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Introduction

Partial Differential Equations (PDE) are extensively used in Physics, Engineering and Applied Sciences in
order to model real-world problems. A closed form for the analytical solution of such PDE is normally
not available and, even in the few cases in which it is available, it often reduces to a non-informative
representation formula, completely useless from a practical viewpoint (think for example to the solution of
the heat equation...). It is therefore of fundamental importance to approximate the solution u of a PDE by
means of some numerical method.

Despite the differences that allow one to distinguish among the various numerical methods, the principle
on which all of them are based is essentially the same: they first discretize the continuous PDE by introducing
a mesh, related to some discretization parameter n, and then they compute the corresponding numerical
solution u,, which will converge in some topology to the solution u of the PDE when n — oo, i.e., when the
mesh is progressively refined.

Now, if the considered PDE and the chosen numerical method are both linear, the actual computation
of the numerical solution u, reduces to solving a certain linear system A,u, = f, whose size d, increases
with n and tends to infinity when n — oo. Hence, what we actually have is not just a single linear system,
but a whole sequence of linear systems with increasing dimensions. Furthermore, what is often verified
in practice is that, when n — oo, the sequence of discretization matrices A, enjoys an asymptotic spectral
distribution, which is somehow related to the spectrum of the differential operator .Z associated with the
PDE. More in detail, it often happens that, for a large set of test functions F (usually, for all continuous
functions F with bounded support), the following limit relation holds:

d
.1 1 i1 F(F(X)))
lim — F(1;(A)) = = dax, 1
Jim g 2, P40 B ), ®
where 1;(A,), j=1,...,d,, are the eigenvalues of A,, m, is the Lebesgue measure in R?, and A;,(f(x)), i =
1,...,s, are the eigenvalues of a certain matrix-valued function

f:DCRY— C™, )

In this situation, f is called the spectral symbol (or simply the symbol) of the sequence of matrices A,, and
it provides a ‘compact’ description of the asymptotic spectral distribution of A,; see Remark 1.2 below.

The identification and the study of the symbol f are, of course, two interesting issues in themselves,
because they provide a quite accurate information about the asymptotic global behavior of the eigenvalues
of A,. In particular, an often successful guesstimate for the spectral condition number «(A,), at least in
the case where A, is Hermitian positive definite, can be obtained by analyzing the eigenvalue functions
Amin(F(X)) and Anax(f(X)) (especially, the number and the orders of the zeros of Ay, (f(x)), if any). Moreover,
the number s, indentifying the space C*** in which the symbol f takes values, coincides with the number of
‘branches’ that compose the asymptotic spectrum of A,; refer again to Remark 1.2 for details and see [32]
for recent findings, concerning the number of spectral branches that characterize the large discretization
matrices associated with Galerkin-type approximations of the Laplacian eigenvalue problem —Au = Au.



At this point, we should say that the knowledge of the symbol f and of its properties is not only
interesting in itself, but can also be used for practical purposes. In particular, the symbol can be used either
to perform a convergence analysis and predict the behavior of preconditioned Krylov and multigrid methods
applied to A,, or to design effective preconditioners and multigrid solvers for the associated linear systems.
The reason is clear: the convergence properties of preconditioned Krylov and multigrid methods strongly
depend on the spectral features of the matrix to which they are applied. Hence, the spectral information
provided by the symbol f can be conveniently used for designing fast solvers of this kind and/or analyzing
their convergence properties. In this respect, we recall that recent estimates of the superlinear convergence
of the Conjugate Gradient (CG) method are strictly related to the asymptotic spectral distribution of the
matrices to which the CG method is applied; see [5].

The purpose of this thesis is to present some specific examples in which the above philosophical discussion
comes to life. As our model PDE, we consider classical second-order elliptic differential equations; see (3.1),
(4.1) and (5.1) below. Concerning the numerical methods that we employ for their solution, we make three
choices: the classical Q, Lagrangian Finite Element Method (FEM), the Galerkin Isogeometric Analysis (IgA)
based on B-splines, and the IgA Collocation Method based on B-splines. The first method is a classical
approximation technique and, consequently, there is not much to say about it: we just refer the reader
to the wide literature on the subject (see, e.g., [47, 48, 49, 18, 55]). As for the second two methods, they
will be described in Chapters 4 and 5, respectively. However, we anticipate here that both of them are
based on the IgA paradigm, whose goal is to improve the connection between numerical simulation of
PDE and Computer Aided Design (CAD) systems, the latter being widely employed in Engineering. In its
original formulation, the main idea in IgA is to use directly the geometry provided by CAD systems and to
approximate the unknown solutions of differential equations by the same type of functions. Tensor-product
B-splines and their rational extension, the so-called NURBS, are the dominant technology in CAD systems
used in Engineering, and thus also in IgA. The reader is referred to [33, Section 1.2] for a quick overview
of the IgA paradigm and to [41, 19] for a detailed introduction to this fascinating subject, which has been
developed by T. J. R. Hughes and his research team since 2005 and is now emerging on the international
scene.

Despite the specific features of the three mentioned numerical methods, all of them, as well as our elliptic
PDE, are linear. As a consequence, the actual computation of the numerical solution u, reduces to solving a
linear system A,u, = f, whose size d, tends to infinity when the discretization parameter n — oco. Therefore,
we are precisely in the framework described at the beginning, and we may be interested in computing the
symbol f characterizing the asymptotic spectrum of the matrices A, in the sense (1). This will be done, for
the three numerical methods under investigation, in Chapters 3-5, where we will also study the properties
of the symbol. After this, in Chapters 6-7, the properties of the symbol will be used in order to design fast
iterative solvers for the discretization matrices A, associated with the two numerical methods based on IgA
(the Galerkin IgA and the IgA Collocation Method). The design of fast iterative solvers for the discretization
matrices A, associated with the Lagrangian FEM approximation is an harder task, due to the bad’ features
of the related symbol, and so it will be the subject of future research.

We now describe in more details the content of Chapters 3-7, which form the core of this thesis.
Nonetheless, Chapters 1-2 are also important. Indeed, Chapter 1 provides the fundamental background that
is necessary for understanding the subsequent chapters, while Chapter 2 presents new tools for computing
spectral distributions, some of which are used in Chapter 3.

 In Chapter 3, we shall see that the symbol f of the Q, Lagrangian FEM stiffness matrices approximating
the elliptic PDE (3.1) is a (Hermitian) matrix-valued function of the form (2) with s = N(p) := H?zl Di
where p; is the polynomial approximation degree in the direction x;; see Section 3.1 for more details.
In particular, this means that the (asymptotic) spectrum of the Lagrangian FEM stiffness matrices is
split into N(p) spectral branches (cf. Remark 1.2). We will also study the properties of the symbol f,
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and we shall see that its eigenvalues A;(f(x)), i = 1,..., N(p), presents an ‘exponential scattering’ with
p- This makes it difficult to design effective iterative solvers for the Lagrangian FEM stiffness matrices
when the approximation parameters p are large, and, indeed, such solvers are not yet available: finding
them will be the subject of future research.

e In Chapter 4, we will compute the symbol of the stiffness matrices arising from the Galerkin IgA
approximation based on (tensor-product) B-splines of degree p = (p1,..., ps) of the elliptic PDE (4.1),
where again p; is the spline approximation degree in the i-th direction (see Section 4.1). This time, the
symbol is a real-valued function f, i.e., it is of the form (2) with s =1 and C replaced by R. Therefore,
unlike the FEM matrices, the Galerkin IgA matrices have a unique spectral branch. The properties of
the symbol f are deeply studied in Chapter 4 and will be used in Chapter 6 to design a fast iterative
solver for the Galerkin IgA matrices.

e In Chapter 5, we will compute the symbol of the collocation matrices associated with the isogeometric
collocation approximation based on (tensor-product) B-splines of degree p = (pi,..., ps) of the full
elliptic PDE (5.1). Note that such PDE is more complicated than the one considered in Chapters 3-4,
and, in fact, the symbol f has a more complex structure. However, f is still a real-valued function,
as in the case of the Galerkin IgA approximation considered in Chapter 4, meaning that the IgA
collocation matrices have a unique spectral branch like the Galerkin IgA matrices. The properties of
f will be carefully studied in Chapter 5 and will be exploited in Chapter 7 in order to design a fast
iterative solver for the IgA collocation matrices.

e Chapter 6 is devoted to the design of a fast iterative solver of multigrid type for the Galerkin IgA
matrices, whose symbol has been indentified and studied in Chapter 4. We point out that here the
word fast” has a twofold meaning: first, the convergence rate of the solver must be optimal, i.e.,
independent of the matrix size and of the discretization parameter n; second, the convergence rate
must be robust, i.e., independent of the spline approximation parameter p = (py,..., pqs). Using the
properties of the symbol provided in Chapter 4, we will succeed in designing a fast solver with these
characteristics for the Galerkin IgA matrices.

e Chapter 7 is completely analogous to Chapter 6: using the properties of the symbol studied in Chapter 95,
we design a fast iterative solver for the IgA collocation matrices, where the word fast’ has again the
same meaning as in Chapter 6 (see previous item).

The papers that supplied material for this thesis are [24, 25, 26, 27, 33, 34, 35, 36]. It should be
emphasized, however, that Chapters 4 and 5 contain some non-trivial extensions of the results presented in
the corresponding papers [33] and [26]. In order to keep the presentation concise and focused on a single
subject, the results of [28, 29, 30, 31] have been eventually excluded. The only paper that has not been
inserted here (because it is not finished yet), but whose content fits perfectly in the framework of this thesis,
is [32]. Let us then conclude this introduction with a brief discussion about it.

In [32], we consider the Laplacian eigenvalue problem:

—Au=Au in Q:= (0,1, 3)
u=0 on 0Q.

For its numerical approximation, we use the Galerkin method, in which the Galerkin approximation space is
chosen as the space generated by (tensor-product) B-splines of degree p > 1 and smoothness k € {0, ..., p—1}
in each direction x;, i = 1,...,d. The choice k = 0 corresponds to the classical FEM with C° B-spline
basis (instead of the Lagrangian basis used in Chapter 3), while the choice k = p — 1 corresponds to the
Galerkin IgA approximation considered in Chapter 4, which uses C”~! B-splines as basis functions. In this



context, the resulting sequence of discretization matrices A, enjoys an asymptotic spectral distribution in
the sense (1), and the associated symbol f is of the form (2) with s = (p — k). It follows that the asymptotic
spectrum of A, is split into (p — k)? spectral branches. One of these branches is known in Engineering as
‘acoustical branch’, while the others are the so-called ‘optical branches’; see, e.g., the appendix of [42] where
this terminology is employed. In particular, in the case k = 0 the number of branches is p¢, while in the
case k = p — 1 the number of branches is 1. This is consistent with our findings in Chapters 3-4; see the
discussion in the first two items above.



Chapter 1

Notation, definitions and mathematical background

1.1 Notation

o R™" (resp. C™") is the space of real (resp. complex) m X n matrices.
e If X is a matrix and « is a scalar, the matrix X is sometimes denoted by Xa.

e If x is a vector and X is a matrix, then x! and x* (resp. X! and X*) are the transpose and the transpose
conjugate of x (resp. X).

e 0, and I, denote, respectively, the m X m zero matrix and the m X m identity matrix. Sometimes, when
the dimension m is clear from the context, O and I are used instead of O,, and I,,.

e Given X € C"™", A(X) is the spectrum of X (the set of all the eigenvalues of X) and p(X) is the spectral
radius of X, i.e. p(X) := maxep(x) |4]. The eigenvalues of X are denoted by 4;(X), j=1,...,m.

e Let X € C™" be a matrix with only real eigenvalues (e.g., a Hermitian matrix). We denote by Apin(X)
and An.x(X) the minimal and the maximal eigenvalue of X, respectively. Unless otherwise stated, it is
understood that the eigenvalues of X are labeled in non-increasing order: Ap.(X) = 41(X) > ... > 4,(X) =
Amin(X); in addition, we set 4;(X) = +oo if j <1 and A;(X) = —co if j > m (this convention simplifies the
presentation, as we shall see later).

e HPD and SPD stand for ‘Hermitian Positive Definite’ and ‘Symmetric Positive Definite’, respectively. Sim-
ilarly, HPSD and SPSD stand for ‘Hermitian Positive SemiDefinite’ and ‘Symmetric Positive SemiDefinite’,
respectively.

e If X € C™", we denote by o;(X), j = 1,...,min(m,n), the singular values of X labeled, as usual, in
non-increasing order: o1(X) > ... > Oningnn(X). 01(X) and O mingnny(X) are also denoted by om.(X) and
O-min(X)-

e If p € [1,00], the symbol |||, is used to denote both the p-norm of vectors and matrices:

p
x|, := (i lil”) ifl<p<eo, x € C™
P max;—;, x| if p= oo, ’
||Xx|
IX]l, := max ——~—, X e C™",
xec" - ||x]|,
x#0

| - |lo is often referred to as the spectral or Euclidean norm and is also denoted by || - ||.



If p € [1, 0], the Schatten p-norm of a matrix X € C™" is defined as the p-norm of the vector o(X) =
(01(X), ..., 0n(X)) formed by the singular values of X; see [7]. We denote this norm by || - | ,:

& X i 1< p < oo, o
X, := { Pt o X e C™m,

The Schatten 1-norm is also called trace-norm.!

R(X) and I(X) are, respectively, the real and the imaginary part of the (square) matrix X:

X+ X X-X*
RX) := g 3I(X) = 7

(i is the imaginary unit, i = —1).

k,(X) is the condition number of the (invertible) matrix X, measured in the p-norm:
Kp(X) = [IX[],|1X 71,
k9(X) is often referred to as the spectral or Euclidean condition number and is also denoted by «(X).

If X, Y e C™" X >Y (resp. X >Y) means that X, Y are Hermitian and X —Y is nonnegative definite (resp.
positive definite).

Ifw;:D; > C, i=1,...,d, are functions, then w1 ®---®w,; : D X---XD; — C denotes the tensor-product
function

W ®- - @Wa)(&1, ..., &) = wi§D) - wal€a), & €D, i=1,....d.

More generally, if w; : D; —» C%% § = 1,...,d, are matrix-valued functions, then w; ® --- ® w, :
Dy X -+ X Dy — ClrosaXi=sad) g defined as

Wi ® - ®@Wg)(&1,...,80) = Wi(&) ® - @ wWy(&y), &ebD;,i=1,...,d

my (a slanted lowercase m with subscript d) denotes the Lebesgue measure in RY. The Lebesgue measure
in R, my, is also denoted by m. Throughout this thesis, the words ‘measure’, ‘measurable’, ‘a.e.’, etc. always
refer to the Lebesgue measure.

C.(C) (resp. C.(R)) is the space of complex-valued continuous functions defined over C (resp. R) and with
bounded support. Moreover, C:(R) := C.(R) N C'(R), where C'(R) is the space of complex-valued functions
F defined on R and such that the real and imaginary parts, R(F) and J(F), are of class C! over R in the
classical sense.

For z € C and € > 0, we denote by D(z,€) the disk centered at z and with radius €, i.e. D(z,€) :=
f(weC: w—-z <e€. For § € C and € > 0, we denote by D(S,e€) the e-expansion of §, defined as
D(S, €) := U.es D(z, €).

The words ‘matrix-sequence’, ‘matrix-sequences’, ‘matrix-family’, ‘matrix-families’ stand for ‘sequence of
matrices’, ‘sequences of matrices’, family of matrices’, families of matrices’, respectively.

A matrix-valued function f : D — C**, defined on a measurable set D C RY, is said to be measurable (resp.
continuous, in LF(D)) if all its components f;; : D — C, i,j=1,...,s, are measurable (resp. continuous,
in L?(D)). The space of functions f : D — C* belonging to L”(D) is sometimes denoted by L”(D, C*).

My choice of using the symbol || - || » to denote the Schatten p-norm was inspired by the fact that Bhatia, in his book [7], uses

the symbol ||| - ||| for the unitarily invariant norms. Note that the Schatten p-norms are unitarily invariant, being defined in terms
of singular values.
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* PP, is the space of polynomials of degree less than or equal to p.
e Ql:={qeQ?: ¢;>0 foralli=1,...,d}.
¢ Given two sequences {a,} and {b,} with a,, b, > 0 for all n, the notation
ap = O(by)
means that there exists a constant C, independent of n, such that a, < Cb, for all n.
¢ Given two sequences {a,} and {b,} with a,, b, # 0 for all sufficiently large n, the notation

n—oo0
n bn

means that a,/b, — 1 as n — oo.

1.1.1 Multi-index notation

Throughout the thesis, we will systematically use the multi-index notation, expounded by Tyrtyshnikov in
[70, Section 6]. When discretizing a linear PDE defined over a d-dimensional domain Q c R? by means of a
linear numerical method, the actual computation of the numerical solution reduces to solving a certain linear
system, whose coefficient matrix usually shows a d-level structure; see [70, Section 6] for the corresponding
definition. As we shall see in Chapters 3-5, the multi-index notation is a powerful tool that allows us to
give a compact expression of this matrix, treating the dimensionality parameter d as any other parameter
involved in the considered numerical method. In this way, the dependency of the matrix structure from d
is highlighted and a compact presentation is made possible.

A multi-index i is simply a vector in Z4; its components are denoted by i1, ...,ig. A multi-index i € 74 is
also called a d-index.

e 0,1, 2,... are the vectors of all zeros, all ones, all twos, ... (their size will be clear from the context).
e If i,j are d-indices, i < j means that iy < j, for all £ =1,...,d.

o If h,k are d-indices such that h < k, the multi-index range h,...,k is the set {j € Z? : h < j < k}. We

assume for the multi-index range h,..., k the standard lexicographic ordering:
e [ [ ('h’ e ‘]d) ]jd:hf’ """ ka :de—lzhd—l,.‘-,kd—l o Ji=ht,....k . (11)
For instance, in the case d = 2 the ordering is
(h17 h2)7 (hl’ h2+1)9 ceey (hla kZ)a (h1+17 hZ)a (h1+1, h2+1)’ sy (h1+17 kZ)a """ ) (kh hZ)’ (kb h2+1)7 ceey (kla k2)
e When a d-index j varies over a multi-index range h,...,k (this is sometimes written as j = h,...,k

or (jiy..erja) = (hy,...,hy),...,(ki,...,ky)), it is always understood that j varies from h to k following
the specific ordering (1.1). For instance, if m € N¢ and if we write X = [xij]Z'jzl, then X is a matrix in

Clm-max(m-ma) \whose components are indexed by two d-indices i,j, both varying over the multi-index
range 1,...,m according to (L1). Similarly, if x = [x;]?, then x is a vector in C"""™ whose components

.....

..........
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o If i, j € Z¢ are multi-indices, i < j means that i precedes (or equals) j in the lexicographic ordering (which
is a total ordering on Zd). Moreover, we define

R I A i A
l/\J.—{J. i i> . 1.2)

Note that i A j is the minimum among i and j with respect to the lexicographic ordering.

e Given h, k € Z¢ with h < k, the notation Z}‘:h indicates the summation over all j in the multi-index range
h,.. . k.

e For a multi-index m € N¢, N(m) := H?:l m; and m — oo means that min(my, ..., mg) — oo.

e Operations involving multi-indices that do not have a meaning when considering multi-indices as normal

vectors must be always understood in the componentwise sense. For instance, np = (nips, ..., nqpq), ai/j =
(it/ ji, ..., a@ig/ ja) for all @ € C (of course, the division is defined when ji,...,js # 0), i’ = (i4,...,i2),
imodm = (iimodmy,...,i;modmy), and so on.

e When a multi-index appears as subscript or superscript, we often suppress the parentheses to simplify
the notation. For instance, the component of the vector x = [x;];2; corresponding to the multi-index i is
denoted by x; or by x;,__;,, and we preferably avoid the heavy notation x , ;.

1.2 Preliminaries on Linear Algebra and Matrix Analysis

We recall in this section some results from Linear Algebra and Matrix Analysis that will be used later on.
Most of the results that we are going to see can be found in [7] or [8].

For every X € C™", ||X||; is the maximum among the 1-norms of the column vectors of X, while ||X]|. is
the maximum among the 1-norms of the row vectors of X. As a consequence, ||X|l; = [|IX”|l.. An important
relation between the p-norms with p = 1,2, o is the following:

X1 = 1X1 < VIXIWXNeo = VIXNIXT Il 1.3)

see [8, p. 121].
Given X € C™ we know from the Singular Value Decomposition (SVD) that rank(X) is the number of
nonzero singular values of X and

X1l = ormax(X) = nax_ u'Xv. 1.4)
As a consequence, || X]|l. = ||X]|| and
X1l = Z o (X) < rank(X)|IX]| < m||X]|, VX e C™, 1.5)

i=1
From the SVD we also know that the formula || X7, = m holds whenever X is invertible, hence

O max (X )
O min (X ) ’

k(X) =

for all invertible matrices X. 1.6)

If X € C™ is a normal matrix, i.e. XX* = X*X, then X is unitarily diagonalizable, meaning that there
exist a unitary matrix U and a diagonal matrix D such that X = UDU". Using this, it can be shown that
the singular values of X coincide with the moduli of the eigenvalues, [1;(X)|, j = 1,...,m. Consequently,
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[|1X]| = p(X) and ||X]ll; = ZTzl |1;(X)|. Note that, if X is Hermitian (X* = X) or skew-Hermitian (X* = -X),
then X is normal.

For any square matrix X, R(X) and 3(X) are Hermitian matrices and X = R(X) + i3(X). If 4 is an
eigenvalue of X and x is a corresponding eigenvector, then, by the minimax principle [7, 8], we have

= XX XX XX R, A RO X LS, A (S € €.

X*X X*X
This implies that

A(X) C [Anin(R(X)), Anax(RX))] X [Ainin(S(X)), Amax (S(X))], for all square matrices X. (1.7)

Other consequences of the minimax principle are the following:
ApinX + Y) > Apin(X) + Apin(Y),  for all Hermitian matrices X, Y, (1.8)
Anax(X + Y) € Apax(X) + Anax(Y),  for all Hermitian matrices X, Y, 1.9)

A(X)=A.Y), Vj=1,...,m, for all Hermitian matrices X,Y € C"™" such that X > Y. 1.10)

An important relation between the singular values of X and the eigenvalues of R(X) is provided by the
Fan-Hoffman theorem [7, Proposition II1.5.1]. We report below the corresponding statement, together with
the statement of the Ky-Fan theorem [7, Proposition II1.5.3]. The latter provides a relation between the
real parts of the eigenvalues of X and the eigenvalues of R(X). Recall that the eigenvalues of a Hermitian
matrix, such as R(X), are labeled in non-increasing order (see Section 1.1).

Theorem 1.1 (Fan-Hoffman). Let X € C™™, then
o(X) = LRX), Yji=1...,m

We shall see in Chapters 3-4 that the Fan-Hoffman theorem is very useful for estimating the spectral
condition number (1.6) of a non-singular matrix X coming from the numerical approximation of a PDE.

Theorem 1.2 (Ky-Fan). Let X € C™" and label the eigenvalues of X so that R(1;(X)) > ... > R(4,(X)). Then

k k
D R < D ARX), (L11)

j=1 j=1
forall k=1,...,m. Moreover, for k = m, the equality holds in (1.11).

We now provide the statement of two classical interlacing theorems; see [7, Corollary II1.1.5] for the
first one and [7, p. 63] for the second one. We recall that Y is a principal submatrix of X € C™ if there
exists E C {1,...,m} such that Y is obtained from X by removing the rows and columns corresponding to
indices i € E. In this case, Y is called the principal submatrix of X corresponding to the set of indices
F={,..., m\E.

Theorem 1.3 (Cauchy’s interlacing theorem). Let X € C"™ be Hermitian and let Y be a principal submatrix
of X of order €. Then
/l](X)Z/l](Y)Z/l]Hn_[(X), VJ: 1,,€

In the statement of Theorem 1.4 we use the convention introduced in Section 1.1 for a matrix X € C™™
with only real eigenvalues, namely 4;(X) = —oo if i <1 and 4;(X) = 400 if i > m.

Theorem 1.4. Let Y = X + E, where X, E € C™™ are Hermitian. Let k*,k~ > 0 be respectively the number of
positive and the number of negative eigenvalues of E, i.e.

kKt :=#{jefl,...,m}: A/(E) > 0}, k™ :=#{jel{l,...,m}: A;(E) <O}

Then
/lj_k+(X) > A](Y) > /1]‘+k—(X), VJ = 1, N B
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1.2.1 Tensor products and direct sums

If X,Y are matrices of any dimension, say X € C™"*" and Y € Ci*t then
e X®Y is the tensor (or Kronecker) product of X and Y, that is the m;{; X myfy matrix

.X11Y te lezY
X®Y := [X,‘jY]i:I ..... m = 5

Jj=1,....mg
XY 0 Xpm, Y

e X®Y is the direct sum of X and Y, that is the (my + £;) X (my + €5) matrix

X@Y::[%‘%].

Tensor products and direct sums possess a lot of nice algebraic properties.

(1) Associativity: for all matrices X, Y,Z, (XQY)®Z =X (Y ®Z)and (X®Y)DZ =X® (Y ®Z). This
means that we can omit parentheses in expressions like X;® Xo ® --- X, or X1 Xo ®--- @ X,

(i) Multi-index notation (for tensor products): if we have d matrices X, € C"™"™_ k =1,...,d, then
X1 ®Xo® - ®Xy)ij = (X1)iyjy(X2)injo - (Xa)igju Vi,j=1,...,m, (112)

where m := (my, mo, ...,my). This means that, for all 7, j in the multi-index range 1,...,m, the (i, j)-th
entry of X1 ® X, ® --- ® X,; is given by (1.12). Note that it makes sense to talk about the (i, j)-th entry
of X1 ® Xo ® --- ® X, because we have fixed for the set 1,...,m the lexicographic ordering (1.1). Note
also that (1.12) can be rewritten as
m
Xi®-®X; = [(Xl)iljl(XQ)igjz E (Xd)idjd]ijzl .
The equality (1.12) is of fundamental importance and, indeed, it motivates the introduction of multi-
indices for indexing the entries of a matrix formed by a sum of one or more tensor products. To

understand better the importance of (1.12), try to write the (i, j)-th entry of X; ® X, ® --- ® X; as a
function of two linear indices i, j = 1,..., N(m).

(iit) The relations (X;® Y1)(X2 ® Yy) = (X1Xo) ® (Y1Ys) and (X1 ® Y)(Xe @ Yo) = (X1 X2) ® (Y1Y2) hold whenever
X1, Xy can be multiplied and Yi, Yo can be multiplied.

tv) For all matrices X, Y, ® = Y, @ = ® an ® = ®Y", @ = D Y.
(iv) F 1l i XY, (X)) =X"QY", XeY) =X"®&Y" and (X Y)T XTeY? (X Y)T XToY?

(v) Bilinearity (of tensor products): (1 X;+a2X2)®(B1Y1+2Y2) = a151(X1® Y1)+ a1B2(X1®@Ys) + a9f1(Xo®@ Y1) +
a9f2(Xy ® Yo) for all ay, as,B1,B2 € C and for all matrices Xj, Xo, Y1, Y2 such that X, Xs are summable
and Yi, Yy are summable.

From (i)—(v), a lot of other interesting properties follow. We recall some of them. If X, Y are invertible, then
X ® Y is invertible, its inverse being X '@ Y. If X,Y are normal (resp. Hermitian, symmetric, unitary)
then X ® Y is also normal (resp. Hermitian, symmetric, unitary). If X € C™" and Y € C™¢ then the
eigenvalues and the singular values of X® Y (resp. X @ Y) are {A,(X)4;(Y) :i=1,...,m, j=1,...,¢} and
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{locX)oi(Y) :i=1,...,m, j=1,...,¢} (resp. {4;(X):i=1....mU{4;(Y):j=1,...,¢}, and {oi(X) : i =
L...,m}Uloj(Y): j=1,...,0}). As a consequence, for all X € C™™ and Y € C*,

IX ® Y| = [IXI[ Y]], IX @ Y| = max(||X]|, [[Y]D, 1.13)
(1X ® Ylll; = Xl ¥l I1X & Y, = Xl + ¥l 1.14)
rank(X ® Y) = rank(X)rank(Y), rank(X @ Y) = rank(X) + rank(Y), 1.15)

and if X, Y are HPD (resp. HPSD), then X ® Y is HPD (resp. HPSD), with
Anin(X @ Y) = Apin(X) Amin(¥),  Amax(X @ Y) = Amax(X) Amax(¥). (1.16)
In particular,
X®Y>X ®Y, forall HPSD matrices X, Y, X’,Y’ such that X > X" and Y > Y, 1.17)

because XY - X' Y = X-X)®Y + X @ (Y —-Y’) is a sum of two HPSD matrices. We also point out
the following property: suppose we are given 2d matrices Xi,...,Xy, Y1,..., Y, with X;,Y; € C" for all
i=1,...,d, then
d
rank(X; ® - ® Xy — Y@+ @ ¥y) < >~ rank(X; — Yymy -+ my_ymisy -+~ my = N(m)

i=1 i=1 t

d
k(X; - Y;
M, 1.18)

where, of course, m = (my, ..., my). This is true because
d
rank(X1®---®Xd—Y1®---®Yd):rank Z Y1®"'®Yi_1®(Xi—Yi)®X,'+1®"'®Xd
i=1

d
< ) rank (Y@ @Y ® (X, - ¥) 8 X ® - ® X,)
i=1
d
= Z rank(Y; ® --- ® Yi_prank(X; — Y)rank(Xi,1 ® - - - ® X))
=1

d
< Z nmyp--- m,-_lrank(X,- - Yi)m,-+1 et Mmy.
i=1

A property of tensor products, which can be deduced from the definition but is not as popular as the
previous ones, is given in Lemma 1.1; see also [38].

Lemma 1.1. For all m € N? there exists a permutation matrix Il,, € CN™N0W gy ch that

Xy ® X, = I,(X; ® Xp)IT! | VX, € C™™™ | VX, € C™2"m2, (1.19)
Proof. Let Il,, be the permutation matrix associated with the permutation o of {1,...,mmy} given by
o =[1lme+1,2me+1,...,(my—VDme+1,2,mg+2,2my+2,...,(my—Dmg +2,...... , Mg, 2msy, 3Ms . . ., MyMms],

i.e., by

o (i) := (i — 1) mod my)my + {l—| +1, i=1,..., myms.
ny

In other words, II,, is the matrix whose rows are (in this order) e,;), i = 1,...,mymg, where e;, i = 1,...,mmsy,
are the vectors of the canonical basis of C™"2, It can be verified that II,, defined in this way satisfies (1.19)
for all X; € C™™ and X, € C"*"™. The verification can be done componentwise, by showing that the (i, j)-th
entry of the first matrix in (1.19) is equal to the (i, j)-th entry of the second matrix, for alli, j=1,...,mmy. O
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Lemma 1.1 says that the tensor product of two matrices is ‘almost’ commutative. It is important to notice
that the permutation matrix I, depend only on m and not on the specific matrices X, Xo. By induction, we
now extend the result of Lemma 1.1 to the case of tensor products with more than two factors.

Lemma 1.2. For all m € N? and all permutations o of the set {1,...,d}, there exists a permutation matrix
I1,,., € CNmXNm) g ch that

Xa’(l) Q- X(T(d) = Hm;a-(Xl ®:---® Xd)HT VX € lexml’ ..., ¥X, € Cmaxmd

m;o?

Proof. The case d =1 is trivial. For d = 2, the result is clear when o is the identity, and it has been proved
in Lemma 1.1 when o = [2,1]. Now we fix d > 3, we assume the result is true for d — 1, and we prove
that it is true also for d. Let m € N? and let o be a permutation of {1,...,d}. Denote by i the index such
that o(i) = d, and let 7 be the permutation of {1,...,d — 1} defined as 7(j) := o(j) for j=1,...,i —1 and
7(j) :=0(j+1) for j=1i,...,d—1. Then, keeping in mind the properties of tensor products, for all Xi,..., Xy
with X; e C">*, j=1,...,d, we have

Xoy® - ® Xoa)y = Xoty ® * ® Xrie1) ® X ® Xir(iv1) ® -+ ® Xra)

=Xo)®: - ® Xo-(i—l) ® [H(ma(m)~"ma(d),md)(X0'(i+1) ®---Q Xa-(d) ® Xd)H (Lemma 1.1)

g |

(M (ir1) Mo (d) M)

— T

= (Imu—(l)"‘mo(i—l) ® H(mu<i+1)"'ma(d),md)) (Xo'(l) ®--® XG’(i—l) ® XO'(i+1) Q- ® Xo'(d) ® Xd) (Imo'(l)"‘mv(i—l) ® H(m{r(i+1)"'m(r(d),md))
T

= (Imo'(l)"‘m(r(i—l) ® H(mzr(iﬂ)'“ma(d)»md)) (XT(l) ®--® XT(d—l) ® Xd) (Imzr(l)'“’n(r(i—l) ® H(mu(iﬂ)'“ma(d)smd))

T
= (Imo'(l)"‘m(r(i—l) ® H(mu'(iﬂ)'“ma(d)»md)) {[H(Im ,,,,, md—l)iT(Xl Y Xd—l)H(ml md,l);‘r] ® Xd} :

.....

T
T
’ (Imu’(l)"'mo(i—l) ® H(ma'(iﬂ)"'mzr(d)smd)) = Hm;O'(Xl ®-® Xd)Hm;o-’

where Il = (Ima(l)...mg(,;l) 0 U (- d)) (ny....mype ® Iy) s a permutation matrix, being a product of

.....

two permutation matrices. |

Now we turn to the ‘distributive properties’ of tensor products with respect to direct sums. Again, it turns
out that these properties hold modulo permutation transformations which depend only on the dimensions
of the involved matrices.

Remark 1.1. From the definition of tensor products and direct sums, for all matrices Xi, ..., X;, Y we have
Xi®Xe®---0X)RY =(Xi®@Y)0 (X2®Y)®---0(Xy®7Y).
Lemma 1.3. For all { € N and m € N? there exists a permutation matrix Qg € C{mtmxtmtm) g ch that
X®Y0Ys) = Qum(X®Y)DX®Y2)] 0/, YXeCH, VY e C"™™, VY, e C"*"™.

Proof. Let X € C™, Y, € Cm>m_ Y, € C™*™_ Then, keeping in mind the properties of tensor products and
direct sums,

X® Y1 ®Y2) = Wiy [(Y1© Yo) ® XIIN,, 0 ) (Lemma 11)

= iy (V1 ® X) @ (Y2 @ X)L, . ) Remark L1)
= Homyma.0) {[H([,ml)(X ® Y, I)H(Tg’ml)] 2 [H(z,mz)(X ® YZ)H(Te,mZ)]} I omyey @emma 11)
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= Wity { (Miamy ® M) [(X ® Y1) @ (X ® ¥2)] (M) @ Tigny)) TG,
= Orm[(X®Y) ® (X ®Y2)] 0/,

where Q¢ m := Wonymy.ey T emp) ©Iemy)) is @ permutation matrix, being a product of two permutation matrices.
O

Lemma 1.4. For all { € N and m € N’ there exists a permutation matrix Qg,, € C/mt-+maxtimt.+ma) g ch that
XY@ @Y) = 0ulX®Y)® - ®(X®Y)IO,,, YXeCX, VY eC™™, .., VY, €Crom,

Proof. The case d =1 is trivial. For d = 2 the result has been proved in Lemma 1.3. Now we fix d > 3, we

assume the result is true for d — 1, and we prove that it is true also for d. Let £ € N, m € N?. Then, for all
XeC™ and all Yy,...,Y,; with Y; € C™*™i, j=1,...,d, we have

X@Y10 @Yy = Qrimms4mp 1IXY)B[X® (Yo - Yy)]} Q?,(ml,mﬁ,._md) (Lemma 1.3)

,,,,,

.....

.....

0k . . .
Lemma 1.5. For all ni ),n(z) € N, k = 1,....d, there exists a permutation matrix P.o o o, o @, o of
1 72 °7"1 72 1 "2

© 1 n) such that

.....

dimension Hle(n

d 2 2
@ (d) T
EB o EB(XA ® e Xid ) Pngl),n;1>,n§2),n§2),. alD @

) ; ol Ny
i1=1 ig=1

.....

k=1

. . k), (k) k), (k)
for all matrices ka),X;k), k=1,...,d, with ka) e Cn" ™ and Xék) € C2 *my”

Proof. For d =1 the result is clear. Fix d > 2, assume the result holds for d — 1, and let us prove it for d.
We have

d
RxP o x) = x"ex) e
k=1

d
Qo)
k=2

2 2
= (Xil) ® Xél)) ® {Pniz),anZ),...,n(ld),n;d) [@ e @(Xz(zz) R ® lej))

ip=1 ig=1

éé(xl(f)@@)(l(dd))

ip=1 ig=1

T . . .
Pn(z) LD @@ } (induction hypothesis)
1 72 et 2

.....

é e é(}(g) R ®X§j))

ig=1 ig=1

2 2 T
oy (2) (d)
o) X2 ® @ .. %‘%(Xi2 R:--® Xid ) } (In(11>+n(21) ® Pngz),ngz),...,nid),ng’])) (Remark 1.1)
9= Ig=
2 2
1 2 d T
= (Ingung) BP0, ngd>,n;d>){ 0,0, P exle -ox) 0,
ir=1 ig=1
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2 2
(D (2) (d)
EB[Q"S)JI [@---@(XZ ®XP® @ X"

ip=1 ig=1

(we used Lemma 1.4; 5 := (n,(-zz) : "nl(-j))(iz,,_,,id):(l ,,,,, D..2..2) s a multi-index, recall the multi-index notation)

2 2
1 2 d
= (Ininm,(;) ® Pniz),n(zz) ..... n;d)’n(zd)) (Q"ED”T &) Q"Szl)’”) {[@ ... @(Xi ) ® Xi(z) Q- & Xi(d ))

ip=1 ig=1
2 2 T T
<) e (X(I) eX?g-.. ®X(d)) Qo &0 w Lo, s®P o o o, o
2 io iq n’.n Ny’ n; +n Ny My ey nyng
iy=1 ig=1
2 2
— 0y (d) T
=P 1D P n® 1@ aD D EB T @(Xil ®-® Xi,, )| P 20,0 0,0 @ @
1 Mgyl 1 M2 ~ ~ 1oy Sy Ty sy Ty
1= d=
where P oy 0 @ e o @=L, o®P o e d) (d 1 n_]. O
W0 D @ D ) ) ( W ® Py oo || Qo € Q0

Before concluding this subsection, we stress that a lot of other properties involving tensor products and
direct sums can be proved by using techniques similar to those illustrated above. Here we have supplied
only the results needed later on.

1.2.2 Hadamard product

The Hadamard product of two matrices X, Y of the same dimensions, say X, Y € C™¢ is denoted by XoVY
and is nothing else than the componentwise product of X, Y:

(XOY)ij:x,-jyij, i:1,...,m,j:1,...,€.

If X,Y are Hermitian, then X o Y is Hermitian as well. This property does not hold for the usual matrix
product, because, if X, Y are Hermitian, XY may fail to be Hermitian. Moreover, if X, Y are square matrices,
then X oY is a principal submatrix of X ® Y. More precisely, if X,Y € C™™, then X oY is the principal
submatrix of X ® Y corresponding to the set of indices F = {I,m+ 1,2m +1,...,(m — 1)m + 1}. From this
observation, some important properties of the Hadamard product can be deduced. We collect some of them
in Lemma 1.6 for future purposes.

Lemma 1.6. The Hadamard product possesses the following properties.

1. ||IX o Y|| < IXIII|Y]| for all square matrices X,Y € C™,
2. If X, Y are HPD (resp. HPSD), then X oY is HPD (resp. HPSD).
3. IfX>X">0andY >Y >0, then XoY >X" oY’

Proof. 1. Since X oY is a principal submatrix of X®Y, we have {||[(Xo Y)x|| : |Ix]| =1} C {[|((X® Y)yIl : |lyll = 1}.
Indeed, fixed x € C™ with ||x|| = 1, if we take y € C"* such that vi=xiifie F={,m+1,2m+1,...,(m—1)m+1}
and y; = 0 otherwise, then |ly|| =1 and ||(X ® Y)y|| = ||(X o Y)x||. Therefore,
IX o Y| = ﬂilﬁll(X o Y)x|| < ﬂryllgll(X® Yyl = IX® Y| < IX][[[Y1],

where the last inequality holds by (1.13).

2. If X,Y are HPD (HPSD), then X® Y is HPD (HPSD) and X oY is also HPD (HPSD), being a principal
submatrix of the HPD (HPSD) matrix X ® Y.

B IfX>2X>20and Y=Y >20,then XoY—-X oY =(X-X)oY+X o(Y-Y') > O by item 2, and so
XoY>X oY, a
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1.3 Spectral distribution, spectral symbol, clustering

We introduce in this section the fundamental definitions and tools for analyzing the asymptotic spectrum
of matrix-sequences. All the notions defined here can be found in [37].

Definition 1.1 (Spectral distribution of a matrix-sequence, spectral symbol). Let {X,} be a sequence of
matrices, with X, of size d, tending to infinity, and let f : D — C**° be a measurable matrix-valued function,
defined on a measurable set D ¢ R¢ with 0 < my(D) < co.

e We say that {X,} is distributed like f in the sense of the eigenvalues, in symbols {X,} ~, f, if

f po 1F(/l (f(X))) x. VFeC,C). (1.20)

,}gg—ZF(/l( ) = d(D)

where x = (xy,...,x7) and A4;(f(x)), i =1,...,s, are the eigenvalues of f(x). In this case, f is referred
to as the spectral symbol (or simply the symbol) of the matrix-sequence {X,}.

e We say that {X,} is distributed like f in the sense of the singular values, in symbols {X,} ~, f, if

Yia F (O-z(f(x)))
lim — Z F(oi(X,)) = d(D) f = X, VFeCR), (1.21)
where o;(f(x)), i =1,...,s, are the singular values of f(x).

Note that, in the case s = 1, the function f : D — C is scalar-valued (so it will be denoted by f instead
of f), and the limit relations (1.20)-(1.21) become

1 & 1

lim - Z F(A(X,)) = i) j; F(f(x))dx, VF e C.C), 1.22)
1 & 1

r}gg 4 Z F(oj(Xy) = D) fD F(lf)Ddx, VF € C.(R). (1.23)

J=1

Remark 1.2. The tnformal mean'mg behind (1 20) is the follow'mg Assum'mg that f is continuous, if
equtspaced grLd on D, reconstructs approximately the s hypersurfaces x - L(f(x)), i=1,...,s, when n is
large. In particular, we may think about the eigenvalues of X, as if they were split into s different subsets
(or ‘branches’) of the same cardinality, in which the i-th subset is given by a uniform sampling over D of
the i-th eigenvalue function A;(f(x)). For instance, if f is continuous, d = 1, d, = ns, and D = [a, b], then
the eigenvalues of X, are approximately equal to A;(f(a + j(b —a)/n)), j=1,...,n, i =1,...,s. Analogously,
if f is continuous, d = 2, d, = n’s, and D = [ay, bi] X [as, bs], then the eigenvalues of X, are approximately
equal to A;(f(a; + ji(by — ay)/n,as + jo(by — as)/n)), ji,jo=1,...,n, i=1,...,s (and so on in a d-dimensional
setting).

For the convenience of the reader, we also report the definition of spectral distribution (and singular
value distribution) of a matrix-family {X,},aw parameterized by a multi-index.

Definition 1.2 (Spectral distribution of a matrix-family, spectral symbol). Let {X,},aw be a family of
matrices, with X, of size d, tending to infinity as n — oo, and let f : D — C**° be a measurable matrix-valued
function, defined on a measurable set D ¢ R? with 0 < my(D) < .
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e We say that {X,},aw is distributed like f in the sense of the eigenvalues, in symbols {X,},ce ~ f, if

f 2i- 1F(ﬂ ()

lim — Z F(A/(X,)) = x, YF e C.C). (1.24)

(D)
In this case, f is referred to as the spectral symbol (or the symbol) of the matrix-family {X,},aw. Note

that (1.24) says that f is indeed the symbol, in the sense of Definition 1.1, of any matrix-sequence of
the form { n(n)(f)}n, with r(n) - c as n —» o« (recall from Subsection 1.1.1 that a multi index tends to

,,,,,

e We say that {X,},aw is distributed like f in the sense of the singular values, in symbols {X,},aw ~ T,
if {Xumwtn ~o f in the sense of Definition 1.1 for every sequence of multi-indices {n(n)}, such that
n(n) — oo. Equivalently, {X,},caw ~o f if

lim —ZF(O'J(X,,)) _ dtD) fD Yia F (‘:-i(f(x))) ix  VFeC®. 125)

n—>oo

Now we turn to the definition of clustering. Recall that, according to our notation (see Section 1.1),
D(S, €) denotes the e-expansion of the subset S C C.

Definition 1.3 (Clustering of a matrix-sequence at a closed subset of C). Let {X,} be a sequence of
matrices, with X,, of size d, tending to infinity, and let § € C be a nonempty closed subset of C. We say that
{X,} is strongly clustered at S in the sense of the eigenvalues if, for every € > 0, the number of eigenvalues
of X, outside D(S, €) is bounded by a constant C. independent of n. In other words,

ge(n,S) :=#jefl,....d,}: 1;(X,) ¢ D(S,€)} = O(1), asn — oo. 1.26)
We say that {X,} is weakly clustered at S in the sense of the eigenvalues if, for every € > 0,
qe(n,S) =o0(d,), asn— co.

If {X,} is strongly or weakly clustered at S and S is not connected, then the connected components of S are
called sub-clusters.
By replacing ‘eigenvalues’ with ‘singular values” and 4;(X,) with o ;(X,) in (1.26), we obtain the definitions
of a matrix-sequence strongly or weakly clustered at a closed subset of C in the sense of the singular values.
Throughout the thesis, when we speak of strong/weak cluster, matrix-sequence strongly/weakly clustered,
etc., without further specifications, it is always understood ‘in the sense of the eigenvalues’ (when the
clustering is intended in the sense of the singular values, this is specified every time).

It is worth noting that, since the singular values are always nonnegative, any matrix-sequence is strongly
clustered in the sense of the singular values at a certain § C [0, o). Similarly, any matrix-sequence formed
by matrices with only real eigenvalues (e.g., by Hermitian matrices) is strongly clustered at some S C R in
the sense of the eigenvalues.

Definition 1.4 (Spectral attraction). Let {X,} be a sequence of matrices, with X, of size d, tending to
infinity, and let z € C. We say that z strongly attracts the spectrum A(X,) with infinite order if, once we
have ordered the eigenvalues of X, according to their distance from z, i.e.

|1(X,) — 2l < MA2(X) — 2 < .. <A, (Xn) — 2,
the following limit relation holds for each fixed j:

lim [4;(X,,) — 2| =
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It is now time to introduce the notion of essential range of a matrix-valued function f. For a measurable
scalar function f : D — C, defined on a measurable set D C RY, the essential range of f, ER(f), is defined
as the set of points z € C such that, for every € > 0, the measure of {f € D(z,€)} :={x e D : f(x) € D(z,€)}
is positive. In symbols,

ER(f) ={zeC: my({f € D(z,€e)}) >0, Ve > O0}.

Note that ER(f) is always closed (the complement is open). Moreover, it can be shown that f(x) € ER(f) for
almost every x € D, i.e., f € ER(f) a.e. In addition, whenever f is continuous and D is sufficiently regular
(say, D is contained in the closure of its interior), then ER(f) coincides with the closure of the image of f.

Definition 1.5 (Essential range of a matrix-valued function). Given a measurable matrix-valued func-
tion f: D — C*, defined on some measurable set D C R?, the essential range of f, denoted by ER(F), is

defined as
ER(F) :={z € C: my({dj: 4;(f) € D(z,€)}) >0, Ve > 0},

where {1j: 4;(f) € D(z,€)} :={x e D :dje{l,...,s} such that 1;(f(x)) € D(z, €)}.

We point out that ER(f) is well-defined, because the set {1j : 1;(f) € D(z,€)} is measurable for every
z € C and € > 0. Moreover, ER(f) is closed, since its complement is open. Finally, in the case where the
eigenvalue functions A4;(f) : D — C, j=1,...,s, are measurable, we have

ER(f) = ) ERW ().
j=1

The following result is stated in [37, Theorem 4.2] and can be proved by using the same arguments
shown in the proof of [37, Theorem 2.4].

Theorem 1.5. Assume that {X,} ~, f, with {X,)}, f as in Definition 1.1. Then {X,} is weakly clustered at ER(f)
and every point z € ER(F) strongly attracts A(X,) with infinite order.

We end this section by providing some useful theorems for proving asymptotic spectral distribution and
clustering results. For their proof, see [37, Theorems 3.4 and 3.5]. In Chapeter 2 (Theorem 2.7), we will
prove a generalization of Theorem 1.6 to the case where the scalar function f is replaced by a matrix-valued
function f.

Theorem 1.6. Let {X,}, {Y,} be sequences of matrices with X,, Y, € C%*% and d, tending to infinity, and
assume the following.

e Every X, is Hermitian and {X,} ~, f, where f : D C RY — R is a measurable function defined on a
measurable set D with 0 < my(D) < oo;

o |IX,ll, IY,ll < C for all n, with C a constant independent of n;
* 1Yl = o(dy) as n — 0.
Then, setting Z,, := X,, + Y,, we have {Z,} ~, f.

Theorem 1.7. Let {X,}, {Y,} be sequences of matrices with X,, Y, € C4*% and d, tending to infinity, and
assume the following.

e Every X, is Hermitian and {X,} ~; f, where f : D Cc R? — R is a measurable function defined on a
measurable set D with 0 < my(D) < oo;

o ||X,ll, IIY.llly < C for all n, with C a constant independent of n.

Then, setting Z,, := X,, + Y,, we have {Z,} ~, f and {Z,} is strongly clustered at ER(f).
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1.4 Toeplitz matrices and related topics

In this section, we provide the definition and some properties of multilevel block Toeplitz and circulant
matrices. We first focus on multilevel block Toeplitz matrices [11] in Subsection 1.4.1, and then we con-
sider the case of multilevel block circulant matrices [20] in Subsection 1.4.2. Concerning circulant matrices,
besides the classical reference book by Davis [20], the reader is referred to [16] for an applicative view-
point, in particular in connection with the approximation/preconditioning of Toeplitz matrices. We end in
Subsection 1.4.3 by reporting some properties of the so-called Generalized Locally Toeplitz (GLT) sequences
[68, 63, 64], which will be used in Chapter 5 together with Theorem 1.6 in order to derive an important
spectral distribution result.

1.4.1 Multilevel block Toeplitz matrices

Given m € N?, a matrix of the form

[Ai 1y € CNmsx Nam)s (1.27)

with blocks Ay € C™, k= —-(m—-1),...,m—1, is called a multilevel block Toeplitz matrix, or, more precisely,
a d-level block Toeplitz matrix. Given a function f : [-m,7]¢ — C** in LY([-x, x]%), we denote its Fourier

coefficients by
1

(Zﬂ)d [~nx])d

where the integrals are computed componentwise and k -0 = k6, + ... + k;6,. For every m € N, the m-th
Toeplitz matrix associated with f is defined as

£ f(@)e k%40 € C, k ez, (1.28)

Tw(f) == [fij]" (1.29)

Lj=1*

We call {T,,,(f)}pere the family of (multilevel block) Toeplitz matrices associated with f, which, in turn, is
called the generating function of {T,,(f)}ene-
For each fixed s > 1 and m € N9, the map T,,() : L'([-n, ¢, C™) — CNmsxNms ig linear: for all o, 8 € C
and f,g € L\([-r, m]¢, C™),
Tm(af +:8g) = aT,(f) +BTm(g)
This follows from the relation (af + Bg); = afy + fgr, k € Z¢, which is a consequence of the linearity of the

integral in (1.28). We now observe that, in general, for every f € L'([-, x]¢, C%), the Fourier coefficients of
f are related to those of f* by

1 . * 1 .
£.)" = f(@)e V0] = —— f(0) eV do = (F)_;, je 74,
(f;) ( @i j; o (@) ) @ @)e () J

Therefore, for all i,j=1,...,m,
[Tw(f)]ij = (F)izj = (Fj-)" = [Tw(£)" 1),

i.e.,
Tu(f") = T(F)".

From this identity, which holds for all m € N¢ and all f € L'([-m, x]%, C™¥), we infer that, if f is a
Hermitian matrix-valued function, i.e. f(8) is Hermitian for almost every 0 € [—m, 7], then all the matrices
T(f), m e N are Hermitian.

Theorem 1.8 is a fundamental result concerning multilevel block Toeplitz matrices generated by Hermitian
matrix-valued functions. In particular, item 3 in Theorem 1.8 is the Szego-Tilli theorem; see [11] for a rich
account concerning the history of the Szegd theorem, originally appeared in [39]. Item 4 is actually a
consequence of item 3, while items 1,2 can be proved by using the minimax principle.
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Theorem 1.8. Let f : [-m,n]¢ — C be a Hermitian matrix-valued function in L'([-n,n]?). Define

my = ess inf Anin(£(9)), M; := ess sup Ay (f(8)).

o[- 1) P
Then the following properties hold.

1. T, (f) is Hermitian and A(T,(f)) C [mg, M¢] for all m € N¢,

2. If Anin(f(0)) is not a.e. constant then A(T,,(f)) C (mg, My] for all m € N¢.

If Anax (F(0)) is not a.e. constant then A(T,,(f)) C [mg, Ms) for all m € N¢.
In particular, if f > O a.e. and my({0 € [-n,7]? : £(0) > O)) > 0, then T,,(f) > O for all m € N,

3. We have {T;,,(f)}jparie ~2 1, i.e.

. il 1 2 F(,(F(6)))
lim o ; FOUT(®) = f[ . - df,  VF € C.(C). (1.30)

Hence, f is the symbol of the Toeplitz family {T,,(f)}nere-
4. For each fixed j > 1, the j-th largest and smallest eigenvalue of T,,(f) satisfy
Ai(Tu(f)) = M;, ANmys—j+1(Tm(F)) — my
when m — oo.

Proof. 1. By the minimax principle, since every T,(f) is Hermitian (because f is a Hermitian matrix-valued
function), in order to prove that A(T,,(f)) C [mg, M¢] it suffices to show that

me|IX|[3 < X T(f)x < MelIx|[2,  ¥x e CVms, (1.31)

Let x € CN™s and partition x as follows: x = [x;]"",, where each x; € C°. Then

f(0)e %40
(2 )d (‘f[lﬂ,ﬂ]d ( )e )XJ

x'T,(f)x = x [f_J]” (X = Z x;fijx; = Z

i,j=1 i,j=1

m 1 S ( s ) )
= ﬁg(a)e—b(l b OdO) OHr(x;)e = Fee@O(X))e LRV
t; 2y k=1 \WI-mal! ! Z (27,9 Ly [ kZe::l !
S L 1
= [ xff(@)x .e—waetj.ada — X; f(O)X —ii-0 L_]0 do
;;<ﬂ£;w ’ @W[M]; "
1
= @y f ) ax(0)"f(6)qx(6)de, (1.32)
[-m,7]

where qu(0) := X7, x;eV¢ satisfies

1 (o
(O)]12d6 = e V040
@WI%N“”2 @VIQAZX NZ&G]
—ii-0 L] 9d0 —ii-0 L_]0d0
(Zn)d[ﬂﬂ]dexJ ZXXJ(zﬂ)dj[- e e

—ﬂ,n]d

_ Z XiX; (2 v (e, e09),, . = Z Ixill3 = 1113- (1.33)

i,j=1
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In the last passages, we have used the fact that (e”"’, eij'a) equals (27)? if i = j and O otherwise, due

iy LA([~m,m]9)
to the L?-orthogonality of the Fourier frequencies e? i € Z¢. From (1.32) and the minimax principle, we
get

1 2 *
@0 f[_ s Amin(F(0))llax (01246 < X Tu(F)x < @0y

and (1.31) follows from (1.33)-(1.34) and from the definitions of m; and M;.
2. Assume that Ay,in(f(0)) is not a.e. constant and fix m € N?. We show that

f Loen (F(6))lax (6|6, (134)
[-mn)d

X Tuf)X > mg,  Vx € CV™S with x|y = 1. (1.35)
Once we have proved (1.35), from the minimax principle we have

/lmm(Tm(f)) = ||rr|}in1 X*Tm(f)x > my,
X||o=

which, in combination with item 1, yields the first statement in item 2. The second statement is proved in
the same way, while the third statement follows from the first one. To prove (1.35), assume by contradiction
that there exists a vector X with |[X||; = 1, such that

X' Tp(H)X = my.
Note that X*T,,(f)X cannot be less than m; by item 1. Since |X|z = 1, by (1.33)-(1.34) we have

1 1
= f(o zdeﬁ /lminfe ,20 deSA*TmfA,
ms 27 ‘f[‘_wﬂd mellqz(O)ll (2 ‘f[‘_ﬂ’n]d (f(0)llgx(0)ll5 X' T(H)X

Recalling that X*T,,(f)X = mg, all the previous inequalities are actually equalities and we obtain

f (Amin(F(8)) — mp)llaz(D)]15d6 = 0. (1.36)
[~

Now, since qz(@) is a d-variate trigonometric polynomial, it vanishes at most in a set of zero Lebesgue
measure (we omit the details of this proof). Therefore, from (1.36) we deduce that A, (f(@)) —m; = 0 a.e.,
i.e., Anin(f(@)) = m; a.e. This is a contradiction to the assumption that A,,;,(f(#)) is not a.e. constant.

3. For the proof of item 3, see [67] (see also Subsection 2.1.1, where we provide a proof in the case
d = s = 1, which can be extended to the general case without significant difficulties).

4. Fixed j > 1, we prove that 4;(T,,(f)) — My as m — oo (the proof that Ayums—jr1 — me is similar).
Assume by contradiction that A;(T,,(f)) does not converge to My as m — oo. This means that there exists
a sequence {Typ)(f)}, such that m(n) — oo and A;(Ty)(f)) < M < My and for all n. By definition of Mg,
we can choose an interval [a,8] C (M, ) such that my({0 € [-m, 7] : @ < Ana(F(B)) < B}) > 0 and a test
function F € C.(C) such that 0 < F<1on R, F =0 on (—co, M] and F =1 on [a,f]. For this test function
we have F(A;(T ) (f)) =0 for i=j,...,N(m(n))s, and so

N(m)s

D Fi(T () <

j —
O -
= Nom(m)s £

Nmeys 0
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This is a contradiction to the fact that, by item 3, we have

N(m)s

o ) S FO(F9)
m, N(m)s & FOUTw(®) = (27)? f[_md s d6
5 1 F(Anax (f(60))) 40
2" J{bet-nalt: a<imn(F0)<5) s

1
 (@2nyds ‘f{VOG[—n,ﬂ]d: < (FO))<B}
ma({0 € [-m, 7] 1 @ < Anux(F(9)) < B))

= 0.
(2r)ds ~

do

O
From Theorem 1.8 we derive the following proposition, which states that the operator T,(:) is monotone.

Proposition 1.1. Let f, g : [-m, 7] — C™* be Hermitian matrix-valued functions in L'([-m,r]%) with f(0) >
g(0) a.e. Then T,,(f) > T,,(g) for all m € N¢,

Proof. We just observe that, by linearity, 7,,(f) > T,,(g) is equivalent to T,,(f —g) > O. The latter is satisfied
by Theorem 1.8, since f(6) — g(f) > O a.e. by hypothesis and hence m¢_, > 0. |

Important inequalities involving Toeplitz matrices and Schatten p-norms can be found in [61, Corol-
lary 3.5]. In Lemma 1.7, we report one of these inequalities of interest later on.

Lemma 1.7. For f € L*([-n,n]¢,C>) and m € N¢,

ITwm(D)Il < ess sup [[f(O)l. 1.37)
Oe[-n,m]¢
Proof. From (1.4) we know that
ITa®ll = max u'Tp(f)v.

llwll=lIvil=1
By performing some computations completely analogous to the ones in the proof of Theorem 1.8, see in
particular the chain of equalities (1.32)-(1.33), we see that

wT,,(Fv =

(@) 1(0)q,(6)do,
@mdl;wﬂ() 0)av(6)

where

9 f 19.(0)°d6 = [lull* =1, f lav(@)I*d8 = |Ivi[* = 1.
( ﬂ') [-m,m]d [-7,7]?

Using the Cauchy-Schwarz inequality, we obtain

(2m)?

W T(Fv] < j[- ]dlqu(e)*f(ﬂ)qv(H)ldOS j[‘ ]dllqu(O)ll||f(0)||||qv(0)||d0

(2m)? (2m)?

< esssup [[f(O)l —— f llqu (Ol llqv(0)l|d6
Oc[—n,m)¢ (27T) [-m,m]4
< esssup [[f(0)|

1 1/2 1/2
||qu(0)||2d0) (f ||qv(9)||2d6’)
Oc[-n,n]¢ (27T)d (‘][.—ﬂ,ﬂjd [—m,7)d

= esssup ||f(O)l,

Oc[—n,n]¢

and the thesis follows. O
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Note that (1.37) can be reformulated in terms of the Schatten co-norm as follows:

T (llc < 11 IO Mlloo llzoo(—r210)-
From this reformulation, we see that (1.37) coincides with the inequality (28) in [61] for p = co.

Theorem 1.9. Let

X = R = Tridiagonal(a, b, ¢)
S e

a b

be an m X m real Toeplitz tridiagonal matrix such that ac > 0. Then, X has m real distinct eigenvalues

A;(X) = b + 2+ac cos

g o1
, =1,...,m.
m+1 J

Proof. See [9, p. 35] or [66, p. 154]. O

The next result concerns the exact asymptotics of the j-th smallest eigenvalue of 7,,(f), for j fixed and
m — oo. This result is due to Parter [45] (see also [46] for a generalization). It shows that, under the
assumption that f is continuous and f —min f has a unique zero Ouin, Au-j+1(Tm(f)) converges to m; = min f
as m — oo with asymptotic speed dictated by the order of the zero O;,.

Theorem 1.10 (Parter). Let f : R — R be continuous and 2n-periodic. Let my := minger f(0) = f(min) and
let 6nin be the unique zero of f — my in (—m,n]. Assume there exists s > 1 such that f has 2s continuous
derivatives in (Omin — €, Omin + €) for some € > 0 and @ (0min) > 0 is the first non-vanishing derivative of f at
Omin- Then, for each fixed j > 1,

f(zs)(gmin) 1
/lm—j+l(Tm(f)) — My ~ Cs,j (2s)!  m?s ’

as m — oo, (1.38)

@9(Q....
i.e., lim m* (/lm_ +1(Tn(f)) — mf) = Cyj A mm), where ¢, ; > 0 is a constant depending only on s and j.

m— oo (25)7

Remark 1.3. The constant ¢, ; is the j-th smallest eigenvalue of the boundary value problem

(1.39)

(-D*u®(x) = f(x), for 0<x<1,
u) = 0)=...=u"P0)=0, uM) =) =...=u*V1) =0;

see [45, p. 191]. This means that c,; is the j-th smallest number satisfying =D*u®(x) = c;, ju(x) for some
(nonzero) function u belonging to an ‘appropriate functional space’ associated with (1.39). In particular, ¢,
is the minimum eigenvalue of (1.39). The sequence {c,;} was investigated in [12], where it was shown that
the numbers cy1, c21, €31, - .. appear in many situations and the following asymptotic formula holds:

45\* 1
cs1 = V8ms (—) 1+ 0(—)] , as s — oo,
e Vs

Remark 1.4. When s = 1, the boundary value problem (1.39) becomes

—u"(x) = f(x), 0<x<l,
u(0) =u(1) =0,

(1.40)
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and its eigenvalues can be computed explicitly, because they coincide with the eigenvalues of the unidimen-
sional negative Laplacian operator —% with homogeneous Dirichlet boundary conditions:

d2
5 H3(0,1) c L*(0,1) — L*(0, 1). 1.41)

X
The mentioned ‘appropriate functional space’ is in this case H(Z)(O, 1). The eigenvalues of (1.41) are j?n?, j=
1,2,..., and an eigenfunction corresponding to the j-th eigenvalue j*z? is u;(x) = sin(jmx): —u7(x) =

J*m*u;(x). Thus, by Remark 1.3, we find that ¢;; = j%2* for all j > 1.

Remark 1.5. Parter’s theorem applies to the function f(6) = (2 —2cos6)*’, s > 1. Indeed, it can be proved
that this function satisfies all the hypotheses of Theorem 1.10 with my = 0, 0, = 0, and the number s
appearing in Theorem 1.10 being exactly the exponent s in the definition of f. Moreover, f@9(0pin) = (25)!
Therefore, by (1.38) we obtain that, for each fixed j > 1,

Cs,j

Am=js1(T((2 = 2 cos 0)*)) ~ as m — oo.

m2s’
On the other hand, for the case s = 1, noting that 7,,(2 — 2cos 8) = Tridiagonal(—1,2,-1) and using Theo-
rem 1.9, we get

j27T2

) as nm — oo,

. 2
. JT
Apm—jit(T (2 = 2cos 0)) = 4 (sm o+ 1)) s

and so we find again cy; = j*z* for all j > 1L

The last results relate tensor products and Toeplitz matrices. In particular, in Lemma 1.9 we show that
a tensor product of unilevel block Toeplitz matrices generated by (matrix-valued) trigonometric polynomials
coincides (modulo permutation transformations) with the multilevel block Toeplitz matrix generated by the
tensor product of the trigonometric polynomials.

Lemma 1.8. Let fi,..., f; € LN[-n,n)) and let m = (my, ..., my) € N¢. Then,

Ty (f)® - ®Tp,(f) = Tw(/i®- - ® fa) (1.42)

(note that the tensor-product function f,® ---® f; : [-n,m]? — C belongs to L'([-n, %) by Fubini’s theorem).

Proof. The proof is simple if we use the fundamental property (1.12). Noting that the Fourier coefficients of
fi®:--® f; are given by
fi® - ® fe = (- ey k€T,

foralli,j=1,...,m we have
[T, ()@ ® Ty (f));; = [T (D), -+ [T FD),, 5, = iy Sigj = (1 ® -+ ® fadicj
= [Tw(fi® - ® fa)lij»
and so (1.42) holds. O

A matrix-valued function of the form p(6) = Yr _, Awe*, with A, € C>, k = —N,...,N, is called
(matrix-valued) trigonometric polynomial.

Lemma 1.9. For every m,s € N’ there exists a permutation matrix I's Of size ]_[?Zl(m i8;) such that

Tml(pl) @ ® de(pd) = I_‘m,s [Tm(pl - Q® pd)] Fz,;,s,

for any choice of trigonometric polynomials p; : [-n,n] — Ci j=1,...,d.
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Proof. For k € 74 and A € C™, it can be shown by direct computation that
Tu(Ae™®) = Ty(e*) @ A =T, (") ® - ® T, (") @ A.

Therefore, for any choice of the trigonometric polynomials

N;
i) = > APM, j=1,...d (APeC™, j=1...d, k=-N;...,N),
k==N;

by the bilinearity of ® and the linearity of 7,,(-), we have

Nl Nd Nl Nd
Rl 3 % e eater]- 5 B nage eage

ki=—N; kg=—Ny k1=—N1 kq==Ng

T(p1(6) ® - - - @ pa(6a))

N
Z T (@)@ @ T, (") @AV @ - @ A
k=—N

On the other hand,

N Ny
Tm1 (pl(el)) ® e ® de(pd(ed)) = Tm1 [ Z A](i)elklﬁ] ® tet ® de [ Z A](:j)elkded]

k1=—N1 kd:_ d
M Ny
i 1 i d
:[Z Tml(e‘klf’l)@A;l’)@---@( > Tm,,(eLkdg")@)AZd)]
ki=—N1 kg=—Ny

N
i 1 i d
D T @AY @@ T, ) @ ALY,
k=—N

By Lemma 1.2, there exists the permutation matrix Iy := jne)0, Where o := [1,d +1,2,d + 2,...,d,2d],
which depends only on m,s and satisfies

T @AY ® - & T,, ") 8 AV = T [Ty ("™ & - & T, (") 0 AV ©--- 0 AV| T, .
Hence,

N
T P10)) ® -+ ® Ty, (pa(00) = D T [T () @ & T, (") @ AV - @ AL| T,
k=—N

N
i i 1 d
= Dins § Tml(etklgl) K ® de(elkded) ® Al(q) ® - A](Cd) r’TM
k=—N

= o Tu(P1(61) ® -+ ® Pa(02))T L .
O

Lemma 1.9 shows that the operators T,,(-) and ® are interchangeable, modulo permutation transforma-
tions which only depend on the dimensions of the involved matrices. The same result is true also for the
operators T,,(-) and ®; see [29, Theorem 2].
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1.4.2 Multilevel block circulant matrices

Given m € N?, a matrix of the form
N N
[AG-jymoaml iy €C (s> Nom)s (1.43)

with blocks Ay € C™*, k =0,...,m— 1, is called a multilevel block circulant matrix, or, more precisely, a

d-level block circulant matrix. The fundamental theorem concerning multilevel block circulant matrices is

the following. For m € N¢ we denote by F,, the unitary d-level Fourier transform, i.e. F,, := Fp,® --®F,,
. -1 i . . .

where F,, = \/L%(e‘z””k/m);"'k:o = \/Lm(e‘2’”(1‘1)("‘D/’")';lk:1 is the standard unitary Fourier transform of order m

(FFm = Ln).

Theorem 1.11. The matrix (1.43) has the following block spectral decomposition:

: 2nj *
[A(i—j)modm]zljzl = (Fm ® Is) ) dlag [g(#)] (Fm ® Is) » (144)

j=0,....m-1

m

where g(0) := Y70 Awe*®. In particular, the spectrum of [Ag_jmoa Iy

of the diagonal blocks g(2rj/m) € C**, j=0,...,m—1.

is given by the union of the spectra

Proof. The proof of this theorem is a good exercise on the multi-index notation. It consists of four steps.
1. Consider the m X m matrix

Zyy = ’ _ ' . = [6-j-1ymoam]yj=15

1 0]
where 6, := 1 if r = 0 and 6, := 0 otherwise. The matrix Z, is called the generator of unilevel circulant
matrices of order m. This name is due to the fact that the powers of Z, are

1 O] [0 1 0 O]
1 0 1 0
!
7 = .z =|° S 20 =1,
1 .
1 0 O 1 0 0 O
or, in formulas,
(Z})ii = S jotymoams  Bbj=1...,m, k=0,....m—1 (1.45)
Therefore, any unilevel circulant matrix of order m can be written as a linear combination of powers of Z,:
[ ap  am ay a |
ay . .. as
a m—1
[aG-pmoam]liy = | = > aZ}.
k=0
Am-1
[ [25)] a Ao
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Note also that any unilevel block circulant matrix [A - j)modm];ﬂjzl can be written as

[ Ao Am Ay Ay ]
Al I I A2
m—1
N A ST
[Ad-jpmoamllieg = | 7 ‘ S = > Zy® A
T £
N Ay
[ A1 Ay A Ap |

2. The spectral decomposition of Z,, is explicitly known and is given by

Zy=F,D,F:, D, := diag (€™ = diag (e*VU™V/m),

j=0,....m—1 j=1,..m

This can be verified by direct computation: for all i, j =1,...,m, we have

2mi(i—1)(k—1 2mi(i-1)]
(F;;Zm)ij = 2 )/m5(k—j—1) modm = € T-Diim = (DmF;)ij~

m
k=1
Therefore, defining Zk := Z,]fil ® Z,k,fz ® - ® Z,k,;i,, k,m € N, also the spectral decomposition of Z¥ is known.
Indeed, using the properties of tensor products in Subsection 1.2.1, we obtain

Zh=Zh ®Z2 ® - ®Z< = (F,,Di F;,)® (F,,,D2F,)®-® (F,,Di F, )

m* m my” mgy mq= mq
= (Fm1®sz®”'®Fmd)(Dﬁ;1®kazz®.“®Dln<;ld)(le®Fm2®'“®Fmd)* = FthI;F;:V (1.46)
where )
Di =D ®D2 ® --@Dk = diag (e*"Z=/M/") = diag (e”V/"™*)
Jj=0,...m-1 Jj=0,...m-1
3. The multilevel block circulant matrix [Ag-j modm]l’.”j:l in (1.43) has the following expression:

m—1

[Adpmoamlfioy = ) 7k ® Ak (147)
k=0

To prove (1.47), we first notice that, by the fundamental property (1.12) and by (1.45), for all i,j = 1,...,m
we have

k k k k.
Zwij = C)ijiZnisje * * * Logtiaja = O ji—ky mod my Olia—jo—ke) modmz * * * Oig—ju—kay modmy = Oi-j—k)mod ms

where 6, = 1 if r = 0 and 6, = 0 otherwise. The equality (1.47) is then proved blockwise’, by showing that,
for all i,j = 1,...,m, the block in position (i, j) of the first matrix is equal to the block in position (i, j) of
the second matrix. Indeed, for all i,j = 1,..., m, we have

m—1 m—1 m—1 m—1
(Z Zn® Ak] = Z(Z,]:, ®Ap)ij = Z(Z,’f,)ijAk = Z Oij-tymod mAk = Agi—j)mod m-
k=0 ij k=0 k=0 k=0
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4. Using the identity (1.47), the spectral decomposition (1.46), and the properties of tensor products in
Subsection 1.2.1, we obtain

m-1 m-1 m—1
[Ad-pmoamlflios = D ZE® Ak = ) (FuDuFp) ® Ax = ) (Fpn® [)(Dk ® A)(Fp ® 1)
k=0 k=0 k=0
m-1 m—1
= (Fu®1I,) [Z Dt Ak] (Fu® L) = (Fp®1,) (Z diag (0™ g Ak] (Fu® L)
k=0 k=0 Jj=0,...m—1

m-1 m—1
= (Fa®1) [Z diag (eZ”W'"“‘Ak)) (Fu®L) = (Fa®l) diag [Z ez”“/’””‘Ak) (Fu®1)"
k=0 Jj=0,...m-1 Jj=0,...m-1

and the thesis follows, since Y5y e*V/m*kA; = g(2nj/m). ]

We remark that an identity like (1.47) also holds for multilevel block Toeplitz matrices. Indeed, it can be
shown that the multilevel block Toeplitz matrix in (1.27) has the following expression:

m—1
(i1 = Z I ® Ay, (1.48)
k=—(m-1)

where
k) ._ ylkp) (k2) (kg)
J = Jml1 <§3>sz2 ®---®ij

and J,(,]f) is the m X m matrix such that (J,(,]f)),-j =1lifi—-j=kand (J,(,’f))ij = 0 otherwise:

IOYi=6j0 GLj=L....m, k=-(m-1,...,m-1

1.4.3 GLT sequences

We now focus on the spectral distribution of sequences of matrices obtained from a combination of some
algebraic operations on multilevel block Toeplitz matrices and diagonal sampling matrices. These matrix-
sequences are particular instances of Generalized Locally Toeplitz (GLT) sequences and, consequently, they
belong to the noteworthy GLT algebra. We do not pretend to cover here all the details of this fascinating
subject, and so we refer the reader to [68, 63, 64]. We just say that the GLT algebra virtually includes all
the matrix-sequences coming from ‘regular’ discretizations of PDE. We should also say, however, that the
spectral distribution of GLT sequences is still under investigation; the latest findings in this direction can
be found in [28, 29] (see in particular Theorem 5 in [28] and Theorems 9-10 in [29]).

For every Riemann integrable function a : [0,1]Y — C and every m € N¢, we define the d-level diagonal
sampling matrix D,,(a) € CNM™*Nm in the following way:

. J . J-1
D, (a) == diag a (—) = diag a( ), (1.49)
; m ; m

Jj=0,...m-1
where, as always, the multi-index j varies from 1 to m — 1 following the lexicographic ordering (1.1).

Theorem 1.12. For every k € {1,...,n} and l € {1,..., 4}, with 1,1, ..., {, positive integers, let {B;’;’l)}meNd be
either {Dy(a®")}ueria OF {T(F*P)} e 2 Then, setting

Sk
B&D

m °

n
X =
k=1 I=1

21t is understood that a*” is a Riemann integrable function defined on [0,1]¢ and f*) e L'([-n, n]9).
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we have
143

n
k,l
meN‘l ~o Z b( )

=1 =1
where b*V : [0,1]¢ x [-r,n]Y — C is defined as

a*D(x1,. . xg) i (B} = (D@,

PO (xy, . xg0 0. .., 0,) =
(XI Xds U1 d) f(k’[)(91,---,94) if {B(kl) T (f(kl))

Moreover, if every X,, is Hermitian, then

n

{mmeﬂW“

k=1 I=1

The above theorem combines results from [64, Theorem 2.2] and [63, Theorems 4.5 and 4.8]. These
results are formulated in the more general setting of GLT sequences and are based on the a.c.s. notion
given in [59] and reported in Section 2.1, but already present in the seminal work by Tilli [68]. Theorem 1.12
could also be extended by including the (pseudo-)inverse of matrices under mild assumptions on the function
b*D namely that the set where b*? vanishes has zero Lebesgue measure; see [64, Theorem 2.2].

We now focus on a specific application of Theorem 1.12 which will be of interest in Chapter 5. Given a
d-level diagonal sampling matrix D,,(a) associated with a Riemann integrable function a : [0,1]¢ — C, we
define the symmetric matrix D,,(a) as

= o - _ | [Dw@]; i<, .
[Dm(a)]z,j = [Dm(a)]mm(z,‘/),mln(z,j) = { [Dm(a)]” ifi> j, L, ]= 1, e ,N(m) (150)
In multi-index notation,
A [Dn(@]ii  ifi=], ..
D,,,a,--: Dmai-,--z ’ cp . ., i, :1,...,m. 1.51
[ ( )] J [ ( )] AJIN] { [Dm(a)]J’J ]/f i> ], J ( )

We recall that a d-variate trigonometric polynomial is just a finite linear combination of the Fourier
frequencies {eV? : j € Z4).

Corollary 1.1. Let {T,,(f)}mere, i = 1,..., 1, be families of d-level Toeplitz matrices associated with d-variate
trigonometric polynomials f;, i = 1,...,u, and let {Dy(a;)}mene, i =1,...,u, be families of matrices associated
with Riemann integrable functions a; : [0,1]Y — C, with Dp(a;) defined as in (1.50)-(1.51). Then,

" It
{EFM@OM%% ~o ) @8 f. (152)
i=1 meNd i=1
Moreover, if a; and f; are real-valued for all i = 1,...,u, then
B H
{Z Di(ai) o m<ﬁ>} ~1 ) a;® fi (153)
i=1 meNd i=1

Proof. We decompose the Toeplitz matrix T,,(f;) as

Tu(f)) = TH(f) + TH(F) + TL(f),
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where T,l,z( 1), T,f,( /) and Tnl{ (f;) form the diagonal, lower and upper triangular matrix of T,,(f;), respectively.
The matrices T2(f), TL(f;) and TY(f,) are also d-level Toeplitz matrices associated with certain trigonometric
polynomials /P, fL and fU such that f; = £ + f= + fV. More precisely, we have

TH(f) = Tu(f),  with  £P0) = (o,

TP ai—;il’:_;, Wwhere ay:= .
w(f) = ai-jlisey k otherwise

(for if k=0,
0

TL(f) [b —] l] 1 where bk = { gﬁ)k if k< (_)’ = T’I;l(ﬁ) — Tm(f;L), with f;L(O) — Z(ﬁ)keikﬂ’

otherwise
k<0

T (f) = eIy, where ¢ ::{ f)f")" whk>0 TH() = Tu(f"), with  f10) = > (Fe™;

otherwise
k>0

since f; is a trigonometric polynomial, the number of nonzero Fourier coefficients is finite, fl.L and fl.U are
well-defined and f; = fP + fL + fV.
Now, the matrix Dy(a;) o Tp,(f;) can be decomposed as

Du(a) o Tu(f) = D(a)) o TE(f) + D) o TE(f) + Dimlai) o TY(f)
= TE(f)Du(@) + Du(a) T2(f) + Du(a) TL (1)
= To(fF)Dm(@) + Du(@) Ti(fP) + Don(@) Tu(fV), (1.54)

where Dy(a;) is the diagonal sampling matrix associated with a;, defined in (1.49), and used in the definition
of Du(a;). Because of this decomposition, (1.52) follows from Theorem 1.12 (we have n = 3u and § = 2
for all kK =1,...,3u). In addition, if a; and f; are real-valued for all i = 1,...,u, then Dp(a;) and T.(f)
are Hermitian, and so D, (a;) o Tw(f,) is Hermitian as well. Hence, again by the decomposition (1.54), the
spectral distribution result (1.53) follows from Theorem 1.12. |
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Chapter 2

Some new tools for computing spectral distributions

In this chapter, we present new tools, taken from [34, 35], for determining the asymptotic spectral distribution
and the symbol of a sequence of matrices. In Section 2.1 we focus on Hermitian matrix-sequences, while in
Section 2.2 we address the non-Hermitian case.

2.1 Tools for determining the spectral distribution of Hermitian matrix-sequences
and applications

In this section, we provide a general tool for deducing the spectral distribution of a ‘difficult’ sequence
{A,}, formed by Hermitian matrices, starting from the one of ‘simpler’ sequences {B,},, again formed by
Hermitian matrices, that approximate {A,}, when m — oco. The tool is based on the notion of approximating
class of sequences (a.c.s.), which was inspired by the work of Paolo Tilli and Stefano Serra-Capizzano,
and is applied here in a more general setting. An a.c.s.-based proof of the famous Szegd theorem on the
spectral distribution of Toeplitz matrices (item 3 of Theorem 1.8 in the case d = s = 1) is finally presented
in Subsection 2.1.1. We begin by introducing the notion of approximating class of sequences in the next
definition; see [59, Definition 2.1].

Definition 2.1 (approximating class of sequences). Let {A,}, be a matrix-sequence, with A, of size d,
tending to infinity. An approximating class of sequences (a.c.s.) for {A,}, is a sequence of matrix-sequences
{{Bnm}n : m} such that, for every m,

An = Bn,m + Rn,m + Nn,m Vn 2> Ny (21)

where rank(R, ) < o(m)d,, |[N,nll < v(m), the quantities n,,, o(m), v(m) depend only on m and lim o(m) =

lim v(m) = 0.

m—oo

Roughly speaking, saying that {{B, .}, : m} is an a.c.s. for {A,}, means that A, is equal to B,, plus a
small-rank matrix (with respect to the size d,) plus a small-norm matrix. Lemma 2.1 shows that, if A, and
B, ,, are Hermitian, then the small-rank matrix R,, and the small-norm matrix N,, in the splitting (2.1)
may be supposed Hermitian.

Lemma 2.1. Let {A,}, be a sequence of Hermitian matrices, with A, of size d, — oo, and let {{B,,}, : m} be
an a.c.s. for {A,}, formed by Hermitian matrices (i.e. every B, is Hermitian). Then, for every m, we have

An = Bn,m + Rn,m + Nn,m Vn > Ny,
where Ry, Ny are Hermitian, rank(R,, ) < o(m)d,, ||N,.ll < v(m), the quantities n,,, o(m), v(m) depend only

on m and lim o(m) = lim v(m) = 0.

34



Proof. Take the real part in (2.1) and use the inequalities rank(R(X)) < 2rank(X) and ||R(X)| < ||X]| to
conclude that, by replacing R, Ny with R(R,,.), R(N,..,) (if necessary), we can assume R, ,,, N, to be
Hermitian. m|

Now we turn to the main theorems of this section (Theorems 2.1 and 2.3), which provide a general tool
for determining the spectral distribution of a ‘difficult” matrix-sequence {A,}, formed by Hermitian matrices,
starting from the knowledge of the spectral distribution of simpler matrix-sequences {B,,},, m =1,2,3,...,
again formed by Hermitian matrices. Recall that, for any Hermitian matrix X € C"™", the eigenvalues of X
are arranged in non-increasing order: 4;(X) > ... > 4,(X); moreover, 4;(X) = +oo if j <0 and 4;(X) = —oco if
j=m+1 (see Section 1.1). If H: R — R, we define H(oo) := }1_{2 H(x) (whenever the limit exists). Similarly,

H(—00) := lim H(x).
Theorem 2.1. Let {A,}, be a sequence of Hermitian matrices, with A, of size d,, — co. Assume that

1. {{Bym}n : m} is an a.c.s. for {A,}, formed by Hermitian matrices;

2. for every m and every F € Cl(R) there exists lim — Z F(Ai(Bym)) =: ¢u(F) € C;

3. for every F € C\(R), there exists lim ¢,(F) =: ¢(F) € C.
Then, for all F € C\(R),

3 lim — Z F(A,(A,)) = ¢(F). 2.2)

Proof. The technique of this proof is taken from [59, Proposition 2.3], where an analogous result was proved
for the singular values instead of the eigenvalues. We first observe that it suffices to prove (2.2) for those
test functions F € Cé(R) that are real-valued. Indeed, any (complex-valued) F € Cé(R) can be decomposed as
F = R(F) + i3(F), where R(F), I(F) € CL(R). Thus, once we have proved (2.2) for all real-valued functions
in CL(R), we have

1 & N .
lim - Z F(4(An) = lim —- Z; RFA,(A0) + ISFQAD)| = ¢RE)) + ig(3(F)) = ¢(F),

where the last equality holds by the linearity of the functional ¢, which follows from its definition.
Now, let F € Ci(R) be real-valued. For all n, m we have

+|dm(F) = p(F).

2.3)
By hypothesis, the second term in the right-hand side tends to O for n — oo, while the third one tends to 0
for m — oo. Therefore, if we prove that

1 dy 1 d, 1 dy 1 dy
T ; P = ¢(F)| < |- ; FU(A) = o ,Z; FQi(Bu)| +| ,Z; FA{(By)) — $m(F)

d, dy
) ) 1 n 1
Jim tim sup | —- ; Fi(40) - Z: F(A;(By))| = 0 2.4)

then, passing first to the limsup and then to the lim in (2.3), we get the thesis.

n—oo m—o0
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In conclusion, we only have to prove (2.4). To this end, we recall that {{B, .}, : m} is an a.c.s. for {A,},
and that A,, B,,, are Hermitian as in Lemma 2.1. Hence, for every m,

An = Bn,m + Rn,m + Nnm VYn > n,

where R, ,, Ny, are Hermitian, rank(R, ) < o(m)d,, ||N,n|l < v(m), the quantities n,,, o(m), v(m) depend only
on m and lim o(m) = lim v(m) = 0. We can then write, for every m and every n > n,,

| & 1
— > F((A) - T Z F(A{(Byn))
L Jj=1
= o, | | &
< | D UF@y(A) - = 2 FQBun + Rup))| + d—ZF (A Bum + Rum)) = 7 2, P 23)
n = = " =

We will consider separately the two terms in the right-hand side of (2.5), and we will show that each of
them is bounded from above by a quantity depending only on m and tending to 0 as m — oco. After this,
(2.4) is proved and the thesis follows.

In order to estimate the first term in the right-hand side of (2.5), we use the Weyl's perturbation theorem;
see [7, p. 63]. We have

d, d, d
1 & 1 & 1 &
4 ; F@AD = - ]Z; FQ B+ Rua))| < - JZ‘ |F(A(A) = FQ(Byn + Ru))|
1 dl‘l
<7 2 MF |4(AD) = 4;(Bu + Ru)| < I NcllAn = Bun = Rull = 1 ol Nl < IF o),
n j=1

which tends to 0 as m — oo,

In order to estimate the second term in the right-hand side of (2.5), we will use the interlacing Theo-
rem 1.4. We first observe that F' can be expressed as the difference between two nonnegative, non-decreasing,
bounded functions:

F=H-K, H(x) := fx (F")(t)dt, K(x) := fx (F")_(ndt,

where (F’), := max(F’,0) and (F’)- := max(—F’,0). Hence, for the second term in the right-hand side of
(2.5) we have

4 d,
1 1
d_n Zl F(/l](Bn,m + Rn,m)) d_ gl F(/l](Bn,m))
J= —

1 d, 1 d, 1 d, 1 d,
< d—n;H(aj<Bn,m+Rn,m» d—; H(A{(B,.))| + d—n;mj(Bn,mRn,m» d—g KQA,B.)|. 26

Defining ry,, := rank(R, ;) < o(m)d,, Theorem 1.4 gives
/lj—r,,,m(Bn,m) = /lj(Bn,m + Rn,m) = ﬂj+rn‘m(Bn,m)a v] =1,...,d,,
and, moreover, it is clear from our notation that

/lj—rn,m(Bn,m) = /lj(Bn,m) = /lj+r,,,m(Bn,m)’ v] = 1’ ey dn‘
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Therefore, recalling the monotonicity and nonnegativity of H,

d, n dn dn

Z H((By + Ro)) = Z H((Bym))| < Z |[H (B + Ru)) = H(A(By))|
j=1

dy

1

<7 Z H(Ajp,,,(Bu)) = H( o, (Bo))| = Z (-, (Brn) = Z H(Ajsr,,,(Bum))

1 dn Tnm 1 dn+rn,m 1 Tnm 1 dn"'rmm

=5 2 HAGBw) - ) HGBu) =7 ) HGBu) =7 ), HA(Bu)
Jj=l=rym J=4 1 m J=1=rum J=dp—Tym+1

1 < 2rn,mH(Oo)

< 4 H(A;i(B, ) < — < 20(m)||H||-

n
J 1- Tnym

Similarly, one can show that the second term in the right-hand side of (2.6) is bounded from above by
20(m)||K||, implying that the quantity in (2.6), namely the second term in the right-hand side of (2.5), is
less than or equal to 2(||H||» + ||K]|l«)o(m). Since the latter tends to 0 as m — oo, the thesis is proved. O

The only unpleasant point about Theorem 2.1 is that, in traditional formulations of asymptotic spectral
distribution results, the usual set of test functions F is C.(C) or C.(R), but not C}(R); see also Definitions 1.1-
1.2. However, this point is readily settled in Theorem 2.3, where we prove that, under the same hypotheses
of Theorem 2.1, if the second and third assumptions are met for every F' € C.(R), then (2.2) holds for every
F € C.(R). For the proof of Theorem 2.3, we shall use the following corollary of the Banach-Steinhaus
theorem [50].

Theorem 2.2. Let &,.% be normed vector spaces, with & a Banach space, and let T, : & — % be a sequence
of continuous linear operators. Assume that, for all x € &, there exists lim T,x =: Tx € .%. Then,

n—oo

o sup [|T,]| < oo;

e T:& — % is a continuous linear operator with ||T|| < le mf Tl

Theorem 2.3. Let {A,}, be a sequence of Hermitian matrices, with A, of size d,, — co. Assume that

1. {{Bym}n : m} is an a.c.s. for {A,}, formed by Hermitian matrices;
2. for every m and every F € C.(R), there exists 11m — Z F(Ai(Bym) =: ¢u(F) € C;
3. for every F € C.(R), there exists lim ¢,,(F) =: ¢(F) € C.

Then ¢ : (C.(R),|| - ||lo) — C is a continuous linear functional with ||¢|| < 1, and, for all F € C.(R),

I lim — Z F(A,(A) = ¢(F). 2.7)

n—oo

Proof. For fixed n,m, let

1 dy,
Gnm(F) 1= 4 Z:; F(A{(Bym)) : (Ce(R), |- llo) = C.

37



It is clear that each ¢,,, is a continuous linear functional on (C.(R),|| - |l«) with |[¢,.]| < 1. Indeed, the
linearity of ¢,,, is obvious and the inequality |¢,,,(F)| < ||F|lw, Which is satisfied for all F' € C.(R), yields
the continuity of ¢,, as well as the bound ||¢, || < 1. The functional ¢,, is the pointwise limit of ¢, ,, as

n — oo. Hence, by Theorem 2.2, ¢,, : (C.(R),] - |l) = C is a continuous linear functional on (C.(R),]|| - ||c)
with [|¢,,]| < 1. The functional ¢ is the pointwise limit of ¢, as m — oco. Hence, again by Theorem 2.2, ¢ is
a continuous linear functional on (C.(R), || - [lo) With [|¢]| < 1.

Now, fix F € C.(R). For all € > 0 we can find F. € C:(R) such that ||F — F |l < €. As a consequence, for
all e > 0 and all n we have

1 d, 1 d, 1 d, 1 d,
7 ; Fi(An) = $(F)| < | ; () = 7 21 F(A) + | ; FAA(AD) = §(F| + IB(FO) = $(F)

S|IF = Fello + +|¢(Fe) — p(F).

d

1 n

T 21 F(A(A,) - ¢(F)
]:

Considering that (2.7) holds for F. by Theorem 2.1, we have

lim sup

n—oo

< €+ |p(F.) — $(F).

1 &
- D F,(A) = ¢(F)
n 0

Passing to the limit as € — 0 and taking into account the continuity of ¢, we obtain

lim sup

n—oco

d

1 n

T Z; F(A,(Ay) - ¢(F)| =
=

which means that (2.7) holds for every F' € C.(R). O

2.1.1 An a.c.s.-based proof of the Szego theorem on the spectral distribution of Toeplitz matrices

As an application of Theorem 2.3, we present in this subsection a new proof of the famous Szego theorem
on the spectral distribution of Toeplitz matrices, which is nothing else than item 3 of Theorem 1.8 in the
case d = s = 1. This theorem, originally appeared in [39], has undergone several extensions [70, 11] until
the final version by Tilli [67], which includes all the others as particular cases. For the proof of the various
extensions, other arguments, different from the one used in [39], have been proposed. In particular, Tilli’s
argument [67] is similar to the one that we are going to present, but it does not make use of the concept of
a.c.s., which was introduced later. To our knowledge, an a.c.s.-based proof, like the one that we are going
to see in the following, has never appeared in the literature. Such proof is particularly useful to understand
how the a.c.s. notion can be seen as a fundamental definition that sets the basis for an approximation theory
for matrix-sequences, of which Theorems 2.1 and 2.3 are fundamental stones.

Let us start with reformulating Definition 1.1 in terms of functionals ¢ and in the case where the symbol
f is a univariate scalar function f (i.e., in the case d = s = 1).

Definition 2.2. Let {A,}, be a sequence of matrices, with A, of size d, — oo, and let f : D — C be a
measurable function, defined on a measurable set D Cc R wtth 0 < m(D) < co. We say that {A,}, has an

asymptotic spectral distribution described by f, in symbols {A,}, ~, f, if
him — Z F(A;(Ay) = ¢4(F),  VF e C(O), 2.8)
where .
¢s(F) = D) f F(f(x))dx. 2.9)

38



In the case where {A,}, is formed by Hermitian matrices and f is real-valued, all the eigenvalues of A,
are real and writing {A,}, ~1 f is equivalent to saying that (2.8) is verified for every test function F € C.(R),
with ¢, still defined by (2.9). Concerning the functional ¢;, we record the following property, of interest
later on.

Lemma 2.2. Let f,, : D — C be a sequence of measurable functions, defined on a measurable set D C R with
0 < m(D) < oo, and assume that f,, converges in measure to some measurable function f : D — C. Then,

¢5,(F) = ¢p(F),  VF e C(O). (2.10)
In particular, if f,, f are real-valued then
¢y, (F) = ¢p(F), VF € C.(R). 2.11)

Proof Let F € C.(C) and € > 0. Defining {|f,, — fl = €} :={x e D : |f,(x) = f(x)| > €} and {|f, — f| < €} :=
{xeD: |fux)— f(x)| < €}, we have

|67, (F) = ¢s(F)| <

f |F(fn(x)) = F(f(x)ldx

m(D)
1
L F(f(x)) = F(f(x)ld FUEAD) — FFOR)d
m(D) {Ifm—fIZE}l (fm(X)) = F(f(x)ldx + D) ”fm_ﬂq}l (fn()) = F(f(x))ldx
2 Fllcom({lfm — f1= €})

m(D) + wr(e), 2.12)

where wr is the modulus of continuity of F. Note that lim m({|f,,— f| > €}) = 0 (because f,, — f in measure)
and lim wr(€) = 0 (because F is uniformly continuous by the Heine-Cantor theorem). Hence, passing first
to the hm sup and then to the hm in (2.12), we get (2.10). In the case where f,, f are real-valued, (2.10)

m—00

immediately implies (2.11), because every F € C.(R) is obtained as the restriction to R of some F € C.(C). O

Now, let f : [-m, 7] — C be a function in L'([-x, x]), and denote its Fourier coefficients by

f f(x)e Vdx, jEZ.
We recall from Subsection 1.4.1 that, for every n > 1, the n-th Toeplitz matrix associated with f is defined as
T.(f) = [ﬁ—j]Z(l‘:y
In the case where f is real-valued, all the matrices 7,(f) are Hermitian and the following result holds.
Theorem 2.4 (Szego). Let f be a real-valued function in L'([-n, ), then {T,,(f)}, ~a1 f.

Our goal is to provide a proof of Theorem 2.4 based on the notion of a.c.s. and, especially, on Theorem 2.3.
To this end, we need some auxiliary lemmas. If f € L'([-n, ]), we set

W loionmy = [ GO
Lemma 2.3. Let f € LY([-nr, n]) and n € N, then

NT2 (O < Crll Al 2.13)

where C = 1/nx.
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Proof. The proof is taken from [67, Lemma 3.1]. We first observe that, if f > 0, then T,(f) is HPSD by
Theorem 1.8 and, consequently, the singular values and the eigenvalues of 7,(f) coincide. Thus,

NT. (Ol = ; AT, (f)) = trace(T,(f)) = nfy = %T”f”Ll([—zr,ﬂ])’ 2.14)

which proves the thesis whenever f is nonnegative.
Now suppose that f € L([-n,x]) is arbitrary, and consider the following nonnegative functions:

R (x) = max(R(f(x)), 0), R(f)™(x) = max(—=R(f(x)), 0),
()" (x) = max(3(f(x)), 0), 3(f)(x) = max(=3I(f(x)), 0).
Then
f=ROT =R +i3(HT =13(f)”
and

T.(f) = T,(R(f)) = T,(R(f)) + 1 T(3()") = i Tu(3()).
Since R()*, R(f)~, I(f)*, I(f)” are nonnegative, by (2.14) we have

A
— o (a2 [Cnerwase = [ sy o [ a0y was

=—j‘WﬁMHMﬂuﬂxﬂuﬂxﬂ@) :—f|wﬂm+Mﬂm1
< o j:,, 2|f(x)|dx.

O

The inequality (2.13) is part of a large family of inequalities involving Toeplitz matrices and Schatten
p-norms. In particular, in a finer version of (2.13), the constant C = 1/x is replaced by C = 1/(2r), which is
precisely the constant obtained in (2.14), in the case where f is nonnegative. We refer the interested reader
to [61, Corollary 3.5].

Lemma 2.4. Let Z,,, be a matrix of size n, and assume that, for every m,

|z

n,m

||1 < a(m)n, Vn > ny,
where a(m), n,, depend only on m. Then, for every m,
Zn,m = an + Nn,m’ Vn > Ny

where rank(R,,,,) < Va(m)n and ||N, || < Va(m).

Proof. The thesis may be somehow derived from the results in [60] (see in particular Theorem 4.4 and
Corollaries 4.1-4.2). However, since the derivation is not so plain, we include a short and direct proof for
the sake of the reader.

Fix m and n > n,. Since | Zym ||1 < a(m)n, the number of singular values of Z,,, that exceed Va(m)

cannot be larger than va(m)n. Let Z,,, = U, nXpmV,,, be a singular value decomposition of Z,,, and write

Zn,m = Un,mzn,mv;:, = U 2(1) vV o+ U 2(2) Vv

n.m - nm n,m " n,m>
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where Z,(m is obtained from X, ,, by setting to O all the singular values that are less than or equal to \/a(m),
while Z,(,z,),, = an—Z,(fm is obtained from X, ,, by setting to O all the singular values that exceed Va(m). Then

Zym = Ry + Ny,
where R, := U, mZ(l) Vi and Ny, := U, mZ(z) V, n satisfy rank(R,,,) < Va(m)n and ||N,,.|| < Va(m). O
The next lemma shows that Theorem 2.4 holds in the case where f is a trigonometric polynomial.
Lemma 2.5. Let p be a real-valued trigonometric polynomial, then {T,(p)}, ~. p-

Proof. Let p(x) := Z‘;:_s pjeijx be a real-valued trigonometric polynomial. Note that p_; = p; for all j =

-s,..., S, because p is real. For every n > 25 + 1, consider the following decomposition of 7,(p):
>p0 D—s Ds - D1 1 [ ps pl—
s s Ps
T.(p) = . . . - =: Cu(p) = Zu(p).
P-s P-s P-s
| P;l P-s | Ds P.o I P;1 P-s

(2.15)

C,.(p) is a (Hermitian) circulant matrix and hence its eigenvalues are explicitly known (see Theorem 1.11):

2n(j—1
L(Culp)) = p(%) i=t...n

Therefore, for every test function F € C.(R), we have

9 1 2n 1 T
lim 1 Zm (Cp) = lim = Z (%) =5 [ Foenar=g [ Fouo

where the last equality holds because p is periodic with period 2m, while the second equality is due to the
fact that 27” " 1F (p(2’” )) is a quadrature formula for approximating fOZH F(p(x))dx and converges to this
integral as n —> oo, because the function F(p(x)) is continuous on [0, 2r]. Thus, {C,(p)}, ~

Now, for every n,m, set A, := T,(p) and B,,, := C,(p). We have just proved that {B,,}, ~1 p for every
m. All the hypotheses of Theorem 2.3 are then satisfied (with ¢,, = ¢ = ¢,, as given by (2.9) for f = p) if
{{Bum}n : m} is an a.cs. for {A,},. But this is clearly true, because, in view of (2.15), for every m we have

An = Bnm + Rn,m + Nn,m’ Vn > Ny
where N,,, is the zero matrix and R,,, := —Z,(p) satisfies rank(R, ) < 2s < o(m)n for all n > n,,, provided
that we choose n,, = m and o(m) = 2s/m. All the hypotheses of Theorem 2.3 are then satisfied and so
{Tn(p)}n ~aP- O
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Proof of Theorem 2.4. Take a sequence of real trigonometric polynomials p,, such that p,, — f in L([-n, x]).
We prove that the assumptions of Theorem 2.3 are satisfied with

An = Tn(f)a Bnm = Tn(pm)9 ¢m = ¢p,,,’ ¢ = ¢p-

We first note that 7,(f) and T,(p,,) are Hermitian, because f and p,, are real. By Lemma 2.5, for every m

we have {T,,(pm)}n ~1 Pm- By Lemma 2.2, ¢, (F) — ¢,(F) for all F € C.(R), because p,, — f in LY([~n, 7))

and hence, a fortiori, p,, = f in measure. It remains to show that {{7,(p,)}, : m} is an a.c.s. for {T,,(f)},.
By Lemma 2.3, for every n,m we have

W () = Tulpwdlly = WTw(f = pudllly £ /OIS = Pullirqory = a(mn,

where a(m) := (1/70)||f = pullo-rapy- Thus, by Lemma 2.4, for every n,m we have

Tn(f) - Tn(pm) = Rn,m + Nn,m,

where rank(R,,,,) < va(m)n and ||N, || £ Va(m). Since a(m) — 0 as m — oo, {{T,,(pn)}, : m} is an a.c.s. for
{T,()},. The thesis now follows from Theorem 2.3. O

We conclude by saying that a completely analogous proof as the one presented in this subsection
can be given also for the multilevel block version of the Szegd theorem stated in item 3 of Theorem 1.8.
Here, we decided to address only the monolevel scalar case in order to avoid technicalities and notational
complications, so as to make more clear the ‘a.c.s. idea’ and the way in which Theorem 2.3 is applied in
practice.

2.2 Tools for determining the spectral distribution of non-Hermitian perturba-
tions of Hermitian matrix-sequences and applications

The tools presented in this section serve to determine the spectral distribution of a matrix-sequence of the
form {X,,+Y,}, where X, is Hermitian and Y, is a perturbation of X,, with small trace-norm with respect to the
matrix size d,,. More precisely, given a matrix-sequence {X,}, with X,, Hermitian of size d, tending to infinity,
we consider the sequence {X, + Y,}, where {Y,} is an arbitrary (non-Hermitian) perturbation of {X,}. In this
section, we prove that {X, + Y,} has an asymptotic spectral distribution if: {X,} has an asymptotic spectral
distribution, the spectral norms [|X,||,||Y,|| are uniformly bounded with respect to n, and ||Y,ll; = o(d,).
Furthermore, under the above assumptions, the functional ¢ identifying the asymptotic spectral distribution
is the same for {X, + Y,} and {X,}. This result extends Theorem 1.6, where the functional ¢ identifying
the asymptotic spectral distribution of both {X,} and {Y,} is given by ¢(F) := ﬁ fDF (f(x))dx, to the case
where the spectral distribution of {X,} and {Y,} is described by more general functionals ¢. We mention
some examples of applications, including the case of matrix-sequences with spectral distributions described
by matrix-valued functions and the approximation by Q, Finite Element Methods of convection-diffusion
equations. The latter application will be developed in full details in Chapter 3.

2.2.1 Main results

Our main result, briefly summarized above, is Theorem 2.6. In order to prove it, we need some preliminary
work. If § ¢ C is compact and F is continuous over S, we set ||[F||ws := max,s |[F(2)|.

Theorem 2.5. Let {Z,} be a sequence of matrices, with Z, of size d, tending to infinity, and assume the
following.
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1. {Z,} is weakly clustered at a compact set S C C with C\S connected.
2. p(Z,) < C for all n, with C a constant independent of n.

3. For some radius R and for all functions p € C.(C) coinciding over D(0, R) with a complex polynomial
in Clz], there exists hm Zd” p(1i(Z,)) = ¢(p), where ¢ : C.(C) — C satisfies the following ‘continuity

property’:

VF€C.(C), Ve>0 J6:=6.r>0: |p(F)—d(G)<e VG eC(C)with ||F -Glles <6. (2.16)

Then, for all F € C.(C) holomorphic in the interior of S there exists

n—oo d

d,
lim — Z F(A(Z)) = ¢(F). 2.17)
j=1

In particular, if the interior of S is empty, (2.17) holds for all F € C.(C).

Proof. Let F € C.(C) be holomorphic in the interior of § and let € € (0,1). By the hypothesis on ¢, there
exists 0 := 0 > 0 such that |¢p(F)—¢(G)| < € for all G € C.(C) with [|[F-Gl|los < 6. Without loss of generality,
we may assume 0 < €. By the Mergelyan theorem [50], there exists a polynomial g(z) := g r(z) € C|[z] such
that ||g — Fllos < 0. Let p := per be a function in C.(C) coinciding with g over S U D(0, R), and note that
[p = Fllos <06 < € and |¢p(p) — ¢(F)| < €. Then, for all n we have

1 &
— D F(Z0) ~ ¢(F)| <
n j=1

1 &
> pAZD) 9| +19(0) ~ P
n 3

(2.18)

1 & 1 &
T ; FOZ) = o Z; PA(Z))| +

The second term in the right-hand side tends to 0 as n — oo (by the third assumption), while the third term
is bounded from above by €. For the first term we have

1 d, 1 d, 1 d,
T ; FA(Z) = 7 Z:‘ PAE)| < ; IF(A/Z0)) ~ pA,(Z0)

1 1
=— > IFQE) - p@+— D IFAZ) — py(Z)
" j: 4{(Zn)ED(S €) " ji Aj(Z)eD(S \S

1
o T IFQUZ) = pAEZ)) (2.19)

" jAj(Z,)es

Now observe that the spectrum A(Z,) is contained in D(0,C) for all n, because the spectral radii p(Z,) are
all bounded from above by C (second assumption). Moreover, by definition of D(S, €) (see Section 1.1), for
all n and all j€{1,...,d,} such that 4;(Z,) € D(S, €) we can find a point u;, € S such that [1;(Z,) — .| < €.
Let wr and w, be the moduli of continuity of F and p over D(S,1), and note that D(S,1) 2 D(S, €), because
we have fixed € € (0,1). Then, the three summands in (2.19) can be bounded as follows:

IF = pllwpoe #J €l ... du} 0 i(Zy) & D(S, 6)} 2 S)
dy B d, ’

1
T, F@) - pz)) <
" J:4i(Z)ED(S €
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with ge(n,S) :=#{j€{l,...,d,} : 1;(Z,) ¢ D(S,¢€)} as in Definition 1.3 and ¢ a constant independent of n;

1
— D> IFQZ) - pASZ)

" A{(Zy)eD(S,)\S

1

s (IF (AH(Zy) = F(pj)l + 1F () — pQin)l + I pQein) — p(/l,,-(Zn))l)
" j: A)(Z)eD(S,o\S

< di (a)p(e) +0+ a)p(e)) < wr(e) + € + w,(e);

" j: A)(Z)eD(S,\S

1
- > FQZ) = pEZI S IIF = plles <5 < €.
" jiAj(Zy)eS

Passing to the limit as n — oo in (2.18) and recalling that {Z,} is weakly clustered at S, we get

n—oo

dy
lim sup dl D F(Z) = (F)| < wrp(e) + €+ wyle) + e+,
L

and the thesis follows from the fact that the right-hand side tends to 0 as € — 0, since F, p are continuous
(and hence uniformly continuous) over D(S,1). O

Remark 2.1. We note that, if ¢ : C.(C) — C is a functional satisfying (2.16) for a compact set S and if K
is a compact set containing S, then ¢ satisfies (2.16) also for the compact set K.

Lemma 2.6. |trace(Z)| < ||Z|l; for all square matrices Z.

Proof. This is Weyl’s majorization theorem for p = 1; see, e.g., [7, Theorem 11.3.6, Eq. (I1.23)]. For the reader’s
convenience, we include a short and direct proof. Let Z € C™ be a square matrix and let Z = UXV be a
singular value decomposition of Z. Then,

S wn|= > S 0@ Y wn] < 3@ Sl < 3 0x(2) = 121,
i=1 i k=1 i=1 k=1 i=1 k=1

i=1 k=1
where the latter inequality follows from the Cauchy-Schwarz inequality and from the fact that the Euclidean
norm of the vectors wy := [uy, ..., U] and vg := [V, ..., V] is 1 (the matrices U, V are unitary). O

M=

[trace(Z)| = u ok (Z)vii

Lemma 2.7. Let {Z,} be a sequence of matrices, with Z, of size d, tending to infinity, and assume that
ISEZ)Il; = o(d,) and A(R(Z,)) C [c,d] for all n, with c,d independent of n. Then {Z,} is weakly clustered at
[c, d].

Proof. The Lemma follows from [37, Corollary 3.3]. We may also derive it directly from [37, Lemma 3.2]. O

Theorem 2.6. Let {X,}, {Y,} be sequences of matrices with X,,Y, € C%*% and d, tending to infinity, and
assume the following.

1. ||X,|, 1Yl < C for all n, with C a constant independent of n.

2. Every X, is Hermitian and, for some radius R and for all functions p € C.(C) coinciding over D(0, R) with
a complex polynomial in C[z], there exists limi Zj’;l p(1i(X,)) = ¢(p), where ¢ : C.(C) — C satisfies
(2.16) for some compact set S C R.

3. WYl = o(d,) as n — oo,
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Then, setting Z,, := X,, + Y, for every F € C.(C) there exists

1
lim — > F(1(Z,)) = 9(F).

"=l

Proof. Let K be a compact subset of R containing both S and [-2C, 2C]. Note that K does not disconnect
C and has empty interior. Moreover, ¢ satisfies (2.16) for the compact set S and hence also for the compact
set K, by Remark 2.1. We show that the sequence {Z,} satisfies the assumptions of Theorem 2.5 with K in
place of S, after which the proof is finished.

1. We have Z, = X, + R(Y,) + i3(Y,), where R(Z,) = X,, + R(Y,) has all the eigenvalues in [-2C, 2C],
because [[R(Z,)I < [[Xall + RV < [1Xall + 1Yl < 2C, while [[S(Z)Ill; = IISY)Il; < IYally = o(dy). Hence, {Z,}
is weakly clustered at [-2C,2C] by Lemma 2.7, and, a fortiori, is weakly clustered at K 2 [-2C, 2C].

2. p(Z,) < Z,)l < IX,ll + 1Yl < 2C for all n.

3. We show that lim,_, d—ln Z;ﬁl p(1i(Z,)) = ¢(p) for all functions p € C.(C) coinciding with a polynomial

over D(0,2C + R). Note first that, for a monomial z*, k > 0, we have

Zy = (X, + Y,) = X, + Rug,
where R, = (X, + Y,k - X,’j satisfies || R,k |1 = o(d,). This follows from the third assumption, from the
fact that [|X,l|,||Y,]| are bounded from above by a constant C independent of n, and from the Holder-type
inequality [IXY|l; < [IXI|IY|l; satisfied by the trace-norm (see [7, Problem I11.6.2 and Corollary 1V.2.6] for the
Holder-type inequalities satisfied by the Schatten p-norms and by the unitarily invariant norms in general).
Therefore, for every polynomial g(z) := go + qiz + ... + g»2" € C[z] we have g(Z,) = g(X,) + R, 4), where
Rig) i= Dieo QxR satisfies || Rn,q(z)|||1 = o(d,). By Lemma 2.6 we then obtain

|trace(q(Z,)) — trace(q(X,))| = ltrace(q(Z,) — ¢(X,))| = |trace(Ry 4| < |

Rn,q(z) |||1 = O(dn)’

implying that the sequence .
1 1
Jiracea(Z) = - Zl 9A[Z,))

converges to the same limit of the sequence

1 1
d—ntrace(CI(Xn)) == Z q(4;(X))

J=1

(provided the latter exists). To conclude, note that A(Z,), A(X,) € D(0,2C + R) for all n. This implies that,
for all p € C.(C) coinciding over D(0,2C + R) with a polynomial g,(z) € C[z], we have

n—-oo

1 & 1 &
lim - ), p(4,(Z,) = lim —- Z 4p(A(Z,)) = lim — Z ap ) = lim = ) p(A,(X) = #()
j=1 j=1

where the last equality follows from the second assumption. O

2.2.2 Some applications

In this subsection, we discuss some applications of Theorem 2.6: the case of matrix-sequences with asymp-
totic spectral distributions described by matrix-valued functions and the approximation by Q, Finite Element
Methods of convection-diffusion equations.
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Matrix-sequences with asymptotic spectral distributions described by matrix-valued functions

From Theorem 2.6 we obtain the following generalization of Theorem 1.6. As we shall see, this generaliza-
tion serves in particular to determine the asymptotic spectral distribution of matrix-sequences of the form
{Tnm(F) + Yy,},, where f is some Hermitian matrix-valued function in L*, n(n) — oo as n — oo, and {Y,}
satisfies the assumptions of Theorem 2.7.

Theorem 2.7. Let {X,}, {Y,} be sequences of matrices with X,,Y, € C%*% and d, tending to infinity, and
assume the following.

1. |X,|, 1Yl < C for all n, with C a constant independent of n.

2. Every X, is Hermitian and {X,} ~, f, where f : D — C"° s a measurable function defined on a
measurable set D C RY with 0 < my(D) < co.

3. IYully = o(d,) as n — co.
Then |, A(X,) € [-C,C], 4(f),...,A(f) € U, AX,) ae., and {Z,} ~, f, where Z, := X, + Y.

Proof. Let K = |J,A(X,). Since every X, is Hermitian with ||X,|| < C, we have K C [-C,C]. We
show that Ai(f),...,A,(f) € K a.e. Assume by contradiction that this is not the case. Then, we can
find a disk D(z,r) such that D(z,r) N K is empty and my({3j : A;(f) € D(z,r)}) > 0, where {dj : A;(f) €
D(z,r)} := {x € D : dj € {1,...,s} such that 4;(f(x)) € D(z,r)}. Choose a test function F € C.(C) such
that F =1 over D(z,r), F = 0 over K, and 0 < F <1 over C. For this test function the limit relation
lim, . din j.";l F(1,(X,)) = ﬁ fD§ St F(4;(f(x))) dx cannot hold, because the first term is 0 while the
second is positive. This is a contradiction to the second hypothesis. We conclude that A;(f),...,A,(f) € K
a.e.
Now, let ¢ : C.(C) — C be the functional defined as

1 1<
O(F) = D) fD E;F(/lj(f(x)))dx.

This functional satisfies (2.16) with S = [-C, C], because A(f),...,A,f) € [-C,C] a.e. and hence, for all
F,G € C.(C),

1 1<
lp(F) = p(G)] £ ——— f - ) [F(f(x)) - G(A;(f(x)))| dx < |IF = Gllwo[-c.c1-
¢ ¢ ma(D) Ds;| j j | [-C.Cl
All the hypotheses of Theorem 2.6 are then satisfied and the thesis follows. |

Corollary 2.1. Let f : [-n, 7]* — C™ be a Hermitian matrix-valued function in L*([-n, x]%), let {n(n)}, € N¢
be a sequence of multi-indices such that n(n) — oo as n — oo, and let {Y,} be a sequence of matrices
such that Y, has size N(n(n))s, ||Y,|| is uniformly bounded with respect to n, and ||Y,|l; = o(N(n(n))). Then
{Thony(F) + Y}y ~a F.

Proof. Defining X, := Ty, (f), all the assumptions of Theorem 2.7 are met, thanks to Theorem 1.8 and to the
inequality (1.37), which ensures [T, (f)|| to be uniformly bounded with respect to n. O
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Approximation by Q, Finite Element Methods of a model convection-diffusion equation

Let us consider the boundary value problem

{ “Au+pB-Vu+yu=f inQ, (2.20)

u=0 on 0Q,

where Q = (0,19, f € L*(Q), B := B1,....Ba), and v, B;, j=1,...,d, are functions in L*(Q) with y > 0.
We approximate (2.20) by using the standard Q, Lagrangian Finite Element Method on the uniform mesh
determined by the hypercubes whose vertices are (ji/n,..., ji/n), ji,---»Jja = 0,...,n. We refer the reader to
Chapter 3 for the details on this method. Denote by A, the stiffness matrix, of size (np — 1), resulting from
this approximation technique. It can be proved that the (np)? x (np)? matrix n2A, ® Oupyi—mp-1y> Obtained
from A, by adding zeros, is similar, through a permutation transformation, to Ty (f,) + Y,, where:

e n(n):=(n,...,n) (d components);

Ao nd o . . . . . . .
o f,: [-m, n]¢ — CP™P" i{s a Hermitian matrix-valued function, continuous over [—-m,]¢, which is also
. e . . d d
positive semidefinite over [—m, 7]¢, because v* »(X)v > 0 for all ve CP*7" and for all x € [-m, nl4;

e the matrix-sequence {Y,} is real and non-symmetric (due to the presence of the convection term), but
satisfies the assumptions that the trace-norm is o((np)?) when n — oo and that the spectral norm ||Y,]|
is uniformly bounded with respect to n.

Therefore, by Corollary 2.1 we have {n??A, & O(pyi_p-1y} ~1 fp. This implies that {n??4,} ~, f, by
Definition 11, because the eigenvalues of n??A, @& Op_p-1¢ are precisely those of n?2A4,, with only
(np)? — (np — D¢ = o((np)?) extra eigenvalues equal to O.

A detailed spectral analysis of the stiffness matrices coming from the Q, Lagrangian Finite Element
approximation of classical convection-diffusion equations like (2.20), including the formal proof of the
results cited above and the study of the properties of the matrix-valued function f,, will be the subject of
Chapter 3. Here, we have just mentioned the application of the theoretical tools obtained in this section for
determining the asymptotic spectral distribution of such matrices.
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Chapter 3

Spectral analysis and spectral symbol of Q, Lagrangian FEM
stiffness matrices

This chapter is devoted to the (asymptotic) spectral analysis of the stiffness matrices arising from the Q,
Lagrangian Finite Element approximation of the following second-order d-dimensional elliptic differential
problem:

u=0 on 0Q, 3.1)

where f € L%Q), B = (Bi,...,B4), and v, Bj,j = 1,...,d, are functions in L*(Q) with y > 0 over Q.
The multi-index p := (p1,...,pa) € N¢, which appears as subscript of Qp, is related to the Finite Element
approximation order and, more specifically, p; is the polynomial approximation degree in the j-th direction.
We will provide in Section 3.1 all the necessary details for understanding the Q, Lagrangian Finite Element
Method (FEM), but we also refer the reader to [47, 48, 49, 18, 55, 14, 15] for a wide account on this numerical
technique and its evolution.

After presenting a construction of the Q, FEM stiffness matrices, we investigate the behavior of the
extremal eigenvalues, the conditioning, and the asymptotic spectral distribution when the mesh is refined and
the matrix size goes to infinity; in particular, we find out the associated spectral symbol (see Definition 1.1).
We also study the properties of the symbol, which turns out to be a d-variate function taking values in the
space of N(p) X N(p) Hermitian matrices. Looking at Remark 1.2, this means that the spectrum of our FEM
matrices is (asymptotically) described by N(p) different functions, that is the N(p) eigenvalues of the symbol,
which give rise to N(p) different ‘spectral branches’. Unfortunately, as we shall see in Subsection 3.4.3, the
eigenvalues of the symbol are well-separated, far away, and exponentially diverging with respect to p and
d, implying that the eigenvalues of the FEM matrices behave in the same way. Even in the case d =1
and p = 3, we see from Figure 3.2 that the maximum eigenvalue of the symbol is rather distant from the
minimum eigenvalue. This very involved picture provides an explanation of:

{ —Au+B-Vu+yu=7f inQ:=(0,1)7,

(a) the difficulties encountered in designing robust solvers for the Q, FEM stiffness matrices, with con-
vergence speed independent of the matrix size, of the approximation parameters p, and of the dimen-
sionality d;

(b) the possible convergence deterioration of known iterative methods, already for moderate p and d.

3.1 Galerkin method and Q, Lagrangian FEM

The weak (variational) form of the elliptic differential equation (3.1) can be stated as follows: find u € H(l)(Q)
such that
a(u,v) = (f,v), Yve HyQ), (3.2)

where a(u,v) := fQ(V” -Vv+B-Vuv+yu) and (f,v) := foV-
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In the standard Galerkin approach, we find an approximation of u by choosing a finite dimensional
subspace W C H(I)(Q), called the approximation space, and by solving the following (Galerkin) problem: find
uy € W such that

a(uw,v) = (f,v), VYve W! 3.3)

If dimW = N and we fix a basis {¢,...,¢y} for W, then we can expand every function v € W as a linear
combination of the form v = Zyzl vip;, and the computation of uy = Z?’:l ujp; is reduced to solving the
linear system

Au =f, (3.4)

where A = [a(goj,t,o,-)]ﬁ’j:1 is the stiffness matrix and f = [(f,¢)]Y,. Once we find u, we know uy = Z?’zl ujp;.
In the context of Q, Lagrangian FEM, W is chosen as a space of continuous piecewise polynomial
functions vanishing on the boundary of Q. More precisely, define for p,n > 1 the spaces

Ve .= {seC([O 1) : spm) €P, Vi=0,. ,n—1},
WP = (s € VP 1 5(0) = s(1) = 0} € Hy(0,1).

It is known that dimV? = np +1 and dimW? = np — 1. Consider for V" the Lagrangian basis

{€opys - - - buppy} 0N the uniform knot sequence & = .-, i = 0,...,np. This means that {;(, is the unique

function in Vi”' taking the value 1 at & and 0 at & for i # J:
(&) =06, Vi, j=0,...,np.

Since lip), ..., lup-1,p) vanish at the boundary of [0,1], we infer that {£i,),..., -1} is a basis for W,(,” )
(the Lagrangian basis of W,ﬁ” )). For later purposes, we report the explicit expressions of the basis functions
Cipys - -+ Cup-1,(p) @and of their (Sobolev) derivatives in terms of the Lagrange polynomials Ly, ..., L, associated
with the knots 7, = f, k=0,...,p, which are given by

)4
I— 1 pt—k
Lh(t):l_[t_t _]—[h_k, Vh=0,...,p, Li(t) = 6, Yhk=0,....p. (3.5)
k=0 h Tk o
k#h kzh

If j is a multiple of p, then the support of £, is supp(£j)) = [£j-p, Ejepls

L (X fjp) fj_pS)chj,

&i—&j-p L,(nx—-né&;_,) &, <x<Ej,
fj,(p)(X) = Lo ( X — é:j ) .f <x< §'+ = Lo(nx — né‘]) g] <x< é‘:j+p’ (36)
i —&) " 0 otherwise,
0 otherwise,

and the derivative of £;(,) is

nL,(nx —n&;p) & p <x<§,
Cm® =1 nlylnx —ngp) & <x <Ejip, 3.7)
0 otherwise.

In the case where the bilinear form a(u,v) is coercive, both the solution uw of (3.3) and the solution u of (3.2) are unique;
see [13]. In particular, they are unique if B is constant, because in this case a(u,v) is coercive; see [47, Chapter 5, p. 140].
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If j is not a multiple of p, let j, = jmod p € {1,..., p —1}. Then supp({;,) = [€j-j,.&j-jp+p]-

X = é‘:j_jp )
Li|m——————| &i-j, £ x<&i-j +p Li(nx—n&;_j) &i—j SXZEjj ips
=9 " (fj—jp+p —&m) T B e e (3.8)
. 0 otherwise,
0 otherwise,
and the derivative of £;(,) is
g/. (x) — nL;p(nx - né:j_jp) é:j_jp <X < é:j—jp+[7’ (39)
o) 0 otherwise.
Figure 3.1 reports the graph of i), ..., -1 in the case p = 2, n = 3, together with the graph of the
Lagrange polynomials Ly,...,L, in (3.5) for p = 2. Now, for any pair of multi-indices p,n € N9, let
Wi = W @@ W = span (£ 1 j = 1.....np — 1) C Hy(Q), (3.10)

where £ p) = Cjypy © -+ @ Ljypy)-

In the framework of Q, Lagrangian FEM, the subspace W in the Galerkin problem (3.3) is chosen as W,(,” )
for some p,n € N’ (usually p = (p, ..., p) for some p > 1), and for W,(,p ) we choose the tensor Lagrangian
basis in (3.10), ordered according to the standard lexicographic ordering (1.1) for the multi-index range
1,...,np — 1. With these choices, we obtain in (3.4) a stiffness matrix A, which henceforth will be denoted
by AP in order to emphasize its dependence on p and n:

np—1
AP = [a(f,-,(,,),f,-,(,,))]i’jzl . (3.11)

Let us consider the following split of the matrix, according to the diffusion, advection and reaction

terms, respectively:
np—-1 np—1
f B- Vi fixp)] + f Y é’j,(,,){’,-,(p)] : (3.12)
Q ij=1 Q

ij=1
For obvious reasons, the first matrix in the right-hand side of (3.12) is called diffusion matrix, the second
advection matrix, and the third reaction matrix. With expressive notation, we denote these three matrices

by A%, Afﬁ, Ai,pl)g, respectively:

AP = [ j; Vi - Vi

np—-1
+
i,j=1

np-1

np-1 np-1
AP = [ L Vi Wi,(m] . AP = [ L BV fL(p)] . AP = [ fg ijxp)fi,(p)] : (3.13)
ij=1

ij=1 ij=1
The diffusion matrix is SPD, the reaction matrix is SPSD (SPD if y # 0 a.e.), while the advection matrix
is not symmetric and is responsible for the non-symmetry of AP The following lemma provides an upper

bound for the spectral norm IIA%II. In all this chapter, the symbol vy, will denote a nonnegative constant

.....

Lemma 3.1. Let p € N?, then there is a constant B,, depending only on p, such that

Zd: ny
AP < BylIBllie 22—, Vne N (3.14)
> nl .« e nd

Proof. By (1.3) we have IIALPZII < IIA;I’;IIOOIIA;I’AIIL Recalling that the co-norm of a matrix is the maximum
1I-norm of its row vectors and that the 1-norm of a matrix is the maximum 1-norm of its column vectors, if
we show that
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Figure 3.1: graph of the Lagrangian basis functions €y ,),..., -1 in the case p = 2, n = 3, and of the
Lagrange polynomials Ly,...,L, in (3.5) for p = 2.
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(@) each entry of AP i is bounded from above by Bp”B”LOO(Q)
D,

“ for some constant B depending only on
ni-

(b) each row and column of Aif’; contains a number of nonzero entries bounded from above by some
constant Bp depending only on p,

then the thesis follows with B, = Epép.

For all p > 1, set U, := max{||Lj||LoO(0,1),||L;.||Loo(0,1) :J=0,...,p}, where Ly,...,L, are the Lagrange
polynomials (3.5). From the expressions of i), ..., -1y and of their derivatives given in (3.6)-(3.9), and
taking into account the supports of £y ), ..., up-1), for all p,n >1and for all i, j=1,...,np —1 we have

20%/n if li— jl < p, 207 ifli-jl<p
. < p 4 o< p ’
f(:n) Eiwllipl < { 0 otherwise, o) Ciplilinl < 0 otherwise.

Now, for p,n € N? for i,j = 1,....,np— 1 and for k = 1,...,d, since €jp = Cj.py ® ** ® €, (pp and
= (0,1 is rectangular, we have

af] (IJ) g 5/ f f
o, i) @ O L () B L (5 @ Lkersprs) ® 7 @ L (pa)s
M’ D \bioml = Ci onlle ¢ ¢ AN,
il = €5 ool ol - - - il e 1€, ool ool
Q 0,1) 0,1) (0,1)

: f 1€ e €|+ f €50 oallCig.pa)
0,1) 0,1)

2 2 2 2
20U, 2U 9 2U 2U

< n—lﬁ pk'ﬁ“'ﬁ i lis— jil < pis--slia = Jal < pa
0 otherwise
Upier i lli = Jllo < Pl

10 otherwise

where U, := 2/ ], U%. Hence,

(0] J(P)
Ap ]lJ| = ‘fﬂ Vi tig)| < flﬂ Vi ft(p)| < i (p
. 34 n . . .
_ ljw |, BylIBll () == if [l = flleo < lIPllo
18Il i p)| < 1N .
0 otherwise

where Bp := Up. This implies that, for a fixed i € {1,...,np — 1}, the i-th row of the matrix Aﬁlpf)l contains
at most 13’ = ]_[? 1(2p; + 1) nonzero entries (those corresponding to the column multi-indices j such that

d
li — jllo < lIPlleo), and every nonzero entry is bounded from above by B,,IIBIIme)Z y . Similarly, for a fixed

ni-
jef{l,...,np — 1}, the j-th column of AP w4 COntains at most BIJ nonzero entries (those corresponding to
the row multi indices i such that |li — jllo < ||pllo), and every nonzero entry is bounded from above by

p||ﬂ||L°°(Q) - . The conditions (a) and (b) are then satisfied and the thesis follows. m|

np—-1
f fjxp)fi,(p)] :
Q ij=1
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Now we introduce the mass matrix

NP .=




This matrix is of interest because
YN < AP <IN (3.15)

Since all the matrices in (3.15) are SPSD, their spectral norm equals their maximal eigenvalue. Therefore

YN < AL < IVl @lIN I (316)

3.2 Construction of the Q, Lagrangian FEM stiffness matrices AE,” )

Taking into account the tensor structure of the Q, Lagrangian basis {{j, : j = 1,...,np — 1} and the
rectangularity of the domain €, we now prove the following result, which highlights the tensor structure of
the Q, Lagrangian FEM diffusion and mass matrices.

Theorem 3.1. Let p,n € N, then

1 1 1 1
AP = —M®® — M oK © — M ® - ® — ML, 3.17)
= 1 Ni—1 Ni+1 ng
1 1
N'(lp) — n_lMgl) R - M,({;d)’ (3.18)
where, for p,n > 1, K ) and M are the SPD matrices given by
np-1 1 np—1
nkp = [ f G, (p)] ; ;le,p V= [ f fj,(p)f,-,@)] : (3.19)
0,1 ij=1 0,1 i,j=1

Proof. The proof is very simple if we use the multi-index language and, especially, the fundamental property
(1.12). We could say that this proof is an exemplification of the power of the multi-index notation over the
conventional linear indexing whenever one has to deal with matrices formed by a sum of tensor products,
like Agfg and N,(,p). We only prove (3.17), because (3.18) is proved in the same way. For alli,j=1,...,np—1,
we have

(AL));; = f Ve Vi

f(m)t Z Cinpo D oo (X1) = Ly e )iy ey (K1) - 6 (Pk)(xk)gl{k,(pk)('xk)

€Jk+1 (Pl\+1)(‘xk+1)€lk+1 (Pk+1)(‘xk+1) Jd (Pd)(xd)gld (pa) (xd)dxl dxd

d
:Z f oo D) i (py (X)dxy - - - f i pre K= iy (pry (K1) X - f oo OO, oo (X)X
= Joo . 1)

: f oo X )iy (o) Kr DA X1 - - - f Ciatp)Xa) iy (pay(Xa)dxa
0, 0,1)

d
Z[ MM .. 1 — MPD @ K™ © 1 Mg ® 1 Mf,{jf’)]
o L' nk—l Ni+1 nq ij
41 1 1 1
Z _MEI;I) ® - M)(11/:k11) ® nkK(Pk) QR — M}gfﬁ—l) R ® _M}gﬁd) ,
n nk—l Njey1 ngq ..
k= ij
1
where the fourth equality holds by (1.12) and by definition of nK,(f’ ) and —M,(,p ), a
n
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3.2.1 Construction of K%, MY

This subsection is devoted to the proof of the following theorem. From now on, until the end of this chapter,
the symbol {, ) will be used to denote the scalar product in L%(0,1), i.e. {p,¢) := f(o b oy for all ¢, € L*(0,1).

Theorem 3.2. Let p,n > 1. Then
K, KIT

KW» = K

K;

, M’(lp)

K}
K,

My, M7
M, -

M,

, 3.20)
Mm{
M,

where the subscripts ‘— mean that the last row and column of the matrices in square brackets are deleted,
while Ky, K;, My, My are p X p blocks given by

(L1, Ly (L, . Ly (L, L})
Ko - ’ : ’ ’ ' ’ ’ : ’
LLL,y - LU (L)
@ L) L, Ly Ly + Ly Ly |
(Ly, Ly) (Lp-1, Ly) (L, Ly)
MO — : : :
<L1’ Lp—1> <Lp—1a Lp—1> <Lp’ Lp—1>
L <L1, Lp> <Lp—1’ Lp> <Lp7 Lp> + <L0, L0> |

00

00
s Klz .

0 0

00

00
; M, =

0 0

0| Ly)
0| (L. LY
) ) , 3.21)
0| Ly L)
0| (Lo, Ly)
0| (Lo, Ly)
L 322
0 (LO’Lp>

where Ly, ..., L, are the Lagrange polynomials (3.5). In particular, K,(,p ), M,(lp ) are the leading principal subma-
trices of order np — 1 of the block Toeplitz matrices T,(f,), T,(h,), respectively, where f,, h,, : [-m,n] — CP*P
are Hermitian matrix-valued functions given by

f,(0) := Ko + Kie"¥ + Kl e

(L}, L}) (L, Lp (L, Lty + (L, L;)e"
B (L. L) (L. L) (Lo, L )+ (Lo, L el
| (L}, L)+ (L, Le™ (LW Loy + (Lo L e | (L Ly + (LY, Loy + 2L, L)) cos 0
oyt | [ e et
- i P £ =t (3.23)
’ / ’ I\ A1 p-1 ’ ’ ’ ’ ’ ’ ’ ’
| <L £ + (L, L] ‘ (L, L)+ (Lo, Ly + 2Ly, Ly cos
h,(0) := Mo + Mye"’ + M e™
(Ly, Ly) (Lp-1,Ly) (L,, Ly) + (Lo, Ly)e”
- (Ly,L,1) (Lp-1, Lyy) (Lp, Ly1) + (Lo, L,1)e"
| (L1, L) + (Lo, Lye™ (Lp-1,L,) + (Lo, Lp—l>e_L6 (Lp,L,)+ (Lo, Lo) + 2(Ly, L,)cos 8
— -1
(Lol | [l + Lo L]
_ (3.24)

i=1

o4

| (Lo L)+ (Lo e | (Lo L) + (Lo, Lo) + Lo, Ly} cos



Proof. We only give the construction of K, since the construction of M is similar. For convenience,
denote by K the matrix in the right-hand side of the first equality in (3.20): we have to show that K,(,IJ )= K.
Since both K,(f’ ) and K are symmetric, it suffices to show that

(K" =K;;  Vi,j=1,...,np-1 with i>j. (3.25)
As in Section 3.1, set & = ﬁ fori=0,...,np and let {1, ..., -1} be the Lagrangian basis for W,(,p). For

all integers j, let j, = jmodp € {0, ..., p —1}. To prove (3.25), we first notice that, for all i, j=1,...,np -1
with i > j,

(L;,,L;,} +(Lg, Ly) if jis a multiple of p and i = j
(L’,L;p) if j is a multiple of pand j<i< j+p
(Ly, L) if j is a multiple of pand i = j+p
Kij={0 if j is a multiple of pand i > j+p (3.26)
L}p,Llfp) if j is not a multiple of pand j<i<j—j,+p
(L;p,L;,) if j is not a multiple of pand i=j—j,+p
0 if j is not a multiple of pand i > j—j,+p

We verify that (3.25) holds by considering the seven cases in (3.26). The verification is plain: it suffices to
use the expressions of € ,), ..., -1 and of their derivatives given in (3.6)—(3.9). For completeness, we
include this verification.

(1) If j is a multiple of p and i = j, then

1 N j +p
(KP),;; = - fo f;’(p)(x)zdx =n f: L (nx — néj ,)dx+n f: Li(nx — né;)*dx  (y 3.7)

1 1
= fo L (1)dt + fo Ly(tydt = (L, L)) + (Ly, Ly) = Ki;.

(ii) If j is a multiple of p and j <i < j+ p, then i is not a multiple of p, i —i, = j, supp(€i(p) = [}, Ejupl
and

1 1 J+p
(Klgm)ij = j; G Dy (Xdx =n f: Liy(nx — né j)L;p(nx —néj)dx by (3.7) and (3.9))
. SJ
= f LyL; (dt = (Ly, L ) = Kij.
0

(iit) If j is a multiple of p and i = j+ p, then i is a multiple of p, supp(€; ) N supp(€p)) = [izp,Eirpl N
[€j-p»Ejipl = [€)5 Ejrapl N [Ej—ps Ejupl = [€),Ejup] and

1 1 Jj+p
S R T e
0 &
1
= f Ly(OL,(t)dt = (Ly, L,) = Kij.
0
(iv) If j is a multiple of p and i > j+ p, then supp({i(,) C [§j+p, 1] and supp(€; ) = [§j-p,€j+pl, and so

1 ,
(K, = ~ fo by (0)dx = 0 = Ki;.
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(v) If j is not a multiple of p and j < i < j— j, + p, then i is not a multiple of p, i —i, = j— jp,
supp(€ip) = [&imiy» Einiprpl = €)=, Ej—jprp] = sUpP(C(p)) and

1 ! ’ ’ SIiprp ’ ’
(KP),;; = - fo @ ) (Ddx = n f L (nx —né;_j,)L; (nx —né;_; )dx by (3.9)

Ej-jp

1
= I) Ljp(t)Lip(t)dt = (Ljp,L,-p> = K;;.

(vi) If j is not a multiple of p and i = j—j,+p, then i is a multiple of p, i—p = j—j,, supp(€;,»)Nsupp(€j) =
[ips Eisp) N Ejj Ejmiprp] = [E)miys Eimiprap) N [Ejjys Ejjprpl = 1€, €jjpep] and

1 M ) ) Siiptr ,
(Kr(lp))ij ;L {’j’(p)(x)fi,(p)(x)dx:nf( Ljp(nx—nfj_jp)Lp(nx—nfj_jp)dx (by (3.9))

& P

1
fo L}p(r)L;(r)dt = (L;p, L) =K.

(vii) If j is not a multiple of p and i > j— j,+ p, then supp({i () C [§j-j,+p, 1] and supp(€; ) = [€j-j,» Ejjpip]s
and so

1 ,
(K = n j; Cin i p(0)dx = 0 = Kij.

O

We note that, if Lo, ..., L, are the Lagrange polynomials (3.5), then, for every h = 0,...,p and every € R,
a direct verification shows that L,(1—-1) = L,_,(). As a consequence, the equalities (L;, L;j) = (L,;,L,—;) and
(L, L) ={L,_ L, ;) hold for all , j = 0,..., p. These relations may be used to give alternative expressions

for the entries of the blocks Ko, Ky, Mo, M; in (3.21)~(3.22).

3.3 Properties of f,(0) and h,(0)

In this section we derive some properties of the Hermitian matrix-valued functions f,(6), h,(6) defined in
(3.23)—-(3.24). We need some results concerning the Lagrange polynomials.

Lemma 3.2. Let p >1and let Ly, ..., L, be the Lagrange polynomials (3.5). Then

14
Z jL)=p identically, (3.27)
j=1
p
Z L,=0 identically, (3.28)
j=0

while every proper subset of {Ly, ..., L,} is linearly independent.

Proof. (3.27) holds because Zle JLj = Zfzo JL; is the interpolating polynomial which takes the value j over
the knot f; = ﬁ for j =0,...,p, and hence Zle JLj(t) = pt identically. (3.28) holds because Zfzo L; is the
interpolating polynomial which takes the value 1 over the uniform knots #;, = l—’j, k =0,...,p, and hence
"o Lj =1 identically.
We prove that every proper subset of {L,..., L} is linearly independent. To this end, it suffices to prove
that every proper subset of {L,...,L,} with cardinality p is linearly independent. Actually, we will only
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prove that {L;, ... ,L;,} is linearly independent, since the proof for the other subsets is similar. Let ay,...,a),

be numbers such that Zf’zl a;L; = (Zle aiL,-), = 0 identically. Then there exists a constant C such that

)4
Z a:L;=C identically. (3.29)

i=1

By evaluating (3.29) in #, = %, k=0,...,p, and by remembering (3.5), we find that C = 0 and a; = ... =
@, = C, which yields &y = ... =@, = 0. Thus L,..., L} are linearly independent.

Lemma 3.3. Let p > 1 and set d, := det([(L},L?)]Z j:l)’ where Ly,...,L, are the Lagrange polynomials (3.5).
Then d, > 0 and d, = det([(L’,, L)]"7.).*

Proof. The lemma is true if p = 1, because Li(r) = ¢, L{(t) = 1, and d; = (L{,L}) = 1. In the following we
assume p > 2. We have d, > 0 because the matrix [(L’.,Llf)]f =1 is SPD, due to the fact that L/,... ,L;, are
linearly independent (Lemma 3.2).

We want to show that d, = det(.Z), where .£ := [(L’ L’)]ZJ _;- To this end, we perform the block Gauss

transformation that creates zeros in the first p — 1 components of the last row and column of [(L’,L’)]

i,j=1"
Setting
G I, 0
—KL. L)y - (L, L™ |1
we have
(L’,LD
’ ’ g . T
G(L, L: =G G = =:Z,
[< j z>]1] 1 <Lr Lr 1>
(L, Ly - (L, L) | <L;,,L;,>
(L, L))
where s := (L), L}) — [(L}, L,y --- (L}, p)].i” : is the Schur complement of .. Since det(G) =
(L, L)
det(G") = 1, we have d, = det(Z) = det(.Z)s, and so the lemma is proved if we show that s = 1. To prove
<L/ L/) <L/ Ll>
this, we note that .Z! : is the solution of the linear system Zu = : , Which is easily
(L,, L, ) (L,, L, )
seen to be u := [—%,—%, . "’_T] Indeed, by Lemma 3.2, for all i =1,...,p —1 we have

1
(L) = Z<L,, Liuj=—— Z KLy, Ljy = —— <Z JL, L > === pLp LYy = ~(L L) + (L), L))
j=1

1
- f LU0+ (L, L) = ~L(1) + Li0) + (L, L) = (L, L),
0

2We use the (standard) convention that the determinant of the empty matrix is 1, so that the latter formula gives d; = 1.
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where the last equality is due to the fact that L;(0) = L;(1) =0 for i =1,..., p — 1. Using again Lemma 3.2,
we obtain

(L, L})
s = <L;’ L;y) [(Li’ L;;> <Lp 1° p>]$_1 = <L;;’ L;) - [<Li’ L;y) <Lp 1° p)]u‘
(L, L, )

p .
(L L) - Z<L:,L;>uj=<L;,L;>+<Z§ 1) - (Z’L&%) L)

1
_ f L (0dt = L,(1) = L,(0) = 1,
0

which concludes the proof. m|

Theorem 3.3. Let p > 1, then
det(f,(0)) = d,(2 — 2 cos 6), 3.30)

where d, is defined in Lemma 3.3.

Proof. The theorem is true if p =1, because d; = 1 and fi(0) = 2 —2cos 6. In the following we assume p > 2.
By (3.23) and by the linearity of the determinant with respect to each row and column, we have

(L, LI, Ly L) + (L, Lpe 1|
det(fp(g)) = ’ ’ ’ I\ A0 p-1 ’ ’ ’ ’ ’ ’
(L L3 + (L, L™ | (L), Ly + (L, L) + 2(Li, L) cos 6 ‘
KL LI, KLy, I
| [ Ly + L Ly ) L L+ (L e
| (L, DI, WLy e |
+
‘ [z )+ <Ly Lpye ] ‘(L’, Ly) +(Ly, L)e
R ECE 20) s A 205 ol I I (OO0 205 N (OS89 090 Forl
\ (L o] | @y Ly (Lo Lpe ] | (L Lyye
| KL, I : KLy, L1 || e I | K, £ |
+ . -1
[ | e |7 e @ty |
|[<L',L'>], L I | RE DV | KL I |
=d,+e" = +e =
[<L',L'.>]i:1 wery | || |
| Kz, Lt : | KLy, L1 | e ,
+ ‘ [(L’ L’}] L | =:d,+e"d,+e"d, +d; =d,+2d,cos60 +d. (3.31)
il i >0
We prove that
det(f,(0)) = d, + 2d,, + d;] = 0, (3.32)
d, +d, =0, (3.33)
after which (3.30) follows from (3.31). By (3.23) we have
L, L Lo+ L, Lyt
B0 = [ MW | WL LD | [N NDT, s
KLy + L, IOV [y + L, 1y + 1)
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where N;:=L; fori=1,...,p—1and N, := Ly + L,. Since Y7 N/ = 37 'L’ = 0 identically (Lemma 3.2), it
follows that Nj, ... ,N;, are linearly dependent, f,(0) is singular, and (3.32) holds. To prove (3.33) we simply
note that

[ DI [ EVET || G LIS, | K EDNE | | W DTy | W + Lo LV |

l]l‘

.

dp+d - ’ ’ ’ ’ ’ / I ’ ’ ’ I
A RN AR N A BT I N IR

where the latter is a consequence of the fact that, by Lemma 3.2, L, + L; is a linear combination of

Li,.. L; » which implies that the last column of d, + d;, is a linear combination of the others. O

Theorem 3.4. Let p € {1,...,15}, then

(=pr+!
det(h,(0)) = a, (1 + P cos 9) , (3.34)
where a, = det(h,(3)) > 0.
Proof. The result has been verified by direct computation using MAPLE. |

Although the result of Theorem 3.4 has not been proved for all p > 1, we can certainly formulate the
following conjecture.

Conjecture 3.1. Theorem 3.4 holds for all p > 1.

Remark 3.1. Using the same computations as in the proof of Theorem 3.3, it is not difficult to see that

det(h,(0)) = a, + b, cos 6 for some constant a,, b, independent of 6. Thus, Eq.(3.34) is proved if we are able
= 1)’

to show that b, = a, . Once we have proved this, we do not need to prove also that a, = det(h,(3)) > 0.

Indeed, if (3.34) holds WLth some constant a,, then, by evaluatmg both sides at 6 = 7, we immediately get
a, = det(h,(3)); moreover, a, > 0. To see this, note that h,(0) = [(N; )]lj  with N;:=L;fori=1,...,p-1
and N, := Ly + L,. Since Ni,...,N, are linearly independent, due to the linear independence of Lo,...,L,,

it follows that h,(0) > O. Hence, det(h,(0)) > 0 and

det(h,(0))
Ap = Ty
1+ 5)

From now on, we will assume that Conjecture 3.1 holds. The results relying on this conjecture are
certainly true for p=1,...,15.

In the following, for p > 2 we denote by ,u(p "> ,u;p_)l >0 and nip "> > T]E,p_)l > 0 the eigenvalues of
the SPD matrices [(L’, L’)]pj Land [(L;, L)Y
(3.5). Moreover, we defme

e 1, respect'wely, where Ly, ..., L, are the Lagrange polynomials

mg, 1= eel}liﬂr,’n] Amin(f,(6)), M;

V4

= max Amax(Fp(6)),
My, = e»sr%}i;rlzln] ﬂmin(hp(g))a Mhp = Hgl_e}r);] /lmax(hp(g))-

Corollary 3.1. The following properties hold.

1. Let p 2 2, then L(f,(0) 2 " 2 A(£,(0)) 2 ) = ... 2 A, 1(£,(0)) 2 1) 2 A, (F,(6)) for all 6.
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2. Let p > 1, then there exists a constant ¢, > 0 such that, for all 6,

cp(2—=2c0s6) < Apin(fp(0)) <2 —2cosé. (3.35)

()
In (3.35) we can take c; =1 and c, = -t or p > 2. In particular, mg, = 0, f,(0) > O for all 0 € [-n, n],
P Mf P P

and f,(0) > O for all nonzero 0 € [-n, JT].p
Proof. For p =1 the corollary can be directly verified, because fi(6) = 2 — 20030 Assume p > 2. Item 1

follows from the Cauchy interlacing theorem and from the fact that [(L',L')]p =1 is the leading principal
submatrix of f,(6) for all 6. To prove item 2, observe that, by Theorem 3.3,

d
A6+ 4 (Fy(6) = detF,(O)) = dy(2 = 20086) = Ain((0)) = 7B s (2 = 20086)
P p—I\"p

Furthermore, by item 1 and Lemma 3.3, for all 8 we have

AR (0) -+ Apea(Fp () 2 g - ) = det([(L, L) = dy,

M- il My d,

4(F,(0)) - - - Ap-1(F,(0)) < M, 'u(p) H ;p)Z = () O

Hpo Hpy
and item 2 follows. |
Corollary 3.2. The following properties hold.
1. Let p 2 2, then i(hy()) 2 1" = da(hy () 2 1y 2 ... 2 A,.(hy(0) 2 7 2 4,(h,(6)) for all 6.

2. Let p 21, then my, > 0. In particular, h,(6) > O for all 6. In addition, my, = %, while for p > 2 we have
(p)
papn
My, > P where a, = det(h,(3)) > 0.

(p + l)n(l’) . ;P)l

Proof. For p =1 the corollary can be directly verified, because h;(0) = % + %COS 6. Assume p > 2. Item 1

follows from the Cauchy interlacing theorem and from the fact that [(L;, L,-)]f J_:ll is the leading principal
submatrix of h,(#) for all 6. To prove item 2, we simply note that, by item 1 and Conjecture 3.1,

(-1
L, (6)) - - A,(h,(6)) = det(h,(6)) = a, (1 "

coS 0)

a, (—1)P+ a, 1
1+ cos 1- .
A(hy(0)) - - - Ap_1(hy(6)) p+1 M i ,7;@2 p+1

= /lmin(hp(e)) =

O

Item 1 in Corollary 3.1 has the following geometric interpretation: the p —1 horizontal lines in the plane
with ordinates ,u(” ), Jj=1,...,p—1, are ‘separating lines’ for the eigenvalues of f,(0). This is illustrated in
Figure 3.2 for the cases p = 2,3. Item 1 in Corollary 3.2 has an analogous geometric interpretation.
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Figure 3.2: left: graph of the eigenvalue functions 6 — A;(f2(6)), j = 1,2 (solid lines), and of the separating
16

line with ordinate = (dashed line); right: graph of the eigenvalue functions 6 — 2;(f3(6)), j =1,2,3 (solid

lines), and of the separating lines with ordinates % and % (dashed lines).

3.4 Spectral analysis and spectral symbol

In this section we study the spectral properties of the stiffness matrix Ag{’) in (3.11), focusing on the asymptotic
behavior as the fineness parameters n — oco. In particular, we give estimates for the eigenvalues and for the
spectral condition number K(Aﬁ,p )). Moreover, assuming n = vn = (vjn, ...,vn) € N? for a fixed v € Q‘i, we
prove that the sequence {n"‘ZAE,P )}n has an asymptotic spectral distribution characterized by the Hermitian
matrix-valued function

(v) . d N(p)XN(p)
£,(0) : [-m,x]° — CHPP

d
£70) = > (M h, @) ®---®h, (6—) ®F, () ®hy, (6ia1) ® - - @ Ny, (), (3.36)
k=1
where f, and h, are given in (3.23)-(3.24), and
() 1= Yk L k=1,....d (3.37)

Vit Vi-1Vk+1" " Va

Unfortunately, it turns out that the spectrum of f;,y) presents an exponential scattering with respect to p
and d, and this implies a substantial numerical difficulty in treating the linear systems associated with the
matrix nd‘zAg,p ), already for moderate p and d. In the last subsection, still assuming that n = vn for some
v € Q9, we investigate the clustering properties of the sequence {n? 24}, and we show that {n? 24P}, is

strongly clustered at [0, Mf‘(,w], where Mf;y) := MaXge[—z /lmax(fg,")(ﬂ)).

3.4.1 Estimates for the eigenvalues, localization of the spectrum and conditioning of Aﬁ,” )

We first provide estimates for the eigenvalues of K,(,p ), M,(f ). This is fundamental for estimating the condition
number K(Aﬁ,p )). By Theorem 3.2, the matrices K,(f’ ), M,(,p ) are the leading principal submatrices of order np —1
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of the Hermitian block Toeplitz matrices T,(f,), Tn(h,), respectively. Moreover, T, (f,),T,_i(h,) are the
leading principal submatrices of order np — p of K,(f’ ), M,(,p ), respectively. Hence, by Theorem 1.3 we have, for
all j,

(Tu(£))) = LKD) = A1(To(F,),  KP) = Ai(Toa(Fp)) = A pa (KD, (3.38)
(Tu(hy)) = LMP) = 2a(Tu(hy),  MP) = (T a(hy)) = Ajsp 1 (M), (3.39)

By (3.38)-(3.39), by Theorem 1.8, and by recalling that m¢, = 0 (Corollary 3.1), we have
AKD)C(0,M)],  AMP) C [my,, My, 1. (3.40)

Note that the point 0 is excluded from A(KY)) either because K” is positive definite (see Theorem 3.1),
or because, by Corollary 3.1, Anin(f,(0)) is not constant and so Theorem 1.8 excludes 0 from A(T,(f),)).
Furthermore, Theorem 1.8 and (3.38)—(3.39) imply that, for each fixed j > 1, when n — oo we have

KDY S My, LMP) ) My,

Aip—i(KPYN O, Ay (MDY N, iy, (3.41)

where the convergence is monotone by Theorem 1.3 and by the fact that KP (resp. MP) is a leading
principal submatrix of Ki’i)l (resp. M(” .1) for every n. Relation (3.41) says that, for fixed p, the matrix KP is

ill-conditioned for large n, while M,(f7 ) is not (recall that my, > 0 by Corollary 3.2). Theorem 3.5 allows us
to understand ‘how much’ K,(f’ ) is ill-conditioned. Before proving it, we provide two useful lemmas.

Lemma 3.4 (Poincaré’s inequality). For all v € H(l)(O, 1),

1
IVIlz20.1) < ;||V/||L2(o,1)- (3.42)

1 1
In [12] we find that — = |— is the best constant such that (3.42) is satisfied for all v € HI(O 1). Here,
T C11

c11 s the number appearing in (1.38) for s = j = 1; see also Remarks 1.3-1.5.
Lemma 3.5. For all p,n > 1,

2
kP > Zm®. (3.43)
n

Proof. By using the definition of K7, see (3.19), for all y € R”! we have

np—1 np—1 np—1 np—1
(p)
Kp ZWJ[ Cmlin = f Zy, (,,)Zy] i = Zyz i(p) = IIvy ”LZ(OI)’
i,j=1 =1 L2(0,1)
where vy := Y77yl € W; see Section 3.1 for the definition of WS”. Similarly,
y' (le))y = |IvylI}
L yllrz20.1):
By the Poincaré inequality (3.42), we have ||v |I? 2on = 2||vy|| 12001)" It follows that
1
y' (nK)y = x*y" (;Mi”)) y.
i.e., the matrix inequality (3.43). O
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Note that the argument shown in the proof of Lemma 3.5 is quite general and, in particular, it does
not depend on the specific basis {€;,) : i =1,...,np —1}. In fact, a version of Lemma 3.5 holds in a more
general setting; see [31, Proposition 1].

Theorem 3.5. Let p,n > 1 and let ¢, > 0 be a constant satisfying (3.35). Then the following properties hold.

1. We have
ﬂ.2
(K > max (EAJ(M,?’)), cpdjsi(Th(2 — 2cos 0) ® 1,,)) Vi=1,...,np-1, (3.44)
7T2 . T n—oo 7T2 max(mh,’ Cp)
oK) 2 T i (5,75 ) = FE 345

2. If n > 3, we have

Ajsa(CPY < A(KP) < A;a(CPY  Vj=1,...,np—1, (3.46)
Ar?

= (3.47)

Ain(KP) < 4sin? (5) o
n

where C\ is the Hermitian block circulant matrix of order np defined in (3.48).

Proof. 1. By Lemma 3.5 and by (1.10) it holds that A,(K”) > %A;(MY) for all j =1,...,np — 1. Moreover,
by (3.35), for all 6 we have
f,(0) > c,)(2—-2cosO)],.

By Proposition 1.1, this implies that
T,(f,) > T,(c,(2—-2cosO)],) =c,T,(2—-2cosb)®]1,,

where the last equality follows from the definitions of tensor product and 7,(c,(2 — 2cos0)I,,). By (1.10) we
deduce that

Ai(Ty(£,)) > c,A(T,(2 - 2cosO) ® 1)) Vj=1,...,np,
and consequently, by (3.38),

LKD) 2 cpdj(To(2 - 2c0s)®1,)  Vj=1,...,np—1.

This completes the proof of (3.44). Relation (3.45) is obtained from (3.44) by setting j = np —1. To see this,
note that /lmm(M,(f’ ) ) = my, by (3.40); moreover,

T
Ain(Tn(2 = 2¢c080) ® 1) = Apin(T,(2 — 2cos 6 =4'2(—),
(T ( cosf)®1,) (T,( cos 0)) sin P

where the last equality holds because the eigenvalues of T,(2 — 2cos6) are known and, in particular, the
minimal eigenvalue equals 2 — 2cos 25 = 4sin2( X ) see Theorem 1.9.

miz )
2. Let n > 3. With the notation of Theorem 3.2, we have

K, KI Ky K’ K
ray=| Fo |5 - = CV — EP (3.48)
b .. . KT . .. KT " ne
R ¢ . K )
K K, KT K K, K;

K;
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where Cﬁ,” ) is a block circulant matrix, while Eﬁ,p ) is Hermitian with rank(Ef,p )) = 2. The latter is true because
rank(K;) = 1.3 Therefore, E,(f’ ) has exactly two nonzero eigenvalues A, u, which are one the opposite of the
other because A+ u = trace(E,(f )) = 0. Thus, we can apply Theorem 1.4 with k* =k~ =1 and we obtain

Ai(CPY = A(T,(F,) = ;(CP)  Vj=1,...,np. (3.49)

The inequalities (3.46) follow from (3.49),(3.38). To obtain (3.47), note that the spectral decomposition of
Cff’ ) is known (Theorem 1.11) and, when applying Theorem 1.11 to Cﬁ,p ), the function g in (1.44) satisfies
g(%) =f, (?) for all j =0,...,n—1 Moreover, by Corollary 3.1, Anix(f,(0)) < 2 —2cos@ for all 6, and
Amin(f,(0)) is ‘well-separated’ from the other eigenvalue functions A;(f,(0)), j=1,..., p—1, by the separating

) Hence, for j=np -1, from (3.46) we obtain

line u e

/lmin(K,(f’)) < /lnp_g(ij’)) = the third smallest number in the set {/lmin (f,, (zij))}/zo -

.....

< the third smallest number in the set {2 —2cos %} ot
J=0,..., -

=2-2cos8 27” =4 sinz(;—r).

Remark 3.2. The argument used for proving (3.49) can be generalized to the case where f, is replaced by
any Hermitian matrix-valued trigonometric polynomial. To be precise, let q(6) = X;__,, qe? : [, 1] — CPxp
be a Hermitian matrix-valued trigonometric polynomial. Then q-; = q; for every j =0,...,m and T,(q) is
Hermitian for all n > 1 (see Subsection 1.4.1). For every n > 2m + 1 we can write T,(q) = C, — E,, where
C,:=T,q) + E, is a block circulant matrix and the matrix E,, given by

0 0 B G = G
E,:=| 0 0 0|, B := R
B 0 0 -

is Hermitian with rank(E,) < 2mp. It can be shown that the nonzero eigenvalues of E, coincide with the
nonzero singular values of B together with their negatives; see [7, p. 35]. Hence, E, has the same number
mp of positive and negative eigenvalues and so, by Theorem 1.4, we get

/lj—mp(cn) 2 /l](Tn(q)) 2 /lj+mp(Cn)9 V] = 1, ... np.
Notice also that the spectral decomposition of C, for n > 2m + 1 is given by (1.44) with
m n—-1 m -1 m -1
g(0) = Z G ekt 4 Z Qi ekt Z Q ekt | Z qfei(€+n)0 _ Z G ekt | ginf Z qfewe’
k=0 k=n—-m k=0 {=—m k=0 {=—m
hence g(?) = q(znﬂ) for every j=0,...,n—1

Table 3.1 shows the results of some numerical experiments. They confirm that /lmin(K,(f )) goes to 0 as 1/n?
when n — oo, in accordance with Theorem 3.5, and they also allow us to formulate the following conjecture.

Conjecture 3.2. For every p, j > 1 we have

lim pn®A,,-(KP) = j*n*, (3.50)

where we recall that the eigenvalues of any Hermitian matrix like K,(f’ ) are arranged in non-increasing order,
so that A, j(K,(lp ") is the j-th smallest eigenvalue of K.

3Note that K; # O, otherwise we would have Ly, L)y =...= (LZ),L’p) = 0, implying (Lg, Li+ ... + L’p) =0 and, by Lemma 3.2,

—(Ly, Ly) = 0: this is impossible, because L;, is not identically 0.
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n || 2020, 1K) | 30223, 1K) || 20220, 2(KD) | 302 A3,2(K)) || 2020, 3(KP)) | 312 A3,-3(K)
20 9.8683332 9.8693541 39.4579402 39.4744220 88.7216045 88.8062922
40 9.8692871 9.8695418 39.4733327 39.4774163 88.8006247 88.8213755
80 9.8695251 9.8695887 39.4771485 39.4781671 88.8200104 88.8251718
160 9.8695846 9.8696005 39.4781005 39.4783550 88.8248338 88.8261226
320 9.8695994 9.8696034 39.4783383 39.4784019 88.8260383 88.8263603
640 9.8696032 9.8696042 39.4783978 39.4784137 88.8263393 88.8264198

Table 3.1: computation of pnz/lnp_j(K,(,p)) for p=2,3, j=1,2,3, and for increasing values of n.

The limit relation (3.30) is verified for p = 2,3 and j =1,2,3 in Table 3.1. Moreover, it certainly holds
for p=1and j > 1, since K() T,-1(2—-2cosf) and it is known that A,_ J(K(l)) =2- 200s , j=1...,n-1;
see Theorem 1.9.

Conjecture 3.2 can be motivated as follows. The matrix K ) is associated with the Finite Element
discretization of the 1D boundary value problem (1.40), because nK,(f’ ) coincides with the univariate Q,
Lagrangian FEM stiffness matrix Aﬁlp ) A(p ) in the case B =7v=0; see (3.12)-(3.13) and the definition of K,(f’ )
in (3.19). The numbers j27r2, j=L12,..., are precisely the eigenvalues of (1.40); see Remark 1.4. The matrices
T,.2—-2cost), m =1,2,..., are also associated with the (Finite Difference) discretization of (1.40) and for
these matrices Theorem 1.10 estabilishes the analogous limit relation lim (m2 A js1(Tn(2 = 2 cos 9))) = j*n?

m—00

for each fixed j > 1; see Remark 1.5.
We now provide a localization of the spectrum of A(’J ) and an estimate of its condition number under
the assumption that B € R? is constant. In this case, the advection matrix A@jx in (3.13) is skew-symmetric

and, consequently, the real and imaginary parts of AP ) are explicitly given by

RAY) = AP + AL, (3.51)
J(AP) = —LA&SL. (3.52)
Note that, from (3.51), (3.15), (3.17)-(3.18), we obtain
(62] (p1) 1 (Pr-1) (pr) 1 (Pr+1) 1 (pa) 1 1
RAL) > Z M ® e ® M @ © —— M ® M by My O @ =My, (853)
Ni-1 N1 ng
(p) (p1) 1 (Pk-1) (Pk) 1 (Pk+1) 1 (pa) 1 1
RAP) < Z Mpl @+ ® — M @K ® — M@ @ — M+ [Vl — My & & — M.
nk k-1 k 1 k+1 nd d nl nd
(3.54)

In particular, (1.17) combined with Lemma 3.5 yields SR(A(I’ )) > Y

M(Pl) ® - Mfl.l;d).
ng-

Lemma 3.6 (localization of the spectrum of ER(AE,” ))). Assume that B € R? is constant and, for p,n > 1,

4c
define {,, := max (nz, P2 sin(2 7:_2)), where ¢, > 0 is a constant satisfying (3.35). Then, for every
mhp n
n,peN,
d 2
=1 Smpe T Vs d+vy.
Amin (R(A)) = Zictbwn * Ve TAHY. (3.55)
nl.--nd nl..-nd
S (M, [My,) + Il
A (RAP)) < 2T Il 70 e, (3.56)
nl ... nd

where G, := My, = M, and S, := Mhp1 "'Mhpd'
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Proof. Apply (1.8),(1.16),(3.40),(3.45) in (3.53) to obtain (3.55). Then, apply (1.9),(1.16),(3.40) in (3.54) to obtain
(3.56). |

Theorem 3.6 (localization of the spectrum of Ag," )). Assume that B € R? is constant and, for p,n > 1, let
,p be as in Lemma 3.6. Then, for every n,p € N%,

AAP) € [in(RAPY), Dan RAPNT X [Ain(SAP)), Anax (S(AP))]

d d 2
c S e + Yo D=1 (M, [My,, ) + ||7’||L°°(Q)S
< 2 )
nl ... nd nl ... nd

22:1 N Zi:l N
Bp”ﬁ”oo ’

nlo..nd’ nl...nd

X [—Bpllﬁlloo

where G, := My, - M, Spi= Mhp1 ‘.- Mh’l’d’ and B, is a constant satisfying (3.14).

Proof. From Lemma 3.6 we have

d d 2

1 Cnepe T Vs 2 (M, [My, ) + Y=
Zictbnn TV g RADY) < A (RAPY) < 20 P =
ny---nyg ny---ny

and from Lemma 3.1, combined with (3.52) and with the fact that 8 is constant, we have

Zle "k ~(AP ~( AP ~( AP ~( AP Zle T
- p”ﬂ”oo < —||J(A,, )” < /lmin(\S(An )) < /lmax(\s(An )) < ”\S(An )” < Bp”ﬂ”oo .
nl"'nd nl...nd
The thesis follows from (1.7). m|

Theorem 3.7 (conditioning). Assume that B is constant. Then, for every p € N there exists a constant ap
such that, for all n € N¢,

d
K(AP) < a, Z n’. (3.57)
k=1

Proof. From AY = RAP) +i3(A") and from the fact that R(AL), I(AP) are Hermitian, we have
Tmax (A7) = AL < IRAD + ISAD) = pRAP)) + p(IAP)).
Hence, by Theorem 3.6 we see that

) A
AP < &,

d 2

D=t M
nl Y nd ’

for some constant @, independent of n. Furthermore, by Lemma 3.6 and by the Fan-Hoffman theorem,

a
ToinAL) > dnin(R(ATY) = —L—,

17" Ng
f ~ 0 ind d f Th A(P) _ oaa(AP) < d 2 ith _ A=
or some constant @, > 0 independent of n. Thus, «(A,") = o S @ D=1 > With ap = @,/ @,,. |
(3.57) says that K(A,,(”)) is bounded from above by max(n?) = max(nf, ... ,nfi) multiplied by some constant

independent of n (for instance a,d). This upper bound is the sharpest possible, as shown by the numerical
experiments in Table 3.2, where we fixed d =2, =0, vy =0, p = (2,2), and we computed K(Aﬁ,p )) = K(Ail’g))
(normalized by n*) for n = (n,log,n) and for increasing values of n. For a nice comparison with Finite
Differences (FD), in the third column of Table 3.2 we reported the values of k(A,)/n* for d = 2 and for
n = (n,log, n), where
d
n,f Ly 1®--®1L, ,1®T,1(2-2cos)®1,,,-1®- @11 =Th1 (Z ni(Z —2cos Qk)) (3.58)
k=1

d
A, =
k=

1

is the (diffusion) matrix coming from the standard centered FD approximation of (3.1) on the mesh j/n, j =
0,...,n,in the case =0, y=0.

66



n | kAP /n? | k(A /n?
8 1.2597 0.2278
16 1.2573 0.2173
32 1.2553 0.2101
64 1.2543 0.2065
128 1.2539 0.2049
256 1.2538 0.2041

Table 3.2: computation of K(A,,(p))/n2 and «(A,)/n* in the case d =2, =0,y =0, p=(2,2), n = (n,log,n),
for increasing values of n. Note that we are in the presence of a non-uniform mesh refinement.

3.4.2 Spectral distribution and symbol of the normalized sequence {nd‘QA(,,P )},,

In this subsection we assume that n; = v;n for all j =1,...,d, i.e. n = vn = (vin,...,vn) € N9, where
VS Qﬁ’r is fixed and n varies in the set of natural numbers such that n € N¢. Under this assumption, from
(3.12)—(3.13) and (3.17) we have

nd—2 A(,,p) — nd—z Aﬁf’;) + nd—z A;pi + nd—Z Ailpl)e

d
=) MM @ @MP KW @M @@ MEY + n' AP, + AT, (3.59)

k=1
where the values ¢ (v), k =1,...,d, are given in (3.37). Recall from (3.11) that Aﬁ,”) is of size N(np — 1) =

(mp1—=1)---(ngpa — 1.
In Theorem 3.8 we prove that the sequence of matrices {nd‘zAE,p )}n in (3.59) is distributed, in the sense
of the eigenvalues, like the Hermitian matrix-valued function f;,v) in (3.36), which is therefore the symbol of

the sequence {n?"24%},. Note that {n? 24P}, is really a sequence of matrices, due to the assumption n = vn.
This assumption must be kept in mind while reading this subsection.

Before stating and proving Theorem 3.8, let us observe that, by the properties of f,(6) and h,(6), see
Corollaries 3.1-3.2, and by the properties of tensor products, see Subsection 1.2.1, f;,v)(é?) > O forall 0 € [-m,n1]¢
and () > O for all 8 € [-n, 7]9\{0}.

Theorem 3.8. Let p € N¢, v € Q¢ and n = wn, then {n"?A"}, ~, f},"). In particular, {n-2A'"}, is weakly
clustered at the essential range SR(fE,V)) and every point z € SR(f;,")) strongly attracts A(nd‘zAﬁ,p )) with infinite
order (see Theorem 1.5).

Proof. For all p,n > 1, define the following matrices, of size np:

KP .= K g [0], MP = MP g [0].
Let nd‘Zﬁﬁf 3) be the matrix of size N(np) = nip---ngps = (ip1 - -Vdpd)~nd = N(vp)n¢ obtained from nd‘zAif 33
by replacing the symbols K, M appearing in its expression (3.59) with K, M:

d
n AL = ) ) MP @@ MPP @ KV @ MU ©- @ MY,
k=1
By Lemma 1.5, there exists the permutation matrix P, := Py, _11mps-11,...n4pa-11, depending only on n, p,
such that
d-2 7(p) d-2 4 (p) T
n?A?) = P, ,[(n"?A?) ® O1P},

where O is the zero matrix of order mypy---ngpg — (up1 — 1) - (ngpy — 1) = o(n?). Hence,

n'PAY = Py, | (1" PAP) @ O| Py, = Po,y[n AL, ® 0 + n' AP, @ 0 + n' AT, 0 01P),
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_ d-25P d-2 7(p) d-2 (p)
=n An’D +n An’A +n An’R,

where nd‘zﬁgﬁ = Pn,p[(nd‘zAEf )@ O]P}, , and nd‘zfﬁf I)e = Pn,p[(nd‘zAEf I)e) ® O]P], ,. The eigenvalues of nd-24P)
are those of n?24% with only o(n?) extra eigenvalues equal to 0. Consequently, by Definition 11, if we
prove that {n?24A%}, ~, £ then (n? 24Py, ~, £,

Now, let

d
TP =3 a0 Tyhy) 8- T, (hy, )@ T, (f)) @ Ty (hy )@@ T, (hy,). (3.60)

k=1

To show that {n¢ 24"}, ~, f;,v), we prove that the hypotheses of Theorem 2.7 are satisfied with X, := T,
Y, := nd2AY — T® and f = £

Note that each T,(,’J ) is Hermitian because f,, h, are Hermitian matrix-valued functions for all p > 1. By
Lemma 19, T\ is also similar to T,(fy”), and, by Theorem 1.8, {T,(f9))}, ~, £, implying {TP), ~a ).
Now observe that, since K\", M, KP, M, T,(f,), T,(h,) are normal for all p,n > 1, we have

Il = p(KP) = p(KP) = IKP || < M, ITW(F)Il = p(Tu(fy)) < My, 3.61)
1M1 = p(M;”) = p(MP) = [IMP|| < My, ITx(hp)ll = p(Tu(hyp)) < My, (3.62)

From (3.61)—(3.62), from the triangle inequality, and from (1.13), it follows that the norms IITf,p )||, ||nd‘2z4~(,fz)|| =

||nd‘2AEﬂ)|| are bounded from above by some constant independent of n. Moreover, from Lemma 3.1 and
(3.16), (3.18),(3.62), (1.13), we have

d-2 d d
. n“Byl|Bllz=@ 21 BpllBlle@) Xie1 v
0240 = -2y < T BeWPle@ e BplBlle@ Ziea 7k (3.63)
> > nl e nd Vl . e Vdn
d-2
oz _ oS p Il
It 2A0 )| = n-2A 0| < ST @0p o TR ), (3.64)
> > n e n V e V nz
1 d 1 d
where S, := My, - My, . Therefore, taking into account the triangle inequality
d-2 z(p) d-2 z(p) d-2 z(p) d-2 7(p)
In"2AP| < I 2AL || + (In2AL | + I AL,
we conclude that ||nd‘2A5,p )|| is bounded from above by some constant independent of n. Hence,
») d-2 (p) d-2 (p) d-2 5 ( d-2 (p) d-2 x(p) )
TP, It 2AP L, (122, I 2AD4), Int2AP ), In* 24P - TP < C, (3.65)

for some C independent of n. To finish the proof, we have to show that |||nd‘2fﬁ," )

Note that, for all p,n > 1,

- T,(,”)|||1 =o(n?) as n — oo.

rank(K” — T,(f,)) <2,  rank(M? — T,(h,)) < 2.
Therefore, by (1.5) and by the property (1.18) of tensor products we infer

227 = TP, < A% = Tl + A, + [l A

d
d-2 3
< dE 2mpy - N PiciNip1Pist - * * NaPd ||” A%)—Tr(;p)”
p)

d_%%” +mpi- - napa ||nd‘2ffﬁ,’,’,l

+mp1-NaPa ||7l

)

and the latter is o(n), thanks to (3.63)—(3.65). |
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p 2 3 4 5 6 7 8 9 10

¢j}>1 133 | 578 | 1.84-10 | 5.45-10 | 1.59-10% | 4.84-10% | 1.54-10° | 5.12-10° | 1.77 - 10*

(g1 | 115 | 179 | 2,07 2.22 2.33 2.42 2.50 2.58 2.66

Table 3.3: computation of ¢ and [¢)]"N® in the case d =1, p= p, v =1, for p=2,...,10. Note that in
this case f;,v)(é?) is nothing else than f,(6).

p 2 3 4 5 6 7 8 9 10
g, | 213 972 344.10 154-10° 747-10* 4.39-10° 3.01-10' 242.10° 2.17-10°
™0 17 | 121 129 1.25 1.22 1.20 119 117 117 116
(p.p):2

Table 3.4: computation of cﬁ% and [¢221]1/N(1’) in the case d =2, p=(p,p), v=>1,1), for p=2,...,10.

3.4.3 Exponential scattering and ill-conditioning of the symbol

The discussion on the exponential ill-conditioning of the symbol contained in this subsection is based on
the informal meaning behind the definition of spectral distribution. According to Remark 1.2, the spectral
information contained in the symbol f;,v) can be summarized as follows: the eigenvalues of nd‘ZA(,," ) are
approximately given by a uniform sampling of the eigenvalue functions ﬁi(fﬁ,v)) over an equispaced grid in
the domain [-m, 7]%. To fix the ideas, assume that the equispaced grid is

2j 2j 2j
_ﬂ+ﬁ:(_ﬂ+—]1ﬂ,,,,,—n+ Jdﬂ, j=0,...,n-1,
np ng
where & := (x,...,nm). Then, the eigenvalues of nd‘zAs,”) are approximately given by*
A £ - +@ =0 -1, i=1 N(p) 3.66
i|fp T pad | B Jj=0,....n , i=1...,N(p). (3.66)

From (3.66) we infer that the ratio
v Mige 0 A (F(60))

d
PE maxgep—pap Amin(Fy(0))

¢

is an index of the scattering of the eigenvalues of nd‘zAn(p). Indeed, if ¢§ZL is large (resp. small), then

the eigenvalues of n42A% obtained from (3.66) for i = 1, which correspond to the maximal eigenvalue
function of the symbol, are far away from (resp. very close to) the eigenvalues obtained for i = N(p),
which correspond to the minimal eigenvalue function of the symbol. Furthermore, in the case where ¢;:2 is
large, the ‘ill-conditioned subspace’, that is the subspace corresponding to the largest eigenvalues of nd‘zAﬁ,” )
obtained by setting i =1 in (3.66), is very large: its dimension is about

2j N
#{Amax(fi,” (—ﬂﬁ)): j=0,...,n—1}= Y (3.67)
n Np) pi-pa

Tables 3.3-3.4 shows, for d = 1, 2, the behavior of ‘75221 in thecase p=(p,...,p), v=(1,...,1), for different
values of p. Not only we observe an exponential ill-conditioning with p and d, as already proved in [44],
but we can also predict, on the base of (3.67), that the subspace where this exponential ill-conditioning
occurs is very large: for the case displayed in Tables 3.3-3.4, the size of such subspace is approximately

4gnore the mismatch with the size of n92A%: the reasoning that we are following in this subsection is heuristic. Think of

ndszﬁ,” ) as if it were exactly the Toeplitz matrix T,,(f;,y)) generated by the symbol f;,") .
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n/ pd, d = 1,2. This involved picture shows that the numerical solution of the linear systems associated
with the matrix nd‘ZA,,(”) is a really hard problem for large p and d, not only because of the exponential
ill-conditioning, but also for the large size of the subspace where this ill-conditioning is attained.

3.4.4 Clustering of the normalized sequence {n 24"},

In this subsection, we still assume that » = vn, where v € Q‘i is fixed and n varies in the set of natural
numbers such that n € N9, In this situation, we have seen in Theorem 3.8 that {nd‘zAf,p)}n ~2 f;,v) and,
consequently, {n"‘zA,,(‘”)},1 is weakly clustered at the essential range of £ given by the union of the es-
sential ranges of the eigenvalue functions ﬂi(fﬁ,v)), i =1,...,N(p), that is 87%(1“5,")) = U?ﬁlp ) SR(ﬂi(f;V))); see
Theorem 1.5. Note that f;,") is continuous over [-x, 7]¢, hence the eigenvalue functions are continuous over
[-m, 7]¢, which means that their essential ranges coincide exactly with their images. Being weakly clustered
at SR(fI(,V)), the sequence {n"‘zAn(p)}n is a fortiori weakly clustered at the convex hull of SR(fI(,V)), which is
given by [0, M, f;n], Mf;w ‘= MaXge[_y f},v)(O). We are going to see that actually (n? 24P, is strongly clustered
at [O,Mf;]w], in the case where B is constant.

Theorem 3.9. We have A(nd‘zAff;)) c (0, Mf},v)], and, moreover, for each fixed j and for n — oo we have
Aap-1- (AT 5 0, A(n*PAY) — M. (3.68)

Proof. Since Agf ) is SPD, /lmin(nd‘QAifg) > 0. To prove the inclusion A(nd‘2A(,fz)) C (0, M), recall that in

the proof of Theorem 3.8 we have defined the Hermitian matrix T,(,p ), see Eq.(3.60), and we have noticed

that 7% is similar to T,,(f;,v)). We show that for every x € CN®"P~D there exists y € CN® with |ly|| = x|
such that
X (n?A?))x = y' T, y, (3.69)

which implies, by the minimax principle,

Amax (12 AYp) = max(x (AT )%) < max(y T"Y) = A1) = A (Tu(£") < M,
: i ' Vil
the last inequality being justified by Theorem 1.8.
In order to prove (3.69), it is convenient to index vectors and matrices using multi-indices in N9 with
the standard lexicographic ordering on them; see Subsection 1.1.1. For every x € CN"~D we have

np—1
0 d=2 4 (D) E— d-2 4 (p) § = (7,42 A (D)
X (I’l AnI?D)X = )Ci(l’l AnI,)D)ijxj = xi(n AnI,)D)ijxj‘
i,j=1 i,je{l,....np—1}

Define y € C¥"P) in the following way:

vi=x; ifie{l,...,np— 1}, Vi = ifief{l,...,np}\{1,...,np—1}.
Then |[y|| = |Ix|| and, moreover,
XA X = Y e A = ) STy =y Ty, (3.70)
i,je{l,...,np—-1} i,je{1,....,np}

This concludes the proof of the inclusion A(nd‘zA;” L) C (0, M1, but we wish to prove in some more detail
” P

the central equality in (3.70).
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e Ifie{l,....np}\{1,....np—1}or je{l,...,np}\{1,...,np— 1}, the (i,j) term in the right-hand side of
the central equality is 0, due to the definition of y.

e Ifief{l,...,np—1} and je{l,...,np— 1}, the (i,j) term in the right-hand side of the central equality
is y,.(Tf,” ))ijyj = X;(n" ZA(" ) 0)ijXjs because yi = Xi, yj = xj, and, recalling the fundamental equality (1.12) and
the fact that K,(lp ) and Mflp ) are the leading principal submatrices of order np —1 of T,(f,) and T,(h),),
respectively, we have

d
(T'(lp))ij = Z ce(v) [T’ll (h’Pl) ® Tﬂk—l (hpk—l) ® T’lk (fpk) ® T”lk+1 (hpk+1) Q& T'ld(hpd)]ij
k=1
d
= Z Ck(v) [Tnl(hpl)]iljl e [Tnk—l(hpk—l)]ik—ljk—l[Tnk(fpk)]ikjk[ ﬂk+1(hpk+1)]ik+1jk+1 e [Tnd(hpd)]idjd
k=1

d
= D I g M LK Y DM T -~ DM

Ng+1

= Z Ck(V) [Mr(lfl) R - M(Pk D ® K(Pk) ® M(PHI) R - M(Pd)] (f’ld ZA(P) )lj

Nk+1

This concludes the proof of the central equality in (3.70) and the proof of the inclusion A(nd‘zA(p ) )c (0,M <v>].

Relation (3.68) follows from this inclusion and from the fact that {nd‘ZAgf z)}n (V) (by Theorem 3.8 applted
with 8 =0 and y = 0). We omit the formal proof of (3.68), because it is based on the same argument used
for proving that items 1 and 3 in Theorem 1.8 imply item 4. m|

Theorem 3.10. Assume that B is constant. Then

Siect fum + Ve M=) } y [_ BplBlls Sy ve ByllBlleo Tz vi

AR2AP) ¢ . Gy My + - ,
n p Vl...vdn yl...ydn Vl...vdn

with ¢, ., Gp, Sp, B, as in Theorem 3.6. In particular, {nd‘zAi,” )}n is strongly clustered at [0, Mf;w].

Proof. The real and imaginary parts of n?2AP are

S(nd—ZA("P)) - _ d 2A(P)

d-2 A4(p)\ _ . d-2 42 (P) d 2 4(p)
Rn“™A,)=n Apt A A

nR’

cf. (3.91)—(3.52). By Theorem 3.6, Theorem 3.9, (1.9) and (3.64) we have

" ~@S
MG,, < iR ALY < A RTPAP)) < A (092 AL)) + A (02 ALR) < Mo + ”y”L—(Q)Z”
Vl...ydn > 4 Vl...ydn

By (3.63) we have
B,|IBlle 22 B,lIBlle S
Bl Zici Ve S0 2ADY) < A St 242) < Do 2 Ve
Vit Van Vit Van
The thesis follows from (1.7). m|
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Chapter 4

Spectral analysis and spectral symbol of Galerkin B-spline IgA
stiffness matrices

In this chapter, we perform a spectral analysis completely analogous to the one carried out in Chapter 3: we
choose again a model problem like (3.1), we introduce a numerical method for approximating its solution,
and we study the spectral properties of the discretization matrices associated with this numerical method,
with particular attention to the conditioning, the behavior of the extremal eigenvalues, the asymptotic
spectral distribution when the matrix size goes to infinity, and the properties of the spectral symbol. The
only significant difference with respect to Chapter 3 is that the approximation technique investigated in
this chapter is the so-called Galerkin B-spline Isogeometric Analysis (IgA). We refer the reader to [33,
Section 1.2] for a quick overview of the IgA paradigm and to [19, 41] for a more detailed introduction to
this fascinating subject. Here, we limit to say that the goal of IgA is to improve the connection between
numerical simulation of PDE and Computer Aided Design (CAD) systems, the latter being widely employed
in Engineering.

As already pointed out in the Introduction of this thesis, we emphasize once again that the (asymptotic)
spectral analysis in this chapter is a preliminary step for designing efficient preconditioners and iterative
solvers for the Galerkin B-spline IgA stiffness matrices. In particular, the knowledge of the symbol and of
its properties is fundamental to this purpose. The design of fast iterative solvers for the Galerkin B-spline
IgA stiffness matrices will be the subject of Chapter 6, where we will use the specific features of the symbol
studied in this chapter to obtain a robust and optimal multi-iterative multigrid method, whose convergence
rate will be substantially independent not only of the matrix size and the fineness parameters, but also of
the spline approximation degrees and the dimensionality d of the considered model problem.

4.1 Problem setting and Galerkin B-spline IgA

Let us consider as our model problem the following second-order elliptic differential equation with homo-
geneous Dirichlet boundary conditions:

B ) _ . - d
{ Au+pB-Vu+yu=f inQ:=(0,17 @.1)

u=0 on 0Q,

where f € LY(Q), B = (Bi,...,Bs) € RY and y > 0. The only difference with respect to the model problem (3.1)
considered in Chapter 3 is that now we assume S and y constant. This assumption is made only to simplify
the presentation because, in fact, nothing significant would change if fi,...,84,y were only assumed to be
in L*(Q), as in Chapter 3. The weak form of (4.1) and the Galerkin method for approximating its solution
u have already been described in Section 3.1, see (3.2)-(3.4), and so we do not repeat them here. We just
point out that, since we have assumed f constant, the bilinear form a(-,-) in (3.2)-(3.3) is coercive; see the
footnote in correspondence of Eq.(3.3). Therefore, the matrix A in (3.4) is positive definite, in the sense that
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Figure 4.1: graph of the basis functions N;,(x), i = 2,...,n+p—1, for p = 3 and n = 10. The blue functions
Nip, i = p+1,...,n, are the so-called ‘central basis functions’; see Subsection 4.3.1 and, especially, Eq. (4.42).

vIAv > 0 for all v € R¥\{0}; see [48, Theorem 4.1]. If moreover B = 0, then the bilinear form a(-,-) is also
symmetric and A is SPD.

In the context of IgA based on B-splines of degree p, the approximation space W in the Galerkin method
is chosen as a space of C”'-continuous piecewise polynomial functions vanishing on the boundary of Q.
More precisely, define for p,n > 1 the spline spaces

viri={s e P[0, 1) : 51y €P, Vi=0,...,n—1],
W= {s e VIP': 5(0) = s(1) = 0} € Hy(0,1).

It is known that dimVY” = n+ p and dimWY = n+ p — 2. We consider for V”' the B-spline basis
{Niip1s - - - » Nusp o1}, Which is defined recursively as follows; see also [21].

Definition 4.1 (B-spline basis). Consider the knot sequence
h=...=0u= 0 <lpro < ... <Ipiy <1:tp+n+1 = ... = lopintls 4.2)

where .
fpivi ==, i=0,....n. 4.3)
n
Using the convention that a fraction with zero denominator is zero, for every (k,i) with 0 < k < p and
1<i<(n+p)+p-—k, define the function Ny : [0,1] — R as follows:

[ 1 ifxeltti),
Nijoy(x) := { 0 elsewhere,
and, if k> 0,
-t L - X
Nip(x) = N () + == Ny g (%) @
i+k — Li i+k+1 — Lit1

The functions Ny}, ..., Nurpp constructed in this way form a basis for V,[,p ] (the B-spline basis of V,[,p ]);
see [21]. Moreover, since we have [21]

Nip(0) = Nij(1) = 0, Vi=2,...,n+p-1,

{Napps - Nuipoipp)) is a basis for W) (the B-spline basis of W), Figure 4.1 shows the graph of the basis
functions Ny, ..., Nusp-1[p 0 the case p =3 and n = 10.
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Now, for any pair of multi-indices p,n € N, we define
W= Wi g ... @ WP = span(Nygy : i=2,...,n+p—1) c Hy(Q), (4.5)

where Nijp) := Nipy ® -+ ® Niy [p,1-

In the framework of Galerkin B-spline IgA, the model problem (4.1) is approximated by the standard
Galerkin method, the approximation space W in the Galerkin problem (3.3) is chosen as W,[,” ! for some
n,p € N (usually p = (p,...,p) for some p > 1), and the basis for W,[,” I is chosen as the tensor-product
B-spline basis in (4.5), ordered according to the standard lexicographic ordering (1.1) for the multi-index
range 2,...,n+ p— 1. With these choices, we obtain in (3.4) a stiffness matrix A, which henceforth will be
denoted by AE{’] in order to emphasize its dependence on p and n:

n+p-2

n+p-1
AP = [a(Nj,[p],Ni,[p])]i’jzz = [a(Nj+1,[p],Ni+1,[p])]. . (4.6)

i,j=1

Let us consider the following split of the matrix AE{’], according to the diffusion, advection and reaction

terms, respectively:

n+p-2

AP = [f VNjit1p - VNi+1,[p]] +
Q

n+p-2

fﬁ * VNji1[p] Ni+1,[p1] +
Q

n+p-2

f)’Nj+1,[p]Ni+1,[p]] . 4.7)
Q ij=1

i,j=1

i,j=1

For obvious reasons, the first matrix in the right-hand side of (4.7) is called diffusion matrix, the second
advection matrix, and the third reaction matrix. With expressive notation, we denote these three matrices

by AP}, AL AP respectively:

i n+p-2

AY) = f VNj+1,[p1'VNi+1,[p]] , (4.8)
[V Q ij=1
i n+p-2

AP = fﬁ'VNjH,[p] Ni+1,[p]] : (4.9)
[JQ ij=1
i n+p-2

AE,’,’}? = f 7Nj+1,[pJNi+1,[pJ] : (4.10)
[JQ ij=1

The diffusion matrix is SPD, the reaction matrix is SPSD (SPD if v # 0), while the advection matrix is
skew-symmetric and is responsible for the non-symmetry of AE{’ I, The real and imaginary parts of AE,” I are

RAT) = AP + AT (4.11)
AP = —iAlr). (4.12)
[p]

Before providing a construction of the Galerkin B-spline IgA stiffness matrix A, ", we introduce in the
next section the cardinal B-splines. We also study some of their properties which are relevant for our
purposes and, in particular, for obtaining a simplified expression of AE,” I,

4.2 Cardinal B-splines

The cardinal B-spline of degree p over the uniform knot sequence {0,1,...,p +1} is denoted by ¢, and is

defined recursively as follows [21]:
)1 if r €[0,1),
Proi(0) := { 0 elsewhere, (4.13)
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Figure 4.2: graph of the cubic cardinal B-spline ¢;s.

and
¢[p](t) = ¢[p 1](1) + ¢[p 1](l — 1) P > 1. (414)

The cardinal B-spline can also be expressed in terms of truncated powers [21]:

p+l +1
$ip (1) = .Z( 1)( )(t—i)i’, (4.15)

where (#), := (max(¢,0))". Figure 4.2 shows the graph of the cubic cardinal B-spline ¢3. As usual in the
literature, we will refer to cardinal B-splines of degree p as the set of integer translates of ¢y, that is
{d(- —k), k € Z}. In the next subsections we collect some properties of cardinal B-splines and their Fourier
transform that will be useful later on.

4.2.1 Properties of cardinal B-splines

It is known that ¢, € C’"'(R) and ¢, coincides with a polynomial in P, over the intervals [i,i + 1], i =
0,...,p. Moreover, ¢, possesses certain fundamental properties, some of which are briefly summarized
below; see [21, 17].

e Positivity:

() 20, teR. (4.16)

e Minimal support:
supp(épp) = [0, p+1] = () =0, t¢[0,p+1]. (4.17)

e Symmetry:
p+1 p+1

Prp) (—2 + l) Prp) (T - f) (4.18)

e Partition of unity:
Z Gip(t = k) =1, (4.19)

keZ

which gives, in combination with the local support and continuity,

p
Z $ipk) =1, p=1. (4.20)
k=1
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e Recurrence relation for derivatives:

O ORI GES)) 4.21)
e Convolution relation:
1
G1p1(1) = (Prp-11 * Pron(®) = f Gip-11(f = )ro(s) ds = f Gip-n(t — ) ds. (4.22)
R 0

In the remainder of this subsection we derive from the previous properties some results that are needed
in later sections. The next lemma generalizes the symmetry property to derivatives of any order of the
cardinal B-splines.

Lemma 4.1. We have
(r) 1 = (- 1) (r) +1 —¢
¢[p] ¢[p] :

Proof. The result follows from repeated differentiations of the symmetry property (4.18). We can also prove
it by induction on the order of derivatives using the recurrence relation (4.21), as outlined below. The base
case (r = 0) is just the symmetry property (4.18). As inductive step we increase the order of derivative by
one, i.e., r = r + 1. Using the recurrence relation for derivatives (4.21) and the induction hypothesis, we
have

v+ (P T 1 » [(pt1 » [(pt1 » [(pt+1 » (pt1
P ( 9 ) ¢’[p1]( =P +1-1) =D ¢y — ==y |5 !
+1
— ( )r+l ¢gj—;—l)( _ t) .
2
o

The following lemma provides an expression for inner products of derivatives of the cardinal B-spline
and its integer translates. It generalizes the result given in [17, p. 89].

Lemma 4.2. We have
(r) (5) _ r g (r+s) _ s g (r+s)
,[R¢[pl](t) ¢[p2](t + k) dt = (_1) ¢[p-;+p2+1](pl +1+ k) - (_1) (b[p-:+p2+1](p2 +1- k) (423)

Proof. Because of the (anti-)symmetry of the higher order derivatives of the B-splines given by Lemma 4.1,
we have

r g (r+s r g (r+s P1+P2+2 P1— D2
(1 i 100 = 60, el

2 2

_ r r+s g (r+s)
= I

= (D gy 2+ 1-k).

pitpat2 piopr
2 2

So, we only have to show one of the two equalities in (4.23).
We first address the case r = s = 0, namely

f Bro(OPp,)(t + k) dt = Gppy1pysn)(p2 + 1= K). (4.24)
R
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Using the convolution relation of cardinal B-splines (4.22), we obtain

1 1 1
¢[p1+p2+1](p2+1—k) = f ¢[p1+pz](p2 +1-k—1)dt = f .. f ¢[P2](p2+1—k—(l1+l2+.. . +fp1+1))dl1...dlpl+1.
0 0 0

From [17, p. 85] we also know that for every continuous function f it holds

1 1
ff(l)¢[p](f) dt = f .. f f(l’l +6Hh+...+ fp+1) dt ... dlp+1,
R 0 0

and hence
Oiprpor)(P2 +1—k) = f¢[p2](p2 +1-k— Dy, (1) dt.
R

Moreover, by symmetry of the cardinal B-splines, see (4.18), we have
¢[P2](p2 +1-k— t) = ¢[P2](k + t)'

The combination of (4.25) and (4.26) results in (4.24).
We now prove the general case, i.e.,

f B (OG0 (1 + k) de = (=1) ¢ (pr+1+K),
R

[p1] [p2]

(4.25)

(4.26)

4.27)

by induction on the order of derivatives. We consider two inductive steps: in the first inductive step we
increase the order of derivative of ¢y, by one, i.e., r = r+1, and in the second inductive step we increase

the order of derivative of ¢p,, by one, i.e, s = s+ 1

1. (r —» r+1). Using (4.21) and the induction hypothesis, we have
f(p&]l)(t) ¢Ej,)2](t+k) dt = f( E;)l_l](t) _ ¢E;)1_1](f— 1)) ¢E;)2 (t+Kydr
R R
= qu(” O¢") (t + k) dt — f¢<’> (t— 1) (t+k)dr
R [pi-1 [p2] R pi-1] [p2]

= f DD (1 + Ky = f By (D (¢ + k + 1) dt
R R

= (D (G0 (1 +0) = G0 (P + 14 K)
= (=1 "D (p 41+ k).

[p1+p2+1]

2. (s = s+ 1). This inductive step can be proved in a completely analogous way as the first inductive

step.

O

Finally, we provide some relations about second derivatives of cardinal B-splines. We will denote by

#1p) and ¢y, the first and second derivative of @pp.

Lemma 4.3. We have

p P
Z Grpy(p +1=k) = ¢pp(p) = —§¢[2p+1](17 +1), Z K brp+n(p +1-k) = 1.
k=1 k=1
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Proof. We first note that by (4.21) and (4.18) we have

~Propsn(p + 1) = =2¢121(p + 1) = 22, (p) > 0. (4.28)

Us'mg (421) and ¢[2p—l](_1) = ¢[2p—1](0) = 0, we obtain

p p
Z Proprn(p+1—-k) = Z(¢[2p—l] (p+1=k) =202, 11(p — k) + dpap(p —1-k))
=1 =1

= Pr2p-1(P) — Pr2p-n(p — 1) = P (p)-
In a similar way, taking into account that
K =2k+1°+k+2*=2, k>0,

we find that

p 14
D K p(p+1=K) = D K Bpop(p + 1= K) = 260, 4(p = ) + dyapy(p — 1= K))
k=1 k=1

2p-1

P p
= Gp (D) +2 ) Gy P+ 1= = > Gy u(p+1-0) = ) dpp ) =1
k=2 k=1

k=—p+2

The last equalities follow from the symmetry property (4.18) and the partition of unity property (4.20) of
cardinal B-splines. m|

4.2.2 Fourier transform of cardinal B-splines

In this subsection we will address some relations between inner products of cardinal B-splines, and the
Fourier transform of the cardinal B-spline. We will need the following result; see [17, Theorem 2.28]. Recall
that, given any two functions &, : R — C, the notation ‘¢(t) = O({(?)) as |t| = oo’ means that |&(t)| < C|{(2)|
for |f| > T, where C,T are positive constant independent of t.

Theorem 4.1. Let € L%R) and its Fourier transform fﬁ\ satisfy

Y@ =0(1™), a>1, aslt— oo, (4.29)
and .
¥ =o@6™), b> 5 aslil— . (4.30)
Then,
> ( f Wit - k)Wdt) e = 3 [po+2kn)| . Vo[-l (4.31)
kez \WR keZ

By using the convolution relation (4.22), one can easily obtain a simple expression for the Fourier
transform of the cardinal B-spline ¢, (see [17, p. 56]):

— 1—e\ - Pt 1—e ¥ p+l
P1p1(0) = ( o )¢[p—1j(9) = (¢[0](9)) = ( = ) : (4.32)
It follows that "
— — + 2-9 2] Ef’ in(9/2 p+1
6710 = |0 @] = (%) = Sm;/ 2/ ) (4.33)
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We also note that for the symmetrized function ¢’[*0](t) = ¢po)( + 1/2), we have

— sin(6/2)
P15 (0) = 0z (4.34)

Concerning the Fourier transform of (}5[,,], using the recurrence relation for derivatives (4.21), we obtain

d1,1(0) = 1661,,(60) = (1 ™) 1,0 (0). (4.35)

From (4.17) and (4.33) it follows that the cardinal B-spline ¢, satisfies the conditions (4.29)-(4.30).
When using ¢, as the function ¢ in Theorem 4.1, we can express the right-hand side in (4.31) by means of
(4.33). This implies

_ p+l p+1
> 6@+ 2%km| = [0 = (LCOSH) > (%) , Vo€ l[-mnl. (4.36)

2
keZ o a

A sharper lower bound can be found in [17]. It is formulated in terms of the roots of the so-called Euler-
Frobenius polynomials of degree 2p, but these roots are not provided in a closed form expression. On the
other hand, to obtain an upper bound for (4.31), we make use of relations (4.24), (4.31) and the partition of
unity property (4.19). In this way, we obtain

— 2 . .
Do+ 2k = dapen(p + 1= 0™ < Gapun(p +1- k)] = 1. (4.37)

kezZ keZ keZ

Note that for the cardinal B-spline of degree p the left-hand side in (4.31) is a finite sum consisting of 2p+1
terms.

4.3 Construction of the Galerkin B-spline IgA stiffness matrices AE,p ]

Using the tensor structure of the tensor-product B-spline basis {Nj,1, : j = 1,...,n+ p— 2} and the
rectangularity of the domain €, we now prove the following result, analogous to Theorem 3.1, which
highlights the tensor structure of the Galerkin B-spline IgA matrices (4.8)-(4.10).

Theorem 4.2. Let p,n € N, then

d
1 1 1 1
ALP]D = Z _M’[ZIIH] R & _Mr[lfkl—ﬂ ® nkKr[;fk] ® Mr[lfk:ﬂ R -® _Mr[zl;d]’ (4.38)
’ pel -1 M1 ng
41 1 1 1
AP =N MM e — M @ B HI @ — MU @ — M, 4.39)
’ = -1 My ng
1 1
[p]
Ar=v, M@ e n—dM,Eﬂ’d], (4.40)

where, for p,n > 1, K2 HP P gre given by

n+p-2 n+p-2 1 n+p-2
[p] . [p] . _ [p] ._
nk,” := [ N}+1,[p]Nf+1,[p]] ., H = [ N;'+1,[p]Ni+1,[P]] , =M= [ f Nj+1,[p]Ni+1,[p1] :
.1 i,j=1 o1 i.j=1 n ((CRY ij=1
(4.41)
and we note that K and M'"" are SPD, while HY' is skew-symmetric.
Proof. Copy the proof of Theorem 3.1. |
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4.3.1 Construction of K, H plF]

We now provide the construction of the ‘pieces’ that compose the Galerkin B-spline IgA stiffness matrix
AE,” ], i.e., the matrices defined in (4.41). We begin with some observations concerning the B-spline basis
functions N, j = 2,...,n+ p—1. First, using the notation introduced in Definition 4.1, the support of
Nip is [ti, tispal; see [21]. This immediately implies that K,[f’ ], H,[,” ], M,[,” ! have a (2p + 1)-band structure,
because the nonzero entries in the i-th row of these matrices are at most the entries with column index
JjE€li—p,...,i+ p}. Second, the ‘central’ basis functions N;,, i = p+1,...,n, are ‘uniformly shifted and
scaled versions’ of the cardinal B-spline ¢;,;. More precisely, we have

Nijp(x) = ¢pi(nx—i+p+1), i=p+1,...,n, (4.42)

and
t[pJ(x)_”‘/’[p](”x_l+P+1) i=p+1,....n

We now focus on the construction of the ‘central part’ of the matrices K,[f’ ], H,[f ], M,[,p ], which is the part
determined only by the central basis functions in (4.42). In other words, we focus on the submatrices

[(K[p])lj]lj =p> [(H[p])lj]l] =p’ [(M[p])l]]l] P’ (443)

which are nonempty forn > p+1. Fori,j=p,...,n—1,
1 1 1 . n—itp '
(K3 = n fo N1 i ON ) (0)dx = n fo Prpi(nx — j+ p)dpy(nx — i+ p)dx = f . Gt + i — Py (Ddt
i+p
= f Gt +i— N (Ddt (because [—i+ p,n—i+ p] 2 [0, p +1] = supp(¢y). since i € {p,....n—1})
R

= —¢[2p+1](p +14+i—)) (by Lemma 4.2)
= —ppsy(p+1-i+j)  (by Lemma 4.1),

and similarly we obtain
(H)ij = Gopy(p+ 1+ i = j) = =dpopany(p +1—i + ),

(MY = popin(p +1+i— J) = dpapen(p + 1= i + ).

Since the entries of the submatrices (4.43) only depend on the difference i — j, these submatrices are (1-level)
Toeplitz matrices. In particular, we have

[(K[p])u],J - == Propi(p+1—i+ J)],] » = Tnp(fp), (4.44)
[(M[p])tj]u =p [¢[2p+1 (P +1-i+ '])]U =p = = Lp- p(hp) (445)
where
p
£0) =" ~frpn(p + 1= 0¥ = ~Gopn(p +1) =2 ) drapen(p + 1 - k) cos(kt), (4.46)
keZ k=1
P
hp(0) = > Gapeni(p + 1= 0 = $popey(p+ 1) +2 > $popey(p + 1= k) cos(kt). (4.47)
keZ k=1

We end this subsection by giving the definition of ‘central rows’ of K¥', H”' M), They are defined
as the rows corresponding to an index i such that {i — p,...,i + p} € {p,...,n — 1} or, equivalently, i €
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{2p,...,n—p—1}. Clearly, a central row exists if and only if n > 3p +1. As observed above, {i—p,...,i+ p}
is the set of column indices j corresponding to the nonzero entries of K,Ep ], H,[f7 ], M,[,p 1in the i-th row, while

{p,...,n—1} is the range of indices identifying the submatrices (4.43). Therefore, the generic central row of
K'”' can be expressed as
[ O - 0 _¢[2p+1](1) —¢[2p+1](l7) —¢[2p+1](l7 +1) —$[2p+1](l7) _$[2p+1](1) 0O --- 0 ], (4.48)

and in particular, by (4.28), the diagonal element can be expressed as (K,[,p ])gi = 2¢[2p](p) > 0. The generic
central row of H,[,p I can be expressed as

[O o 0 =dppaD o =Pp(P) 0 ppan(p) 0 Popy 0 - 0], (4.49)

where we remark that (H,[,p ]),-,- = ¢[2p+l](p + 1) = 0 (see Lemma 4.1). The generic central row of M,[,p I can be
expressed as

[0 0 0 GppiD o Brepen(P) G+ D Gppy(p) o Gpey@ 0 - 0]- (4.50)

We note that, for all i = 2p,...,n — p — 1, the i-th central row of K,[lp I coincides with the i-th row of the
Toeplitz matrix T, ,-2(f,). Similarly, the i-th central row of M,[lp I coincide with the i-th row of Toip-o(hp).

Remark 4.1. Considering the recurrence relations for derivatives (4.21), for the computation of the matrix
elements in (4.48)—(4.50) we only need to evaluate cardinal B-splines at integer points. We sum up some
possibilities to evaluate ¢y, at integer positions.

1. The values of ¢, at the integers can be obtained by using the recurrence relation (4.14): we have
¢[0](k) = 601( and (]5[1](]() = (51/( for all k € Z, and

k +1-k
¢[P](k) = ;(p[p—l](k) + pT¢[p—l](k - 1), k € Z, p > 1.

2. From (4.15) it follows that the non-zero values of ¢, at the integers are equal to

k-1

1 N
P11 (k) = EZ(’)? )(—1)l(k—i)”, k=1,...,p.

* =0
4.4 Properties of f,(0) and h,(0)

The results in this section provide some interesting properties of the functions f,(6) and h,(6). We shall see
later that these functions appear in the expression of the spectral symbol that characterizes the asymptotic
spectral distribution of the Galerkin B-spline IgA stiffness matrices.

We begin with the observation that f,(6) and h,(6) are defined for all p > 1 by (4.46)-(4.47). However,
the right-hand side of (4.47) is well-defined also in the case p = 0, and we take it as the definition of A (6):

ho(0) := 1.

On the contrary, we cannot extend the definition of f,(f) to the case p = 0, because the right-hand side of
(4.46) has no meaning for p = 0, since 615[1](1) is not defined. So, while 4,(6) is now defined for all p > 0,
Sfp(0) is still defined only for p > 1.

Lemma 4.4. Let p > 0, let h, : [-7,n] — R be the function defined in (4.47), and let my,, := MiNge[_r 1 1,(6).
Then the following properties hold.
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1. hy(0) = Siez [ (0 + 2%m)|.
2. maxgenm hp(0) = hy(0) = 1 and my, > (4)".
3. hy(5) = 2Ph,(m). In particular, h,(7) — 0 exponentially as p — oo.
Proof. From the symmetry property (4.18), relation (4.24) and Theorem 4.1, it follows that

h,(0) = Z Gropeny(p + 1= k)e* = Z (L PO Prp (2 — k)dt) e = Z |¢7[E(0 + 2k7r)|2 ,

keZ keZ keZ

The inequalities (4.36)—(4.37) imply that

p+1
(ﬁ) <h@) <l 6el-ml (4.51)

In addition, by the partition of unity property (4.20) we get

2p+1

p
hy(0) = Propey(p +1) + 2 Z Gpiy(p +1-k) = Z drop+11(k) = 1.
k=1 k=1

We now prove item 3. From item 1 and (4.33) we know that

— 2 —2cosg\""!
h(@) = Y G0+ 2km)| = Z( - )

2
kezZ keZ (9 + 2kﬂ)
Hence,
T 2 p+l 23p+3 1
h (_) _ (—7r ) - , (4.52)
P\2 kZZ: (% + 2knm)? nZp+2 kZZ: (4k + 1)2r+2
4 p+l 22p+2 1
h () = — | = , 453
o) kZZ: ((n n 2k7r)2) 22 ,Zzl (2K + 1272 (155)

By splitting the latter sum into a sum over the even integers and a sum over the odd integers, we get

1 1 1 1 1
—_— = _ + S —— S - - @@
Z (2k + 1)2r+2 é (41 + 1)2r+2 é (41 + 3)2r+2 Z (41 + 1)2r+2 Z (—4m — 1)2p+2

keZ leZ mez
1 1 1
= —_— —— =2 _— (4.54)
2p+2 2p+2 2p+2
;(4l+1) P+ mZ€Z(4m+l) P+ gzl(4k+1) P+
Therefore, by combining (4.54) with (4.52) and (4.53), we obtain
x 1
hP(i) _ 93p+3 Zkezm _ o
hy(m) 22042 2%, m
O

Lemma 4.5. Let p > 1, let f, : [-m, 7] — R be the function defined in (4.46), and let My, := maXge[_r . f,(6).
Then the following properties hold.
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1. For all 0 € [—-n,r],
£0) = (2 =2c0s60) Y |0 + 2km)|” = (2 - 2cos B),1(0), (4.55)
keZ

and

4\ 1 1
_ i : _ _ p+l| _— -
(2—-2cos0) (nZ) < f»(6) < min (2 2co0s6,(2—2cosb) (921) + T )) .

2. MiNge[—rx fp(0) = f,(0) =0, 6 =0 is the unique zero of f, over [-m, ] and it has order 2, because

lim % =1 (4.56)

Moreover,

M <m'n(4 8 +2’T2(4)p % ()+2Zp1|¢5 (p+1 k)|)
p<minf4d, —— + — | = | ,2¢p,(p 2p+1 P - :
4 p+1 3 \n? =

In particular, My, — 0 as p — 0.
n
3. fp (g) = 22 (n). In particular, % — 0 exponentially as p — oo.
T
Proof. 1. We recall from (4.35) that, for every 6 € [—nx, 7],

B0 = (- e g, 0 (0)
and o,
6,10 =@ 2c0s0) |, @)

This implies that )
D b0+ 26m| =@ 2c080) |6, 7(0 + 2k (4.57)

keZ keZ
The equality (4.55) follows from (4.23), Theorem 4.1 and (4.57) in the following way:

fp(0) = Z ~Propin(p + 1 - k)™’ = Z ( f Gip) (i (1 — k)dt) e
R

keZ keZ
— ) o
=3 ‘q's[,,](e + 2k7r)‘ = (2-2c0s6) Y |6 + 2m)| .
keZ kezZ

From (4.35) and from the inequalities (4.36)—(4.37), we get
4 p
(2 -2cos0) (—2) < f,(0) <2—-2cosf, V6¢e[-nmn]. (4.58)
bis

Furthermore, using (4.33) in the expression of f,(f) given by (4.55), we obtain

p
Fp(0) = (2-2c0s6) ) ) = (2 - 2cos H)""! (4.59)

(2 — 2cos(8 + 2knm)
kezZ

1
(6 + 2km)? kZZ: (0 + 2km)%r’
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—p=1

p=3 p=5

Figure 4.3: graph of f,/M; for p=1,...,3.

p 1 2 3 4 5 6 7 8 9 10 11 12

%;ﬁz 1.0000 0.8889 0.4941 0.2494 0.1209 0.0570 0.0264 0.0120 0.0054 0.0024 0.0011 0.0005
Ip

fr (%)

_EZ__ 0.7500 1.0000 09034 0.7613 0.6209 0.4939 0.3853 0.2960 0.2247 0.1689 0.1259 0.0932
Jp

Table 4.1: values of f,(m)/M, and fp(%”)/Mﬁ) for p=1,...,12.

Now observe that

1 1 - 1 - 1 1 | - 1
—_——— = — ¢+ —t+ ) ———— < — + — + —_
kZeZ: (0 + 2km)?r 6% kz_; (0 + 2km)?r kz_:‘ (=0 + 2km)2r — 6% kz_; (2km)?p kz_; (=m + 2km)?r

1 1 (& 1 > 1 1 1
< —+ — E + E = —+ —.
~ g% g (kzl (2ky? L (2k - 1)2) 620 622

By (4.59), the latter inequality yields

£,(6) < (2 —2cos )P ( !

This proves the first statement in the lemma.

62r

1

6 71-2[)—2

), YO € [—n, 7).

(4.60)

2. The inequalities in (4.58) imply that minge_ . f,(0) = f,(0) = 0, that 8 = 0 is the only zero of f,, and
that My < 4. Moreover, (4.33) together with the fact that h, (0) = 1, gives (4.56). In order to prove that

8 2”2 4 p . o e
My, < At s (77) , we use the inequalities

2-2cosf <@ -
It follows that
2—-2cos0
(2—-2cos6) (T

4

0
T 6*, V6 e [-n, 7).

p 92 P
<6¢*(1-—=|, VOel[-n,nl.
18
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2\
If p > 2, the maximum of §° (1 - E) over [—r,n] is located at 6% = 1% and its value is given by

18 1\ 8
— 1= < .
p+1 p+1 p+1

_ p+1
(2—-2cosb) < 8

Therefore, if p > 2, we have

7 S VYo € [—n, r]. 4.61)
Moreover, 1
(2 —2cosO)P" 4pr+1

671'21)_2 = 671'21)_2, ve € [_7[, ﬂ]' (4.62)

Recalling (4.60), the inequalities (4.61)-(4.62) prove that, for p > 2,

8 on? [ 4\

M <——+—1|—]| . 4.63
I p+1 3 (71'2) ( )

In addition, (4.63) holds for p =1 too, because fi(f) =2 —2cosf and My = 4. To complete the proof of the
second statement, we still have to show that

p
My, < 21op1(p) +2 ) Idiapen(p + 1= K, (4.64)
k=1
which is easily obtained by using (4.28) and (4.46).
3. Item 3 follows from item 1 and item 3 in Lemma 4.4. m|

Using item 1 in Lemma 4.5 and the definition (4.47) of h,_;, we see that
p-1
Jp(0) = (2 —2cosO)h, 1(0) = (2 —2co80)|Prap-1(p) + 2 Z Prop-1(p — k) cos(kb) |.
k=1
This is a more elegant and efficient formula to evaluate f,.

Figure 4.3 shows the graph of f, normalized by its maximum Mg, for p = 1,...,5. As predicted by
Lemma 4.5, the value f,(7)/My, decreases exponentially to zero as p — oo; cf. Table 4.1. From a numerical
viewpoint, we can say that, for large p, the normalized function f,/M f, vanishes not only at 6 = 0 but also
at 0 = . In reality, we see from Figure 4.3 and Table 4.1 that f,/M;, approaches zero for very large p in a
whole interval containing [27/3, r].

Figure 4.4 shows the graph of h, for p = 0,...,4. We see that the behavior of &, over the interval
[27/3, ] is analogous to the one of f,/My, over the same interval.

4.5 Spectral analysis and spectral symbol

In this section we follow the same program as in Section 3.4. We study the spectral properties of the
stiffness matrix AE,” I in (4.6), focusing on the asymptotic behavior as the fineness parameters n — co. In
particular, we give estimates for the eigenvalues and for the spectral condition number K(AE,” ]). Moreover,
assuming n = vn = (vjn,...,v4n) € N¢ for a fixed v € Qf, we prove that the sequence {nd‘zAE,p ]}n has an
asymptotic spectral distribution characterized by the real function f,S”) i [-m, 7)Y = R,

d
NO) = > (V) (hp, ® - ®@hy  ® fr, ®hp, @@ hy,)0),
k=1
d
= > ) hy (O iy O) Fo OV Brt) -+ Py (B, (4.65)
k=1
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‘ —p=0 p=2 p=3 p=4 |
-3 -2 —1 0 1 2 3

Figure 4.4: graph of h, for p=0,...,4.

where f, and h, are defined in in (4.46)-(4.47) and

(V) = Vi Ck=1.....4d. (4.66)

Vit VietVisl " Vd

4.5.1 Estimates for the eigenvalues, localization of the spectrum and conditioning of A,[f’]

We first provide suitable estimates for the minimal eigenvalues of M and K7, These will be employed to
obtain a lower bound for /lmm(iR(AE,p ])), which, in turn, will be used in combination with the Fan-Hoffman
theorem (Theorem 1.1) to obtain an upper bound for the spectral condition number K(AE’ ]). We begin with
the following result [54].

Lemma 4.6. Let p,n >1and X = (xy, ..., Xy4p-2) € R"P72, then

e[ i
C,— <
p n

2
<C, ﬂ, (4.67)

. n
L%(0.1)

XiNi1,[p)
=1

where C), C » > 0 are constants that do not depend on n and X.

The inequalities in (4.67) are a special instance for the L?-norm of the results stated in [54, Theorem 9.27].
We remark that the quantity A used in the cited theorem in our context has the value %; see [24, Eq.(6.3)].

Theorem 4.3. Let C, > 0 be a constant for which the left inequality in (4.67) is satisfied. Then, for all p,n > 1
the following properties hold.

1. Apin(MP > C,.
2

2
T mC,
2. KM > ﬁM,[j’] and Apin(K") > —
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Proof. Using the definition of MY see (4.41), for all y € R"™P72 we have

1 n+p—2 1 n+p—2
T
y (ZM,E”])y= Z (;M,[lp])i’jyiyj f ViV iN je1,1p1(X)Nip1 1 p1 (X)d x

i,j=1 i,j=1
1 n+p-2 n+p-2 1 (n+p-2
:f Z YilNis1,[p) (%) Z YiNjsp(x)dx :f {Z YiNis1 [p](-x)]
. =
n+p-2 9
llyll
= Z ViNisiip) >C, 3,'1 (4.68)
12(0,1)

where the last inequality holds by (4.67). Hence, we get yTM,[,p ]y >C pIIyIIZ, and from the minimax principle
it follows that )
Ao (M) = min MY S o (4.69)
y=0  |lyll?
This proves the first statement. To prove the second statement, we follow the same argument used in the
proof of Lemma 3.5, which, in fact, can be extended to a much more general setting; see [31, Proposition 1].

Using the definition of K, see (4.41), for all y € R™72 we obtain

n+p-2 n+p-2 1
yT (nK,[f’])y = Z (nK,[lP])i’j)’i)’j = Z Lyyj J+l, [p](-x) i+1 [p](x)dx
i,j=1 i,j=1
1 n+p—2 n+p-2 1 (n+p—2 2
= J, 2 Mo 2] s = [ [Z VN mm] dx
j=1
n+p-2 2

2
= VIl 00 (4.70)
L2(0,1)

Z YilNisip)

where vy 1= 377 " YiNis1p € WY see Section 4.1 for the definition of WY, Since W' c H(0,1), we may
apply the Poincaré inequality (3.42). From (3.42) and (4.68) it follows that

2
T
T T
y (nK’EP]) ||V ||L2(Ol) 2T ||vy||L2(01) y (;Mr[lp])y

Dividing both sides by n we obtain, for all y € R"*772,

2

y' KMy > y" (N—ZM,E”])y-
n

This proves that K,[,p > Z—;M,[,p I The application of the minimax principle and (4.69) yields

T zlpl T(z M[”]) 2 2
y Kn y . y (n2 n y T [ T Cp
Ami K = > — = — A MP] > —=

A B R
which concludes the proof. O
Remark 4.2. Suppose that, for a given p > 1, we are able to find a constant C » > 0 such that!

/lmin(My[lp] ) = pr .

Such a constant C » may be found, e.g., by using the Gershgorin theorems [8]. We refer to Remark 4.6 for an example.
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n Amin(Mr[LZ]) lmin(Mr[LS]) Amin(Ml[:l]) n2 /lmin(Kr[L2]) n2 Amin(Kr[zs]) n2 /lmin(Kl[;l])
20 0.1333333 | 0.0482607 | 0.0171864 9.8089070 9.7834046 9.7507398
40 0.1333333 | 0.0486447 | 0.0173795 9.8543957 9.8486563 9.8419964
80 0.1333333 | 0.0486538 | 0.0173821 9.8658001 9.8644478 9.8629796
160 | 0.1333333 | 0.0486538 | 0.0173821 9.8686532 9.8683256 9.8679834

320 || 0.1333333 | 0.0486538 | 0.0173821 9.8693666 9.8692860 9.8692036
640 | 0.1333333 | 0.0486538 | 0.0173821 9.8695450 9.8695250 9.8695048
1280 || 0.1333333 | 0.0486538 | 0.0173821 9.8695896 9.8695846 9.8695796

Table 4.2: computation of Anin(M¥)) and n? Amin(K”) for p = 2,3, 4 and for increasing values of 7.

In this case, items 1 and 2 in Theorem 4.3 hold with C » in place of C,. Moreover, the left inequality in
(4.67) also holds with C’p in place of C,. Indeed, by using a similar argument as in the proof of Theorem 4.3,
we obtain

n+p-2
xI 7! (]
l’l”Z Xi ‘+1[P]||L2(01) _ anX .y any ) (M[p]) >C..
I T e

Table 4.2 shows the results of some numerical experiments performed on the matrices M,[f’ ! and K,[f’ I for
p =2,3,4 and for increasing values of n. From these results it seems that

Amin(M) "7 iy, (4.70)

with gy = 15, mg ~ 0.0486538 and /4 =~ 0.0173821. Apparently, the sequence Ayin(M, Lp ]) converges to 71, very
quickly as n — oco. In addition, it seems that?

n—oo 7T2
Amin(KIP) "7 = (4.72)
n
Since KM = Tridiagonal(-1, 2, -1) € R®™@D we note that for Ama(KL) the asymptotic formula (4.72) holds,
because it is known that

2
Ania(KI = 4 sin =) "2
2n

see Theorem 1.9. The numerical experiments show that, for p = 2,3,4, the eigenvalue ﬂmln(K[p ]) converges

to 0 as n2,

order as /lmin(K,[,p 1) when n — oo.
In addition, referring to Table 4.3, we can formulate a deeper conjecture than (4.72).

Conjecture 4.1. For every p > 1 and for each fixed j > 1,

lim 1 Ay (K} = 7, (4.73)

where A, p-1- j(K,Ep ]) is the j-th smallest eigenvalue of K,[f’ ] (recall that K,Ep ! has size n+ p—2 and its eigenvalues
are arranged in non-increasing order). This conjecture has a motivation completely analogous to the one given
in Conjecture 3.2.

We now derive upper bounds for the infinity norms of K,[l"7 ! H,[Zp 1 M,[,"7 I, They are needed for giving a
localization of the spectrum of A£{’ I and for providing an upper bound for the spectral condition number
k(AP

2The constant 7% is precisely c;;; see Remarks 1.3-1.5.
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n | RPaaK) | &) | PR | KD | i, KRD | rP K
20 38.51599640 38.11745811 37.61719616 84.02689324 | 82.08515027 | 79.68696933
40 39.23562801 | 39.14429699 | 39.03869339 87.60193868 87.14374691 86.61710221
80 39.41758280 | 39.39597383 | 39.37252923 88.51875348 | 88.40959481 | 88.29129852
160 39.46320030 | 39.45796001 | 39.45248834 88.74942017 88.72290521 | 88.69522615
320 39.47461274 | 39.47332339 | 39.47200503 88.80717862 88.80065213 88.79397917
640 39.47746635 | 39.47714663 | 39.47682328 88.82162398 | 88.82000545 | 88.81836856

1280 39.47817979 39.47810019 | 39.47802013 88.82523569 | 88.82483270 | 88.82442742

Table 4.3: computation of n2/1n+p_1_ j(K,[lp ]) for p=2,3,4, for j = 2,3 and for increasing values of n.

Lemma 4.7. Let p,n > 1, then

1M, <1, IHP)|, < 2, 1K, < 4p.

Proof. We first note that the derivative and integral of a B-spline N;,(x) are given by

N; [p—l](-x) Niu [p—l](-x)
N}y () = p( : - 4.74)
7] livp =i livper — lig
and ; .
N, dx = M; 4.75
fR () dx = = (4.75)

see [21, 54]. The sequence of knots (4.2)—(4.3) implies that the maximum length of the support of any N[,

. p+1 . e e . e . . .
is =. Recalling (4.41), by the positivity property and the partition of unity property of B-splines, we obtain
1 n+p—2 1 (n+p=2
_Mr[zp] = max f Nj+1 [p] (X)NH_l [p](X) dx = _ max f Z Nj+1 [p] ()C) i+1,[p] ()C) dx
n i=1,...,n+p-2 i=1,...,n+p-2 0 =
tLipro =l 1
< _ max f Niiip(x)dx = max HATARELE S
,,,,, n+p—2 i=1,....n+p—2 p + 1 n

Recalling (4.41) and using the skew-symmetry of the matrix H,[,p I we obtain

n+p—2
I e = max f NjstptIN gy () dx
n+p—2
1 1(x) Niso1p-11(x)
=  max p t[Nmm(%’+”] alled PN S (4.76)
i=L,....n+p=2 Livpe1 — liv1 livps2 — liv2
Using the partition of unity property and (4.75), we have
+p-2 +p—2
" p Niipp- 1](x) H'E Nis1p-11(x) 1
N]+1 [p](x) dx = Z Niap(x) | ———dx < —,
Livp+1 — Liv1 0 = Livp+1 — Liv1 P
and a similar bound holds for the remaining term in (4.76). It follows that IIH[p ]Ilm <
Recalling (4.41), we obtain
n+p 2
[p] —
K = max f N CON (9
I’l+p—2 1 N
i+Lip-11(X)  Njpop-1(x) up-11(®)  Niggp-1(x)
=  max p2 f ( J+L[p—1] Vg2 p-1) Nit J[p-1] i+2,[p-1] dxl . A.77)
i=L,...,n+p=2 = 0 \ljrp+1 = ljr1 Tjipra — Ljvo ) \livpr1 — lina Lirp+2 — lito
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In addition, we have

niz fl Nj+1,[p—1](-x) Ni+1,[p—1](x) dx = fl n+zp;‘2 Nj+1 [p— 1(X) Nii, [p- 1](X) dx < nfl Ni+1,[p—1](-x) dx = n

t./+p+1 - t]+1 tl+p+1 —liv P tj+p+1 - tj+1 tl+p+1 = lin tl+p+1 = liv1
j=1

and in a similar way we can also bound the remaining terms in (4.77). This results in

||nK,[lp]||oo_ max p(4n) 4pn.
i=1,..., n+p—2 p

O

Remark 4.3. A consequence of Lemma 4.7 is that we can take C » = 11in (4.67), independently of p. Indeed,
Lemma 4.7 implies that ﬁmax(M,[,p ]) < ||M,[,p ]||oo <1 for all p,n > 1. Thus, by the minimax principle,

2
n+p—
nl|Z N2 xTMPX e YMIY
2 = 5 =m B Amax( n ) <1
lIxI lIxI y#0 Iyl

Theorem 4.4 (localization of the spectrum of ‘R(A[p ])). Let p,n € N, then
n’d +y

Amin(R(AT) > o Co (4.78)
_ Apn® +
Amax (R(AT) < M, (4.79)
nl PR nd
where C, is a constant satisfying the left inequality in Lemma 4.6.
Proof. We recall from (4.11) and Theorem 4.2 that
R A[P] MPl] 1 — MPel K[m] 1 —— MPel lM[pd] IM[M] IM[P({]
( )—Z ®- el @ K el . ty—MP - ® — M.

nk— Njey1 nd

Now apply (1.8),(1.16) and Theorem 4.3 to obtain (4.78). Then, apply (1.9),(1.16) and Lemma 4.7 to obtain
(4.79). O

Theorem 4.5 (localization of the spectrum of AL” ]). Let p,n € N, then
AAL) € | AminREATLD), Amas RAL | X [Amin( SAT), A (SAL) |

n*d +y S Apind +y 259 Bl 235, 1Bl
CPI'”CPJ’— X |— ,

nl...nd nln..nd

-

nln..nd ’ nl.-.nd

where C), is a constant satisfying the left inequality in Lemma 4.6.

Proof. From Theorem 4.4 we have
n’d + Y4 Apin® +y
EEY e, Cpy S AinRARY) S Apn(R(AY) < ZEE T
ny---ng ny---ng

Taking into account that HY' is normal, we have ||[H|| = p(H?) < |H?||. Similarly, |MP = p(M'") <
IMP)||.. Therefore, using (4.12), (4.39), (1.13) and Lemma 4.7, we get

(4.80)

N 1 1 1
IS(APY)| = ||A[ | = § M[Pﬂ @ —MP @B HM @ — MMl g @ — MPd
Nyp_1 Ni+1

Ng+1 ny

23 1Bl
n - )

Zn M- M g B THL N M ) - M) < .
17" g

ng N—1 Ny Nje+1
k=1
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n | k@APY/n? | k(A)/n? | kAP)n?
8 0.0916 0.2278 1.2597
16 0.0772 0.2173 1.2573
32 0.0763 0.2101 1.2553
64 0.0761 0.2065 1.2543
128 0.0760 0.2049 1.2539
256 0.0760 0.2041 1.2538

Table 4.4: computation of x(A?")/n2, k(A,)/n? and k(AP)/n* in the case d =2, B=0, y = 0, p = (2,2),
n = (n,log, n), for increasing values of n. Note that we are in the presence of a non-uniform mesh refinement.

It follows that

2 Zdz 1Brlnk ~ ~ ~ ~ 22d= |Bx|nk
= < ISA £ Aain(SATD) < Daax(SATD) < (ISAP]] < —===——. (4.81)
nl.-.nd ’/ll.-.nd
Combining (4.80)—(4.81) with (1.7) we get the thesis. O
Theorem 4.6 (conditioning). For every p € N there exists a constant @, such that, for all n € N%,

d

AY) < ap )t (4.82)
k=1

Proof. The proof is exactly the same as the proof of Theorem 3.7. From AE{' = iR(AE,p ]) + 'LS(AE{’ ]) and from
the fact that R(AP"), 3(A”)) are Hermitian, we have

Tmax (AP = [|AP] < IRAPH| + ISAPH] = pRAFY) + p(SAP).

Hence, by Theorem 4.5,

Pl < A
1471 < @,

d 2
2=t ny
nl .. nd
for some constant @, independent of n. Furthermore, by Theorem 4.4 and by the Fan-Hoffman theorem,

a
P
Tmin(Al) > Amin(RAT) > —L—
nl o« .. nd
f tant @, > 0 independent of n. Thus, K(AY) = =) < oS¢ 12 with a, = &,/
or some constant @&, > 0 independent of n. Thus, k(A,") = ) = @p Doy 1y With @p = @p/@,. O
(4.82) says that x(A'”) is bounded from above by max(n?) = max(n?, . ..,n%) multiplied by some constant

independent of n (for instance a,d). This upper bound is the sharpest possible, as shown by the numerical
experiments in Table 4.4, where we fixed d =2, 8=0, y =0, p = (2,2), and we computed /<(A£,’J ]) = K(AL’E)
(normalized by n?) for n = (n, log, n) and for increasing values of n. For a nice comparison with Finite
Differences and Lagrangian Finite Elements, in the third and fourth column of Table 4.4 we reported the
values of k(A,)/n* and x(A?)/n?, with A, and A”' as in Table 3.2; see also (3.58) for the expression of
the FD diffusion matrix A,. We note that the smallest asymptotic growth of the condition number when
n — oo is obtained in correspondence of the Galerkin IgA stiffness matrices AP' Note also that the best
asymptotic constant 0.0760 is about 0.06 times the worst asymptotic constant 1.2538, associated with the

Finite Element stiffness matrices A,,(p) .
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4.5.2 Spectral distribution and symbol of the normalized sequence {nd‘QAE,p ] |

In this subsection we assume that n; =v;n for all j=1,...,d, ie. n=vn=(vin,...,vn) € N? where v € Q‘i
is fixed and n varies in the set of natural numbers such that n € N9, In Theorem 4.7 we prove that the
sequence of matrices {nd‘ZAEf’] }» is distributed, in the sense of the eigenvalues, like the real function f,EV) in
(4.65), which is therefore the symbol of the sequence {n?24A”1},. Note that {n?-247"}, is really a sequence
of matrices, due to the assumption n = vn, which must be kept in mind while reading this subsection. Note
also that, by the properties of f, and /, obtained in Section 4.4, f;”() > 0 for all @ € [-x,7]? and £, (8) > 0
for all @ € [-x, 71]4\{0}.

In order to prove Theorem 4.7, some preliminary work is needed. Let us decompose the matrix K,[,p ! into

K = Typpoa(f,) + RV, (4.83)

where T, ,-2(fp), the (n + p — 2)-th Toeplitz matrix associated with f,, is nothing else than the symmetric
(2p + 1)-band matrix whose generic central row is given by (4.48), while R,[lp I .= K,[f 1 _ Thip-o(fp) is a
low-rank correction term. Indeed, we know from Subsection 4.3.1, see (4.44), that [K,[f' ]]z;p =T, ,(fpy) =
[T p-2(f)]}7L,, hence

rank(R”)) < 4(p - 1). (4.84)

Similarly, we decompose the matrix M,[,p Iinto
Mr[,p] = n+p—2(hp) + SLP]’ (4.85)

where T, ,-2(h,) is just the symmetric (2p + 1)-band matrix whose generic central row is given by (4.50),
while §;/ = M - T,.,-2(hy) is a low-rank correction term analogous to R

rank(S"1) < 4(p - 1). (4.86)

The next lemma analyzes the spectral properties of T, 2(f,). Besides being interesting in its own right,
some of the given properties are needed for the proof of Theorem 4.7, which yields the spectral distribution
of the sequence {n? 24",

Lemma 4.8. Let f, and My, be defined as in Lemma 4.5. Then, the following properties hold.
1. ATy p-2(fp)) € (0, M) for all n.
2. Anin(Tnsp—2(fp)) \ 0 and Apax (T p-2(fp)) /' My, as n — oo,
3. ATwep—2(fp)ln ~a Jp-
4. For each fixed j > 1,

22
n—oo J T
/1n+p—1—j(Tn+p—2(fp)) ~ n2

Proof. The first three statements are consequences of Theorem 1.8 and Lemma 4.5, except for the monotone
convergence in item 2, which, however, follows from the Cauchy interlacing Theorem 1.3 and from the fact
that T,:,-2(f,) is a principal submatrix of T(ui1)+p-2(f))-

We now prove the last statement. From Lemma 4.5 we know that 8 = 0 is the unique zero of f, over

[-m, m]. Furthermore, from the definition of f,, see (4.46), it follows immediately that f;(O) = 0. Moreover,
by using Lemma 4.3, we get

p
70 =2 Rppu(p+1-k) =2.

k=1
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This means that the function f, satisfies all the hypotheses of Theorem 110 with s = 1, Oy, = 0 and
f,SZ” (Omin) = 2. Then, for each fixed j > 1,

n—oo Cl,j n—oo j27T2
/ln+p—1—j(Tn+p—2(fp)) ~ (I’l +p— 2)2 ~ 2 5
where the last asymptotic equivalence holds because ¢ ; = j?n?; see Remarks 1.4-1.5. m|

Remark 4.4. In Subsection 4.5.1, looking at the numerical results summarized in the Tables 4.2-4.3, we con-
jectured that (4.73) holds for all p, j > 1. In Lemma 4.8 we have seen that (4.73) holds with A, p-1- (Ty+p-2(fp))
in place of A, p-1- j(K,[f’ 1. Furthermore, using the Cauchy interlacing Theorem 1.3 and the fact that Thip-o(fp)

is a principal submatrix of K [p]

ni2p-2> We have

LK, ) 2 4(Top2(f) 2 Ajegpa(Kily ), Yponz1, Vj=1,...,n+p-2.

Hence, if, for a fixed j > 1, there exists a constant l}p, j such that

t

n—oo %p,j
/ln+p—l—j(Kr[zp]) ~ ?,

then

[p] _ [p] _ [p] n—oo Ap,j
Amrp-1-jr2p-2(Kypi9, 5) = Anip-1--2p+2) (K19, o) = Amezp-24p-1-/(Kin, o)~ —5

and it follows that:

o kpj < jn%

o if j>2p-2, thenk,; > (j—2p+2)>~

Theorem 4.7. Let p € N¥, v € Q¢ and n = vn, then {n?2A"},, ~, £, with £ defined in (4.65). In particular,
{(n?2AP1Y ' is weakly clustered at the range [0, M o] of 2 where M o0 1= MaXgef_r e f,ﬁ”)(a), and every point

of [0, M ] strongly attracts A(m*2APY with infinite order (cf. Theorem 1.5).
Proof. From (4.7)-(4.10) we have

nd—ZAElPJ — nd_ZAEfJD + ncI—QAE:JIJ4 + ’,ld—2A£11711e

= Turp2(f) + n2AY) = Tppa(f) + n"2AY) + 02 AP) (4.87)
We prove that the hypotheses of Theorem 1.6 are satisfied with

Z, = nd_ZAip]’ X, = n+p—2(flgy)), Y, = nd_ZAgtp] - Tn+p—2(fI§V)) = nd_ZAEIPi}) - Tn+p—2(fl(;V)) + nd_ZAE,’i,]q + nd_ZAESJQ-

(4.88)

Clearly, by Theorem 1.8 we have {Tn+p—2(f1(;V))}n ~ f,ﬁv). Moreover, T,,+,,_2(f,§”)) is Hermitian (because f,ﬁ” is
real-valued) and (1.37) ensures that

||Tn+p—2(fI£V))” < Mo, (4.89)

where M e is defined in the statement of the theorem and is a constant independent of n.
p

d‘zAEf ;), nd‘zAEf i‘, nd‘ZA,[f}e, we have the following bounds, which were

obtained by using (4.38)-(4.40), the equality n = vn, the property (1.13), the fact that K7\, HY', M are

Concerning the spectral norms of n
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normal and Lemma 4.7.

d-2

d
- nng
I AP = > MM ...@ MP g KM @ Ml ... @ M
> k:1 nl ... nk—lnk+1 DR nd
d
<4 Z prci(v), (see (4.66) for the definition of cx(v)) (4.90)
k=1
] d nd-2
d-2 } N
I 2AP = || MMe- e MPM @B HM @ M- - @ M
R SR LS U S B (]
d d
2 1 2 et VilBil
<- Z Bl = ————, (4.91)
nk:1 Vi VictVisl """ V4 Vit Van
d-2
In2AP) = [ — M @ .. @ M| < L (4.92)
n, ngeeeng M a V- van?

From (4.90)-(4.92), it follows that ||nd‘2AE,p ]|| < C for some constant C independent of .

To complete the proof, it only remains to show that |||nd‘2A£,p [ Tn+p—2(fIEV)) || = o(N(n+ p - 2)) = o(n?),
where we recall that N(n+ p — 2) = Hle(ni + pi — 2) is the size of A,[{’] and n = vn. We first note that, by
definition of fy”, see (4.65), by the linearity of T,,,o(-) and by Lemma 1.8, we have

d

Tn+11—2(f1§v)) = Tuip-2 (Z W) hyp ® - @by ® fp, @hp, ®---®hy,
k=1

d
= Z Ck(v) Tn1+p1—2(h171) Q- T”lk—1+17k—1—2(hpk—1) ® T"k+171<—2(-f171<) ® T”k+1+Pk+I—2(hpk+l) Q- T"d+Pd—2(th)'
k=1

Moreover,

Nj-1 N1 ng ?

n'AY) = zd: aMMPMe. ..o Mo KMo MP ... @ MP!
k=1
and we recall from (4.84), (4.86) that
rank(K'”' — T, ,_o(f,)) < 4(p - 1), rank(MP' = T, ,o(h,)) < 4(p — 1).
Therefore, by (1.5) and by the property (1.18) of tensor products we obtain
281 = Ty, < 22 = TavgeaGl, + 202, + AL

d
<dNm+p-2) “PZD a2gll g )]+ N+ p— 2 [ 2AR| + N+ p - 2) A
i=1

= it Pi— mb
(4.93)

and the latter is o(n?) by (4.89)-(4.92). O

Remark 4.5. In Theorem 4.7, assume that d =1 and take p = p, v =1. Then n = n, f,ﬁ”(a) = fp(0) is just
the function analyzed in Section 4.4, and Theorem 4.7 gives {,%A,[{7 N~ fp» where

Y

ALP] — nKr[lP] +ﬁH’[1P] + _Mr[lp], n=12,...
n
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is the sequence of 1D Galerkin B-spline IgA stiffness matrices.®> Moreover, (4.93) together with (4.89)-(4.92)
shows that H 1

ZA,EP] - n+p—2(fp)

for some constant C independent of n. Then, all the hypotheses of Theorem 1.7 are satisfied with Z,, X,,, ¥,
as in (4.88), and so {1Al"}, is strongly clustered at [0, M.

<C
1

In the next subsections, we will consider some cases that will be analyzed in more detail. We first focus
on the spectral properties of the matrices %A,[f I associated with the linear (p = 1) and quadratic (p = 2)
B-spline IgA approximation of problem (4.1) in 1D. Then, we will address the 2D discretization matrices
AE,‘ff;le] associated with the bilinear (p; = p; = 1) and biquadratic (p; = ps = 2) B-spline IgA approximation of
(4.1).

4.5.3 The linear case p =1
In the case p =1, the matrix AE] is of size (n —1) X (n — 1) and is given by

Y

Al = g 4 gl 4 L gt (4.94)
n
where, for n > 4,
(2 -1 [0 1 1
-1 2 -1 -1 0 1 14 1
KW = ) . HY = 1 - MU = l . .
n . . n 2 . n 6 . *
-1 2 -1 -1 0 1 I 4 1
-1 2| -1 0] 1 4]

The matrix ALY is nothing else than the stiffness matrix arising from classical FEM with linear elements. In
other words, using the notation of Chapter 3, we have AE] = A,(f). Observe that the scaled matrix

B

n

1

M _ 1 Y
;An _Kn +

HY + £ pt

M, (4.95)

is a real Toeplitz tridiagonal matrix, which is given explicitly by

2
_1_£+l 2+_7 _1+£+l

1
[1] _ . .
_nA” = Tridiagonal o ez’ 352’ 297 6n2/°

Moreover, for n large enough, the elements —1— 2% + # and —1+ 2% + # are both negative. This means that,

for n large enough, all the eigenvalues of %AEZP I are real and can be computed by means of Theorem 1.9.

Proposition 4.1. Let n > 4 be such that —1 - 2% + 5 and —1+ 2% + L are both negative. Then, %A,[}] hasn—1

612
real distinct eigenvalues

1 9 2\ 1 42 '
L(Eam) s o 2o (YL L Y o
n 3n? 3 4 )n* 36n* n

3AP is given by (4.6)-(4.10) and Theorem 4.2 ford =1, n=n, p=p, B=p.

j=1... (4.96)
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By using the expression (4.96) for the eigenvalues, it can be proved by direct computation (without even
invoking Theorem 4.7 or Remark 4.5) that the sequence {%AL”} is distributed like the function fi(6) = 2—2cos 8
in the sense of the eigenvalues. In addition, by using (4.96) and some asymptotic expansion, one can prove

that \
1 2
Amin —AE] >4 (sin i) + —y.
n 2n 3n?

Furthermore, by Gershgorin’s first theorem [8], we have /lmin(%AL”) > nlz Hence,

1 22
A —AE] C [max 4(sin£) +—y,l ,4+l .
n 2n 3n? n? 3n?
This gives a sharper lower bound for /lmin(%A,[f ]) than the one provided in Theorem 4.5, if we take into
account that C; = % is the best constant satisfying (4.67) for p = 1. The latter is true because:

¢ (M) = Auin(Toci(2 + Lcos0) N\, 1 = minge_rn(2 + Lcos6) when n — oo (this follows from
Theorems 1.8 and 1.3);

e if C; is a constant satisfying the left-hand side inequality in (4.67), then /lmin(M,[,l]) > C; for all n (see
Theorem 4.3);

o if C; is a constant satisfying Anin(ML) > C; for all n, then it also satisfies the left-hand side inequality
in (4.67) (see Remark 4.2).

From (4.96) it also follows that

1 1 nooo 2
1 Ain (—AE]) =nA, (—AE]) — nl+ v+ ﬁ—,
n n 4

1 1)\ oo 2
7 (4 = e (24| = 02 (4= (LA0)) 25 2 2 Y L B
n n 3 4

In particular, {%AEJ} is strongly clustered at [0, 4] according to Definition 1.3. Note that [0, 4] is precisely
the range of the function fi() =2 — 2cos6 (cf. Remark 4.5).

We conclude this subsection by collecting in the next lemma some results which can be derived by the
Gershgorin theorems and will be used later on.

Lemma 4.9. For all n > 4,
J H,[f] is skew-symmetric, irreducible, and A(H,[,”) c{0}x(-1,1);

. M,[l” is symmetric, irreducible, and A(M,[zl]) C (%, 1).

4.5.4 The quadratic case p =2

The spectral analysis of %A,[f] has not been difficult because Theorem 1.9 provided us with the explicit

expression (4.96) for the eigenvalues of %AE}]‘ For p > 2 such an expression for the eigenvalues of %AL” s
not available and so our spectral analysis must rely on other considerations. In the case p = 2, the matrix
%ALZ] is of size n X n and is given by

1
Laen - gt By Yy
n n n?
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where, for n > 3,

'8 -1 -1 ‘ 0 9 1
1 6 -2 -1 9 0 10 1
1 -2 6 -2 -1 1 210 0 10 1
K2 = o g L L
o AT = Lo ],
1 -2 6 -2 -1 1 10 0 10 1
1 -2 6 -1 1210 0 9
1 -1 8 , 1 -9 0
40 25 1
95 66 26 1
1 2 66 26 1
yz = L Lo
M= TR
1 2 66 26 1
1 26 66 25
1 25 40

For the case p = 2, Theorem 4.7 (or Remark 4.5) gives { %A,EZJ} ~1 f2, with
2 1
f(0) =1~ 3 c0s 0 — 3 cos(20).

Moreover, {%ALZ]} is strongly clustered at [O, %], which is the range of f, (see Remark 4.5). In the remainder

of this subsection we provide more specific results about the spectral properties of iALZ].

Localization of the eigenvalues

We look for a more precise localization of A(%A,[f]) than the one provided by Theorem 4.5. We first note

that, by using the Gershgorin theorems, we can derive the following bounds for the spectra of the matrices
K2 HP and M2
Lemma 4.10. For all n > 5,
J K,[,Z] is symmetric, irreducible, and A(K,[f]) c(0,2);
1 u

o H,[f] is skew-symmetric, irreducible, and A(H,[IZ]) c {0} x (_E’ E);

o M is symmetric, irreducible, and A(M'?) c (% 1);

o if 2 < é, then K'* + %M,[Zz] is symmetric, irreducible, and

12012
A(K[Z] + le) c (l 2+ L)
" nz " n?’ 10n2

Remark 4.6. Lemma 4.10 implies that /lmin(M,[f]) > % for all n > 5. Using the arguments shown in
Remark 4.2 and Theorem 4.3, it follows that

2
b4
Amin(KP) > —, ¥n>5, (4.97)
10n
" 2
lIxI? n
X,‘N,’_,_L[z] >—— VYn>=5, VYxeR"
: 10n
i=1 LZ(O,I)

In particular, the left-hand side inequality in (4.67) holds for p = 2 with Cy = %.
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the localization of A(- Am) provided by Theorem 4.5 gives
A(lA[ZJ) 4y 1 ] [ 2|6| 2|,3|]
n n

—, 8+ = |X
We will prove in Theorem 4.8 a better localization of A(%ALZ]) than (4.98).

Using the constant Cy = 10,

n n

(4.98)

Lemma 4.11. Let RE,Z] be the low-rank matrix RE] introduced in (4.83). Then, for every n > 3,
2 1
10
RE;Z] N € Ran’
6 0 1
1 2
and the characteristic polynomial of R is given by A" (3642 — 124 — 1)%. Hence, the eigenvalues of R#
are HT\@ (with multiplicity 2), PT\@ (with multiplicity 2) and 0 (with multiplicity n — 4).

257 1
6°
A (242 ¢ (max (2. 752 min[3 4+ Y2, Y o, Y )], 108 1Al (4.99)
n" n2’ 10n? )’ 2 6 n?’ " 10n? 12n° 12n '
Proof. Fix n > 35 such that the condition 15212 < é is met. The real and imaginary part of %AE,Z] are given by
e 21 . Y pg02 21, Y pg02 L) _B [2]
R _An = Kn + _ZM" = Tn+p—2(fp) +Rn + _2Mn s A H
n n n in

We aim at localiz'mg the spectra A(iR(iALZ])) and A(S(%A,[lz])). We begin with A(ER(%AE,Z])). Since n satisfies

. 95
the condition 2%

<% L by Lemma 4.10 we have

A(ﬂ%(lA,[f])) (7 2+ L) (4.100)
n

n?’ 10n?

We can improve (4.100) as follows. By combining (1.9) with Lemmas 4.8, 4.10 and 4.11, and taking into
account that My, = % we obtain

1
/lmax (m (;ALZ])) = /lmax( n+p— Z(fp) + R[Z] + Y M[Q]) < /lmax(Tn+p Z(fp)) + /lmax(R[2]) + D) maX(M[z])
3 1+ V2
+ V2, v

+ .
2 6 n?

Similarly, by using (4.97) and Lemma 4.10,

2
A (ER (lA[z])) = A (K[Z] Y M[Z]) > (K[2]) + s (M[Z]) > 7 + 7
min i min n min mm 1012 .

Thus, we can replace (4.100) with

2
A(‘R (%A,[f])) c (max(l u),min[§ vz oy, L)J (4.101)

n?’ 10n? 2 6 n?’ 10n2
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Now we localize the spectrum A(TS(%A}?J)). Since S(%Af]) is Hermitian, from Lemma 4.10 we obtain*

1 1| 11
A=A | c —ﬂ, gl . (4.102)
n 12n" 12n
Combining (4.101)-(4.102) with (1.7), we obtain (4.99). O

Clustering

We now deal with the clustering properties of the sequence {%AE,Z]}. We have already mentioned that {%A,[f]}

,%] but we have no bounds on the number of outliers, i.e., those eigenvalues

of %A,[f] lying outside the rectangular e-expansion [0, %] = [—s, g + s] X [—&,€]. Theorem 4.9 allows us to
. . . 8

provide an estimate for the number of outliers.

is strongly clustered at [O

Theorem 4.9. For all € € (0,1) and n > max(5, \/727), it holds that

1+ V2
3¢’

q,(e) < (4.103)

where g (€) is the number of eigenvalues of %A,[f] whose real parts are > % + e

Proof. For every n > 5, we consider again the decomposition K,[IZ] =T,(f2) + ha] introduced in (4.83). The
matrix RE,Z] is symmetric and we know the eigenvalues of REZZJ from Lemma 4.11. In particular, RE,Z] has two
positive and two negative eigenvalues, and so, by Theorem 1.4,

Ajea(Ta(f2)) = LK) 2 ;0(T(f2)),  j=3,...,n=2.

From Lemma 4.8 and My, = % we have A(T,(f2)) C (O, %) hence

; > W(T,(f2) = (K2 > ... > 2,(K?) > 0, (4.104)

where the last inequality is a consequence of Lemma 4.10 (or, simply, of the positive definiteness of K,EZ];
see Theorem 4.2). Moreover, by (1.9),

3 1+ V2
Amax (K1) = Amax (To(f2) + R < A (Ta(f2)) + Aman (R < 5 + G\F. (4.105)
Finally, recalling from that /lmaX(M,[f]) <1 and applying the minimax principle, for every j=1,...,n we have

LREAP)) = min max(x*?R(%AElZ])x): min  max (x (K2 + 12 MLZ])X)
n

vccr xeV vccr xevV
dim V=n+1-j [Ix]|=1 dim V=n+1- [Ix||=1
< min max (x*K,?]x + l) =LK+ L j=1..n (4.106)
veeh  xeV n? n

dim V=n+1-j [Ix||=1

Now fix € > 0 and let g/ (g) be the number of eigenvalues of %ALZ] whose real parts are > % + £. Label
the eigenvalues of }IALZ] and ER(%ALZ]) in the following way:

R (4 (2AF) = ... = % (1, (247)).

If B # 0 then I(LAP)) is irreducible and AS(LAD)) ¢ (=32, 1) In (4.102) we have included the endpoints =30 to cover
the case B =0.
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and
A (R(2AP)) 22 4, (R(2A).

Following the argument used in [37, proof of Theorem 3.5] and keeping in mind (4.104)-(4.106), we apply
the Ky-Fan Theorem 1.2 to obtain

4, (&) 4, () 1 4, (8)
o= Sn(o ) = S = o)

=1 j=1 j=1

5 Y 4,(&) HE) Y 4,(€)
Z LRI + =15 = WK + (KP) + ) (K + =15
n — n
]:
3 1+\/_ )/q(a) 3 vy 1+ V2
<2|= + 2) = = -+ |gi(e) + ,
e )(,2() ) St |4 +
and so, for every € > 0 and n > 5 such that < g, we have
1+ V2
q:(e) < V2 . (4.107)
(e-7)
If 0 < e <1and n > max (5, \/g), then
1+vV2  1++2 \/(1+ V2 + 3e)y
< +1 © n> .
3 (8 _ Z_Z) 3e 3e?
From the inequality
(L+ V2+3e)y _ 2y
3&? T e’
and from (4.107) it follows that (4.103) holds Ve € (0,1) and Vn > max(5, @). |

Let g,(¢) be the number of eigenvalues of %ALZ] lying outside the rectangular g-expansion [ %]
combining (4.99) and (4.103), we are able to find an upper bound for g,(e). Indeed, Ye € (O, 1

Yn > max(5 LBl ‘/_27) _ 0(9,

> 12’ ¢
1+ V2
3¢

gn(e) <
Note that, by Theorem 4.8, Ve € (0,1) and Vn > max (5, 1112@ \/5 ) there are no eigenvalues of IA[Z] lying
outside the e-expansion [0 + ”‘f] Thus, Ye € (0,1) and ¥Yn > max (5, 1112@ ‘/727) qn(€) is just the number

of eigenvalues of %AE,Z] lying in

[O,§+%§L\[O,§L:(§+s,2+1+‘f+s]><[ g, €].
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4.5.5 The bilinear case p; = p; =1
In the case p; = py = 1, the matrix AL} is (n —1)? x (n — 1)* and is given by

,31 B Y

A’[11:1] Al M[l] H[l] +

[1] [1]
n,n, D H Mn

=M e MY, (4.108)

where

AL = kg plY 4 pl @ K1Y,

In this case, Theorem 4.7 gives {A,[},;}]} ~ (1 D= =: f11, with

2 2 4
Sf11(01,02) = (fi ® h)(61,62) + (M ® f1)(61,62) = £ — 3 cos(6y) — 3 cos(by) — 3 cos(6y) cos(6y).

w1 oo

Localization of the eigenvalues and clustering

As in the previous subsection, we look for a precise localization of the spectrum A(AE,I,’,}]) as well as for the
clustering properties of the matrix-sequence {A[1 s

Theorem 4.10. For every n > 4 such that 3 < 3,

ALY ¢ (max( Y Sfsin) + %),mm (4 L2 16 _)) x [ Il BB ao9)
n n

2n n

Proof. Fix n > 4. The real and imaginary part of AL{’,}] are

Y

RAL = AL, + ZuP e, Sl =B o at + Bagp o h

n,n,D
The target is the localization of A(ER(AE,}])) and A(J(A[l 1]))
We begm WLth A(RA 11])) By performing some computations, we have found that, since n satisfies the
condition 9n2 <1 %(AL{,}]) is Hermitian, irreducible and (by the Gershgorin theorems)

16
ARALD) © (7 3 - #)

We can improve this estimate as follows. The matrix AE,’;,]D is equal to T,-1,-1(f11) by Lemma 1.8 and by the
fact that, as we have seen in Subsection 4.5.3, K[l] =T,1(f1) and M[I] = T,-1(h) (note that hy(0) = 3 + l cos 0).
The range of fi; is [0,4] and so, by Theorem 1.8, A(A[1 ] p) C (0,4). Moreover, from the properties of tensors

in Subsection 1.2.1 and from Lemma 4.9 it follows that M,[,l] ® M,[zl] is symmetric and A(M,[,l] M,[,l]) c(i1).
By (1.9) we then have

Y Y Y
A (RALD) = (Al + Z MY © M) < A1) + T A (ML © ML) < 4+ 2

In addition, by (1.8), by the properties of tensors in Subsection 1.2.1, by Lemma 4.9, and by the fact that
2
Apin (KM = 4(sin z”—n) , we get

Y

Y
EM,E” @ M) = Anin(K © M) + M @ K

Awin(R(ALLD) = Anin(AL] + LMY o M)
| n

n,n,D

(1] [ (1] my, Y [ 2 o\l oy
> /lmin(Kn )/lmin(Mn ) + /lmin(Mn )ﬂmin(Kn ) + — /lmin(Mn ) >2-4|sin — -+ —.
n’ on) 3 9n?
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Therefore, we obtain for A(‘R(A[1 1J)) the localization

ARy ¢ (max(l 8 (sm 1)2 ;7 ),mm (4 + 5, = - —)) (4.110)
i n? 3 2n In?

We now localize the spectrum A(S(A[1 1])) The matrices H, m@M Yand M [1]®H 1 are skew- symmetric. This
follows from the properties of tensors in Subsection 1.2.1, taking into account that H,[,l] is skew-symmetric,
while M,[Zl] is symmetric; see Theorem 4.2. As a consequence, the matrices 'LH,[,” ® M,El] and 'LM,E” ® H,[Zl] are
Hermitian, proving that all the eigenvalues of HY @ MY and MY @ H are purely imaginary. Moreover,
again by the properties of tensors and by Lemma 4.9, A(H,[,l] ® M,[f]) = A(M,El] ® H,[l”) c {0} x (-1,1). Hence,

mm(\s(A[llJ)) = A (,31 H[l] ®M[” ﬁ2 M[l] ®H[”) > A (,31 H[l] ®M[1]) + Ay (,32 M[” ®H[”)
n

Bl _ 1Bl

> - ’
n n

and, similarly,

Amax(3(AL) < =2 LB w2|

Therefore, we obtain for A(I(AL)) the localization

B+ 1Bl 1Bl + 1Ba
pa— .

n

ASALY)

@.111)

Combining (1.7) with (4.110)-(4.111), we obtain (4.109). O

In addition to providing a localization for A(A[1 1]) Theorem 4.10 also shows that {AE,}]} is strongly
clustered at [0, 4], the range of the function fi;. This is confirmed by the following corollary.

Corollary 4.1. Ye € (0,1) and ¥Yn > max (4, \/g, W) we have

Qn(g) =
where q,(g) is the number of eigenvalues of A,[}’h” lying outside the rectangular e-expansion [0, 4]..

X < g and
n

b

W=

Proof. Fix € € (0,1) and n > max (4, \/g,w) Since n satisfies the conditions % <

In?
W1|;W2| < &, by Theorem 4.10 we have

1Bil + |Bal 161l + [Bal
’ n

n

AALD (12 4+ 12) X [— C [~ 4+el X [~ ] = [0,4]..
’ n n

Hence, g,(¢) = 0. |

4.5.6 The biquadratic case p; = py = 2

In the case p; = py = 2, the matrix A% is n® x n? and

Bi B Y

Al220 = gl221 H[2]® M2 4 M[2]® H? +2 2 mMP e M?,

n,n,D

where
AP gl g M2 4 12 @ 121,

n,n,D
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In this case, Theorem 4.7 gives {A,[f;f]} ~ (1 D= =: fo9, With

S2.2(01, 62) = (f2 ® ho)(01,02) + (h2 ® f2)(61, 02)
= %[99 + 6 cos(6)) + 6 cos(by) — 15 cos(26;) — 15 cos(205) — 52 cos(6;) cos(6-)
— 14 cos(6;) cos(265) — 14 cos(6) cos(26,) — cos(26,) cos(26,)].

Localization of the eigenvalues
Theorem 4.11 establishes a localization result analogous to the one that we have seen in the previous
subsection.

25y
12012

Theorem 4.11. For every n > 5 such that <

1
6

2+10y 27 +vy\ 49 11 |8y + 11 |6y +
A(A,[f;zz]) c [ max a 7’ T +Yy = v % 11l + |Bal 181l |ﬁ2| 4.112)
: 100n% ~ 100n? ) 24 n? 12 n 12 n
Proof. Fix n > 5 such that the condition =2 < 5 s met. The real and imaginary part of An > are given by
1201
[2,2] (2.2] Y g2 (2] X(Al2:2] ﬁ 1 [2] (21 4 ﬁ 2 [2] [2]
RA) =Ap+ EM” ® M~ (AT = H ® M, + M ® H™.

The target is now the localization of A(ER(A[2 2])) and A(J(A[Z 2]))
First we localize the spectrum of ER(A[Z 2]) Note that
Y

R(AZZ) = AL2] %M,[f] e M = KoM+ MP @K + 1

221 LMo M = MP oK + (K + Ly ul

Therefore, by (1.8), the properties of tensors in Subsection 1.2.1, Lemma 4.10 and (4.97),

Anin(RALZ)) > Lo (K © M) + Ain(MP © KP) + L 2,0 (MP @ M)
’ n

= ﬂmin(K,[f])/lmin(My[,Z]) + /lmin(M,[f])/lmin(K,EZ]) + ZZ/lmin(My[,Z])/lmin(My[,Z])
n

n? o1 0% 2t +y
>2 — — + = .
10n? 10~ 100n? 100n?

25 . . .
Y < é we can use the estimate provided in

(4.113)

Moreover, recalling that n > 5 satisfies the condition 0.2

Lemma 4.10 for the spectrum of the matrix K,[,2] + ZM,[,Z]. Hence, by (1.8), the properties of tensors,
Lemma 4.10 and (4.97),
AninRAZ) = Ao M @ K + Ain (K + T M) © ML)

7

= /lmin(M,EZJ)/lmin(K,EZJ) + /lmin(K,[IZJ + ﬁM,[ZZJ)/lmin(My[IZJ)

1 n? 0% 1_7r2+10y

> ———+ - — = ————. 4.114
10 10n?  n? 10 100n? ( )

Furthermore, we can write

ALZ"Z]D = Tun(f22) + (AEZZnZ]D Tn(f22)) = Tuu(fa2) + R1[12n2]»
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where R,[f;?] : Afnz}) T, ,(f22), and we can decompose ER(Al2 ZJ) as

Y

RALH) = A2 4 Ly M2 = T, (f,0) + RED + Lyt @ M1,
n n

n,n nnD

The range of fy9 is [0, %] and so, by Theorem 1.8, we obtain A(7),,(f22)) C (O, %) Concerning the symmetric

matrix Rn2n2], we have found by computer and by Gershgorin’s first theorem that A(R[z 2l ¢ [—%, %] Using

the properties of tensors in Subsection 1.2.1 and Lemma 4.10, we have AMZ @ M c (100, 1). Then, we
apply (1.9) to obtain an upper bound for A (R(A 22]))

3 13 49
A RAZ) < AT (o) + A RED) + 2 Pl MP oMy < S+ S+ Lo Y @)
n 2 24 n?2 24 n?
Combining (4.113)-(4.115) we obtain
2410y 27%+y\ 49 vy
ARAZ2Y) ¢ T , i 4116
R(A,70) € \max{ =00 = ooz " 22 T 32 (4.116)

Now we to localize the spectrum of \S(A[2 2]) The matrices H, ) an], M, ) H, 2 are skew- symmetric
and, by the properties of tensors and Lemma 4.10, we have A(H,[f] M,[,z]) = A(M,[,Z] H,[,Z]) c {0} x (—%, % .
Hence,

/lmin(S(AE,Z;,Q])) = Amin (@ .lH,[f] ® M,[lz] ﬁZ M[2] ® H[Z])
’ nui
> o (2 207 0 47+ (2 L 0 1) > B 1
n-.i n-it

and, similarly,

11 |ﬁ2| 11
} Alz 2lyy < Pl |,31|
Amax(S(A;7) TR
Thus,
11 + 1 +
2 n 12 n
Using (1.7) in combination with (4.116) and (4.117), we obtain (4.112). O
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Chapter 5

Spectral distribution and spectral symbol of B-spline IgA
collocation matrices

This chapter, as well as the previous two, is devoted to the spectral analysis of the discretization matrices
coming from a specific numerical technique for approximating the solution of a differential problem. How-
ever, as suggested by the title, in this case our spectral analysis will be focused only on the asymptotic
spectral distribution of these matrices and on the associated spectral symbol. The numerical technique
investigated in this chapter is the B-spline IgA Collocation Method, which has been recently introduced in
[3, 53] and will be described later on. As for the differential problem, we consider the following linear full
elliptic second-order PDE with homogeneous Dirichlet boundary conditions:

{—V-KVu+a'-Vu+)/u:f in Q,

u=0 on 0Q, ©.1)

where Q is a bounded open domain in R?, K : Q — R% ig a SPD matrix of functions in cl@QncC (ﬁ),
@ : Q — R? is a vector of functions in C(ﬁ), v, f € C(ﬁ) and y > 0. Note that problem (5.1) is more complex
than the ones considered in Chapters 3 and 4, due to the presence of the diffusion coefficient K and to the
arbitrary shape of the domain Q, which is no longer supposed to be rectangular.

As in the previous two chapters, we first describe the B-spline IgA Collocation Method and we give a
construction of the inherently non-symmetric matrices arising from this approximation technique. After this,
we find and study the associated spectral symbol, which describes their asymptotic spectral distribution when
the matrix size tends to infinity or, equivalently, when the fineness parameters tend to zero. The specific
properties of the symbol studied in this chapter will be used in Chapter 7 to design a fast multi-iterative
solver of multigrid type for the B-spline IgA collocation matrices.

5.1 B-spline IgA Collocation Method

Problem (5.1) can be reformulated as follows:

~1(K o Pu)1” + B-Vu +yu = f, in Q, 5.2)
u = O, on (99, ’
where 1:=(1,...,1) € N, Py denotes the Hessian of u, i.e.
0%u
Pu), = — 2 53
( u) " 6xi6xj ( )

and o denotes the componentwise Hadamard matrix product; see Subsection 1.2.2. Moreover, B collects the
coefficients of the first order derivatives in (5.1), namely

d
(9/<,~~
Bi=aj— ) —, (.4)
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where «;; are the entries of the matrix K := [k; J']gj:r

We consider the approximation of the solution of problem (5.2) by the standard collocation approach,
as explained briefly in the following. Let W be a finite dimensional vector space of sufficiently smooth
functions defined on Q and vanishing on the boundary 0Q. We call W the approximation space. Then, we

introduce a set of N := dim W collocation points in €,
frieQ, i=1,...,N},
and we look for a function uy € W such that
—1(K(1;) o Puw ()" + B(1) - Vuw () + y(T)uw(t) = f(1), V7u. ©.5)

If we fix a basis {¢1,...,¢n} for W, then each v € W can be written as v = Z?’zl vipj, and the collocation
problem (5.5) is equivalent to solving the linear system

Au = f, (5.6)
where N
A= [UK @) 0 Poel” + B(r) - Vo (1) + ¥(@)p ()], € RV (5.7)
is the collocation matrix and f := [f(‘ri)]?il. Once we find w:= [y - - un]’, we know uy = Z?’:l ujQj.
Let us now describe the isogeometric collocation approach. Let
{‘;bl’ ) @N-FN;,} (58)

be a set of basis functions defined on the parametric domain Q := [0,1]%, and assume that the physical
domain Q in (5.2) can be described by a global geometry function G expressed in terms of the functions ;

as follows:
N+Np

G:0—0, G@y:EZ@@mh p; € RY. (5.9)
i=1

We assume that the map G is invertible in Q and G(@Q) = 9Q. If {@1,...,¢n} is defined as the subset of
the functions in (5.8) which vanish on the boundary 0€2, then the approximation space W is defined as the
vector space spanned by

¢i(x) = PG (%) = Pi(%), i=1...,N, x = G(X). (9.10)
Moreover, we introduce a set of collocation points in the parametric domain f!,
(#€Q, i=1...,N} (.11)
and we define the collocation points in the physical domain € as follows:
T; = G(1)), i=1,...,N. (5.12)

In the isogeometric collocation approach, we solve the linear system (3.6) with the basis functions and the
collocation points given by (5.10) and (5.12), respectively. In the most common formulation of IgA, the
functions ¢; in (5.8) are tensor-product B-splines or NURBS, since they allow an exact representation — by
definition — of an arbitrary domain designed in a (NURBS-based) CAD system. Nonetheless, other kinds of
functions can be used as well.

In this chapter, we study the asymptotic spectral distribution and the symbol of the B-spline IgA collo-
cation matrices (3.7), obtained from the approximation of problem (5.2) by isogeometric collocation methods
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based on tensor-product B-splines with equally spaced knots. This means that the role of the functions ¢; in
(5.8) will be played by tensor-product B-splines over uniform knot sequences. In addition, we do not confine
ourselves to the isoparametric approach, since we will not require the geometry map G to be expressed in
terms of the ¢; as in (5.9). As for the choice of the collocation points, which is crucial for the stability and
good behavior of the discrete problem, we follow [3]: our collocation points 7; in (5.11) are chosen as the
Greville abscissae corresponding to the used B-splines.

We now provide the explicit expression of our basis functions ¢; and of our collocation points ;. For
p.n > 2, consider the (uniform) B-splines N, i = 2,...,n+ p — 1, corresponding to the knot sequence
(4.2)—(4.3) (see Definition 4.1), whose associated Greville abscissae are

fist + g + oo+ Ly

Eifp) = , i=2,....,n+p-1 (5.13)
4

For any p= (p1,...,pa) and n= (ny,...,ny) € N?, with p;,n; >2 foralli=1,...,d, let

Nitpl = Nippi1 ® Niypy) ® - ® Njy 1 : @ > R, 2<i<n+p-1, (5.14)
é:i,[p] = (é‘:il,[Pl]’ ‘fiz,[liz]’ SRR é:id,[pd])’ 2<i<n+p-1. (5.15)

In the framework of the B-spline IgA Collocation Method, the functions ¢;, i =1,..., N, in (5.8) are chosen
as the tensor-product B-splines in (5.14) and the collocation points 7;, i = 1,..., N, in (3.11) are chosen as
the Greville abscissae in (5.15). In this case, N = ]_[izl(nk + pr—2)=N(m+ p-—2). Of course, we adopt for
the tensor-product B-splines (5.14) and for the associated Greville abscissae (5.15) the standard lexicographic
ordering, which is obtained by varying the multi-index i from 2 to n+ p — 1 according to the rule in (L.1).
By definition, for every i = 1,..., N, the i-th tensor-product B-spline in (5.14) and the i-th Greville abscissa
in (5.15) according to the ordering (1.1) are, respectively, ¢; and 7;. This should be taken into consideration
when assembling the collocation matrix (5.7).

5.2 Construction of the B-spline IgA collocation matrices AE{’ ]

In the case where G is the identity map (and so Q=0-= [0,1]9), the collocation matrix (5.7) resulting from
(5.10), (5.12) and from the choices of ¢; and 7; as in (5.14)-(5.15) is

[Pl _ Alp] (p] [p]
Ay = AT+ AL+ AT (5.16)
where
N n+p-2
ALY = [-1K@) 0 Peet"]] | = [-1(KEir ) © PNjaip G )1 ],
d
= > DKM @ M @K @ M @@ M) (5.17)
r=1

d
[ ] r— r r+ 5= N s+
= > D (ks + k)M @ - @ MY @ HIM @ M @@ M @ HPY @ MU @ - @ MIPY),

r,s=1
[P] . ‘ N i‘l+p—2
ALy = B Vo | = |BEp)  INmm G,
d
= > D)Mo e M @ HY @ MY - @ M), (5.18)
r=1
N n+p-2
Ale = [yaes @], = Y& NimmGp| L, =DM @@ M), (5.19)
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Dgf’](a) denotes the d-level diagonal sampling matrix containing the samples of the function a at the Greville
abscissae, i.e.

D)= diag  a(,y ) = diag(ay ). - appr i) (5.20)
i 2
and the matrices K"\, H”', M"" are defined for all p,n > 2 by

2l . p] ._
h Knp -—[ ,+1 [p](fwl p) > ”an : [ J+1, [p](§z+1 p)

This result can be proved once again by using the fundamental property (1.12) of tensor products, and the
proof follows the same pattern as the proof of Theorem 3.1. Let us derive, for instance, the expression of
A[”] in 5.17): for alli,j=1,...,n+ p— 2, we have

d
0*Njs1,1p)
AP = =LK E 1) © PNjst i€ )1’ = = D nEinn )52 G 1)

n+p-2

C M= N @], - 62D

]n+p 2
=1

]n+p 2

r,s=1 0% 8A
O*N;, O*N;,
E Z Krr(§t+1 [p]) J =Ll (§1+1 [p]) Z(Krv(‘fwl [p]) + KYV(§I+1 [p])) Ox JalA[P (§l+1 [p])
r,s=1

- Z Krr (&t (p) Nji1p @ O Nj it 1p 1 ® N1 1p @ Niortiprl @ @ Nyt (pa) (€ )

4
- Z(Krs(‘fﬂl,[p]) + Ksr(gi+1,LpJ))(Njﬁl,[m] Q- N.r71+17[pr71] ® N',+1,[p,] ® er+1+1,[[1r+1] Q- Nj5,1+1,[p5,1]

r,s=1
r<s
N, 1110 ® Njittlpea1 ® " ® Njps1 (pg)(Eir 1 )
d d
= Z K&t (p) (NG i1 1p1 Eierip) 1_[ Nj1ipa & 1p)
r=1

t#£j

- Z(Krs(fwl [p]) + Ksr(§z+1 [p]))N,r+1 [pr](§1,+1 [pr])N jis+1[ps] (fl +1, [pa]) 1—[ Nj;+1 [p:] (fl,+1 [p,])

r,s=1

r<s t#:rs
d d d
[ ] r [ ] r s
= Z[D Pl K N | [ = > 1D s + ki) Vi HY D ( HY D g, | [ (M5
r,s=1
t£] r<s t#r,s
d
= Y IOV )M @ - @ MY @K @ M @ - @ MY,
r=1

Ng+1

d
- Z[ DP (ks + k)e(MP © - - @ M @, HP @ M1 @ - - @ M @ n,HP @ Ml @ - - - @ MIP),;

r,s=1
r<s

d
= Y DM @ - @ M @ nZK @ M @ - @ ML),
r=1

d
= DD + k)M @ - @ M @ HP @ M @ - @ M @ nHY @ MY @ - @ M)y,

r,s=1
r<s

and (5.17) follows. In the case d =1, from (5.16)-(5.19) we have
APV = w? DP 1)K + nDPNBYHP + DIP ()M, (5.22)
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with DI"\(a) = diag;_; ,+p-2(a(&js1p)), and for d = 2 we have

ool 2 , 2 , ,
A[PI P2l _ n D[Pl pz](Kll)My[fl] ® K’[11272] + nzD[PI pZ](KZZ)Kr[fI] ® Mr[ll;z] _ nlnzD[Pl Pz](KIz + KZI)Hy[fl] ® Hr[llgz]

ny,ng ny,ng ny,ng ni,ng

+ m DPPBOMPT @ HP + ny DIPLP (B)HIY @ MU + DIPLP ()M @ MIP2, (5.23)

..........

In the general case where 2 and G are nontrivial, let us consider, for any u : Q — R, the corresponding
function
in:Q—> R, u(x) = u(x), x = G(X).

In other words, &t := u(G). Then, u satisfies (5.2) if and only if # satisfies the corresponding transformed
problem
{—1(KGoPﬁ)lT+ﬁG-Vﬁ+7Gf4:fG in Q, 5.24)

=0 on 6f2,
where Pit is the Hessian of it, yg := ¥(G), f6 := f(G), and Kg := [kq, j]ijl, B; = [ﬁG,i]?zl are the transformed

coefficients of the PDE. The expression of B; in terms of K, B, G is complicated and hence not reported
here, while for Kg we have

Ko = (Jo) 'K(G)(Jo) T, 5.25)
where Jg is the Jacobian matrix of G,
[aG,-r
Jo == |3
0% ; 1
In this case, the collocation matrix (5.7), with ¢;, T; as in (5.10),(5.12) and &;, T; as in (5.14)-(5.15), is
[p] [p] [p] [p]
AGp,n = AGp,n,D + A(f,n,A + A(Ii,,n,R’

where Ag’,]n’D, Ag”]n, A A[GI"]"’R are given again by (5.17)-(5.19), in which «,,, B,, y are replaced by kg 5. Bc.r VG-
respectively.
For example, let us consider problem (5.2) in the one-dimensional case d =1 with Q = (a, b):

—k()u” (x) + B)u’(x) + y(xu(x) = f(x) a<x<b,
u(a) = ulb) = 0.

Given any geometry function G : [0,1] — [a, b], the transformed problem reads as

_ k(G(%)) 2R + (K(G(fc))G”(fC) L BGE)
(G’ (%)) (G’ (D) G'(%)
w0) = ua(1) =0,

)ﬁ'(fc) +y(G@)a%) = f(GEF) 0<i<],

and the resulting collocation matrix A[Gp’]n is given by (5.22) in which «, B, y are replaced by

k(G) _ KG)G"  B(G)
ﬁG T (G’)3 + G’

KG - Y6 = v(G), (5.26)

TGy

respectively. Note that ks is given precisely by (5.25), because J; = G'.
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5.2.1 Construction of K/, H plr]

We now provide, for p,n > 2, the constructions of the matrices K, HY' M"! in (5.21). Note that the
elements of these matrices can be computed by using the recurrence relation (4.4) and by iterating the
derivative formula (4.74). As mentioned in Chapter 4 (see Subsection 4.3.1), the ‘central’ basis functions
Njipn(x), j=p+1,...,n, are ‘uniformly shifted and scaled versions’ of the cardinal B-spline ¢, introduced
in Section 4.2. Indeed, by (4.42) we have

Njp(x) =¢pnx—j+p+1), j=p+1,...,n, (5.27)

and, consequently,
Nip@® =ngpnx—j+p+1), j=p+1...,n,

J[P](x)_n ¢[p](nx j+p+l), j=p+1,...,n

In addition, the ‘interior’ Greville abscissae, given by (3.13) for i = p +1,...,n, simplify to
i p+1 .
itp] = — — s =p+1,...,n, 5.28
&ilpl » i=p (5.28)

or, equivalently,

. p+1 .
n&m+p+1=1+—§n i=p+1,...,n

We now focus on the ‘central part’ of K,[,p ], H,[,’7 ], M,[lp ], which is determined only by the central basis
functions in (5.27) and by the interior Greville abscissae (5.28). In other words, we focus on the submatrices

(02 T N (02 W LS [0 ) WA el

which are nonempty for n > p + 1. The entries of these submatrices are given explicitly by
p+1 p+1
(Kr[lp]),-j = —¢[p] (—2 +i- ) ¢[p] ( -1+ ]) )
. [(p+1 p+1 .
(Hr[lp])ij = ¢[p]( 5 +i-— ) = —¢[p] (— -1+ ]),

p+1 . p+1 .
(M), = iy (T +i- J) = P (T —i+ J)’
for i,j = p,...,n —1, where in the last equalities we have invoked LLemma 4.1. It follows that the above
central submatrices of K and M'"' are symmetric, whereas the above central submatrix of HY' is skew-
symmetric. We note that the coefficients depend only on the difference i—j, and so all the above submatrices
are Toeplitz matrices. In fact, recalling (1.29) and the properties supp(¢;,) = [0, p + 1] and ¢[p]( ) 0, we
have

(K = T (), (5.29)
[(HIP, 1050 =0T, (g, (5.30)
[(M[p]),,]l] p = Ln- p(hp) (0.31)
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where the functions h,, g,, f, : [-7, 7] — R are defined by

1 1 Lp/2] 1
h,(6) := Z . (% - k) = du (P 2+ ) +2 Z . (% = k) cos(kd), p=0, (5.32)
keZ k=1
p+1 Lp/2] i1
2(0) 1= ) ¢y (T - k) = -2 Z i) (— - k) sin(k6), p=>2, (5.33)
keZ
. (p+1 . p+1 A
f[,(Q) = Z _¢[17] (T — k) Clke ¢[p] ( ) 2 Z ¢[p] (— — k) COS(k@), P > 2, (534)
keZ

with the usual assumption that an empty sum is zero.! Using (4.13)—(4.14) and (4.21), it can be easily checked
that
ho(0) = () =1, 82(0) = g3(0) = —sind, J2(0) = f3(0) =2 —2cos 6. 6.35)

Remark 3.1. The functions (5.32) and (5.34) have already been analyzed in Chapter 4 for odd degrees
p=29+1, g2>1 Indeed, f, (resp. h,) in Chapter 4 coincides with fo,.1 (resp. hgy.1) here.

We conclude this subsection by giving a formal definition of what we call ‘central rows’ of K7\, H', p7,
They are defined as the rows of K,[,p ], H,[lp ], M,[,p ] corresponding to indices i € {1,...,n + p — 2} satisfying the
following conditions:

(K[P])_,:_('ﬁ p_+1+l'_' =1 n+p-—2 (5.36)
n Jij [pl 9 Jls J ERI) p ’ :
. +1
(H,[f])i.i:¢lpl(p7+i_j), j=1....,n+p-2, (5.37)
p+1
(M = ¢[p]( +1—J) j=L...n+p-2 (0-38)

The central rows of K7, H', M’ coincide with the corresponding rows of Tsp-2(fp)s 1Tsp-2(8p)s Tusp—2(hy),
respectively. Using the properties supp(Napp) € -+ C supp(Npp) = [fpstapa] = [0,2] and [1 - 2,1] =
[fns1, tn+p+2] = Su’pp(Nn+1,[p]) 20 2 Su’pp(Nn+p 1[17]) the fact that §z+1 ] = 121 P+1 for i = =pD-...n—= 1, and
the equality supp(¢p,) = [0, p + 1], it can be shown that every i € {[3p/2],. n + p—1-|3p/2]} satisfies
(0.36)—(5.38). Consequently, a condition to ensure that K,[,p ], H,[lp ], M,[f’ ! have at least one central row is

n+p-1-13p/2] > |3p/2], ie., n> p*, where

.. _ | 2p if p is odd,
P =\ 2p+1 if pis even.

5.3 Properties of f,(6), g,(0), h,(0)

In this section we provide some properties of the functions f,(6), g,(6), h,(0) defined in (5.32)-(5.34). They
extend to any degree p the results obtained in Chapter 4 for odd degree p = 2g + 1 (cf. Remark 5.1). We
shall see later that these functions are involved in the expression of the spectral symbol characterizing the
asymptotic spectral distribution of the B-spline IgA collocation matrices. The next lemma gives an alternative
expression for h,, g, and f,.

1An empty sum is a sum where the upper index is less than the lower one, such as 21?:1 k2.
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Lemma 5.1. Let p > 2, and let h,, g, and f, be the functions defined in (5.32)-(5.34). Then the following
properties hold.

a) YO € [-n,m],

_ — P (2sin(8/2 + km))P+t
1) = > (61,0 + 2km) " = > Y (5.39)
keZ keZ
b) VO € [-n, 7],
(2sin(8/2 + km))PH!
6) = — . 5.40
8(6) kZZ: 0+ 2k 6-40)
c) YO € [-nm, ],
fp(0) = (2 —2cosB)h,2(6) (5.41)
and, for p > 4,
(2sin(0/2 + km))PH!
0) = . 5.42
1® IZEZ: (0 + 2km)r~! 642
Proof. We first recall the Parseval identity for Fourier transforms, i.e.,
- 1 =
f e(OY(t) dt = o f (O (0) do, ¢, ¥ € L*(R), (5.43)
R T Jr
and the translation property of the Fourier transform, i.e.,
v-+x00) = O™,  yeL(R), xeR. (5.44)

We differentiate the cases of odd and even degree p. We start with proving the relation (5.39) for p = 2gq.
From Lemma 4.2, see in particular (4.24), we know that, for all k € Z,

1 1 1
Pip) (% - k) = Pr2q) (q 5 k) = f¢[q](t)¢[q—1] (f +k— 5) dt. (5.45)
R

In view of (5.43)-(5.44) and (4.32), for any k € Z the expression in (5.45) is equal to
1 1 — T i 1 — 2 — k-
f Giq(Dbrgn |t +k— 5 |dt = — f $1q1(0) Fg1(0) e 20 do = — f |G 11O Sroi(6) ™ **" do
R 2 2 R 2 R

1 _ _ .
=5 > f | Grg(6 + 20| fo1(6 + 21m) (~Dle™ 42 g
T
lez ¥ 77
1 4 — — . .
S {Z |Grg—(6 + 217r)|2 bro1(6 + 2Im) (—1)leL9/2] e % de.

2n ez

Note that the last equality follows from the uniform convergence of the series. Indeed, since g > 1, from
(4.33) we obtain that, for all 6§ € [—-m, 7],

810316 + 2im)[” Gy + 24m)(~1) e 2

g+1/2 1 ifl=0
_ 2—2cosf < 404172 '
(0 + 2Im)? ifl#0

Q| — m)2a+1

We conclude that the values (5.45), i.e. the Fourier coefficients of hy, in (5.32), are also the Fourier coefficients
of the function

> |Ban@ + 2| o6 + 21m) (—1)' e, (5.46)

leZ
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which therefore coincides with hy,. Moreover, by using (4.32), (4.34) we get

1— e t0+2n) Si0+20m2 _ sin(0/2 + In)

Broy(0 + 2Im)(—1)'e?? = —
Proi0 + 2im(=1ye (0 + 20n) 072 + In

= §1,(0 + 2Im),

and it follows that hy, is given by (5.39) for g > 1.

To prove the expression (5.40) of g, for p = 2g, we follow an argument similar to the one in the proof
of (5.39). By Lemma 4.2, for all k € Z we have

. +1 1 . 1 1 1 . 1
_¢[p] (pT — k) ; = —¢[2q] (q + 5 - k) z = ; fR¢[q](t)¢[q_1] (t + k- E)dt (547)

In view of (5.43)-(5.44) and (4.32), (4.35), for any k € Z the expression in (5.47) is equal to

1 . 1 1 —_— — —i(k— 1 — 2 . —1
- f G (OPrgn |t +k = 5 |dt = 5= f 1q1(0) drg-1(0) P do = —— f |brg—n(®)| 2sin(0/2)e*" db
L Jr 2 2imr R 2 R

1 (™ o |
= —— [Z |¢[q—1](9 + 217T)|2 2sin(6/2 + lﬂ')} e Jg

2n T liez
o )

0/2 + Im)p

T

5y 2Asin(6/2 + ln))p“] 40 g

leZ

We conclude that the values (5.47), i.e. the Fourier coefficients of gy, in (5.33), are also the Fourier coefficients
of the function

~ Z 2sin(6/2 + )Pt Z (2sin(8/2 + Ir))P+!
L (0/2+1my A (B2

To prove the expression (5.41) of f, for p = 2g, we follow again a similar argument as the one to prove
(5.39). By Lemma 4.2, for all k € Z we have

. 1 . 1 . . 1
_¢[p] (% — k) = _¢[2q] (q + é — k) = f¢[q]([)¢[q_1] (l +k— E)dt (548)
R

In view of (5.43)-(5.44) and (4.32), (4.35), for g > 2 and for any k € Z, the expression in (5.48) is equal to

o 1 | =
f P11 (t Tk 5) dr = o f G141(6) drg-1(0) e C VP dg
R T Jr

L |
o1 f |B-21(0)] Bro1(6) (2 — 2 cos B/ dg
T Jr

o= | |2o16aa® + 2 ¢ + 21m) (~1)'(2 ~ 2c05 ) | 7 .

leZ

v/l

We conclude that the values (5.48), i.e. the Fourier coefficients of fy, in (5.34), are also the Fourier coefficients
of the function

> |Bg-a (@ + 2im)|” G01(8 + 21m) (1) (2 — 2 cos O)e.

leZ
Hence, recalling that (5.46) is an alternative expression for hy,(6), we obtain that fo,(6) = (2—2 cos 0)hy,-1)(0)
for g > 2. From (5.35) we see that the equality (5.41) holds for g =1 as well. Moreover, (5.42) immediately
follows from (5.39) and (5.41).
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For odd degree p = 2g + 1, keeping in mind Remark 5.1, we recall from Lemma 4.4 that

h2q+1(9) =

q=1
kezZ

In view of (4.33),(4.34), we immediately obtain the relation (5.39). The equality (5.41) follows from
Lemma 4.5 for ¢ > 2 and from (5.35) for g = 1. Moreover, (5.42) is obtained by combining (5.39) and
(5.41). The expression of gy, can be derived by applying the same arguments as in the case of even
degree. |

To establish lower and upper bounds for 4,, g, and f, we need the following technical lemma.

Lemma 35.2. Let p > 2, and let us consider the functions

)k(p+1) (_1)k(p+1)

0 , 7,0 :=— — Q€ [-nmmn]. 5.49
rp(0) := Z Gramr 0= Dy (5.49)

Then, r, and 7, are continuous functions over [—n, ], and

71.4

0<ryd) <ry(n) < (4_8 - 1) vl 6 € (0,n]; 5.950)

B 5 1
0<7(0) <Fp(m)=—, B€(0,n]. (5.51)

P

Proof. The functions r, and 7, are continuous over [—m, ] because the two series in (3.49) converge uni-
formly. We now derive an upper and lower bound for r,(0), 6 € [0, ]. From (5.49) we obtain

_ b (_1)k(p+1) (_l)k(p+1)
(i kZ:; [(Zkzr + g)p+ " (—2km + 9)p+1] ' (.52)

We differentiate the cases of odd and even degree. We first focus on the odd case p = 2g + 1. From (5.52),

[Se]

o 1 1
g (6) = ; 2k + 0217 2k — g2 |

It is clear that ryy.1(0) > 0 for 6 € [0,7]. For p > 1, k > 1 and 6 € [0, n], one can check that

1 1 1 1
+ < + ,
2km + 0y  (2kr—6)y — Ckrm+nmy  (2km—nm)P

and then we obtain, for g > 1,

(o)

1 1 N
”2q+1(9) < ; [(an. + 7T)2q+2 (2k7r ﬂ)2q+2] 2q+2 kZ:

We follow a similar argument for the even case p = 2g. In this case, from (5.52) we have

1 1 )
(2k+1)4 (2k—1)4 - m2a+2\ 48 '

) - 1
r2q(6) = Z( v [(Zk + 02 (2kn - 9)24“} Z[(41“9)2‘1“ (4im — )t

=1

1 1
_((41 — 1 + 0)2a+1 + (4l - 2 — 9)2q+1] :
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Let us define
1 1 1 1

0) = - + - .
O = ey -0y a8y @+
Ifp>1and 0 <8 <m<a<b, then we have
’ P 1Y 1Y 1Y
0) = - - + + >
SO = e T Gy T =y T (s oy
and thus s, is a strictly increasing function, which implies that s,(m) > s5,(6) > 5,(0) = 0 for § € (0,7]. As a
consequence, we have ry, () > ryy(0) > 0 for 6 € (0, r]. Moreover, for g > 1 and 6 € [0, x],

b

00 1 s 1 1 > 1
0) < < =
0= Z‘ (41 = 2)m = Gy~ ; (41 = 2)m = st = paet ; (Al -3y

where
4

i;<102<”——1
YT TR

Hence, both in the odd and even case we obtain the bounds in (5.50).
We now derive an upper and lower bound for 7,(0), 6 € [0, ]. From (5.49) we have

B B & (_1)k(p+1) (_1)k(p+1)
() = - kz; [(mm oy (—2kr+ e)p] '

We differentiate the cases of odd and even degree. We first focus on the odd case p = 2g + 1. Note that

- 1 1
Foq+1(6) = [ - ] .
; (2km — )21 (2km + )2+

The function
1 1

(a-0y (a+0y
is nonnegative and increasing. Then, for all 8 € (0, 7] we have

0<f<m<a, p>1,

[0e]

0 < Pogu1(0) < Fogia(m) = - Z [ _ ] _
k=1

2q+1 (Zk _ 1)2q+1 (2k + 1)2q+1 2q+1’

which immediately gives (3.51).
Let us now consider the case p = 2q. We have

7o (6) = i 1 — ! + ! - 1
Fog(0) = - ((4k — 2 + 0% (dkrm + 0)%  ((dk — 2 — 0)24  (dkm — 6)2a |

The function

1 B 1 . 1 _ 1
(a+60y (Bb+60r (a-6r (b-0y’
is positive, and E;)(H) = pSp+1(0) > E;)(O) = 0 for 6 € (0,x]. Therefore, §, is increasing in [0,7]. As a
consequence, for 8 € (0, r],

5,(0) :=

0<fd<m<a<b, p>1,

(>

0 < Foy(0) < Foy(m) = 2 3 [t S !
14 Fo \IT) = ——— — —
2N =T n2 L | (dk - 1% (4k+ 1% (4k—3)%  (4k — 1)

1

N 1 1 1
2 £ [(4k ~3)%  (4k+1)%| g2

Thus we obtain (5.51) for the even case as well. O
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We now provide lower and upper bounds for A

Lemma 5.3. Let p > 2, and let h, be the function defined in (5.32). Then the following properties hold
a) YO € [-n,m],

L,(6) < h,(0) <min(1, U,(6)), (©.93)
where

(5.54)
2—200s9% at 2—2cosf £2
U, := (T) + (4—8 - 1) (T) . (5.55)
b) max hy(6) = hy(0) = 1.
c) Let my, := Hr[nin]hp(e), then
e[—m,m
9 p+l
my, > (—) > 0. (5.56)
T
d) We have
< 2 < o' (5.57)
P T (B T ' '

In particular, the value h,(r) converges to 0 exponentially as p — oo

Proof. First of all, we remark that h,, L, and U, are symmetric around 6 = 0. Hence, it is sufficient to
prove the various statements of the lemma for 6 € [0, 1]. We also recall that

sin(0/2) (2 —2cos )"
0/2 = ( 0 ) , 0e€[-mmn].

Let us consider the first statement of the lemma. From (5.39) we obtain

. . (=1)KP+D sin(9/2)\"™! , .
hy(6) = (sin(6/2))" IZZ:(Q/%,W),,H =( 072 ) +(25in(6/2)" r,(6),

where r, is defined in (5.49). Hence, from (5.50) we get
L,(0) < h,(0) < U,@0).

We now focus on the second statement of the lemma. By using the positivity (4.16), the local support
property (4.17) and the partition of unity property (4.19) of cardinal B-splines, from (5.32) we obtain

O (— - k) < (— - k)l e’ = 1.
keZ

keZ

In addition, it can be easily checked that h,(0) = 1. This also completes the proof of the upper bound in
(5.93).

116



To address the lower bound (5.56), we observe that (2 — 2cos 6)/6° is monotonically decreasing in [0, 7]

As a consequence,
(.58)

9 p+1
L,(©6) > (7—T) > 0, 0 € |-nm].

Finally, we focus on (5.57). Since h,(f) <1, it is sufficient to prove the second inequality in (5.57). From

(©.39) we have
o 25 (—1)kP+D 2p+1 (—1)kP+D
o (_) T i Z (4k + 1yP+V’ i € P e Z (2k + D+t
We differentiate the case of even and odd degree. We start with the even case p = 2g. Then
32q+1) 2q+1 ( 1)k

_z! 1t _
h261 (5) - 24+l é (4k + 1)2q+1’ 261( ) 249+l Z (2k + 1)2q+1'

By splitting the latter sum into a sum over the even integers and a sum over the odd integers, we get

(-t 1 1 1 1
—_— = _— _— = _ 4 - = _—
— (2k + 1)2a+1 Z (41 + 1)%a+1 ;Zl (4] + 3)2a+1 ZZZ: (41 + 1)%a+1 mZGZ (4m + 1)%a+1 gz‘l (4l + 1)%a+1

= 2(a2q + qu)’

where 1 1
dgy '= ———— by, = .
;Z: (81 + 1)%a+1 ; (81 + 5)%a+1
Hence,
324+ 2g+1
byg),  hag (M) = ——32(agg + bag)-

T
hag (5) T (azq =
It is easy to see that by, < 0. In addition, from (5.56) we know that h,(0) > 0, so that ag, + by, > 0
— by, > 0. Therefore, we obtain
h2q(7T) _ 22q+2(a2q + qu) 2% _ 2%
3(2q+1)

th(g) - 272 (an - bzq)

For odd degree p = 2q + 1, by using a completely similar manipulation (or by applying Lemma 4.4 with a

look at Remark 5.1) we obtain the exact equality

hagn®@ _ g1z
hag(3) ’
and it follows that (5.57) holds even in this case. m|
The next lemma is devoted to lower and upper bounds for g,.
Lemma 5.4. Let p > 2, and let g, be the function defined in (53.33). Then the following properties hold
a) YO € [-n, ],
12sin(6/2)"*! (IGlll’ - ﬂlp) lgp(O) < |2 Sln(6’/2)l””|91|p (.59)
b) The zeros of g, are given by
gp(=m) = 8,(0) = g,(m) = 0 (5.60)
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Proof. We first remark that from (5.33) it follows that g, is antisymmetric around 6 = 0. Hence, it is
sufficient to study it on the interval [0, ]. From (5.40) and (5.49) we have

(2sin(0/2 + km))P+ . all o
g,(0) = - ;Z: @ + Ty = —(2sin(6/2))"* [e_p - r,,(e)] ) (5.61)
Then, (5.51) immediately gives (5.59) and (5.60). m|

In the following lemma we provide lower and upper bounds for f,.
Lemma 35.5. Let p > 2, and let f, be the function defined in (53.34). Then the following properties hold.

a) YO € [—n, ],
fp(0) =2—2cosf, p=2,3, (5.62)

and
(2-2cosO)L,2(0) < f,(0) < (2-2cosO)min(1, U,_2(0)), p =4, (©.63)

where L, and U, are defined in (5.54) and (5.55) respectively.

b) er[nin]fp(e) = f,(0) = 0, and 6 = 0 is the unique zero of f, in [—n,n]; the order of this zero is two.

c) let My, := 92[1_%{] f»(0), then

17 4 A
M; <min|4, — +|=—4|(Z] |. (5.64)
g p+1 \12 n

In particular, My, — 0 as p — 0.

d) We have
L _ fm

pr B fp(g) -

In particular, the ratio f,(m)/My, converges to 0 exponentially as p — oo.

5-p
2

2

(5.65)

Proof. The first statement of the lemma immediately follows from (5.35), (5.41) and (5.53).
The relations (5.62)—(5.63) and the lower bound (5.58) imply that f,(6) > 0 in [-m, 7] and that it has a
unique zero at 6 = 0 in [—m, w]. Moreover, from (5.41) we obtain

£1(6) = 2(sin 6)h,_5(6) + (2 — 2 cos )1, ,(6),
£7(8) = 2(cos ),_5(6) + A(Sin )11, _,(6) + (2 — 2 cos )}, (6).

p
By using the equality /,(0) =1 (see (5.35) and Lemma 5.3), we get f(0) = 0 and f,/(0) = 2. This proves that
f» has a zero of order two at § = 0 and completes the proof of the second statement of the lemma.
From (5.62)-(3.63) it is also easy to see that M;, < 4. Now we derive the upper bound (5.64) for M in
the third statement of the lemma. To this end, we use the inequalities

94
2-2cosf <@ - I <6, VOel[-nnl].

It follows

p-t -1
2 2

02
<@¢*(1-—| , Voel[-nnl.
18

2—2cosd
(2—-2cosb) (&)

92
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p=3

p=4 p=5 p=6 p=7 p=8 \

Figure 5.1: graph of f,/M; for p=3,...,8.

p 2 3 4 S 6 7 8 9 10 11 12 13 14
fp(m /My, | 1000 1000 1000 0.889 0.673 0.494 0.353 0.249 0174 0121 0.083 0.057 0.039

Table 5.1: values of the ratio f,(m)/M;, for p=2,...,14.

i . o .
Let p be a positive real number. If B < 72, then the maximum of 6 (1 - ﬁ) over [—m, ] is located at

p+l — 18

_ 18 . I
6% = s and its value is given by
18 1 1Y
p+1 p+1) "
Therefore, when p > 3, we have
=} -t
2—-2cosf)\? 36 2 \?
(2-2cost)| ———— < 1- , VYOe[-nmnr]. (5.66)
62 p+1 p+1
Moreover, Y0 € [—n, ],
-1
nt 92— 2cos0\ T nt 2\
2-2 Hl—-1|{|———— <4|l—-1]|- . 5.67
e=zemn (5 (S5 <455 )G) oo
From (5.35) and (5.63), the inequalities (5.66)—(5.67) imply that, for p > 4,
-1
36 2 \7 (n o' 17 (nt 2\
M; < 1- +|—=—-4||- <——+|—=-4||- . (5.68)
" p+1 p+1 12 n p+1 \12 n

In addition, (5.68) holds for p =2 and p = 3 too, because we see from (5.62) that My, = My, = 4.
To conclude the proof, we notice that the inequalities in (5.537) are satisfied also for p = 0,1 (see (5.39)).
The inequalities in (5.65) follow from (5.57) taking into account that f,(6) = (2 — 2 cos 0)h,_2(6). O

Figure 5.1 shows the graph of f, normalized by its maximum M, for p =3,...,8. We see from the figure
and from Table 5.1 that the ratio f,(m1)/M;, decreases exponentially to zero as p — oo, in accordance with
the last statement in Lemma 3.5. From a numerical viewpoint, we can say that, for large p, the function
Jp/Mjy, possesses two zeros over [0,7]: one in 6 = 0 and the other in 6 = 7.

In the last lemma, we provide an important relation between the functions h,, g, and f,.
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Lemma 5.6. For all 8 € [—-m, t]\{0}, we have

Jr(Ohp(6) = [g,(6)]* > 0. (5.69)
Proof. From (5.41), (5.53), (5.54) and (5.59) we have

(2sin(0/2))*r+?
(67)?

Fr(Ohp(6) — [g,(O)] = —[g,(O)]* > 0.

Moreover, since g,(6) is antisymmetric (see (3.33)) and 7,(0) is strictly positive if 6 € (0, 7] (see (5.51)), from
(5.61) we obtain the complete statement of the lemma. m|

5.4 Spectral distribution and spectral symbol of the normalized sequences {n—gAE,p ]}n
and {#Ag”]n}n

In this section, we assume that n = vn = (vin,...,vn), where v € Qﬁf is fixed and n varies in the set of
natural numbers such that n = vn € N¢. In Theorem 5.1 we prove that the sequence of matrices {n%AE,p ] 1o s

distributed, in the sense of the eigenvalues, like the real function f3” : [0,1]¢ X [-7,71]? — R,

d
V Ky @My ® -+ ®hy,  ®f, ®hy, ® ®h,,)X,0)
=1

fx,0)

Iz

d
+ Z ViVs((Kes + Ker) @y @ -+ @ Ny ® 8y, @My & ®hy B8y ®hp, & ®hpy)X,6), (5.70)
o
where x = (xq,...,x7) € [0,1]Y and 0 = (6,,...,6,) € [-n,n]?. Therefore, fISV) is the symbol of the sequence

{n—leE,p ] }» (compare the expression of the symbol (5.70) with the expression of AE{’] and AEf }) in (5.16)-(5.17)).

We note that {nizAE,p ]}n is really a sequence of matrices, due to the assumption n = van. This assumption must
be kept in mind while reading this section.

Recalling that A[é]n coincides with A given in (0.16)-(5.19), with the only difference that ., B, ¥

(V)

G.p’ where

are replaced by kg5, Be.r, Y6 (see Section 5.2), from Theorem 5.1 it follows that {H%AG,,,M b ~a

fo 10,14 X [-m,7]* — R is given by

d
g:;)(x’ 0) := Z VE(KG,rr hp Q- Qhy @ fp, Ny, - Qhy,)(X,0)

r=1

d
£V (Kars + Ko @By @ @By @8, @by @ BNy @8, ®hy, @ @hy)(,0).  (G.71)

r,s=1
r<s

In order to prove Theorem 5.1, some preliminary work is needed. Let us decompose the matrix K,[f’ I into
Kr[zp] = Tn+p—2(fp) + RLP]’ (65.72)

where T, p-2(f,), the (n + p — 2)-th Toeplitz matrix associated with f,, is nothing else than the symmetric
(2lp/2] + 1)-band matrix whose generic central row is given by (5.36), while RL” .= K,[,p 1 _ Thip-o(fy) is a
low-rank correction term. Indeed, we know from Subsection 5.2.1 that RE,” ! has at most 213p/2] — 2 nonzero

rows, hence
rank(R"!) < 2|3p/2] - 2 < 3p. (5.73)
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Similarly, we decompose the matrices HY', M¥' into
H[p] LTn+p 2(gp) + Q[p] (574)

M = Typoa(hy) + S, (5.75)

where 1T, p-2(8,) = Thip-2(igp) and T, ,_o(h,) are just the (2 p/2] + 1)-band matrices whose generic central
rows are given by (5.37) and (5.38), respectively, while Q' := H'/! — Ty p-2(gy) and S, Pl pglr) — Ty p2(hy)
are low-rank correction terms analogous to RL” 1.

rank(Q'")) < 2|3p/2] - 2 < 3p. (5.76)
rank(S'7) < 2|3p/2] -2 < 3p. (G.77)
The next lemma provides upper bounds for the 2-norm of the matrices K*', HP', M7,

Lemma J3.7. For every p > 2 and every n > 2, we have

3p
1M < \/7, IHP < p+Bp, K < 2p(p — 1) +/3p.

Proof. By (1.3), the 2-norm of any square matrix X can be bounded as

1X11 < VIXNoo X Nlco.-

Hence, we now look for bounds of the infinity norm of the matrices K2 HP ) MIPY and their transposes.
We first bound the infinity norm of K\, H”', M”'. From (5.21), the positivity property and the partition
of unity property of B-splines, we obtain

n+p—2

\MP|, = max Z N p(Eivp) < 1

Similarly, from (5.21), (4.74), the partition of unity property of B-splines, and by taking into account that
the sequence of knots (4.2)-(4.3) implies that iy — fis1 = for alli=1,...,n+ p—1, we have

n+p-2 n+p-2
Njsp-n€inip) | Nz pp-1u(€irip)
J+LIp—1I\Si+1,[p] J+2,[p-1I\Si+1,[p]
InH = _ max Z IV @) | < _max  p ) ( + < 2pn
J=1

i=l.ntp=2 £ T TR =L, n+p=2 Livp+l — Ijt1 Livpr2 — Ijt2

By using similar arguments and by iterating (4.74), from (5.21) we obtain

n+p-2
Ko = max Z N7, 11 Enrip) | < 4p(p — D,

.....

We now bound the infinity norm of the transposes of K,[;” ], H,[lp ], M[p I The number of Greville abscissae
in the interior of the support of any B-spline is at most 2. In combination with the positivity property and
the partition of unity property of B-splines, we obtain

n+p-2
3p

”(M'EP])THOO - r.{lax Z N]+1[p](§z+1[P]) 7
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From (4.74), and by exploiting again the properties of the B-splines, we have

Njip-1n&irp)  Nivzp-1(Eivsip)
|N}+1,[p](§i+1s[l7])|£p( JHLIp-1\Si+1,[p] + J+2,[p-1\Si+1,[p]

< pn
Livp+l — Ljn

Livp+2 — Ljto -
and so
n+p-2
InHPY |lo =  max

, 3p
=Lt p=2 ZJ |Nj+1,[p1(fi+1,[p])| < pn—-
Similarly, by iterating (4.74), we obtain

” 3p
”(nzKy[sz)T”oo = lmafp—Z Z |Nj+1,[p]('fi+1,[p])| <2p(p- 1)n27.
j=1

The proof is completed by combining the above bounds with (1.3).

.....

O

The following lemma plays an important role in the proof of Theorem 3.1. It shows that the Greville
abscissae (5.13) are somehow ‘equivalent’ to the uniform knots in [0, 1].

Lemma 5.8. Let p,n > 2 and let &), i = 2,...,n+ p — 1, be the Greville abscissae (53.13). Then, for every
i=2,...,n+ p—1and every j such that |i — j| < ¢, with ¢ a constant independent of n, we have

J 1
i ————=|=0[-].
|§’[P] n+p—2‘ (n)

Proof. If i € {p+1,...,n}, then &y, = L — 2 by (5.28) and

J
‘fi,[P] - —‘ =

ni-p+(p-2j p+l
n+p-2

nn+p-2) 2n
< c N (p—2)n +p+1:01
n+p—-2 nn+p-2) 2n

i p+1 Jj '
n 2n n+p-2

n
Ifie{2,...,p}, then

' j— i i
|§i,[p] - ‘ <& + W -4 +

< +
n+p-2 Speip n+p-2 n+p-2

+1 1
Sp + ¢ + P =0(-].
2n n+p—-2 n+p-2 n

n+p-2

Ifie{n+1,...,n+ p—1}, then

j j-i i i -
il — —— = < i — U+ |1 - - <|Enpp = U+ |1- +
‘f,[p] n+p—2' Cuapr ~ 1l ‘ n+p-2 n+p—2‘ nipr — 1l n+p—2‘ n+p-2
+1 +1 +p-1 1
Sp + max l—n—Hl—n P ’ + ¢ =0|-].
2n n+p-2 n+p-2 n+p-2 n

O
We are almost ready for proving Theorem 5.1, but we still need to recall the concept of modulus of

continuity, which is used in the proof. For any function i : [0, 11 —» R, the modulus of continuity of ¢ is
defined as the function w(,-) : (0, c0) — [0, oo],

W, 8) = sup () — Yy
R
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If ¢ is continuous over [0,1]%, and hence uniformly continuous by the Heine-Cantor theorem, then
li =0.
limw(y,0) =0

Theorem 5.1 (spectral distribution without geometry map). Let p > 2, v € Q¢ and n = vn. Then,

{ %AL” I be ~a IS"), with f,ﬁ” defined in (5.70). In particular, { n%AE,p ]}n is weakly clustered at the range [0, M f;v)]

of f(v), where M 0 1= MaX (x g)e[0,114x[~. 7] fIEW(X, 6), and every point of [0, M fm] strongly attracts A(H%AE,” ]) with
14 14
infinite order (cf. Theorem 1.5).

Proof. Throughout this proof, the letter C will denote a generic constant independent of n. Recalling (5.16),
we have

1 1 1 1 1. 1 1. 1 1
[p] _ [p] (p] ] _ (p] [p] [p] (p] [p]
SAn = AT At Ak = At (;An,u - ;An,p) + At 2 Aur
where
d
AP =3 1 Dusp2(k) © Tuspa(y, ® - @by @ f, @by @+ B hy,)

d
- Z 11, Dpep2(Krs + Ksr) © Tap2(p @ - @y, ® gy, @y, @@l  ®igy ®hy, @ ®hp,), (578)
o
and Dm(a) is defined in (1.50)-(1.51). Before proceeding further, we suggest comparing the expression of AL’,’ }3
with the expression of A} in (5.17), taking into account the relations (5.72),(5.74),(5.75) and noting that
Lemma 1.8 can be applied here to express the d-level Toeplitz matrices involved in (5.78) as tensor products
of unilevel Toeplitz matrices. We will show that the hypotheses of Theorem 1.6 are satisfied with

1 1 1 1 1

_ 1 m _ L (Y w1 w1
Z, = nZA” , X, = nzAn’D, Y, = (HZAn’D nzAn,D) + nZAn,A o

[p]
AP
X, is Hermitian, due to the properties of the Hadamard product (see Subsection 1.2.2) and to the fact that the
generating functions of the d-level Toeplitz matrices in (5.78) are real-valued. Moreover, ||X,|| is uniformly
bounded with respect to n, due to Lemma 1.6 (item 1), to the fact that «,;, r,5s =1,...,d, and the generating
functions of the d-level Toeplitz matrices in (5.78) are continuous, and to the inequality (1.37). Finally, we
have

{Xn} ~a Igy),

by Corollary 1.1 and by the assumption n = va. In addition, ||Z,|| is uniformly bounded with respect to n,
due to the inequality (1.13), to the fact that «,,, r, 5 =1,...,d, are continuous, and to Lemma 5.7.

Now we turn to Y,. We will analyze separately the three summands that compose Y, and show that each
of them has a o(n) trace-norm. By using the expression (5.18) of AL"’ J , the inequality (1.13), Lemma 5.7 and
the continuity of 8,, r =1,...,d, we have

d
1 1
— Pl = —~ > nDPEIMP ®--- @ M @ HY @ MP @ - @ Ml = 0(5)
r=1
Ty L, ip) d-1
= ﬁAn,A 1 <Nn+p-2) ﬁAn,A =0n). (5.79)
By using the expression (5.19) of AEfIJQ, the inequality (1.13), Lemma 5.7 and the continuity of v, we have
Lwt| = L yipiee pgien e[| = o X Lol 2 o = 50
3R —;H Py @ --- @ M| = 2] = ates|| = (n?). (.80)
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Now we consider the term %AL” }) - n—lzﬁip }j. Keeping in mind that n = vn, we decompose this term as follows:

1 1.
[p] (p]
ﬁAn,D rﬁAn,D
d
2 [ ] r— r r+ a
= > DM@ M g KM @ MY @ - @ M)
r=1

~Duip-2(ker) © Turpor(hy, ® - @ by ® f, @by, @@ )]

d
= > v | D ks + k)M @ - @ MP T @ HIM @ M @@ MY @ HP @ M @ - @ MUY

Ns+1
_Dn+p—2(’(rs +Kg) © Tyip2(hp ® - ®h, Qig), ®h,, Q- ®h, ®ig, ®h,, ® ® hpd)]
d
=Y DM e e M @ KM @ M @ - @ M)
~DP k) Tnp2(hp, ® - @y ® f,, &Ny @ @ hy)| (5.81)

d
* Z VE [th] k) Tnip-2(hp, ® - ®hy @ fp, @ Ny, @+~ @ hyp,)

r=1
~Duip-2(ker) © Turpoz(hy, ® -+~ @y @ f, @by, @ @ )] (5.82)
d
= > v Dy + k)M @ - @ MP @ HI @ M @@ MY @ HY @ M @ - @ MUY
r}s<:sl
Dy + ko) Ty, ® - @l Bigy, @by ® @by ®igy B hy ® @) (5.83)
d
- Z VrVs [Dgtp] (Krs + Ksp)Tnip2(hp @ - @ hy, @18y, @ hp,, @ @h), , ®lg) @y, @ - ®hy,)
r,s=1

r<s

~Dpipa(Kys + ) © Tuspa(hy, ® -+ ® by ®ig, @by, @ ®h,  ®ig, ®h, & ®hy)|. (5.84)
Taking into account that

Thipa(hyp ® - ®hp  ®fp ®hy, & - ®hy,)
= n1+P1—2(hP1) ® T ® an—1+17r—1—2(hl7r—1) ® an+pr_2(fpr) ® an+1+17r+1_2(hpr+l) ® e ® Tnd+17d—2(h17d) (5'85)

(see Lemma 1.8), the trace-norm of the r-th term in the first summation (5.81) can be bounded using (1.18).
Recalling the inequalities (5.73), (5.77) and (1.5), we have

108 )M -8 M) © K M1 8 M Ty sl ©-+-8 By, @ S )]

3pi

AR 5.86
nj+pi—2 ( )

d
SCN(n+p—2)Z
i=1

where C is some constant independent of n that provides an upper bound for the spectral norm of the
matrix in the left-hand side of (5.86). It follows that the trace-norm in (5.86) is o(n?) and, consequently,
the trace-norm of the first summation (5.81) is o(n¢). With the same argument, one can show that the
trace-norm of the (r, s)-th term in the third summation (5.83) is o(n?), implying that the trace-norm of the

124



third summation itself is o(n?). Concerning the second summation (5.82), for every i,j=1,...,n+p— 2,
the (i, j) entry in the r-th term of (5.82) is given by

inj-1

0.87
n+p-2 (©.87)

(Krr(§i+1,[p]) — Kpr ( )) (Tn+p—2(hp1 ® - ®hp ®f, h, & - ® hpd))

L.
1Y)

to see this, recall the definitions of DE{’ ](a) in (0.20), the definition of D,,, 2(a) in (1.49), and the definition
of D,,+p_2(a) in (1.51). Using (5.85) together with the fundamental property (1.12), the (i, j) entry (5.87) is

equal to
inj-1 d
Krr(§i+1,[p]) — Ky m (Tn,+p,—2(fp,))i,j,. H(Tnk+pk—2(hpk))ikjk
k=1

k#r

and is zero for [i—jllo > ||p/2lle, because T,ip-2(hy,), Thip-2(8p)s Trnip-2(f,) have a (2| p/2|+1)-band structure.
Therefore, the only nonzero entries (5.87) are obtained for |li — jllo < ||p/2|l. For any multi-indices i, j
satisfying this condition, we have 0 < |iy — ji| < ||[p/2||- for all k =1,...,d, and so, by Lemma 5.8,

(i/\j)k—1| 1 1
i _—:O— :O—, kzl,...,d-
SirLind ng+ pr—2 ny n

It follows that, for all i,j = 1,...,n+ p— 2 such that [[i — jlle < |[p/2lle, We have

inj—1 C
Sivtipl — m . < Pr (5.88)
and
iNj-1 1
Krr(§i+1,[p]) — Ky (ﬁ) <Cw (Krr’ Z) (589)

(the constant C in (5.89) is not necessarily the same as the constant C in (5.88); recall that in this proof the
letter C denotes a generic constant independent of n). The inequalities (5.89) and (1.37) imply that

o)
<Cwlk., —|.
n

Recalling that the number of nonzero entries (5.87) for a fixed row or column is independent of n, we have
proved that the (r, s)-th matrix in (5.82) and its transpose have infinity norms bounded from above by

inj-—1
n+p—-2

)) (Tn+p—2(hp1 @ ®hp  ®fy ®hy, @ - ® hpd))

(Krr(‘fi+1,[p]) — Kpr (

ij

Cw (K,,, 1) . (5.90)
n

Hence, by (1.3), also the spectral norms of the (7, s)-th matrix in (5.82) and of its transpose are bounded
from above by (5.90), and so their trace-norms are bounded from above by

Cw@m%%wn+p—m:om%, (5.91)

implying that the trace-norm of the whole summation (5.82) is o(n?). With the same argument, one can
show that the trace-norm of the last summation (5.84) is o(n?). Hence, nizAEf 1) — nizAEf H” L= o(n?) and, by
recalling (5.79)-(5.80), we conclude that ||Y,[l; = o(n?). O
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Remark 5.2. Following the steps of the previous proof in the case d = 1, with v =1 and p = p (see in
particular (5.79), (5.80) and (5.91)), it turns out that, if

[+2)=o ()
wlk,—|=01-], 5.92)
n n

IYalll = OCD).

Therefore, all the hypotheses of Theorem 1.7 are satisfied and the sequence of normalized univariate collo-
cation matrices {iA[p ]}n is strongly clustered at [0, M,gy,]; note that AE,” s given explicitly by (5.22), while

then

k® f, (with f, as in (5.34)) coincides precisely with f(v) in the case p = p and v = 1. In particular, if
k € CY([0,1]), then (5.92) is satisfied and {nzA,[{’ L }n is strongly clustered at [0, M,y ].

Remark 5.3. Suppose that the diffusion coefficient K in (5.2) is just the identity matrix: K = 1. In this case,
the symbol of the normalized IgA collocation matrices { #AE,” ]}n (n = vn) is given by, cf. (5.70),

0,11 x [l 5 R, fPx0) =) VAQhy® - ®h, & f, ®h,., & - ®hy)(X,0)

M=

\
Il
—_

V%(hm Q- ® h[’r—l ® fPr ® hl7r+1 ®-® hl’d)(g)'

M=

Il
N

r

Since f,g is independent of x, it follows from Definition 1.1 that f(") regarded as a function from [-r,7]¢ to
R, i.e.

d
W [-mal’ >R, O = ) Vi, ®--®h, @ f, ®h,, - ®h,)0), (5.93)
r=1
is still a symbol for {nizAEf’]}n. In particular, in the case where v = 1 and p = 2¢ + 1 for some g € N¢,
the symbol (5.93) of the normalized IgA collocation matrices {H%AE,Z'“”}H is the same as the symbol of the

normalized IgA Galerkin matrices {nd‘zAE,q]},, considered in Chapter 4; see Theorem 4.7, Remark 5.1, and the

expression (4.65) for the symbol of normalized IgA Galerkin matrices.

Recalling the discussion at the beginning of this section, from Theorem 5.1 and Remark 5.2 we obtain
the following result for the sequence of normalized IgA collocation matrices {Ag’]n}n, n=vn.

Theorem 5.2 (spectral distribution with a geometry map) Let G:Q=1[0,1Y > Qbe a geometry map
such that G € C*(Q) and G is invertible in Q with G(OQ) = Q. Let p > 2, v € Q! and n = vn. Then,

{ Ag’]n}n é";, with f(") defined in (3.71). In particular, {nzAg,]n}n is weakly clustered at the range [0, M (v)]

of fé";, where M, 1= MAXxe(0 11, e el fg;}(x 0), and every point of [0, M (v)] strongly attracts A(= A[” ! ) WLth
infinite order. Moreover in the case d = 1, if the function kg defined in (5. 26) satisfies

fet)-of)

then the sequence of univariate collocation matrices {-3 A[" ] aln is strongly clustered at the range [0, My, | of
fe.p =K ® fp.

Remark 5.4. Note that the spectral distribution results obtained in Theorems 5.1 and 5.2 hold without any
assumption on the coefficient matrix K except continuity. However, in order to ensure that (5.2) is an elliptic
problem, this matrix has to be SPD. Moreover, the geometry map G in Theorem 3.2 can be given in any
representation and is not confined to the B-spline form (5.9) as prescribed by the IgA paradigm.
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We conclude with the observation that the structure of the symbol fé"; incorporates:

(a) the approximation technique, which is identified by a trigonometric polynomial in the Fourier variables
0 = (Qla ey gd) € [_ﬂ"ﬂ']d;

(b) the geometry, which is identified by the map G in the variables X = (%, ..., X;) defined on the parametric
domain Q := [0, 1]%

(c) the coefficients of the principal terms of the PDE, namely K, in the physical variables x := (xy, ..., X;)
defined on the physical domain Q.

In reality, the above picture is intrinsic to the approximation of PDE by any local method, such as Finite
Differences and Finite Elements. In fact, formally, the structure of the symbol is substantially the same when
considering different techniques to approximate the same problem; see [6, 63, 64] and references therein.
The only difference is due to the polynomial in the Fourier variables 6, and this is no surprise, since this
part specifically depends on the chosen approximation technique (in this case, the IgA Collocation Method).

5.4.1 Properties of the spectral symbol

The symbols in Theorems 3.1 and 5.2, given by (5.70)-(5.71), can be compactly written in matrix form as

flg") =[v1 - vdl (K °oPp,., Pd) v -~ Vd]T =wKoP, . Pd)vT’ (5.94)
fO =1 val(Kg o Py, ) 1 -+ val” = v(Kg 0 Py p V', (5.95)

where K is the coefficient matrix of our problem (5.2), Kg is the transformed coefficient matrix given in
(©.25) and

hy, ®---®h,_ ®f, ®h,, & --®h,, if r=s,
(Porrs) =4 iy ® Qb ®8, @By @ @by ©8), ®hy, @+ By, i r<s, (5.96)
hpl ®"'®hps—1 ® &p, ®hps+1 ®°"®hl7r—1 ®gpr®hpr+1 ®"'®hpd’ if r>s.

In (5.94)-(5.95), it is understood that K = K(x) and K¢ = Kg(x) are functions of x, while P, _,, = Pp, _ ,.(0)
is a function of #. For instance, if we want to specify the variables in (5.94), we must write fISV)(x, 0) =

.....

structure as the expressions of the differential problems (5.2),(5.24). This motivates the reformulation of
(©.1) into the less common form (5.2).
In the case d = 2 we have

£ = val (K © Py, ) i vl (5.97)

fg; = [v1 vol (KG © Ppl,pz) [v1 Vz]T,

where

Jn®hy, 8,®8 ]
P 1= |0~ 02 oo 5.98
pube [gpl ® ng hPl ® fl’z ( )

Theorem 5.3. The matrix P, ,, in (3.98) is SPSD over [-n, 71 and SPD for all (6,,6,) such that 6,6, # 0.
Moreover, if K is SPD over [0,1]? then K o P, ,, is SPSD over [0,1]* X [-r, ]* and SPD if 6,65 # 0.

Proof. 1t is clear that P, ,, is symmetric. Moreover, Lemmas 5.3 and 5.5 imply that

fm ®hp2 >0, hm ®fpz >0,
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and if 6,0, # 0 then
S ®hp, >0, hp ® fp, > 0.

In addition, Lemma 5.6 ensures that

det(Pp, p,) = fo, (0D, (0, (62) £,(82) = (2,,(61))°(8,(62))* = O,

and if 6,6, # 0 then det(P,, ,,) > 0. Thus, P, ,, is SPSD over [-m,7]*> and SPD if 6,6, # 0. Finally, by
Lemma 1.6, if K is SPD over [0,1]* then K o P,, ,, is SPSD over [0,1]* X [-x, 7]* and SPD if 6,6, # 0. O

From (5.41) and (5.99) we also obtain the following factorization of the matrix P, p,.

Theorem 5.4. Let P, ,, be defined as in (5.98), then

A

Py =S Ppp,S,

with
S = 2sin(6/2) 0 p — hp1—2(91)hp2(92) gm(gl)gpz(HZ)
' 0 2sin(6,/2)|’ PRP2 1 8p(00)8p,(62) (O, 2(62) |
. 8p(0)
and g,(0) := m. Moreover,

. 1 1 . . 1
|2 sin(6/2)| (W - ;) <18,(0) <12 sm(@/Z)I”W.

The next theorem analyzes the zeros of the symbol (5.97).

Theorem 5.5. If K is SPD over [0,1]%, the symbol f5” in (5.97) is nonnegative over [0,1]? x [-x, 1]2. Moreover,
for any fixed x € [0,1]?, f,ﬁ”(x, \) has a unique zero of order two at (6y,6,) = (0,0) over [-r, x]%

Proof. By Theorem 3.3, the matrix K o P, ,, is SPSD over [0, 11?2 X [-r, 7]%, so that the symbol f,§” in (5.97)
is nonnegative over [0,1]* X [-m,7]? and it can vanish only if [v; v3]” is an eigenvector associated with a
zero eigenvalue of Ko P, ,,. From Theorem 3.3 we know that this can occur only if 6,6, = 0.

From Theorem 5.4 and the properties derived in Section 5.3, we may conclude that 6 := (6, 6,) = (0,0)
is a zero of order two for f,SV)(x, 1), for any fixed x € [0,1]%. Indeed, by taking the Taylor expansion around
6 = (0,0) of the matrix P, ,, in Theorem 5.4 we have

+0(6lD,

N 11
Pmspz(a) = [1 1

where O(||0]]) is a 2 X 2 matrix whose components are bounded from above (in absolute value) by CJ|6|| for
some constant C independent of 6:

loqien1,| < clel, i j=12.
Thus, we obtain
J(x,0) = [v1 v2] S(OK()S () [v1 vo]" + O(16I).
Since K(x) is assumed to be SPD, we have ml < K(x) < MI for some constants m, M > 0,

mv val[S (@)’ val” + O(I6IP) < £, (x, 8) < MIvy v][S () [v1 vo]" + O(l6IP),
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and it follows that the function fISV)(x, -) has a zero of order two at € = (0, 0), like the function
[1 1[S@OF[1 117 = 45sin’(6,/2) + 45in%(05/2) = (2 — 2cos 6)) + (2 — 2 cos by).

Moreover, it is easy to check that the matrix K(x) o P, ,,(0) has a zero eigenvalue of multiplicity one if
61 = 0 or 6, = 0 but (6y,602) # (0,0). In the first case, the second component of the corresponding eigenvector
is zero. In the second case, the first component of the corresponding eigenvector is zero. Since vivy # 0,
it follows that, in both cases, [v; v2]7 cannot be an eigenvector associated with the zero eigenvalue of
K(x) o P, ,,(0). Hence, (6;,65) = (0,0) is the unique zero of flg")(x, ) over [—m, ]2 m]

Remark 35.5. Theorem 3.5 states that the symbol flﬁ") in (50.97) has a unique (theoretical) zero at (6;,65) =

(0,0), for any fixed x € [0,1]2. However, other numerical zeros occur elsewhere for large p = (p1, p2).
Indeed, from Lemmas 5.3-5.5 we see that, for large values of p, all entries in the matrix P, ,, vanish
numerically when 6; = w or 6, = m. Therefore, for large p, the symbol f,§” in (5.97) has numerical zeros at

the points (x, 8) such that 6, = or 6, = 7.

We conclude by observing that the results in Theorem 5.5 for the symbol f,SV) immediately provide
analogous results for the symbol f(g, since the difference between these two symbols is only in the fact that
K is replaced by Kg. We also remark that Theorems 5.3 and 5.5 have been proved for the case d = 2, but,
on the basis of our experience with ‘spectral distributions and symbols’, we are pretty sure that they can be

extended to any dimensionality d.

Conjecture 5.1. The matrix P, _,, in (3.96) is SPSD over [-m, nl¢ and SPD for all (6y,...,6,) such that
6,---6, # 0. Moreover, if K is SPD over [0,1]%, the symbol Iﬁ") in (5.94) is nonnegative over [0,1]¢ x [-r, n]¢
and, for any fixed x € [0, 114, flg")(x, -) has a unique zero of order two at 8 = 0 over [—n, n]?, like the function

S¢_(2 - 2cos b))
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Chapter 6

Fast iterative solvers for Galerkin B-spline IgA linear systems

In Chapter 4, we studied the spectral properties of the stiffness matrices AE{’] coming from the Galerkin
B-spline IgA approximation of the second-order elliptic problem

{ —Au+B-Vu+yu=f inQ:=(017 ©.1)

u=0 on 0Q,

where f € L2(Q), B = (Bi,...,Bs) € RY and y > 0. In particular, we have computed the corresponding
spectral symbol f,&” (see Theorem 4.7). We will now exploit the properties of the symbol in order to design
fast iterative solvers for linear systems with coefficient matrix AE," I, Our ultimate goal is to design iterative
algorithms with the following two properties. First, their computational cost is optimal, that is linear with
respect to the matrix size; this property is essentially equivalent to requiring that their convergence rate
(number of iterations for reaching a preassigned accuracy) is independent of the fineness parameters n.
Second, they are robust, i.e., their convergence rate is substantially independent of the spline degrees p
associated with the IgA approximation order. Using carefully the properties of f(V), we will succeed in
designing a multi-iterative multigrid method, whose convergence rate will prove to be optimal and robust
at the same time. This multi-iterative solver involves the PCG/PGMRES as a smoother at the finest level,
where the related preconditioner is chosen as the Toeplitz matrix generated by a specific function coming
from a certain factorization of the symbol. The properties of the symbol will be used also to explain the
behavior of classical multigrid methods, whose convergence rate is optimal (independent of the fineness
parameters n) but not robust, because it deteriorates when the spline degrees p increase.

Before starting, let us recall from Chapter 4 that the stiffness matrix Al coming from the Galerkin
B-spline IgA approximation of the second-order elliptic problem (6.1) is given explicitly by

d
1 1 1 1
ALP] = Z _Mr[lfl] R -® Mr[lll:k;ﬂ ) nkKr[;fk] ® M}[ll:krl] ® - ® _Mr[z[;d]
n N1 - N+1 " ng

k-1 Ng+1

d
1 1 1 1
+ Zlgkn_er[f:l] ® - ® M[Pk—l] ® Hr[sz] ® M[Pk+1] ® - ® _Mr[z{;d]

= Ng-1 Nie+1 nq
1 1
+y—MMe @ —MP, (6.2)
ny ng

where K, HY', MY are defined in (4.41). Moreover, the spectral symbol f” : [-m,7]* — R of the
normalized matrix-sequence {nd‘zAﬁ,")}n, with n =vn and v € Qf’r, is

d d

d
10 = > i) (i @+ @l @ f ® Ity & @Ry, ) O) = D e @0 | | 1y, (6)), 6.3)
k=1 k=1 j=1

Jk
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where ¢ (v) := ——%~—— see (4.46)—(4.47) for the definition of f, and h,. We note that f,ﬁ”(a) is symmetric

Vi Vi-1Vi+1Va
in each variable 6;, because both f, and h, are even functions. Hence, fp restricted to [0,7]? is also a

symbol for {n-2AP"}, (this follows directly from Definition 1.1). The symbol f;” is independent of 8 and v,
and possesses the following properties, which are consequences of Lemmas 4.4-4.5.

Lemma 6.1. We have

Yo pi+d-1

4 Jj=1t7

(—2) mm cj(v) E (2—-2cos6y) <f(")(0) < max cj(v) E (2 — 2cosby).

m)  jElewd T TR T
k=1

k=1

Moreover, setting M o 1= MaXge[o r)d f,§”(0), forall j=1,...,d we have
14

1
f(V)(Hla e ] 1, 7T, 0]+1, ORI ed) < f(y)(el’ L j 1,9 2’ J+ls - - gd) M]‘(V)'

2p2

By Lemma 6.1, the normalized symbol flﬁ")/M £ has only one actual zero of order two at 8 = 0, like

the function 2221(2 — 2cos 6y). However, when the spline degrees p; are large, it also has infinitely many
‘numerical zeros over [0, 7], located at the ‘m-edge points’

{0 0,71 : jefl,....d} with 6, = xr}. 6.4)

Because of this unpleasant property, the classical multigrid schemes for the matrix nd‘ZAEf’] that we shall
see in later sections show a bad (though optimal) convergence rate when one of the p; is large. In practice,
their convergence rate is optimal, because it is independent of the fineness parameters n and so it does not
increase when the matrix size grows, but it is also non-robust, because it rapidly worsens when the spline
degrees p grow. We will see that this lack of robustness in classical multigrid methods:

(@) is due to the fact that they ignore the numerical zeros of the normalized symbol f,ﬁ 'IM £ located at
the m-edge points (6.4);

(b) can be bypassed by adopting a multi-iterative multigrid strategy that involves the PCG/PGMRES as
a smoother at the finest level, with a properly chosen preconditioner which takes into account the
numerical zeros (6.4).

6.1 How to use the symbol? A basic guide to the user

In order to provide explanations for the non-robustness of classical multigrid methods, as well as to design
the winning multi-iterative multigrid solver mentioned above, this section is of fundamental importance.
What we are going to see in this section is the heuristic information that can be extracted from the symbol
f of a given matrix-sequence {Z,} and that provides a guideline in understanding/predicting the convergence
features of the various iterative solvers applied to Z,. We mainly focus our attention on a perturbed Toeplitz
setting (i.e., on the case where Z, is a ‘small’ perturbation of a Toeplitz matrix), because our IgA matrices
nd‘zAEf’ I are indeed ‘small’ perturbations of the Toeplitz matrices T p-2( f,&v)) associated with the symbol f(v).
To see this, we recall from the proof of Theorem 4.7 that, fixed n = vn, nd‘zAE{’ lis equal to its Toeplitz part’
T,,+p_2(f,§V)) plus a correction Y, whose trace-norm |[|Y,|ll; is o(N(n+ p—2)) when n — oo, where N(n+ p — 2)
is the dimension of AE{’]. This allows us to conclude that nd‘zALp I coincides with a d-level Toeplitz matrix,
namely Ty p-2( f,ﬁ”), up to a ‘small’ correction Y, whose trace-norm |[|Y,]l; is negligible with respect to the
matrix size N(n + p — 2). This result was actually the key to prove that {nd‘zAg,” 11, has the same symbol f(")

of the Toeplitz sequence {7 p-2( f,§V>)}n
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6.1.1 Counting the eigenvalues belonging to a given interval

The starting point of our reasoning is Definition 1.1 and, especially, the subsequent Remark 1.2. Let a < b, let
{Z,} be a sequence of Hermitian matrices, with Z, of size d, tending to infinity, and assume that {Z,} ~, f,
where f : D C RY — R. Moreover, let E,([a, b]) be the number of eigenvalues of Z, belonging to the interval
[a, b]. Then, relation (1.20), or, more precisely, its ‘scalar version’ (1.22), implies that

E.([a,b]) = I[a,bld, + o(d,) 6.5)
with
Ia.b] = m,({0 €D : f(0) € [a,b]}),
my(D)
if
O0=my{@eD: f(@)=a})=my({0cD: f(0) =Dhb}). (6.6)

Regarding the hypothesis (6.6), we observe that it is never violated when f is a non-constant trigonometric
polynomial. Moreover, it can be shown that, for a general measurable function f, it can be violated only
for countably many values of a and b.

The expression of the error term o(d,) can be better estimated under specific circumstances. For example,
ifd=1, Z, =T, (f), and f : [-m,n] = R is a real-valued trigonometric polynomial, the error term o(d,) can
be replaced by a constant which depends linearly on the degree of f (this can be deduced by using Cauchy
interlacing arguments; see [57]). The same holds for the univariate IgA matrices %Aip I obtained from 6.2)
for d =1 and B = y = 0, because they are constant rank corrections of the Toeplitz matrices Ty ,p—2(f5),
where the rank of the correction is proportional to p; see (4.83)-(4.84).

Formula (6.5) is of interest, e.g., when a = 0 and b = € < 1, for having a good guess of the size of the
eigenspace related to small positive eigenvalues 1 < € < 1. In fact, if Z, is HPD, this eigenspace is the
so-called ill-conditioned subspace, which is responsible for the ill-conditioning of the matrix and for the
slow convergence of general purpose iterative solvers.

6.1.2 Eigenvectors vs. frequencies in a perturbed Toeplitz setting

This subsection is the most interesting from the viewpoint of designing fast iterative solvers for matrices Z,
such that the sequence {Z,} is distributed like a certain symbol f : D C RY — R. For the sake of simplicity,
and also for the purposes of this chapter, we can restrict our attention to the case where D = [-r, 7] and
{Z,} € T. Here and in the following, 7 is the set of matrix-sequences {Z,} of the form

r qr
Zy= )| | Twonei) + Yo 6.7)

=1 j=1
where r,q1,...,q, € N, {Y,} ~, 0 is a zero-distributed sequence (see Definition 1.1), and every {7 (gij)}n,
with m(n) = (my(n),...,my(n)), is a sequence of d-level Toeplitz matrices such that m(n) —» o as n — oo.

Note that a matrix-sequence {Z,} € 7 is the sum of a sequence {);_, j’zl Tmny(gij)} belonging to the algebra
generated by Toeplitz sequences and of a zero-distributed sequence {Y,}. In particular, the sequence of IgA
matrices {n"2AP"), (n = vn) is of the form (6.7) with r=1, gy =1, m(n) = n+ p — 2, Tpin(gn) = Tn+,,_z(f,§”)
and Y, = nd‘QAE," [ Tyip-o f,ﬁv)). Note that, as mentioned at the beginning of this section, the sequence of
corrections {Y,} satisfy [|Y,ll; = o(N(n + p — 2)), and so in particular it is zero-distributed. Indeed, by Weyl’s
majorant theorem [7, Theorem I1.3.6], it holds in general that, if {¥,} is a matrix-sequence, with Y, of size
d, tending to infinity, and if ||Y,|l; = o(d,), then {Y,} ~, O.

For matrix-sequences {Z,} of the form (6.7), a lot can be said, in terms of (Fourier) frequences, concerning
the approximate structure of the eigenspaces of Z,. Roughly speaking, let d =1 and let f : [-7,71] - R be a
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continuous even function, such that it is the symbol of a sequence {Z,} € 7, with Z, of size d,. Note that f
restricted to [0, 7] is also a symbol for {Z,} (because f is even). Then, the eigenvalues 1;(Z,), j =1,...,d,,
behave like the uniform sampling of f over [0, x] given by

jm .
=1,....d,
f(d,,+1)’ JZ 0

and the related eigenvectors behave like the following set of frequency vectors:

Jkm dn
(dn) 1 :
o= , =1,...,d,.
Vi (sm (dn + 1))k:1 g

The statement above is quite vague, but it can be made more precise without using technicalities (see [10, 72]
for a rigorous analysis). In any case, what the reader should keep in mind is the following: if {Z,} € 7,
with Z, of size d,, and if {Z,} ~, f : [-m,mr] = R, with f a continuous even function, then we may think
about the matrix Z, as if it were the matrix

) jr
=8 d S, 6.8
R P o)
where p
[ 2 | . jkm \|” 2 ()1 () (dy)
.= = _ " ... n 6.9
S, 1 sm( e 1) - T+l ["1 vyl vy ] (6.9)

is a real symmetric unitary matrix, the so-called sine transform. The matrix in (6.8) is called the (unilevel)
T-matrix of order d, associated with the function f; see, e.g., [25, Definition 2.1] and the references reported
in [25]. If Z, is Hermitian and we are interested in the eigenvectors of Z, associated with the eigenvalues
in the interval [a, b], then we know from Subsection 6.1.1 that the subspace generated by these eigenvectors
has dimension I[a, bld, + o(d,) and it is approximately described by

span {v(jd") : f(dj:r_ 1) € la, b]}. (6.10)

From the relation above, and taking into account that the vectors v;d") corresponding to large (small) indices

j are referred to as high (low) frequences, it can be seen that a zero of the symbol f at 6 = 0 implies that
the ill-conditioned subspace of Z, is related to low frequencies, while a zero of the symbol at 7 implies that
the ill-conditioned subspace is related to high frequencies.

If d > 1, proper tensor-like arguments show that the same conclusions hold. To be a little more precise,
assume that:

e {Z,} € T is a sequence of d-level matrices as in (6.7), with Z, of dimension d, = N(m(n)) and partial
dimensions my(n), ...,my(n) tending to infinity;

e {Z,} ~1 f, where f:[-m, n]Y = R is continuous and symmetric in each variable, in the sense that

f(£01,£60,,...,+0,) = (61,0, ...,6,)
for all (8, 6,,...,6,) € [-m, x]’

Then, f restricted to [0, 7]¢ is also a symbol for {Z,} and we may think about the matrix Z, as if it were the
d-level T-matrix

m(n)»

T (f) = Sm<n>L diag f(L) S

—1,.mmy  \m(n) +1
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where
Sy = Sy ® -+ ® Sy

is the d-level sine transform; refer again to [25] for the definitions. For instance, if d = 2, Z, is Hermitian
and we are interested in the eigenvectors of Z, associated with the eigenvalues in the interval [a, b], then we
know that the subspace generated by these eigenvectors has dimension I[a, b]d,+o(d,) and it is approximately
described by

() o < (m2(n) it Jamt
o OV ; € la,b]. 6.11
wpat {vh Vi f(ml(n) + 1" my(n) + 1) la ]} (6.11)

6.2 Iterative solvers and the multi-iterative approach

In this section, we review some basic iterative methods that we will use in order to build up a fast iterative
solver for our IgA stiffness matrices AE{’] in (6.2). In particular, we consider:

1. classical stationary iterative methods (Richardson, Gauss-Seidel, the weighted versions, etc. [71]);
2. the PCG method [4];

3. two-grid, V-cycle, W-cycle methods [51, 69];

4. multi-iterative techniques [56].

We will present them in view of the multi-iterative approach [56], which is a way of combining different
(basic) iterative methods having complementary spectral behavior. We anticipate that the optimal and robust
multi-iterative multigrid solver for the IgA stiffness matrices AL” I that has been mentioned at the beginning
of this chapter and that we are going to design in the following, is just a combination of basic iterative
methods in a unique multigrid algorithm, in the spirit of the multi-iterative idea. We first explain and
discuss the main idea of the multi-iterative approach in Subsections 6.2.1-6.2.3. Then, in Subsections 6.2.4—
6.2.5, we focus on two-grid and multigrid methods, as well as on the PCG method, in our IgA context, and

we shall see how to combine them in a unique optimal and robust multi-iterative multigrid solver for AE,” I,

6.2.1 Unity makes strength: the multi-iterative approach

Stationary iterative methods for solving a linear system Au = b (with A € R™) can be written in the general

form
u® =u® 4 b - Au®),  k=0,1,..., 6.12)

where M is chosen as an approximation of A such that a linear system with matrix M is easily solvable.
In this way, M~! in (6.12) can be regarded as an approximation of A™' and the vector M~1(b — Au®) can be
easily computed. By defining the iteration matrix S := I — M~'A, we can reformulate the stationary iteration
(6.12) as

u® = Su®) := su® + (1 - 5)A™b. (6.13)

The error e := A7p — u®*D is then given by eV = Se® = §¥1e® and its norm is quickly reduced if
[IS]| is much smaller than one.

Two specific examples of stationary iterations (6.13), of interest later on, are the relaxed Richardson
method and the relaxed Gauss-Seidel method, whose corresponding iteration matrices are, respectively,

S :=1-wA, (6.14)
1 -1

S:=1- (—D—L) A. (6.15)
w



In both cases, w € R is the relaxation parameter, while D and L are the matrices coming from the splitting
of A associated with the Gauss-Seidel method: D is the diagonal part of A and —L is the lower triangular
part of A, excluding the diagonal elements.

Let us now consider [ different (invertible) approximations of A, say M;, i =1,...,[, and then [ iterative
methods with iteration matrices S; := I — Ml.‘lA, i=1,...,L The following multi-iterative scheme can then
be defined [56]:

u(k’l) = Slu(k) + bl,

u(k’z) = Szu(k’l) + b,

u® = § y®&i- 4 p (6.16)

where b; := M;'b. Hence,
u(k“) =85:5,1--558 1u(k) +cC, (6.17)

where
c=b;+Sb_1+S;S_ba+---+S5,5,_1---Ssby.

The errors e® := A”lb —u® and e*? := A b —u%? k>0,i=1,...,] -1, are such that

e(k’i) = S,’ s Slee(k),
eV =9,..5,5.e".

If S; is highly contractive in a subspace .77 and if S;1(.Z_1) C J7, where .Z,_; is another subspace where
Si-1 reduces slowly the norm of the error, then [|S;S;.1|| can be much smaller than |[|S;||||S;-1ll. This implies
that multi-iterative methods can be fast, even when the basic iteration matrices have norms close to one, or
even when the basic iterations are non-convergent.

The multi-iterative idea, briefly outlined above, can be extended to include non-stationary iterations. For
instance, we may replace the last iteration in (6.16) with a single step (or a few steps) by the PCG method.
In this case, the overall iteration (6.17) is not stationary, but the scheme (6.16) is still called a multi-iterative
method. As we shall see later, our optimal and robust multi-iterative multigrid solver for the IgA stiffness
matrices AE,” I will involve the PCG (or the PGMRES) inside a multi-iterative scheme of multigrid type.

6.2.2 Two-grid and multigrid methods in a multi-iterative perspective

Consider again the linear system Au = b, A € R™™. Suppose we have two stationary iterative methods
(the smoothers) as in (6.13) for the solution of the linear system, and a full-rank matrix (the projector)
P € R*" | < m. Then, the corresponding two-grid method for solving the linear system is given by the

following algorithm.

Algorithm 6.1. Given an approximation u® to the solution u = A~'b, the new approximation u**V is ob-
tained by applying v steps of pre-smoothing as in (6.13) with iteration matrix S, a coarse-grid correction,
and vy steps of post-smoothing as in (6.13) with iteration matrix S o, as follows:

1. apply Vpre steps of pre-smoothing: u®? = §¥u®) = §reu® + (1 - §)7)Ab;
2. compute the residual: r = b — Au®?;
3. project the residual: r'® = Pr;

. -1 (.~
4. compute the correction: e = (PAPT) r\9;
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5. extend the correction: e = PTe®;
6. correct the initial approximation: u®? = u®b 4+ e;
7. apply Vpou Steps of post-smoothing: u®™ = S (uk2) = §rmu® + (1 — §)HAD.

Steps 2-6 in Algorithm 6.1 define the so-called coarse-grid correction, which is a standard non-convergent
iterative method with iteration matrix

CGC := I - PT(PAP") 'PA. (6.18)

Vpost

The iteration matrix of the two-grid scheme is denoted by TG(S ;’fg,S rost» ) and is explicitly given by
TGSy, Sy, P) = Syt - CGC - S 7%

When the pre-smoothing is not present, i.e., ve = 0, the two-grid iteration matrix is denoted by TG(S ;f,";{, P).

We point out that two-grid (and multigrid) methods can be written in the general multi-iterative form
(6.16), in which [ =2 or [ = 3. In this case, S; is the pre-smoothing operator, S, is the coarse-grid operator,
and S3 is the post-smoothing operator. Interestingly enough, we observe that ||Ss|| > 1 because the spectral
radius of S, is equal to 1 (see [51]), while S and S5 are usually weakly contractive. However, as we will see
later in Subsection 6.3.1, there are examples in which the best contraction factor of the whole multi-iterative
two-grid scheme is achieved by choosing a non-convergent smoother. Therefore, it may happen that a very
fast multi-iterative method is obtained by combining basic iterations that are all slowly convergent or even
non-convergent.

6.2.3 Multi-iterative solvers vs. spectral distributions

The main idea of the multi-iterative approach is to choose the different iteration matrices S;, i =1,...,[, in
the scheme (6.16) such that they have a complementary spectral behavior. Let us assume that §; is highly
contractive in a subspace .77, and weakly (or not) contractive in the complementary subspace .Z;. Then, the
recipe for designing fast multi-iterative solvers is to choose the iteration matrices §; such that

AN
i=1

This recipe is aesthetically beautiful and appealing, but totally unpractical if we are unable to identify /
pairs of subspaces (J¢,.%), i = 1,...,1, with the properties described above and such that 54 & & = C".
However, our IgA stiffness matrices nd‘zAEf] can be considered as ‘small’ perturbations of Toeplitz matrices
(see the discussion at the beginning of Section 6.1), and so Subsections 6.1.1-6.1.2 can provide an heuristic
guide in identifying such subspaces in terms of frequencies and estimating their dimensions.

Let us now illustrate this concept in the case where the d-dimensional Laplacian problem —Au = f over
[0,1]¢ is approximated by standard centered Finite Differences (FD). The resulting discretization matrices
have a pure d-level Toeplitz structure with corresponding generating function (symmetric in each variable)
given by

d
£6) = fin(®) := > (2-2cos8)), 0 ¢€[-m 7", 6.19)
=1
More precisely, if the discretization step in each direction x;, i =1,...,d, is 1/n, the resulting discretization
matrix is Tp,(f), where m=(n—-1,...,n—1).

Now consider the following multigrid method in the framework of multi-iterative solvers. It is composed
of three iterations (/ = 3): a pre-smoothing given by the Richardson method (6.13)-(6.14) with parameter wpyre
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(iteration matrix ), a coarse-grid correction with iteration matrix S, defined in (6.18), and a post-smoothing
given by the Richardson method with parameter wpg (iteration matrix S3). The coarse-grid iteration Sg,
which uses as projector P the traditional full-weighting restriction (6.20)-(6.21), is designed in such a way
that the related iteration is not convergent globally, but strongly reduces the error in low frequencies. Now,
S1=1 = wpreTu(f) = T(1— wpre ) and S5 = I = o Tin(f) = Tin(1 = wposi f)- If we choose wyre = [IfII0 = (4d) 7,
the symbol of the iteration matrix S; is equal to 1— f/||f]l, which is maximal at @ = (0,...,0) and attains its
minimum at @ = («,...,m). As a consequence, the pre-smoothing iteration is highly convergent (contractive)
in the high frequencies and slowly convergent in the low frequencies. In fact, if we consider the two-grid
(and also the related V-cycle multigrid) with the latter coarse-grid correction operator and the latter pre-
smoother, then we already obtain an optimal method (see [62, 65]), even though the two basic iterations
S, and S, are very slow or non-convergent. However, at this point, we have understood the machinery,
and hence, if we desire to accelerate further the global multi-iterative method, then we can consider a
post-smoothing iteration which may be slowly convergent both in the very low and very high frequencies
but very fast in a space of ‘intermediate’ frequencies. The choice is obtained by setting wpos = 2|| yals
so that S3 = T,,(1 = 2f/||fll~). It is interesting to remark that the symbol |1 —2f(0)/|f|l~| evaluated at
60=(,...,0) and 6 = (m,...,n) is equal to 1. Therefore, the method is slowly convergent both in high and
low frequencies, since the moduli of the eigenvalues of S3 are close to 1. However, the symbol is very small
in absolute value in regions of [0, 7]? associated with intermediate frequencies, corresponding to values of
0 near 0 = (5,...,%). Hence, S3 is highly convergent in the subspace generated by these frequencies. The
resulting multi-iterative method is indeed extremely fast, as shown in [65]. We will use these guiding ideas
in our choice of the solvers for the IgA matrices.

6.2.4 Choice of the projector in our two-grid and multigrid methods

‘We now look for an appropriate projector P in the coarse-grid correction (6.18) in order to address our specific
IgA linear systems. Since our IgA stiffness matrices n?2A”) can be considered as ‘small’ perturbations of
d-level Toeplitz matrices Ty pa( f,ﬁ”) (see the discussion at the beginning of Section 6.1), we follow the
approach in [62] and focus on a particular projector P = P,,, o which is appropriate for T,,+,,_2(f,(,v)). More

specifically, for any odd m > 3, denote by U,, the cutting matrix of size mT_l X m given by

01 0
01 0 et
U, = _ leRTX",
010
Then, for any m € N¢ with odd my, ...,my; > 3, we define U, := Uy ®---®U,, and we set
d
Pr:=Un Tu(@d),  qa®h,....00) := | |1+ cosd)). (6.20)
=1
It can be shown that P, admits a ‘recursive expression’
1 21
d d d 1 1 2 1
P, = ® Pu,  Pn = ® Up, - T (@) = ® 5 . q®)=1+cosf. (6.21)
j=1 j=1 j=1
1 21
mj
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From (6.21), we see that P,, is the traditional full-weighting restriction, which has full rank H?:l m-;_l, being

the Kronecker product of full-rank matrices. The projector P, leads to a coarse-grid correction (6.18) which
is highly contractive in the subspace of low frequencies.

Let us now consider d = 1 and our specific linear systems, with coefficient matrix %A,[f 1. The symbol
associated to the sequence of univariate IgA stiffness matrices

1 B

ZAl = klel . Zglel
n n n n n

M, =12, 6.22)
n

is f,(0), as defined in (4.46) (see Remark 4.5). Since 6 = 0 is the only zero of the symbol, we expect (see e.g.
[62, 1, 23]) that the classical full-weighting projector P,, combined with any classical smoother (Richardson,
Gauss-Seidel, Conjugate Gradient, GMRES) leads to two-grid, V-cycle, and W-cycle algorithms with an
optimal convergence rate, independent of the matrix size and of the fineness parameter n. However, for
large p, a numerical zero occurs at 6 = 7 for the normalized symbol f,(6)/M;,; see the discussion after
Lemma 4.5. The projector P,,, as well as the aforementioned classical smoothers, are not designed for coping
with this numerical zero, which represents a source of ill-conditioning in high frequencies of our matrices
%A,[f 1. Therefore, we can predict that the traditional projector P, combined with any classical smoother
will lead to two-grid (and multigrid) algorithms with convergence rate that, despite being independent of n,
worsens with p. These forecasts are numerically confirmed in Section 6.3 and theoretically motivated in
[25, Section 4], where it is shown that the p-worsening of the convergence rate is actually expected to be
exponential in p, due to the fact that f,(m)/M;, — O exponentially (see Lemma 4.5).

If d > 2 and we consider our specific linear systems, with coefficient matrix nd‘zAE,p ] (n = vn), the situation
is even worse than in the case d = 1, because of the specific analytic features of the symbol f,SV’(o) associated
with the sequence {nd‘zAE,p ]}n; see Lemma 6.1 and the discussion following it. Since 8 = 0 is the only
zero of the symbol, we know (see e.g. [1, 23]) that the projector P, combined with any classical smoother
(Richardson, Gauss-Seidel, Conjugate Gradient) will lead to two-grid, V-cycle and W-cycle algorithms with
an optimal convergence rate, independent of the fineness parameters n. However, for large p, infinitely
(sic!) many numerical zeros of f,ﬁ” /M sin oceur at the m-edge points (6.4). Thus, as in the one-dimensional
setting, the traditional projector P, (with any classical smoother) leads to multigrid algorithms having a
convergence rate that deteriorates with p. This means that, when combining the standard full-weighting
projector P, with any classical smoother such as Richardson, Gauss-Seidel, Conjugate Gradient, GMRES
and so on, the resulting two-grid and multigrid algorithms will have a convergence rate that, despite being
optimal (n-independent), is not robust in p.

In order to overcome this problem of classical two-grid and multigrid schemes, the suggestion coming
from the multi-iterative idea is in this case the following: keep the full-weighting projector P, for dealing
with the actual zero of the symbol fIEV) located at the origin € = 0, and replace all classical smoothers with
a PCG or a PGMRES method, whose preconditioner takes care of the numerical zeros of the normalized
symbol f,ﬁ” /M £ located at the m-edge points (6.4). Of course, this is only a vague idea, that should be made
more clear. We will do it in the next subsection.

6.2.5 PCG with p-independent convergence rate

Let us start with recalling the PCG method for solving the linear system Au = b with A a real SPD matrix.
Since we consider the preconditioned version of the CG method, we assume to have an SPD matrix M such
that M is an approximation of A and such that a linear system with matrix M is easily solvable.

Algorithm 6.2. Let u® be a given approximation of the solution u = A~'b, with A a real SPD matrix, and
let M be a SPD approximation of A. Then, the new approximation u**? is obtained as follows:
O T 4k)

1. compute the approximation: u**V = u® 4+ o®p® ysing the optimal step length a® = BT A
p®TAp
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2. compute the residual: r®*V =b — Au*) = y® — O Ap®;

3. compute the preconditioned residual: z¥D = p-1r*+D;

Z(k+1) Tr(k+1)

4. compute the A-conjugate search direction: p** = z&D 4 gOp® “ith R = — o
ZzO Ty

If the vectors r®, z®, p® are not yet computed by the algorithm in a previous step, then we initialize them
as 10 = b — Au®, 70 = pM-1p® pd = 70

Now let us assume that 8 = 0 in our model problem (6.1). Under this assumption, we know that AE,”] is
SPD (see (6.2) and recall that K,[,p ], M,[,p I are SPD), and so the PCG method can be applied.

Remark 6.1. If B8 # 0, the matrix AE,” Iis not symmetric and we cannot apply to it the PCG method. In
such a case, we simply suggest to replace the PCG with the PGMRES (using for the PGMRES the same
preconditioner that we are going to design for the PCG).

In this subsection, we focus on the construction of a preconditioner such that the PCG applied to
our matrix nd‘QAL" 1 will be p-independent. The idea of a p-independent PCG method has its theoretical
foundation in the spectral results concerning Toeplitz systems with Toeplitz preconditioners [22, 58], and in
the study of the specific symbol f;” of our matrix-sequence {n-2A""},, n = vn.

Let h be a nonnegative, a.e. nonzero and Lebesgue integrable function over [—m, 7], Then T,(h) is a
HPD d-level Toeplitz matrix; see Theorem 1.8. Let f be a real-valued and Lebesgue integrable function over
[-m, 7], so that T,(f) is a Hermitian matrix. By following [22, 58], we know that all the eigenvalues of

T Xh)T(f) belong to the set [r,R], with r = essinf f/h, R = esssup f/h, and
(T T () ~a f1h.

For d = 1, the symbol of {%AL” ]} is fp(6) = (2 - 2cosB)h,_1(6). Since %AL” is a ‘small’ perturbation of
Tyip-o(fp), it can be shown that

) 1
{Tnjp_z(hp_l)ZAL{’J} ~1 folhp1 =2 —2cos6,

which is the symbol of the standard FD approximation given in (6.19) for d = 1, and is indeed p-independent.
Hence, if we apply to %A,[f’ ! the PCG with T, p-2(hp-1) as preconditioner, we expect to have a p-independent
method. Unfortunately, it is not optimal, because it is slowly convergent when the fineness parameter n is
large (see Table 6.5 for a numerical example); this is due to the fact that 2 — 2cos 8 has a zero at 8 = 0.
However, in view of the multi-iterative approach, we can build a totally robust method as follows: we
consider a basic coarse-grid operator with projector P,,, s as in (6.20)-(6.21) working in the low frequencies
(like in the case of a standard FD approximation), and we include the PCG method, with preconditioner
Ty p-o(hp-1), in the smoothing strategy. Thus, the coarse-grid operator will be responsible for the optimality
of the method (a convergence speed independent of the fineness parameter n) and the PCG-smoother will
bring the p-independence, taking care of the numerical zero of f,/M;, at & for large p. In conclusion, the
global multi-iterative method will be optimal in n and robust in p at the same time, while the standard
coarse-grid correction alone is not convergent and the PCG method alone is p-independent, but slowly
convergent when n is large (see Section 6.3 for numerical illustrations).

The good news is that the above idea can be generalized to any dimensionality d. Indeed, for d > 2,
thanks to Lemmas 4.4-4.5, the symbol f,ﬁ” in (6.3) can be factored as follows:

d

d d
reo=| hp,_1<ej>[z (2 = 2cos(6) | | w,,_,<ej>], (6.23)
j=1 k=1 Jj=1

2k
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Figure 6.1: graph of w, = h,/h,; for p=1,...,5.

where w,(0) := h,(0)/h,-1(0) is a function well-separated from zero, uniformly with respect to 6 € [0,r]
and with respect to p > 1. In short, w, is p-independent, in the sense that it is bounded from above
and below by two positive constants independent of p. Actually, w, seems to converge uniformly to some
function with range in [0.4,1]; see Figure 6.1. This means that the function between square brackets in (6.23)
does not have numerical zeros and only has an actual zero at @ = 0. This zero does not create problems
to our two-grid schemes, because the standard coarse-grid correction (6.18) with classical full-weighting
projector (6.20)-(6.21) takes care of it. Therefore, the function ]‘[?:1 h,.1(8;) is responsible for the existence
of numerical zeros at the m-edge points (6.4) when the p;’s are large.' Thus, the same function causes the
poor behavior of our two-grid and multigrid schemes, with any classical smoother, when the p;’s are large.

d-2 A[p]
n

We then consider for our matrices n the following preconditioner:

d
Tn+p—2 (l_[ hp_,-—l(ej)) = Tn+p—2(hp1—1 Q- ® hpd—l) = Tn1+p1—2(hp1—1) - ® Tnd+pd—2(hpd—1)' (624)
j=1

Note that the matrix (6.24) is a ‘small’ perturbation of the (normalized) B-spline mass matrix M,[f j:] R ®

MP 1 related to the fineness parameters n + 1 and the spline degrees p — 1; see (4.85)-(4.86) and recall

ng+1
(1.1;3). The choice of using a PCG method with preconditioner (6.24) as a smoother is made in order to

‘erase’ all the numerical zeros at the m-edge points (6.4). Due to (6.23) and to the fact that

d
(2 = 2cos(®) | [ w,,©))
1 j=1
J#k

d -1
Hh,,,._lw,»] 16 =

J=1

d
k=

is p-independent, the PCG with preconditioner (6.24) turns out to have a p-robust convergence rate for our
matrices in the d-dimensional setting. For a numerical illustration we refer to Tables 6.5, 6.10 and 6.14 for
d =1,2,3. Note from these tables that, for fixed n, the number of iterations only slightly increases with p.
On the other hand, we clearly observe the bad dependence on n, as expected.

At this point, it is important to stress that the proposed preconditioner (6.24) is effectively solvable: due
to the tensor-product structure and to the bandedness of the matrices T, . p,—2(h,,-1), the computational cost
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for solving a linear system with matrix (6.24) is linear in the matrix size N(n + p — 2). Let us illustrate this
in the case d = 2, for a general tensor product X ® Y of two invertible matrices X € C™™ and Y € C*‘. By
the properties of the Kronecker product, it holds that

XV l=x'eor.

Let b := vec(B) € R™ be the vector obtained by stacking the columns of B € R™ where vec denotes the
stacking operator. Then, the linear system
X®Y)u=>b (6.25)

can be solved by
u=X"®Y b =vec(Y'BX).

This requires to solve m linear systems with matrix Y, plus ¢ linear systems with matrix X; see [40,
Lemma 4.3.1]. If X and Y are banded, like the Toeplitz matrices T, p—2(h,-1) in (6.24), then the cost for
solving a linear system with matrix X or Y is linear in the matrix size, and so the overall cost for solving
(6.25) is linear in the matrix size mf. Of course, this trick applies to the preconditioner (6.24) but not to the
matrix nd‘ZAEf’], which consists of sums of tensor-product matrices; see (6.2).
Summarizing, in the spirit of the multi-iterative approach, our proposal for solving a linear system with
coefficient matrix n?24%' n = yn, is as follows:
e as a solver, we use a two-grid, or a V-cycle/W-cycle multigrid, using (at each level) the standard
coarse-grid correction with classical full-weighting projector (6.21). This basic coarse-grid operator is
very effective in low frequencies, and it is all we need if we had to deal with a symbol like (6.19),
coming from the standard FD approximation;

e since our normalized symbol f,EV) /M o, for large p, shows numerical zeros at the 7-edge points (6.4),
we include the PCG method with preconditioner (6.24) in the smoothing strategy. In particular, we
will use it at the finest level.

In this way, the coarse-grid operator will be responsible for the optimality of the method (a convergence speed
independent of the fineness parameters n), while the chosen PCG-smoother will induce the p-independence,
taking care of the numerical zeros at the m-edge points (6.4). The global multi-iterative method is expected
to be optimal and robust at the same time, meaning that its convergence rate should be independent of
both n and p. As we shall see from the numerical experiments, the convergence rate will be indepen-
dent of n, substantially independent of p, and, surprisingly enough, substantially independent also of the
dimensionality d.

Remark 6.2. From the discussion above (in the 1D case), one could guess that the PCG method with
preconditioner T, ,-2(f,) is substantially robust both with respect to n and p, because {Tn_+1p—2( fp)%A,[f ]} ~2
folfp = 1. This is numerically illustrated in Table 6.6. Unfortunately, this naive choice is not so practical,
because it cannot be effectively generalized to the higher dimensional setting. For example, in the 2D
case, the PCG method with preconditioner T}, . p—2(fp,) ® Tpyspo-2(fp,) does not work (see Table 6.11). The
explanation is clear: the function f, ® f,, and the symbol of our 2D matrices f,ﬁf},;;” possess two sets of
zeros with a completely different structure. On the other hand, the use of T}, 1 -2 1,4 py—2( f!ﬁf,;;;ﬂ) as a possible
preconditioner is also unsuccessful, because its cost is prohibitive due to the lack of the tensor-product

structure in the preconditioner.
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6.3 Two-grid algorithms and their performances: 1D

We start with a careful testing of the standard two-grid methods with the classical full-weighting projector
(6.20)-(6.21) and with different combinations of the traditional smoothers. We note that the V-cycle and
W-cycle convergence cannot be better than the one of the two-grid method. Then, we proceed with the full
multi-iterative approach, sketched in Subsection 6.2.5, involving the PCG method as a smoother.

6.3.1 Classical two-grid methods

Let us illustrate the performances of standard two-grid methods with the classical projector PLP .= Puipo
given in (6.20)-(6.21), which induces a coarse-grid correction effective in the low frequencies. We only
consider two-grid methods without pre-smoothing steps and with a single post-smoothing step.

Table 6.1 shows the results of the numerical experiments for TG(§LpJ, PEZ" ]), with ELPJ being the iteration
matrix of the relaxed Richardson method with parameter w!”'; see (6.14). In problem (6.1), we fixed d = 1,

B =7y =0, so that %A,[f 1= kP! and Eip] =1 — K", Then, for p =1,...,6 we determined experimentally

the best Richardson parameter w!”!, in the sense that w!”! minimizes pL” = p(TG(S, s , PPy with n = 2560
(if p is odd) and n = 2561 (if p is even) among all w € R with at most four nonzero decimal digits
after the comma. We note that the choice w!! = 1/3 has a theoretical motivation, because it imposes a
fast convergence both in high and intermediate frequencies. Finally, we computed the spectral radii p[” ]
for increasing values of n. In all the considered experiments, the proposed two-grid scheme is optimal.
Moreover, as n — oo, p[p ] converges to a limit pgf,’], which is minimal not for p = 1 but for p = 2. A
theoretical explanation of this phenomenon is given in [25]. When p increases from 2 to 6, we observe that
p[ﬁ,’] increases as well. In view of the theoretical interpretation based on the symbol f, given in [25], which
passes through the identification of K[p I with the T-matrix Tu+p-2(f,) (see Subsection 6.1.2), p[p lis expected
to converge exponentially to 1 as p — oo, and in fact, even for moderate values of p such as p = 35,6, we
see from Table 6.1 that the value p[” I'is not satisfactory. This ‘exponentially poor’ behavior can be related to
the fact that f,(m)/M;, exponentially approaches O when p increases (see Lemma 4.5, Figure 4.3, Table 4.1).
Finally, from some numerical experiments we observe that p(K,[f”) ~ 1.8372, VYn > 15. Therefore, the best
parameter w!Yl = 1.2229 produces a non-convergent smoother §L4] =1 - 1.2229 K}*! having p(§,[14]) ~ 1.2467.

. . <lrl .
This shows that the two-grid scheme can be convergent even when the smoother S, is not and, moreover,

. .. . raldl . . .
p? can attain its minimum at a value of w!”! for which p(S, ) > 1, according to the multi-iterative idea

(see Section 6.2).

Table 6.2 illustrates the behavior of TG(SY', PP1) in the case =y =0, for p=1,...,6, with S being
the iteration matrix of the relaxed Gauss-Seidel method for A = K,Ep ], see (6.15). Like in Table 6.1, the
relaxation parameter w'”! was chosen so as to minimize pi' := p(TG(S'”, P'"1)) with n = 2560 (if p is odd)
and n = 2561 (if p is even) among all w € R with at most four nonzero decimal digits after the comma.
It follows from Table 6.2 that, except for the particular case p = 2, the use of the Gauss-Seidel smoother
improves the convergence rate of the two-grid. However, we also observe that ,3,5" ] presents the same
dependence on p as p[P I the scheme is optimal, but its asymptotic convergence rate attains its minimum for
p = 2 and then worsens as p increases from 2 to 6. As explained in the discussion after Lemma 6.1 and
in Subsection 6.2.4, we know that such a worsening is an intrinsic feature of the problem and is related
to the fact that f,(7)/M;, converges exponentially to O for increasing p. In other words, the normalized
symbol f,/M;, shows a numerical zero at &, inducing an ill-conditioning in the high frequencies, where our
coarse-grid operator is not effective and all the considered smoothers (Richardson and Gauss-Seidel) are
weakly contractive.

The rapid worsening of the convergence rate with p is well illustrated in Table 6.3, where we fixed
n = 320 (if p is odd) or n = 321 (if p is even), and we computed for increasing p the spectral radii p[p]
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n ol [ =1/3] | i [o® = 1.0368] | pb [wl°! = 1.2576]
80 0.3333333 0.4479733 0.8927544
160 0.3333333 0.4474586 0.8926293
320 0.3333333 0.4472015 0.8925948
640 0.3333333 0.4470729 0.8925948
1280 0.3333333 0.4470366 0.8925948
2560 0.3333333 0.4470391 0.8925948
no | PP [w? =07311] | pY [0 =1.2229] | B [w!® = 1.2235]
81 0.0257459 0.7373412 0.9596516
161 0.0254342 0.7371979 0.9595077
321 0.0252866 0.7371256 0.9594351
641 0.0252153 0.7371016 0.9593993
1281 0.0252000 0.7371016 0.9593993
2561 0.0252000 0.7371016 0.9593993

Table 6.1: values of ﬁ,[f .= p(TG(§Lp], PL” ])) in the case 8 =y = 0, for the specified parameter w!?.

n || plM [w™ = 0.9065] | P [wB = 0.9483] | PP [wP! = 1.1999]
80 0.1762977 0.1486937 0.4279346
160 0.1771878 0.1534242 0.4491173
320 0.1956301 0.1567792 0.4628558
640 0.2228058 0.1589204 0.4710180
1280 0.2358223 0.1602392 0.4758293
2560 0.2416926 0.1609750 0.4786945

no || p [0® =0.9109] | pIM [w* = 1.0602] | plF! [ = 1.3292]
81 0.0648736 0.2972510 0.5631940
161 0.0648736 0.3110761 0.5852798
321 0.0648736 0.3201033 0.6002364
641 0.0648736 0.3255332 0.6104147
1281 0.0648736 0.3286511 0.6164439
2561 0.0649656 0.3304592 0.6197837

Table 6.2: values of p! := p(TG(SY, PPY)) in the case B =y = 0, for the specified parameter w'”).

p 1 2 3 4 5 6 7 8 9 10 1 12
ﬁ,[f] 0.3333 0.0253 0.4471 0.7371 0.8926 0.9594 0.9853 0.9947 0.9981 0.9994 0.9998 0.9999
ﬁLp] 0.1941 0.0639 0.1567 0.3156 0.4608 0.5990 0.7173 0.8114 0.8813 0.9289 0.9627 0.9818

Table 6.3: values of ,5,[1” Iand /3,[1” !in the case B =17 =0, corresponding to the optimal parameters w!”' with

four nonzero decimal digits after the comma. We fixed n = 320 (if p is odd) or n = 321 (if p is even).
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n /31 | elM0.9065] || 22'11.0368] | l*1[0.9483] || cP'[1.2576] | &lP'[1.1999]
80 17 14 24 10 164 22

160 17 14 25 10 166 23
320 18 14 25 10 169 23
640 18 14 25 11 172 24
1280 18 14 26 1 175 24
2560 18 14 26 1 178 25

n | @210.7311] | 217[0.9109] || ¢M[1.2229] | &iM'[1.0602] || ¢®'[1.2235] | &lf[1.3292)

81 6 7 62 15 456 32

161 6 8 62 16 460 33

321 6 8 63 16 467 33
641 6 8 64 16 475 34
1281 6 8 66 17 483 35
2561 6 8 67 17 492 36

Table 6.4: number of iterations ¢! and &' needed by TG(§LPJ,P,[{7 1 and TGS, PPy respectively, for

solving %A,[f w = f with B=-5 y=1, f=1 up to a precision of 1078, The methods have been started with
u® = 0. The parameter w!”! is specified between brackets [-].

and /3,[{’ ! obtained with the best parameters w!”! among all w € R with four nonzero decimal digits after the

comma.
We now compare TG(E,[;D],PL‘D N and TGS, PPl on the linear system %AL” 'w = f, coming from the
B-spline Galerkin approximation of the model problem (6.1) in the case d =1, with §=-5, y=1and f =1

In Table 6.4, the considered linear system was solved for p = 1,...,6 and for increasing values of n by

means of TG(§,[1P],P,[1” 1) (with ! as in Table 6.1) and TGS, Py (with w!?! as in Table 6.2). For each

pair (p,n), ¢! and el are, respectively, the number of iterations needed by TG(ELP], PNy and TGS, pirhy,

both started with initial guess u® = 0, to compute a vector u' whose relative residual in the 2-norm is
less than 1078, i.e.,

1
Hf — =AW < 1078|f]]. (6.26)
n

6.3.2 Multi-iterative two-grid method with PCG as smoother

. . . . . . _[ ] & ¢ 5
Despite their optimality, the basic two-grid schemes TG(S np , PE,p ]) and TG(S E,p ], PElp ]) suffer from a ‘pathology’,
because, as already discussed, their convergence rate rapidly worsens when p increases. To overcome this
problem, we follow the multi-iterative idea outlined in Subsection 6.2.5 and we replace, in the two-grid

Algorithm 6.1, the smoothers Eip] and S ,[f’ I with the PCG method, whose preconditioner T, ,-o(h,_1) takes
care of dampening the high frequencies corresponding to values of 8 near m.

We first illustrate the PCG method (see Algorithm 6.2) applied to the linear system %A,[f w = f, coming
from the B-spline Galerkin approximation of the model problem (6.1) in the case d = 1, with 8 =0, v =1
and f = 1. Table 6.5 reports the number of iterations needed by the PCG method with preconditioner
T,ip-2(h,_1) to compute a vector u© satisfying a relative residual less than 107%; see (6.26). We observe that
the PCG method is essentially p-independent, but slowly convergent when the matrix size increases. On the
other hand, as shown in Table 6.6, the number of iterations needed by the PCG method with preconditioner
T, p-o(fp) is essentially independent of both n and p; see Remark 6.2.

As discussed in Subsection 6.2.5, the convergence rate of the two-grid method can be improved for large
p by using the PCG method as smoother. In the following experiments, we replace the Richardson and

. —lprl a . . . . .
Gauss-Seidel post-smoothers S np and S, used in the previous subsection, with a few PCG post-smoothing
iterations (say s'?! iterations) with preconditioner T, p-2(hp—1). Due to the presence of the PCG smoother,
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n [ P[P

80 40 40 411 42 44 44
160 80 80 81 83 86 87
320 160 | 160 | 161 | 166 | 170 172
640 320 | 320 | 321 | 331 | 338 | 343

1280 | 640 | 640 | 641 | 658 | 671 | 684
2560 || 1280 | 1280 | 1281 | 1310 | 1339 | 1362

Table 6.5: number of iterations c,[f ! needed by the PCG method with preconditioner T, ,-2(h,-1), for solving

the system %A,[f lw = f in the case B=0,y=1, f=1, up to a precision of 1078. The method has been started
with u® = 0.

no e el et et et | e
80 | 4] 6|6 78|10
60 | 4|6 | 7| 7]8]10
320 || 4| 6| 7|8/ 8]10
640 | 4 | 6 | 7 | 8 | 8 | 12
1280 | 4 | 6 | 7| 8 |10 11

2560 || 4 | 6 | 7 | 8 |10 | 12

Table 6.6: number of iterations ¢ needed by the PCG method with preconditioner Tip-2(f,), for solving

the system %AL” 'w = f in the case B=0,y=1, f=1, up to a precision of 1078. The method has been started
with u©@ = 0.

the resulting method is no more a stationary iterative method, and hence it is not a two-grid in the classical
sense. However, using an expressive notation, we denote it by TG((PCG)SW,PLP ]), where the exponent s!?!
simply indicates that we apply s'”! steps of the PCG algorithm with preconditioner Tyip—2(hpy).

Then, the same system %A,[f’ luw = f considered in Tables 6.5-6.6 was solved for p=1...,6 and for

increasing values of n by means of TG((PCG)*", P”)y and TG((8""*", P”). The latter method, as indicated
by the notation, is the same as TG(S' E,p ], P,[f ]), except that now we apply s'”! post-smoothing iterations by S B” !
instead of one. This is done for making a fair comparison with TG((PCG)SM, PEIP ]), in which s'! steps of PCG
are applied. For the smoother S ,[,p ! we used the same (optimal) w!”! as in Table 6.2. Both TG((PCG)S“’], PL” ])
and TG(SP)", PIPly were started with u® = 0 and stopped at the first term u® satisfying (6.26). The
corresponding numbers of iterations are collected in Table 6.7.

We observe from Table 6.7 that TG((PCG)*", P'")) performs better than TG((S)*"”, P"1 not only for
large p but also for small p, though the difference between the two methods is much more appreciable when
p is large. In the 2D case, the difference in performances between their 2D variants is even more significant;
see Table 6.12. Another observation from Table 6.7 is the following: provided we increase s'”! a little bit when
p increases, the number of iterations EL” ! needed by TG((PCG)S["],PE,” ]) to reach the preassigned accuracy
1078 is essentially independent of both n and p. This implies that TG((PCG)S“’],PLIJ J) is robust not only with
respect to n but also with respect to p.

Summarizing, TG((PCG)“'“’J,P,[{’ ]) is a totally robust method, not only with respect to n but also with

respect to p. This property does not hold for the classical two-grid schemes TG(ELP],P,B” ]) and TG(S E,p ],ng ]),

because we have seen that /_),[f Iand /SLP Iincrease with p.
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no || @02 | el 10.9065] || &3 (2] | el [0.9483] || &' (3] | &PT [1.1999]
80 4 7 6 6 5 8
160 3 7 6 6 5 8
320 3 7 6 6 5 8
640 3 7 6 6 6 9
1280 3 7 6 6 6 9
2560 3 7 6 6 6 9
no || &2 21 | e 091091 || & 3] | & [1.0602] || &% (3] | ¥ [1.3292]
81 6 7 5 6 6 12
161 6 7 5 6 6 12
321 6 7 5 6 6 12
641 7 7 5 6 6 12
1281 7 7 5 6 6 13
2561 7 8 6 6 6 13

Table 6.7: number of iterations &/ and ¢! needed by TG((PCG)*", Py and TG((S")"", P"") respectively,
for solving lA[” 'w = f in the case B=0,y=1 f=1 up to a precision of 1078, The methods have been

started with u(o) = 0. The parameters s”! and w!”! are specified between brackets [-] near the labels &7 and

&Pl respectively.

6.4 Two-grid algorithms and their performances: 2D

In this section, we consider specialized two-grid methods for solving linear systems with coefficient matrix
AL’” Pl = AP \where p = (p,p), n = (n,n) = nv and v = (1,1). We first examine the numerical behavior of
classical two-grid schemes, which will prove to be unsatisfactory for large p. We will then consider the
multi-iterative two-grid scheme analogous to the one tested in Subsection 6.3.2 and we shall see that this
solver turns out to have a convergence rate that is at the same time optimal and robust, i.e., n-independent
and p-independent.

6.4.1 Classical two-grid methods

We consider two-grid methods with the classical full-weighting projector PL{’ Pl Ppip-2nsp-2, as given by
(6.20)-(6.21) for m = (n+ p—2,n+ p — 2). As already pointed out, such a projector induces a coarse-grid
correction effective in the low frequencies. Like in the 1D setting, we only consider two-grid methods without
pre-smoothing steps and with a single post-smoothing step, and we provide two choices of the smoother:

. cr . . . glppl . .
the relaxed Richardson smoother with iteration matrix §,, and the relaxed Gauss-Seidel smoother with

iteration matrix S Lp,,p ], cf. (6.14)-(6.15). With the smoothers and the projector as above, our two-grid procedure
is defined completely for A = A7) see Algorithm 6.1.
Table 6.8 shows the results of some numerical experiments in the case 8 =0,y =0. For p=1,...,6, we
determined experimentally the parameter w!”’! minimizing the quantity p[p Pl .= = p(TG(S ,[fnp], P[” 7 ])), where n
=[p.pl

is chosen to be 32 (if p is odd) or 33 (if p is even). Then, we computed the spectral radii p, " for increasing
values of n. In all the considered experiments, the proposed two-grid method is opttmal. However, for
p = 4,5,6 the spectral radii are very close to 1, and this is not satisfactory for practical purposes. The
numerical experiments in Table 6.9, obtained as those in Table 6.8, show a certain improvement in the
two-grid convergence rate when using the relaxed Gauss-Seidel smoother instead of Richardson’s. However,
for large p, the values p[p 7 are still unsatisfactory.
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n || P [ = 0.3335] | B3 [wf33 = 1.3739] | 5T [w55] = 1.3293]
16 0.3287279 09248227 0.9984590
28 0.3316020 0.9239241 0.9983433
40 0.3323146 0.9231361 0.9983185
52 0.3325944 09229755 0.9983134
n || 527 (w2 = 11009] | p5T [l = 1.4000] | pOYT [0 = 1.2505]
17 0.6085689 0.9885344 0.9997977
29 0.6085689 0.9881173 0.9997766
41 0.6085689 0.9880112 0.9997724
53 0.6085689 0.9879839 0.9997715

<lp.pl

Table 6.8: values of /_)Ef,”,’,p l.= (TGS, ,PL’,’ "’ ])) in the case B =0, y = 0, for the specified parameter w7

no || i [0 = 1.0035) | pi33 (w3 = 1.3143] | pP3) (w5 = 1.3990]
16 0.1588106 0.6420608 0.9629505
28 0.1678248 0.6411764 0.9633667
40 0.1753106 0.6418579 0.9626834
52 0.1804148 0.6465563 0.9620579
n || pd [ =11695] | pli [ = 1.3248] | plod! [w!50) = 1.4914]
17 0.2661407 0.8798035 0.9913084
29 0.2689991 0.8779954 0.9903263
41 0.2901481 0.8773914 0.9898795
53 0.3045791 0.8778602 0.9897372

Table 6.9: values of p" := p(TG(SLP, PP1)) in the case B =0, y = 0, for the specified parameter w!?!.

6.4.2 Multi-iterative two-grid method with PCG as smoother

The convergence rate of both the two-grid schemes TG(EZ;M,PL{’;LP N and TGP, PPl rapidly worsens

when p increases. The main reason, as explained in Subsection 6.2.4, is the presence of a large set of
numerical zeros of the symbol f,S,ll’,D; see (6.4). Following the suggestion from Subsection 6.2.5, we now adopt
a multi-iterative method, identical to the one tested in Subsection 6.3.2, which involves the PCG method as
smoother.

Let us first illustrate the PCG method (see Algorithm 6.2) applied to the linear system AE,P o u = f, coming
from the B-spline Galerkin approximation of the model problem (6.1) in the case d = 2 with =0, y =1
and f = 1. Tables 6.10 and 6.11 report the number of iterations needed by the PCG with preconditioners
Tyip-o(hp-1) ® Tyip-2(h,—1) and Tpyp_o(fp) ® Tyip-2(f,), respectively, for computing a vector u© satisfying a
relative residual less than 1078. As illustrated in Table 6.10, the former PCG is not efficient for large n,
but its convergence rate is quite robust with respect to p; see Subsection 6.2.5 for an explanation of this
phenomenon. On the other hand, Table 6.11 shows that the latter PCG is not at all effective, because the
dependency on n and p is unsatisfactory; see Remark 6.2.

Then, the same system AL’,’ o 'w = f considered in Tables 6.10-6.11 was solved for p=1...,6 and for
increasing n, by means of TG(PCG)""", PP1y and TG(SL")"", P’P1). The corresponding numbers of
iterations are given in Table 6.12. For S ,[1{’,;” I we used the same (optimal) parameter w!”?! as in Table 6.9.
Both TG((PCG)*"", PP1y and TG((SIMy"", PPl were started with u® = 0 and stopped at the first term
u© satisfying a criterion of relative residual less than 1078, Analogously to the 1D case (see Subsection 6.3.2),
we can conclude that TG((PCG)*"”, P*:P) is robust not only with respect to n but also with respect to p.
The only unpleasant point is that, similarly to the 1D case, s!??! increases a little bit when p increases.

We end this subsection with a numerical experiment involving a nonzero convection term B. To be

precise, we consider the linear system A,[,p P lw=f coming from the B-spline Galerkin approximation of the
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n | ' | | G | Chnt | G | Cun
20 |[ 25 | 24 | 26 | 29 | 33 | 40
40 || 52 | 49 | 49 | 57 | 65 | 7
60 | 78 | 75 | 75 | 83 | 96 | 118
80 | 104 | 100 | 100 | 11 | 130 | 157
100 | 131 | 125 | 126 | 140 | 165 | 198
120 | 157 | 151 | 151 | 168 | 200 | 241

Table 6.10: number of iterations c[’7 7l needed by the PCG with preconditioner T, p—2(hp—1) ® Tpsp-a(hy1),

for solving the system A, u =

[p.p]

been started with u® = 0.

n |l chn' | G | G | Cne | G | Con
20 || 64 | 79 | 100 | 120 | 153 | 184
40 | 133 | 166 | 195 | 232 | 293 | 364
60 | 203 | 249 | 286 | 342 | 419 | 518
80 | 266 | 328 | 374 | 444 | 538 | 662
100 | 328 | 403 | 462 | 546 | 660 | 808
120 || 391 | 480 | 549 | 649 | 773 | 952

=finthe case =0,y =1, f =1, up to a precision of 1078, The method has

Table 6.11: number of iterations c[p 71 needed by the PCG with preconditioner T, ,-o(f,) ® Tyip-2(f,), for
solving the system A,[fnp]u =finthecase =0,y =1, f =1, up to a precision of 1078, The method has
been started with u® = 0.

Table 6.12: number of iterations ¢,
respectively, for solving

ALY

I’l}’l

n || @ 121 | é [1.0035] || &t (2] | ény [11.8143] || & [4] | & [1.3990]
20 6 7 6 16 7 65
40 6 7 6 14 6 34
60 6 7 6 14 6 49
80 b) 7 6 13 6 46
100 b) 7 6 13 6 44
120 b) 7 6 13 6 42
n_ || G 121 | énd 111695] || ! [3] | e [1.3248] || &5 [6] | &) [1.4914]
21 6 8 6 32 6 140
41 6 8 6 29 6 115
61 6 8 6 27 ) 104
81 6 9 6 26 ) 97
101 6 9 6 26 b 91
121 6 9 6 25 h) 87
&P and e needed by TG(PCG)*"", PPy and TG((SY!

) stp-pl

P[P,P]

n.n

)

"'w="Ffin the case B=0,y =1, f =1, up to a precision of 1078. The methods

have been started with u® = 0. The parameters s”?! and w!”P! are specified between brackets [-] near the
respectively.

labels ¢,

[P pl

and ¢

Alp.pl

nn »
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Table 6.13: number of iterations &/ needed by TG(PGMRES)*"", PPy for solving A”"w = £ in the
case B =(5,-5), y =1, f =1, up to a precision of 1078. The method has been started with u® = 0. The
parameter s!”?! is specified between brackets [].

model problem (6.1) in the case d = 2 with 8 = (5,-5), ¥y =1 and f = 1. Due to the presence of the convection
term, the matrix A,[f P I'is no more symmetric. According to Remark 6.1, we replace the PCG smoother in
the two-grid method TG((PCG)S[p’p],P[p P ]) with the PGMRES smoother and, of course, we keep on using the
preconditioner T ,_2(h,_1) ® Ty p-2(hp—1) also in the PGMRES case. The results of the numerical experiment
are shown in Table 6.13.

6.9 Two-grid algorithms and their performances: 3D

We are now convinced, on the basis of the results in the previous sections, that standard smoothers such
as Richardson or Gauss-Seidel do not produce robust two-grid methods with respect to p. Hence, a fortiori,
they cannot produce p-robust V-cycles or W-cycles. On the contrary, if we take as smoother the PCG or the
PGMRES method with preconditioner given by (6.24), the resulting two-grid method is robust with respect
to both n and p.

In this section we provide a 3D evidence of this (n, p)-robustness. In analogy with the previous sections,
we consider the linear system nd‘zAE{’ w=f, coming from the B-spline Galerkin approximation of the model
problem (6.1), in the case d = 3, with B =0, y =1, f =1 and n = (n,n,n), p = (p,p,p). Then we
solve this system up to a precision of 1078, using either the PCG method alone or the two-grid method
TG((PCG)", PP, where P! = P,., 5 is the projector defined in (6.20)-(6.21) for m = n + p — 2, while s'”!
is the number of PCG post-smoothing iterations.

We see from Table 6.14 that the considered PCG method alone is p-robust. Table 6.15 shows the (n, p)-
robustness of TG((PCG)S“’J,PEf]). By comparing Tables 6.7, 6.12 and 6.15, we see that TG((PCG)S["J,PB’]) is
also robust with respect to the dimensionality d. The only unpleasant point is that s'? slightly increases
when p and d increase. Note, however, that the p-growth of s?! could be expected, because Tables 6.5, 6.10
and 6.14 show that the PCG method alone is p-robust, but not completely p-independent: for fixed n, the
number of iterations slightly increases with p. Nevertheless, we should also say that if we decrease s'”! a
little bit, the number of iterations does not increase so much. For instance, if in Table 6.15 we had chosen
516681 = 6 (instead of s = 9), then the resulting number of iterations iy, for n = 45 would be 10.
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Table 6.14: number of iterations ¢
Tyip-2(hy,_y1), for solving the system n

n C}['ll l’} lll] CLZnZnZ] Cl[‘lSnSnS] CI[’L4n4n4] C}[’LSI’LSIIS] CEEBnan]
15 21 19 22 28 35 54
25 35 32 33 40 50 67
35 49 46 46 353 68 84
45 64 60 60 68 84 105

[p.p.p]

n,n,n

n,n,n

The method has been started with u® = 0.

n ~|111| [2] ~[333] [3] ~[555| [5]
14 6 6 8
24 6 6 7
34 6 6 7
44 6 6 6
n | G 121 | G 141 | Einn [9]
15 8 6 7
25 7 6 7
35 7 6 6
45 6 6 6
. . . ~[p,p,p] slppspl [p,p.p] . D, _ .
Table 6.15: number of iterations ¢,,, needed by TG((PCG) , Punn ') for solving nA, ;" u = f in the

case =0,y =1, f =1, up to a precision of 1078. The method has been started with u'” = 0. The parameter

needed by the PCG with preconditioner T, p—2(hp—1) ® Ty p-2(hp-1) ®

APPPly = £ in the case B=0, y =1, f = 1, up to a precision of 1078,

sPPPlis specified between brackets [-].

6.6 Multigrid: V-cycle and W-cycle

This section illustrates the numerical behavior of the V-cycle and W-cycle multigrid algorithms.

the two-grid algorithms, we observe an optimal convergence rate; see Tables 6.16-6.18. In all the numerical
experiments of this section, we considered the linear systems ni2APy, = 1, coming from the B-spline
Galerkin approximation of (6.1) in the cases d = 1, d = 2 and d = 3, respectively, with g = 0, v = 0,
f=land n=(n,...,n), p=(p,...,p). The V-cycle and W-cycle algorithms were started with initial guess
u© = 0 and stopped with the criterion of the relative residual less than 1078, i.e., |[n?2APu© — £|| < 1078||f]!.

6.6.1 1D case

Table 6.16 reports the numbers of iterations needed to solve the system %ALP 'w = £ with the V-cycle and the
W-cycle multigrid. We now explain in detail how our multigrid algorithms were constructed.

The finest level is indicated by index 0 and the coarsest level by index gl =log,(n+ p—1) -1, assuming
that n+ p —1is a power of 2. Let A[p I be the matrix at level i and let m[p I denote its dimension, 0 < i < €7,
In this notation, we have A[” . IAEI” ],

[p] [p] 4lpl ( plPINT :
Al =PLAN P, i=0,...,0M -1,
and A[p;[p] has dimension 1. In the above expression,
n’ n

PPl=P i, i=0,...,00 -1,

one can

is the projector at level i, defined by (6.20)-(6.21) for d =1 and m = m Pl
a7

Efijﬂ Lp] -1/2,i=0 .,f,[,pj—l, and mfij_%ljl_l i=0,.

. Given the shape of P

show by induction on i that m (m,,;
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no | &2 | e ro9065] || n | & 21 | e [0.9483] no | & 31| e [1.1999]
6 |10 7|09 7 4 [ 8 6|7 5 12 [ 7 5|7 7
32 |11 7|10 7 30 |9 6|38 5 28 |9 5|8 8
64 |12 7|1 7 62 |10 6|9 6 60 |10 5|9 8
128 |13 7|12 8 126 |11 619 6 124 |11 5|10 8
256 | 13 7 | 12 8 254 | 11 6 |10 6 252 |12 6 | 11 8
512 |14 7 |13 8 510 |12 6 | 11 6 508 | 13 6 | 12 9
1024 |14 7 |14 8 1022 | 12 6 | 12 6 1020 | 13 6 | 13 9

no | &2 | e 10.9109] no | @Y 31| e [1.0602] no | @931 | el 11.3292]
5 | 8 67 6 3 |8 66 5 n |7 5|10 10
31 [10 6|9 7 29 | 9 6|8 6 27 |9 6|12 12
63 |11 6 |10 7 61 |10 6|9 6 59 | 9 6|12 12
127 |11 6|1 7 125 |11 6|10 6 123 |11 6|12 12
255 |12 7 |1 7 253 |12 6 | 11 6 251 |12 6 | 12 12
511 [ 13 7 |12 7 509 | 12 6 | 12 6 507 |13 6 |13 12
1023 |13 7 |12 7 1021 [ 13 6 |13 6 1019 |14 6|13 13

Table 6.16: number of iterations &7 (resp. &) needed for solving iA,[,” 'w = fin the case B =y =0

and f =1, up to a precision of 107, when using the multigrid cycle with s'?! post-smoothing steps by the
PCG algorithm (resp. by the relaxed Gauss-Seidel smoother $ L” 3) at the finest level, and one post-smoothing

step by the simple Gauss-Seidel smoother S ,[fi] at all other levels. The parameters si?! and w!?! are specified

between brackets [-] near the labels E,[lp I and 62” ], respectively. For each pair (p,n), the first entry in the cell

corresponding to &' refers to the V-cycle, the second to the W-cycle. The same holds for &7,

We note that the choice of the projector PLPI I at each level i has the same motivation as the projector PL” ]
for %A,[f’ I, Indeed, we know that AL” 1 = %AE{’ " has the symbol f, := f,. Then, referring to [62, Proposition 2.2]
or [2, Proposition 2.5], it follows that AEZ.] has a symbol f,; at level i sharing the same properties of the
symbol f,o at level 0: f,;(0) = 0, with § = 0 a zero of order two, and f,;(6) > 0 for all 8 € [-m, 7]\{0} (see
also Subsection 3.7.1 in [64]). These properties make it necessary to use for AL”I.] a projector like PL” i], which
is effective in low frequencies. ’ ’

Regarding the smoother, at each coarse level i > 1 we chose the standard Gauss-Seidel smoother without
relaxation S Efl.], as given in (6.15) for A = %AE,” land w = 1. However, at the finest level i = 0 we consid-
ered two alternatives: s'”! smoothing iterations by the PCG method with preconditioner T, ,-2(h,-1), as in
Subsection 6.3.2, or s'?! smoothing iterations by the relaxed Gauss-Seidel method S Lp(l with the relaxation
parameter w!”! as in Table 6.2. Note that, due to the presence of the (optimal) parameter w!?!, § ,[1” 1 is different
from SL”I.], i>1

At e:ach level i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and
two recursive calls in the W-cycle, and then we applied one post-smoothing iteration by S Efi] (if i > 1), or sl

post-smoothing iterations by the PCG algorithm or S EL” 0] (if i = 0). From Table 6.16 we can conclude that all
the proposed multigrid methods have an optimal convérgence rate, independent of n. Moreover, the versions
with a few PCG smoothing steps are also robust in p.

Finally, we want to motivate why the s'”! PCG smoothing steps were used only at the finest level. Let
My, = maXge[_rz fpi(0). Referring to [62, Proposition 2.2 (item 2)], and taking into account some additional
numerical experiments that we performed, it seems that the numerical zero 6 = 7 of f,0/My,, disappears for
i1 > 1, and each fp7,~/Mfm., i > 1, only possesses the actual zero 6 = 0, like the symbol 2 — 2 cos 8 associated
with the FD discretization matrices in one dimension; see (6.19). Hence, a single smoothing iteration by the
standard Gauss-Seidel method is all we need at the coarse levels i > 1.
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no | @bzl | et 1003s] || on | @32y | 3 s3] || on | &3 4] | 2207 [1.3990]
6110 7 ]9 7 4 |7 6 |16 16 127 718 85
32 |11 7 |10 7 30 |9 6 |15 15 28 | 8 6 | 59 59
64 |12 7 |11 7 62 |9 6 |14 14 60 |10 6 | 49 49
128 |13 7 |12 7 126 |10 6 |13 13 124 | 11 6 | 42 42
256 |13 7 |13 7 254 | 11 6 |13 13 252 |12 6 | 38 38
no | ez |z (11695] || on | B[] | el [1.3248] || n | @00 (6] | el [1.4914]
518 68 8 317 6 37 3 17 7 [204 204
31 |9 6 |8 8 29 | 8 6 |30 30 27 |8 6 | 129 129
63 |10 6 | 9 9 61 |10 6 | 27 28 59 |10 6 | 105 105
127 |11 6 |10 9 125 |11 6 |25 25 12211 6 | 86 87
255 |12 7 |11 9 253 (12 6 |23 23 25112 6 | 71 72

Table 6.17: number of iterations c[p 7 (resp. c,[f’np ) needed for solving AL” Pl = f in the case =0, y = 0,

f =1, up to a precision of 1078, when using the multigrid cycle with s!”P! post-smoothing steps by the PCG

algorithm (resp. by the relaxed Gauss Seidel smoother S p.p J) at the finest level and one post-smoothing step

S Lp- ’Z.] at all other levels. The parameters s”P! and w!PP! are specified

between brackets [-] near the labels c,[f’np ] and c,[f’,,p I respectively. For each pair (p,n), the first entry in the

cell corresponding to &) refers to the V-cycle, the second to the W-cycle. The same holds for &/,

by the simple Gauss-Seidel smoother

6.6.2 2D case

Table 6.17 reports the numbers of iterations needed to solve the system A%’ o w = f with the V-cycle and the
W-cycle multigrid. The multigrid algorithms were constructed in a similar way as in the 1D case.
The finest level is again indicated by index 0 and the coarsest level by index o = log,(n+p—-1) -1

Let A[p ’ ! be the matrix at level i, whose dimension is (m[p N2 0 < i< P with mLpl] = "+§_1 -1 as in
Subsectton 6.6.1. We have
AL = PEDALIY. =0,
where
PO = P o, 0= 0,0, 00 =1,

is the projector at level i, defined by (6.20)~(6. 21) for d =2 and m = (m”, m")).

Regarding the smoother, we took the same choices as in the 1D case. At each coarse level i > 1 we used
the standard Gauss-Seidel smoother without relaxation. However, at the finest level i = 0 we used either
5Pl smoothing iterations by the PCG algorithm with preconditioner (6.24) or s!”! smoothing iterations by
the relaxed Gauss-Seidel method S [” p I with the relaxation parameter w!'”?! as in Table 6.9.

At each level i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and

two recursive calls in the W-cycle, and then we applied one post smoothing iteration by $ ,[f ,;ﬁ.] ifi>1), or
stPPl post-smoothing iterations by the PCG algorithm or S [p (Lf i =0).

6.6.3 3D case

Table 6.18 reports the numbers of iterations needed to solve nAnpnpnp ' = f with the V-cycle and W-cycle

multigrid. The multigrid algorithms were constructed as in the 1D and 2D case.
The finest level is again indicated by index 0 and the coarsest level by index o = log,(n+p—-1) -1

Let AEL”n’;’? be the matrix at level i, whose dimension is (m[”])3 0 <i< ) with m[ Pl - I _1asin
Subsections 6.6.1-6.6.2. We have AELP npn%] = nA"" and

Alpprl - pleppl glp.ppl (plPPpJ) i:O,...,fElp] -

nnnt+1 n,n,n,t n,n,n,l n,n,n,t
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n | G 120 || 0 | & 131 n | & (5]
16 | 10 7 14 | 7 6 12 | 8 8
32|11 7 |[30]|8 6 |[28|8 7
64|12 7 |62|/9 6 609 6
| G 121 || 0 | St (41 ] n | G (9]
59 8 |[B3[7 6 |1][9 09
3108 7 |29 6 |27]|8 6
63| 9 7 | el 6 5910 6

Table 6.18: number of iterations &/" needed for solving nAY”"'w = f in the case =0, y = 0, f = 1,

up to a precision of 1078, when using the multigrid cycle with s!»PP! post-smoothing steps by the PCG
algorithm at the finest level and one post-smoothing step by the simple Gauss-Seidel smoother $ L” w ,;f;] at all
other levels. The parameter si”7P! is specified between brackets [-]. For each pair (p,n), the first entry in the

cell corresponding to &2 refers to the V-cycle, the second to the W-cycle.

where
PPPPY = P, i=0,...,00 -1,

n,n,n,i m, G,

is the projector at level i, as given by (6.20)—(6.21) for d = 3 and m = (m,[l’fi],m,[l’;],mi”i]).

Regarding the smoother, we took the same choices as in the 1D and 2D case. At each coarse level i > 1
we used the standard Gauss-Seidel smoother without relaxation; at the finest level i = 0 we used st?P?!
smoothing iterations by the PCG algorithm with preconditioner (6.24).

At each level i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and
two recursive calls in the W-cycle, and then we applied one post-smoothing iteration by S L”n’;f] ifi>1), or
stPP-Pl post-smoothing iterations by the PCG algorithm (if i = 0).

When using a few PCG smoothing steps at the finest level, we can conclude from Tables 6.16-6.18
that the resulting V-cycle and W-cycle multigrid algorithms have a convergence rate which is substantially
independent not only of n but also of p. This means that they are robust with respect to both n and
p- We also note that the W-cycle convergence rate is essentially the same as the corresponding two-grid
convergence rate: compare Tables 6.16-6.18 with Tables 6.7, 6.12 and 6.15.

6.7 Further insights: fast multi-iterative solver for Galerkin B-spline IgA stiffness
matrices associated with full elliptic problems

In Section 6.6 we have designed optimal and robust multi-iterative methods of multigrid type for solving
linear systems with coefficient matrix Agf] as in (6.2) with B = 0 and y = 0; this is the B-spline discretization
matrix related to the Laplacian on the hypercube and will be referred to as the Parametric Laplacian
matrix (or PL-matrix). In this section we show that the solution of linear systems related to the Galerkin
B-spline IgA approximation of more general elliptic problems with variable coefficients and with a domain
deformation can be reduced to the solution of linear systems involving the PL-matrix. Indeed, the PL-matrix
itself is an optimal and robust GMRES preconditioner for the full IgA stiffness matrices.

We begin with a brief description of the isogeometric Galerkin method for the solution of full elliptic
problems with variable coefficients on general domains. Here, we do not confine ourselves to the isogeometric
approach in the strict sense, since we allow the geometry map to be any function, not necessarily described
by B-splines. Then, we provide the expression of the resulting stiffness matrices. Finally, we give a numerical
evidence of the optimality of the PL-matrix as a preconditioner for such matrices.
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Let us consider the following full elliptic differential problem:

(6.27)

-V KVu+B-Vu+yu=f inQ,
u=0 on 0Q),

where Q is a bounded open domain in R?, K : Q — R® is an SPD matrix of functions in L*(Q), 8 : Q — R
is a vector of functions in L¥(Q), v € L¥(Q), ¥ > 0 and f € L%(Q). The weak form of (6.27) consists in
finding u € Hy(Q) such that

f (KVu-Vv+B-Vuv+yuy) = f fv, YveH)Q). (6.28)
Q Q

Suppose that the physical domain Q can be described by a global geometry map G : Q — Q, which is
invertible in the parametric domain Q= [0,1]¢ and satisfies G(GQ) = 0Q. Let {¢1,...,0m} be a set of basis
functions defined on Q and vanishing on the boundary 0. We approximate the solution of (6.28) by the
Galerkin method using the approximation space # :={¢;: i=1,...,m) C H(l)(Q), where

@i(x) := $i(G7' (X)) = @i(X), x = G(X).

More precisely, we look for uy € # such that

f (KVuy -Vv+B-Vuy v+ yuyv) = ffv, YveW, (6.29)
Q Q

which is equivalent to solving the linear system Agu = fg, where

Ag = [f(KVgoj-Vg0i+ﬂ-V¢pj 90i+'}’90j90i)] ) fg = [ff‘ﬁi] )
Q j,j=1 Q i=1

iJ

and u is the coefficient vector of uy with respect to {¢y,...,Qn}: Uy = Z;-"zl ujpj. Assuming that G and ¢,
i =1,...,m, are sufficiently regular, we can apply standard differential calculus and we get the following
expressions for Ag and fg in terms of G and &;, i =1,...,m:

m

Ac=[ fg ((V‘;Dj)T(JG)_IK(G)(JG)_TV‘,?%+(V¢j)T(JG)_1ﬂ(G)<,A0,~+7(G)¢j¢i)|det(fg)|] , (6.30)

i,j=1

) (6.31)

6G,‘ " (9X,' "
Jg = —aA = 9%
Xj lij=1 Xj

i,j= i,j=1

fg = [fg f(G) @ildet(JG)l].

i=1

where

is the Jacobian matrix of G. In the framework of IgA based on B-splines, the basis functions ¢;, i = 1,...,m,
are tensor-product B-splines as in (4.5) and (5.14). The resulting stiffness matrix Ag in (6.30) is denoted by
Ag]n to emphasize its dependence on the B-spline degrees p and the fineness parameters n.

We now focus on a specific example in the case d = 2, in which we illustrate that the PL-matrix is an
optimal and robust GMRES preconditioner for the matrix (6.30). We consider problem (6.27) on a quarter

of an annulus, namely

Q:{(x,y)eRZ: r2<x2+y2<R2,x>0,y>O}, r=1, R=4,
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n p=1 p=2 p=3 p=4 p=9>5 p=6

I P I P | I P I P I P I P
10129 16| 25 18|42 19| 72 21| 119 22| 164 23
20| 61 20| 42 21 |50 22| 84 23| 140 24| 223 25
30 | 94 22|63 23|60 23| 90 24| 154 25| 240 26
40 | 128 23 | 84 24 |77 24| 95 25| 161 26 | 249 26
50 | 161 24 | 106 24 | 96 25 | 106 26 | 168 26 | 256 27

Table 6.19: number of GMRES iterations without (I) and with (P) preconditioning for solving Ag” fiu = fg

up to a precision of 1078, varying the fineness parameter n, = n, = n and the spline degree p; = p, = p.

and with
K(x.y) = (2+cosx)(1+y) cos(x+y)sin(x+y)
Y= cos(x + y)sin(x+y) (2+siny)1+x) |
cos —=
pay = | V|
Y(x,y) = xy,

f(x,y) = xcosy + ysin x.

The geometry map is given by

. { x = [r+ &R - r)] cos(%9),

G(X,9) = (x,y), where )
y = [r+ X(R — r)] sin(3P).

We solved the corresponding IgA Galerkin system Ag’,ﬂ u = fg using GMRES without restarting and with
a tolerance of 1078, The results are collected in Table 6.19. The GMRES method was applied first without
preconditioning and then with the preconditioner AL{’,’,” ], given by (6.2) for d = 2, n = (n,n), p = (p,p)
and B =0, v = 0. The table clearly illustrates that the PL-matrix AE,P o I'is an optimal and robust GMRES
preconditioner for A[Ci rf’i Indeed, the number of iterations to reach the fixed accuracy 1078 is substantially
independent of both n and p.

Summarizing, our proposal for solving linear systems associated with the B-spline IgA Galerkin approx-
imation of full elliptic problems such as (6.27) is the following.

e As external solver, we use a PGMRES method, with preconditioner given by the PL-matrix AL{ b ]
The theoretical foundation of such a proposal falls beyond the scope of the paper. However, we can
anticipate that the observed (optimal and robust) convergence rate is related to a conditioning measure
of K, i.e.,

SUP,, yyeq Amax (K (X, )
inf(x,y)eQ /lmin(K(x» )’)) ,

and to the same measure for (Jg)' Jg. Again, the analysis is based on the study of the symbol, in a
similar way as carried out in Chapter 5 for the IgA collocation setting.

e The PL-matrix (or, more precisely, its scaled version nd‘ZAEZf ’j.',',;p ]) is treated by the specific multi-iterative
solver of multigrid type designed in Section 6.6. This consists of a V-cycle or W-cycle multigrid
method, which applies the standard full-weighting projector (6.21) at each level, a few post-smoothing
iterations by the PCG method with preconditioner ®j:1 Tyip-o(hy_1) at the finest level, and one single

post-smoothing iteration by the standard Gauss-Seidel method at all other levels.
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Chapter 7

Fast iterative solvers for B-spline IgA collocation linear systems

This chapter is in many respects analogous to the previous one. In Chapter 5, we studied the spectral
properties of the collocation matrices Ag]n coming from the B-spline IgA collocation approximation of the
second-order full elliptic problem

u=0 on 0Q, u=0 on 0Q, @.1)

{—V-KVu+a'-Vu+yu:f in Q, =){—1(K0Pu)1T+/3-Vu+'yu:f in Q,
where Q is a bounded open domain in RY, K : Q — R%? is a SPD matrix of functions in C(Q) N C(Q),
@ : Q — R?is a vector of functions in C(Q), v, f € C(Q), y > 0, and Pu, B are given in (5.3)-(5.4). In
particular, we have computed the spectral symbol ((31/1)’ of the normalized matrix-sequence { H%Ag],l}n, n=vn,
and observed that, in the case where G is the identity map over the parameteric domain Q= [0,1]¢ and K
is the identity matrix, the symbol fé‘:l), reduces to the function fIEV) in (5.93); see Remark 5.3. We will now
exploit the properties of the symbol in order to design fast iterative algorithms for solving linear systems with
coefficient matrix Ag ]n As in Chapter 6, our goal is to obtain an iterative method that is optimal and robust
at the same time, meaning that its convergence rate is simultaneously n-independent and p-independent.
Using the properties of fég and f(v), we will succeed in designing a multi-iterative solver with these features,
which will be essentially identical to the one presented in Chapter 6 (see in particular Section 6.7). The

solver consists of the following two-step strategy.

1. An external PGMRES for A[Gp’]n, with preconditioner equal to the so-called Parametric Laplacian (PL)

matrix AP, that is the matrix coming from the IgA collocation approximation of (7.1) in the case where
K is the identity matrix, @ = 0, v = 0 and G is the identity map on the parametric domain Q = [0, 114

2. The PL-matrix AE,” ], or, more precisely, its scaled version H%Aip ] (n = vn), is treated by a specific
multi-iterative multigrid solver consisting of a V-cycle (or W-cycle) formed by:

(a) a standard full-weighting restriction operator at each level, chosen as in (6.20)-(6.21), which
reduces the error in the low frequencies (a subspace of ill-conditioning due to the zero of the
symbol f3” at 6 = 0);

(b) one standard post-smoothing iteration by the classical Gauss-Seidel method at all the coarse
levels and a few post-smoothing iterations by a certain PGMRES at the finest level, where the
latter is designed for reducing the error in the high frequencies (a subspace of ill-conditioning
due to the numerical zeros of the normalized symbol flg")/M s at the m-edge points (7.3); see
Lemma 7.1 below). In particular, the PGMRES preconditioner is chosen as the Toeplitz matrix

d
Tn+p—2(hp1—2 Q- ® hpd—2) = ® Tnj+pj—2(hpj—2),
=1
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which is generated by the specific function h, 5 ®---® h,,_o coming from a factorization of the
symbol f(”) completely analogous to the one considered in Chapter 6.

The chapter is organized as follows. In the remainder of this introductory discussion, we highlight some

properties of the symbols f(") and flﬁ"). Section 7.1 deals with the external PGMRES and shows that a fast
(optimal and robust) solver for the general IgA collocation matrix A[é]" is obtained if we have a fast solver
for the PL-matrix A?'. Section 7.2 is devoted to the description of the multi-iterative solver of multigrid
type for the PL-matrix AP" and contains several numerical experiments demonstrating its optimality and
robustness.

We recall from Chapter 5 that the spectral symbol f(v) [0,1]¢ x [-7,1]¢ = R of the normalized matrix-

sequence {n Ag)n}n, with n =vn and v € Q+, i

fop = val(Ka o Pyvp) - vl 7.2)
with
hp1®'.‘®hpr—l®fpr®hpr+l®...®hpd’ ifr:S,
(Pp1 ..... pd)m = hy, ®--Qh, ®g, h, ® --Qh, ®g, h, ®---Qh,, ifr<s,

hp ®---®@hy @8y Qhp, @ - ®hy @y Qhp, & - ®hy, ifr>s
see (5.25) for the expression of Kg and (5.32)-(5.34) for the definitions of h,, g,, f,. In particular,

4 (hpl® Pk—l®fpk®hpk+1®.'.®hpd) : [_ﬂ’ﬂ]dﬁR
1

d
k=

is the symbol of the sequence {AZ)}, = {£AF), obtained when Q = O = [0,1], G : Q@ - Q is the
identity map and K is the identity matrix; see Remark 35.3. f(v) only depends on the Fourier variables’
0 = (6,...,6y) € [-m,7]? and, moreover, it is symmetric in each of these variables: f(")(+91,...,it9d) =
(0, ...,6,). This implies that £y : [0,7]Y — R, considered on the domain [0,7]¢, is also a symbol

for {nizAg,” ]},,. The following lemma follows from the properties derived in Chapter 5 (see in particular
Lemmas 5.3-5.5).

Lemma 7.1. Let p> 2 and v € Q?, then

o\ Ziy pr+d-2 d d
(—) min(vy, ..., v,)* Z(Z —2cos b)) < f(0) < max(vy, ..., va)’ Z(Z — 2.c0s 6y).
n
P =

Moreover, setting M o 1= MaXge[o r)d f,§”>(0), forall j=1,...,d we have
14
f(V)(Hb D j 1,7, 0j+1’ . ed) < 2(5 pl)/zf(y)(e j 1,9 2’ JHls e oo ed) < 2(5_pj)/2Mfl£V)'

In particular, f ") has a unique zero of order two at @ = 0, like the function Zle(Z — 2cos 6y), but, for every
j=1...,d, the value flf")(Ql, cen 0,041, 00) M fin converges to 0 exponentially when p; — oo.

According to Lemma 7.1, the normalized symbol fIE") /M £ has only one actual zero at 8 = 0, but, when
the spline degrees p are large, it also has infinitely many numerical zeros located at the m-edge points

{0e[0,71Y: Ajell,...,d} with 6, = x}. (7.3)

The zero of the symbol at @ = 0 is interpreted by saying that the related IgA collocation matrices ZAE,” I are ill-
conditioned in the low frequencies. On the other hand, the fact that the normalized symbol fp f;v) shows
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infinitely many numerical zeros at the m-edge points (7.3) means that the matrices %AE{’ I are ill-conditioned
(for large p) also in the high frequencies. The ill-conditioning in the low frequencies is expected, because it
is a canonical feature of the symbol associated with the discretization matrices of second-order differential
problems like (7.1). However, the ill-conditioning in the high frequencies is not expected and is responsible
for the deterioration in the convergence rate of the standard multigrid methods when the approximation
parameters p increase. A way to overcome this problem consists in adopting a multi-iterative strategy, as
we shall see in Section 7.2.

7.1 Optimal and robust PGMRES for the general IgA collocation matrix Ag’]n

The B-spline discretization matrix related to the Laplacian on the hypercube will be referred to as the Para-
metric Laplacian matrix (or PL-matrix). This is the matrix coming from the IgA collocation approximation
of (7.1) in the case where G is the identity map (so Q = (0,1)%), K = I is the identity matrix, and 8 = 0,
v = 0. In this section we show through numerical experiments that, in many situations, the PL-matrix AE,” ]
is an optimal and robust GMRES preconditioner for the general IgA collocation matrix Ag]n approximating
the full elliptic problem (7.1) with arbitrary K, B, v, G. This can be explained by means of the theory of GLT
sequences (see Subsection 1.4.3), which is a generalization of the standard Fourier Analysis to nonconstant
coefficient differential operators, as discussed in [64].

Let us illustrate in the bivariate case d = 2, without entering into the details, why the PL-matrix AE,” ]
should work fairly well as a preconditioner for Ag’,]n. From the analysis in Chapter 5, it follows that both

{n—leg]n}n and {nizAE,” ]}n (n = nv) are GLT sequences, with corresponding symbols

f((;V;, = [v1 ve (KG © Ppl,pz) [v1 Vz]T,

and
£ = val(Io Py, ) 1 val”

respectively. Since the GLT class is an algebra and since f;’) vanishes only at @ = 0 (so that {H%AL" N, is

sparsely vanishing according to the terminology in [64]), it follows that {(niz,ﬂﬁ,’J J)‘lnizAg{,}n = {(Al? J)‘IAKJ”},I is

V))—l (v).

still a GLT sequence with symbol ( f,ﬁ G.p

1 val (Ka © Py, p,) [t vol

(AYTAL Y~ (B ey = : (7.4)
" d ’p [vi val (1 © Ppl,pz) (v vol?
Now, suppose that there exist two positive constants ¢, C such that
cI<Ke(X)<CI, VxeQ, (7.5)

where we recall that the notation X > Y means that X — Y is HPSD. Condition (7.5) is equivalent to the

following:
min Apin(Kg(X)) > ¢ > 0, max Amax(Kg(X)) < C < oo. (7.6)
xeQ) XeQ
Note that (7.5) is usually satisfied in practice. For instance, it is satisfied if
1. cxl < K(x) < Cgl for some positive constants cg, Cx and for all x € ﬁ,

2. cg I < (Jg(X)TJg(X) < Cg I for some positive constants cg, Cg and for all X € Q;
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in this case we can take ¢ = cx/Cg and C = Ck/cg. Under the assumption (7.5), Lemma 1.6 yields

cloP

p1.p2 <KgoP

<ClIoP

pP1,p2 pu.p2-

This implies that the ‘preconditioned symbol’ in (7.4) satisfies

< ey <G

Gp —

i.e., it is uniformly bounded from above and below by two positive constants C and ¢, which of course
depend on K, G, but not on n, p. This explains why the PL-matrix AE,” I is expected to be an optimal and
robust GMRES preconditioner for Ag]n. In particular, the PGMRES convergence rate should be independent
of n and p. This reduces the fast solution of linear systems associated with the general IgA collocation
matrix A[gn to the fast solution of linear systems related to the PL-matrix Agf].

As we will see in Section 7.2, a fast solver is available for systems related to the PL-matrix. The solver
is of multi-iterative type, combining a standard multigrid strategy and a certain PGMRES employed as a
smoother at the finest level. The first method is effective for approximating the solution especially in the space
of low frequencies, where a source of ill-conditioning exists, due to the fact that the symbol flﬁ” vanishes
at @ = 0. The second method is equipped with a specific preconditioner for dampening the high frequency
error components, or, equivalently, for approximating the solution in the high frequencies, where another
(unexpected) source of ill-conditioning shows up when the spline degrees p are large, due to the presence
of the numerical zeros of the normalized symbol fp n at the m-edge points (7.3). The combination of
these two methods, in the spirit of a multi-iterative strategy, leads to a solver whose convergence speed is
optimal and robust, i.e., independent of the matrix-size and substantially independent of the other relevant
parameters, like the approximation parameters p and the dimensionality d.

In the following examples, we show through numerical experiments the optimality of the PL-matrix AE,” ]
as a GMRES preconditioner for the general IgA collocation matrix Ag]n. In all the examples, we use the
MaTLAB gmres function without restarting and with a tolerance of 107%. The method is started with u® =0
and stopped at the first vector u'® whose relative residual in 2-norm is less than 107:

IAZ u® — f]| < 107%)If]]. @.7)

Example 1. Consider problem (7.1) in the case d = 2, defined on the unit square
= (0,1?, G(1,)) = (£, 9),
with

(2+cosx)(1+y) cos(x+y)sin(x+y)
cos(x+y)sin(x+y) (2 +siny)(1+ x)

2

K(x,y) = [

| 1 +sinx+ysinx—2cos’(x +y)
Bx,y) = -9 —cosy — xcosy — 2cos?(x +y)

yx,y) = f(x,y) =1

To solve the linear system Ag"n” 2] u = f resulting from the IgA collocation approximation of this problem, the

GMRES method was applied first without preconditioning and then with the PL-matrix as preconditioner.
The results are collected in Table 7.1. We note that the PGMRES has an optimal and robust convergence
rate, completely independent of n and p. This is in contrast with the behavior of the simple GMRES, whose
convergence rate worsens with respect to both n and p and, in particular, grows linearly with n (the system
size is (n + p — 2)> ~ n?). From Table 7.1 we can conclude that the PL-matrix is an optimal and robust
GMRES preconditioner for the general IgA collocation matrix.

159



Table 7.1: Example 1

A[pbpz]

G, W = f up to a precision of 1075, varying the fineness parameter n; = ny = n and the spline degree
P1=Pp2=D.
ny X ng p=2 p=3 p=4 p=3 p=6 p=7 p=28 p=9
1 P 1 P 1 P I P I P I P I P I P
20 x 20 62 17|66 17| 71 18| 8 19| 91 19100 19 | 108 20 | 114 20
30 x 30 97 17 | 103 18 | 106 18 | 120 19 | 133 19| 145 19 | 155 19 | 163 20
40%x40 || 134 18 | 139 18 | 141 18 | 159 19 | 177 19 | 192 19 | 204 19 | 214 19
S50x50 | 170 18 | 176 18 | 176 18 | 199 19| 221 19 | 239 19 | 253 19 | 265 19
60x60 || 208 18| 214 18| 211 18 | 239 19| 265 19 |286 20| 302 19 | 316 19

ny X ny p=2 p=3 p=4 p=395 p=6 p=17 p=28 p=9
I P| I P I P I P I P I P I P I P
2020 51 8|59 8| 71 8| 8 8| 94 8104 8|130 8| 166 8
30x30 | 76 8| 8 8| 105 8| 122 8| 137 8| 148 8| 159 8| 196 8
40x40 | 102 8| 117 8 | 138 8| 161 8 |18 8| 193 8|204 8 |219 8
50x350 || 128 8 | 146 8| 172 8 | 200 8 |223 8| 239 8| 252 8 |266 8
60x60 || 154 8 | 176 8| 206 8| 239 8|266 8 |284 8300 8|36 8

number of GMRES iterations without (I) and with (P) preconditioning for solving

Table 7.2: Example 2: number of GMRES iterations without (I) and with (P) preconditioning for solving
A&’i fl]zu = f up to a precision of 107, varying the fineness parameter n; = ny = n and the spline degree

pPr=p2=D.

Example 2. Consider problem (7.1) in the case d = 2, defined on a quarter of annulus

Q:{(x,y)eRZ:r2<x2+y2<R2,x>0,y>O}, r=1, R =4,

with

. x = [r+ X(R - r)] cos(59),
G(%,9) = (x,y), A o

y = [r+ X(R - r)] sin(3)).

Note that the map G provides an exact representation of the domain Q, but is not expressed in terms
of tensor-product B-splines. In this sense, our analysis is general, since we are not restricted to use a
B-spline approximation of the domain (following the isoparametric approach), but we may use any exact
representation of the domain. Moreover, we take

(2+cosx)(1+y)
cos(x + y) sin(x +y)

cos(x + y) sin(x + y)

K(x,y) = (2 + siny)(1 + x)

X

], ﬂ(x,y)=[_55y], Yoy =,

and f(x,y) computed from the exact solution
u(x,y) = (x* +y* = )(x* + y* — 16) sin x siny.

To solve the corresponding B-spline IgA collocation linear system AlPvp Z]Zu = f, the GMRES method was

G,ny,ns

applied first without preconditioning and then with the PL-matrix as preconditioner. The results are collected
in Table 7.2, and they clearly indicate that the PL-matrix is an optimal and robust GMRES preconditioner

for the general IgA collocation matrix A[Gplnf’jl]z

When increasing p, but keeping n fixed, the number of PGMRES iterations to reach the preassigned
accuracy 107% is slowly increasing for moderate n, whereas it seems practically constant for large n: the
observed convergence rate is about 107919 ~ 0.483. In this example, we also computed the best constants
for which the relations (7.5)-(7.6) are satisfied, i.e.

¢ = min Ayi(Kg(%,9)) = 0.111, C:

max Am.x(Kg(%,9)) =~ 2.436.
(&HeQ

(&.9)eQ

(7.8)
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Figure 7.1: Example 2: error of the computed solution for n = 30 varying p, where err = ||u — i|/||ull.

Let us assume that (AE,{) P ])‘lAg’fl is ‘almost’ symmetric positive definite with its spectrum contained in

[c,C]. Note that this makes sense because the corresponding symbol ( ,E,II’}))‘I g;) , 18 nonnegative with range
in [c, C]. Then, the classical GMRES convergence analysis based on the values (7.8) provides an upper bound
of 0.648 for the asymptotic convergence rate; see [52, Proposition 6.32] and recall the classical estimate for

the quantity €™ appearing in the proposition, which in our case becomes

m
M <2 @ .
VC/c+1
Luckily, the observed convergence rate 0.483 is even better. Thus, the presence of eigenvalues with small
imaginary part, the existence of outliers, and the fact that the matrix of the eigenvectors of (AE,{’ P ])‘1Ag :1, is
not exactly unitary do not seem to negatively influence the observed convergence rate.
We conclude the numerical example by showing in Figure 7.1 the error |u(x, y)—i(x, y)|/||ull-, Where i(x,y)

is the computed solution, for n = 30 and for different values of p. The 2-norm of the relative error is also
given in the figure.

Example 3. Consider problem (7.1) in the case d = 3, defined on the unit cube
Q=0,1°  G&$,2 =(%3,2),
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ny X ng X ng p=2|p=3|p=4|p=>5|p=6|p=T7|p=8|p=9
15 x15%x 15 20 21 22 23 24 25 26 27
20 x 20 x 20 20 22 23 23 24 24 25 26
25 X 25 X 25 21 22 23 23 24 24 25 25
30 x 30 x 30 21 22 23 23 24 24 24 25

Table 7.3: Example 3: number of PGMRES iterations for solving Ag;lp flf’i

varying the mesh size n; X ny X nz and the spline degree p; = ps = ps = p.

u = f up to a precision of 1075,

with
e X X
2 2 oxXy + 2 ) \
Xy xX+y+ < Xy —
Kxyd=|35 €7 5 |. Bayd=|-10z+x |,  yxyos= 1y+ Zy . fuy.n=1
% )g xyz + 3 Sxz+y

We solved the corresponding B-spline IgA collocation linear system Ag” lnf’ flzp fliu = f by means of the PGMRES
method, with the PL-matrix as preconditioner. The results are collected in Table 7.3, and once again, they
show that the PL-matrix is an optimal and robust GMRES preconditioner for the general IgA collocation

madtrix.

7.2 Optimal and robust multi-iterative multigrid solver for the PL-matrix AL” ]

Let us consider the linear system
AlPly = ¢ (7.9)

coming from the IgA collocation approximation of the d-dimensional problem (7.1) with n := (ny,...,ny),
p:=(p1,...,pa), in the case where K =1, =0, vy =0, G is the identity map on the parametric domain Q,
and f =1. The matrix in (7.9) is just the PL-matrix. In this section we present optimal and robust two-grid
and multigrid methods to solve the linear system (7.9). The used machinery is very similar to the work in
Chapter 6 in the IgA Galerkin context, so we refer the reader to Chapter 6 for a description of the tools.

7.2.1 Two-grid
We consider the two-grid method TG((PGMRES)SM, PE,” ]) which is formed by:
1. a canonical coarse-grid correction, with standard full-weighting projector
PP = Pyps=Puip2® - ®Pyup o (7.10)

as given by (6.21) for m = n+ p— 2. We recall that P,, is defined for any odd m > 3 by

1 2 1 m—1

P, = e R"T*m, (7.11)

1

2
1 21

The prolongation operator is just the transpose of the projector (7.10), so that the coarse-grid correction

matrix is B
CGC :=1- (P (PIAPEMN) PIAL
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no P21 ] ETE ] T4 | 5]

81 6 6 5 4

161 7 6 5 4 n_ || e [21 | o 141 | cin 51 | cnn [7]
321 7 6 b) 4 21 6 6 7 8
641 7 6 S5 4 41 6 6 7 8
1281 7 6 5 5 61 6 6 7 8
2561 7 6 5 b) 81 6 6 7 8
n C}[13] (2] C£l5] (3] C}[17] (4] 6,1[19] (5] 101 6 6 7 8
80 8 6 5 4 n_ || e 121 | ) 141 | e [6] | chn [9]
160 8 6 5 4 20 8 6 7 7
320 9 7 5 4 40 8 7 7 8
640 9 7 5 4 60 8 7 7 7
1280 9 7 5 4 80 8 7 7 7
2560 9 7 6 5 100 8 7 7 7

Table 7.4: number of iterations ¢/ needed by  Table 7.5: number of iterations c’”' needed

the two-grid method TG((PGMRES)*", Py for by the two-grid method TG((PGMRES)*"", P71
solving (1/n®)A¥'w = £/n? up to a precision of  for solving (1/n2)AY"'w = £/n? up to a precision
107%.  The parameter s'?! is specified between  of 107%. The parameter s'”*! is specified between

brackets [-]. brackets [].

2. s!?! post-smoothing iterations by the PGMRES with preconditioner
Tn+p—2(hp1—2 ®-® hpd—Z) = Tn1+p1—2(hp1—2) ®: - ® Tnd+pd—2(hpd—2)- (712)

In Tables 7.4 and 7.5, we solved the (normalized) system (7.9) for d = 1, 2, using the two-grid method
TG((PGMRES)*", P”)). The two-grid procedure has been started with u©® = 0 and stopped at the first vector
u® whose relative residual in 2-norm is less than 1075; cf. (7.7).

Let us give a motivation for the choice of our two-grid method through the symbol. We first consider
the case d = 1 and then we generalize the argument to the case d > 2. We will not provide all the necessary
details, since they were already described in Section 6.2 in the (analogous) context of Galerkin IgA. For a
better understanding of the following discussion, the reader is recommended to read Chapter 6 first.

For d = 1, the symbol of {£Al"}, is

£5(6) = (2 — 2cos O)h,_5(0).

As already pointed out (see the discussion after Lemma 7.1), the symbol f, has a unique zero at § = 0,
implying that the low frequency subspace is ill-conditioned for n—lz,A,Ep I, However, this ill-conditioning in low
frequencies is canonical when dealing with matrices coming from the approximation of elliptic problems like
(7.1), and, in fact, it causes no problems for any standard two-grid or multigrid procedure which employs
the usual full-weighting projector P,[{’ 1. Indeed, PE,” lis designed to be highly contractive in low frequencies
and hence any classical two-grid or multigrid method using such a projector combined with any standard
smoother (e.g. Gauss-Seidel) will have a convergence rate independent of the matrix size. However, when
p is large, a numerical zero of the (normalized) symbol f,/M 7, occurs at 0 = m; see Lemma 7.1, Figure 5.1
and Table 5.1. Therefore, for large p, also the high frequency subspace is ill-conditioned for nizAE,p I and
this non-canonical ill-conditioning in high frequencies is completely ignored by the full-weighting projector
P£,p !, This is the reason why classical two-grid and multigrid procedures with full-weighting projector and
standard Gauss-Seidel smoother have a convergence rate that, despite being independent of the matrix size,
worsens with p.
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Figure 7.2: graph of w,(0) := h,(6)/h,-2(0) for p=2,...,7.

The choice of using as a smoother, instead of the Gauss-Seidel method, the PGMRES with preconditioner
Ty p-o(hp—2) (as given by (7.12) for d = 1, p = p, n = n), is made in order to gain a p-independent convergence
rate. Actually, we see from Table 7.4 that the resulting two-grid method is quite successful, its convergence
rate being independent of both n and p. This success was not unexpected. Indeed, the idea of using the
preconditioner T, ,_o(h,-2) follows from the observation that [hp_g(Q)]‘1 fp(0) =2 —2cosf is p-independent,
which means that the symbol 4,5 of the Toeplitz preconditioner T, ,2(h,—2) ‘erases’ the numerical zero of
the symbol f, of H%AL” lat 6 = m;, see Subsection 6.2.5 for more detailed explanations. Therefore, we expect
that

- the PGMRES alone for %AL” has a convergence rate substantially independent of p but worsening
with n;

- the standard two-grid and multigrid procedures with full-weighting projector and classical smoothers
(e.g. Gauss-Seidel) have a convergence rate independent of n but worsening with p;

- the combination of this two methods in a unique two-grid or multigrid procedure has a convergence
rate independent of both n and p, according to the multi-iterative idea.

In the case d = 2, the symbol of {nizAL’ff,’gzj}n ,with n; = vin and ny = ven, is

Foris?(01.02) = V1 [ (00, (02) + V3 (61) f,(62)
B, (02) Ny, (61)

:h_gh_g 22_2 0 P2 2 D1
pi-2(00)hp,—2(62) [‘ﬁ( cos 1)hpz,—2(92) ¥ Vzhpl—z(Ql)

= (-2 ® hp,2)(01, 02) [ V] (2 = 2008 )W, (62) + V3w, (01)(2 — 2 c0s 6)]

(2—-2cos 02)]
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where w,(0) := h,(0)/h,2(0), and, for general d > 2, the symbol of {-; AE,”] b With n=vn = (vin, ..., vn), is

d
FOO) =Y Ay, @+ @Iy, @ fr @y, @@ 1y, )(6)

k=1

d
= (2 ® -+ ® Iy, 2)(0) D VoW, (01) - Wy (Bh)(2 = 2008 B Wi, (Bisr) - W, (8.
k=1

We see from Figure 7.2 that the function w), is p-independent, in the sense that it is uniformly bounded from
above and below by two positive constants independent of p. Actually, it seems that w, converges uniformly
to some function with range in [0.4,1]. Therefore, the idea of using the PGMRES with preconditioner (7.12)
as smoother has the same motivation as for the case d = 1: the preconditioned symbol

d

[(hp 2 ® - ® hp, 2)(O)] ' f(6) = Z VW, (61) -+ Wy, (6i1)(2 = 208 BWp,,, (Bsr) - - W, (6)
k=1

is p-independent. This melLes that the numerical zeros of f(") at the m-edge points (7.3) are completely
‘erased’ by the symbol h, 5 ®---® h,,_» of the Toeplitz preconditioner (7.12), and this motivates why such a
preconditioner is effective; we refer again to Subsection 6.2.5 for more detailed explanations.

Finally, we point out that the preconditioner (7.12) is effectively solvable. Indeed, due to the tensor-
product structure and to the bandedness of the matrices T,,j+pj_2(hpj_2), the computational cost for solving a

linear system with matrix (7.12) is linear in the matrix size N(n+ p — 2) = ]_[?zl(n i+tpi—2).

7.2.2 Multigrid: V-cycle and W-cycle

We now focus on the V-cycle and W-cycle multigrid methods for the PL-matrix ZA[” ! formed by:

1. standard coarse-grid corrections at each level, which use, as restriction operator, the full-weighting
restriction (6.21) (with properly adjusted size), and, as prolongation operator, the transpose of the
projector;

2. s'P! post-smoothing iterations by the PGMRES with preconditioner (7.12) at the finest level, and a single
standard Gauss-Seidel post-smoothing iteration at all the other levels.

Let us assume that n = (n,...,n) and p = (p,...,p). We denote by index O the finest level and by index
f;,” I, = log,(n+p-1) -1 the coarsest level. Let A[" ! be the matrix at level i, whose dimension is (m[p ])d

0<i<? with mLpi] = M= L _ 1. In this notation, we have A% = 1/n*)A? and

A [p]

n,i+l1

[p] 4[p] / plPINT .
_PnI,JiAnI,’i (Pﬂl,’l) ’ l:()""’gip]_l’

where
PPl=P i@ -®P 1, i=0,... 0/-1

n
n i

is the full-weighting projector at level i, and P,, is defined in (7.11). Regarding the smoother, at each coarse
level i > 1 we used one single post-smoothing iteration with the standard Gauss-Seidel method; at the finest
level i = 0 we used s'! post-smoothing iterations by the PGMRES with preconditioner (7.12). At each level
i, we first performed a coarse-grid correction, with one recursive call in the V-cycle and two recursive calls
in the W-cycle, and then we applied one post-smoothing iteration by the Gauss-Seidel method (if i > 1), or
sl post-smoothing iterations by the PGMRES with preconditioner (7.12) (if i = 0).
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n [ n [dTEI n [T n [ s
5 |7 6| 13|10 6| 1 ]9 5] 9 |8 5
31 |8 6| 29 |1 6| 27 |13 6/ 25 |13 5
63 |9 6| 61 |12 61| 59 |14 61| 57 |17 5
127 |10 71| 125 |13 7| 123 |15 6| 121 | 17 5
255 |10 7| 253 |13 7| 251 |15 6| 249 | 18 5
511 |11 7| 509 |14 71| 507 |16 6| 505 |18 5
1023 | 11 7| 1021 |14 7 |[1019| 17 6 || 1017 |19 6
n A2l o TBI »n [ n |5
4 |9 8| 12 |10 6/ 108 5| 8 [ 7 5
30 |10 8| 28 |13 6| 26 |13 5| 24 |12 5
62 |11 81 60 |13 61| 58 |16 6| 56 |17 5
126 |12 8| 124 |14 7| 122 |16 6| 120 |19 5
254 (12 9| 252 |15 7| 250 | 17 6| 248 |19 5
510 |12 9| 508 |15 7 {506 |17 6| 504|19 5
1022 |13 9 |[1020 |16 7 || 101818 6 | 1016 |20 5

Table 7.6: number of iterations c”' needed for solving (1/n*)A"'w = /n? up to a precision of 1076, when

using the multigrid cycle with s'! post-smoothing steps by the PGMRES at the finest level and 1 post-
smoothing step by standard Gauss-Seidel at the coarse levels. The parameter s'”! is specified between
brackets [-]. The methods have been started with u® = 0 and stopped at the first term u'® satisfying the
relative criterion (7.7). For each pair (p,n), the first entry corresponding to c,[lp I refers to the V-cycle, the

second entry to the W-cycle.

41 [6.6]

n a2l n [ 14 o [R5 n | T
15 7 6 13 9 6 1 8 6 9 8 7
31 8 6 29 | 11 6 27 | 12 7 25 | 12 8
63 9 6 61 | 12 7 39 | 14 7 537 |16 8
127 | 9 6 125 | 13 7 123 | 15 7 121 | 17 9
255 | 10 7 253 | 13 7 251 |16 8 249 | 18 9
n a2 n [T n [ dLT 61| n [ cn [9]
14 8 8 12 9 7 10 8 6 8 9 9
30 | 10 8 28 | 12 7 26 | 12 7 24 | 11 7
62 |10 8 60 | 13 7 38 | 15 7 56 | 16 8
126 | 11 8 124 | 14 8 122 | 16 8 120 | 18 8
254 | 12 8 252 | 15 7 250 | 17 7 248 | 19 8

Table 7.7: number of iterations 2’ needed for solving (1/n2)AY:"'w = £/n® up to a precision of 107C,

when using the multigrid cycle with s/”P! post-smoothing steps by the PGMRES at the finest level and 1
post-smoothing step by standard Gauss-Seidel at the coarse levels. The parameter si??! is specified between
brackets [-]. The methods have been started with u® = 0 and stopped at the first term u'® satisfying the
relative criterion (7.7). For each pair (p,n), the first entry corresponding to c,[f’ P I refers to the V-cycle, the

second entry to the W-cycle.
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n | EERI T n [ BEET @ n [ 8T 6] [[ n | B3 (9]
15 6 6 13 8 6 11 7 6 9 9 9
31 8 6 29 | 10 6 27 | 10 6 25 | 10 8
63 9 6 61 | 11 6 59 | 13 7 57 | 14 8
no LS Rr e [T | on | S | on | e 1121
14 8 7 12 8 7 10 8 7 8 9 9
30 9 8 28 | 11 7 26 | 10 8 24 | 9 7
62 | 10 8 60 | 12 7 58 | 14 8 56 | 14 8
[p.p.pl [p.p.p]

Table 7.8: number of iterations c¢

n,n,n

needed for solving (1/n?)A

n,nn

u = f/n? up to a precision of 1076,

when using the multigrid cycle with s!”PP! post-smoothing steps by the PGMRES at the finest level and 1
post-smoothing step by standard Gauss-Seidel at the coarse levels. The parameter si”7?! is specified between
brackets [-]. The methods have been started with u® = 0 and stopped at the first term u'® satisfying the
relative criterion (7.7). For each pair (p,n), the first entry corresponding to cE,’f i I refers to the V-cycle, the

second entry to the W-cycle.

We observe that these V-cycle and W-cycle essentially coincide with those considered in Chapter 6
(Section 6.6) for the IgA Galerkin PL-matrix, with the only difference that now, at the finest level, we
use a PGMRES smoother instead of a PCG smoother, because of the non-symmetry of the IgA collocation
PL-matrix.

In Tables 7.6,7.7,7.8 we solved the (normalized) system (7.9) for d = 1, 2, 3, using the V-cycle and W-
cycle multigrid methods described above. We see that the number of V-cycle and W-cycle iterations for
reaching the preassigned accuracy 107° is substantially independent of all the relevant parameters: p, n,
d. In particular, the convergence rate of the W-cycle is practically constant (the number of iterations is

much. For instance, if in Table 7.8 we chose s%%% = 9 (instead of s!%%9 = 12), then the resulting number of
W-cycle iterations CL?,’S,’?] for n = 56 would be 12 (instead of 8).
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Conclusion

In the first part of this thesis (Chapter 2), we provided new tools for computing the asymptotic spectral
distribution of matrix-sequences {A,}. Then, in Chapters 3-5, we considered the sequences of matrices
{A,} associated with the numerical approximation of elliptic PDE by means of various numerical methods:
from the classical Q, Lagrangian FEM to more recent techniques based on the IgA paradigm, such as
the Galerkin B-spline IgA and the B-spline IgA Collocation Method. For each of these matrix-sequences
{A,}, we computed the corresponding spectral symbol in the sense of Definition 1.1, and we studied its
properties in considerable detail. Afterwards, in Chapters 6-7, we used the properties of the symbol to
design fast (optimal and robust) multi-iterative solvers of multigrid type for the matrices A, associated with
the IgA-based methods.

It is clear that the nature of this thesis is at the same time classificatory and applicative. In fact, a
precise target of all this work is to show that, whenever a linear PDE is given and a linear numerical method
for its approximation is chosen, one may ask if a spectral distribution for the corresponding sequence of
discretization matrices A, exists. Usually, the answer is ‘yes’ and the computation of the symbol describing
the spectral distribution can be carried out by using the huge ‘GLT machinery’, of which here we have
seen particular examples of applications. In this sense, the present thesis is classificatory: we chose specific
PDE and numerical methods, and we determined the symbol for the resulting discretization matrices A,.
However, we did not limit ourselves to find the symbol: we also studied its properties and used them for
designing fast solvers for the matrices A,. Here is the applicative nature of our work.

From this discussion, it is clear that a lot of open problems remain, because a lot of PDE and numerical
methods have not been investigated yet: the ‘classification’ is still incomplete, since a lot of PDE and
numerical methods are still waiting for their symbol! We list some open problems in the following.

1. Compute (and study) the symbol of the matrices arising from the Galerkin B-spline IgA approximation
of the full elliptic PDE (5.1). Note that such a symbol has not been computed in this thesis, because in
Chapter 4, where we considered the Galerkin B-spline IgA, we only focused on the constant-coefficient
PDE (4.1).

2. Compute (and study) the symbol of the matrices arising from the approximation of (5.1) by means of
Galerkin-type methods based on B-splines with reduced smoothness. This has been partially done in
[32], but without any rigorous theoretical justification and, in any case, the problem (3) addressed in
[32] is much simpler than (5.1). Moreover, [32] does not contain a careful study of the symbol, which
would shed light on the asymptotic spectral properties of the considered matrices.

3. Compute (and study) the symbol of the matrices arising from the approximation of (4.1) and (5.1)
by means of Finite Element Methods that use other bases than the Lagrangian one. It is known in
the FEM community that choosing the Lagrangian basis with uniform knots (as in Chapter 3) is a
simple but unfortunate choice, due to the instability of the Lagrangian interpolation. A much more
interesting basis is, for instance, the so-called integrated Legendre basis [53]. Another possibility is to
use the Lagrangian basis, but with Gauss-Lobatto nodes. Both these choices can be the subject of a
future research.
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4. Compute (and study) the symbol of the matrices arising from the Galkerkin IgA approximation and
the IgA collocation approximation of (5.1) in the case where the B-spline basis functions are replaced
by NURBS. The current research of our team is moving in this direction: after the identification and
the study of the symbol, we will be interested in designing fast iterative solvers for the resulting
discretization matrices, in analogy with the program followed in Chapters 6-7.

5. Use the properties of the symbol associated with the matrices coming from other numerical techniques
than IgA in order to design fast iterative solvers also for these matrices. In Chapters 6-7 we only
considered the IgA case, but one may be interested in fast solvers for other discretization matrices as
well (e.g., FEM matrices or matrices associated with the Galerkin-type methods mentioned in item 2).

Besides the specific issues listed above, other more general problems that can be addressed in the future
are, on the one hand, the computation/study of the symbol associated with the matrices A, coming from the
discretization of other differential problems of interest in Physics and Engineering (Navier-Stokes equations,
elasticity equations,...), and, on the other hand, the organization of the material concerning the ‘GLT
machinery’ in a book.
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