } ∼λ f (1,1)

1,1 =: f
1,1, with

f
1,1(θ1, θ2) = ( f

1
⊗ h

1
)(θ

1
, θ

2
) + (h

1
⊗ f

1
)(θ

1
, θ

2
) =

8

3

−
2

3

cos(θ
1
) −

2

3

cos(θ
2
) −

4

3

cos(θ
1
) cos(θ

2
).

Localization of the eigenvalues and clustering

As in the previous subsection, we look for a precise localization of the spectrum Λ(A[1,1]
n,n ) as well as for the

clustering properties of the matrix-sequence {A[1,1]
n,n }.

Theorem 4.10. For every n ≥ 4 such that γ

9n2
< 1

3
,

Λ(A[1,1]
n,n ) ⊂

(
max

(
γ

n2

,
8

3

(
sin

π

2n

)
2

+
γ

9n2

)
,min

(
4 +

γ

n2

,
16

3

−
γ

9n2

))
×

[
−
|β

1
| + |β

2
|

n
,
|β

1
| + |β

2
|

n

]
. (4.109)

Proof. Fix n ≥ 4. The real and imaginary part of A[1,1]
n,n are

R(A[1,1]
n,n ) = A[1,1]

n,n,D +
γ

n2

M[1]
n ⊗ M[1]

n , I(A[1,1]
n,n ) =

β
1

in
H[1]

n ⊗ M[1]
n +

β
2

in
M[1]

n ⊗ H[1]
n .

The target is the localization of Λ(R(A[1,1]
n,n )) and Λ(I(A[1,1]

n,n )).
We begin with Λ(R(A[1,1]

n,n )). By performing some computations, we have found that, since n satisfies the

condition
γ

9n2
< 1

3
, R(A[1,1]

n,n ) is Hermitian, irreducible and (by the Gershgorin theorems)

Λ(R(A[1,1]
n,n )) ⊂

(
γ

n2

,
16

3

−
γ

9n2

)
.

We can improve this estimate as follows. The matrix A[1,1]
n,n,D is equal to Tn−1,n−1( f

1,1) by Lemma 1.8 and by the

fact that, as we have seen in Subsection 4.5.3, K[1]
n = Tn−1( f

1
) and M[1]

n = Tn−1(h1
) (note that h

1
(θ) = 2

3
+ 1

3
cos θ).

The range of f
1,1 is [0, 4] and so, by Theorem 1.8, Λ(A[1,1]

n,n,D) ⊂ (0, 4). Moreover, from the properties of tensors

in Subsection 1.2.1 and from Lemma 4.9 it follows that M[1]
n ⊗ M[1]

n is symmetric and Λ(M[1]
n ⊗ M[1]

n ) ⊂ ( 1

9
, 1).

By (1.9) we then have

λmax(R(A[1,1]
n,n )) = λmax(A[1,1]

n,n,D +
γ

n2

M[1]
n ⊗ M[1]

n ) ≤ λmax(A[1,1]
n,n,D) +

γ

n2

λmax(M[1]
n ⊗ M[1]

n ) < 4 +
γ

n2

.

In addition, by (1.8), by the properties of tensors in Subsection 1.2.1, by Lemma 4.9, and by the fact that

λmin(K[1]
n ) = 4

(
sin π

2n

)
2

, we get

λmin(R(A[1,1]
n,n )) = λmin(A[1,1]

n,n,D +
γ

n2

M[1]
n ⊗ M[1]

n ) = λmin(K[1]
n ⊗ M[1]

n + M[1]
n ⊗ K[1]

n +
γ

n2

M[1]
n ⊗ M[1]

n )

≥ λmin(K[1]
n )λmin(M[1]

n ) + λmin(M[1]
n )λmin(K[1]

n ) +
γ

n2

λmin(M[1]
n ) 2 > 2 · 4

(
sin

π

2n

)
2
1

3

+
γ

9n2

.
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Therefore, we obtain for Λ(R(A[1,1]
n,n )) the localization

Λ(R(A[1,1]
n,n )) ⊂

(
max

(
γ

n2

,
8

3

(
sin

π

2n

)
2

+
γ

9n2

)
,min

(
4 +

γ

n2

,
16

3

−
γ

9n2

))
. (4.110)

We now localize the spectrum Λ(I(A[1,1]
n,n )). The matrices H[1]

n ⊗M[1]
n and M[1]

n ⊗H[1]
n are skew-symmetric. This

follows from the properties of tensors in Subsection 1.2.1, taking into account that H[1]
n is skew-symmetric,

while M[1]
n is symmetric; see Theorem 4.2. As a consequence, the matrices i H[1]

n ⊗ M[1]
n and i M[1]

n ⊗ H[1]
n are

Hermitian, proving that all the eigenvalues of H[1]
n ⊗ M[1]

n and M[1]
n ⊗ H[1]

n are purely imaginary. Moreover,

again by the properties of tensors and by Lemma 4.9, Λ(H[1]
n ⊗ M[1]

n ) = Λ(M[1]
n ⊗ H[1]

n ) ⊂ {0} × (−1, 1). Hence,

λmin(I(A[1,1]
n,n )) = λmin

(
β
1

n
1

i

H[1]
n ⊗ M[1]

n +
β
2

n
1

i

M[1]
n ⊗ H[1]

n

)
≥ λmin

(
β
1

n
1

i

H[1]
n ⊗ M[1]

n

)
+ λmin

(
β
2

n
1

i

M[1]
n ⊗ H[1]

n

)
≥ −
|β

1
|

n
−
|β

2
|

n
,

and, similarly,

λmax(I(A[1,1]
n,n )) ≤

|β
1
|

n
+
|β

2
|

n
.

Therefore, we obtain for Λ(I(A[1,1]
n,n )) the localization

Λ(I(A[1,1]
n,n )) ⊆

[
−
|β

1
| + |β

2
|

n
,
|β

1
| + |β

2
|

n

]
. (4.111)

Combining (1.7) with (4.110)–(4.111), we obtain (4.109). �

In addition to providing a localization for Λ(A[1,1]
n,n ), Theorem 4.10 also shows that {A[1,1]

n,n } is strongly

clustered at [0, 4], the range of the function f
1,1. This is confirmed by the following corollary.

Corollary 4.1. ∀ε ∈ (0, 1) and ∀n ≥ max
(
4,

√
γ

ε
, |β1 |+|β2 |

ε

)
, we have

qn(ε) = 0,

where qn(ε) is the number of eigenvalues of A[1,1]
n,n lying outside the rectangular ε-expansion [0, 4]ε.

Proof. Fix ε ∈ (0, 1) and n ≥ max
(
4,

√
γ

ε
, |β1 |+|β2 |

ε

)
. Since n satisfies the conditions

γ

9n2
< 1

3
,

γ

n2
≤ ε and

|β1 |+|β2 |

n ≤ ε, by Theorem 4.10 we have

Λ(A[1,1]
n,n ) ⊂

(
γ

n2

, 4 +
γ

n2

)
×

[
−
|β

1
| + |β

2
|

n
,
|β

1
| + |β

2
|

n

]
⊂ [−ε, 4 + ε] × [−ε, ε] = [0, 4]ε.

Hence, qn(ε) = 0. �

4.5.6 The biquadratic case p
1

= p
2

= 2

In the case p
1

= p
2

= 2, the matrix A[2,2]
n,n is n2 × n2

and

A[2,2]
n,n = A[2,2]

n,n,D +
β
1

n
H[2]

n ⊗ M[2]
n +

β
2

n
M[2]

n ⊗ H[2]
n +

γ

n2

M[2]
n ⊗ M[2]

n ,

where

A[2,2]
n,n,D = K[2]

n ⊗ M[2]
n + M[2]

n ⊗ K[2]
n .
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In this case, Theorem 4.7 gives {A[2,2]
n,n } ∼λ f (1,1)

2,2 =: f
2,2, with

f
2,2(θ1, θ2) = ( f

2
⊗ h

2
)(θ

1
, θ

2
) + (h

2
⊗ f

2
)(θ

1
, θ

2
)

=
1

90

[99 + 6 cos(θ
1
) + 6 cos(θ

2
) − 15 cos(2θ

1
) − 15 cos(2θ

2
) − 52 cos(θ

1
) cos(θ

2
)

− 14 cos(θ
1
) cos(2θ

2
) − 14 cos(θ

2
) cos(2θ

1
) − cos(2θ

1
) cos(2θ

2
)].

Localization of the eigenvalues

Theorem 4.11 establishes a localization result analogous to the one that we have seen in the previous

subsection.

Theorem 4.11. For every n ≥ 5 such that 25γ

120n2
< 1

6

Λ(A[2,2]
n,n ) ⊂

(
max

(
π2 + 10γ

100n2

,
2π2 + γ

100n2

)
,
49

24

+
γ

n2

)
×

[
−
11

12

|β
1
| + |β

2
|

n
,
11

12

|β
1
| + |β

2
|

n

]
. (4.112)

Proof. Fix n ≥ 5 such that the condition
25γ

120n2
< 1

6
is met. The real and imaginary part of A[2,2]

n,n are given by

R(A[2,2]
n,n ) = A[2,2]

n,n,D +
γ

n2

M[2]
n ⊗ M[2]

n , I(A[2,2]
n,n ) =

β
1

in
H[2]

n ⊗ M[2]
n +

β
2

in
M[2]

n ⊗ H[2]
n .

The target is now the localization of Λ(R(A[2,2]
n,n )) and Λ(I(A[2,2]

n,n )).
First we localize the spectrum of R(A[2,2]

n,n ). Note that

R(A[2,2]
n,n ) = A[2,2]

n,n,D +
γ

n2

M[2]
n ⊗M[2]

n = K[2]
n ⊗M[2]

n + M[2]
n ⊗K[2]

n +
γ

n2

M[2]
n ⊗M[2]

n = M[2]
n ⊗K[2]

n +

(
K[2]

n +
γ

n2

M[2]
n

)
⊗M[2]

n .

Therefore, by (1.8), the properties of tensors in Subsection 1.2.1, Lemma 4.10 and (4.97),

λmin(R(A[2,2]
n,n )) ≥ λmin(K[2]

n ⊗ M[2]
n ) + λmin(M[2]

n ⊗ K[2]
n ) +

γ

n2

λmin(M[2]
n ⊗ M[2]

n )

= λmin(K[2]
n )λmin(M[2]

n ) + λmin(M[2]
n )λmin(K[2]

n ) +
γ

n2

λmin(M[2]
n )λmin(M[2]

n )

> 2 ·
π2

10n2

1

10

+
γ

100n2

=
2π2 + γ

100n2

. (4.113)

Moreover, recalling that n ≥ 5 satisfies the condition
25γ

120n2
< 1

6
, we can use the estimate provided in

Lemma 4.10 for the spectrum of the matrix K[2]
n +

γ

n2
M[2]

n . Hence, by (1.8), the properties of tensors,

Lemma 4.10 and (4.97),

λmin(R(A[2,2]
n,n )) ≥ λmin(M[2]

n ⊗ K[2]
n ) + λmin((K[2]

n +
γ

n2

M[2]
n ) ⊗ M[2]

n )

= λmin(M[2]
n )λmin(K[2]

n ) + λmin(K[2]
n +

γ

n2

M[2]
n )λmin(M[2]

n )

>
1

10

π2

10n2

+
γ

n2

1

10

=
π2 + 10γ

100n2

. (4.114)

Furthermore, we can write

A[2,2]
n,n,D = Tn,n( f

2,2) + (A[2,2]
n,n,D − Tn,n( f

2,2)) = Tn,n( f
2,2) + R[2,2]

n,n ,
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where R[2,2]
n,n := A[2,2]

n,n,D − Tn,n( f
2,2), and we can decompose R(A[2,2]

n,n ) as

R(A[2,2]
n,n ) = A[2,2]

n,n,D +
γ

n2

M[2]
n ⊗ M[2]

n = Tn,n( f
2,2) + R[2,2]

n,n +
γ

n2

M[2]
n ⊗ M[2]

n .

The range of f
2,2 is

[
0, 3

2

]
, and so, by Theorem 1.8, we obtain Λ(Tn,n( f

2,2)) ⊂
(
0, 3

2

)
. Concerning the symmetric

matrix R[2,2]
n,n , we have found by computer and by Gershgorin’s first theorem that Λ(R[2,2]

n,n ) ⊂
[
− 269

360
, 13

24

]
. Using

the properties of tensors in Subsection 1.2.1 and Lemma 4.10, we have Λ(M[2]
n ⊗ M[2]

n ) ⊂
(

1

100
, 1

)
. Then, we

apply (1.9) to obtain an upper bound for λmax(R(A[2,2]
n,n )):

λmax(R(A[2,2]
n,n )) ≤ λmax(Tn,n( f

2,2)) + λmax(R[2,2]
n,n ) +

γ

n2

λmax(M[2]
n ⊗ M[2]

n ) <
3

2

+
13

24

+
γ

n2

=
49

24

+
γ

n2

. (4.115)

Combining (4.113)–(4.115) we obtain

Λ(R(A[2,2]
n,n )) ⊂

(
max

(
π2 + 10γ

100n2

,
2π2 + γ

100n2

)
,
49

24

+
γ

n2

)
. (4.116)

Now we to localize the spectrum of I(A[2,2]
n,n ). The matrices H[2]

n ⊗ M[2]
n , M[2]

n ⊗ H[2]
n are skew-symmetric

and, by the properties of tensors and Lemma 4.10, we have Λ(H[2]
n ⊗ M[2]

n ) = Λ(M[2]
n ⊗ H[2]

n ) ⊂ {0} × (− 11

12
, 11

12
).

Hence,

λmin(I(A[2,2]
n,n )) = λmin

(
β
1

n
1

i

H[2]
n ⊗ M[2]

n +
β
2

n
1

i

M[2]
n ⊗ H[2]

n

)
≥ λmin

(
β
1

n
1

i

H[2]
n ⊗ M[2]

n

)
+ λmin

(
β
2

n
1

i

M[2]
n ⊗ H[2]

n

)
≥ −
|β

1
|

n
11

12

−
|β

2
|

n
11

12

,

and, similarly,

λmax(I(A[2,2]
n,n )) ≤

|β
1
|

n
11

12

+
|β

2
|

n
11

12

.

Thus,

Λ(I(A[2,2]
n,n )) ⊆

[
−
11

12

|β
1
| + |β

2
|

n
,
11

12

|β
1
| + |β

2
|

n

]
. (4.117)

Using (1.7) in combination with (4.116) and (4.117), we obtain (4.112). �
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Chapter 5

Spectral distribution and spectral symbol of B-spline IgA
collocation matrices

This chapter, as well as the previous two, is devoted to the spectral analysis of the discretization matrices

coming from a specific numerical technique for approximating the solution of a differential problem. How-

ever, as suggested by the title, in this case our spectral analysis will be focused only on the asymptotic

spectral distribution of these matrices and on the associated spectral symbol. The numerical technique

investigated in this chapter is the B-spline IgA Collocation Method, which has been recently introduced in

[3, 53] and will be described later on. As for the differential problem, we consider the following linear full

elliptic second-order PDE with homogeneous Dirichlet boundary conditions:{
−∇ · K∇u + α · ∇u + γu = f in Ω,
u = 0 on ∂Ω,

(5.1)

where Ω is a bounded open domain in Rd
, K : Ω → Rd×d

is a SPD matrix of functions in C1(Ω) ∩ C(Ω),
α : Ω→ Rd

is a vector of functions in C(Ω), γ, f ∈ C(Ω) and γ ≥ 0. Note that problem (5.1) is more complex

than the ones considered in Chapters 3 and 4, due to the presence of the diffusion coefficient K and to the

arbitrary shape of the domain Ω, which is no longer supposed to be rectangular.

As in the previous two chapters, we first describe the B-spline IgA Collocation Method and we give a

construction of the inherently non-symmetric matrices arising from this approximation technique. After this,

we find and study the associated spectral symbol, which describes their asymptotic spectral distribution when

the matrix size tends to infinity or, equivalently, when the fineness parameters tend to zero. The specific

properties of the symbol studied in this chapter will be used in Chapter 7 to design a fast multi-iterative

solver of multigrid type for the B-spline IgA collocation matrices.

5.1 B-spline IgA Collocation Method

Problem (5.1) can be reformulated as follows:{
−1(K ◦ Pu)1T + β · ∇u + γu = f , in Ω,
u = 0, on ∂Ω,

(5.2)

where 1 := (1, . . . , 1) ∈ Nd
, Pu denotes the Hessian of u, i.e.

(Pu)i, j :=
∂2u
∂xi∂x j

, (5.3)

and ◦ denotes the componentwise Hadamard matrix product; see Subsection 1.2.2. Moreover, β collects the

coefficients of the first order derivatives in (5.1), namely

β j := α j −

d∑
i=1

∂κi j

∂xi
, (5.4)
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where κi j are the entries of the matrix K := [κi j]d
i, j=1.

We consider the approximation of the solution of problem (5.2) by the standard collocation approach,

as explained briefly in the following. Let W be a finite dimensional vector space of sufficiently smooth

functions defined on Ω and vanishing on the boundary ∂Ω. We call W the approximation space. Then, we

introduce a set of N := dim W collocation points in Ω,

{τi ∈ Ω, i = 1, . . . ,N},

and we look for a function uW ∈ W such that

−1(K(τi) ◦ PuW(τi))1T + β(τi) · ∇uW(τi) + γ(τi)uW(τi) = f (τi), ∀τi. (5.5)

If we fix a basis {ϕ
1
, . . . , ϕN} for W, then each v ∈ W can be written as v =

∑N
j=1 v jϕ j, and the collocation

problem (5.5) is equivalent to solving the linear system

Au = f, (5.6)

where

A :=
[
−1(K(τi) ◦ Pϕ j(τi))1T + β(τi) · ∇ϕ j(τi) + γ(τi)ϕ j(τi)

]N

i, j=1
∈ RN×N

(5.7)

is the collocation matrix and f :=
[
f (τi)

]N
i=1. Once we find u := [u

1
· · · uN]T

, we know uW =
∑N

j=1 u jϕ j.

Let us now describe the isogeometric collocation approach. Let

{ϕ̂
1
, . . . , ϕ̂N+Nb} (5.8)

be a set of basis functions defined on the parametric domain Ω̂ := [0, 1]d
, and assume that the physical

domain Ω in (5.2) can be described by a global geometry function G expressed in terms of the functions ϕ̂i

as follows:

G : Ω̂→ Ω, G(x̂) :=
N+Nb∑

i=1

ϕ̂i(x̂) pi, pi ∈ R
d. (5.9)

We assume that the map G is invertible in Ω̂ and G(∂Ω̂) = ∂Ω. If {ϕ̂
1
, . . . , ϕ̂N} is defined as the subset of

the functions in (5.8) which vanish on the boundary ∂Ω̂, then the approximation space W is defined as the

vector space spanned by

ϕi(x) := ϕ̂i(G−1(x)) = ϕ̂i(x̂), i = 1, . . . ,N, x = G(x̂). (5.10)

Moreover, we introduce a set of collocation points in the parametric domain Ω̂,

{τ̂i ∈ Ω̂, i = 1, . . . ,N}, (5.11)

and we define the collocation points in the physical domain Ω as follows:

τi := G(τ̂i), i = 1, . . . ,N. (5.12)

In the isogeometric collocation approach, we solve the linear system (5.6) with the basis functions and the

collocation points given by (5.10) and (5.12), respectively. In the most common formulation of IgA, the

functions ϕ̂i in (5.8) are tensor-product B-splines or NURBS, since they allow an exact representation – by

definition – of an arbitrary domain designed in a (NURBS-based) CAD system. Nonetheless, other kinds of

functions can be used as well.

In this chapter, we study the asymptotic spectral distribution and the symbol of the B-spline IgA collo-

cation matrices (5.7), obtained from the approximation of problem (5.2) by isogeometric collocation methods
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based on tensor-product B-splines with equally spaced knots. This means that the role of the functions ϕ̂i in

(5.8) will be played by tensor-product B-splines over uniform knot sequences. In addition, we do not confine

ourselves to the isoparametric approach, since we will not require the geometry map G to be expressed in

terms of the ϕ̂i as in (5.9). As for the choice of the collocation points, which is crucial for the stability and

good behavior of the discrete problem, we follow [3]: our collocation points τ̂i in (5.11) are chosen as the

Greville abscissae corresponding to the used B-splines.

We now provide the explicit expression of our basis functions ϕ̂i and of our collocation points τ̂i. For

p, n ≥ 2, consider the (uniform) B-splines Ni,[p], i = 2, . . . , n + p − 1, corresponding to the knot sequence

(4.2)–(4.3) (see Definition 4.1), whose associated Greville abscissae are

ξi,[p] :=
ti+1 + ti+2 + . . . + ti+p

p
, i = 2, . . . , n + p − 1. (5.13)

For any p = (p
1
, . . . , pd) and n = (n

1
, . . . , nd) ∈ Nd

, with pi, ni ≥ 2 for all i = 1, . . . , d, let

Ni,[p] := Ni1,[p1] ⊗ Ni2,[p2] ⊗ · · · ⊗ Nid ,[pd] : Ω̂→ R, 2 ≤ i ≤ n + p− 1, (5.14)

ξi,[p] := (ξi1,[p1], ξi2,[p2], . . . , ξid ,[pd]), 2 ≤ i ≤ n + p− 1. (5.15)

In the framework of the B-spline IgA Collocation Method, the functions ϕ̂i, i = 1, . . . ,N, in (5.8) are chosen

as the tensor-product B-splines in (5.14) and the collocation points τ̂i, i = 1, . . . ,N, in (5.11) are chosen as

the Greville abscissae in (5.15). In this case, N =
∏d

k=1(nk + pk − 2) = N(n + p− 2). Of course, we adopt for

the tensor-product B-splines (5.14) and for the associated Greville abscissae (5.15) the standard lexicographic

ordering, which is obtained by varying the multi-index i from 2 to n + p− 1 according to the rule in (1.1).

By definition, for every i = 1, . . . ,N, the i-th tensor-product B-spline in (5.14) and the i-th Greville abscissa

in (5.15) according to the ordering (1.1) are, respectively, ϕ̂i and τ̂i. This should be taken into consideration

when assembling the collocation matrix (5.7).

5.2 Construction of the B-spline IgA collocation matrices A[p]
n

In the case where G is the identity map (and so Ω = Ω̂ = [0, 1]d
), the collocation matrix (5.7) resulting from

(5.10), (5.12) and from the choices of ϕ̂i and τ̂i as in (5.14)–(5.15) is

A[p]
n = A[p]

n,D + A[p]
n,A + A[p]

n,R, (5.16)

where

A[p]
n,D :=

[
−1(K(τi) ◦ Pϕ j(τi))1T

]N

i, j=1
=

[
−1(K(ξi+1,[p]) ◦ PN j+1,[p](ξi+1,[p]))1

T
]n+p−2

i, j=1

=

d∑
r=1

n2

r D[p]
n (κrr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ K[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
) (5.17)

−

d∑
r,s=1
r<s

nrnsD
[p]
n (κrs + κsr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ H[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[ps−1]

ns−1
⊗ H[ps]

ns
⊗ M[ps+1]

ns+1
⊗ · · · ⊗ M[pd]

nd
),

A[p]
n,A :=

[
β(τi) · ∇ϕ j(τi)

]N

i, j=1
=

[
β(ξi+1,[p]) · ∇N j+1,[p](ξi+1,[p])

]n+p−2

i, j=1

=

d∑
r=1

nrD
[p]
n (βr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ H[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
), (5.18)

A[p]
n,R :=

[
γ(τi)ϕ j(τi)

]N

i, j=1
=

[
γ(ξi+1,[p])N j+1,[p](ξi+1,[p])

]n+p−2

i, j=1
= D[p]

n (γ)(M[p1]
n1

⊗ · · · ⊗ M[pd]
nd

), (5.19)
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D[p]
n (a) denotes the d-level diagonal sampling matrix containing the samples of the function a at the Greville

abscissae, i.e.

D[p]
n (a) := diag

i=1,...,n+p−2
a(ξi+1,[p]) = diag

(
a(ξ2,[p]), . . . , a(ξn+p−1,[p])

)
, (5.20)

and the matrices K[p]
n , H[p]

n , M[p]
n are defined for all p, n ≥ 2 by

n2K[p]
n :=

[
−N′′j+1,[p](ξi+1,[p])

]n+p−2

i, j=1
, nH[p]

n :=
[
N′j+1,[p](ξi+1,[p])

]n+p−2

i, j=1
, M[p]

n :=
[
N j+1,[p](ξi+1,[p])

]n+p−2

i, j=1
. (5.21)

This result can be proved once again by using the fundamental property (1.12) of tensor products, and the

proof follows the same pattern as the proof of Theorem 3.1. Let us derive, for instance, the expression of

A[p]
n,D in (5.17): for all i, j = 1, . . . , n + p− 2, we have

(A[p]
n,D)i j = −1(K(ξi+1,[p]) ◦ PN j+1,[p](ξi+1,[p]))1

T = −

d∑
r,s=1

κrs(ξi+1,[p])
∂2N j+1,[p]

∂x̂r∂x̂s
(ξi+1,[p])

= −

d∑
r=1

κrr(ξi+1,[p])
∂2N j+1,[p]

∂x̂2r
(ξi+1,[p]) −

d∑
r,s=1
r<s

(κrs(ξi+1,[p]) + κsr(ξi+1,[p]))
∂2N j+1,[p]

∂x̂r∂x̂s
(ξi+1,[p])

= −

d∑
r=1

κrr(ξi+1,[p])(N j1+1,[p1] ⊗ · · · ⊗ N jr−1+1,[pr−1] ⊗ N′′jr+1,[pr] ⊗ N jr+1+1,[pr+1] ⊗ · · · ⊗ N jd+1,[pd])(ξi+1,[p])

−

d∑
r,s=1
r<s

(κrs(ξi+1,[p]) + κsr(ξi+1,[p]))(N j1+1,[p1] ⊗ · · · ⊗ N jr−1+1,[pr−1] ⊗ N′jr+1,[pr] ⊗ N jr+1+1,[pr+1] ⊗ · · · ⊗ N js−1+1,[ps−1]

⊗ N′js+1,[ps] ⊗ N js+1+1,[ps+1] ⊗ · · · ⊗ N jd+1,[pd])(ξi+1,[p])

=

d∑
r=1

κrr(ξi+1,[p])(−N′′jr+1,[pr](ξir+1,[pr]))
d∏

t=1
t, j

N jt+1,[pt](ξit+1,[pt])

−

d∑
r,s=1
r<s

(κrs(ξi+1,[p]) + κsr(ξi+1,[p]))N
′
jr+1,[pr](ξir+1,[pr])N′js+1,[ps](ξis+1,[ps])

d∏
t=1

t,r,s

N jt+1,[pt](ξit+1,[pt])

=

d∑
r=1

[D[p]
n (κrr)]ii(n2

r K[pr]
nr

)ir jr

d∏
t=1
t, j

(M[pt]
nt

)it jt −

d∑
r,s=1
r<s

[D[p]
n (κrs + κsr)]ii(nrH[pr]

nr
)ir jr (nsH[ps]

ns
)is js

d∏
t=1

t,r,s

(M[pt]
nt

)it jt

=

d∑
r=1

[D[p]
n (κrr)]ii(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ n2

r K[pr]
nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
)i j

−

d∑
r,s=1
r<s

[D[p]
n (κrs + κsr)]ii(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ nrH[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[ps−1]

ns−1
⊗ nsH[ps]

ns
⊗ M[ps+1]

ns+1
⊗ · · · ⊗ M[pd]

nd
)i j

=

d∑
r=1

[D[p]
n (κrr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ n2

r K[pr]
nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
)]i j

−

d∑
r,s=1
r<s

[D[p]
n (κrs + κsr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ nrH[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[ps−1]

ns−1
⊗ nsH[ps]

ns
⊗ M[ps+1]

ns+1
⊗ · · · ⊗ M[pd]

nd
)]i j,

and (5.17) follows. In the case d = 1, from (5.16)–(5.19) we have

A[p]
n = n2D[p]

n (κ)K[p]
n + nD[p]

n (β)H[p]
n + D[p]

n (γ)M[p]
n , (5.22)
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with D[p]
n (a) = diag j=1,...,n+p−2(a(ξ j+1,[p])), and for d = 2 we have

A[p1,p2]
n1,n2

= n2

1
D[p1,p2]

n1,n2

(κ
11

)M[p1]
n1

⊗ K[p2]
n2

+ n2

2
D[p1,p2]

n1,n2

(κ
22

)K[p1]
n1

⊗ M[p2]
n2

− n
1
n
2
D[p1,p2]

n1,n2

(κ
12

+ κ
21

)H[p1]
n1

⊗ H[p2]
n2

+ n
1
D[p1,p2]

n1,n2

(β
1
)M[p1]

n1

⊗ H[p2]
n2

+ n
2
D[p1,p2]

n1,n2

(β
2
)H[p1]

n1

⊗ M[p2]
n2

+ D[p1,p2]
n1,n2

(γ)M[p1]
n1

⊗ M[p2]
n2

, (5.23)

with D[p1,p2]
n1,n2

(a) = diagi1=1,...,n1+p1−2

(
diagi2=2,...,n2+p2−2

(a(ξi1+1,i2+1,[p1,p2]))
)
.

In the general case where Ω and G are nontrivial, let us consider, for any u : Ω→ R, the corresponding

function

û : Ω̂→ R, û(x̂) := u(x), x = G(x̂).

In other words, û := u(G). Then, u satisfies (5.2) if and only if û satisfies the corresponding transformed

problem {
−1(KG ◦ Pû)1T + βG · ∇û + γGû = fG in Ω̂,

û = 0 on ∂Ω̂,
(5.24)

where Pû is the Hessian of û, γG := γ(G), fG := f (G), and KG := [κG,i j]d
i, j=1, βG := [βG,i]d

i=1 are the transformed

coefficients of the PDE. The expression of βG in terms of K, β, G is complicated and hence not reported

here, while for KG we have

KG = (JG)−1K(G)(JG)−T , (5.25)

where JG is the Jacobian matrix of G,

JG :=
[
∂Gi

∂x̂ j

]d

i, j=1

.

In this case, the collocation matrix (5.7), with ϕi, τi as in (5.10), (5.12) and ϕ̂i, τ̂i as in (5.14)–(5.15), is

A[p]
G,n = A[p]

G,n,D + A[p]
G,n,A + A[p]

G,n,R,

where A[p]
G,n,D, A[p]

G,n,A, A[p]
G,n,R are given again by (5.17)–(5.19), in which κrs, βr, γ are replaced by κG,rs, βG,r, γG,

respectively.

For example, let us consider problem (5.2) in the one-dimensional case d = 1 with Ω = (a, b):{
−κ(x)u′′(x) + β(x)u′(x) + γ(x)u(x) = f (x) a < x < b,
u(a) = u(b) = 0.

Given any geometry function G : [0, 1]→ [a, b], the transformed problem reads as −
κ(G(x̂))
(G′(x̂))2

û′′(x̂) +

(
κ(G(x̂))G′′(x̂)

(G′(x̂))3
+
β(G(x̂))
G′(x̂)

)
û′(x̂) + γ(G(x̂))û(x̂) = f (G(x̂)) 0 < x̂ < 1,

û(0) = û(1) = 0,

and the resulting collocation matrix A[p]
G,n is given by (5.22) in which κ, β, γ are replaced by

κG :=
κ(G)
(G′)2

, βG :=
κ(G)G′′

(G′)3
+
β(G)
G′

, γG := γ(G), (5.26)

respectively. Note that κG is given precisely by (5.25), because JG = G′.
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5.2.1 Construction of K[p]
n , H[p]

n , M[p]
n

We now provide, for p, n ≥ 2, the constructions of the matrices K[p]
n , H[p]

n , M[p]
n in (5.21). Note that the

elements of these matrices can be computed by using the recurrence relation (4.4) and by iterating the

derivative formula (4.74). As mentioned in Chapter 4 (see Subsection 4.3.1), the ‘central’ basis functions

N j,[p](x), j = p + 1, . . . , n, are ‘uniformly shifted and scaled versions’ of the cardinal B-spline φ[p] introduced

in Section 4.2. Indeed, by (4.42) we have

N j,[p](x) = φ[p](nx − j + p + 1), j = p + 1, . . . , n, (5.27)

and, consequently,

N′j,[p](x) = n φ̇[p](nx − j + p + 1), j = p + 1, . . . , n,

N′′j,[p](x) = n2 φ̈[p](nx − j + p + 1), j = p + 1, . . . , n.

In addition, the ‘interior’ Greville abscissae, given by (5.13) for i = p + 1, . . . , n, simplify to

ξi,[p] =
i
n
−

p + 1

2n
, i = p + 1, . . . , n, (5.28)

or, equivalently,

nξi,[p] + p + 1 = i +
p + 1

2

, i = p + 1, . . . , n.

We now focus on the ‘central part’ of K[p]
n , H[p]

n , M[p]
n , which is determined only by the central basis

functions in (5.27) and by the interior Greville abscissae (5.28). In other words, we focus on the submatrices

[(K[p]
n )i j]

n−1
i, j=p, [(H[p]

n )i j]
n−1
i, j=p, [(M[p]

n )i j]
n−1
i, j=p,

which are nonempty for n ≥ p + 1. The entries of these submatrices are given explicitly by

(K[p]
n )i j = −φ̈[p]

(
p + 1

2

+ i − j
)

= −φ̈[p]

(
p + 1

2

− i + j
)
,

(H[p]
n )i j = φ̇[p]

(
p + 1

2

+ i − j
)

= −φ̇[p]

(
p + 1

2

− i + j
)
,

(M[p]
n )i j = φ[p]

(
p + 1

2

+ i − j
)

= φ[p]

(
p + 1

2

− i + j
)
,

for i, j = p, . . . , n − 1, where in the last equalities we have invoked Lemma 4.1. It follows that the above

central submatrices of K[p]
n and M[p]

n are symmetric, whereas the above central submatrix of H[p]
n is skew-

symmetric. We note that the coefficients depend only on the difference i− j, and so all the above submatrices

are Toeplitz matrices. In fact, recalling (1.29) and the properties supp(φ[p]) = [0, p + 1] and φ̇[p]

(
p+1

2

)
= 0, we

have

[(K[p]
n )i j]

n−1
i, j=p = Tn−p( fp), (5.29)

[(H[p]
n )i j]

n−1
i, j=p = iTn−p(gp), (5.30)

[(M[p]
n )i j]

n−1
i, j=p = Tn−p(hp), (5.31)
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where the functions hp, gp, fp : [−π, π]→ R are defined by

hp(θ) :=
∑
k∈Z

φ[p]

(
p + 1

2

− k
)
e
ikθ = φ[p]

(
p + 1

2

)
+ 2

bp/2c∑
k=1

φ[p]

(
p + 1

2

− k
)

cos(kθ), p ≥ 0, (5.32)

gp(θ) :=
∑
k∈Z

−φ̇[p]

(
p + 1

2

− k
)
e
ikθ = −2

bp/2c∑
k=1

φ̇[p]

(
p + 1

2

− k
)

sin(kθ), p ≥ 2, (5.33)

fp(θ) :=
∑
k∈Z

−φ̈[p]

(
p + 1

2

− k
)
e
ikθ = −φ̈[p]

(
p + 1

2

)
− 2

bp/2c∑
k=1

φ̈[p]

(
p + 1

2

− k
)

cos(kθ), p ≥ 2, (5.34)

with the usual assumption that an empty sum is zero.
1
Using (4.13)–(4.14) and (4.21), it can be easily checked

that

h
0
(θ) = h

1
(θ) = 1, g

2
(θ) = g

3
(θ) = − sin θ, f

2
(θ) = f

3
(θ) = 2 − 2 cos θ. (5.35)

Remark 5.1. The functions (5.32) and (5.34) have already been analyzed in Chapter 4 for odd degrees

p = 2q + 1, q ≥ 1. Indeed, fq (resp. hq) in Chapter 4 coincides with f
2q+1 (resp. h

2q+1) here.

We conclude this subsection by giving a formal definition of what we call ‘central rows’ of K[p]
n , H[p]

n , M[p]
n .

They are defined as the rows of K[p]
n , H[p]

n , M[p]
n corresponding to indices i ∈ {1, . . . , n + p − 2} satisfying the

following conditions:

(K[p]
n )i j = −φ̈[p]

(
p + 1

2

+ i − j
)
, j = 1, . . . , n + p − 2, (5.36)

(H[p]
n )i j = φ̇[p]

(
p + 1

2

+ i − j
)
, j = 1, . . . , n + p − 2, (5.37)

(M[p]
n )i j = φ[p]

(
p + 1

2

+ i − j
)
, j = 1, . . . , n + p − 2. (5.38)

The central rows of K[p]
n , H[p]

n , M[p]
n coincide with the corresponding rows of Tn+p−2( fp), iTn+p−2(gp), Tn+p−2(hp),

respectively. Using the properties supp(N
2,[p]) ⊆ · · · ⊆ supp(Np,[p]) = [tp, t2p+1] = [0, p

n ] and [1 − p
n , 1] =

[tn+1, tn+p+2] = supp(Nn+1,[p]) ⊇ · · · ⊇ supp(Nn+p−1,[p]), the fact that ξi+1,[p] = i+1
n −

p+1

2n for i = p, . . . , n − 1, and

the equality supp(φ[p]) = [0, p + 1], it can be shown that every i ∈ {b3p/2c, . . . , n + p − 1 − b3p/2c} satisfies
(5.36)–(5.38). Consequently, a condition to ensure that K[p]

n , H[p]
n , M[p]

n have at least one central row is

n + p − 1 − b3p/2c ≥ b3p/2c, i.e., n ≥ p∗, where

p∗ :=
{

2p if p is odd,

2p + 1 if p is even.

5.3 Properties of fp(θ), gp(θ), hp(θ)

In this section we provide some properties of the functions fp(θ), gp(θ), hp(θ) defined in (5.32)–(5.34). They

extend to any degree p the results obtained in Chapter 4 for odd degree p = 2q + 1 (cf. Remark 5.1). We

shall see later that these functions are involved in the expression of the spectral symbol characterizing the

asymptotic spectral distribution of the B-spline IgA collocation matrices. The next lemma gives an alternative

expression for hp, gp and fp.

1
An empty sum is a sum where the upper index is less than the lower one, such as

∑
0

k=1 k2.
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Lemma 5.1. Let p ≥ 2, and let hp, gp and fp be the functions defined in (5.32)–(5.34). Then the following
properties hold.

a) ∀θ ∈ [−π, π],

hp(θ) =
∑
k∈Z

(
φ̂∗[0](θ + 2kπ)

)p+1
=

∑
k∈Z

(2 sin(θ/2 + kπ))p+1

(θ + 2kπ)p+1
. (5.39)

b) ∀θ ∈ [−π, π],

gp(θ) = −
∑
k∈Z

(2 sin(θ/2 + kπ))p+1

(θ + 2kπ)p . (5.40)

c) ∀θ ∈ [−π, π],
fp(θ) = (2 − 2 cos θ)hp−2(θ) (5.41)

and, for p ≥ 4,

fp(θ) =
∑
k∈Z

(2 sin(θ/2 + kπ))p+1

(θ + 2kπ)p−1 . (5.42)

Proof. We first recall the Parseval identity for Fourier transforms, i.e.,∫
R

ϕ(t)ψ(t) dt =
1

2π

∫
R

ϕ̂(θ)ψ̂(θ) dθ, ϕ, ψ ∈ L2(R), (5.43)

and the translation property of the Fourier transform, i.e.,

̂ψ(·+ x)(θ) = ψ̂(θ) eixθ, ψ ∈ L1(R), x ∈ R. (5.44)

We differentiate the cases of odd and even degree p. We start with proving the relation (5.39) for p = 2q.
From Lemma 4.2, see in particular (4.24), we know that, for all k ∈ Z,

φ[p]

(
p + 1

2

− k
)

= φ[2q]

(
q +

1

2

− k
)

=

∫
R

φ[q](t)φ[q−1]

(
t + k −

1

2

)
dt. (5.45)

In view of (5.43)–(5.44) and (4.32), for any k ∈ Z the expression in (5.45) is equal to∫
R

φ[q](t)φ[q−1]

(
t + k −

1

2

)
dt =

1

2π

∫
R

φ̂[q](θ) φ̂[q−1](θ) e−i(k−1/2)θ dθ =
1

2π

∫
R

∣∣∣φ̂[q−1](θ)
∣∣∣2 φ̂[0](θ) e−i(k−1/2)θ dθ

=
1

2π

∑
l∈Z

∫ π

−π

∣∣∣φ̂[q−1](θ + 2lπ)
∣∣∣2 φ̂[0](θ + 2lπ) (−1)l

e
−i(k−1/2)θ dθ

=
1

2π

∫ π

−π

∑
l∈Z

∣∣∣φ̂[q−1](θ + 2lπ)
∣∣∣2 φ̂[0](θ + 2lπ) (−1)l

e
iθ/2

 e−ikθ dθ.

Note that the last equality follows from the uniform convergence of the series. Indeed, since q ≥ 1, from

(4.33) we obtain that, for all θ ∈ [−π, π],

∣∣∣∣∣∣∣φ̂[q−1](θ + 2lπ)
∣∣∣2 φ̂[0](θ + 2lπ)(−1)l

e
iθ/2

e
−ikθ

∣∣∣∣ =

(
2 − 2 cos θ
(θ + 2lπ)2

)q+1/2

≤


1 if l = 0

4
q+1/2

(2|l|π − π)2q+1
if l , 0

We conclude that the values (5.45), i.e. the Fourier coefficients of h
2q in (5.32), are also the Fourier coefficients

of the function ∑
l∈Z

∣∣∣φ̂[q−1](θ + 2lπ)
∣∣∣2 φ̂[0](θ + 2lπ) (−1)l

e
iθ/2, (5.46)
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which therefore coincides with h
2q. Moreover, by using (4.32), (4.34) we get

φ̂[0](θ + 2lπ)(−1)l
e
iθ/2 =

1 − e
−i (θ+2lπ)

i (θ + 2lπ)
e
i(θ+2lπ)/2 =

sin(θ/2 + lπ)
θ/2 + lπ

= φ̂∗[0](θ + 2lπ),

and it follows that h
2q is given by (5.39) for q ≥ 1.

To prove the expression (5.40) of gp for p = 2q, we follow an argument similar to the one in the proof

of (5.39). By Lemma 4.2, for all k ∈ Z we have

−φ̇[p]

(
p + 1

2

− k
)
1

i

= −φ̇[2q]

(
q +

1

2

− k
)
1

i

=
1

i

∫
R

φ[q](t)φ̇[q−1]

(
t + k −

1

2

)
dt. (5.47)

In view of (5.43)–(5.44) and (4.32), (4.35), for any k ∈ Z the expression in (5.47) is equal to

1

i

∫
R

φ[q](t)φ̇[q−1]

(
t + k −

1

2

)
dt =

1

2iπ

∫
R

φ̂[q](θ) ̂̇φ[q−1](θ) e−i(k−1/2)θ dθ = −
1

2π

∫
R

∣∣∣φ̂[q−1](θ)
∣∣∣2 2 sin(θ/2)e−ikθ dθ

= −
1

2π

∫ π

−π

∑
l∈Z

∣∣∣φ̂[q−1](θ + 2lπ)
∣∣∣2 2 sin(θ/2 + lπ)

 e−ikθ dθ

=
1

2π

∫ π

−π

−∑
l∈Z

2(sin(θ/2 + lπ))p+1

(θ/2 + lπ)p

 e−ikθ dθ.

We conclude that the values (5.47), i.e. the Fourier coefficients of g
2q in (5.33), are also the Fourier coefficients

of the function

−
∑
l∈Z

2(sin(θ/2 + lπ))p+1

(θ/2 + lπ)p = −
∑
l∈Z

(2 sin(θ/2 + lπ))p+1

(θ + 2lπ)p .

To prove the expression (5.41) of fp for p = 2q, we follow again a similar argument as the one to prove

(5.39). By Lemma 4.2, for all k ∈ Z we have

−φ̈[p]

(
p + 1

2

− k
)

= −φ̈[2q]

(
q +

1

2

− k
)

=

∫
R

φ̇[q](t)φ̇[q−1]

(
t + k −

1

2

)
dt. (5.48)

In view of (5.43)–(5.44) and (4.32), (4.35), for q ≥ 2 and for any k ∈ Z, the expression in (5.48) is equal to∫
R

φ̇[q](t)φ̇[q−1]

(
t + k −

1

2

)
dt =

1

2π

∫
R

̂̇φ[q](θ) ̂̇φ[q−1](θ) e−i(k−1/2)θ dθ

=
1

2π

∫
R

∣∣∣φ̂[q−2](θ)
∣∣∣2 φ̂[0](θ) (2 − 2 cos θ)e−i(k−1/2)θ dθ

=
1

2π

∫ π

−π

∑
l∈Z

∣∣∣φ̂[q−2](θ + 2lπ)
∣∣∣2 φ̂[0](θ + 2lπ) (−1)l(2 − 2 cos θ)eiθ/2

 e−ikθ dθ.

We conclude that the values (5.48), i.e. the Fourier coefficients of f
2q in (5.34), are also the Fourier coefficients

of the function ∑
l∈Z

∣∣∣φ̂[q−2](θ + 2lπ)
∣∣∣2 φ̂[0](θ + 2lπ) (−1)l(2 − 2 cos θ)eiθ/2.

Hence, recalling that (5.46) is an alternative expression for h
2q(θ), we obtain that f

2q(θ) = (2−2 cos θ)h
2(q−1)(θ)

for q ≥ 2. From (5.35) we see that the equality (5.41) holds for q = 1 as well. Moreover, (5.42) immediately

follows from (5.39) and (5.41).
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For odd degree p = 2q + 1, keeping in mind Remark 5.1, we recall from Lemma 4.4 that

h
2q+1(θ) =

∑
k∈Z

∣∣∣φ̂[q](θ + 2kπ)
∣∣∣2 , q ≥ 1.

In view of (4.33), (4.34), we immediately obtain the relation (5.39). The equality (5.41) follows from

Lemma 4.5 for q ≥ 2 and from (5.35) for q = 1. Moreover, (5.42) is obtained by combining (5.39) and

(5.41). The expression of g
2q+1 can be derived by applying the same arguments as in the case of even

degree. �

To establish lower and upper bounds for hp, gp and fp we need the following technical lemma.

Lemma 5.2. Let p ≥ 2, and let us consider the functions

rp(θ) :=
∑
k,0

(−1)k(p+1)

(θ + 2kπ)p+1
, r̃p(θ) := −

∑
k,0

(−1)k(p+1)

(θ + 2kπ)p , θ ∈ [−π, π]. (5.49)

Then, rp and r̃p are continuous functions over [−π, π], and

0 < rp(θ) ≤ rp(π) ≤
(
π4

48

− 1

)
1

πp+1
, θ ∈ (0, π]; (5.50)

0 < r̃p(θ) ≤ r̃p(π) =
1

πp , θ ∈ (0, π]. (5.51)

Proof. The functions rp and r̃p are continuous over [−π, π] because the two series in (5.49) converge uni-

formly. We now derive an upper and lower bound for rp(θ), θ ∈ [0, π]. From (5.49) we obtain

rp(θ) =

∞∑
k=1

[
(−1)k(p+1)

(2kπ + θ)p+1
+

(−1)k(p+1)

(−2kπ + θ)p+1

]
. (5.52)

We differentiate the cases of odd and even degree. We first focus on the odd case p = 2q + 1. From (5.52),

r
2q+1(θ) =

∞∑
k=1

[
1

(2kπ + θ)2q+2
+

1

(2kπ − θ)2q+2

]
.

It is clear that r
2q+1(θ) > 0 for θ ∈ [0, π]. For ρ > 1, k ≥ 1 and θ ∈ [0, π], one can check that

1

(2kπ + θ)ρ
+

1

(2kπ − θ)ρ
≤

1

(2kπ + π)ρ
+

1

(2kπ − π)ρ
,

and then we obtain, for q ≥ 1,

r
2q+1(θ) ≤

∞∑
k=1

[
1

(2kπ + π)2q+2
+

1

(2kπ − π)2q+2

]
≤

1

π2q+2

∞∑
k=1

[
1

(2k + 1)4
+

1

(2k − 1)4

]
=

1

π2q+2

(
π4

48

− 1

)
.

We follow a similar argument for the even case p = 2q. In this case, from (5.52) we have

r
2q(θ) =

∞∑
k=1

(−1)k

[
1

(2kπ + θ)2q+1
−

1

(2kπ − θ)2q+1

]
=

∞∑
l=1

[
1

(4lπ + θ)2q+1
−

1

(4lπ − θ)2q+1

−
1

((4l − 2)π + θ)2q+1
+

1

((4l − 2)π − θ)2q+1

]
.
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Let us define

sρ(θ) :=
1

(b + θ)ρ
−

1

(b − θ)ρ
+

1

(a − θ)ρ
−

1

(a + θ)ρ
.

If ρ > 1 and 0 ≤ θ ≤ π < a < b, then we have

s′ρ(θ) = −
ρ

(b + θ)ρ+1
−

ρ

(b − θ)ρ+1
+

ρ

(a − θ)ρ+1
+

ρ

(a + θ)ρ+1
> 0,

and thus sρ is a strictly increasing function, which implies that sρ(π) ≥ sρ(θ) > sρ(0) = 0 for θ ∈ (0, π]. As a

consequence, we have r
2q(π) ≥ r

2q(θ) > 0 for θ ∈ (0, π]. Moreover, for q ≥ 1 and θ ∈ [0, π],

r
2q(θ) ≤

∞∑
l=1

1

((4l − 2)π − θ)2q+1
≤

∞∑
l=1

1

((4l − 2)π − π)2q+1
≤

1

π2q+1

∞∑
l=1

1

(4l − 3)3
,

where
∞∑
l=1

1

(4l − 3)3
< 1.02 <

π4

48

− 1.

Hence, both in the odd and even case we obtain the bounds in (5.50).

We now derive an upper and lower bound for r̃p(θ), θ ∈ [0, π]. From (5.49) we have

r̃p(θ) = −

∞∑
k=1

[
(−1)k(p+1)

(2kπ + θ)p +
(−1)k(p+1)

(−2kπ + θ)p

]
.

We differentiate the cases of odd and even degree. We first focus on the odd case p = 2q + 1. Note that

r̃
2q+1(θ) =

∞∑
k=1

[
1

(2kπ − θ)2q+1
−

1

(2kπ + θ)2q+1

]
.

The function

1

(a − θ)ρ
−

1

(a + θ)ρ
, 0 ≤ θ ≤ π < a, ρ > 1,

is nonnegative and increasing. Then, for all θ ∈ (0, π] we have

0 < r̃
2q+1(θ) ≤ r̃

2q+1(π) =
1

π2q+1

∞∑
k=1

[
1

(2k − 1)2q+1
−

1

(2k + 1)2q+1

]
=

1

π2q+1
,

which immediately gives (5.51).

Let us now consider the case p = 2q. We have

r̃
2q(θ) =

∞∑
k=1

[
1

((4k − 2)π + θ)2q −
1

(4kπ + θ)2q +
1

((4k − 2)π − θ)2q −
1

(4kπ − θ)2q

]
.

The function

s̃ρ(θ) :=
1

(a + θ)ρ
−

1

(b + θ)ρ
+

1

(a − θ)ρ
−

1

(b − θ)ρ
, 0 ≤ θ ≤ π < a < b, ρ > 1,

is positive, and s̃′ρ(θ) = ρsρ+1(θ) > s̃′ρ(0) = 0 for θ ∈ (0, π]. Therefore, s̃ρ is increasing in [0, π]. As a

consequence, for θ ∈ (0, π],

0 < r̃
2q(θ) ≤ r̃

2q(π) =
1

π2q

∞∑
k=1

[
1

(4k − 1)2q −
1

(4k + 1)2q +
1

(4k − 3)2q −
1

(4k − 1)2q

]
=

1

π2q

∞∑
k=1

[
1

(4k − 3)2q −
1

(4k + 1)2q

]
=

1

π2q .

Thus we obtain (5.51) for the even case as well. �
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We now provide lower and upper bounds for hp.

Lemma 5.3. Let p ≥ 2, and let hp be the function defined in (5.32). Then the following properties hold.

a) ∀θ ∈ [−π, π],
Lp(θ) ≤ hp(θ) ≤ min(1,Up(θ)), (5.53)

where

Lp(θ) :=
(
2 − 2 cos θ

θ2

) p+1
2

, (5.54)

Up(θ) :=
(
2 − 2 cos θ

θ2

) p+1
2

+

(
π4

48

− 1

) (
2 − 2 cos θ

π2

) p+1
2

. (5.55)

b) max
θ∈[−π,π]

hp(θ) = hp(0) = 1.

c) Let mhp := min
θ∈[−π,π]

hp(θ), then

mhp ≥

(
2

π

)p+1

> 0. (5.56)

d) We have

hp(π) ≤
hp(π)
hp(π

2
)
≤ 2

1−p
2 . (5.57)

In particular, the value hp(π) converges to 0 exponentially as p→ ∞.

Proof. First of all, we remark that hp, Lp and Up are symmetric around θ = 0. Hence, it is sufficient to

prove the various statements of the lemma for θ ∈ [0, π]. We also recall that

sin(θ/2)
θ/2

=

(
2 − 2 cos θ

θ2

)
1/2

, θ ∈ [−π, π].

Let us consider the first statement of the lemma. From (5.39) we obtain

hp(θ) = (sin(θ/2))p+1
∑
k∈Z

(−1)k(p+1)

(θ/2 + kπ)p+1
=

(
sin(θ/2)
θ/2

)p+1

+ (2 sin(θ/2))p+1 rp(θ),

where rp is defined in (5.49). Hence, from (5.50) we get

Lp(θ) ≤ hp(θ) ≤ Up(θ).

We now focus on the second statement of the lemma. By using the positivity (4.16), the local support

property (4.17) and the partition of unity property (4.19) of cardinal B-splines, from (5.32) we obtain

hp(θ) =
∑
k∈Z

φ[p]

(
p + 1

2

− k
)
e
ikθ ≤

∑
k∈Z

φ[p]

(
p + 1

2

− k
)
|eikθ| = 1.

In addition, it can be easily checked that hp(0) = 1. This also completes the proof of the upper bound in

(5.53).
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To address the lower bound (5.56), we observe that (2 − 2 cos θ)/θ2 is monotonically decreasing in [0, π].
As a consequence,

Lp(θ) ≥
(
2

π

)p+1

> 0, θ ∈ [−π, π]. (5.58)

Finally, we focus on (5.57). Since hp(θ) ≤ 1, it is sufficient to prove the second inequality in (5.57). From

(5.39) we have

hp

(
π

2

)
=

2

3(p+1)
2

πp+1

∑
k∈Z

(−1)k(p+1)

(4k + 1)p+1
, hp (π) =

2
p+1

πp+1

∑
k∈Z

(−1)k(p+1)

(2k + 1)p+1
.

We differentiate the case of even and odd degree. We start with the even case p = 2q. Then,

h
2q

(
π

2

)
=

2

3(2q+1)
2

π2q+1

∑
k∈Z

(−1)k

(4k + 1)2q+1
, h

2q (π) =
2
2q+1

π2q+1

∑
k∈Z

(−1)k

(2k + 1)2q+1
.

By splitting the latter sum into a sum over the even integers and a sum over the odd integers, we get∑
k∈Z

(−1)k

(2k + 1)2q+1
=

∑
l∈Z

1

(4l + 1)2q+1
−

∑
l∈Z

1

(4l + 3)2q+1
=

∑
l∈Z

1

(4l + 1)2q+1
+

∑
m∈Z

1

(4m + 1)2q+1
=

∑
l∈Z

2

(4l + 1)2q+1

= 2(a
2q + b

2q),

where

a
2q :=

∑
l∈Z

1

(8l + 1)2q+1
, b

2q :=
∑
l∈Z

1

(8l + 5)2q+1
.

Hence,

h
2q

(
π

2

)
=

2

3(2q+1)
2

π2q+1
(a

2q − b
2q), h

2q (π) =
2
2q+1

π2q+1
2(a

2q + b
2q).

It is easy to see that b
2q < 0. In addition, from (5.56) we know that hp(θ) > 0, so that a

2q + b
2q > 0,

a
2q − b

2q > 0. Therefore, we obtain

h
2q(π)

h
2q
(π
2

) =
2
2q+2(a

2q + b
2q)

2

3(2q+1)
2 (a

2q − b
2q)
≤ 2

1−2q
2 = 2

1−p
2 .

For odd degree p = 2q + 1, by using a completely similar manipulation (or by applying Lemma 4.4 with a

look at Remark 5.1) we obtain the exact equality

h
2q+1(π)

h
2q+1

(π
2

) = 2

1−p
2 ,

and it follows that (5.57) holds even in this case. �

The next lemma is devoted to lower and upper bounds for gp.

Lemma 5.4. Let p ≥ 2, and let gp be the function defined in (5.33). Then the following properties hold.

a) ∀θ ∈ [−π, π],

|2 sin(θ/2)|p+1

(
1

|θ|p
−

1

πp

)
≤ |gp(θ)| ≤ |2 sin(θ/2)|p+1 1

|θ|p
. (5.59)

b) The zeros of gp are given by
gp(−π) = gp(0) = gp(π) = 0. (5.60)
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Proof. We first remark that from (5.33) it follows that gp is antisymmetric around θ = 0. Hence, it is

sufficient to study it on the interval [0, π]. From (5.40) and (5.49) we have

gp(θ) = −
∑
k∈Z

(2 sin(θ/2 + kπ))p+1

(θ + 2kπ)p = −(2 sin(θ/2))p+1

[
1

θp − r̃p(θ)
]
. (5.61)

Then, (5.51) immediately gives (5.59) and (5.60). �

In the following lemma we provide lower and upper bounds for fp.

Lemma 5.5. Let p ≥ 2, and let fp be the function defined in (5.34). Then the following properties hold.

a) ∀θ ∈ [−π, π],
fp(θ) = 2 − 2 cos θ, p = 2, 3, (5.62)

and
(2 − 2 cos θ)Lp−2(θ) ≤ fp(θ) ≤ (2 − 2 cos θ) min(1,Up−2(θ)), p ≥ 4, (5.63)

where Lp and Up are defined in (5.54) and (5.55) respectively.

b) min
θ∈[−π,π]

fp(θ) = fp(0) = 0, and θ = 0 is the unique zero of fp in [−π, π]; the order of this zero is two.

c) let M fp := max
θ∈[−π,π]

fp(θ), then

M fp ≤ min
4, 17

p + 1

+

(
π4

12

− 4

) (
2

π

)p−1 . (5.64)

In particular, M fp → 0 as p→ ∞.

d) We have
fp(π)
M fp

≤
fp(π)
fp(π

2
)
≤ 2

5−p
2 . (5.65)

In particular, the ratio fp(π)/M fp converges to 0 exponentially as p→ ∞.

Proof. The first statement of the lemma immediately follows from (5.35), (5.41) and (5.53).

The relations (5.62)–(5.63) and the lower bound (5.58) imply that fp(θ) ≥ 0 in [−π, π] and that it has a

unique zero at θ = 0 in [−π, π]. Moreover, from (5.41) we obtain

f ′p(θ) = 2(sin θ)hp−2(θ) + (2 − 2 cos θ)h′p−2(θ),

f ′′p (θ) = 2(cos θ)hp−2(θ) + 4(sin θ)h′p−2(θ) + (2 − 2 cos θ)h′′p−2(θ).

By using the equality hp(0) = 1 (see (5.35) and Lemma 5.3), we get f ′p(0) = 0 and f ′′p (0) = 2. This proves that

fp has a zero of order two at θ = 0 and completes the proof of the second statement of the lemma.

From (5.62)–(5.63) it is also easy to see that M fp ≤ 4. Now we derive the upper bound (5.64) for M fp in

the third statement of the lemma. To this end, we use the inequalities

2 − 2 cos θ ≤ θ2 −
θ4

18

≤ θ2, ∀θ ∈ [−π, π].

It follows

(2 − 2 cos θ)
(
2 − 2 cos θ

θ2

) p−1
2

≤ θ2
(
1 −

θ2

18

) p−1
2

, ∀θ ∈ [−π, π].
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Figure 5.1: graph of fp/M fp for p = 3, . . . , 8.

p 2 3 4 5 6 7 8 9 10 11 12 13 14

fp(π)/M fp 1.000 1.000 1.000 0.889 0.673 0.494 0.353 0.249 0.174 0.121 0.083 0.057 0.039

Table 5.1: values of the ratio fp(π)/M fp for p = 2, . . . , 14.

Let ρ be a positive real number. If
18

ρ+1
≤ π2, then the maximum of θ2

(
1 − θ2

18

)ρ
over [−π, π] is located at

θ2 = 18

ρ+1
and its value is given by

18

ρ + 1

(
1 −

1

ρ + 1

)ρ
.

Therefore, when p ≥ 3, we have

(2 − 2 cos θ)
(
2 − 2 cos θ

θ2

) p−1
2

≤
36

p + 1

(
1 −

2

p + 1

) p−1
2

, ∀θ ∈ [−π, π]. (5.66)

Moreover, ∀θ ∈ [−π, π],

(2 − 2 cos θ)
(
π4

48

− 1

) (
2 − 2 cos θ

π2

) p−1
2

≤ 4

(
π4

48

− 1

) (
2

π

)p−1

. (5.67)

From (5.55) and (5.63), the inequalities (5.66)–(5.67) imply that, for p ≥ 4,

M fp ≤
36

p + 1

(
1 −

2

p + 1

) p−1
2

+

(
π4

12

− 4

) (
2

π

)p−1

≤
17

p + 1

+

(
π4

12

− 4

) (
2

π

)p−1

. (5.68)

In addition, (5.68) holds for p = 2 and p = 3 too, because we see from (5.62) that M f2 = M f3 = 4.

To conclude the proof, we notice that the inequalities in (5.57) are satisfied also for p = 0, 1 (see (5.35)).

The inequalities in (5.65) follow from (5.57) taking into account that fp(θ) = (2 − 2 cos θ)hp−2(θ). �

Figure 5.1 shows the graph of fp normalized by its maximum M fp for p = 3, . . . , 8. We see from the figure

and from Table 5.1 that the ratio fp(π)/M fp decreases exponentially to zero as p → ∞, in accordance with

the last statement in Lemma 5.5. From a numerical viewpoint, we can say that, for large p, the function

fp/M fp possesses two zeros over [0, π]: one in θ = 0 and the other in θ = π.
In the last lemma, we provide an important relation between the functions hp, gp and fp.
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Lemma 5.6. For all θ ∈ [−π, π]\{0}, we have

fp(θ)hp(θ) − [gp(θ)]2 > 0. (5.69)

Proof. From (5.41), (5.53), (5.54) and (5.59) we have

fp(θ)hp(θ) − [gp(θ)]2 ≥
(2 sin(θ/2))2p+2

(θp)2
− [gp(θ)]2 ≥ 0.

Moreover, since gp(θ) is antisymmetric (see (5.33)) and r̃p(θ) is strictly positive if θ ∈ (0, π] (see (5.51)), from

(5.61) we obtain the complete statement of the lemma. �

5.4 Spectral distribution and spectral symbol of the normalized sequences { 1n2
A[p]

n }n

and { 1n2
A[p]
G,n}n

In this section, we assume that n = νn = (ν
1
n, . . . , νdn), where ν ∈ Qd

+ is fixed and n varies in the set of

natural numbers such that n = νn ∈ Nd
. In Theorem 5.1 we prove that the sequence of matrices { 1n2

A[p]
n }n is

distributed, in the sense of the eigenvalues, like the real function f (ν)
p : [0, 1]d × [−π, π]d → R,

f (ν)
p (x, θ) :=

d∑
r=1

ν2r (κrr ⊗ hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )(x, θ)

+

d∑
r,s=1
r<s

νrνs((κrs + κsr) ⊗ hp1
⊗ · · · ⊗ hpr−1 ⊗ gpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ gps ⊗ hps+1 ⊗ · · · ⊗ hpd )(x, θ), (5.70)

where x = (x
1
, . . . , xd) ∈ [0, 1]d

and θ = (θ
1
, . . . , θd) ∈ [−π, π]d

. Therefore, f (ν)
p is the symbol of the sequence

{ 1n2
A[p]

n }n (compare the expression of the symbol (5.70) with the expression of A[p]
n and A[p]

n,D in (5.16)–(5.17)).

We note that { 1n2
A[p]

n }n is really a sequence of matrices, due to the assumption n = νn. This assumption must

be kept in mind while reading this section.

Recalling that A[p]
G,n coincides with A[p]

n given in (5.16)–(5.19), with the only difference that κrs, βr, γ

are replaced by κG,rs, βG,r, γG (see Section 5.2), from Theorem 5.1 it follows that { 1n2
AG,n[p]}n ∼λ f (ν)

G,p, where

f (ν)
G,p : [0, 1]d × [−π, π]d → R is given by

f (ν)
G,p(x, θ) :=

d∑
r=1

ν2r (κG,rr ⊗ hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )(x, θ)

+

d∑
r,s=1
r<s

νrνs((κG,rs + κG,sr) ⊗ hp1
⊗ · · · ⊗ hpr−1 ⊗ gpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ gps ⊗ hps+1 ⊗ · · · ⊗ hpd )(x, θ). (5.71)

In order to prove Theorem 5.1, some preliminary work is needed. Let us decompose the matrix K[p]
n into

K[p]
n = Tn+p−2( fp) + R[p]

n , (5.72)

where Tn+p−2( fp), the (n + p − 2)-th Toeplitz matrix associated with fp, is nothing else than the symmetric

(2bp/2c + 1)-band matrix whose generic central row is given by (5.36), while R[p]
n := K[p]

n − Tn+p−2( fp) is a

low-rank correction term. Indeed, we know from Subsection 5.2.1 that R[p]
n has at most 2b3p/2c − 2 nonzero

rows, hence

rank(R[p]
n ) ≤ 2b3p/2c − 2 ≤ 3p. (5.73)

120



Similarly, we decompose the matrices H[p]
n , M[p]

n into

H[p]
n = iTn+p−2(gp) + Q[p]

n , (5.74)

M[p]
n = Tn+p−2(hp) + S [p]

n , (5.75)

where iTn+p−2(gp) = Tn+p−2(igp) and Tn+p−2(hp) are just the (2bp/2c + 1)-band matrices whose generic central

rows are given by (5.37) and (5.38), respectively, while Q[p]
n := H[p]

n − iTn+p−2(gp) and S [p]
n := M[p]

n − Tn+p−2(hp)
are low-rank correction terms analogous to R[p]

n :

rank(Q[p]
n ) ≤ 2b3p/2c − 2 ≤ 3p. (5.76)

rank(S [p]
n ) ≤ 2b3p/2c − 2 ≤ 3p. (5.77)

The next lemma provides upper bounds for the 2-norm of the matrices K[p]
n , H[p]

n , M[p]
n .

Lemma 5.7. For every p ≥ 2 and every n ≥ 2, we have

‖M[p]
n ‖ ≤

√
3p
2

, ‖H[p]
n ‖ ≤ p

√
3p, ‖K[p]

n ‖ ≤ 2p(p − 1)
√
3p.

Proof. By (1.3), the 2-norm of any square matrix X can be bounded as

‖X‖ ≤
√
‖X‖∞‖XT ‖∞.

Hence, we now look for bounds of the infinity norm of the matrices K[p]
n , H[p]

n , M[p]
n and their transposes.

We first bound the infinity norm of K[p]
n , H[p]

n , M[p]
n . From (5.21), the positivity property and the partition

of unity property of B-splines, we obtain

‖M[p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

N j+1,[p](ξi+1,[p]) ≤ 1.

Similarly, from (5.21), (4.74), the partition of unity property of B-splines, and by taking into account that

the sequence of knots (4.2)–(4.3) implies that ti+p+1 − ti+1 ≥
1

n for all i = 1, . . . , n + p − 1, we have

‖nH[p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣N′j+1,[p](ξi+1,[p])
∣∣∣ ≤ max

i=1,...,n+p−2
p

n+p−2∑
j=1

(
N j+1,[p−1](ξi+1,[p])

t j+p+1 − t j+1
+

N j+2,[p−1](ξi+1,[p])
t j+p+2 − t j+2

)
≤ 2pn.

By using similar arguments and by iterating (4.74), from (5.21) we obtain

‖n2K[p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣N′′j+1,[p](ξi+1,[p])
∣∣∣ ≤ 4p(p − 1)n2.

We now bound the infinity norm of the transposes of K[p]
n , H[p]

n , M[p]
n . The number of Greville abscissae

in the interior of the support of any B-spline is at most
3p
2
. In combination with the positivity property and

the partition of unity property of B-splines, we obtain

‖(M[p]
n )T ‖∞ = max

j=1,...,n+p−2

n+p−2∑
i=1

N j+1,[p](ξi+1,[p]) ≤
3p
2

.
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From (4.74), and by exploiting again the properties of the B-splines, we have

|N′j+1,[p](ξi+1,[p])| ≤ p
(

N j+1,[p−1](ξi+1,[p])
t j+p+1 − t j+1

+
N j+2,[p−1](ξi+1,[p])

t j+p+2 − t j+2

)
≤ pn,

and so

‖(nH[p]
n )T ‖∞ = max

j=1,...,n+p−2

n+p−2∑
i=1

∣∣∣N′j+1,[p](ξi+1,[p])
∣∣∣ ≤ pn

3p
2

.

Similarly, by iterating (4.74), we obtain

‖(n2K[p]
n )T ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣N′′j+1,[p](ξi+1,[p])
∣∣∣ ≤ 2p(p − 1)n2

3p
2

.

The proof is completed by combining the above bounds with (1.3). �

The following lemma plays an important role in the proof of Theorem 5.1. It shows that the Greville

abscissae (5.13) are somehow ‘equivalent’ to the uniform knots in [0, 1].

Lemma 5.8. Let p, n ≥ 2 and let ξi,[p], i = 2, . . . , n + p − 1, be the Greville abscissae (5.13). Then, for every
i = 2, . . . , n + p − 1 and every j such that |i − j| ≤ c, with c a constant independent of n, we have∣∣∣∣∣ξi,[p] −

j
n + p − 2

∣∣∣∣∣ = O
(
1

n

)
.

Proof. If i ∈ {p + 1, . . . , n}, then ξi,[p] = i
n −

p+1

2n by (5.28) and∣∣∣∣∣ξi,[p] −
j

n + p − 2

∣∣∣∣∣ =

∣∣∣∣∣ i
n
−

p + 1

2n
−

j
n + p − 2

∣∣∣∣∣ =

∣∣∣∣∣n(i − j) + (p − 2)i
n(n + p − 2)

−
p + 1

2n

∣∣∣∣∣
≤

c
n + p − 2

+
(p − 2)n

n(n + p − 2)
+

p + 1

2n
= O

(
1

n

)
.

If i ∈ {2, . . . , p}, then∣∣∣∣∣ξi,[p] −
j

n + p − 2

∣∣∣∣∣ ≤ ξi,[p] +
| j|

n + p − 2

≤ ξp+1,[p] +
| j − i|

n + p − 2

+
i

n + p − 2

≤
p + 1

2n
+

c
n + p − 2

+
p

n + p − 2

= O
(
1

n

)
.

If i ∈ {n + 1, . . . , n + p − 1}, then∣∣∣∣∣ξi,[p] −
j

n + p − 2

∣∣∣∣∣ ≤ |ξi,[p] − 1| +

∣∣∣∣∣1 − j − i
n + p − 2

−
i

n + p − 2

∣∣∣∣∣ ≤ |ξn,[p] − 1| +

∣∣∣∣∣1 − i
n + p − 2

∣∣∣∣∣ +
| j − i|

n + p − 2

≤
p + 1

2n
+ max

(∣∣∣∣∣1 − n + 1

n + p − 2

∣∣∣∣∣ , ∣∣∣∣∣1 − n + p − 1

n + p − 2

∣∣∣∣∣) +
c

n + p − 2

= O
(
1

n

)
.

�

We are almost ready for proving Theorem 5.1, but we still need to recall the concept of modulus of

continuity, which is used in the proof. For any function ψ : [0, 1]d → R, the modulus of continuity of ψ is

defined as the function ω(ψ, ·) : (0,∞)→ [0,∞],

ω(ψ, δ) := sup
x,y∈[0,1]d

‖x−y‖∞≤δ

|ψ(x) − ψ(y)|.
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If ψ is continuous over [0, 1]d
, and hence uniformly continuous by the Heine–Cantor theorem, then

lim
δ→0

ω(ψ, δ) = 0.

Theorem 5.1 (spectral distribution without geometry map). Let p ≥ 2, ν ∈ Qd
+ and n = νn. Then,

{ 1n2
A[p]

n }n ∼λ f (ν)
p , with f (ν)

p defined in (5.70). In particular, { 1n2
A[p]

n }n is weakly clustered at the range [0,M f (ν)
p

]

of f (ν)
p , where M f (ν)

p
:= max(x,θ)∈[0,1]d×[−π,π]d f (ν)

p (x, θ), and every point of [0,M f (ν)
p

] strongly attracts Λ( 1

n2
A[p]

n ) with
infinite order (cf. Theorem 1.5).

Proof. Throughout this proof, the letter C will denote a generic constant independent of n. Recalling (5.16),

we have

1

n2

A[p]
n =

1

n2

A[p]
n,D +

1

n2

A[p]
n,A +

1

n2

A[p]
n,R =

1

n2

Ã[p]
n,D +

(
1

n2

A[p]
n,D −

1

n2

Ã[p]
n,D

)
+

1

n2

A[p]
n,A +

1

n2

A[p]
n,R,

where

Ã[p]
n,D =

d∑
r=1

n2

r D̃n+p−2(κrr) ◦ Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )

−

d∑
r,s=1
r<s

nrnsD̃n+p−2(κrs + κsr) ◦ Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ igpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ igps ⊗ hps+1 ⊗ · · · ⊗ hpd ), (5.78)

and D̃m(a) is defined in (1.50)–(1.51). Before proceeding further, we suggest comparing the expression of Ã[p]
n,D

with the expression of A[p]
n,D in (5.17), taking into account the relations (5.72), (5.74), (5.75) and noting that

Lemma 1.8 can be applied here to express the d-level Toeplitz matrices involved in (5.78) as tensor products

of unilevel Toeplitz matrices. We will show that the hypotheses of Theorem 1.6 are satisfied with

Zn :=
1

n2

A[p]
n , Xn :=

1

n2

Ã[p]
n,D, Yn :=

(
1

n2

A[p]
n,D −

1

n2

Ã[p]
n,D

)
+

1

n2

A[p]
n,A +

1

n2

A[p]
n,R.

Xn is Hermitian, due to the properties of the Hadamard product (see Subsection 1.2.2) and to the fact that the

generating functions of the d-level Toeplitz matrices in (5.78) are real-valued. Moreover, ‖Xn‖ is uniformly

bounded with respect to n, due to Lemma 1.6 (item 1), to the fact that κrs, r, s = 1, . . . , d, and the generating

functions of the d-level Toeplitz matrices in (5.78) are continuous, and to the inequality (1.37). Finally, we

have

{Xn} ∼λ f (ν)
p ,

by Corollary 1.1 and by the assumption n = νn. In addition, ‖Zn‖ is uniformly bounded with respect to n,
due to the inequality (1.13), to the fact that κrs, r, s = 1, . . . , d, are continuous, and to Lemma 5.7.

Now we turn to Yn. We will analyze separately the three summands that compose Yn and show that each

of them has a o(nd) trace-norm. By using the expression (5.18) of A[p]
n,A, the inequality (1.13), Lemma 5.7 and

the continuity of βr, r = 1, . . . , d, we have∥∥∥∥∥ 1

n2

A[p]
n,A

∥∥∥∥∥ =
1

n2

∥∥∥∥∥∥∥
d∑

r=1

nrD
[p]
n (βr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ H[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
)

∥∥∥∥∥∥∥ = O
(
1

n

)
⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 1n2

A[p]
n,A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

≤ N(n + p− 2)
∥∥∥∥∥ 1

n2

A[p]
n,A

∥∥∥∥∥ = O(nd−1). (5.79)

By using the expression (5.19) of A[p]
n,R, the inequality (1.13), Lemma 5.7 and the continuity of γ, we have∥∥∥∥∥ 1

n2

A[p]
n,R

∥∥∥∥∥ =
1

n2

∥∥∥D[p]
n (γ)(M[p1]

n1

⊗ · · · ⊗ M[pd]
nd

)
∥∥∥ = O

(
1

n2

)
⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 1n2

A[p]
n,R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

= O(nd−2). (5.80)
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Now we consider the term
1

n2
A[p]

n,D −
1

n2
Ã[p]

n,D. Keeping in mind that n = νn, we decompose this term as follows:

1

n2

A[p]
n,D −

1

n2

Ã[p]
n,D

=

d∑
r=1

ν2r
[
D[p]

n (κrr)(M[p1]
n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ K[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
)

−D̃n+p−2(κrr) ◦ Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )
]

−

d∑
r,s=1
r<s

νrνs

[
D[p]

n (κrs + κsr)(M[p1]
n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ H[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[ps−1]

ns−1
⊗ H[ps]

ns
⊗ M[ps+1]

ns+1
⊗ · · · ⊗ M[pd]

nd
)

−D̃n+p−2(κrs + κsr) ◦ Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ igpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ igps ⊗ hps+1 ⊗ · · · ⊗ hpd )
]

=

d∑
r=1

ν2r
[
D[p]

n (κrr)(M[p1]
n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ K[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
)

−D[p]
n (κrr)Tn+p−2(hp1

⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1
⊗ · · · ⊗ hpd )

]
(5.81)

+

d∑
r=1

ν2r
[
D[p]

n (κrr)Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )

−D̃n+p−2(κrr) ◦ Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )
]

(5.82)

−

d∑
r,s=1
r<s

νrνs

[
D[p]

n (κrs + κsr)(M[p1]
n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ H[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[ps−1]

ns−1
⊗ H[ps]

ns
⊗ M[ps+1]

ns+1
⊗ · · · ⊗ M[pd]

nd
)

−D[p]
n (κrs + κsr)Tn+p−2(hp1

⊗ · · · ⊗ hpr−1 ⊗ igpr ⊗ hpr+1
⊗ · · · ⊗ hps−1 ⊗ igps ⊗ hps+1 ⊗ · · · ⊗ hpd )

]
(5.83)

−

d∑
r,s=1
r<s

νrνs

[
D[p]

n (κrs + κsr)Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ igpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ igps ⊗ hps+1 ⊗ · · · ⊗ hpd )

−D̃n+p−2(κrs + κsr) ◦ Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ igpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ igps ⊗ hps+1 ⊗ · · · ⊗ hpd )
]
. (5.84)

Taking into account that

Tn+p−2(hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )
= Tn1+p1−2(hp1

) ⊗ · · · ⊗ Tnr−1+pr−1−2(hpr−1) ⊗ Tnr+pr−2( fpr ) ⊗ Tnr+1+pr+1−2(hpr+1
) ⊗ · · · ⊗ Tnd+pd−2(hpd ) (5.85)

(see Lemma 1.8), the trace-norm of the r-th term in the first summation (5.81) can be bounded using (1.18).

Recalling the inequalities (5.73), (5.77) and (1.5), we have∣∣∣∣∣∣∣∣∣D[p]
n (κrr)(M[p1]

n1

⊗ · · · ⊗ M[pr−1]
nr−1
⊗ K[pr]

nr
⊗ M[pr+1]

nr+1
⊗ · · · ⊗ M[pd]

nd
− Tn+p−2(hp1

⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1
⊗ · · · ⊗ hpd ))

∣∣∣∣∣∣∣∣∣
1

≤ C N(n + p− 2)
d∑

i=1

3pi

ni + pi − 2

, (5.86)

where C is some constant independent of n that provides an upper bound for the spectral norm of the

matrix in the left-hand side of (5.86). It follows that the trace-norm in (5.86) is o(nd) and, consequently,

the trace-norm of the first summation (5.81) is o(nd). With the same argument, one can show that the

trace-norm of the (r, s)-th term in the third summation (5.83) is o(nd), implying that the trace-norm of the
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third summation itself is o(nd). Concerning the second summation (5.82), for every i, j = 1, . . . , n + p − 2,
the (i, j) entry in the r-th term of (5.82) is given by(

κrr(ξi+1,[p]) − κrr

(
i ∧ j − 1
n + p− 2

)) (
Tn+p−2(hp1

⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1
⊗ · · · ⊗ hpd )

)
i, j

; (5.87)

to see this, recall the definitions of D[p]
n (a) in (5.20), the definition of Dn+p−2(a) in (1.49), and the definition

of D̃n+p−2(a) in (1.51). Using (5.85) together with the fundamental property (1.12), the (i, j) entry (5.87) is

equal to (
κrr(ξi+1,[p]) − κrr

(
i ∧ j − 1
n + p− 2

))
(Tnr+pr−2( fpr ))ir jr

d∏
k=1
k,r

(Tnk+pk−2(hpk))ik jk

and is zero for ‖i− j‖∞ > ‖p/2‖∞, because Tn+p−2(hp), Tn+p−2(gp), Tn+p−2( fp) have a (2bp/2c+1)-band structure.

Therefore, the only nonzero entries (5.87) are obtained for ‖i − j‖∞ ≤ ‖p/2‖∞. For any multi-indices i, j
satisfying this condition, we have 0 ≤ |ik − jk| ≤ ‖p/2‖∞ for all k = 1, . . . , d, and so, by Lemma 5.8,∣∣∣∣∣ξik+1,[pk] −

(i ∧ j)k − 1

nk + pk − 2

∣∣∣∣∣ = O
(
1

nk

)
= O

(
1

n

)
, k = 1, . . . , d.

It follows that, for all i, j = 1, . . . , n + p− 2 such that ‖i − j‖∞ ≤ ‖p/2‖∞, we have∥∥∥∥∥ξi+1,[p] −
i ∧ j − 1
n + p− 2

∥∥∥∥∥
∞

≤
C
n
, (5.88)

and ∣∣∣∣∣∣κrr(ξi+1,[p]) − κrr

(
i ∧ j − 1
n + p− 2

)∣∣∣∣∣∣ ≤ C ω

(
κrr,

1

n

)
(5.89)

(the constant C in (5.89) is not necessarily the same as the constant C in (5.88); recall that in this proof the

letter C denotes a generic constant independent of n). The inequalities (5.89) and (1.37) imply that∣∣∣∣∣∣
(
κrr(ξi+1,[p]) − κrr

(
i ∧ j − 1
n + p− 2

)) (
Tn+p−2(hp1

⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1
⊗ · · · ⊗ hpd )

)
i, j

∣∣∣∣∣∣ ≤ C ω

(
κrr,

1

n

)
.

Recalling that the number of nonzero entries (5.87) for a fixed row or column is independent of n, we have

proved that the (r, s)-th matrix in (5.82) and its transpose have infinity norms bounded from above by

C ω

(
κrr,

1

n

)
. (5.90)

Hence, by (1.3), also the spectral norms of the (r, s)-th matrix in (5.82) and of its transpose are bounded

from above by (5.90), and so their trace-norms are bounded from above by

C ω

(
κrr,

1

n

)
N(n + p− 2) = o(nd), (5.91)

implying that the trace-norm of the whole summation (5.82) is o(nd). With the same argument, one can

show that the trace-norm of the last summation (5.84) is o(nd). Hence,

∣∣∣∣∣∣∣∣∣ 1

n2
A[p]

n,D −
1

n2
Ã[p]

n,D

∣∣∣∣∣∣∣∣∣
1

= o(nd) and, by

recalling (5.79)–(5.80), we conclude that |||Yn|||1 = o(nd). �
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Remark 5.2. Following the steps of the previous proof in the case d = 1, with ν = 1 and p = p (see in

particular (5.79), (5.80) and (5.91)), it turns out that, if

ω

(
κ,

1

n

)
= O

(
1

n

)
, (5.92)

then

|||Yn|||1 = O(1).

Therefore, all the hypotheses of Theorem 1.7 are satisfied and the sequence of normalized univariate collo-

cation matrices { 1n2
A[p]

n }n is strongly clustered at [0,Mκ⊗ fp]; note that A[p]
n is given explicitly by (5.22), while

κ ⊗ fp (with fp as in (5.34)) coincides precisely with f (ν)
p in the case p = p and ν = 1. In particular, if

κ ∈ C1([0, 1]), then (5.92) is satisfied and { 1n2
A[p]

n }n is strongly clustered at [0,Mκ⊗ fp].

Remark 5.3. Suppose that the diffusion coefficient K in (5.2) is just the identity matrix: K = I. In this case,

the symbol of the normalized IgA collocation matrices { 1n2
A[p]

n }n (n = νn) is given by, cf. (5.70),

f (ν)
p : [0, 1]d × [−π, π]d → R, f (ν)

p (x, θ) =

d∑
r=1

ν2r (1 ⊗ hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )(x, θ)

=

d∑
r=1

ν2r (hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )(θ).

Since f (ν)
p is independent of x, it follows from Definition 1.1 that f (ν)

p regarded as a function from [−π, π]d
to

R, i.e.

f (ν)
p : [−π, π]d → R, f (ν)

p (θ) =

d∑
r=1

ν2r (hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd )(θ), (5.93)

is still a symbol for { 1n2
A[p]

n }n. In particular, in the case where ν = 1 and p = 2q + 1 for some q ∈ Nd
,

the symbol (5.93) of the normalized IgA collocation matrices { 1n2
A[2q+1]

n }n is the same as the symbol of the

normalized IgA Galerkin matrices {nd−2A[q]
n }n considered in Chapter 4; see Theorem 4.7, Remark 5.1, and the

expression (4.65) for the symbol of normalized IgA Galerkin matrices.

Recalling the discussion at the beginning of this section, from Theorem 5.1 and Remark 5.2 we obtain

the following result for the sequence of normalized IgA collocation matrices {A[p]
G,n}n, n = νn.

Theorem 5.2 (spectral distribution with a geometry map). Let G : Ω̂ = [0, 1]d → Ω be a geometry map
such that G ∈ C2(Ω̂) and G is invertible in Ω̂ with G(∂Ω̂) = ∂Ω. Let p ≥ 2, ν ∈ Qd

+ and n = νn. Then,
{ 1n2

A[p]
G,n}n ∼λ f (ν)

G,p, with f (ν)
G,p defined in (5.71). In particular, { 1n2

A[p]
G,n}n is weakly clustered at the range [0,M f (ν)

G,p
]

of f (ν)
G,p, where M f (ν)

G,p
:= maxx∈[0,1]d , θ∈[−π,π]d f (ν)

G,p(x, θ), and every point of [0,M f (ν)
G,p

] strongly attracts Λ( 1

n2
A[p]
G,n) with

infinite order. Moreover, in the case d = 1, if the function κG defined in (5.26) satisfies

ω

(
κG,

1

n

)
= O

(
1

n

)
,

then the sequence of univariate collocation matrices { 1n2
A[p]

G,n}n is strongly clustered at the range [0,M fG,p] of
fG,p = κG ⊗ fp.

Remark 5.4. Note that the spectral distribution results obtained in Theorems 5.1 and 5.2 hold without any

assumption on the coefficient matrix K except continuity. However, in order to ensure that (5.2) is an elliptic

problem, this matrix has to be SPD. Moreover, the geometry map G in Theorem 5.2 can be given in any

representation and is not confined to the B-spline form (5.9) as prescribed by the IgA paradigm.
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We conclude with the observation that the structure of the symbol f (ν)
G,p incorporates:

(a) the approximation technique, which is identified by a trigonometric polynomial in the Fourier variables

θ = (θ
1
, . . . , θd) ∈ [−π, π]d

;

(b) the geometry, which is identified by the map G in the variables x̂ = (x̂
1
, . . . , x̂d) defined on the parametric

domain Ω̂ := [0, 1]d
;

(c) the coefficients of the principal terms of the PDE, namely K, in the physical variables x := (x
1
, . . . , xd)

defined on the physical domain Ω.

In reality, the above picture is intrinsic to the approximation of PDE by any local method, such as Finite

Differences and Finite Elements. In fact, formally, the structure of the symbol is substantially the same when

considering different techniques to approximate the same problem; see [6, 63, 64] and references therein.

The only difference is due to the polynomial in the Fourier variables θ, and this is no surprise, since this

part specifically depends on the chosen approximation technique (in this case, the IgA Collocation Method).

5.4.1 Properties of the spectral symbol

The symbols in Theorems 5.1 and 5.2, given by (5.70)–(5.71), can be compactly written in matrix form as

f (ν)
p = [ν

1
· · · νd]

(
K ◦ Pp1,...,pd

)
[ν

1
· · · νd]T = ν(K ◦ Pp1,...,pd )νT , (5.94)

f (ν)
G,p = [ν

1
· · · νd]

(
KG ◦ Pp1,...,pd

)
[ν

1
· · · νd]T = ν(KG ◦ Pp1,...,pd )νT , (5.95)

where K is the coefficient matrix of our problem (5.2), KG is the transformed coefficient matrix given in

(5.25) and

(
Pp1,...,pd

)
rs

:=


hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd , if r = s,
hp1
⊗ · · · ⊗ hpr−1 ⊗ gpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ gps ⊗ hps+1 ⊗ · · · ⊗ hpd , if r < s,
hp1
⊗ · · · ⊗ hps−1 ⊗ gps ⊗ hps+1 ⊗ · · · ⊗ hpr−1 ⊗ gpr ⊗ hpr+1

⊗ · · · ⊗ hpd , if r > s.
(5.96)

In (5.94)–(5.95), it is understood that K = K(x) and KG = KG(x) are functions of x, while Pp1,...,pd = Pp1,...,pd (θ)
is a function of θ. For instance, if we want to specify the variables in (5.94), we must write f (ν)

p (x, θ) =

ν(K(x) ◦ Pp1,...,pd (θ))νT
. Note that the expressions of the symbols (5.94), (5.95) have a completely similar

structure as the expressions of the differential problems (5.2), (5.24). This motivates the reformulation of

(5.1) into the less common form (5.2).

In the case d = 2 we have

f (ν)
p = [ν

1
ν
2
]
(
K ◦ Pp1,p2

)
[ν

1
ν
2
]T , (5.97)

f (ν)
G,p = [ν

1
ν
2
]
(
KG ◦ Pp1,p2

)
[ν

1
ν
2
]T ,

where

Pp1,p2
:=

[
fp1
⊗ hp2

gp1
⊗ gp2

gp1
⊗ gp2

hp1
⊗ fp2

]
. (5.98)

Theorem 5.3. The matrix Pp1,p2
in (5.98) is SPSD over [−π, π]2 and SPD for all (θ

1
, θ

2
) such that θ

1
θ
2
, 0.

Moreover, if K is SPD over [0, 1]2 then K ◦ Pp1,p2
is SPSD over [0, 1]2 × [−π, π]2 and SPD if θ

1
θ
2
, 0.

Proof. It is clear that Pp1,p2
is symmetric. Moreover, Lemmas 5.3 and 5.5 imply that

fp1
⊗ hp2

≥ 0, hp1
⊗ fp2

≥ 0,
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and if θ
1
θ
2
, 0 then

fp1
⊗ hp2

> 0, hp1
⊗ fp2

> 0.

In addition, Lemma 5.6 ensures that

det(Pp1,p2
) = fp1

(θ
1
)hp1

(θ
1
)hp2

(θ
2
) fp2

(θ
2
) − (gp1

(θ
1
))2(gp2

(θ
2
))2 ≥ 0,

and if θ
1
θ
2
, 0 then det(Pp1,p2

) > 0. Thus, Pp1,p2
is SPSD over [−π, π]2 and SPD if θ

1
θ
2
, 0. Finally, by

Lemma 1.6, if K is SPD over [0, 1]2 then K ◦ Pp1,p2
is SPSD over [0, 1]2 × [−π, π]2 and SPD if θ

1
θ
2
, 0. �

From (5.41) and (5.59) we also obtain the following factorization of the matrix Pp1,p2
.

Theorem 5.4. Let Pp1,p2
be defined as in (5.98), then

Pp1,p2
= S P̂p1,p2

S ,

with
S :=

[
2 sin(θ

1
/2) 0

0 2 sin(θ
2
/2)

]
, P̂p1,p2

:=
[
hp1−2(θ1)hp2

(θ
2
) ĝp1

(θ
1
)ĝp2

(θ
2
)

ĝp1
(θ

1
)ĝp2

(θ
2
) hp1

(θ
1
)hp2−2(θ2)

]
,

and ĝp(θ) :=
gp(θ)

2 sin(θ/2)
. Moreover,

|2 sin(θ/2)|p
(

1

|θ|p
−

1

πp

)
≤ |ĝp(θ)| ≤ |2 sin(θ/2)|p

1

|θ|p
.

The next theorem analyzes the zeros of the symbol (5.97).

Theorem 5.5. If K is SPD over [0, 1]2, the symbol f (ν)
p in (5.97) is nonnegative over [0, 1]2× [−π, π]2. Moreover,

for any fixed x ∈ [0, 1]2, f (ν)
p (x, ·) has a unique zero of order two at (θ

1
, θ

2
) = (0, 0) over [−π, π]2.

Proof. By Theorem 5.3, the matrix K ◦ Pp1,p2
is SPSD over [0, 1]2 × [−π, π]2, so that the symbol f (ν)

p in (5.97)

is nonnegative over [0, 1]2 × [−π, π]2 and it can vanish only if [ν
1
ν
2
]T

is an eigenvector associated with a

zero eigenvalue of K ◦ Pp1,p2
. From Theorem 5.3 we know that this can occur only if θ

1
θ
2

= 0.

From Theorem 5.4 and the properties derived in Section 5.3, we may conclude that θ := (θ
1
, θ

2
) = (0, 0)

is a zero of order two for f (ν)
p (x, ·), for any fixed x ∈ [0, 1]2. Indeed, by taking the Taylor expansion around

θ = (0, 0) of the matrix P̂p1,p2
in Theorem 5.4 we have

P̂p1,p2
(θ) =

[
1 1

1 1

]
+ O(‖θ‖),

where O(‖θ‖) is a 2 × 2 matrix whose components are bounded from above (in absolute value) by C‖θ‖ for
some constant C independent of θ: ∣∣∣[O(‖θ‖)]i j

∣∣∣ ≤ C‖θ‖, i, j = 1, 2.

Thus, we obtain

f (ν)
p (x, θ) = [ν

1
ν
2
] S (θ)K(x)S (θ) [ν

1
ν
2
]T + O(‖θ‖3).

Since K(x) is assumed to be SPD, we have mI ≤ K(x) ≤ MI for some constants m,M > 0,

m[ν
1
ν
2
][S (θ)]2[ν

1
ν
2
]T + O(‖θ‖3) ≤ f (ν)

p (x, θ) ≤ M[ν
1
ν
2
][S (θ)]2[ν

1
ν
2
]T + O(‖θ‖3),
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and it follows that the function f (ν)
p (x, ·) has a zero of order two at θ = (0, 0), like the function

[1 1][S (θ)]2[1 1]T = 4 sin2(θ
1
/2) + 4 sin2(θ

2
/2) = (2 − 2 cos θ

1
) + (2 − 2 cos θ

2
).

Moreover, it is easy to check that the matrix K(x) ◦ Pp1,p2
(θ) has a zero eigenvalue of multiplicity one if

θ
1

= 0 or θ
2

= 0 but (θ
1
, θ

2
) , (0, 0). In the first case, the second component of the corresponding eigenvector

is zero. In the second case, the first component of the corresponding eigenvector is zero. Since ν
1
ν
2
, 0,

it follows that, in both cases, [ν
1
ν
2
]T

cannot be an eigenvector associated with the zero eigenvalue of

K(x) ◦ Pp1,p2
(θ). Hence, (θ

1
, θ

2
) = (0, 0) is the unique zero of f (ν)

p (x, ·) over [−π, π]2. �

Remark 5.5. Theorem 5.5 states that the symbol f (ν)
p in (5.97) has a unique (theoretical) zero at (θ

1
, θ

2
) =

(0, 0), for any fixed x ∈ [0, 1]2. However, other numerical zeros occur elsewhere for large p := (p
1
, p

2
).

Indeed, from Lemmas 5.3–5.5 we see that, for large values of p, all entries in the matrix Pp1,p2
vanish

numerically when θ
1

= π or θ
2

= π. Therefore, for large p, the symbol f (ν)
p in (5.97) has numerical zeros at

the points (x, θ) such that θ
1

= π or θ
2

= π.

We conclude by observing that the results in Theorem 5.5 for the symbol f (ν)
p immediately provide

analogous results for the symbol f (ν)
G,p, since the difference between these two symbols is only in the fact that

K is replaced by KG. We also remark that Theorems 5.3 and 5.5 have been proved for the case d = 2, but,

on the basis of our experience with ‘spectral distributions and symbols’, we are pretty sure that they can be

extended to any dimensionality d.

Conjecture 5.1. The matrix Pp1,...,pd in (5.96) is SPSD over [−π, π]d and SPD for all (θ
1
, . . . , θd) such that

θ
1
· · · θd , 0. Moreover, if K is SPD over [0, 1]d, the symbol f (ν)

p in (5.94) is nonnegative over [0, 1]d × [−π, π]d

and, for any fixed x ∈ [0, 1]d, f (ν)
p (x, ·) has a unique zero of order two at θ = 0 over [−π, π]d, like the function∑d

k=1(2 − 2 cos θk).
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Chapter 6

Fast iterative solvers for Galerkin B-spline IgA linear systems

In Chapter 4, we studied the spectral properties of the stiffness matrices A[p]
n coming from the Galerkin

B-spline IgA approximation of the second-order elliptic problem{
−∆u + β · ∇u + γu = f in Ω := (0, 1)d,
u = 0 on ∂Ω,

(6.1)

where f ∈ L2(Ω), β = (β
1
, . . . , βd) ∈ Rd

and γ ≥ 0. In particular, we have computed the corresponding

spectral symbol f (ν)
p (see Theorem 4.7). We will now exploit the properties of the symbol in order to design

fast iterative solvers for linear systems with coefficient matrix A[p]
n . Our ultimate goal is to design iterative

algorithms with the following two properties. First, their computational cost is optimal, that is linear with

respect to the matrix size; this property is essentially equivalent to requiring that their convergence rate

(number of iterations for reaching a preassigned accuracy) is independent of the fineness parameters n.
Second, they are robust, i.e., their convergence rate is substantially independent of the spline degrees p
associated with the IgA approximation order. Using carefully the properties of f (ν)

p , we will succeed in

designing a multi-iterative multigrid method, whose convergence rate will prove to be optimal and robust

at the same time. This multi-iterative solver involves the PCG/PGMRES as a smoother at the finest level,

where the related preconditioner is chosen as the Toeplitz matrix generated by a specific function coming

from a certain factorization of the symbol. The properties of the symbol will be used also to explain the

behavior of classical multigrid methods, whose convergence rate is optimal (independent of the fineness

parameters n) but not robust, because it deteriorates when the spline degrees p increase.

Before starting, let us recall from Chapter 4 that the stiffness matrix A[p]
n coming from the Galerkin

B-spline IgA approximation of the second-order elliptic problem (6.1) is given explicitly by

A[p]
n :=

d∑
k=1

1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nk−1
M[pk−1]

nk−1
⊗ nkK[pk]

nk
⊗

1

nk+1

M[pk+1]
nk+1
⊗ · · · ⊗

1

nd
M[pd]

nd

+

d∑
k=1

βk
1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nk−1
M[pk−1]

nk−1
⊗ H[pk]

nk
⊗

1

nk+1

M[pk+1]
nk+1
⊗ · · · ⊗

1

nd
M[pd]

nd

+ γ
1

n
1

M[p1]
n1

⊗ · · · ⊗
1

nd
M[pd]

nd
, (6.2)

where K[p]
n , H[p]

n , M[p]
n are defined in (4.41). Moreover, the spectral symbol f (ν)

p : [−π, π]d → R of the

normalized matrix-sequence {nd−2A(ν)
n }n, with n = νn and ν ∈ Qd

+, is

f (ν)
p (θ) =

d∑
k=1

ck(ν)
(
hp1
⊗ · · · ⊗ hpk−1 ⊗ fpk ⊗ hpk+1

⊗ · · · ⊗ hpd

)
(θ) =

d∑
k=1

ck(ν) fpk(θk)
d∏

j=1
j,k

hp j(θ j), (6.3)
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where ck(ν) := νk
ν1···νk−1νk+1···νd

; see (4.46)–(4.47) for the definition of fp and hp. We note that f (ν)
p (θ) is symmetric

in each variable θ j, because both fp and hp are even functions. Hence, f (ν)
p restricted to [0, π]d

is also a

symbol for {nd−2A[p]
n }n (this follows directly from Definition 1.1). The symbol f (ν)

p is independent of β and γ,
and possesses the following properties, which are consequences of Lemmas 4.4–4.5.

Lemma 6.1. We have(
4

π2

)∑d
j=1 p j+d−1

min
j=1,...,d

c j(ν)
d∑

k=1

(2 − 2 cos θk) ≤ f (ν)
p (θ) ≤ max

j=1,...,d
c j(ν)

d∑
k=1

(2 − 2 cos θk).

Moreover, setting M f (ν)
p

:= maxθ∈[0,π]d f (ν)
p (θ), for all j = 1, . . . , d we have

f (ν)
p (θ

1
, . . . , θ j−1, π, θ j+1, . . . , θd) ≤

1

2
p j−2

f (ν)
p (θ

1
, . . . , θ j−1,

π
2
, θ j+1, . . . , θd) ≤

1

2
p j−2

M f (ν)
p
.

By Lemma 6.1, the normalized symbol f (ν)
p /M f (ν)

p
has only one actual zero of order two at θ = 0, like

the function

∑d
k=1(2 − 2 cos θk). However, when the spline degrees p j are large, it also has infinitely many

‘numerical zeros’ over [0, π]d
, located at the ‘π-edge points’

{θ ∈ [0, π]d : ∃ j ∈ {1, . . . , d} with θ j = π}. (6.4)

Because of this unpleasant property, the classical multigrid schemes for the matrix nd−2A[p]
n that we shall

see in later sections show a bad (though optimal) convergence rate when one of the p j is large. In practice,

their convergence rate is optimal, because it is independent of the fineness parameters n and so it does not

increase when the matrix size grows, but it is also non-robust, because it rapidly worsens when the spline

degrees p grow. We will see that this lack of robustness in classical multigrid methods:

(a) is due to the fact that they ignore the numerical zeros of the normalized symbol f (ν)
p /M f (ν)

p
located at

the π-edge points (6.4);

(b) can be bypassed by adopting a multi-iterative multigrid strategy that involves the PCG/PGMRES as

a smoother at the finest level, with a properly chosen preconditioner which takes into account the

numerical zeros (6.4).

6.1 How to use the symbol? A basic guide to the user

In order to provide explanations for the non-robustness of classical multigrid methods, as well as to design

the winning multi-iterative multigrid solver mentioned above, this section is of fundamental importance.

What we are going to see in this section is the heuristic information that can be extracted from the symbol

f of a given matrix-sequence {Zn} and that provides a guideline in understanding/predicting the convergence

features of the various iterative solvers applied to Zn. We mainly focus our attention on a perturbed Toeplitz

setting (i.e., on the case where Zn is a ‘small’ perturbation of a Toeplitz matrix), because our IgA matrices

nd−2A[p]
n are indeed ‘small’ perturbations of the Toeplitz matrices Tn+p−2( f (ν)

p ) associated with the symbol f (ν)
p .

To see this, we recall from the proof of Theorem 4.7 that, fixed n = νn, nd−2A[p]
n is equal to its ‘Toeplitz part’

Tn+p−2( f (ν)
p ) plus a correction Yn whose trace-norm |||Yn|||1 is o(N(n+ p− 2)) when n→ ∞, where N(n+ p− 2)

is the dimension of A[p]
n . This allows us to conclude that nd−2A[p]

n coincides with a d-level Toeplitz matrix,

namely Tn+p−2( f (ν)
p ), up to a ‘small’ correction Yn whose trace-norm |||Yn|||1 is negligible with respect to the

matrix size N(n + p− 2). This result was actually the key to prove that {nd−2A[p]
n }n has the same symbol f (ν)

p

of the Toeplitz sequence {Tn+p−2( f (ν)
p )}n.
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6.1.1 Counting the eigenvalues belonging to a given interval

The starting point of our reasoning is Definition 1.1 and, especially, the subsequent Remark 1.2. Let a < b, let
{Zn} be a sequence of Hermitian matrices, with Zn of size dn tending to infinity, and assume that {Zn} ∼λ f ,
where f : D ⊆ Rd → R. Moreover, let En([a, b]) be the number of eigenvalues of Zn belonging to the interval

[a, b]. Then, relation (1.20), or, more precisely, its ‘scalar version’ (1.22), implies that

En([a, b]) = I[a, b]dn + o(dn) (6.5)

with

I[a, b] :=
md({θ ∈ D : f (θ) ∈ [a, b]})

md(D)
,

if

0 = md({θ ∈ D : f (θ) = a}) = md({θ ∈ D : f (θ) = b}). (6.6)

Regarding the hypothesis (6.6), we observe that it is never violated when f is a non-constant trigonometric

polynomial. Moreover, it can be shown that, for a general measurable function f , it can be violated only

for countably many values of a and b.
The expression of the error term o(dn) can be better estimated under specific circumstances. For example,

if d = 1, Zn = Tdn( f ), and f : [−π, π]→ R is a real-valued trigonometric polynomial, the error term o(dn) can

be replaced by a constant which depends linearly on the degree of f (this can be deduced by using Cauchy

interlacing arguments; see [57]). The same holds for the univariate IgA matrices
1

n A[p]
n obtained from (6.2)

for d = 1 and β = γ = 0, because they are constant rank corrections of the Toeplitz matrices Tn+p−2( fp),
where the rank of the correction is proportional to p; see (4.83)–(4.84).

Formula (6.5) is of interest, e.g., when a = 0 and b = ε � 1, for having a good guess of the size of the

eigenspace related to small positive eigenvalues λ ≤ ε � 1. In fact, if Zn is HPD, this eigenspace is the

so-called ill-conditioned subspace, which is responsible for the ill-conditioning of the matrix and for the

slow convergence of general purpose iterative solvers.

6.1.2 Eigenvectors vs. frequencies in a perturbed Toeplitz setting

This subsection is the most interesting from the viewpoint of designing fast iterative solvers for matrices Zn

such that the sequence {Zn} is distributed like a certain symbol f : D ⊆ Rd → R. For the sake of simplicity,

and also for the purposes of this chapter, we can restrict our attention to the case where D = [−π, π]d
and

{Zn} ∈ T . Here and in the following, T is the set of matrix-sequences {Zn} of the form

Zn =

r∑
i=1

qr∏
j=1

Tm(n)(gi j) + Yn, (6.7)

where r, q
1
, . . . , qr ∈ N, {Yn} ∼λ 0 is a zero-distributed sequence (see Definition 1.1), and every {Tm(n)(gi j)}n,

with m(n) = (m
1
(n), . . . ,md(n)), is a sequence of d-level Toeplitz matrices such that m(n) → ∞ as n → ∞.

Note that a matrix-sequence {Zn} ∈ T is the sum of a sequence {
∑r

i=1
∏qr

j=1 Tm(n)(gi j)} belonging to the algebra

generated by Toeplitz sequences and of a zero-distributed sequence {Yn}. In particular, the sequence of IgA

matrices {nd−2A[p]
n }n (n = νn) is of the form (6.7) with r = 1, q

1
= 1, m(n) = n + p− 2, Tm(n)(g11

) = Tn+p−2( f (ν)
p )

and Yn = nd−2A[p]
n − Tn+p−2( f (ν)

p ). Note that, as mentioned at the beginning of this section, the sequence of

corrections {Yn} satisfy |||Yn|||1 = o(N(n + p− 2)), and so in particular it is zero-distributed. Indeed, by Weyl’s

majorant theorem [7, Theorem II.3.6], it holds in general that, if {Yn} is a matrix-sequence, with Yn of size

dn tending to infinity, and if |||Yn|||1 = o(dn), then {Yn} ∼λ 0.

For matrix-sequences {Zn} of the form (6.7), a lot can be said, in terms of (Fourier) frequences, concerning

the approximate structure of the eigenspaces of Zn. Roughly speaking, let d = 1 and let f : [−π, π]→ R be a
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continuous even function, such that it is the symbol of a sequence {Zn} ∈ T , with Zn of size dn. Note that f
restricted to [0, π] is also a symbol for {Zn} (because f is even). Then, the eigenvalues λ j(Zn), j = 1, . . . , dn,

behave like the uniform sampling of f over [0, π] given by

f
(

jπ
dn + 1

)
, j = 1, . . . , dn,

and the related eigenvectors behave like the following set of frequency vectors:

v(dn)
j :=

(
sin

(
jkπ

dn + 1

))dn

k=1

, j = 1, . . . , dn.

The statement above is quite vague, but it can be made more precise without using technicalities (see [10, 72]

for a rigorous analysis). In any case, what the reader should keep in mind is the following: if {Zn} ∈ T ,

with Zn of size dn, and if {Zn} ∼λ f : [−π, π] → R, with f a continuous even function, then we may think

about the matrix Zn as if it were the matrix

τdn( f ) := Sdn

[
diag

j=1,...,dn

f
(

jπ
dn + 1

)]
Sdn , (6.8)

where

Sdn :=

√
2

dn + 1

[
sin

(
jkπ

dn + 1

)]dn

j,k=1

=

√
2

dn + 1

[
v(dn)
1
|v(dn)

2
| · · · |v(dn)

dn

]
(6.9)

is a real symmetric unitary matrix, the so-called sine transform. The matrix in (6.8) is called the (unilevel)

τ-matrix of order dn associated with the function f ; see, e.g., [25, Definition 2.1] and the references reported

in [25]. If Zn is Hermitian and we are interested in the eigenvectors of Zn associated with the eigenvalues

in the interval [a, b], then we know from Subsection 6.1.1 that the subspace generated by these eigenvectors

has dimension I[a, b]dn + o(dn) and it is approximately described by

span

{
v(dn)

j : f
(

jπ
dn + 1

)
∈ [a, b]

}
. (6.10)

From the relation above, and taking into account that the vectors v(dn)
j corresponding to large (small) indices

j are referred to as high (low) frequences, it can be seen that a zero of the symbol f at θ = 0 implies that

the ill-conditioned subspace of Zn is related to low frequencies, while a zero of the symbol at π implies that

the ill-conditioned subspace is related to high frequencies.

If d > 1, proper tensor-like arguments show that the same conclusions hold. To be a little more precise,

assume that:

• {Zn} ∈ T is a sequence of d-level matrices as in (6.7), with Zn of dimension dn = N(m(n)) and partial

dimensions m
1
(n), . . . ,md(n) tending to infinity;

• {Zn} ∼λ f , where f : [−π, π]d → R is continuous and symmetric in each variable, in the sense that

f (±θ
1
,±θ

2
, . . . ,±θd) = f (θ

1
, θ

2
, . . . , θd)

for all (θ
1
, θ

2
, . . . , θd) ∈ [−π, π]d

.

Then, f restricted to [0, π]d
is also a symbol for {Zn} and we may think about the matrix Zn as if it were the

d-level τ-matrix

τm(n)( f ) := Sm(n)

[
diag

j=1,...,m(n)
f
(

jπ
m(n) + 1

)]
Sm(n),
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where

Sm(n) := Sm1(n) ⊗ · · · ⊗ Smd(n)

is the d-level sine transform; refer again to [25] for the definitions. For instance, if d = 2, Zn is Hermitian

and we are interested in the eigenvectors of Zn associated with the eigenvalues in the interval [a, b], then we

know that the subspace generated by these eigenvectors has dimension I[a, b]dn+o(dn) and it is approximately

described by

span

{
v(m1(n))

j1
⊗ v(m2(n))

j2
: f

(
j
1
π

m
1
(n) + 1

,
j
2
π

m
2
(n) + 1

)
∈ [a, b]

}
. (6.11)

6.2 Iterative solvers and the multi-iterative approach

In this section, we review some basic iterative methods that we will use in order to build up a fast iterative

solver for our IgA stiffness matrices A[p]
n in (6.2). In particular, we consider:

1. classical stationary iterative methods (Richardson, Gauss-Seidel, the weighted versions, etc. [71]);

2. the PCG method [4];

3. two-grid, V-cycle, W-cycle methods [51, 69];

4. multi-iterative techniques [56].

We will present them in view of the multi-iterative approach [56], which is a way of combining different

(basic) iterative methods having complementary spectral behavior. We anticipate that the optimal and robust

multi-iterative multigrid solver for the IgA stiffness matrices A[p]
n , that has been mentioned at the beginning

of this chapter and that we are going to design in the following, is just a combination of basic iterative

methods in a unique multigrid algorithm, in the spirit of the multi-iterative idea. We first explain and

discuss the main idea of the multi-iterative approach in Subsections 6.2.1–6.2.3. Then, in Subsections 6.2.4–

6.2.5, we focus on two-grid and multigrid methods, as well as on the PCG method, in our IgA context, and

we shall see how to combine them in a unique optimal and robust multi-iterative multigrid solver for A[p]
n .

6.2.1 Unity makes strength: the multi-iterative approach

Stationary iterative methods for solving a linear system Au = b (with A ∈ Rm×m
) can be written in the general

form

u(k+1) = u(k) + M−1(b − Au(k)), k = 0, 1, . . . , (6.12)

where M is chosen as an approximation of A such that a linear system with matrix M is easily solvable.

In this way, M−1
in (6.12) can be regarded as an approximation of A−1 and the vector M−1(b − Au(k)) can be

easily computed. By defining the iteration matrix S := I −M−1A, we can reformulate the stationary iteration

(6.12) as

u(k+1) = S(u(k)) := Su(k) + (I − S )A−1b. (6.13)

The error e(k+1) := A−1b − u(k+1)
is then given by e(k+1) = S e(k) = S k+1e(0)

, and its norm is quickly reduced if

‖S ‖ is much smaller than one.

Two specific examples of stationary iterations (6.13), of interest later on, are the relaxed Richardson

method and the relaxed Gauss-Seidel method, whose corresponding iteration matrices are, respectively,

S := I − ωA, (6.14)

Ŝ := I −
(
1

ω
D − L

)−1
A. (6.15)
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In both cases, ω ∈ R is the relaxation parameter, while D and L are the matrices coming from the splitting

of A associated with the Gauss-Seidel method: D is the diagonal part of A and −L is the lower triangular

part of A, excluding the diagonal elements.

Let us now consider l different (invertible) approximations of A, say Mi, i = 1, . . . , l, and then l iterative
methods with iteration matrices S i := I − M−1

i A, i = 1, . . . , l. The following multi-iterative scheme can then

be defined [56]:

u(k,1) = S
1
u(k) + b

1
,

u(k,2) = S
2
u(k,1) + b

2
,

...

u(k+1) = S lu(k,l−1) + bl, (6.16)

where bi := M−1
i b. Hence,

u(k+1) = S lS l−1 · · · S 2
S

1
u(k) + c, (6.17)

where

c = bl + S lbl−1 + S lS l−1bl−2 + · · · + S lS l−1 · · · S 2
b
1
.

The errors e(k) := A−1b − u(k)
and e(k,i) := A−1b − u(k,i)

, k ≥ 0, i = 1, . . . , l − 1, are such that

e(k,i) = S i · · · S 2
S

1
e(k),

e(k+1) = S l · · · S 2
S

1
e(k).

If S i is highly contractive in a subspace Hi and if S i−1(Li−1) ⊂ Hi, where Li−1 is another subspace where

S i−1 reduces slowly the norm of the error, then ‖S iS i−1‖ can be much smaller than ‖S i‖ ‖S i−1‖. This implies

that multi-iterative methods can be fast, even when the basic iteration matrices have norms close to one, or

even when the basic iterations are non-convergent.

The multi-iterative idea, briefly outlined above, can be extended to include non-stationary iterations. For

instance, we may replace the last iteration in (6.16) with a single step (or a few steps) by the PCG method.

In this case, the overall iteration (6.17) is not stationary, but the scheme (6.16) is still called a multi-iterative

method. As we shall see later, our optimal and robust multi-iterative multigrid solver for the IgA stiffness

matrices A[p]
n will involve the PCG (or the PGMRES) inside a multi-iterative scheme of multigrid type.

6.2.2 Two-grid and multigrid methods in a multi-iterative perspective

Consider again the linear system Au = b, A ∈ Rm×m
. Suppose we have two stationary iterative methods

(the smoothers) as in (6.13) for the solution of the linear system, and a full-rank matrix (the projector)

P ∈ Rl×m, l ≤ m. Then, the corresponding two-grid method for solving the linear system is given by the

following algorithm.

Algorithm 6.1. Given an approximation u(k)
to the solution u = A−1b, the new approximation u(k+1)

is ob-

tained by applying ν
pre

steps of pre-smoothing as in (6.13) with iteration matrix S
pre
, a coarse-grid correction,

and ν
post

steps of post-smoothing as in (6.13) with iteration matrix S
post

, as follows:

1. apply ν
pre

steps of pre-smoothing: u(k,1) = S
νpre
pre

(u(k)) = S νpre
pre

u(k) + (I − S νpre
pre

)A−1b;

2. compute the residual: r = b − Au(k,1)
;

3. project the residual: r(c) = Pr;

4. compute the correction: e(c) = (PAPT )−1r(c)
;
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5. extend the correction: e = PTe(c)
;

6. correct the initial approximation: u(k,2) = u(k,1) + e;

7. apply ν
post

steps of post-smoothing: u(k+1) = S
νpost
post

(u(k,2)) = S νpost
post

u(k) + (I − S νpost
post

)A−1b.

Steps 2–6 in Algorithm 6.1 define the so-called coarse-grid correction, which is a standard non-convergent

iterative method with iteration matrix

CGC := I − PT (PAPT )−1P A. (6.18)

The iteration matrix of the two-grid scheme is denoted by TG(S νpre
pre
, S νpost

post
, P) and is explicitly given by

TG(S νpre
pre
, S νpost

post
, P) = S νpost

post
·CGC · S νpre

pre
.

When the pre-smoothing is not present, i.e., ν
pre

= 0, the two-grid iteration matrix is denoted by TG(S νpost
post

, P).
We point out that two-grid (and multigrid) methods can be written in the general multi-iterative form

(6.16), in which l = 2 or l = 3. In this case, S
1
is the pre-smoothing operator, S

2
is the coarse-grid operator,

and S
3
is the post-smoothing operator. Interestingly enough, we observe that ‖S

2
‖ ≥ 1 because the spectral

radius of S
2
is equal to 1 (see [51]), while S

1
and S

3
are usually weakly contractive. However, as we will see

later in Subsection 6.3.1, there are examples in which the best contraction factor of the whole multi-iterative

two-grid scheme is achieved by choosing a non-convergent smoother. Therefore, it may happen that a very

fast multi-iterative method is obtained by combining basic iterations that are all slowly convergent or even

non-convergent.

6.2.3 Multi-iterative solvers vs. spectral distributions

The main idea of the multi-iterative approach is to choose the different iteration matrices S i, i = 1, . . . , l, in
the scheme (6.16) such that they have a complementary spectral behavior. Let us assume that S i is highly

contractive in a subspace Hi, and weakly (or not) contractive in the complementary subspace Li. Then, the

recipe for designing fast multi-iterative solvers is to choose the iteration matrices S i such that

l⊕
i=1

Hi = Cm.

This recipe is aesthetically beautiful and appealing, but totally unpractical if we are unable to identify l
pairs of subspaces (Hi,Li), i = 1, . . . , l, with the properties described above and such that Hi ⊕ Li = Cm

.

However, our IgA stiffness matrices nd−2A[p]
n can be considered as ‘small’ perturbations of Toeplitz matrices

(see the discussion at the beginning of Section 6.1), and so Subsections 6.1.1–6.1.2 can provide an heuristic

guide in identifying such subspaces in terms of frequencies and estimating their dimensions.

Let us now illustrate this concept in the case where the d-dimensional Laplacian problem −∆u = f over

[0, 1]d
is approximated by standard centered Finite Differences (FD). The resulting discretization matrices

have a pure d-level Toeplitz structure with corresponding generating function (symmetric in each variable)

given by

f (θ) = f
FD

(θ) :=
d∑

j=1

(2 − 2 cos θ j), θ ∈ [−π, π]d. (6.19)

More precisely, if the discretization step in each direction xi, i = 1, . . . , d, is 1/n, the resulting discretization

matrix is Tm( f ), where m = (n − 1, . . . , n − 1).
Now consider the following multigrid method in the framework of multi-iterative solvers. It is composed

of three iterations (l = 3): a pre-smoothing given by the Richardson method (6.13)–(6.14) with parameter ω
pre
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(iteration matrix S
1
), a coarse-grid correction with iteration matrix S

2
defined in (6.18), and a post-smoothing

given by the Richardson method with parameter ω
post

(iteration matrix S
3
). The coarse-grid iteration S

2
,

which uses as projector P the traditional full-weighting restriction (6.20)–(6.21), is designed in such a way

that the related iteration is not convergent globally, but strongly reduces the error in low frequencies. Now,

S
1

= I −ω
pre

Tm( f ) = Tm(1−ω
pre

f ) and S
3

= I −ω
post

Tm( f ) = Tm(1−ω
post

f ). If we choose ω
pre

= ‖ f ‖−1∞ = (4d)−1,
the symbol of the iteration matrix S

1
is equal to 1− f /‖ f ‖∞, which is maximal at θ = (0, . . . , 0) and attains its

minimum at θ = (π, . . . , π). As a consequence, the pre-smoothing iteration is highly convergent (contractive)

in the high frequencies and slowly convergent in the low frequencies. In fact, if we consider the two-grid

(and also the related V-cycle multigrid) with the latter coarse-grid correction operator and the latter pre-

smoother, then we already obtain an optimal method (see [62, 65]), even though the two basic iterations

S
1
and S

2
are very slow or non-convergent. However, at this point, we have understood the machinery,

and hence, if we desire to accelerate further the global multi-iterative method, then we can consider a

post-smoothing iteration which may be slowly convergent both in the very low and very high frequencies

but very fast in a space of ‘intermediate’ frequencies. The choice is obtained by setting ω
post

= 2‖ f ‖−1∞
so that S

3
= Tm(1 − 2 f /‖ f ‖∞). It is interesting to remark that the symbol |1 − 2 f (θ)/‖ f ‖∞| evaluated at

θ = (0, . . . , 0) and θ = (π, . . . , π) is equal to 1. Therefore, the method is slowly convergent both in high and

low frequencies, since the moduli of the eigenvalues of S
3
are close to 1. However, the symbol is very small

in absolute value in regions of [0, π]d
associated with intermediate frequencies, corresponding to values of

θ near θ = (π
2
, . . . , π

2
). Hence, S

3
is highly convergent in the subspace generated by these frequencies. The

resulting multi-iterative method is indeed extremely fast, as shown in [65]. We will use these guiding ideas

in our choice of the solvers for the IgA matrices.

6.2.4 Choice of the projector in our two-grid and multigrid methods

We now look for an appropriate projector P in the coarse-grid correction (6.18) in order to address our specific

IgA linear systems. Since our IgA stiffness matrices nd−2A[p]
n can be considered as ‘small’ perturbations of

d-level Toeplitz matrices Tn+p−2( f (ν)
p ) (see the discussion at the beginning of Section 6.1), we follow the

approach in [62] and focus on a particular projector P = Pn+p−2 which is appropriate for Tn+p−2( f (ν)
p ). More

specifically, for any odd m ≥ 3, denote by Um the cutting matrix of size
m−1
2
× m given by

Um :=


0 1 0

0 1 0

. . .
...

0 1 0

 ∈ R
m−1
2
×m.

Then, for any m ∈ Nd
with odd m

1
, . . . ,md ≥ 3, we define Um := Um1

⊗ · · · ⊗ Umd and we set

Pm := Um · Tm(qd), qd(θ
1
, . . . , θd) :=

d∏
j=1

(1 + cos θ j). (6.20)

It can be shown that Pm admits a ‘recursive expression’

Pm =

d⊗
j=1

Pm j , Pm j =

d⊗
j=1

Um j · Tm j(q) =

d⊗
j=1

1

2


1 2 1

1 2 1

. . .

1 2 1

︸                                   ︷︷                                   ︸
m j

, q(θ) = 1 + cos θ. (6.21)
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From (6.21), we see that Pm is the traditional full-weighting restriction, which has full rank

∏d
j=1

m j−1

2
, being

the Kronecker product of full-rank matrices. The projector Pm leads to a coarse-grid correction (6.18) which

is highly contractive in the subspace of low frequencies.

Let us now consider d = 1 and our specific linear systems, with coefficient matrix
1

n A[p]
n . The symbol

associated to the sequence of univariate IgA stiffness matrices

1

n
A[p]

n = K[p]
n +

β

n
H[p]

n +
γ

n2

M[p]
n , n = 1, 2, . . . (6.22)

is fp(θ), as defined in (4.46) (see Remark 4.5). Since θ = 0 is the only zero of the symbol, we expect (see e.g.

[62, 1, 23]) that the classical full-weighting projector Pm combined with any classical smoother (Richardson,

Gauss-Seidel, Conjugate Gradient, GMRES) leads to two-grid, V-cycle, and W-cycle algorithms with an

optimal convergence rate, independent of the matrix size and of the fineness parameter n. However, for

large p, a numerical zero occurs at θ = π for the normalized symbol fp(θ)/M fp ; see the discussion after

Lemma 4.5. The projector Pm, as well as the aforementioned classical smoothers, are not designed for coping

with this numerical zero, which represents a source of ill-conditioning in high frequencies of our matrices

1

n A[p]
n . Therefore, we can predict that the traditional projector Pm combined with any classical smoother

will lead to two-grid (and multigrid) algorithms with convergence rate that, despite being independent of n,
worsens with p. These forecasts are numerically confirmed in Section 6.3 and theoretically motivated in

[25, Section 4], where it is shown that the p-worsening of the convergence rate is actually expected to be

exponential in p, due to the fact that fp(π)/M fp → 0 exponentially (see Lemma 4.5).

If d ≥ 2 and we consider our specific linear systems, with coefficient matrix nd−2A[p]
n (n = νn), the situation

is even worse than in the case d = 1, because of the specific analytic features of the symbol f (ν)
p (θ) associated

with the sequence {nd−2A[p]
n }n; see Lemma 6.1 and the discussion following it. Since θ = 0 is the only

zero of the symbol, we know (see e.g. [1, 23]) that the projector Pm combined with any classical smoother

(Richardson, Gauss-Seidel, Conjugate Gradient) will lead to two-grid, V-cycle and W-cycle algorithms with

an optimal convergence rate, independent of the fineness parameters n. However, for large p, infinitely

(sic!) many numerical zeros of f (ν)
p /M f (ν)

p
occur at the π-edge points (6.4). Thus, as in the one-dimensional

setting, the traditional projector Pm (with any classical smoother) leads to multigrid algorithms having a

convergence rate that deteriorates with p. This means that, when combining the standard full-weighting

projector Pm with any classical smoother such as Richardson, Gauss-Seidel, Conjugate Gradient, GMRES

and so on, the resulting two-grid and multigrid algorithms will have a convergence rate that, despite being

optimal (n-independent), is not robust in p.
In order to overcome this problem of classical two-grid and multigrid schemes, the suggestion coming

from the multi-iterative idea is in this case the following: keep the full-weighting projector Pm for dealing

with the actual zero of the symbol f (ν)
p located at the origin θ = 0, and replace all classical smoothers with

a PCG or a PGMRES method, whose preconditioner takes care of the numerical zeros of the normalized

symbol f (ν)
p /M f (ν)

p
located at the π-edge points (6.4). Of course, this is only a vague idea, that should be made

more clear. We will do it in the next subsection.

6.2.5 PCG with p-independent convergence rate

Let us start with recalling the PCG method for solving the linear system Au = b with A a real SPD matrix.

Since we consider the preconditioned version of the CG method, we assume to have an SPD matrix M such

that M is an approximation of A and such that a linear system with matrix M is easily solvable.

Algorithm 6.2. Let u(k)
be a given approximation of the solution u = A−1b, with A a real SPD matrix, and

let M be a SPD approximation of A. Then, the new approximation u(k+1)
is obtained as follows:

1. compute the approximation: u(k+1) = u(k) + α(k)p(k)
, using the optimal step length α(k) =

r(k) Tz(k)

p(k) T Ap(k) ;
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2. compute the residual: r(k+1) = b − Au(k+1) = r(k) − α(k)Ap(k)
;

3. compute the preconditioned residual: z(k+1) = M−1r(k+1)
;

4. compute the A-conjugate search direction: p(k+1) = z(k+1) + β(k)p(k)
, with β(k) =

z(k+1) Tr(k+1)

z(k) Tr(k) .

If the vectors r(k)
, z(k)

, p(k)
are not yet computed by the algorithm in a previous step, then we initialize them

as r(k) = b − Au(k)
, z(k) = M−1r(k)

, p(k) = z(k)
.

Now let us assume that β = 0 in our model problem (6.1). Under this assumption, we know that A[p]
n is

SPD (see (6.2) and recall that K[p]
n , M[p]

n are SPD), and so the PCG method can be applied.

Remark 6.1. If β , 0, the matrix A[p]
n is not symmetric and we cannot apply to it the PCG method. In

such a case, we simply suggest to replace the PCG with the PGMRES (using for the PGMRES the same

preconditioner that we are going to design for the PCG).

In this subsection, we focus on the construction of a preconditioner such that the PCG applied to

our matrix nd−2A[p]
n will be p-independent. The idea of a p-independent PCG method has its theoretical

foundation in the spectral results concerning Toeplitz systems with Toeplitz preconditioners [22, 58], and in

the study of the specific symbol f (ν)
p of our matrix-sequence {nd−2A[p]

n }n, n = νn.
Let h be a nonnegative, a.e. nonzero and Lebesgue integrable function over [−π, π]d

. Then Tm(h) is a

HPD d-level Toeplitz matrix; see Theorem 1.8. Let f be a real-valued and Lebesgue integrable function over

[−π, π]d
, so that Tm( f ) is a Hermitian matrix. By following [22, 58], we know that all the eigenvalues of

T−1m (h)Tm( f ) belong to the set [r,R], with r = ess inf f /h, R = ess sup f /h, and{
T−1m (h)Tm( f )

}
∼λ f /h.

For d = 1, the symbol of { 1n A[p]
n } is fp(θ) = (2 − 2 cos θ)hp−1(θ). Since

1

n A[p]
n is a ‘small’ perturbation of

Tn+p−2( fp), it can be shown that {
T−1n+p−2(hp−1)

1

n
A[p]

n

}
∼λ fp/hp−1 = 2 − 2 cos θ,

which is the symbol of the standard FD approximation given in (6.19) for d = 1, and is indeed p-independent.
Hence, if we apply to

1

n A[p]
n the PCG with Tn+p−2(hp−1) as preconditioner, we expect to have a p-independent

method. Unfortunately, it is not optimal, because it is slowly convergent when the fineness parameter n is

large (see Table 6.5 for a numerical example); this is due to the fact that 2 − 2 cos θ has a zero at θ = 0.

However, in view of the multi-iterative approach, we can build a totally robust method as follows: we

consider a basic coarse-grid operator with projector Pn+p−2 as in (6.20)–(6.21) working in the low frequencies

(like in the case of a standard FD approximation), and we include the PCG method, with preconditioner

Tn+p−2(hp−1), in the smoothing strategy. Thus, the coarse-grid operator will be responsible for the optimality

of the method (a convergence speed independent of the fineness parameter n) and the PCG-smoother will

bring the p-independence, taking care of the numerical zero of fp/M fp at π for large p. In conclusion, the

global multi-iterative method will be optimal in n and robust in p at the same time, while the standard

coarse-grid correction alone is not convergent and the PCG method alone is p-independent, but slowly

convergent when n is large (see Section 6.3 for numerical illustrations).

The good news is that the above idea can be generalized to any dimensionality d. Indeed, for d ≥ 2,

thanks to Lemmas 4.4–4.5, the symbol f (ν)
p in (6.3) can be factored as follows:

f (ν)
p (θ) =

d∏
j=1

hp j−1(θ j)
[ d∑

k=1

ck(ν)(2 − 2 cos(θk))
d∏

j=1
j,k

wp j(θ j)
]
, (6.23)
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Figure 6.1: graph of wp = hp/hp−1 for p = 1, . . . , 5.

where wp(θ) := hp(θ)/hp−1(θ) is a function well-separated from zero, uniformly with respect to θ ∈ [0, π]
and with respect to p ≥ 1. In short, wp is p-independent, in the sense that it is bounded from above

and below by two positive constants independent of p. Actually, wp seems to converge uniformly to some

function with range in [0.4, 1]; see Figure 6.1. This means that the function between square brackets in (6.23)

does not have numerical zeros and only has an actual zero at θ = 0. This zero does not create problems

to our two-grid schemes, because the standard coarse-grid correction (6.18) with classical full-weighting

projector (6.20)–(6.21) takes care of it. Therefore, the function

∏d
j=1 hp j−1(θ j) is responsible for the existence

of numerical zeros at the π-edge points (6.4) when the p j’s are large. Thus, the same function causes the

poor behavior of our two-grid and multigrid schemes, with any classical smoother, when the p j’s are large.

We then consider for our matrices nd−2A[p]
n the following preconditioner:

Tn+p−2

 d∏
j=1

hp j−1(θ j)

 = Tn+p−2(hp1−1 ⊗ · · · ⊗ hpd−1) = Tn1+p1−2(hp1−1) ⊗ · · · ⊗ Tnd+pd−2(hpd−1). (6.24)

Note that the matrix (6.24) is a ‘small’ perturbation of the (normalized) B-spline mass matrix M[p1−1]
n1+1

⊗ · · · ⊗

M[pd−1]
nd+1

related to the fineness parameters n + 1 and the spline degrees p − 1; see (4.85)–(4.86) and recall

(1.18). The choice of using a PCG method with preconditioner (6.24) as a smoother is made in order to

‘erase’ all the numerical zeros at the π-edge points (6.4). Due to (6.23) and to the fact that d∏
j=1

hp j−1(θ j)


−1

f (ν)
p (θ) =

d∑
k=1

ck(ν)(2 − 2 cos(θk))
d∏

j=1
j,k

wp j(θ j)

is p-independent, the PCG with preconditioner (6.24) turns out to have a p-robust convergence rate for our

matrices in the d-dimensional setting. For a numerical illustration we refer to Tables 6.5, 6.10 and 6.14 for

d = 1, 2, 3. Note from these tables that, for fixed n, the number of iterations only slightly increases with p.
On the other hand, we clearly observe the bad dependence on n, as expected.

At this point, it is important to stress that the proposed preconditioner (6.24) is effectively solvable: due

to the tensor-product structure and to the bandedness of the matrices Tni+pi−2(hpi−1), the computational cost
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for solving a linear system with matrix (6.24) is linear in the matrix size N(n + p− 2). Let us illustrate this

in the case d = 2, for a general tensor product X ⊗ Y of two invertible matrices X ∈ Cm×m
and Y ∈ C`×`. By

the properties of the Kronecker product, it holds that

(X ⊗ Y)−1 = X−1 ⊗ Y−1.

Let b := vec(B) ∈ Rm`
be the vector obtained by stacking the columns of B ∈ Rm×`

, where vec denotes the

stacking operator. Then, the linear system

(X ⊗ Y)u = b (6.25)

can be solved by

u = (X−1 ⊗ Y−1)b = vec(Y−1BX−T ).

This requires to solve m linear systems with matrix Y , plus ` linear systems with matrix X; see [40,

Lemma 4.3.1]. If X and Y are banded, like the Toeplitz matrices Tni+pi−2(hpi−1) in (6.24), then the cost for

solving a linear system with matrix X or Y is linear in the matrix size, and so the overall cost for solving

(6.25) is linear in the matrix size m`. Of course, this trick applies to the preconditioner (6.24) but not to the

matrix nd−2A[p]
n , which consists of sums of tensor-product matrices; see (6.2).

Summarizing, in the spirit of the multi-iterative approach, our proposal for solving a linear system with

coefficient matrix nd−2A[p]
n , n = νn, is as follows:

• as a solver, we use a two-grid, or a V-cycle/W-cycle multigrid, using (at each level) the standard

coarse-grid correction with classical full-weighting projector (6.21). This basic coarse-grid operator is

very effective in low frequencies, and it is all we need if we had to deal with a symbol like (6.19),

coming from the standard FD approximation;

• since our normalized symbol f (ν)
p /M f (ν)

p
, for large p, shows numerical zeros at the π-edge points (6.4),

we include the PCG method with preconditioner (6.24) in the smoothing strategy. In particular, we

will use it at the finest level.

In this way, the coarse-grid operator will be responsible for the optimality of the method (a convergence speed

independent of the fineness parameters n), while the chosen PCG-smoother will induce the p-independence,
taking care of the numerical zeros at the π-edge points (6.4). The global multi-iterative method is expected

to be optimal and robust at the same time, meaning that its convergence rate should be independent of

both n and p. As we shall see from the numerical experiments, the convergence rate will be indepen-

dent of n, substantially independent of p, and, surprisingly enough, substantially independent also of the

dimensionality d.

Remark 6.2. From the discussion above (in the 1D case), one could guess that the PCG method with

preconditioner Tn+p−2( fp) is substantially robust both with respect to n and p, because {T−1n+p−2( fp) 1

n A[p]
n } ∼λ

fp/ fp = 1. This is numerically illustrated in Table 6.6. Unfortunately, this naive choice is not so practical,

because it cannot be effectively generalized to the higher dimensional setting. For example, in the 2D

case, the PCG method with preconditioner Tn1+p1−2( fp1
) ⊗ Tn2+p2−2( fp2

) does not work (see Table 6.11). The

explanation is clear: the function fp1
⊗ fp2

and the symbol of our 2D matrices f (ν1,ν2)
p1,p2

possess two sets of

zeros with a completely different structure. On the other hand, the use of Tn1+p1−2,n2+p2−2( f (ν1,ν2)
p1,p2

) as a possible

preconditioner is also unsuccessful, because its cost is prohibitive due to the lack of the tensor-product

structure in the preconditioner.
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6.3 Two-grid algorithms and their performances: 1D

We start with a careful testing of the standard two-grid methods with the classical full-weighting projector

(6.20)–(6.21) and with different combinations of the traditional smoothers. We note that the V-cycle and

W-cycle convergence cannot be better than the one of the two-grid method. Then, we proceed with the full

multi-iterative approach, sketched in Subsection 6.2.5, involving the PCG method as a smoother.

6.3.1 Classical two-grid methods

Let us illustrate the performances of standard two-grid methods with the classical projector P[p]
n := Pn+p−2

given in (6.20)–(6.21), which induces a coarse-grid correction effective in the low frequencies. We only

consider two-grid methods without pre-smoothing steps and with a single post-smoothing step.

Table 6.1 shows the results of the numerical experiments for TG(S
[p]
n , P[p]

n ), with S
[p]
n being the iteration

matrix of the relaxed Richardson method with parameter ω[p]
; see (6.14). In problem (6.1), we fixed d = 1,

β = γ = 0, so that
1

n A[p]
n = K[p]

n and S
[p]
n = I − ω[p]K[p]

n . Then, for p = 1, . . . , 6 we determined experimentally

the best Richardson parameter ω[p]
, in the sense that ω[p]

minimizes ρ[p]
n := ρ(TG(S

[p]
n , P[p]

n )) with n = 2560

(if p is odd) and n = 2561 (if p is even) among all ω ∈ R with at most four nonzero decimal digits

after the comma. We note that the choice ω[1] = 1/3 has a theoretical motivation, because it imposes a

fast convergence both in high and intermediate frequencies. Finally, we computed the spectral radii ρ[p]
n

for increasing values of n. In all the considered experiments, the proposed two-grid scheme is optimal.

Moreover, as n → ∞, ρ[p]
n converges to a limit ρ[p]

∞ , which is minimal not for p = 1 but for p = 2. A

theoretical explanation of this phenomenon is given in [25]. When p increases from 2 to 6, we observe that

ρ[p]
∞ increases as well. In view of the theoretical interpretation based on the symbol fp given in [25], which

passes through the identification of K[p]
n with the τ-matrix τn+p−2( fp) (see Subsection 6.1.2), ρ[p]

∞ is expected

to converge exponentially to 1 as p → ∞, and in fact, even for moderate values of p such as p = 5, 6, we

see from Table 6.1 that the value ρ[p]
∞ is not satisfactory. This ‘exponentially poor’ behavior can be related to

the fact that fp(π)/M fp exponentially approaches 0 when p increases (see Lemma 4.5, Figure 4.3, Table 4.1).

Finally, from some numerical experiments we observe that ρ(K[4]
n ) ≈ 1.8372, ∀n ≥ 15. Therefore, the best

parameter ω[4] = 1.2229 produces a non-convergent smoother S
[4]
n = I − 1.2229 K[4]

n having ρ(S
[4]
n ) ≈ 1.2467.

This shows that the two-grid scheme can be convergent even when the smoother S
[p]
n is not and, moreover,

ρ[p]
n can attain its minimum at a value of ω[p]

for which ρ(S
[p]
n ) > 1, according to the multi-iterative idea

(see Section 6.2).

Table 6.2 illustrates the behavior of TG(Ŝ [p]
n , P[p]

n ) in the case β = γ = 0, for p = 1, . . . , 6, with Ŝ [p]
n being

the iteration matrix of the relaxed Gauss-Seidel method for A = K[p]
n ; see (6.15). Like in Table 6.1, the

relaxation parameter ω[p]
was chosen so as to minimize ρ̂

[p]
n := ρ(TG(Ŝ [p]

n , P[p]
n )) with n = 2560 (if p is odd)

and n = 2561 (if p is even) among all ω ∈ R with at most four nonzero decimal digits after the comma.

It follows from Table 6.2 that, except for the particular case p = 2, the use of the Gauss-Seidel smoother

improves the convergence rate of the two-grid. However, we also observe that ρ̂
[p]
n presents the same

dependence on p as ρ[p]
n : the scheme is optimal, but its asymptotic convergence rate attains its minimum for

p = 2 and then worsens as p increases from 2 to 6. As explained in the discussion after Lemma 6.1 and

in Subsection 6.2.4, we know that such a worsening is an intrinsic feature of the problem and is related

to the fact that fp(π)/M fp converges exponentially to 0 for increasing p. In other words, the normalized

symbol fp/M fp shows a numerical zero at π, inducing an ill-conditioning in the high frequencies, where our

coarse-grid operator is not effective and all the considered smoothers (Richardson and Gauss-Seidel) are

weakly contractive.

The rapid worsening of the convergence rate with p is well illustrated in Table 6.3, where we fixed

n = 320 (if p is odd) or n = 321 (if p is even), and we computed for increasing p the spectral radii ρ[p]
n
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n ρ[1]
n [ω[1] = 1/3] ρ[3]

n [ω[3] = 1.0368] ρ[5]
n [ω[5] = 1.2576]

80 0.3333333 0.4479733 0.8927544

160 0.3333333 0.4474586 0.8926293

320 0.3333333 0.4472015 0.8925948

640 0.3333333 0.4470729 0.8925948

1280 0.3333333 0.4470366 0.8925948

2560 0.3333333 0.4470391 0.8925948

n ρ[2]
n [ω[2] = 0.7311] ρ[4]

n [ω[4] = 1.2229] ρ[6]
n [ω[6] = 1.2235]

81 0.0257459 0.7373412 0.9596516

161 0.0254342 0.7371979 0.9595077

321 0.0252866 0.7371256 0.9594351

641 0.0252153 0.7371016 0.9593993

1281 0.0252000 0.7371016 0.9593993

2561 0.0252000 0.7371016 0.9593993

Table 6.1: values of ρ[p]
n := ρ(TG(S

[p]
n , P[p]

n )) in the case β = γ = 0, for the specified parameter ω[p]
.

n ρ̂[1]
n [ω[1] = 0.9065] ρ̂[3]

n [ω[3] = 0.9483] ρ̂[5]
n [ω[5] = 1.1999]

80 0.1762977 0.1486937 0.4279346

160 0.1771878 0.1534242 0.4491173

320 0.1956301 0.1567792 0.4628558

640 0.2228058 0.1589204 0.4710180

1280 0.2358223 0.1602392 0.4758293

2560 0.2416926 0.1609750 0.4786945

n ρ̂[2]
n [ω[2] = 0.9109] ρ̂[4]

n [ω[4] = 1.0602] ρ̂[6]
n [ω[6] = 1.3292]

81 0.0648736 0.2972510 0.5631940

161 0.0648736 0.3110761 0.5852798

321 0.0648736 0.3201033 0.6002364

641 0.0648736 0.3255332 0.6104147

1281 0.0648736 0.3286511 0.6164439

2561 0.0649656 0.3304592 0.6197837

Table 6.2: values of ρ̂
[p]
n := ρ(TG(Ŝ [p]

n , P[p]
n )) in the case β = γ = 0, for the specified parameter ω[p]

.

p 1 2 3 4 5 6 7 8 9 10 11 12

ρ[p]
n 0.3333 0.0253 0.4471 0.7371 0.8926 0.9594 0.9853 0.9947 0.9981 0.9994 0.9998 0.9999

ρ̂
[p]
n 0.1941 0.0639 0.1567 0.3156 0.4608 0.5990 0.7173 0.8114 0.8813 0.9289 0.9627 0.9818

Table 6.3: values of ρ[p]
n and ρ̂

[p]
n in the case β = γ = 0, corresponding to the optimal parameters ω[p]

with

four nonzero decimal digits after the comma. We fixed n = 320 (if p is odd) or n = 321 (if p is even).
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n c[1]
n [1/3] ĉ[1]

n [0.9065] c[3]
n [1.0368] ĉ[3]

n [0.9483] c[5]
n [1.2576] ĉ[5]

n [1.1999]
80 17 14 24 10 164 22

160 17 14 25 10 166 23

320 18 14 25 10 169 23

640 18 14 25 11 172 24

1280 18 14 26 11 175 24

2560 18 14 26 11 178 25

n c[2]
n [0.7311] ĉ[2]

n [0.9109] c[4]
n [1.2229] ĉ[4]

n [1.0602] c[6]
n [1.2235] ĉ[6]

n [1.3292]
81 6 7 62 15 456 32

161 6 8 62 16 460 33

321 6 8 63 16 467 33

641 6 8 64 16 475 34

1281 6 8 66 17 483 35

2561 6 8 67 17 492 36

Table 6.4: number of iterations c[p]
n and ĉ[p]

n needed by TG(S
[p]
n , P[p]

n ) and TG(Ŝ [p]
n , P[p]

n ) respectively, for

solving
1

n A[p]
n u = f with β = −5, γ = 1, f = 1, up to a precision of 10

−8
. The methods have been started with

u(0) = 0. The parameter ω[p]
is specified between brackets [·].

and ρ̂
[p]
n obtained with the best parameters ω[p]

among all ω ∈ R with four nonzero decimal digits after the

comma.

We now compare TG(S
[p]
n , P[p]

n ) and TG(Ŝ [p]
n , P[p]

n ) on the linear system
1

n A[p]
n u = f, coming from the

B-spline Galerkin approximation of the model problem (6.1) in the case d = 1, with β = −5, γ = 1 and f = 1.

In Table 6.4, the considered linear system was solved for p = 1, . . . , 6 and for increasing values of n by

means of TG(S
[p]
n , P[p]

n ) (with ω[p]
as in Table 6.1) and TG(Ŝ [p]

n , P[p]
n ) (with ω[p]

as in Table 6.2). For each

pair (p, n), c[p]
n and ĉ[p]

n are, respectively, the number of iterations needed by TG(S
[p]
n , P[p]

n ) and TG(Ŝ [p]
n , P[p]

n ),
both started with initial guess u(0) = 0, to compute a vector u(c)

whose relative residual in the 2-norm is

less than 10
−8
, i.e., ∥∥∥∥∥f − 1

n
A[p]

n u(c)
∥∥∥∥∥ ≤ 10

−8‖f‖. (6.26)

6.3.2 Multi-iterative two-grid method with PCG as smoother

Despite their optimality, the basic two-grid schemes TG(S
[p]
n , P[p]

n ) and TG(Ŝ [p]
n , P[p]

n ) suffer from a ‘pathology’,

because, as already discussed, their convergence rate rapidly worsens when p increases. To overcome this

problem, we follow the multi-iterative idea outlined in Subsection 6.2.5 and we replace, in the two-grid

Algorithm 6.1, the smoothers S
[p]
n and Ŝ [p]

n with the PCG method, whose preconditioner Tn+p−2(hp−1) takes

care of dampening the high frequencies corresponding to values of θ near π.
We first illustrate the PCG method (see Algorithm 6.2) applied to the linear system

1

n A[p]
n u = f, coming

from the B-spline Galerkin approximation of the model problem (6.1) in the case d = 1, with β = 0, γ = 1

and f = 1. Table 6.5 reports the number of iterations needed by the PCG method with preconditioner

Tn+p−2(hp−1) to compute a vector u(c)
satisfying a relative residual less than 10

−8
; see (6.26). We observe that

the PCG method is essentially p-independent, but slowly convergent when the matrix size increases. On the

other hand, as shown in Table 6.6, the number of iterations needed by the PCG method with preconditioner

Tn+p−2( fp) is essentially independent of both n and p; see Remark 6.2.

As discussed in Subsection 6.2.5, the convergence rate of the two-grid method can be improved for large

p by using the PCG method as smoother. In the following experiments, we replace the Richardson and

Gauss-Seidel post-smoothers S
[p]
n and Ŝ [p]

n , used in the previous subsection, with a few PCG post-smoothing

iterations (say s[p]
iterations) with preconditioner Tn+p−2(hp−1). Due to the presence of the PCG smoother,
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n c[1]
n c[2]

n c[3]
n c[4]

n c[5]
n c[6]

n

80 40 40 41 42 44 44

160 80 80 81 83 86 87

320 160 160 161 166 170 172

640 320 320 321 331 338 343

1280 640 640 641 658 671 684

2560 1280 1280 1281 1310 1339 1362

Table 6.5: number of iterations c[p]
n needed by the PCG method with preconditioner Tn+p−2(hp−1), for solving

the system
1

n A[p]
n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
. The method has been started

with u(0) = 0.

n c[1]
n c[2]

n c[3]
n c[4]

n c[5]
n c[6]

n

80 4 6 6 7 8 10

160 4 6 7 7 8 10

320 4 6 7 8 8 10

640 4 6 7 8 8 12

1280 4 6 7 8 10 11

2560 4 6 7 8 10 12

Table 6.6: number of iterations c[p]
n needed by the PCG method with preconditioner Tn+p−2( fp), for solving

the system
1

n A[p]
n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
. The method has been started

with u(0) = 0.

the resulting method is no more a stationary iterative method, and hence it is not a two-grid in the classical

sense. However, using an expressive notation, we denote it by TG((PCG)s[p]
, P[p]

n ), where the exponent s[p]

simply indicates that we apply s[p]
steps of the PCG algorithm with preconditioner Tn+p−2(hp−1).

Then, the same system
1

n A[p]
n u = f considered in Tables 6.5–6.6 was solved for p = 1, . . . , 6 and for

increasing values of n by means of TG((PCG)s[p]
, P[p]

n ) and TG((Ŝ [p]
n )s[p]

, P[p]
n ). The latter method, as indicated

by the notation, is the same as TG(Ŝ [p]
n , P[p]

n ), except that now we apply s[p]
post-smoothing iterations by Ŝ [p]

n

instead of one. This is done for making a fair comparison with TG((PCG)s[p]
, P[p]

n ), in which s[p]
steps of PCG

are applied. For the smoother Ŝ [p]
n we used the same (optimal) ω[p]

as in Table 6.2. Both TG((PCG)s[p]
, P[p]

n )
and TG((Ŝ [p]

n )s[p]
, P[p]

n ) were started with u(0) = 0 and stopped at the first term u(c)
satisfying (6.26). The

corresponding numbers of iterations are collected in Table 6.7.

We observe from Table 6.7 that TG((PCG)s[p]
, P[p]

n ) performs better than TG((Ŝ [p]
n )s[p]

, P[p]
n ) not only for

large p but also for small p, though the difference between the two methods is much more appreciable when

p is large. In the 2D case, the difference in performances between their 2D variants is even more significant;

see Table 6.12. Another observation from Table 6.7 is the following: provided we increase s[p]
a little bit when

p increases, the number of iterations c̃[p]
n needed by TG((PCG)s[p]

, P[p]
n ) to reach the preassigned accuracy

10
−8

is essentially independent of both n and p. This implies that TG((PCG)s[p]
, P[p]

n ) is robust not only with

respect to n but also with respect to p.
Summarizing, TG((PCG)s[p]

, P[p]
n ) is a totally robust method, not only with respect to n but also with

respect to p. This property does not hold for the classical two-grid schemes TG(S
[p]
n , P[p]

n ) and TG(Ŝ [p]
n , P[p]

n ),
because we have seen that ρ[p]

n and ρ̂
[p]
n increase with p.
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n c̃[1]
n [2] ĉ[1]

n [0.9065] c̃[3]
n [2] ĉ[3]

n [0.9483] c̃[5]
n [3] ĉ[5]

n [1.1999]
80 4 7 6 6 5 8

160 3 7 6 6 5 8

320 3 7 6 6 5 8

640 3 7 6 6 6 9

1280 3 7 6 6 6 9

2560 3 7 6 6 6 9

n c̃[2]
n [2] ĉ[2]

n [0.9109] c̃[4]
n [3] ĉ[4]

n [1.0602] c̃[6]
n [3] ĉ[6]

n [1.3292]
81 6 7 5 6 6 12

161 6 7 5 6 6 12

321 6 7 5 6 6 12

641 7 7 5 6 6 12

1281 7 7 5 6 6 13

2561 7 8 6 6 6 13

Table 6.7: number of iterations c̃[p]
n and ĉ[p]

n needed by TG((PCG)s[p]
, P[p]

n ) and TG((Ŝ [p]
n )s[p]

, P[p]
n ) respectively,

for solving
1

n A[p]
n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
. The methods have been

started with u(0) = 0. The parameters s[p]
and ω[p]

are specified between brackets [·] near the labels c̃[p]
n and

ĉ[p]
n , respectively.

6.4 Two-grid algorithms and their performances: 2D

In this section, we consider specialized two-grid methods for solving linear systems with coefficient matrix

A[p,p]
n,n = A[p]

n , where p = (p, p), n = (n, n) = nν and ν = (1, 1). We first examine the numerical behavior of

classical two-grid schemes, which will prove to be unsatisfactory for large p. We will then consider the

multi-iterative two-grid scheme analogous to the one tested in Subsection 6.3.2 and we shall see that this

solver turns out to have a convergence rate that is at the same time optimal and robust, i.e., n-independent
and p-independent.

6.4.1 Classical two-grid methods

We consider two-grid methods with the classical full-weighting projector P[p,p]
n,n := Pn+p−2,n+p−2, as given by

(6.20)–(6.21) for m = (n + p − 2, n + p − 2). As already pointed out, such a projector induces a coarse-grid

correction effective in the low frequencies. Like in the 1D setting, we only consider two-grid methods without

pre-smoothing steps and with a single post-smoothing step, and we provide two choices of the smoother:

the relaxed Richardson smoother with iteration matrix S
[p,p]
n,n and the relaxed Gauss-Seidel smoother with

iteration matrix Ŝ [p,p]
n,n ; cf. (6.14)–(6.15). With the smoothers and the projector as above, our two-grid procedure

is defined completely for A = A[p,p]
n,n ; see Algorithm 6.1.

Table 6.8 shows the results of some numerical experiments in the case β = 0, γ = 0. For p = 1, . . . , 6, we

determined experimentally the parameter ω[p,p]
minimizing the quantity ρ[p,p]

n,n := ρ(TG(S
[p,p]
n,n , P[p,p]

n,n )), where n
is chosen to be 52 (if p is odd) or 53 (if p is even). Then, we computed the spectral radii ρ[p,p]

n,n for increasing

values of n. In all the considered experiments, the proposed two-grid method is optimal. However, for

p = 4, 5, 6 the spectral radii are very close to 1, and this is not satisfactory for practical purposes. The

numerical experiments in Table 6.9, obtained as those in Table 6.8, show a certain improvement in the

two-grid convergence rate when using the relaxed Gauss-Seidel smoother instead of Richardson’s. However,

for large p, the values ρ̂
[p,p]
n,n are still unsatisfactory.
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n ρ[1,1]
n,n [ω[1,1] = 0.3335] ρ[3,3]

n,n [ω[3,3] = 1.3739] ρ[5,5]
n,n [ω[5,5] = 1.3293]

16 0.3287279 0.9248227 0.9984590

28 0.3316020 0.9239241 0.9983433

40 0.3323146 0.9231361 0.9983185

52 0.3325944 0.9229755 0.9983134

n ρ[2,2]
n,n [ω[2,2] = 1.1009] ρ[4,4]

n,n [ω[4,4] = 1.4000] ρ[6,6]
n,n [ω[6,6] = 1.2505]

17 0.6085689 0.9885344 0.9997977

29 0.6085689 0.9881173 0.9997766

41 0.6085689 0.9880112 0.9997724

53 0.6085689 0.9879839 0.9997715

Table 6.8: values of ρ[p,p]
n,n := ρ(TG(S

[p,p]
n,n , P[p,p]

n,n )) in the case β = 0, γ = 0, for the specified parameter ω[p,p]
.

n ρ̂[1,1]
n,n [ω[1,1] = 1.0035] ρ̂[3,3]

n,n [ω[3,3] = 1.3143] ρ̂[5,5]
n,n [ω[5,5] = 1.3990]

16 0.1588106 0.6420608 0.9629505

28 0.1678248 0.6411764 0.9633667

40 0.1753106 0.6418579 0.9626834

52 0.1804148 0.6465563 0.9620579

n ρ̂[2,2]
n,n [ω[2,2] = 1.1695] ρ̂[4,4]

n,n [ω[4,4] = 1.3248] ρ̂[6,6]
n,n [ω[6,6] = 1.4914]

17 0.2661407 0.8798035 0.9913084

29 0.2689991 0.8779954 0.9903263

41 0.2901481 0.8773914 0.9898795

53 0.3045791 0.8778602 0.9897372

Table 6.9: values of ρ̂
[p,p]
n,n := ρ(TG(Ŝ [p,p]

n,n , P[p,p]
n,n )) in the case β = 0, γ = 0, for the specified parameter ω[p,p]

.

6.4.2 Multi-iterative two-grid method with PCG as smoother

The convergence rate of both the two-grid schemes TG(S
[p,p]
n,n , P[p,p]

n,n ) and TG(Ŝ [p,p]
n,n , P[p,p]

n,n ) rapidly worsens

when p increases. The main reason, as explained in Subsection 6.2.4, is the presence of a large set of

numerical zeros of the symbol f (1,1)
p,p ; see (6.4). Following the suggestion from Subsection 6.2.5, we now adopt

a multi-iterative method, identical to the one tested in Subsection 6.3.2, which involves the PCG method as

smoother.

Let us first illustrate the PCG method (see Algorithm 6.2) applied to the linear system A[p,p]
n,n u = f, coming

from the B-spline Galerkin approximation of the model problem (6.1) in the case d = 2 with β = 0, γ = 1

and f = 1. Tables 6.10 and 6.11 report the number of iterations needed by the PCG with preconditioners

Tn+p−2(hp−1) ⊗ Tn+p−2(hp−1) and Tn+p−2( fp) ⊗ Tn+p−2( fp), respectively, for computing a vector u(c)
satisfying a

relative residual less than 10
−8
. As illustrated in Table 6.10, the former PCG is not efficient for large n,

but its convergence rate is quite robust with respect to p; see Subsection 6.2.5 for an explanation of this

phenomenon. On the other hand, Table 6.11 shows that the latter PCG is not at all effective, because the

dependency on n and p is unsatisfactory; see Remark 6.2.

Then, the same system A[p,p]
n,n u = f considered in Tables 6.10–6.11 was solved for p = 1, . . . , 6 and for

increasing n, by means of TG((PCG)s[p,p]
, P[p,p]

n,n ) and TG((Ŝ [p,p]
n,n )s[p,p]

, P[p,p]
n,n ). The corresponding numbers of

iterations are given in Table 6.12. For Ŝ [p,p]
n,n we used the same (optimal) parameter ω[p,p]

as in Table 6.9.

Both TG((PCG)s[p,p]
, P[p,p]

n,n ) and TG((Ŝ [p,p]
n,n )s[p,p]

, P[p,p]
n,n ) were started with u(0) = 0 and stopped at the first term

u(c)
satisfying a criterion of relative residual less than 10

−8
. Analogously to the 1D case (see Subsection 6.3.2),

we can conclude that TG((PCG)s[p,p]
, P[p,p]

n,n ) is robust not only with respect to n but also with respect to p.
The only unpleasant point is that, similarly to the 1D case, s[p,p]

increases a little bit when p increases.

We end this subsection with a numerical experiment involving a nonzero convection term β. To be

precise, we consider the linear system A[p,p]
n,n u = f coming from the B-spline Galerkin approximation of the
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n c[1,1]
n,n c[2,2]

n,n c[3,3]
n,n c[4,4]

n,n c[5,5]
n,n c[6,6]

n,n

20 25 24 26 29 33 40

40 52 49 49 57 65 77

60 78 75 75 83 96 118

80 104 100 100 111 130 157

100 131 125 126 140 165 198

120 157 151 151 168 200 241

Table 6.10: number of iterations c[p,p]
n,n needed by the PCG with preconditioner Tn+p−2(hp−1) ⊗ Tn+p−2(hp−1),

for solving the system A[p,p]
n,n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
. The method has

been started with u(0) = 0.

n c[1,1]
n,n c[2,2]

n,n c[3,3]
n,n c[4,4]

n,n c[5,5]
n,n c[6,6]

n,n

20 64 79 100 120 153 184

40 133 166 195 232 293 364

60 203 249 286 342 419 518

80 266 328 374 444 538 662

100 328 403 462 546 660 808

120 391 480 549 649 773 952

Table 6.11: number of iterations c[p,p]
n,n needed by the PCG with preconditioner Tn+p−2( fp) ⊗ Tn+p−2( fp), for

solving the system A[p,p]
n,n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
. The method has

been started with u(0) = 0.

n c̃[1,1]
n,n [2] ĉ[1,1]

n,n [1.0035] c̃[3,3]
n,n [2] ĉ[3,3]

n,n [1.3143] c̃[5,5]
n,n [4] ĉ[5,5]

n,n [1.3990]
20 6 7 6 16 7 65

40 6 7 6 14 6 54

60 6 7 6 14 6 49

80 5 7 6 13 6 46

100 5 7 6 13 6 44

120 5 7 6 13 6 42

n c̃[2,2]
n,n [2] ĉ[2,2]

n,n [1.1695] c̃[4,4]
n,n [3] ĉ[4,4]

n,n [1.3248] c̃[6,6]
n,n [6] ĉ[6,6]

n,n [1.4914]
21 6 8 6 32 6 140

41 6 8 6 29 6 115

61 6 8 6 27 5 104

81 6 9 6 26 5 97

101 6 9 6 26 5 91

121 6 9 6 25 5 87

Table 6.12: number of iterations c̃[p,p]
n,n and ĉ[p,p]

n,n needed by TG((PCG)s[p,p]
, P[p,p]

n,n ) and TG((Ŝ [p,p]
n,n )s[p,p]

, P[p,p]
n,n )

respectively, for solving A[p,p]
n,n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
. The methods

have been started with u(0) = 0. The parameters s[p,p]
and ω[p,p]

are specified between brackets [·] near the

labels c̃[p,p]
n,n and ĉ[p,p]

n,n , respectively.
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n c̃[1,1]
n,n [2] c̃[3,3]

n,n [2] c̃[5,5]
n,n [4]

20 7 6 7

40 6 6 6

60 6 6 6

80 6 6 6

100 6 6 6

120 7 6 6

n c̃[2,2]
n,n [2] c̃[4,4]

n,n [3] c̃[6,6]
n,n [6]

21 6 6 6

41 6 6 6

61 6 6 6

81 6 6 6

101 6 6 5

121 6 6 6

Table 6.13: number of iterations c̃[p,p]
n,n needed by TG((PGMRES)s[p,p]

, P[p,p]
n,n ) for solving A[p,p]

n,n u = f in the

case β = (5,−5), γ = 1, f = 1, up to a precision of 10
−8
. The method has been started with u(0) = 0. The

parameter s[p,p]
is specified between brackets [·].

model problem (6.1) in the case d = 2 with β = (5,−5), γ = 1 and f = 1. Due to the presence of the convection

term, the matrix A[p,p]
n,n is no more symmetric. According to Remark 6.1, we replace the PCG smoother in

the two-grid method TG((PCG)s[p,p]
, P[p,p]

n,n ) with the PGMRES smoother and, of course, we keep on using the

preconditioner Tn+p−2(hp−1)⊗ Tn+p−2(hp−1) also in the PGMRES case. The results of the numerical experiment

are shown in Table 6.13.

6.5 Two-grid algorithms and their performances: 3D

We are now convinced, on the basis of the results in the previous sections, that standard smoothers such

as Richardson or Gauss-Seidel do not produce robust two-grid methods with respect to p. Hence, a fortiori,

they cannot produce p-robust V-cycles or W-cycles. On the contrary, if we take as smoother the PCG or the

PGMRES method with preconditioner given by (6.24), the resulting two-grid method is robust with respect

to both n and p.
In this section we provide a 3D evidence of this (n, p)-robustness. In analogy with the previous sections,

we consider the linear system nd−2A[p]
n u = f, coming from the B-spline Galerkin approximation of the model

problem (6.1), in the case d = 3, with β = 0, γ = 1, f = 1 and n = (n, n, n), p = (p, p, p). Then we

solve this system up to a precision of 10
−8
, using either the PCG method alone or the two-grid method

TG((PCG)s[p]
, P[p]

n ), where P[p]
n = Pn+p−2 is the projector defined in (6.20)–(6.21) for m = n + p− 2, while s[p]

is the number of PCG post-smoothing iterations.

We see from Table 6.14 that the considered PCG method alone is p-robust. Table 6.15 shows the (n, p)-
robustness of TG((PCG)s[p]

, P[p]
n ). By comparing Tables 6.7, 6.12 and 6.15, we see that TG((PCG)s[p]

, P[p]
n ) is

also robust with respect to the dimensionality d. The only unpleasant point is that s[p]
slightly increases

when p and d increase. Note, however, that the p-growth of s[p]
could be expected, because Tables 6.5, 6.10

and 6.14 show that the PCG method alone is p-robust, but not completely p-independent: for fixed n, the
number of iterations slightly increases with p. Nevertheless, we should also say that if we decrease s[p]

a

little bit, the number of iterations does not increase so much. For instance, if in Table 6.15 we had chosen

s[6,6,6] = 6 (instead of s[6,6,6] = 9), then the resulting number of iterations c̃[6,6,6]
n,n,n for n = 45 would be 10.
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n c[1,1,1]
n,n,n c[2,2,2]

n,n,n c[3,3,3]
n,n,n c[4,4,4]

n,n,n c[5,5,5]
n,n,n c[6,6,6]

n,n,n

15 21 19 22 28 35 54

25 35 32 33 40 50 67

35 49 46 46 53 68 84

45 64 60 60 68 84 105

Table 6.14: number of iterations c[p,p,p]
n,n,n needed by the PCG with preconditioner Tn+p−2(hp−1)⊗ Tn+p−2(hp−1)⊗

Tn+p−2(hp−1), for solving the system nA[p,p,p]
n,n,n u = f in the case β = 0, γ = 1, f = 1, up to a precision of 10

−8
.

The method has been started with u(0) = 0.

n c̃[1,1,1]
n,n,n [2] c̃[3,3,3]

n,n,n [3] c̃[5,5,5]
n,n,n [5]

14 6 6 8

24 6 6 7

34 6 6 7

44 6 6 6

n c̃[2,2,2]
n,n,n [2] c̃[4,4,4]

n,n,n [4] c̃[6,6,6]
n,n,n [9]

15 8 6 7

25 7 6 7

35 7 6 6

45 6 6 6

Table 6.15: number of iterations c̃[p,p,p]
n,n,n needed by TG((PCG)s[p,p,p]

, P[p,p,p]
n,n,n ) for solving nA[p,p,p]

n,n,n u = f in the

case β = 0, γ = 1, f = 1, up to a precision of 10
−8
. The method has been started with u(0) = 0. The parameter

s[p,p,p]
is specified between brackets [·].

6.6 Multigrid: V-cycle and W-cycle

This section illustrates the numerical behavior of the V-cycle and W-cycle multigrid algorithms. Like for

the two-grid algorithms, we observe an optimal convergence rate; see Tables 6.16–6.18. In all the numerical

experiments of this section, we considered the linear systems nd−2A[p]
n u = f, coming from the B-spline

Galerkin approximation of (6.1) in the cases d = 1, d = 2 and d = 3, respectively, with β = 0, γ = 0,

f = 1 and n = (n, . . . , n), p = (p, . . . , p). The V-cycle and W-cycle algorithms were started with initial guess

u(0) = 0 and stopped with the criterion of the relative residual less than 10
−8
, i.e., ‖nd−2A[p]

n u(c) − f‖ ≤ 10
−8‖f‖.

6.6.1 1D case

Table 6.16 reports the numbers of iterations needed to solve the system
1

n A[p]
n u = f with the V-cycle and the

W-cycle multigrid. We now explain in detail how our multigrid algorithms were constructed.

The finest level is indicated by index 0 and the coarsest level by index `
[p]
n := log

2
(n + p− 1)− 1, assuming

that n + p − 1 is a power of 2. Let A[p]
n,i be the matrix at level i and let m[p]

n,i denote its dimension, 0 ≤ i ≤ `[p]
n .

In this notation, we have A[p]
n,0 = 1

n A[p]
n ,

A[p]
n,i+1 = P[p]

n,i A[p]
n,i (P[p]

n,i )T , i = 0, . . . , `[p]
n − 1,

and A[p]

n,`[p]
n

has dimension 1. In the above expression,

P[p]
n,i := Pm[p]

n,i
, i = 0, . . . , `[p]

n − 1,

is the projector at level i, defined by (6.20)–(6.21) for d = 1 and m = m[p]
n,i . Given the shape of Pm[p]

n,i
, one can

show by induction on i that m[p]
n,i+1 = (m[p]

n,i − 1)/2, i = 0, . . . , `
[p]
n − 1, and m[p]

n,i =
n+p−1

2
i − 1, i = 0, . . . , `

[p]
n .
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n c̃[1]
n [2] ĉ[1]

n [0.9065] n c̃[3]
n [2] ĉ[3]

n [0.9483] n c̃[5]
n [3] ĉ[5]

n [1.1999]
16 10 7 9 7 14 8 6 7 5 12 7 5 7 7

32 11 7 10 7 30 9 6 8 5 28 9 5 8 8

64 12 7 11 7 62 10 6 9 6 60 10 5 9 8

128 13 7 12 8 126 11 6 9 6 124 11 5 10 8

256 13 7 12 8 254 11 6 10 6 252 12 6 11 8

512 14 7 13 8 510 12 6 11 6 508 13 6 12 9

1024 14 7 14 8 1022 12 6 12 6 1020 13 6 13 9

n c̃[2]
n [2] ĉ[2]

n [0.9109] n c̃[4]
n [3] ĉ[4]

n [1.0602] n c̃[6]
n [3] ĉ[6]

n [1.3292]
15 8 6 7 6 13 8 6 6 5 11 7 5 10 10

31 10 6 9 7 29 9 6 8 6 27 9 6 12 12

63 11 6 10 7 61 10 6 9 6 59 9 6 12 12

127 11 6 11 7 125 11 6 10 6 123 11 6 12 12

255 12 7 11 7 253 12 6 11 6 251 12 6 12 12

511 13 7 12 7 509 12 6 12 6 507 13 6 13 12

1023 13 7 12 7 1021 13 6 13 6 1019 14 6 13 13

Table 6.16: number of iterations c̃[p]
n (resp. ĉ[p]

n ) needed for solving
1

n A[p]
n u = f in the case β = γ = 0

and f = 1, up to a precision of 10
−8
, when using the multigrid cycle with s[p]

post-smoothing steps by the

PCG algorithm (resp. by the relaxed Gauss-Seidel smoother Ŝ [p]
n,0) at the finest level, and one post-smoothing

step by the simple Gauss-Seidel smoother Ŝ [p]
n,i at all other levels. The parameters s[p]

and ω[p]
are specified

between brackets [·] near the labels c̃[p]
n and ĉ[p]

n , respectively. For each pair (p, n), the first entry in the cell

corresponding to c̃[p]
n refers to the V-cycle, the second to the W-cycle. The same holds for ĉ[p]

n .

We note that the choice of the projector P[p]
n,i at each level i has the same motivation as the projector P[p]

n

for
1

n A[p]
n . Indeed, we know that A[p]

n,0 = 1

n A[p]
n has the symbol fp,0 := fp. Then, referring to [62, Proposition 2.2]

or [2, Proposition 2.5], it follows that A[p]
n,i has a symbol fp,i at level i sharing the same properties of the

symbol fp,0 at level 0: fp,i(0) = 0, with θ = 0 a zero of order two, and fp,i(θ) > 0 for all θ ∈ [−π, π]\{0} (see
also Subsection 3.7.1 in [64]). These properties make it necessary to use for A[p]

n,i a projector like P[p]
n,i , which

is effective in low frequencies.

Regarding the smoother, at each coarse level i ≥ 1 we chose the standard Gauss-Seidel smoother without

relaxation Ŝ [p]
n,i , as given in (6.15) for A = 1

n A[p]
n and ω = 1. However, at the finest level i = 0 we consid-

ered two alternatives: s[p]
smoothing iterations by the PCG method with preconditioner Tn+p−2(hp−1), as in

Subsection 6.3.2, or s[p]
smoothing iterations by the relaxed Gauss-Seidel method Ŝ [p]

n,0 with the relaxation

parameter ω[p]
as in Table 6.2. Note that, due to the presence of the (optimal) parameter ω[p]

, Ŝ [p]
n,0 is different

from Ŝ [p]
n,i , i ≥ 1.

At each level i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and

two recursive calls in the W-cycle, and then we applied one post-smoothing iteration by Ŝ [p]
n,i (if i ≥ 1), or s[p]

post-smoothing iterations by the PCG algorithm or Ŝ [p]
n,0 (if i = 0). From Table 6.16 we can conclude that all

the proposed multigrid methods have an optimal convergence rate, independent of n. Moreover, the versions

with a few PCG smoothing steps are also robust in p.
Finally, we want to motivate why the s[p]

PCG smoothing steps were used only at the finest level. Let

M fp,i := maxθ∈[−π,π] fp,i(θ). Referring to [62, Proposition 2.2 (item 2)], and taking into account some additional

numerical experiments that we performed, it seems that the numerical zero θ = π of fp,0/M fp,0 disappears for

i ≥ 1, and each fp,i/M fp,i , i ≥ 1, only possesses the actual zero θ = 0, like the symbol 2 − 2 cos θ associated

with the FD discretization matrices in one dimension; see (6.19). Hence, a single smoothing iteration by the

standard Gauss-Seidel method is all we need at the coarse levels i ≥ 1.
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n c̃[1,1]
n,n [2] ĉ[1,1]

n,n [1.0035] n c̃[3,3]
n,n [2] ĉ[3,3]

n,n [1.3143] n c̃[5,5]
n,n [4] ĉ[5,5]

n,n [1.3990]
16 10 7 9 7 14 7 6 16 16 12 7 7 85 85

32 11 7 10 7 30 9 6 15 15 28 8 6 59 59

64 12 7 11 7 62 9 6 14 14 60 10 6 49 49

128 13 7 12 7 126 10 6 13 13 124 11 6 42 42

256 13 7 13 7 254 11 6 13 13 252 12 6 38 38

n c̃[2,2]
n,n [2] ĉ[2,2]

n,n [1.1695] n c̃[4,4]
n,n [3] ĉ[4,4]

n,n [1.3248] n c̃[6,6]
n,n [6] ĉ[6,6]

n,n [1.4914]
15 8 6 8 8 13 7 6 37 37 11 7 7 204 204

31 9 6 8 8 29 8 6 30 30 27 8 6 129 129

63 10 6 9 9 61 10 6 27 28 59 10 6 105 105

127 11 6 10 9 125 11 6 25 25 123 11 6 86 87

255 12 7 11 9 253 12 6 23 23 251 12 6 71 72

Table 6.17: number of iterations c̃[p,p]
n,n (resp. ĉ[p,p]

n,n ) needed for solving A[p,p]
n,n u = f in the case β = 0, γ = 0,

f = 1, up to a precision of 10
−8
, when using the multigrid cycle with s[p,p]

post-smoothing steps by the PCG

algorithm (resp. by the relaxed Gauss-Seidel smoother Ŝ [p,p]
n,n,0) at the finest level and one post-smoothing step

by the simple Gauss-Seidel smoother Ŝ [p,p]
n,n,i at all other levels. The parameters s[p,p]

and ω[p,p]
are specified

between brackets [·] near the labels c̃[p,p]
n,n and ĉ[p,p]

n,n , respectively. For each pair (p, n), the first entry in the

cell corresponding to c̃[p,p]
n,n refers to the V-cycle, the second to the W-cycle. The same holds for ĉ[p,p]

n,n .

6.6.2 2D case

Table 6.17 reports the numbers of iterations needed to solve the system A[p,p]
n,n u = f with the V-cycle and the

W-cycle multigrid. The multigrid algorithms were constructed in a similar way as in the 1D case.

The finest level is again indicated by index 0 and the coarsest level by index `
[p]
n := log

2
(n + p − 1) − 1.

Let A[p,p]
n,n,i be the matrix at level i, whose dimension is (m[p]

n,i )2, 0 ≤ i ≤ `
[p]
n , with m[p]

n,i := n+p−1
2

i − 1 as in

Subsection 6.6.1. We have

A[p,p]
n,n,i+1 = P[p,p]

n,n,i A[p,p]
n,n,i (P[p,p]

n,n,i )T , i = 0, . . . , `[p]
n − 1,

where

P[p,p]
n,n,i := Pm[p]

n,i ,m
[p]
n,i
, i = 0, . . . , `[p]

n − 1,

is the projector at level i, defined by (6.20)–(6.21) for d = 2 and m = (m[p]
n,i ,m

[p]
n,i ).

Regarding the smoother, we took the same choices as in the 1D case. At each coarse level i ≥ 1 we used

the standard Gauss-Seidel smoother without relaxation. However, at the finest level i = 0 we used either

s[p,p]
smoothing iterations by the PCG algorithm with preconditioner (6.24) or s[p,p]

smoothing iterations by

the relaxed Gauss-Seidel method Ŝ [p,p]
n,n,0 with the relaxation parameter ω[p,p]

as in Table 6.9.

At each level i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and

two recursive calls in the W-cycle, and then we applied one post-smoothing iteration by Ŝ [p,p]
n,n,i (if i ≥ 1), or

s[p,p]
post-smoothing iterations by the PCG algorithm or Ŝ [p,p]

n,n,0 (if i = 0).

6.6.3 3D case

Table 6.18 reports the numbers of iterations needed to solve nA[p,p,p]
n,n,n u = f with the V-cycle and W-cycle

multigrid. The multigrid algorithms were constructed as in the 1D and 2D case.

The finest level is again indicated by index 0 and the coarsest level by index `
[p]
n := log

2
(n + p − 1) − 1.

Let A[p,p,p]
n,n,n,i be the matrix at level i, whose dimension is (m[p]

n,i )3, 0 ≤ i ≤ `
[p]
n , with m[p]

n,i := n+p−1
2

i − 1 as in

Subsections 6.6.1–6.6.2. We have A[p,p,p]
n,n,n,0 = nA[p,p,p]

n,n,n and

A[p,p,p]
n,n,n,i+1 = P[p,p,p]

n,n,n,i A[p,p,p]
n,n,n,i (P[p,p,p]

n,n,n,i )T , i = 0, . . . , `[p]
n − 1,
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n c̃[1,1,1]
n,n,n [2] n c̃[3,3,3]

n,n,n [3] n c̃[5,5,5]
n,n,n [5]

16 10 7 14 7 6 12 8 8

32 11 7 30 8 6 28 8 7

64 12 7 62 9 6 60 9 6

n c̃[2,2,2]
n,n,n [2] n c̃[4,4,4]

n,n,n [4] n c̃[6,6,6]
n,n,n [9]

15 9 8 13 7 6 11 9 9

31 8 7 29 8 6 27 8 6

63 9 7 61 9 6 59 10 6

Table 6.18: number of iterations c̃[p,p,p]
n,n,n needed for solving nA[p,p,p]

n,n,n u = f in the case β = 0, γ = 0, f = 1,

up to a precision of 10
−8
, when using the multigrid cycle with s[p,p,p]

post-smoothing steps by the PCG

algorithm at the finest level and one post-smoothing step by the simple Gauss-Seidel smoother Ŝ [p,p,p]
n,n,n,i at all

other levels. The parameter s[p,p,p]
is specified between brackets [·]. For each pair (p, n), the first entry in the

cell corresponding to c̃[p,p,p]
n,n,n refers to the V-cycle, the second to the W-cycle.

where

P[p,p,p]
n,n,n,i := Pm[p]

n,i ,m
[p]
n,i ,m

[p]
n,i
, i = 0, . . . , `[p]

n − 1,

is the projector at level i, as given by (6.20)–(6.21) for d = 3 and m = (m[p]
n,i ,m

[p]
n,i ,m

[p]
n,i ).

Regarding the smoother, we took the same choices as in the 1D and 2D case. At each coarse level i ≥ 1

we used the standard Gauss-Seidel smoother without relaxation; at the finest level i = 0 we used s[p,p,p]

smoothing iterations by the PCG algorithm with preconditioner (6.24).

At each level i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and

two recursive calls in the W-cycle, and then we applied one post-smoothing iteration by Ŝ [p,p,p]
n,n,n,i (if i ≥ 1), or

s[p,p,p]
post-smoothing iterations by the PCG algorithm (if i = 0).

When using a few PCG smoothing steps at the finest level, we can conclude from Tables 6.16–6.18

that the resulting V-cycle and W-cycle multigrid algorithms have a convergence rate which is substantially

independent not only of n but also of p. This means that they are robust with respect to both n and

p. We also note that the W-cycle convergence rate is essentially the same as the corresponding two-grid

convergence rate: compare Tables 6.16–6.18 with Tables 6.7, 6.12 and 6.15.

6.7 Further insights: fast multi-iterative solver for Galerkin B-spline IgA stiffness
matrices associated with full elliptic problems

In Section 6.6 we have designed optimal and robust multi-iterative methods of multigrid type for solving

linear systems with coefficient matrix A[p]
n as in (6.2) with β = 0 and γ = 0; this is the B-spline discretization

matrix related to the Laplacian on the hypercube and will be referred to as the Parametric Laplacian

matrix (or PL-matrix). In this section we show that the solution of linear systems related to the Galerkin

B-spline IgA approximation of more general elliptic problems with variable coefficients and with a domain

deformation can be reduced to the solution of linear systems involving the PL-matrix. Indeed, the PL-matrix

itself is an optimal and robust GMRES preconditioner for the full IgA stiffness matrices.

We begin with a brief description of the isogeometric Galerkin method for the solution of full elliptic

problems with variable coefficients on general domains. Here, we do not confine ourselves to the isogeometric

approach in the strict sense, since we allow the geometry map to be any function, not necessarily described

by B-splines. Then, we provide the expression of the resulting stiffness matrices. Finally, we give a numerical

evidence of the optimality of the PL-matrix as a preconditioner for such matrices.
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Let us consider the following full elliptic differential problem:{
−∇ · K∇u + β · ∇u + γu = f in Ω,
u = 0 on ∂Ω,

(6.27)

where Ω is a bounded open domain in Rd
, K : Ω→ Rd×d

is an SPD matrix of functions in L∞(Ω), β : Ω→ Rd

is a vector of functions in L∞(Ω), γ ∈ L∞(Ω), γ ≥ 0 and f ∈ L2(Ω). The weak form of (6.27) consists in

finding u ∈ H1

0
(Ω) such that∫

Ω

(K∇u · ∇v + β · ∇u v + γuv) =

∫
Ω

f v, ∀v ∈ H1

0
(Ω). (6.28)

Suppose that the physical domain Ω can be described by a global geometry map G : Ω̂ → Ω, which is

invertible in the parametric domain Ω̂ := [0, 1]d
and satisfies G(∂Ω̂) = ∂Ω. Let {ϕ̂

1
, . . . , ϕ̂m} be a set of basis

functions defined on Ω̂ and vanishing on the boundary ∂Ω̂. We approximate the solution of (6.28) by the

Galerkin method using the approximation space W := 〈ϕi : i = 1, . . . ,m〉 ⊂ H1

0
(Ω), where

ϕi(x) := ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂).

More precisely, we look for uW ∈ W such that∫
Ω

(K∇uW · ∇v + β · ∇uW v + γuW v) =

∫
Ω

f v, ∀v ∈ W , (6.29)

which is equivalent to solving the linear system AGu = fG, where

AG :=
[∫

Ω

(K∇ϕ j · ∇ϕi + β · ∇ϕ j ϕi + γϕ jϕi)
]m

i, j=1
, fG :=

[∫
Ω

fϕi

]m

i=1
,

and u is the coefficient vector of uW with respect to {ϕ
1
, . . . , ϕm}: uW =

∑m
j=1 u jϕ j. Assuming that G and ϕ̂i,

i = 1, . . . ,m, are sufficiently regular, we can apply standard differential calculus and we get the following

expressions for AG and fG in terms of G and ϕ̂i, i = 1, . . . ,m:

AG =

[∫
Ω̂

(
(∇ϕ̂ j)T (JG)−1K(G)(JG)−T∇ϕ̂i + (∇ϕ̂ j)T (JG)−1β(G) ϕ̂i + γ(G)ϕ̂ jϕ̂i

)
| det(JG)|

]m

i, j=1
, (6.30)

fG =

[∫
Ω̂

f (G) ϕ̂i | det(JG)|
]m

i=1
, (6.31)

where

JG :=
[
∂Gi

∂x̂ j

]m

i, j=1

=

[
∂xi

∂x̂ j

]m

i, j=1

is the Jacobian matrix of G. In the framework of IgA based on B-splines, the basis functions ϕ̂i, i = 1, . . . ,m,

are tensor-product B-splines as in (4.5) and (5.14). The resulting stiffness matrix AG in (6.30) is denoted by

A[p]
G,n to emphasize its dependence on the B-spline degrees p and the fineness parameters n.
We now focus on a specific example in the case d = 2, in which we illustrate that the PL-matrix is an

optimal and robust GMRES preconditioner for the matrix (6.30). We consider problem (6.27) on a quarter

of an annulus, namely

Ω = {(x, y) ∈ R2 : r2 < x2 + y2 < R2, x > 0, y > 0}, r = 1, R = 4,
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n p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

I P I P I P I P I P I P

10 29 16 25 18 42 19 72 21 119 22 164 23

20 61 20 42 21 50 22 84 23 140 24 223 25

30 94 22 63 23 60 23 90 24 154 25 240 26

40 128 23 84 24 77 24 95 25 161 26 249 26

50 161 24 106 24 96 25 106 26 168 26 256 27

Table 6.19: number of GMRES iterations without (I) and with (P) preconditioning for solving A[p,p]
G,n,nu = fG

up to a precision of 10
−8
, varying the fineness parameter n

1
= n

2
= n and the spline degree p

1
= p

2
= p.

and with

K(x, y) =

[
(2 + cos x)(1 + y) cos(x + y) sin(x + y)

cos(x + y) sin(x + y) (2 + sin y)(1 + x)

]
,

β(x, y) =
√

x2 + y2


cos x√

x2+y2

sin y√
x2+y2

 ,
γ(x, y) = xy,
f (x, y) = x cos y + y sin x.

The geometry map is given by

G(x̂, ŷ) = (x, y), where

 x = [r + x̂(R − r)] cos(π
2
ŷ),

y = [r + x̂(R − r)] sin(π
2
ŷ).

We solved the corresponding IgA Galerkin system A[p,p]
G,n,nu = fG using GMRES without restarting and with

a tolerance of 10
−8
. The results are collected in Table 6.19. The GMRES method was applied first without

preconditioning and then with the preconditioner A[p,p]
n,n , given by (6.2) for d = 2, n = (n, n), p = (p, p)

and β = 0, γ = 0. The table clearly illustrates that the PL-matrix A[p,p]
n,n is an optimal and robust GMRES

preconditioner for A[p,p]
G,n,n. Indeed, the number of iterations to reach the fixed accuracy 10

−8
is substantially

independent of both n and p.
Summarizing, our proposal for solving linear systems associated with the B-spline IgA Galerkin approx-

imation of full elliptic problems such as (6.27) is the following.

• As external solver, we use a PGMRES method, with preconditioner given by the PL-matrix A[p,...,p]
n,...,n .

The theoretical foundation of such a proposal falls beyond the scope of the paper. However, we can

anticipate that the observed (optimal and robust) convergence rate is related to a conditioning measure

of K, i.e.,

sup(x,y)∈Ω λmax(K(x, y))

inf(x,y)∈Ω λmin(K(x, y))
,

and to the same measure for (JG)T JG. Again, the analysis is based on the study of the symbol, in a

similar way as carried out in Chapter 5 for the IgA collocation setting.

• The PL-matrix (or, more precisely, its scaled version nd−2A[p,...,p]
n,...,n ) is treated by the specific multi-iterative

solver of multigrid type designed in Section 6.6. This consists of a V-cycle or W-cycle multigrid

method, which applies the standard full-weighting projector (6.21) at each level, a few post-smoothing

iterations by the PCG method with preconditioner

⊗d
j=1 Tn+p−2(hp−1) at the finest level, and one single

post-smoothing iteration by the standard Gauss-Seidel method at all other levels.
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Chapter 7

Fast iterative solvers for B-spline IgA collocation linear systems

This chapter is in many respects analogous to the previous one. In Chapter 5, we studied the spectral

properties of the collocation matrices A[p]
G,n coming from the B-spline IgA collocation approximation of the

second-order full elliptic problem{
−∇ · K∇u + α · ∇u + γu = f in Ω,
u = 0 on ∂Ω,

⇐⇒

{
−1(K ◦ Pu)1T + β · ∇u + γu = f in Ω,
u = 0 on ∂Ω,

(7.1)

where Ω is a bounded open domain in Rd
, K : Ω → Rd×d

is a SPD matrix of functions in C1(Ω) ∩ C(Ω),
α : Ω → Rd

is a vector of functions in C(Ω), γ, f ∈ C(Ω), γ ≥ 0, and Pu, β are given in (5.3)–(5.4). In

particular, we have computed the spectral symbol f (ν)
G,p of the normalized matrix-sequence { 1n2

A[p]
G,n}n, n = νn,

and observed that, in the case where G is the identity map over the parameteric domain Ω̂ := [0, 1]d
and K

is the identity matrix, the symbol f (ν)
G,p reduces to the function f (ν)

p in (5.93); see Remark 5.3. We will now

exploit the properties of the symbol in order to design fast iterative algorithms for solving linear systems with

coefficient matrix A[p]
G,n. As in Chapter 6, our goal is to obtain an iterative method that is optimal and robust

at the same time, meaning that its convergence rate is simultaneously n-independent and p-independent.
Using the properties of f (ν)

G,p and f (ν)
p , we will succeed in designing a multi-iterative solver with these features,

which will be essentially identical to the one presented in Chapter 6 (see in particular Section 6.7). The

solver consists of the following two-step strategy.

1. An external PGMRES for A[p]
G,n, with preconditioner equal to the so-called Parametric Laplacian (PL)

matrix A[p]
n , that is the matrix coming from the IgA collocation approximation of (7.1) in the case where

K is the identity matrix, α = 0, γ = 0 and G is the identity map on the parametric domain Ω̂ = [0, 1]d
.

2. The PL-matrix A[p]
n , or, more precisely, its scaled version

1

n2
A[p]

n (n = νn), is treated by a specific

multi-iterative multigrid solver consisting of a V-cycle (or W-cycle) formed by:

(a) a standard full-weighting restriction operator at each level, chosen as in (6.20)–(6.21), which

reduces the error in the low frequencies (a subspace of ill-conditioning due to the zero of the

symbol f (ν)
p at θ = 0);

(b) one standard post-smoothing iteration by the classical Gauss-Seidel method at all the coarse

levels and a few post-smoothing iterations by a certain PGMRES at the finest level, where the

latter is designed for reducing the error in the high frequencies (a subspace of ill-conditioning

due to the numerical zeros of the normalized symbol f (ν)
p /M f (ν)

p
at the π-edge points (7.3); see

Lemma 7.1 below). In particular, the PGMRES preconditioner is chosen as the Toeplitz matrix

Tn+p−2(hp1−2 ⊗ · · · ⊗ hpd−2) =

d⊗
j=1

Tn j+p j−2(hp j−2),
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which is generated by the specific function hp1−2 ⊗ · · · ⊗ hpd−2 coming from a factorization of the

symbol f (ν)
p completely analogous to the one considered in Chapter 6.

The chapter is organized as follows. In the remainder of this introductory discussion, we highlight some

properties of the symbols f (ν)
G,p and f (ν)

p . Section 7.1 deals with the external PGMRES and shows that a fast

(optimal and robust) solver for the general IgA collocation matrix A[p]
G,n is obtained if we have a fast solver

for the PL-matrix A[p]
n . Section 7.2 is devoted to the description of the multi-iterative solver of multigrid

type for the PL-matrix A[p]
n and contains several numerical experiments demonstrating its optimality and

robustness.

We recall from Chapter 5 that the spectral symbol f (ν)
G,p : [0, 1]d × [−π, π]d → R of the normalized matrix-

sequence { 1n2
A(ν)
G,n}n, with n = νn and ν ∈ Qd

+, is

f (ν)
G,p := [ν

1
· · · νd]

(
KG ◦ Pp1,...,pd

)
[ν

1
· · · νd]T , (7.2)

with (
Pp1,...,pd

)
rs

:=


hp1
⊗ · · · ⊗ hpr−1 ⊗ fpr ⊗ hpr+1

⊗ · · · ⊗ hpd , if r = s,
hp1
⊗ · · · ⊗ hpr−1 ⊗ gpr ⊗ hpr+1

⊗ · · · ⊗ hps−1 ⊗ gps ⊗ hps+1 ⊗ · · · ⊗ hpd , if r < s,
hp1
⊗ · · · ⊗ hps−1 ⊗ gps ⊗ hps+1 ⊗ · · · ⊗ hpr−1 ⊗ gpr ⊗ hpr+1

⊗ · · · ⊗ hpd , if r > s;

see (5.25) for the expression of KG and (5.32)–(5.34) for the definitions of hp, gp, fp. In particular,

f (ν)
p :=

d∑
k=1

ν2k(hp1
⊗ · · · ⊗ hpk−1 ⊗ fpk ⊗ hpk+1

⊗ · · · ⊗ hpd ) : [−π, π]d → R

is the symbol of the sequence { 1n2
A[p]
G,n}n = { 1n2

A[p]
n }n obtained when Ω = Ω̂ = [0, 1]d

, G : Ω̂ → Ω is the

identity map and K is the identity matrix; see Remark 5.3. f (ν)
p only depends on the ‘Fourier variables’

θ = (θ
1
, . . . , θd) ∈ [−π, π]d

and, moreover, it is symmetric in each of these variables: f (ν)
p (±θ

1
, . . . ,±θd) =

f (ν)
p (θ

1
, . . . , θd). This implies that f (ν)

p : [0, π]d → R, considered on the domain [0, π]d
, is also a symbol

for { 1n2
A[p]

n }n. The following lemma follows from the properties derived in Chapter 5 (see in particular

Lemmas 5.3–5.5).

Lemma 7.1. Let p ≥ 2 and ν ∈ Qd
+, then(

2

π

)∑d
j=1 p j+d−2

min(ν
1
, . . . , νd)2

d∑
k=1

(2 − 2 cos θk) ≤ f (ν)
p (θ) ≤ max(ν

1
, . . . , νd)2

d∑
k=1

(2 − 2 cos θk).

Moreover, setting M f (ν)
p

:= maxθ∈[0,π]d f (ν)
p (θ), for all j = 1, . . . , d we have

f (ν)
p (θ

1
, . . . , θ j−1, π, θ j+1, . . . , θd) ≤ 2

(5−p j)/2 f (ν)
p (θ

1
, . . . , θ j−1,

π
2
, θ j+1, . . . , θd) ≤ 2

(5−p j)/2M f (ν)
p
.

In particular, f (ν)
p has a unique zero of order two at θ = 0, like the function

∑d
k=1(2 − 2 cos θk), but, for every

j = 1, . . . , d, the value f (ν)
p (θ

1
, . . . , θ j−1, π, θ j+1, . . . , θd)/M f (ν)

p
converges to 0 exponentially when p j → ∞.

According to Lemma 7.1, the normalized symbol f (ν)
p /M f (ν)

p
has only one actual zero at θ = 0, but, when

the spline degrees p are large, it also has infinitely many numerical zeros located at the π-edge points

{θ ∈ [0, π]d : ∃ j ∈ {1, . . . , d} with θ j = π}. (7.3)

The zero of the symbol at θ = 0 is interpreted by saying that the related IgA collocation matrices
1

n2
A[p]

n are ill-

conditioned in the low frequencies. On the other hand, the fact that the normalized symbol f (ν)
p /M f (ν)

p
shows
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infinitely many numerical zeros at the π-edge points (7.3) means that the matrices
1

n2
A[p]

n are ill-conditioned

(for large p) also in the high frequencies. The ill-conditioning in the low frequencies is expected, because it

is a canonical feature of the symbol associated with the discretization matrices of second-order differential

problems like (7.1). However, the ill-conditioning in the high frequencies is not expected and is responsible

for the deterioration in the convergence rate of the standard multigrid methods when the approximation

parameters p increase. A way to overcome this problem consists in adopting a multi-iterative strategy, as

we shall see in Section 7.2.

7.1 Optimal and robust PGMRES for the general IgA collocation matrix A[p]
G,n

The B-spline discretization matrix related to the Laplacian on the hypercube will be referred to as the Para-

metric Laplacian matrix (or PL-matrix). This is the matrix coming from the IgA collocation approximation

of (7.1) in the case where G is the identity map (so Ω = (0, 1)d
), K = I is the identity matrix, and β = 0,

γ = 0. In this section we show through numerical experiments that, in many situations, the PL-matrix A[p]
n

is an optimal and robust GMRES preconditioner for the general IgA collocation matrix A[p]
G,n approximating

the full elliptic problem (7.1) with arbitrary K, β, γ, G. This can be explained by means of the theory of GLT

sequences (see Subsection 1.4.3), which is a generalization of the standard Fourier Analysis to nonconstant

coefficient differential operators, as discussed in [64].

Let us illustrate in the bivariate case d = 2, without entering into the details, why the PL-matrix A[p]
n

should work fairly well as a preconditioner for A[p]
G,n. From the analysis in Chapter 5, it follows that both

{ 1n2
A[p]
G,n}n and { 1n2

A[p]
n }n (n = nν) are GLT sequences, with corresponding symbols

f (ν)
G,p = [ν

1
ν
2
]
(
KG ◦ Pp1,p2

)
[ν

1
ν
2
]T ,

and

f (ν)
p = [ν

1
ν
2
]
(
I ◦ Pp1,p2

)
[ν

1
ν
2
]T ,

respectively. Since the GLT class is an algebra and since f (ν)
p vanishes only at θ = 0 (so that { 1n2

A[p]
n }n is

sparsely vanishing according to the terminology in [64]), it follows that {( 1

n2
A[p]

n )−1 1

n2
A[p]
G,n}n = {(A[p]

n )−1A[p]
G,n}n is

still a GLT sequence with symbol ( f (ν)
p )−1 f (ν)

G,p:

{(A[p]
n )−1A[p]

G,n}n ∼λ ( f (ν)
p )−1 f (ν)

G,p =
[ν

1
ν
2
]
(
KG ◦ Pp1,p2

)
[ν

1
ν
2
]T

[ν
1
ν
2
]
(
I ◦ Pp1,p2

)
[ν

1
ν
2
]T

. (7.4)

Now, suppose that there exist two positive constants c,C such that

c I ≤ KG(x̂) ≤ C I, ∀x̂ ∈ Ω̂, (7.5)

where we recall that the notation X ≥ Y means that X − Y is HPSD. Condition (7.5) is equivalent to the

following:

min
x̂∈Ω̂

λmin(KG(x̂)) ≥ c > 0, max
x̂∈Ω̂

λmax(KG(x̂)) ≤ C < ∞. (7.6)

Note that (7.5) is usually satisfied in practice. For instance, it is satisfied if

1. cK I ≤ K(x) ≤ CK I for some positive constants cK , CK and for all x ∈ Ω,

2. cG I ≤ (JG(x̂))T JG(x̂) ≤ CG I for some positive constants cG, CG and for all x̂ ∈ Ω̂;
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in this case we can take c = cK/CG and C = CK/cG. Under the assumption (7.5), Lemma 1.6 yields

c I ◦ Pp1,p2
≤ KG ◦ Pp1,p2

≤ C I ◦ Pp1,p2
.

This implies that the ‘preconditioned symbol’ in (7.4) satisfies

c ≤ ( f (ν)
p )−1 f (ν)

G,p ≤ C,

i.e., it is uniformly bounded from above and below by two positive constants C and c, which of course

depend on K, G, but not on n, p. This explains why the PL-matrix A[p]
n is expected to be an optimal and

robust GMRES preconditioner for A[p]
G,n. In particular, the PGMRES convergence rate should be independent

of n and p. This reduces the fast solution of linear systems associated with the general IgA collocation

matrix A[p]
G,n to the fast solution of linear systems related to the PL-matrix A[p]

n .

As we will see in Section 7.2, a fast solver is available for systems related to the PL-matrix. The solver

is of multi-iterative type, combining a standard multigrid strategy and a certain PGMRES employed as a

smoother at the finest level. The first method is effective for approximating the solution especially in the space

of low frequencies, where a source of ill-conditioning exists, due to the fact that the symbol f (ν)
p vanishes

at θ = 0. The second method is equipped with a specific preconditioner for dampening the high frequency

error components, or, equivalently, for approximating the solution in the high frequencies, where another

(unexpected) source of ill-conditioning shows up when the spline degrees p are large, due to the presence

of the numerical zeros of the normalized symbol f (ν)
p /M f (ν)

p
at the π-edge points (7.3). The combination of

these two methods, in the spirit of a multi-iterative strategy, leads to a solver whose convergence speed is

optimal and robust, i.e., independent of the matrix-size and substantially independent of the other relevant

parameters, like the approximation parameters p and the dimensionality d.
In the following examples, we show through numerical experiments the optimality of the PL-matrix A[p]

n
as a GMRES preconditioner for the general IgA collocation matrix A[p]

G,n. In all the examples, we use the

M gmres function without restarting and with a tolerance of 10
−6
. The method is started with u(0) = 0

and stopped at the first vector u(c)
whose relative residual in 2-norm is less than 10

−6
:

‖A[p]
G,nu

(c) − f‖ ≤ 10
−6‖f‖. (7.7)

Example 1. Consider problem (7.1) in the case d = 2, defined on the unit square

Ω = (0, 1)2, G(x̂, ŷ) = (x̂, ŷ),

with

K(x, y) =

[
(2 + cos x)(1 + y) cos(x + y) sin(x + y)

cos(x + y) sin(x + y) (2 + sin y)(1 + x)

]
,

β(x, y) =

[
11 + sin x + y sin x − 2 cos2(x + y)
−9 − cos y − x cos y − 2 cos2(x + y)

]
,

γ(x, y) = f (x, y) = 1.

To solve the linear system A[p1,p2]
G,n1,n2

u = f resulting from the IgA collocation approximation of this problem, the

GMRES method was applied first without preconditioning and then with the PL-matrix as preconditioner.

The results are collected in Table 7.1. We note that the PGMRES has an optimal and robust convergence

rate, completely independent of n and p. This is in contrast with the behavior of the simple GMRES, whose

convergence rate worsens with respect to both n and p and, in particular, grows linearly with n (the system

size is (n + p − 2)2 ∼ n2
). From Table 7.1 we can conclude that the PL-matrix is an optimal and robust

GMRES preconditioner for the general IgA collocation matrix.
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n1 × n2 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

I P I P I P I P I P I P I P I P

20 × 20 51 8 59 8 71 8 83 8 94 8 104 8 130 8 166 8

30 × 30 76 8 88 8 105 8 122 8 137 8 148 8 159 8 196 8

40 × 40 102 8 117 8 138 8 161 8 180 8 193 8 204 8 219 8

50 × 50 128 8 146 8 172 8 200 8 223 8 239 8 252 8 266 8

60 × 60 154 8 176 8 206 8 239 8 266 8 284 8 300 8 316 8

Table 7.1: Example 1: number of GMRES iterations without (I) and with (P) preconditioning for solving

A[p1,p2]
G,n1,n2

u = f up to a precision of 10
−6
, varying the fineness parameter n

1
= n

2
= n and the spline degree

p
1

= p
2

= p.

n1 × n2 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

I P I P I P I P I P I P I P I P

20 × 20 62 17 66 17 71 18 81 19 91 19 100 19 108 20 114 20

30 × 30 97 17 103 18 106 18 120 19 133 19 145 19 155 19 163 20

40 × 40 134 18 139 18 141 18 159 19 177 19 192 19 204 19 214 19

50 × 50 170 18 176 18 176 18 199 19 221 19 239 19 253 19 265 19

60 × 60 208 18 214 18 211 18 239 19 265 19 286 20 302 19 316 19

Table 7.2: Example 2: number of GMRES iterations without (I) and with (P) preconditioning for solving

A[p1,p2]
G,n1,n2

u = f up to a precision of 10
−6
, varying the fineness parameter n

1
= n

2
= n and the spline degree

p
1

= p
2

= p.

Example 2. Consider problem (7.1) in the case d = 2, defined on a quarter of annulus

Ω = {(x, y) ∈ R2 : r2 < x2 + y2 < R2, x > 0, y > 0}, r = 1, R = 4,

with

G(x̂, ŷ) = (x, y),

 x = [r + x̂(R − r)] cos(π
2
ŷ),

y = [r + x̂(R − r)] sin(π
2
ŷ).

Note that the map G provides an exact representation of the domain Ω, but is not expressed in terms

of tensor-product B-splines. In this sense, our analysis is general, since we are not restricted to use a

B-spline approximation of the domain (following the isoparametric approach), but we may use any exact

representation of the domain. Moreover, we take

K(x, y) =

[
(2 + cos x)(1 + y) cos(x + y) sin(x + y)

cos(x + y) sin(x + y) (2 + sin y)(1 + x)

]
, β(x, y) =

[
−5y
5x

]
, γ(x, y) = xy,

and f (x, y) computed from the exact solution

u(x, y) = (x2 + y2 − 1)(x2 + y2 − 16) sin x sin y.

To solve the corresponding B-spline IgA collocation linear system A[p1,p2]
G,n1,n2

u = f, the GMRES method was

applied first without preconditioning and then with the PL-matrix as preconditioner. The results are collected

in Table 7.2, and they clearly indicate that the PL-matrix is an optimal and robust GMRES preconditioner

for the general IgA collocation matrix A[p1,p2]
G,n1,n2

.

When increasing p, but keeping n fixed, the number of PGMRES iterations to reach the preassigned

accuracy 10
−6

is slowly increasing for moderate n, whereas it seems practically constant for large n: the

observed convergence rate is about 10
−6/19 ≈ 0.483. In this example, we also computed the best constants

for which the relations (7.5)–(7.6) are satisfied, i.e.

c := min
(x̂,ŷ)∈Ω̂

λmin(KG(x̂, ŷ)) ≈ 0.111, C := max
(x̂,ŷ)∈Ω̂

λmax(KG(x̂, ŷ)) ≈ 2.436. (7.8)
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(a) p = 2, err = 1.2 · 10−3 (b) p = 3, err = 2.0 · 10−3

(c) p = 4, err = 5.3 · 10−6 (d) p = 5, err = 2.0 · 10−6

Figure 7.1: Example 2: error of the computed solution for n = 30 varying p, where err = ‖u − ũ‖/‖u‖.

Let us assume that (A[p,p]
n,n )−1A[p,p]

G,n,n is ‘almost’ symmetric positive definite with its spectrum contained in

[c,C]. Note that this makes sense because the corresponding symbol ( f (1,1)
p,p )−1 f (1,1)

G,p,p is nonnegative with range

in [c,C]. Then, the classical GMRES convergence analysis based on the values (7.8) provides an upper bound

of 0.648 for the asymptotic convergence rate; see [52, Proposition 6.32] and recall the classical estimate for

the quantity ε(m)
appearing in the proposition, which in our case becomes

ε(m) ≤ 2

( √
C/c − 1

√
C/c + 1

)m

.

Luckily, the observed convergence rate 0.483 is even better. Thus, the presence of eigenvalues with small

imaginary part, the existence of outliers, and the fact that the matrix of the eigenvectors of (A[p,p]
n,n )−1A[p,p]

G,n,n is

not exactly unitary do not seem to negatively influence the observed convergence rate.

We conclude the numerical example by showing in Figure 7.1 the error |u(x, y)− ũ(x, y)|/‖u‖∞, where ũ(x, y)
is the computed solution, for n = 30 and for different values of p. The 2-norm of the relative error is also

given in the figure.

Example 3. Consider problem (7.1) in the case d = 3, defined on the unit cube

Ω = (0, 1)3, G(x̂, ŷ, ẑ) = (x̂, ŷ, ẑ),
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n1 × n2 × n3 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

15 × 15 × 15 20 21 22 23 24 25 26 27

20 × 20 × 20 20 22 23 23 24 24 25 26

25 × 25 × 25 21 22 23 23 24 24 25 25

30 × 30 × 30 21 22 23 23 24 24 24 25

Table 7.3: Example 3: number of PGMRES iterations for solving A[p1,p2,p3]
G,n1,n2,n3

u = f up to a precision of 10
−6
,

varying the mesh size n
1
× n

2
× n

3
and the spline degree p

1
= p

2
= p

3
= p.

with

K(x, y, z) =



e
xyz xy

2

xz
2

xy
2

e
x+y+z yz

2

xz
2

yz
2

xyz + 3


, β(x, y, z) =


5xy + z

−10yz + x

5xz + y

 , γ(x, y, z) =
x2y − y3

1 + z
, f (x, y, z) = 1.

We solved the corresponding B-spline IgA collocation linear system A[p1,p2,p3]
G,n1,n2,n3

u = f by means of the PGMRES

method, with the PL-matrix as preconditioner. The results are collected in Table 7.3, and once again, they

show that the PL-matrix is an optimal and robust GMRES preconditioner for the general IgA collocation

matrix.

7.2 Optimal and robust multi-iterative multigrid solver for the PL-matrix A[p]
n

Let us consider the linear system

A[p]
n u = f (7.9)

coming from the IgA collocation approximation of the d-dimensional problem (7.1) with n := (n
1
, . . . , nd),

p := (p
1
, . . . , pd), in the case where K = I, β = 0, γ = 0, G is the identity map on the parametric domain Ω̂,

and f = 1. The matrix in (7.9) is just the PL-matrix. In this section we present optimal and robust two-grid

and multigrid methods to solve the linear system (7.9). The used machinery is very similar to the work in

Chapter 6 in the IgA Galerkin context, so we refer the reader to Chapter 6 for a description of the tools.

7.2.1 Two-grid

We consider the two-grid method TG((PGMRES)s[p]
, P[p]

n ) which is formed by:

1. a canonical coarse-grid correction, with standard full-weighting projector

P[p]
n := Pn+p−2 = Pn1+p1−2 ⊗ · · · ⊗ Pnd+pd−2, (7.10)

as given by (6.21) for m = n + p− 2. We recall that Pm is defined for any odd m ≥ 3 by

Pm :=
1

2


1 2 1

1 2 1

. . .

1 2 1

 ∈ R
m−1
2
×m. (7.11)

The prolongation operator is just the transpose of the projector (7.10), so that the coarse-grid correction

matrix is

CGC := I − (P[p]
n )T

(
P[p]

n A[p]
n (P[p]

n )T
)−1

P[p]
n A[p]

n ;
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n c[2]
n [2] c[4]

n [3] c[6]
n [4] c[8]

n [5]
81 6 6 5 4

161 7 6 5 4

321 7 6 5 4

641 7 6 5 4

1281 7 6 5 5

2561 7 6 5 5

n c[3]
n [2] c[5]

n [3] c[7]
n [4] c[9]

n [5]
80 8 6 5 4

160 8 6 5 4

320 9 7 5 4

640 9 7 5 4

1280 9 7 5 4

2560 9 7 6 5

Table 7.4: number of iterations c[p]
n needed by

the two-grid method TG((PGMRES)s[p]
, P[p]

n ) for

solving (1/n2)A[p]
n u = f/n2

up to a precision of

10
−6
. The parameter s[p]

is specified between

brackets [·].

n c[2,2]
n,n [2] c[4,4]

n,n [4] c[6,6]
n,n [5] c[8,8]

n,n [7]
21 6 6 7 8

41 6 6 7 8

61 6 6 7 8

81 6 6 7 8

101 6 6 7 8

n c[3,3]
n,n [2] c[5,5]

n,n [4] c[7,7]
n,n [6] c[9,9]

n,n [9]
20 8 6 7 7

40 8 7 7 8

60 8 7 7 7

80 8 7 7 7

100 8 7 7 7

Table 7.5: number of iterations c[p,p]
n,n needed

by the two-grid method TG((PGMRES)s[p,p]
, P[p,p]

n,n )
for solving (1/n2)A[p,p]

n,n u = f/n2
up to a precision

of 10
−6
. The parameter s[p,p]

is specified between

brackets [·].

2. s[p]
post-smoothing iterations by the PGMRES with preconditioner

Tn+p−2(hp1−2 ⊗ · · · ⊗ hpd−2) = Tn1+p1−2(hp1−2) ⊗ · · · ⊗ Tnd+pd−2(hpd−2). (7.12)

In Tables 7.4 and 7.5, we solved the (normalized) system (7.9) for d = 1, 2, using the two-grid method

TG((PGMRES)s[p]
, P[p]

n ). The two-grid procedure has been started with u(0) = 0 and stopped at the first vector

u(c)
whose relative residual in 2-norm is less than 10

−6
; cf. (7.7).

Let us give a motivation for the choice of our two-grid method through the symbol. We first consider

the case d = 1 and then we generalize the argument to the case d ≥ 2. We will not provide all the necessary

details, since they were already described in Section 6.2 in the (analogous) context of Galerkin IgA. For a

better understanding of the following discussion, the reader is recommended to read Chapter 6 first.

For d = 1, the symbol of { 1n2
A[p]

n }n is

fp(θ) = (2 − 2 cos θ)hp−2(θ).

As already pointed out (see the discussion after Lemma 7.1), the symbol fp has a unique zero at θ = 0,

implying that the low frequency subspace is ill-conditioned for
1

n2
A[p]

n . However, this ill-conditioning in low

frequencies is canonical when dealing with matrices coming from the approximation of elliptic problems like

(7.1), and, in fact, it causes no problems for any standard two-grid or multigrid procedure which employs

the usual full-weighting projector P[p]
n . Indeed, P[p]

n is designed to be highly contractive in low frequencies

and hence any classical two-grid or multigrid method using such a projector combined with any standard

smoother (e.g. Gauss-Seidel) will have a convergence rate independent of the matrix size. However, when

p is large, a numerical zero of the (normalized) symbol fp/M fp occurs at θ = π; see Lemma 7.1, Figure 5.1

and Table 5.1. Therefore, for large p, also the high frequency subspace is ill-conditioned for
1

n2
A[p]

n , and

this non-canonical ill-conditioning in high frequencies is completely ignored by the full-weighting projector

P[p]
n . This is the reason why classical two-grid and multigrid procedures with full-weighting projector and

standard Gauss-Seidel smoother have a convergence rate that, despite being independent of the matrix size,

worsens with p.
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Figure 7.2: graph of wp(θ) := hp(θ)/hp−2(θ) for p = 2, . . . , 7.

The choice of using as a smoother, instead of the Gauss-Seidel method, the PGMRES with preconditioner

Tn+p−2(hp−2) (as given by (7.12) for d = 1, p = p, n = n), is made in order to gain a p-independent convergence
rate. Actually, we see from Table 7.4 that the resulting two-grid method is quite successful, its convergence

rate being independent of both n and p. This success was not unexpected. Indeed, the idea of using the

preconditioner Tn+p−2(hp−2) follows from the observation that [hp−2(θ)]−1 fp(θ) = 2 − 2 cos θ is p-independent,
which means that the symbol hp−2 of the Toeplitz preconditioner Tn+p−2(hp−2) ‘erases’ the numerical zero of

the symbol fp of
1

n2
A[p]

n at θ = π; see Subsection 6.2.5 for more detailed explanations. Therefore, we expect

that

- the PGMRES alone for
1

n2
A[p]

n has a convergence rate substantially independent of p but worsening

with n;

- the standard two-grid and multigrid procedures with full-weighting projector and classical smoothers

(e.g. Gauss-Seidel) have a convergence rate independent of n but worsening with p;

- the combination of this two methods in a unique two-grid or multigrid procedure has a convergence

rate independent of both n and p, according to the multi-iterative idea.

In the case d = 2, the symbol of { 1n2
A[p1,p2]

n1,n2
}n ,with n

1
= ν

1
n and n

2
= ν

2
n, is

f (ν1,ν2)
p1,p2

(θ
1
, θ

2
) = ν2

1
fp1

(θ
1
)hp2

(θ
2
) + ν2

2
hp1

(θ
1
) fp2

(θ
2
)

= hp1−2(θ1)hp2−2(θ2)
[
ν2
1
(2 − 2 cos θ

1
)

hp2
(θ

2
)

hp2−2(θ2)
+ ν2

2

hp1
(θ

1
)

hp1−2(θ1)
(2 − 2 cos θ

2
)
]

= (hp1−2 ⊗ hp2−2)(θ1, θ2)
[
ν2
1
(2 − 2 cos θ

1
)wp2

(θ
2
) + ν2

2
wp1

(θ
1
)(2 − 2 cos θ

2
)
]
,
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where wp(θ) := hp(θ)/hp−2(θ), and, for general d ≥ 2, the symbol of { 1n2
A[p]

n }n, with n = νn = (ν
1
n, . . . , νdn), is

f (ν)
p (θ) =

d∑
k=1

ν2k(hp1
⊗ · · · ⊗ hpk−1 ⊗ fpk ⊗ hpk+1

⊗ · · · ⊗ hpd )(θ)

= (hp1−2 ⊗ · · · ⊗ hpd−2)(θ)
d∑

k=1

ν2kwp1
(θ

1
) · · ·wpk−1(θk−1)(2 − 2 cos θk)wpk+1

(θk+1) · · ·wpd (θd).

We see from Figure 7.2 that the function wp is p-independent, in the sense that it is uniformly bounded from

above and below by two positive constants independent of p. Actually, it seems that wp converges uniformly

to some function with range in [0.4, 1]. Therefore, the idea of using the PGMRES with preconditioner (7.12)

as smoother has the same motivation as for the case d = 1: the preconditioned symbol

[(hp1−2 ⊗ · · · ⊗ hpd−2)(θ)]
−1 f (ν)

p (θ) =

d∑
k=1

ν2kwp1
(θ

1
) · · ·wpk−1(θk−1)(2 − 2 cos θk)wpk+1

(θk+1) · · ·wpd (θd)

is p-independent. This implies that the numerical zeros of f (ν)
p at the π-edge points (7.3) are completely

‘erased’ by the symbol hp1−2 ⊗ · · · ⊗ hpd−2 of the Toeplitz preconditioner (7.12), and this motivates why such a

preconditioner is effective; we refer again to Subsection 6.2.5 for more detailed explanations.

Finally, we point out that the preconditioner (7.12) is effectively solvable. Indeed, due to the tensor-

product structure and to the bandedness of the matrices Tn j+p j−2(hp j−2), the computational cost for solving a

linear system with matrix (7.12) is linear in the matrix size N(n + p− 2) =
∏d

j=1(n j + p j − 2).

7.2.2 Multigrid: V-cycle and W-cycle

We now focus on the V-cycle and W-cycle multigrid methods for the PL-matrix
1

n2
A[p]

n formed by:

1. standard coarse-grid corrections at each level, which use, as restriction operator, the full-weighting

restriction (6.21) (with properly adjusted size), and, as prolongation operator, the transpose of the

projector;

2. s[p]
post-smoothing iterations by the PGMRES with preconditioner (7.12) at the finest level, and a single

standard Gauss-Seidel post-smoothing iteration at all the other levels.

Let us assume that n = (n, . . . , n) and p = (p, . . . , p). We denote by index 0 the finest level and by index

`
[p]
n := log

2
(n + p − 1) − 1 the coarsest level. Let A[p]

n,i be the matrix at level i, whose dimension is (m[p]
n,i )d

,

0 ≤ i ≤ `[p]
n , with m[p]

n,i := n+p−1
2

i − 1. In this notation, we have A[p]
n,0 = (1/n2)A[p]

n and

A[p]
n,i+1 = P[p]

n,i A[p]
n,i (P[p]

n,i )
T , i = 0, . . . , `[p]

n − 1,

where

P[p]
n,i := Pm[p]

n,i
⊗ · · · ⊗ Pm[p]

n,i
, i = 0, . . . , `[p]

n − 1,

is the full-weighting projector at level i, and Pm is defined in (7.11). Regarding the smoother, at each coarse

level i ≥ 1 we used one single post-smoothing iteration with the standard Gauss-Seidel method; at the finest

level i = 0 we used s[p]
post-smoothing iterations by the PGMRES with preconditioner (7.12). At each level

i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and two recursive calls

in the W-cycle, and then we applied one post-smoothing iteration by the Gauss-Seidel method (if i ≥ 1), or

s[p]
post-smoothing iterations by the PGMRES with preconditioner (7.12) (if i = 0).
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n c[2]
n [2] n c[4]

n [3] n c[6]
n [4] n c[8]

n [5]
15 7 6 13 10 6 11 9 5 9 8 5

31 8 6 29 11 6 27 13 6 25 13 5

63 9 6 61 12 6 59 14 6 57 17 5

127 10 7 125 13 7 123 15 6 121 17 5

255 10 7 253 13 7 251 15 6 249 18 5

511 11 7 509 14 7 507 16 6 505 18 5

1023 11 7 1021 14 7 1019 17 6 1017 19 6

n c[3]
n [2] n c[5]

n [3] n c[7]
n [4] n c[9]

n [5]
14 9 8 12 10 6 10 8 5 8 7 5

30 10 8 28 13 6 26 13 5 24 12 5

62 11 8 60 13 6 58 16 6 56 17 5

126 12 8 124 14 7 122 16 6 120 19 5

254 12 9 252 15 7 250 17 6 248 19 5

510 12 9 508 15 7 506 17 6 504 19 5

1022 13 9 1020 16 7 1018 18 6 1016 20 5

Table 7.6: number of iterations c[p]
n needed for solving (1/n2)A[p]

n u = f/n2
up to a precision of 10

−6
, when

using the multigrid cycle with s[p]
post-smoothing steps by the PGMRES at the finest level and 1 post-

smoothing step by standard Gauss-Seidel at the coarse levels. The parameter s[p]
is specified between

brackets [·]. The methods have been started with u(0) = 0 and stopped at the first term u(c)
satisfying the

relative criterion (7.7). For each pair (p, n), the first entry corresponding to c[p]
n refers to the V-cycle, the

second entry to the W-cycle.

n c[2,2]
n,n [2] n c[4,4]

n,n [4] n c[6,6]
n,n [5] n c[8,8]

n,n [7]
15 7 6 13 9 6 11 8 6 9 8 7

31 8 6 29 11 6 27 12 7 25 12 8

63 9 6 61 12 7 59 14 7 57 16 8

127 9 6 125 13 7 123 15 7 121 17 9

255 10 7 253 13 7 251 16 8 249 18 9

n c[3,3]
n,n [2] n c[5,5]

n,n [4] n c[7,7]
n,n [6] n c[9,9]

n,n [9]
14 8 8 12 9 7 10 8 6 8 9 9

30 10 8 28 12 7 26 12 7 24 11 7

62 10 8 60 13 7 58 15 7 56 16 8

126 11 8 124 14 8 122 16 8 120 18 8

254 12 8 252 15 7 250 17 7 248 19 8

Table 7.7: number of iterations c[p,p]
n,n needed for solving (1/n2)A[p,p]

n,n u = f/n2
up to a precision of 10

−6
,

when using the multigrid cycle with s[p,p]
post-smoothing steps by the PGMRES at the finest level and 1

post-smoothing step by standard Gauss-Seidel at the coarse levels. The parameter s[p,p]
is specified between

brackets [·]. The methods have been started with u(0) = 0 and stopped at the first term u(c)
satisfying the

relative criterion (7.7). For each pair (p, n), the first entry corresponding to c[p,p]
n,n refers to the V-cycle, the

second entry to the W-cycle.
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n c[2,2,2]
n,n,n [2] n c[4,4,4]

n,n,n [4] n c[6,6,6]
n,n,n [6] n c[8,8,8]

n,n,n [9]
15 6 6 13 8 6 11 7 6 9 9 9

31 8 6 29 10 6 27 10 6 25 10 8

63 9 6 61 11 6 59 13 7 57 14 8

n c[3,3,3]
n,n,n [2] n c[5,5,5]

n,n,n [4] n c[7,7,7]
n,n,n [7] n c[9,9,9]

n,n,n [12]
14 8 7 12 8 7 10 8 7 8 9 9

30 9 8 28 11 7 26 10 8 24 9 7

62 10 8 60 12 7 58 14 8 56 14 8

Table 7.8: number of iterations c[p,p,p]
n,n,n needed for solving (1/n2)A[p,p,p]

n,n,n u = f/n2
up to a precision of 10

−6
,

when using the multigrid cycle with s[p,p,p]
post-smoothing steps by the PGMRES at the finest level and 1

post-smoothing step by standard Gauss-Seidel at the coarse levels. The parameter s[p,p,p]
is specified between

brackets [·]. The methods have been started with u(0) = 0 and stopped at the first term u(c)
satisfying the

relative criterion (7.7). For each pair (p, n), the first entry corresponding to c[p,p,p]
n,n,n refers to the V-cycle, the

second entry to the W-cycle.

We observe that these V-cycle and W-cycle essentially coincide with those considered in Chapter 6

(Section 6.6) for the IgA Galerkin PL-matrix, with the only difference that now, at the finest level, we

use a PGMRES smoother instead of a PCG smoother, because of the non-symmetry of the IgA collocation

PL-matrix.

In Tables 7.6, 7.7, 7.8 we solved the (normalized) system (7.9) for d = 1, 2, 3, using the V-cycle and W-

cycle multigrid methods described above. We see that the number of V-cycle and W-cycle iterations for

reaching the preassigned accuracy 10
−6

is substantially independent of all the relevant parameters: p, n,
d. In particular, the convergence rate of the W-cycle is practically constant (the number of iterations is

around 8). The only unpleasant fact is that the number of PGMRES post-smoothing steps s[p,...,p]
needed for

keeping a fixed number of W-cycle iterations around 8 slightly increases when p and d increase. However,

we should also say that, if we decrease s[p,...,p]
a little bit, the number of iterations does not increase so

much. For instance, if in Table 7.8 we chose s[9,9,9] = 9 (instead of s[9,9,9] = 12), then the resulting number of

W-cycle iterations c[9,9,9]
n,n,n for n = 56 would be 12 (instead of 8).
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Conclusion

In the first part of this thesis (Chapter 2), we provided new tools for computing the asymptotic spectral

distribution of matrix-sequences {An}. Then, in Chapters 3–5, we considered the sequences of matrices

{An} associated with the numerical approximation of elliptic PDE by means of various numerical methods:

from the classical Qp Lagrangian FEM to more recent techniques based on the IgA paradigm, such as

the Galerkin B-spline IgA and the B-spline IgA Collocation Method. For each of these matrix-sequences

{An}, we computed the corresponding spectral symbol in the sense of Definition 1.1, and we studied its

properties in considerable detail. Afterwards, in Chapters 6–7, we used the properties of the symbol to

design fast (optimal and robust) multi-iterative solvers of multigrid type for the matrices An associated with

the IgA-based methods.

It is clear that the nature of this thesis is at the same time classificatory and applicative. In fact, a

precise target of all this work is to show that, whenever a linear PDE is given and a linear numerical method

for its approximation is chosen, one may ask if a spectral distribution for the corresponding sequence of

discretization matrices An exists. Usually, the answer is ‘yes’ and the computation of the symbol describing

the spectral distribution can be carried out by using the huge ‘GLT machinery’, of which here we have

seen particular examples of applications. In this sense, the present thesis is classificatory: we chose specific

PDE and numerical methods, and we determined the symbol for the resulting discretization matrices An.

However, we did not limit ourselves to find the symbol: we also studied its properties and used them for

designing fast solvers for the matrices An. Here is the applicative nature of our work.

From this discussion, it is clear that a lot of open problems remain, because a lot of PDE and numerical

methods have not been investigated yet: the ‘classification’ is still incomplete, since a lot of PDE and

numerical methods are still waiting for their symbol! We list some open problems in the following.

1. Compute (and study) the symbol of the matrices arising from the Galerkin B-spline IgA approximation

of the full elliptic PDE (5.1). Note that such a symbol has not been computed in this thesis, because in

Chapter 4, where we considered the Galerkin B-spline IgA, we only focused on the constant-coefficient

PDE (4.1).

2. Compute (and study) the symbol of the matrices arising from the approximation of (5.1) by means of

Galerkin-type methods based on B-splines with reduced smoothness. This has been partially done in

[32], but without any rigorous theoretical justification and, in any case, the problem (3) addressed in

[32] is much simpler than (5.1). Moreover, [32] does not contain a careful study of the symbol, which

would shed light on the asymptotic spectral properties of the considered matrices.

3. Compute (and study) the symbol of the matrices arising from the approximation of (4.1) and (5.1)

by means of Finite Element Methods that use other bases than the Lagrangian one. It is known in

the FEM community that choosing the Lagrangian basis with uniform knots (as in Chapter 3) is a

simple but unfortunate choice, due to the instability of the Lagrangian interpolation. A much more

interesting basis is, for instance, the so-called integrated Legendre basis [55]. Another possibility is to

use the Lagrangian basis, but with Gauss-Lobatto nodes. Both these choices can be the subject of a

future research.
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4. Compute (and study) the symbol of the matrices arising from the Galkerkin IgA approximation and

the IgA collocation approximation of (5.1) in the case where the B-spline basis functions are replaced

by NURBS. The current research of our team is moving in this direction: after the identification and

the study of the symbol, we will be interested in designing fast iterative solvers for the resulting

discretization matrices, in analogy with the program followed in Chapters 6–7.

5. Use the properties of the symbol associated with the matrices coming from other numerical techniques

than IgA in order to design fast iterative solvers also for these matrices. In Chapters 6–7 we only

considered the IgA case, but one may be interested in fast solvers for other discretization matrices as

well (e.g., FEM matrices or matrices associated with the Galerkin-type methods mentioned in item 2).

Besides the specific issues listed above, other more general problems that can be addressed in the future

are, on the one hand, the computation/study of the symbol associated with the matrices An coming from the

discretization of other differential problems of interest in Physics and Engineering (Navier-Stokes equations,

elasticity equations, ...), and, on the other hand, the organization of the material concerning the ‘GLT

machinery’ in a book.
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