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ABSTRACT 
 

In the last decade, the interest for the presence and role of endogenous 

GUS in plants increased, being previously limited to the use of GUS from 

E. coli as a reporter gene. Three different GUS genes have been identified 

in A. thaliana and different roles have been suggested, mainly associated 

to plant cell wall remodelling  and to the regulation of the presence in the 

active form of molecules with regulative functions. 

This thesis investigated several aspects: A) artefacts in histochemical GUS 

detection, B) role of GUS in pollen tube germination and growth, C) GUS 

expression in N. tabacum and A. thaliana, D) identification of GUS genes in 

N. tabcum and their phylogenetic analysis in angiosperms.  

A) Histochemical detection of E.coli GUS activity in transformed plants  

can be  impaired by the presence of GUS inhibitors and by the solubility 

of an intermediate reaction product formed when X-glu is used as 

substrate. The expression of LAT52 has been revised. 

B) The use of saccharolattone, a GUS inhibitor, suggests that GUS is 

involved in pollen tube germination and growth. 

C) GUS expression was observed in all organs of N. tabacum and A. 

thaliana.  

Expression studies, in collaboration with researchers of Calabria 

University, have been performed in Arabidopsis, by in situ  mRNA 

hybridization: GUS3 is specifically expressed in border like cells and 

probably it is involved in their detachment from root tip; GUS1 and GUS2 

are expressed in the root cup meristem, resulting perhaps involved in 

regulation of the mitotic cycle.  

D) In N. tabacum GUS2 was completely sequenced and one GUS1 and two 

GUS3 have been partially sequenced. By bioinformatics analysis, GUS 

genes have been identified in other angiosperms species and a 

phylogenetic analysis have been conducted. 
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GENERAL INTRODUCTION 
 

β-glucuronidases: classification and  roles 

 

Glycosil hydrolases (GHs) are enzymes which hydrolyse the glycosidic 

bond between two or more carbohydrates or between a carbohydrate and 

a non-carbohydrate moiety. GHs have been subdivided into 132 families, 

which are continuously updated in the Carbohydrate Active EnZymes 

(CAZy) database (Cantarel et al 2009).  

In plants, GHs are mainly involved in cell wall polysaccharides 

metabolism; other functions are remodulation of glycans, mobilization of 

energy reserves, defense, symbiosis, signaling, secondary plant 

metabolism and metabolism of glycolipids (Minic 2008). 

β-glucuronidases are GHs which catalyze the hydrolysis of O-linked 

glucuronic acid. These enzymes are both exo- or endo-acting, depending 

upon whether they act at the (usually non-reducing) end or in the middle, 

respectively, of a saccharide chain. 

β-glucuronidases have been identified in all living organisms and, 

according to their aminoacidic sequences, have been classified in three 

GH families (GH1, GH2 and GH79) (Cantarel et al 2009).  

GH1 comprehend klotho enzymes, an extracellular mammal cell 

membrane enzyme that hydrolyzes steroid β-glucuronides (Tohyama et 

al 2004).  

The GH2 family contains a large number of exo-acting GUSs from 

mammals, bacteria and fungi but none from plants (Arul et al 2008).  In 

bacteria, GH2 GUS is involved in carbon source mobilization (Wenzl et al 

2005).  

Presence of GUS activity in floral intestinal bacteria can cause 

enterohepatic circulation of toxic, carcinogenic compounds and thus 

promote tumor formation at different sites, including the large bowel 

(Arimochi et al 1999, McBain & Macfarlane 1998, Wallace et al 2010). 
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β-glucuronidase (uidA), widely used as reporter gene in plants (Jefferson 

1989, Jefferson et al 1986), is included in the GH2 family. 

The GH79 family contains both exo-acting (β-glucuronidase) and endo-

acting (heparanase) hydrolases (Michikawa et al 2012). To this family 

belong vertebrate heparanases,  which cleave heparan sulphate side 

chains thus inducing structural alterations of the extracellular matrix (Fux 

et al 2009),  fungi enzymes that hydrolyze beta-glucuronosyl residues of 

arabinogalactan proteins (AGPs) (Konishi et al 2008), bacterial β-

glucuronidases (Michikawa et al 2012) and all the known plant  β-

glucuronidases (Arul et al 2008, Eudes et al 2008, Morimoto et al 1995, 

Woo et al 2007). 

Glucuronidase activity in plants was detected for the first time in 1905 in 

almond emulsin (Neuberg & Niemann 1905), thereafter in Scutellaria 

baicalensis (Levvy 1954) and in a large number of species (Alwen et al 

1992, Anhalt & Weissenböck 1992, Hu et al 1990, Muhitch 1998, Plegt & 

Bino 1989, Schoenbeck et al 2007, Shulz & Weissenbock 1987, Sood 1980, 

Wozniak & Owens 1994). However, with the exception of baicalanase, the 

GUS enzyme of S. baicalensis  (sGUS) which has been widely investigated, 

(Hirunuma et al 2011, Matsuda et al 2000, Morimoto et al 1995, Morimoto 

et al 1998, Sasaki et al 2000), for a long time the presence of endogenous 

GUS activity in plants has been neglected (have received relatively little 

attention), except for its possible interfence with the use of E.coli GUS as 

reporter gene (Abdollahi et al 2011, Alwen et al 1992, Hänsch et al 1995, 

Hodal et al 1992, Kosugi et al 1990, Solís-Ramos et al 2010, Thomasset et 

al 1996). 

In 2006 Sudan et al. demonstrated the presence of GUS activity in several 

plants, including the main model plants (Arabidopsis thaliana, Oryza sativa, 

Nicotiana tabacum, Zea mays), and proposed a role of endogenous GUS in 

cell (Sudan et al 2006).  

sGUS from Scutellaria baicalensis was the first GUS gene sequenced in 

plants (Sasaki et al 2000) and it was observed to be homologous to 

heparanase and  therefore included in the GH79 family. 
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Recently, a genome analysis revealed the presence of three GUS genes 

from the GH79 family in Arabidopsis thaliana: AtGUS1, AtGUS2 and 

AtGUS3 (Woo et al 2007). Other GUS genes can be identified in the 

genome of other plants species, all homologous to sGUS and belonging to 

the GH79 family.  

Regarding the role, GUS in plants is thought to be involved both in the 

regulation of the presence of physiologically active signal molecules, 

mainly associated to the cleavage of flavonoid  glucuronides and in 

changes in cell wall composition, associated to processes like cell growth 

and cell-cell adhesion. 

It has been demonstrated that the flavonoid luteolin accumulates in the 

apoplastic space of mesophyll cells of rye seedling leaves as luteolin 7-O-

diglucuronide-4’-O-glucuronide. GUS present in the apoplastic space 

hydrolyzes it to luteolin 7-O-diglucuronide (Anhalt & Weissenböck 1992, 

Shulz & Weissenbock 1987), probably playing a role in hydrogen 

peroxide and auxin levels regulation.  

In Scutellaria baicalensis the activity of apoplastic GUS releases the 

flavonoid baicalein, which is involved in two different processes: 

hydrogen peroxide levels regulation in the oxidative burst induced by 

plant defense mechanism (Morimoto et al 1998) and the induction of 

apoptosis following mechanical damage (Hirunuma et al 2011). 

The involvement of GUS in stress responses has been observed also in  

Hordeum vulgare, where the inoculation with the fungus Blumeria graminis 

causes up regulation of the GUS gene (Eckey et al 2004).  

The role of GUS in regulative processes has to be considered in relation to 

UDP-glucuronyltransferase (UGT). The two enzymes work in tandem, 

reversibly glycosylating molecules, like flavonoids, with regulative 

function. 

This UGT-GUS tandem  function seems to operate in the regulation of cell 

division in the root cap meristem. It has been proposed that PsUGT1 

activate cell division by glycosylating, and therefore removing, a mitosis 

inhibitor, probably a flavonoid (Woo et al. 1999, Woo et al. 2005).  

Such component is vice versa released by the action of GUS, with 

consequent cell cycle inhibition (Wen et al 2004, Woo et al 2005). 
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Concerning changes in cell wall composition, enzymes codified by the 

genes AtGUS1 (At5g07830), AtGUS2 (At5g07830) and AtGUS3 

(At5g34940) were found within the Arabidopsis thaliana cell wall proteome 

(Bayer et al 2006, Minic et al 2007). 

GUS enzymes acting on glucuronic acid (GlcA) residue could be involved 

in two processes in the cell wall: cell wall plasticity and intercellular 

adhesion. 

The involvement of GUS activity in the degradation of arabinogalactan 

proteins (AGPs) present in the cell wall was first hypothesized in a study 

conducted on seeds extracts of Raphanus sativus (Sekimata et al 1989).  

In another work tissue-specific localization and partial purification of 

AtGUS2, a GUS active isolated from Arabidopsis thaliana (Eudes et al 

2008)m have been reported. In this study it has been demonstrated that 

over- expression of AtGUS2 could modify GlcA content in the 

polysaccharidic side chains of AGPs and influence the content of other 

sugars such as galactose, arabinose and xylose.  

GlcA residues present at the non-reducing ends of the side chains of most 

AGPs potentially prevent the access of glycosyl hydrolases to sugar 

residues located within these chains. 

Transgenic plants in which AtGUS2 activity was suppressed display 

defects compared to wild-type plants. In particular, dark-grown 

hypocotyls seedlings showed a decrease of elongation compared to the 

wild type. The authors have supposed that deglycosylation of AGPs have 

a role in cell growth and, in particular, could contribute to hypocotyl 

growth (Eudes et al 2008).  AtGUS2 would be one of the enzymes 

involved in this process.  

GlcA residues have also been demonstrated to be important in 

intercellular organization and attachment in plant meristem (Iwai et al 

2002). 

In Nicotiana plumbaginifolia it was observed that the loss of one unit of 

glucuronic acid in the pectin molecule, due to inhibition of 

glucuronyltransferase, induced drastic morphological abnormalities like 

crumbled shoots (Zhong et al 2005). 
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These findings evidence the importance of glucuronic acid residues in cell 

wall and are consistent with the consequences of inhibition of GUS 

activity. Inhibition of GUS activity leads to reduced elongation of stem, 

root and root hairs in N. tabacum (Sudan et al 2006).  

Inhibition of root hairs elongation is particular interesting because of their 

apical growth mechanism very similar to pollen tube growth.  

This consideration is supported by the existence of a common pathways 

involved in polarized cell-tip expansion in pollen tubes and root hairs 

(Hafidh et al 2012). The only GUS gene (GUS2) considered in the study 

was not expressed in Nicotiana tabacum pollen. However, the presence of 

GUS genes also in pollen has been reported in the literature (Honys & 

Twell 2004, Pina et al 2005). Thus, the genes that codify GUS enzymes in 

Nicotiana pollen remain undetected. 

 

Importance of investigating genic expression in pollen 

 

In this work particular attention is dedicated to the study of  

β-glucuronidase gene expression and its role in pollen.  

The importance of studying genic expression in pollen is related to 

gametophytic selection and to the comprehension of the mechanism of 

pollen growth. 

Gametophytic selection has been widely studied starting from the end of 

nineteenth century (Buchholz 1922, Mulcahy 1986) and its importance as 

a plant breeding tool has been widely reviewed by Hormaza and Herrero 

(Hormaza & Herrero 1996). 

When a diploid organism, heterozygous at N loci, undergoes meiosis, it 

has the potential of producing 2N different haploid genotypes.  

In the case of pollen, this great variety is often associated with an equally 

impressive overabundance of individuals. There are a vast array of pollen 

genotypes competing for a relative small number of ovules. Such 

competition holds the potential for an extremely intense selection.  

Selective pressures could be applied and act at different stages of pollen 

development and reproductive processes.  
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These pressures produced effects on progenies. In recent studiesit was  

observed that Phalaenopsis seedlings derived from pollination at high 

temperature were more vigorous under warm growing conditions and 

those derived from cold pollination were more vigorous under cold 

growing conditions (Chang et al 2010).  

The main limitation of gametophytic selection in plant breeding is that it 

can only be used for traits that are expressed in gametophyte. Hence the 

importance of knowing gametophyte gene expression. 

Male gametophytic gene expression has been investigated in several 

studies and reviewed by Twell and  coworkers (Twell et al 2006).  

Comparing the results of the different published works it is possible to 

note the remarkable overlap of gametophytic and sporophytic gene 

expression. In addition, the number of male specific gametophyte 

expressed genes is gradually decreasing as new sporophytic datasets 

emerge, especially those from more specialized tissues and individual 

cells.  These genes are characterized by very high expression signals, 

highlighting their importance and their potential as targets for functional 

analysis. 

Male gametophyte gene expression can be divided into two major phases, 

early and late (Mascarenhas 1990). Early genes become active after 

meiosis is completed,  that is at the tetrad stage. Late genes become active 

after microspore mitosis. Late genes make a significantly greater 

contribution to the group of highly expressed pollen-specific genes while 

early genes  expression program is much more similar to that of the 

sporophyte.  

Given that the number of putative male gametophyte specific genes 

gradually decrease, a new expression profile must be considered in 

addition to early and late genes.  

This comprises non-specific enhanced pollen-expressed genes. Such 

pollen-enhanced genes are defined as genes with maximum male 

gametophytic expression at least five times higher than the maximum 

expression in the sporophyte. 
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From a functional point of view, in Arabidopsis thaliana microspore the 

most expressed genes are those involved in protein synthesis while 

among gametophytic specific genes the most expressed are cell wall and 

transport genes. In mature pollen, genes involved in cell wall synthesis 

and metabolism comprise more than 19% of highly expressed specific 

mRNAs. In pollen tube growth in vivo up regulated genes, compared to 

dry pollen, are those codifying for proteins with function of transporter, 

antiporter, symporter and calcium ion binding (Qin et al 2009).  

The relevance of genes involved in cell wall synthesis emerge from these 

studies. Among them there are genes codifying for glycolsil hydrolases, 

whose role in pollen has been recently reviewed (Mollet et al 2013). 

However, in this review the presence of β-glucoronidases hasn’t been 

reported, thus demonstrating that the role and the importance of these 

enzymes has to be better elucidated and confirmed also under this aspect.  

 

Nicotiana and Arabidopsis as model plants for genetic studies 

 

Nicotiana tabacum, Nicotiana alata and Arabidopsis thaliana are the three 

species selected in order to investigate the presence and role of GUS and 

the genes that codify the related enzymes. 

Nicotiana species  are widely used in studies regarding interspecific 

hybridization, inheritance and gene transfer because of the large number 

of widely varying species in the genus and some advantaging 

characteristics  (Lewis 2011). Many species of  the genus, like Nicotiana 

tabacum, present sizable flowers that can be manipulated easily and often   

a large amount of seed can be obtain from single pollination. Nicotiana 

alata presents the advantage of producing great quantity of pollen not 

dispersed from the anther and so easy to be collected for further studies. 

In Nicotiana several species are characterized by self-incompatibility 

(McClure 2009), and are thus suitable to studies of this phenomenon and  

the interspecific crosses between self-incompatible (SI) and self-

compatible (SC) species (Murfett et al 1996).  
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N. alata (SI species) pollen can be used to successfully pollinate N. tabacum 

(SC species), but not vice versa (Murfett et al 1996), generating a 

completely sterile hybrid (Nikova et al 1999) 

Since the beginning of the 20th century, N. tabacum is believed to have 

originated by hybridisation of N. sylvestris (S-genome component) with a 

species in the Tomentosae section  (T-genome component) of Nicotiana 

(Gerstel 1960, Goodspeed & Clausen 1928).  

The T-genome component has generated a long discussion: N. 

tomentosiformis, N. otophora, or an introgression hybrid of the two were 

considered as candidates ancestors of N. tabacum (Murad et al 2002). 

Genomic in situ hybridization (Chase et al 2003, Lim et al 2000) indicated 

that N. tomentosiformis is the most probably N. tabacum ancestor and 

comparison of chloroplast genome confirmed N. sylvestris as “female” 

ancestor (Yukawa et al 2006). 

Thus Nicotiana tabacum  is  actually considered to be a natural 

allotetraploid  originated within the last 200000 year by the cross of N. 

sylvestris and N. tomentosiformis  (Clarkson et al 2005, Murad et al 2002).  

Thanks to genomic in situ hybridization it is possible to identify 

chromosomes derived from each progenitor and hybrid chromosomes are 

present as well (Lim et al 2007, Lim et al 2004). Some translocation 

between T-genome and S-genome appear ubiquitous in all N. tabacum 

cultivars, and probably fixed, whereas others are specific to particular 

cultivars.  

N. tabacum shows a genome downsizing with respect to the sum of its 

parent genomes (Renny-Byfield et al 2011). This reduction seems to be 

due to the loss of repeats derived from the T-genome component of N. 

tabacum. 

Partial sequencing of N. tabacum  genome (Tobacco Genome Initiative) 

and recent publication of N. sylvestris and N. tomentosiformis genomes 

(Sierro et al 2013) will allow further investigations regarding the 

evolution of the three genomes and make easier to sequence specific 

genes in N. tabacum and thereafter to investigate their expression.  
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Although Nicotiana alata genomic resources available are very scarce, this 

species, with respect to Nicotiana tabacum, has the advantage to present a 

diploid genome. 

Arabidopsis thaliana  is a flowering diploid plant of the family of Cruciferae 

widely used as model because present a short life cycle, it is easy to 

cultivate, its genome (the smallest among angiosperm) has been 

sequenced and annotated  (AGI 2000) and a large number of mutants are 

available (Meinke et al 1998, Rédei 1975).  

 

Topics of this thesis  

 

This thesis touches one or more topics about β-glucuronidases. 

Chapter 1 regards GUS as reporter gene in plants. In particular 

experiments are described and discussed related to histochemical 

localization of E. coli GUS activity in pollen tubes growth in vivo, semi-in 

vivo and in vitro. 

Chapter 2 concerns the study of GUS activity and its role in pollen of N. 

alata and N. tabacum. In chapter 3 the study of both GUS activity and the 

expression pattern of GUS genes in different plant species are reported.  

Gene expression in root apex of Arabidopsis thaliana was investigated 

thanks to a recently developed whole mount multi probe in situ 

hybridization technique, in addition to traditional approach. In 

Arabidopsis thaliana, the expression of UGT genes was also investigated, 

given that they possibly work in tandem with GUS genes. 

Chapter 4 regards the identification and phylogenetic analysis of GUS 

genes in plants and in particular in Solanaceae. 
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CHAPTER 1 

 
Artefacts in histochemical localization of LAT52-GUS 

construct in Nicotiana alata pollen tubes growing through 

style 

 
 

INTRODUCTION 
 
 

GUS from E. coli (uidA) is the most widely used reporter gene in  plants. 

This is due to the advantages that it offers with respect to the other reporter 

systems:  the stability of the enzyme, the simplicity and sensitivity of the 

assays, the variety of available substrates and the absence of toxic effects on 

plants  (Jefferson 1987, Jefferson 1989, Jefferson et al 1986).  

Several efforts have been spent to overcome artefacts due to the presence of 

endogenous GUS activity.  

However, the difference in pH optimum (neutral for E. coli GUS and acidic 

for plant GUSs)  (Alwen et al 1992, Sudan et al 2006) makes negligible the 

interference due to endogenous GUS, restricting it to a background in long 

histochemical treatments. 

Constructs of uidA associated to promoters of genes specifically expressed in 

pollen have been used not only to investigate gene expression since 

microsporogenesis up to ovule fecundation, but also as pollen markers, 

allowing to recognize specific pollens or pollen tubes. In particular, LAT52 

promoter-uidA construct has been used to observe pollen tubes behaviour in 

vivo (Gerola et al 2000, Johnson et al 2004). 

LAT52 was identified for the first time in Solanum lycopersicum as a pollen 

specific gene expressed late in the anther, after meiosis, during 

microsporogenesis (Twell et al 1989). 

This pattern of expression has been observed also in Nicotiana tabacum and 

Arabidopsis thaliana (Eady et al 1994, Twell et al 1990). 
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It has been demonstrated that LAT52 is involved in pollen germination and 

polarized tube growth (Kaothien et al 2005, Muschietti et al 1994, Zhang et al 

2008) and encodes a small cysteine-rich protein which interacts with a pollen 

specific receptor protein kinase LePRK2 (Johnson & Preuss 2003, Tang et al 

2002). 

Gerola and co-workers (2000) used  pollen from Nicotiana alata plants 

transformed with LAT-52 promoter-uidA construct (GUS-pollen) to 

investigate the so called pollen mentor effect in gametophytic self-

incompatibility. 

They observed that GUS activity in pistils pollinated by GUS-pollen was 

histochemically observable in the stigma, the higher part of the style and in 

the ovary, while was practically undetectable in the lower part of the style. 

According to these results it was suggested that the LAT52 promoter activity 

is differentially regulated during pollen tube growth along the pistil (Gerola 

et al 2000).   

An analogous GUS staining pattern was observed in our laboratory in N. 

tabacum pistils pollinated with N. alata GUS-pollen. A high variability was 

however observed in the histochemical detection in the uppermost part of 

the style (Gerola, personal communication). Moreover, enzymatic assays in 

extracts from pistils pollinated with GUS-pollen did not reveal any 

significant difference between GUS activity in the higher and lower part of 

the style,  suggesting the potential presence of staining artefacts (Pilotto et al 

2002, Pisoni et al 2004). 

Two kinds of artefacts could interfere with histochemical detection of GUS 

activity: diffusion of the reaction product (Mascarenhas & Hamilton 1992, 

Stomp 1992) and the presence of inhibitors of GUS activity (Bahieldin et al 

2005, Fior & Gerola 2009, Ramadan et al 2011, Thomasset et al 1996). In 

particular, the presence of a low molecular weight inhibitor of GUS activity 

was observed in N. tabacum stylar extract (Fior & Gerola 2009). 

However, there is no indication in literature on artefacts on histochemical 

GUS detection due to the presence of GUS-inhibitors, which have been 

reported to interfere with  the in vitro measured enzymatic activity. 

In this work we further investigated the LAT52 promoter activity in vitro, in 

semi-vivo and in vivo pollen tube growth.  
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We observed that it is not differentially regulated and that artefacts are 

responsible of the lack of GUS detection in pollen tubes in the lower part of 

the style. 

Only pollen from N.alata plants transformed with LAT52 promoter – uidA 

construct was used in this work. 

 

RESULTS  

 

In order to solve the controversy between the histochemical analysis (low or 

no GUS activity in pollen tubes present in the lower part of the style) and the 

enzymatic data (similar activity in the pollen tubes present in the upper and 

lower part of the style), GUS activity was histochemically analysed in semi - 

in vivo grown pollen tubes. 

Pistils were collected 24 hours after pollination (when the pollen tubes reach 

about the middle of the style), cut off at the lower part of the style and 

immersed in pollen tubes growth medium. After few hours pollen tubes 

grow out from the style, elongating into the medium. GUS activity, 

histochemically detected by “X-Glu reaction”, was clearly evident in the 

protruding pollen tubes (fig. 1.1), in agreement with the enzymatic results 

(data not shown) and in contrast with what observed in in vivo  grown 

pollen tubes (Gerola et al 2000). However, as only the apical region of pollen 

tubes was protruding from the style, we decided to verify the presence of 

GUS enzyme and activity also in the old region of the pollen tube.  

 

 
 
 
 
 
 
 
Fig.1.1 Histochemical GUS activity staining of N. alata GUS-pollen tube grown semi - in vivo 
in N. tabacum pistil.  
Pistil 24 h after pollination was cut and immersed vertically in growth medium. Protruding 
pollen tubes after 48 h were stained with X-glu. Blue precipitate is present in almost 50% of 
pollen tubes given that pollen was obtained from N. alata plants hemizigous for the LAT52 
promoter. Note that staining is detectable mainly in pollen tube tip (an example is indicated 
by arrow).  Image was acquired in transmitted light. 
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Pollen tubes were then in vitro grown for 24 hours and the presence of GUS 

was analysed by both immunohistochemical and histochemical detection.   

For immunohistochemical analysis, pollen tubes were treated with rabbit 

anti E.Coli GUS antibody, followed by treatment with a mouse anti-rabbit 

secondary antibody linked to the fluorochrome  Alexa Fluor® 488. As it can 

be seen in fig. 1.2, pollen tubes show the apical region separated by the old 

one by a callose plug  and the presence of GUS, revealed by Alexa 

fluorescence, is observable all along the pollen tube, with higher intensity in 

the tip with respect to the old region. This difference in 

immunohistochemical staining is probably due to the fact that the pollen 

tube tip is rich in cytoplasmic content, where the GUS is localized, while the 

old one is amply vacuolated and the cytoplasm is limited to a thin layer 

under the plasma membrane. 

 

 
 

Partially different results were obtained by the histochemical analysis (fig. 

1.3). In fact, X-Glu treatment revealed GUS activity in pollen grains and in 

pollen tubes tips, while the staining was faint or absent in the vacuolated old 

region. Since the first product of X-Glu hydrolysis is a soluble component 

(Stomp 1992), which only after dimerization and oxidation gives rise to the 

blue precipitate, we verified the existence of leakage of the reaction product.  

 

 

 

Fig. 1.2 Immunohistochemical 

localization of GUS enzyme in  

N. alata pollen after 24 h of in 

vitro growth. Image was acquired 

with epifluorescence microscope. 
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To avoid product dispersion in the reaction medium, pollen tubes were 

stained by X-Glu after growth in 2% agarose: blue precipitate was clearly 

evident in the agar surrounding the pollen grains and the pollen tubes (fig. 

1.4). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.4 X-glu staining dispersion in vitro.  
(A) N. alata GUS-pollen grains on N. tabacum style stained with X-glu. Note precipitate 
dispersed around pollen grains . (B) N. alata GUS-pollen tubes stained with X-glu after 24 h of 
growth. Arrow indicated precipitate dispersed around pollen tube. Images were acquired in 
transmitted light. 

 

 

Fig. 1.3 Histochemical 
staining for GUS activity in 
N. alata pollen tube grown in 
vitro. Pollen tubes after 3 h of 
growth were stained with 
aniline blue (A) and X-glu 
(B). Arrows indicate callose 
plugs. Pollen tubes after 24 h 
of growth were stained with 
X-glu (C) . Images were 
acquired in transmitted light. 
Detailed explanation is 

reported in text. 
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GUS activity was then analysed  in in vivo grown pollen tubes. Pollinated 

pistils were collected, dissected in different ways and stained with X-Glu 

treatment. The best staining evident at the stereo-microscope was observed 

when the pistil was dissected by removal of the epidermis, with minimal 

damage of the stylar transmitting tissue (fig.1.5). However, analysis at the 

transmitting light microscope revealed that the blue precipitate was present 

inside the pollen tubes tip and on the transmitting tissue cells, indicating a 

leakage from the pollen tubes (fig. 1.6). 

 

 
Fig. 1.5 Histochemical staining for GUS activity in N. alata GUS-pollen tube grown in vivo in 
N. tabacum pistil. Style 48 h after pollination was dissected removing epidermis, than was 
stained with X-glu. Image was acquired in transmitted light. 

 

 

 
 
Fig. 1.6 X-glu staining dispersion in vivo. 
Pollen tubes grown through style stained with X-glu (A) and aniline blue (B). Aniline blue 
allowed a precise identification of pollen tubes while X-glu diffused also in tissue around 
pollen tubes (see zones indicate by arrows).  Note that X-glu staining isn’t detectable in all 
pollen tube length. Images were acquired in transmitted light (A) and  epifluorescence (B) 
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In order to reduce leakage of the reaction product we tried to use ELF® 97-β-

D-glucuronide (ELF® 97) as substrate of the histochemical reaction, a 

substrate developed for GUS activity detection in polyacrylamide gels after 

electrophoretic separation (Zhou et al 1996). In fact no  soluble intermediate 

is formed upon hydrolysis  and the reaction gives rise directly to a 

fluorescent precipitate. 

On the contrary of what observed when using X-Glu, ELF® 97 histochemical 

staining of in vitro grown pollen tubes (fig. 1.7) revealed the presence of GUS 

activity all along the pollen tube, although, as expected by the 

immunohistochemical detection, in lower amount in the old part of the 

pollen tube with respect to the tip. Old part of pollen tube was clearly 

evidenced by fluorescein diacetate vital staining (fig. 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7 Histochemical staining 

for GUS activity in  N. alata 

GUS-pollen grown in vitro. 

Pollen tubes after 24 h of 

growth were stained with 

ELF® 97. Detailed explanation 

is reported in text. Image was 

acquired with epifluorescence 

microscope. 

Fig. 1.8 Fluorescein diacetate vital 

staining of N. alata pollen tube 

grown in  vitro for 24h. Image was 

acquired with epifluorescence 

microscope. 
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The use of ELF® 97 as substrate for histochemical detection of GUS activity 

turned out to be better than X-Glu also in semi-in vivo (fig. 1.9) and in vivo 

pollen tubes (1.10). In pistils collected 24 hours after hyper-pollination, GUS 

activity  was much more evident in the upper and lower part of the style 

than in the central portion. This staining pattern is due to the fact that in N. 

tabacum the transmitting tissue become thinner in the upper part of the style 

and therefore in hyper-pollinated pistils pollen tube tips, with high GUS 

activity, are present in two region of the style: in the lower part of the style, 

where pollen tubes arrived during their growth, and in the upper part, 

where pollen tubes “in excess” were stopped by the taper of the transmitting 

tissue.  

Mainly old, with low GUS activity, regions of the pollen tubes that grew to 

the bottom of the style are present in the central portion, where aniline blue 

staining is prevailing. 

 

 

Fig. 1.9  Histochemical staining for GUS activity in  N. alata GUS-pollen grown semi – in vivo. 

Pistils 24 hours after pollination were cut 2 cm from stigma and vertically immersed in 

growth medium. Protruding  pollen tubes were stained with aniline blue (A) and ELF® 97 

(B). Images were acquired with epifluorescence microscope. 
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Fig. 1.9  Histochemical staining for GUS activity in  N. alata GUS-pollen grown in vivo. 

Pistil 36 hours after pollination was collected and epidermis removed. Than style was stained 

with ELF® 97. Detailed explanation is reported in text.  Image was acquired with 

epifluorescence microscope. 

 

DISCUSSION 

 

The pollen specific promoter LAT52 was supposed to be regulated during 

pollen growth through the pistil: active in the stigma and the ovary and 

inactive along the style (Gerola et al 2000). This hypothesis was based on 

histochemical assay of GUS activity in pistils pollinated with pollen from N. 

alata plants transformed with a construct formed by the LAT52 promoter 

associated to E. coli GUS as reporter gene (GUS pollen). 

However similar GUS activity was assayed fluorimetrically in the lower and 

higher part of pollinated styles (Pilotto et al 2002) and  presence of GUS 

inhibitor was reported in Nicotiana styles (Fior & Gerola 2009, Pisoni et al 

2004). These results questioned the reliability of the differential X-glu 

histochemical staining observed in the pollinated style, although the 

observation that the GUS inhibitor is uniformly distributed along the style 

(Pisoni et al 2004) does not support  the hypothesis that GUS activity in 

pollen tubes is inhibited only in the lower part of the style.  

In any case, these observations, together with a high variability in GUS 

staining in the pistils pollinated with GUS pollen, led us to verify if LAT52 

promoter is effectively regulated during pollen tube growth.  

Semi-in vivo experiments demonstrated that GUS is present and is 

histochemically detectable in the tips of pollen tubes grown through two 

thirds of the style, i.e. penetrated in that stylar region where GUS activity is 

usually low or not histochemically detectable.  
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Moreover, an immunohistochemical approach demonstrated that GUS is 

present both in the tip and in the old part of in vitro grown pollen tubes, 

clearly in higher amount in the tip, which is rich in cytoplasmic content, 

with respect to the old part, characterized by vacuolization and reduced 

cytoplasm.  

However, in the histochemical detection of GUS activity by X-Glu staining 

the reaction product (a blue precipitate) was observable in pollen grains and 

in the tip of pollen tubes, but it was practically absent in the old part. 

In addition dispersion of precipitate was observed outside pollen grains and 

pollen tubes, both in vitro and in vivo. In particular, it has been observed 

that the method used to dissect pollinated pistils before X-Glu staining  

influences the histochemical detection of GUS activity. When the style is 

completely dissected and the pollen tubes, free of transmitting tissue cells, 

are exposed to the medium, the few blue precipitate is observable, localized 

inside pollen tubes tips. Instead when the pistil is gently dissected by 

removing the epidermis, abundant blue precipitate is observable in the style. 

However further inspection revealed that, over the reaction product present 

inside the pollen tube tips, a large amount of the precipitate was associated 

to the transmitting tissue cells, outside the pollen tubes. 

From these observation we can conclude that LAT52 promoter is not 

differentially regulated during pollen tube growth along the style. More 

factors can influence the histochemical detection of GUS activity in 

pollinated pistils. In fact the first product of X-Glu hydrolysis is a soluble 

indoxyl which dimerizes and precipitates only in the presence of particular 

redox condition (Stomp 1992). The plasma membrane in the old part of 

pollen tubes has lost its semi permeability and the cytoplasm, where GUS is 

localized, is reduced to a thin layer under the plasma membrane. Absence of 

fluorescein diacetate vital staining in old pollen tube parts confirmed this 

consideration. In these conditions the indoxyl, product of X-Glu hydrolysis, 

diffuse outside the pollen tube and precipitate on the surrounding tissue, 

like in the style dissected by epidermis removal, or is dispersed in the 

medium, like in the completely dissected style.  
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In the pollen tube tip the membrane remains semi permeable for longer 

time, moreover GUS is present in higher amount and the cytoplasm fill the 

tip, so that the indoxyl produced by X-Glu hydrolysis in the centre of the tip 

precipitates before reaching the plasma membrane and diffusing out of the 

pollen tube. Blue precipitate is therefore observable in the pollen tube tips 

present along the style, although during longer reaction times the plasma 

membrane can lose semi-permeability, with diffusion of the indoxyl and 

appearance of blue precipitate no more strictly associated to the presence of 

GUS. 

It has also be considered that the transmitting tissue is constituted by two 

cylindrical portions that, starting under the stigma surface, converge and 

fuse in the centre of the style. That is, under the stigma there are “two” 

transmitting tissues which fuse constituting a central transmitting tissue 

with the shape of an eight which progressively change to a thinner central 

cylinder (Bell & Hicks 1976). Therefore the space available for pollen tube 

growth decreases in the higher part of the style and, when the pistil is hyper-

pollinated, pollen tubes that germinate later enter the transmitting tissue but 

cannot go ahead along the style. In hyper-pollinated pistils, the higher 

portion of style is therefore rich in pollen tubes tips and, therefore, in GUS 

activity, while, on the opposite, few pollen tubes tips are present in less 

pollinated pistils.  

Moreover the procedure used to dissect the pistil might both damage the 

integrity of plasma membrane with dispersion of X-glu staining and also 

change the exposure of GUS to the GUS inhibitor present in the style.  

All these factors influence histochemical GUS detection in different extent, 

causing the observed high variability. 

Removal of the artefacts associated to diffusion of the reaction product was 

obtained by substituting X-Glu with ELF® 97 as substrate. In fact no soluble 

intermediate is produced by ELF® 97 hydrolysis and the fluorescent 

precipitate which is produced is also visible inside the old part of the pollen 

tubes. 
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CHAPTER 2 

 

Β-glucuronidases activity in pollen 

 

Parts of the contents of this chapter was reported in: 
- Ronchini M., Corinti T., Zilio M.,Gerola P., B-glucuronidasi nel polline di tabacco, Società 
Botanica Italiana - “Biologia Cellulare e Molecolare” e “Biotecnologie e Differenziamento”- 
Ferrara, 17 – 19 Giugno 2013 
 

INTRODUCTION 

 

Pollen is the male gametophyte of flowering plants and it is an independent 

organism respect to the plant. Once germinated on stigma, pollen has the 

role to carry the two sperm cells to the ovule allowing the double 

fertilization process and seed setting. These processes requires a massive cell 

wall deposition to promote fast pollen tube elongation and a tight control of 

the cell wall remodeling to modify its mechanical properties.  

In cell wall metabolism  are involved a great number of enzymatic families 

included glycoside hydrolases (GHs) (Minic & Jouanin 2006). According a 

recent review in pollen tube have been identified the following GH  families: 

3, 9, 10, 17, 28, 35, 43 and 51 (Mollet et al 2013), GH79 family wasn’t 

considered. 

However in past presence of β-glucuronidase activity was observed in 

pollen, but the enzymes involved wasn’t characterized. Expression of GUS 

genes in pollen has been discussed in the chapter 3. 

First observations regarding  presence of GUS activity in pollen dated to 

1965  (Gorska-Brylass 1965). Similar results were obtained several decades 

later using pollen of Portulaca grandiflora (Sood 1980). 

Presence of endogenous β-glucuronidase activity was  histochemically 

detected using  in male gametophyte of Nicotiana tabacum (Plegt & Bino 

1989). GUS activity couldn’t be demonstrated at premeiotic and meiotic 

stages in anthers.  
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During the later stage of development blue precipitation, due to X-glu 

staining, was observed in tapetal and sporogenous cells. Mature bicellular 

pollen contained high level of GUS, in tricellular pollen such presence 

couldn’t  be demonstrated. This difference was explained with a different 

regulation of protein-synthetizing apparatus in bicellular and tricellualr 

pollen.  

Similar results have been reported some years later (Alwen et al 1992). 

In particular was observed GUS activity only in mature N. tabacum pollen. 

Regarding GUS role in pollen has been suggested that GUS activity may be 

correlated with the presence of glucuronic acid-rich arabinogalactan proteins 

(AGPs) in style, contributing to the hydrolysis of the acid carbohydrates 

(Plegt & Bino 1989). AGPs is also present in cell wall of pollen grains and 

tubes (Nguema-Ona et al 2012).  

AGPs have different roles in plants: cell-cell recognition in plant 

reproduction,  cell adhesion, signal transduction  and nutrient resources 

(Cheung & Wu 1999, Nguema-Ona et al 2012, Schultz et al 2000, Zhang et al 

2011). All functions important in pollen development and in its growth 

along the style.  

It has recently been observed that overexpression or suppression of AtGUS2 

gene in Arabidospis thaliana induced an alteration in composition of AGPs 

(Eudes et al 2008), supporting the initial hypothesis of Plegt and Bino (1989). 

Pollen tubes show an apical growth modality such as root hairs. In these 

least cells has been observed a reduced growth due to by inhibition of GUS 

activity (Sudan et al 2006), suggesting to verify the presence of a similar 

effect in pollen tubes. 

Starting from the previous considerations the activity and role of GUS 

enzymes have been investigated in pollen of N. alata and N. tabacum. 

 

RESULTS  

 

Effects of inhibitors on GUS endogenous activity 

 

The use of inhibitors is  one of the approaches used to investigate biological 

role of enzymes.  
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Contrasting results have been reported in literature on efficiency of 

traditional GUS inhibitors on endogenous GUS activity in plants (Muhitch 

1998). We tested three different components known to inhibit GUS activity 

of E. coli (saccharolactone, glucuronic acid and galacturonic acid). The 

inhibitory efficacy was tested on GUS activity histochemically detected in 

pollen grains. As it can be seen in figure (fig. 2.1) saccharolactone is the most 

efficient GUS inhibitor: at 1 mM concentration inhibition is already evident 

and at 10 mM no GUS staining is anymore observable. 

Thus saccharolactone has been therefore used for investigating the role of 

endogenous GUS in pollen tubes germination and growth. 

Fig.  – 2.1 -glu histochemical staining of wild type N. alata 

pollen grains in presence different concentration of GUS 

inhibitors: control (on the left); saccharolactone: 1 mM (A), 4 

mM (B), 10 mM (C); glucuronic acid: 1 mM (D), 4 mM (E), 10 

mM (F); galacturonic acid: 1 mM (G), 4 mM (H), 10 mM (I).  

Saccharolactone showed the highest inhibitory effect 

followed by glucuronic acid and galcturonic acid.  
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Effects of saccharolactone on pollen tubes germination and growth  

 

The effect of SL on pollen tube germination and growth was tested in 

different conditions:  in vitro, in vivo and semi-in vivo. 

 

In vitro  

Pollen grains have been incubated in the growth medium in the presence or 

absence of SL at different concentrations. As it can be seen in fig. 2.2 , 

significant reduction of germination was observed only in the presence of 30 

mM SL, while an effect on pollen tube growth was observable at 5 mM SL 

and in the presence of 30 mM SL pollen tube elongation was practically 

completely inhibited .   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.2 N. alata pollen in vitro germinated in presence of 30 mM (B) saccharolactone after 5 h 
resulted almost completely scrambled respect to control (A). Images were acquired in 
transmitting light.  
In vitro inhibition N. alata wild type pollen germination (C)  and elongation (D) in presence of 
different concentration of saccharolactone. Pollen tube elongation (D) resulted inhibited at 
lower concentration with respect to germination (C).  Pollen grains resulted almost all 
germinated after 1 h (C).  

C D 

A B 
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In semi- vivo  

Pollinated pistils were cut and immersed in growth medium in the presence 

or absence of 20 mM saccharolactone.  

As it can be seen in fig the presence of SL strongly inhibits the elongation of 

pollen tubes protruding from the style (fig. 2.3). 

No effect was observed when, instead of SL, 20 mM mannitole was added to 

the growing medium (data not shown). 

 

 

 

 

 

 

 

Fig. 2.3 Semi- in vivo inhibition of N. alata wild type pollen grown in N. tabacum pistils.  
Pollen was allowed to elongate for 48 h in growth medium in presence 20 mM 
saccharolactone (A) and in its absence (B). pollen tubes were evidenced using aniline blue and 
images were acquired in epifluorescece.  

 

In vivo  

A new technique has been set up to investigate the effects of SL on in vivo 

grown pollen tubes. N. tabacum pistils were collected two hours after 

pollination with N. alata wild type pollen. Without damaging the 

transmitting tissue, the epidermis of the style was then were immersed in 

pollen growth medium in the presence or absence of 20 mM 

saccacharolactone.  

After 24 hour the style was dissected and the pollen tubes were stained by 

aniline blue. As it can be seen in fig. 2.4, perforation of epidermis and 

infiltration of growth medium within the style did not alter pollen tubes 

elongation along the pistil while, when saccharolactone was present in the 

growth medium, pollen tubes were not  able to grow across the perforated 

stylar region. 

A B 
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Fig. 2.4  in vivo inhibition of N. alata wild type pollen grown in N. tabacum pistils.  
The epidermis of the style region at 2 cm below the stigma was then perforated and the pistils 
the whole style was immersed in medium in absence (A) or presence (B) of 20 mM 
saccacharolactone. After 24 hour the style was dissecting and the pollen tubes were evidenced 
by aniline blue. Images were acquired in epifluorescece and then assembled to obtain an 
overall picture.  
 

 

DISCUSSION 

Histochemical analysis in both N. alata and N. tabacum pollen demonstrated 

that endogenous GUS activity is only partially inhibited by 1 mM SL and 

that one order of magnitude higher concentration of SL is required to 

observe strong inhibition.  

Pollen tube germination was less sensitive to the presence of SL with respect 

to pollen tube growth. In fact 30 mM SL was required to observe a 

significant effect on pollen tube germination, while pollen tube elongation 

was sensible to the presence of 5 mM SL and an almost complete inhibition 

was observable in the presence of 20 mM SL.  

 

A 

B 
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Probably, the role of GUS in weakening the cell wall at the germinative pore 

level, allowing the pollen tube to protrude under the turgor pressure, is less 

important than the role played in the cell wall remodelling required for 

pollen tube elongation.  

It is also particularly interesting that the SL concentration required to inhibit 

pollen tube growth is analogous to that reported in literature  as inhibitor of 

root hairs elongation (Sudan et al 2006), process characterized by an apical 

growth mechanism similar to that present in pollen tubes. 

In a more general view, all the processes where GUS activity is required for 

plant cell wall remodelling, such as root hair elongation and cell elongation, 

SL behave as inhibitor at 10-20mM concentrations (Schoenbeck et al 2007, 

Sudan et al 2006). These results are in agreement with observation made on 

pollen tubes. 

To understand the role of GUS in plant cell wall remodelling it has to be 

considered that, although glucuronic acid is not a main component of plant 

cell wall, it is present, bound by glycosidic bond, at the end of 

polysaccharidic chains in emicelluloses (mainly xylans), AGPs and pectins 

(Eudes et al 2008). Its removal by GUS in wall remodelling is therefore 

essential to allow the action of the other glycosil hydrolases. 

Drastic inhibition of pollen tube growth by SL has been observed also in 

semi-in vivo and in vivo experiments. 

In this last case GUS might play another role in addition to cell wall 

remodelling.  In fact it has been demonstrated that GUS activity is essential 

for the access of glycosil hydrolases  to the polysaccaridic side chain of AGPs 

(Eudes et al 2008) and AGPs present in the transmitting tissue are 

deglycosilated by pollen tubes, which probably use them as nutrient 

resource (Cheung 1995, Wang et al 1993). 

The inhibitory effect of SL on pollen tube growth in vivo could be therefore 

explained by the alteration of two important processes: cell wall remodelling 

and mobilization of nutrient resources.  
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CHAPTER 3 

 

GUS genes expression in Arabidopsis thaliana and 

Nicotiana tabacum 
 

 

Parts of the contents of this chapter was reported in: 

- Ronchini M., Corinti T., Zilio M.,Gerola P., B-glucuronidasi nel polline di tabacco, Società 

Botanica Italiana - “Biologia Cellulare e Molecolare” e “Biotecnologie e Differenziamento”- 

Ferrara, 17 – 19 Giugno 2013 

- Ronchini M., Bruno L., Corinti T., Zilio M., Chiappetta A., Bitonti M.B., Gerola P., 
Espressione dei geni GUS e UGT85A in Arabidopsis thaliana  , Riassunti  108° Congresso 
Società Botanica Italiana, Baselga di Pinè (TN) 18-23 settembre 2013, p. 57. 

 

INTRODUCTION 

 

Endogenous GUS activity was histochemically detected in leaf, root, stem 

and flowers of many plant species among which Arabidopsis thaliana and 

Nicotiana tabacum (Alwen et al 1992, Eudes et al 2008, Kosugi et al 1990, Plegt 

& Bino 1989, Sudan et al 2006). 

In 2006 histochemical analysis indicated that GUS activity associated to the 

young portion of the organs, where it seems to be involved in cell 

elongation, is higher with respect to that observed in the adult tissues 

(Sudan et al 2006). However, the presence of GUS activity in the apical 

region of roots is controversial. In fact, on the basis of comparison of plants 

grown in sterile or non-sterile conditions, Eudes et al. (2008) hypothesized 

that the histochemical GUS activity observed in roots is due to microflora 

associated enzyme. 

Expression pattern of GUS genes has been also investigated in different 

organs of A. thaliana (Woo et al 2007). A detailed expression pattern could be 

also obtained from data made available on Arabidopsis eFP Browser (Winter 

et al 2007). 

In our work we were particularly interested in investigating GUS genes 

expression in the root and in the pollen. 
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Concerning the root, we were interested to clarify the controversial data on 

GUS expression (Eudes et al 2008, Sudan et al 2006), concentrating 

particularly on border like cells and on the root cap meristem in A. thaliana. 

During root growth, root cap turnover and programmed cell separation 

from the cap periphery result in the delivery of detached cell populations 

into the rhizosphere. The root results enclosed by large populations of 

detached somatic cells, that are termed root border cells or root border-like 

cells depending on the pattern of their release and organization (Vicré et al 

2005). Border cells are defined as cells that detach from the root cap as 

individual cells and form small aggregates, whereas border-like cells 

(present in Arabidopsis) are released as blocks or sheets of cells that remain 

attached to each other.  

Homogalcturonans and arabinogalactan-protein seem to play a role in the 

attachment and organization of the border like cells  (Durand et al 2009).  

GUS enzymes seems to be involved in the deglycosilation of these molecules 

(Eudes et al 2008). 

Border cells and border like cells play a key role in controlling root 

interaction with living microbes of the rhizosphere.  

As their separation from root tip proceeds, the cells synthesize and secrete a 

hydrated mucilage that contains polysaccharides, secondary metabolites, 

antimicrobial proteins and extracellular DNA (exDNA). This exDNA-based 

matrix seems to function in root defence in a way similar to that of recently 

characterized neutrophil extracellular traps (NETs) in mammalian cells 

(Driouich et al 2013).  

The number of border cells is regulated by environmental stimuli (Hawes et 

al 2000) and they are formed by mitosis by a group of meristematic cells, 

distinct from the root apical meristem, named root cap meristem. Mitosis in 

the cap meristem is suppressed indefinitely (presumably at the G2 phase of 

the cell cycle) once a species- specific number of border cells accumulates on 

the cap periphery (Wen et al 2008, Wen et al 2004). Removal of extant border 

like cells reactivates mitotic division in the root cup meristem (Brigham et al 

1998). It has been observed that UDP-glucuronyltransferase (UGT) gene 

expression is correlated with cell division in the root cup meristem. 
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Moreover, when uidA was expressed under the control of the promoter of a 

UDP-glucuronyltransferase (PsUGT1) gene, GUS expression was lethal in all 

the tested species (pea, alfalfa and A.thaliana) and when root tips were 

incubated in the presence of saccharolactone (SL), an inhibitor of GUS 

activity, an increase in border cells production was observed, indicating an 

increase in the mitotic activity of root cap meristem (Wen et al 2004).  

These data support the hypothesis that PsUGT1 and GUS operate in tandem 

in the root cap meristem, reversibly glycosylating a molecule, probably a 

flavonoid, involved in cell cycle regulation (Woo et al 1999, Woo et al. 2005). 

In this thesis GUS expression in root tip of A. thaliana has been analysed by 

using a recently developed whole mount multi probe in situ hybridization 

technique (Bruno et al 2011). 

The interest to investigate GUS gene expression in pollen originates by the 

observations that GUS activity is histochemically detectable in pollen grains 

and that GUS plays a role in pollen tube germination and growth  (see 

chapter 2). Little information on the argument are available in literature. 

Analysis of pollen transcriptome reported in literature revealed the 

expression of AtGUS1 and AtGUS2 (Honys & Twell 2004, Pina et al 2005), 

However, no indication of GUS expression in pollen grains or germinated 

pollen tubes was obtained from the analysis of a recently published list of 

genes expressed in pollen (Hafidh et al 2012). 
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RESULTS  

Histochemical localization of GUS activity 

GUS activity was observed by histochemical staining at different stages (4, 7, 

10 and 17 day after germination) in N. tabacum, N. alata plants grown in 

sterile conditions (fig.3.1 and 3.2). 

Activity was detectable both in differentiated and apical zones of roots at all 

the considered stages. However localization and intensity of staining change 

during plant development (fig. 3.2). Staining appeared more intense in 

secondary respect to primary root and, usually, in long roots it was mainly 

limited to the apical part (fig 3.1 and 3.2). Intense staining was observed in 

root zone attached to the rest of the seeds (fig. 3.1B). 

In cotyledons activity was detectable in vasculature, trichomes and apex 

(fig.3.1B and C).  

In S. lycopersicum plants grown in sterile conditions GUS activity was 

detectable at different stages (at 7 and 10 days)  in the same root region, 

cotyledons and leaves as in Nicotiana (data not shown). Activity was 

detectable also in the remains of the seed (data not shown). 

In A. thaliana GUS activity was detected in different part of the plant: 

inflorescence, shoot, siliques, leaves and roots (figs.3.3 and 3.4) .  

In inflorescence GUS activity was detected in filament, anther, apical 

meristem, pollen grains and pollen tubes growing in the stigma. It was also 

present in the flower pedicel (fig. 3.3A) and, in siliques, in the placenta and 

along the  fusion line between the two carpels, where the siliqua open (fig. 

3.3D).  

In the root, GUS activity is present both in the tip and in the differentiated 

region, where it is more evident. (fig. 3.4).  
A change in staining pattern is observable in correspondence of the 

transition zone between shoot and root: the whole shoot appears stained 

while root shows the presence of activity only in the central part. This can be 

explained by the change in stele organization between root and shoot. 
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As a control that the observed staining was due to endogenous enzymatic 

activity, it was verified that it was not detectable in the presence of 10 mM 

saccharolactone or at pH 7 (data not shown). 

 

 

 

Fig. 3.1 N. tabacum seedlings grown in continuous light  stained with X-glu. (A) 17-day 

seedlings. Staining is detectable in cotyledon and in roots. More the roots are elongated more 

the activity was limited to the apical part. (B) Root particular of a 7-day seedling. Intense 

staining is localized in the root zone attached to the rest of the seeds. (B) Cotyledon particular 

of a 17-day seedling. Trichomes (indicated by arrows) appears stained. Image was acquired in 

transmitted light 
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Fig. 3.2 N. alata seedlings stained with X-glu: 4-day(A)  and 7-day (B). Staining is clearly 

detectable in roots. Image was acquired in transmitted light 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Arabidopsis thaliana inflorescence and silique stained with X-glu. (A) Complete 

Inflorescence. (B) Particular represents a stigma pollinated and an anther. Stained pollen 

grains are visible in the anther. The intense stained zone in stigma is associated to pollen 

tubes descending toward ovules. (C) Bottom part of a flower. Abscission zone results stained 

(D) Particular of a silique with an ovule. Staining is visible in the placenta and along the 

carpel fusion line. Image was acquired in transmitted light 
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Fig. 3.4 Arabidopsis thaliana 

seedlings stained with X-

glu.(A) 17-day seedling 

grown in continuous light. 

Staining is clearly visible in 

roots, shoot and leaves (B) 5-

day seedlings. Staining is 

visible in root and shoot. (5) 

Particular of roots. Staining 

is present mainly in 

differentiated zone and is 

concentrated in vasculature. 

(D) Particular of a 5-day 

seedling. Zone of transition 

between shoot and root 

(explanation in text). Image 

was acquired in transmitted 

light 

 

 

 
Expression pattern of GUS and UGT genes in A. thaliana 

 

Specific primers for semiquantitative PCR analysis were designed on the 

basis of the GUS cDNA sequences reported in literature (see Materials and 

Methods). 

As it can be seen in fig. 3.4, AtGUS genes were expressed in almost all the 

plant organs: in flowers the highest expression levels were observed (fig. 

3.4). Regarding shoot apex subsequently verifications allow to determine 

that all AtGUS are expressed in this organ.  Among the three genes, GUS2 

seemed to be the most expressed. 

We analysed also UGT85A gene expression. Their expression resulted more 

differentiated with respect to that of AtGUS genes. UGT85A1, A2 and A4 

were expressed in almost all plant organs. UGT85A3 and UGT85A7 resulted 

the less expressed genes. Regarding shoot apex subsequently verifications 

allow to determine that all AtUGT85A genes, with the exception of 

AtUGT85A7, are expressed in this organ.   
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These results were in agreement with expression pattern reported in 

Arabidopsis eFP Browser (Winter et al. 2007). 

GUS gene expression was also analysed, in collaboration with University of 

Calabria, in the root tip at tissue level by whole mount multi probe 

hybridization technique, recently developed for plant samples (fig. 3.6).  

While AtGUS1 and AtGUS2 showed a similar expression pattern (epidermis, 

cortical zone, cap and quiescent centre), AtGUS3 expression was limited to 

the border like cells.  

AtGUS1 and AtGUS2 expression was also detected in secondary root apex 

(data not shown). 

By enhancing the probe signal for AtGUS1 and AtGUS2 mRNA using 

tyramide amplification system, the observed expression pattern was 

confirmed (data not shown). These experiments are only at preliminary 

level. 

 

Expression pattern of GUS genes in N. tabacum and N. alata 

 

Specific primers for semiquantitative PCR analysis were designed on the 

basis of predicted GUS sequences of N. tabacum (see Materials and Methods 

and chapter 4). Primer specificity was verified by sequencing the product of 

amplification and  by comparing the result with GUS gene sequences from 

A. thaliana and S. lycopersicum. This allowed to assign the specific primers to 

the different GUS genes. 

Expression of GUS1, GUS2 and GUS3 genes was detected in all vegetative 

(stem, leaves, root) and reproductive (ovary, pistil, flower) organs 

considered (fig. 3.5). In the leaves, all genes were expressed both at young 

and senescing states. Preliminary experiments showed that also GUS3B was 

expressed (see chapter 4 for GUS genes classification), but these results have 

to be confirmed.  

In N. tabacum GUS3 gene was strongly expressed in mature pollen and in 

pollen tubes at 4 and 24 h after germination (fig. 3.5). At a minor extent, also 

GUS2 was expressed in pollen, while GUS1 expression was hardly 

detectable. 

Preliminary experiments in N. alata showed similar results (data not shown). 



46 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3.4 Expression pattern of GUS and UGT genes in A. thaliana. Different plant parts were 
considered: cotyledons, shoot apex, young leaves, expanded leaves, caulinar leaves, roots, 
flowers and whole plants (seedlings). Actin2 was used as internal control. 

 



47 

 

 
Fig. 3.5 Expression pattern of GUS genes in different organs of  Nicotiana tabacum: young 
leaves (Y.L..), old leaves (O.L.), pistils without ovary (Pi), ovary (Ov), flowers without anther 
and pistils (Fl), stem (St), roots (Ro), pollen grains (Po), pollen germinated for 4 hours (G.P. 
4h), pollen germinated for 24 h (G.P. 24 h.). G= DNA genomic, A= actin, B= GUS, C= GUS2, 
D= GUS3.  Ladder range is from 100 up to 1000 bp.  
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Fig. 3.6 Multiprobe in situ hybridization in Arabidopsis thaliana seedling root tips. Images were 
acquired on a Leica SP2 confocal microscope with a 40X oil immersion objective.  
(2) A - Red: AtGUS2 Digoxigenin riboprobe, sheep anti-DIG and AF555 donkey anti-sheep.. B 
– Green: AtGUS1 Biotin riboprobe, mouse anti-BIO and AF488 donkey anti-mouse C – Blue: 
AtGUS3 Fluorescein riboprobe rabbit anti-FITC and AF647 chicken antirabbit. D – Merge A, 
B, C. Scale bar 75 µm. (2) Control performed using sense riboprobe: A – AtGUS1, B – AtGUS2 
and C- AtGUS3. Note the background fluorescence in all samples, enhanced by high 
sensibility of observation conditions used. Scale bar 50 µm. 

 

2 
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DISCUSSION  
 
GUS activity distribution was histochemically investigated in N. tabacum, N. 

alata, S. lycopersicum and A. thaliana.  

As previously observed (Sudan et al 2006), GUS activity, confirmed by the 

expression pattern of the GUS genes obtained by PCR analysis, has been 

detected in all the vegetative and reproductive organs of all tested species, 

associated to the vascular tissue and to both young and senescent regions. 

Concerning the conflicting results reported in literature (Eudes et al 2008, 

Sudan et al 2006), we observed GUS activity in the root tip in sterile grown 

plants, confirming the results obtained by Sudan and co-workers (2006), in 

contrast to what reported by Eudes and co-workers (2008), who suggested 

that GUS activity in the root was due to the microflora. 

Particularly interesting results have been obtained by the in situ 

hybridization technique.  GUS3 gene resulted expressed only in the border-

like cells, in that region where they detach from the root tip. These results 

can be related to the observation reported in literature that glucuronyl 

transferase activity is required for cell-cell adhesion. The presence of 

glucuronic acid is probably required for the attachment of border like cells to 

the root tip and its removal by GUS is one of the steps for their detachment. 

GUS3 expression seems to be regulated in function of such role. 

GUS1 and GUS2 are instead expressed in the cortex and in root cup 

meristem, not in the root tip meristem. Expression in the root cortex might 

be related to cell wall remodelling in the cell elongation process. The 

expression in the root cup meristem might instead be related to the 

inhibition of the mitotic cycle reported to be onset in the root cap meristem 

when a certain number of border cells are formed (Brigham et al 1998). In 

fact, it has been hypothesized (Woo et al 2005) that a component, probably a 

flavonoid, inhibitor of mitotic cycle, is sequestered and released by 

respectively UDP-glucuronyltransferase (UGT) and GUS, which, by their 

tandem coordinated action, regulate the mitotic cycle. Experiments are 

planned to investigate the expression of the different UGT genes in the root 

tip of Arabidopsis.  
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To this aim will be usefull the tyramide method, that we have seen can be 

applied to the whole mount multi probe hybridization protocol (data not 

shown), with a signal amplification which can allow the detection of low 

expressed genes. 

Particularly interesting is also the observation that GUS activity is present in 

abscission zones, like in the pedicel of the flower, in the placenta and along 

the fusion line of siliqua carpels. This finding confirms the role of GUS in the 

processes of cell wall remodelling, certainly important in the abscission 

process, and also support the hypothesis of a role of GUS in cell detachment, 

suggested for border like cells. 

GUS activity in Arabidopsis was also detected in pollen grains and in pollen 

tubes growing in the stigma, confirming the observations in N. tabacum (see 

chapter 2). Expression pattern analysis indicated that GUS3 is more 

expressed in pollen and pollen tubes with respect to  GUS1 and GUS2 genes. 

However quantitative PCR is required to confirm the data.  
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CHAPTER 4  

 
Identification of GUS genes in N. tabacum and 

phylogenetic analysis of GH79 GUSs 

 

INTRODUCTION 

 

The first GUS gene sequenced in plants was from Scutelallaria baicalensis and 

it showed high homology to heparanases of family-79 glycosil hydrolase 

(Sasaki et al 2000). 

Thereafter, three different GUS genes have been identified in A. thaliana and 

named : AtGUS1, AtGUS2 and AtGUS3 (Woo et al 2007). Also these genes 

resulted to be to belong to heparanase of GH-79 family:  

AtGUS1 code for heparanase 2, AtGUS2 code for heparanase and AtGUS3 

code for heparanase 3.Other plant GUS sequences can only be derived by 

genomic bank analysis. 

In the Sol Genomic Network we found the sequences of GUS genes from 

Solanum lycopersicon that were useful for identification of GUS genes in N. 

tabacum. Genomic sequences of N. sylvestris and N. tomentosiformis, 

progenitors of N. tabacum, are only recently available (Sierro et al 2013). 

According to a bioinformatics analysis, it seems that GUSs of GH-2 family 

are missing in plants, where are present only GUSs from GH-79 family (Arul 

et al 2008). 

On the basis of the N. tabacum GUS genes sequences that we determined and 

of the other GUS sequences reported in literature (Sasaki et al 2000, Woo et 

al 2007) or obtained by bioinformatics genome bank analysis, we derived an 

interesting phylogenetic analysis. Phylogenetic relationship of GH79 GUSs 

from plants, fungi and vertebrates was present in the literature, but it was  

not supported by an adequate statistical analysis (Konishi et al 2008). 
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RESULTS AND DISCUSSION 

 

Sequence analysis of GUSs genes in A. thaliana, S. lycopersicum, N. 

sylvestris and N. tomentosiformis 

A. thaliana  β-glucuronidases 

AtGUS1 (AT5G61250), AtGUS2 (AT5G07830) and AtGSU3 (AT5G34940), 

identified in A. thaliana, contain 8 introns (fig. 4.1), a number different from 

what previously reported (Woo et al 2007). 

In addition to the canonical TATA-box in the [-39, -26] region they contain 

other regulative elements, such as TATA-variant sequences (TATA∆-PLMs), 

and, except AtGUS2, also TC-elements (tab. 4.1). 

These last elements are a class of novel regulatory motifs that seems to be 

involved in the complex modulation of gene expression in plants (Bernard et 

al 2010). 

 

 
 

Fig. 4.1 Structure of A. thaliana GUS genes.  

 
 
 
 
 

 

 

Tab. 4.1 Presence of regulatory elements involved transcription in A. thaliana GUS gene 
promoter sequences.  
 
 
 
 

Gene 
TATA-

box PLM 
TATAΔ-PLMs 

TC[-39,-26]-
PLMs 

AtGUS1 Yes Yes Yes 

AtGUS2 Yes Yes No 

AtGUS3 Yes Yes Yes 
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S.lycopersicum β-glucuronidases 
 
The S. lycopersicum genome (T.G.C. 2012) has been recently made 

available on Solanum Genomics Network and GenBank (NCBI) and it 

was adopted as reference species for further studies in Solanaceae. 

It was possible to retrieve in this database five GUS genes: two GUS1 

(SlGUS1A and SlGUS1B), one GUS2 (SlGUS2) and two GUS3 

(SlGUS3A and SlGUS3B) (accession numbers are reported in tab. 4.2). 

Unlike A. thaliana, in S. lycopersicum GUS1 and GUS3 genes are 

present in duplicate. 

SlGUS1A maps on chromosome 5, SlGUS1B on chromosome 6, 

SlGUS2 on chromosome 3, SlGUS3A on chromosome 7 and SlGUS3B 

on chromosome 10. All genes contain 8 introns (fig. 4.2). The positions 

and dimensions of introns are different also in the duplicated genes. 

Exons, although separated by introns with different length in the different 

genes, show a similar dimension in all genes.  

Regarding regulatory elements, all the genes do not present canonical 

TATA-box in the [-39,-26] region but rather TATA-variant sequences 

and TC-elements (tab. 4.2). 

 

 

 

 
 
Fig. 4.2 Structure of S. lycopersicum GUS genes.  
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Tab. 4.2 Information regarding S. lycopersicum GUS genes: accession number, chromosome on 
which map each gene and presence of transcriptional regulatory elements 

 

N. tabacum progenitors β-glucuronidases 

Starting from S. lycopersicum GUS sequences, it was possible to retrieve 

five GUS genes in N. tomentosiformis and N. sylvestris genomes (tab. 4.3).  

 

Species 
 

Genomic GenBank 
accession number  

Gene 
 

N. tomentosiformis ASAG01046754 NtomGUS1A 

N. tomentosiformis ASAG01017701 NtomGUS1B 

N. tomentosiformis ASAG01011971 NtomGUS2 

N. tomentosiformis ASAG01070395 NtomGUS3A 

N. tomentosiformis ASAG01008598 NtomGUS3B 

N. sylvestris  ASAF01000528 NsGUS1A 

N. sylvestris  ASAF01014810 NsGUS1B 

N. sylvestris  ASAF01019790 NsGUS2 

N. sylvestris  ASAF01048865 NsGUS3A 

N. sylvestris  ASAF01087681 NsGUS3B 

 

Tab. 4.3 Accession numbers of the N. tomentosiformis and N. sylvestris genomic sequences in 

which GUS genes were identified. 

 

Gene 

GenBank 
accession 
number 

Chromosome 

TATA-
box 

PLM 
TATA∆-

PLMs 

TC[-
39,-
26]-

PLMs 

SlGUS1A XM_004239417 5 no yes yes 

SlGUS1B XM_004241543 6 no yes no 

SlGUS2 XM_004235932 3 no yes yes 

SlGUS3A XM_004242684 7 no yes yes 

SlGUS3B XM_004249554 10 no yes no 
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All the identified genes show the same numbers of introns (8) present in S. 

lycopersicum (fig. 4.3). NtomGUS1B differently from other genes presents a 

very long intron (ca 3 kb).  

Exons, although separated by introns with different length in the different 

genes, show a similar dimension in all genes.  

Traditional TATA-box result absent in all genes, while other regulatory 

elements are present (tab4.4). 

 

 

 
 
Fig. 4.3 Structure of N. sylvestris and N. tomentosiforms GUS genes.  
 

Gene 
TATA-

box PLM 
TATAΔ-PLMs 

TC[-39,-26]-
PLMs 

NsGUS1A no yes yes 

NsGUS1B no yes no 

NsGUS2 no yes no 

NsGUS3A no yes yes 

NsGUS3B no yes no 

NtomGUS1A no yes yes 

NtomGUS1B no yes no 

NtomGUS2 no yes no 

NtomGUS3A no yes yes 

NtomGUS3B no yes no 

 
Tab. 4.4 Transcriptional regulatory elements in N. sylvestris and N. tomentosiformis GUS gene 
sequences.  
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Identification and sequencing of GUS genes in N. tabacum   

 

Likely partial sequences of GUS1, GUS2 and GUS3 of N. tabacum were 

determined by bioinformatics analysis of EST database (NCBI). The same 

specific primers utilized to investigate GUS expression (chapter 3) or 

expressly designed primers were used for PCR amplification of cDNA. 

Obtained amplification bands were sequenced and the cDNA sequence was 

completely (GUS2) or partially (GUS1 and GUS3) determined (see Materials 

and Methods). 

Only one EST was determined for GUS1 sequence: SGN-U493366 (Solanum 

Genomics Network).  GUS1 partial sequence resulted homologue to 

SlGUS1B and showed strong homology to N. tomentosiformis GUS1B.  

The presence of GUS1B derived from N. sylvestris has not demonstrated yet. 

Nothing is yet known regarding the presence of GUS1A in N. tabacum 

genome. 

To predict GUS2 sequence, the following EST sequences were aligned: 

FG139192, EB452249, EB102900, EB680524, AM846742, FG152993, AM846742 

e EB102900.  A complete coding sequence of GUS2, with partial 5’ and 3’ 

UTR, was obtained and it displayed strong homology with the N. 

tomentosiformis GUS2 gene. The sequence was published on GenBank 

(Accession Number: KF148025). The presence of GUS2 derived from N. 

sylvestris has not been observed.  

To predict GUS3 sequence, the following EST sequences were aligned: SGN-

E824103 and SGN-E1088185 (Solanum Genomics Network).  

Specific primers were designed on the basis of the reconstructed sequence 

and only one band was obtained by PCR amplification of cDNA. However, 

sequence analysis revealed that more than one gene was amplified (fig.4.4). 

Genomic DNA amplification with the same primers gave two distinct bands 

(fig. 3.5). Sequence analysis demonstrated that GUS3B genes from both 

progenitors are present in N. tabacum. 

Regarding GUS3A, preliminary experiments indicate its presence in N. 

tabacum, but it has to be confirmed by sequence analysis. At the moment, it is 

not known if N. tabacum genome contains GUS3A genes of both progenitors.  
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Fig.4.4 Part of electhopherogram of GUS3 cDNA sequence of N tabacum. Double peak are in 

correspondence of the difference in sequence between N. tomentosiformis and N. sylvestris 

GUS3 genes.  

 

Comparison of GUS sequence analysis in the different species 

 

In A. thaliana three GUS genes have been identified (Woo et al 2007), while 

five GUS genes are found in the S. lycopersicum, N. sylvestris and N. 

tomentosiformis genomes.  

N. tabacum, being an allotetraploid species originated from N. sylvestris and 

N. tomentosiformis, could potential have ten GUS genes.  

Actually, experimental evidence support the presence of at least five GUS 

genes and only one (NtGUS2) have been completely sequenced in its coding 

part. Thus it has to be demonstrated if the remaining genes are effectively 

present or if they have been lost during genome shrinkage process (see 

general introduction). 

The analysis of gene structures shows that in each considered species GUS 

genes maintain the same number of introns and the exons show similar 

dimension.  

Regarding identification of transcription regulatory elements, determined by 

the approach proposed by Bernard and co-workers (Bernard et al 2010), 

canonical TATA-box were present in A. thaliana GUSs but not in Solanaceae 

GUSs.  
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TATA-variant sequences, which in plants are generally observed in 

gene with a broad expression pattern, are present in all GUSs of the 

species considered, while the presence of TC-elements is not so general.  
 

Protein sorting, motif analysis and post translational modifications 

 

β-glucuronidase aminoacidic sequences, deducted from the cDNA 

nucleotide sequence, were analysed by bioinformatics methods (see 

Materials and Methods) to find the presence of functional domain 

architecture. GUS proteins of A. thaliana and Scutellaria baicalensis were 

also included in the analysis.  

Aminoacids motifs related to heparanase (β-glucuronidase), GH79 family 

and (trans)glycosidases superfamily were present.  

The glutamic acid, identified in position 212 of  Scutellaria baicalensis GUS as 

characteristic of the active site of glycoside hydrolases (Sasaki et al 2000), is 

conserved in all examined GUSs. Also the nucleophile residue, characteristic 

of the active site of heparanase, results conserved. 

Another common characteristic is the presence of an N-terminal signal 

peptide (fig.4.4B). For few of them, like SlGUS1B, there was a consensus 

between all the sorting prediction programs used.  

However, with the exception of WolfPsort program, there was enough 

consensus for the sorting of the different GUSs, mainly to the plasma 

membrane or to the cell wall/extracellular space, a localization 

consistent with  the identification of β-glucuronidase among the cell 

wall proteins in Arabidopsis thaliana and Scutellaria baicalensis (Bayer et 

al 2006, Irshad et al 2008, Minic et al 2007).  

The presence of extensive post-translational modifications has been 

suggested, on the basis of bioinformatics predictions, for A. thaliana β-

glucuronidases (Eudes et al 2008, Woo et al 2007). By ScanProsite program 

we verified the existence of possible sites for post-translational modifications 

in the deduced GUS sequences. The analysis showed the presence of 

multiple putative phosphorylation sites and of several N-glycosylation sites. 
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Fig. 4.5 Some of the conserved motifs obtained by protein sequences analysis with MEME 

Suite. (A) Heparanase mofis (consensus of all proteins considered) contains Glu (E) residue of 

active site (indicated by arrow). (B) N-terminal signal peptide: consensus motif in NsGUS2, 

NtomGUS2, NtGUS2, NtomGUS1B, NsGUS1B, SlGUS1B, SlGUS2; however is present also in 

other protein considered (see appendix) . Detailed explanation is reported in text. 

 

Tab. 4.5 Prediction sorting of GUS proteins of Solanum lycopersicum, Nicotiana tomentosiformis, 

Nicotiana sylvestris and N. tabacum. 

Abbreviations: chloroplast (Chl), cytoplasm(Cyt), endoplasmic reticulum(EnR), 

Extracellular (Ext),  mitochondrion(Mit), nucleus (Nuc), plasma membrane(PlM), 

secretory pathway  (SP) and vacuole(Vac). WP: WolfPsort, Ps:Psort, TP: TargetP, PS: 

PrediSi, SiP: SignalP. SignalP predicts the presence of the signal peptide. References 

relative to software used in analysis are reported in materials and method.  

Protein WP Ps ESL CELLO TP PS SiP 

SlGUS1A Mit Ext Ext Lys, Ext SP SP Yes 

SlGUS1B Ext Ext Ext Ext SP SP Yes 

SlGUS2 Vac Ext Ext Ext SP SP Yes 

SlGUS3A PlM PlM Ext PlM, Ext SP SP Yes 

SlGUS3B Chl Ext Ext Ext, PlM SP SP Yes 

NsGUS1A Nuc, 
End, 
Cyt 

Ext Ext Ext SP SP Yes 

NsGUS1B PlM PlM Ext Ext SP SP Yes 

NsGUS2 Vac Ext Ext Ext, Lys SP SP Yes 

NsGUS3A Vac PlM Ext PlM SP SP Yes 

NsGUS3B PlM PlM Ext Ext SP SP Yes 

NtomGUS1A Vac Ext Ext Ext SP SP Yes 

NtomGUS1B Ext Ext Ext Ext, Lys SP SP Yes 

NtomGUS2 Vac Ext Ext Lys SP SP Yes 

NtomGUS3A PlM PlM Ext PlM SP SP Yes 

NtomGUS3B Chl Ext Ext Ext SP SP Yes 

NtGUS2 Ext Ext Ext Lys SP SP Yes 

A 

B 
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Tab. 4.6 Numbers of post-translational modifications in the deduced protein 

determined using ScanProsite. Abreviations: casein kinase II (CK2), N-glycosiation 

sites (N-Glyc), protein kinase C(PKC), tyrosin kinase (TyrK),  cAMP-kinase and 

gGM-kinase (cAMP-cGMP) 

 

Phylogenetic analysis  

Phylogenetic analysis was conducted on the determined N. tabacum GUS 

sequences and on that reported in the literature or derived by genome bank 

analysis.  

As it can be seen in fig. 4.6, plant GUSs can be clustered in three groups: α, β 

and γ. The group α comprehends GUS1 and GUS2 genes, the group β 

comprehends GUS1 genes and the group γ GUS3 genes. In the group α is 

possible to identify four main subgroups (A, B, C, D). The subgroup A 

comprehends Solanaceae GUS2 and GUS1, subdivided in two clusters. The 

subgroup B comprehends GUS1 and GUS2 genes of different families. The 

subgroup C comprehends GUS1 and GUS2 genes of Arabidopsis 

(Brassicaceae). The subgroup D comprehends GUS1 and GUS2 genes of the 

monocots Poaceae and Musaceae.  

Protein Serin 
protease 

CK2 N-Glyc PKC TyrK 
cAMP-
cGMP 

NtomGUS1A 1 13 2 4   

NtomGUS1B 1 2 6 6   

NtomGUS2 1 2 3 4 1  

NtomGUS3A  6 7 10 1 1 

NtomGUS3B  7 5 6   

NsGUS1A 1 13 2 4 1  

NsGUS1B 1 2 6 3 1  

NsGUS2 1 2 3 5 1 1 

NsGUS3A  7 7 9 1 1 

NsGUS3B  7 4 6   

SlGUS1A 1 8 5 4   

SlGUS1B 1 3 6 5  1 

SlGUS2 1 4 1 4   

SlGUS3A  7 6 7 1 1 

SlGUS3B  7 3 5 1  
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In the group γ there are three subgroups (A, B, C). The subgroup A 

comprehends genes of Poaceae and Musaceae. The subgroup B comprehends 

GUS3B of Solanaceae. The subgroup C comprehends different GUS3 of 

different families and a cluster formed by GUS3A of Solanaceae. 

This analysis of the phylogenetic tree indicates that GUS1A and GUS2 are 

paralog genes, possibly derived from a process of duplication of a GUS gene, 

which evolved separately form GUS1B and GUS3 genes. The observation 

that GUS1A and GUS2 in Solanaceae cluster separately and in the other 

subgroups (Arabidopsis, Poaceae, other families) are both present indicates 

that the duplication event repeated more times. Also GUS3A and GUS3B are 

paralog genes, which derived from a process of duplication and further data 

are required to verify if, in this case, there was one or more duplication 

events. It might be interesting to understand the selective pressure that acted 

to duplicate GUS genes in Angiosperms. 

Separate phylogenetic analysis of genomic GUS sequences of Solanaceae (fig. 

4.10) and Arabidopsis (fig. 4.11 ) confirmed the clustering of GUS genes and 

indicated that the cluster of GUS1A is less distant from the cluster of GUS1B-

GUS2 genes than from those of GUS3 gene.  

Overall analyses of the phylogenetic tree indicate confusion in the 

denomination of GUS genes. In fact, no Arabidopsis GUS is included in the 

GUS1A cluster, while the two genes named GUS1 and GUS2 in Arabidopsis 

are paralog genes, derived probably by GUS duplication in the Brassicaceae 

family. GUS1A is clustering in a quite different group with respect to 

GUS1B. GUS1A genes ware deposited in GenBank classified as GUS1 on the 

bases of homology with Arabidopsis GUS genes. 

To avoid confusion, we propose that GUS1A could be named GUS4 and the 

same name (GUS1 or GUS2) could be given to all the GUS genes present in 

the group α.  

In alternative, the names of GUS1 and GUS2 genes should be changed when 

their phylogenetic evolution is clearer, leaving the same name to the GUS 

gene ancestor to the entire group α and giving a different name to all the 

other GUSs derived from gene duplication in the different subgroups. 

Gymnosperm, bryophyte and algae were not included in the analysis 

because of the scarcity of available sequences.  
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However, it was possible to identify two sequences of gymnosperm 

homologue to GUS genes in Picea glauca (BT109195) and Picea sitchensis 

(EF676824) and one sequence  of briophytes in the genome of  Physcomitrella 

patens (XM_002512068). 

The determination of GUS sequences in gymnosperms, vascular seedless 

plants, bryophytes and Charophyta will allow rooting the phylogenetic tree, 

allowing inferences on GUS evolution in land plants. 
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 Fig. 4.6 Phylogenetic trees obtained by distance matrix (kimura-2-parameter model) 

/UPGMA comparison of the β-glucuronidase/heparanase  cDNA sequences of plant 

species evaluated in this study. Original dataset was bootstrapped 1000 times and the 

obtained values are showed at corresponding node. Sequence accession numbers and 

Nicotiana sequences are reported in appendix. In some cases gene name is  followed by a 

letter only in order to distinguish, when necessary, one gene from the other. This 

classification does not have relationship with that adopted for Solanaceae.   Detailed 

explanation is reported in the text. 

 

α 

β 

γ A 

B 

C 
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Fig. 4.7 Close-up of tree reported in fig. 4.6. In evidence GUS genes of 

Solanaceae (A) and Arabidopsis (B). 
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Fig. 4.8 Close-up of tree reported in fig. 4.6. In evidence GUS genes of 

Solanaceae (A) and Arabidopsis (B). 

A 

A 

B 

β 



68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ 

Fig. 4.9 Close-up of tree reported in fig. 4.6. In evidence GUS genes of Solanaceae. 
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Fig. 4.10 Phylogenetic trees obtained by distance matrix (kimura-2-parameter model) 

/UPGMA comparison of the β-glucuronidase/heparanase  genomic sequences of 

Solanaceae  species evaluated in this study. Original dataset (genomic sequences) was 

bootstrapped 1000 times and the obtained values are showed at corresponding node. GUS 

genomic sequences of N. tomentosiformis and N. sylvestris were obtained as explained in 

materials and method. Other Solanaceae GUS genomic sequences were obtained from 

GenBank. 
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Fig. 4.11 Phylogenetic trees obtained by distance matrix(kimura-2-parameter model) 

/UPGMA comparison of the β-glucuronidase/heparanase  genomic sequences of 

Arabidopsis species evaluated in this study. Original dataset (genomic sequences) was 

bootstrapped 1000 times and the obtained values are showed along branches.  Arabidopsis 

GUS genomic sequences were obtained from GenBank 
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MATERIALS AND METHODS 

 
Plant material 

 

Nicotiana tabacum (cv. Samson) and Nicotiana alata Link et Otto plants were 

grown in controlled environmental conditions under a 12-hour photoperiod 

at 26/22°C day/night temperature. Light was provided by 400 W Philips 

HDK/400 lamps. N. tabacum  plants were also grown from May  to 

September in the garden. 

N. alata plants transformed with the construct LAT52 promoter – E. Coli GUS 

gene were kindly donated by E. Newbigin and M. Lush of  the Plant Cell 

Biology Research Centre (University of Melbourne). 

N.  tabacum (cv. Samson) seeds were surface sterilized with 96% (v/v) 

ethanol for 2 min and  with mixture 1 part bleach to 3 parts sterile water for 

10 min. After five washes, 5 min each, with sterile distilled water, seeds were 

sown on plates. Nicotiana seeds were sown on plates containing MS medium 

(4.7 g/L),  3% sucrose, 0.8 % agar, pH 5.8. Seedlings were grown in  growth 

chambers with the following conditions: 14 h light (27°C) and 10 h darkness 

(25°C). In some cases Nicotiana seeds were grown under continuous light at 

25°C (Sudan et al 2006). 

Solanum lycopersicum cv. Heinz 1706, kindly donated by Rich Ozminkowski  

and Claudio Leggeri of Heinz Company, were grown at the same sterile 

conditions of N. tabacum. 

Arabidopsis thaliana (cv. Columbia) wild type was used for the different 

experiments.. Seeds were surface sterilized as indicate before. Seeds were 

germinated and grown on plates containing MS medium (4.7 g/L), 1 % 

sucrose and 1 % agar for plant culture. The plated seeds were left in dark 

conditions at 4ºC for 48 h to ensure uniform germination, and then moved to 

a growth chamber at 22° (±2) C, under 16 h  light and 8 h dark. In some cases 

was maintained condition of continuous light. 

Plants were also grown in controlled environmental conditions under a 12-

hour photoperiod at 22 (±2)°C  temperature. Light was provided by 400 W 

Philips HDK/400 lamps.  
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Pollination techniques  

 

Pollen of transformed and wild type N. alata was used to pollinate pistils of 

N.tabacum in a compatible cross. 

Flowers attached to plants were emasculated 2 days before anthesis, and 

covered by a gauze layer to avoid cross-contamination. At anthesis the 

flower were detached from plants and placed with their cut ends in water 

and maintained at environment temperature. The stigma was covered by a 

drop of maize oil and pollinated by a stick with pollen collected from plants 

of N. alata. Then pistils were removed from flower at different time from 

pollination according to the needs of the assay. 

The presence of pollen tubes were verified by staining with  aniline blue 

(0.1% in K3PO4 0.1 M), that selectively stain callose, typical component of 

pollen tubes wall. 

 

Pollen germination and growth 

 

The medium used for N. tabacum pollen was  1.62 mM H3BO3, 1.25 mM 

Ca(NO3)2·4H2O, 2.97 mM KNO3, 1.65 mM MgSO4·7H2O,  12 % sucrose 

(Brewbaker & Kwack 1963). A new medium was developed for N. alata 

pollen: 12.5% PEG 6000, 5% Suc, 1.0 mm CaCl2, 1.0 mm KCl, 0.8 mm MgSO4, 

1.6 mm H3BO3, 0.03% casein acid hydrolysate, 30 µM CuSO4, 70 µM 2-

thiouracil and 25 mM MES pH 5.9 (Lush et al 1997, Read et al 1993). 

In vitro. Pollen grains were pre-hydrated in a Petri dish on a glass slides put 

on imbibed Whatman filter paper. They were suspended, at a concentration 

of 5 mg/mL, for 1 h in the appropriate pollen medium. 20 μL of suspension 

were put on a poly-D-lysine (2mg/mL poli-D-lysine hydrobromide) coated 

glass slides or well. Then pollen were maintained in the dark at room 

temperature. 

In some cases 1% agarose low melting was uniformly add, spread and, when 

solidified, covered with appropriate pollen medium. 

Pollen tubes length was measured using ImageJ. 

Semi-in vivo. Pollinated pistils of N. tabacum were collected at different 

times after pollination.  
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Time after pollination 

(h) 

Range of distance from base of the 

stigma (cm) 

6 0.1 

8 0.1-0.3 

10 0.3-0.5 

12 0.3-0.7 

14 0.5-0.7 

16 0.7-1.1 

18 1.1-1.3 

20 1.3-1.5 

22 1.3-1.7 

24 1.5-1.9 

26 1.7-2.3 

28 2.0-2.5 

30 2.3-2.7 

32 2.5-3.0 

34 2.7-3.3 

36 2.9-3.5 

Tab. 1 Position reached by pollen tubes during their growth in style at different times after 

pollination according previous experiments conducted in our laboratory (data not published) 

 

The pistils were cut at a distance from stigma selected in function of the 

position reached by pollen tubes during their growth in style after 

pollination, (Tab. 1). Then pistils were put vertically in vials containing the 

appropriate medium. 

Pistils were maintained at room temperature in condition of humidity.  

The emergence of pollen tubes from cut styles was followed during time.  

Hystochemical GUS assay 

Hystochemical GUS assay was performed by incubating plant materials 

with  X-glu staining solutions. 

0,1 M X-glu (5-Bromo-4-chloro-3-indolyl-beta-D-glucoside, Sigma-Aldrich) 

solution was prepared in DMSO. X-glu was then diluted at a final 

concentration of 1 mM in 10 mM EDTA, 0.5 mM potassium ferrocyanide, 

0,5mM potassium ferricyanide, 0.1 M phosphate, pH 7 (Naleway 1992). 
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Endogenous GUS activity was detected by using 0,1 M acetate buffer, pH 

4.5, instead of phosphate buffer.  

The samples were vacuum infiltrated for 30 min (ca. 200 mbar) to facilitate 

penetration of the assay buffer. Samples were incubated 6 h at 37°C and then 

overnight at room temperature. 

The stained samples were immersed in absolute ethanol to remove 

chlorophyll. The ethanol solution was changed at least three times at 1 h 

intervals. Samples were observed under a stereomicroscope (Leica) and  

epifluorescence microscope (Olympus IX 51 Microscope) in transmitted light 

or fluorescent light.  

ELF®97 β-D-glucuronide (ELF®97) (Life Technologies) was used as 

alternative substrate for hystochemical assay (Zhou et al 1996). ELF®97 was 

dissolved at a concentration of 0.1 mM in in 0.1 M phosphate buffer (pH 7). 

Samples were incubated with the substrate at room temperature in dark 

condition. Samples were observed with epifluorescence microscope using 

FITC filter (Olympus IX 51 Microscope). 

Immunohystochemical GUS assay 

Pollen tubes growth in vitro were fixed in 3% formaldehyde  for 30 minutes 

at environment temperature, washed three times with phosphate-buffered 

saline solution (PBS) and incubated with cellulase (2% w/v in PBS) (Sigma-

Aldrich) for 3 minutes in dark condition. 

GUS immunohistochemical assay was performed by using Anti-β-

Glucuronidase (N-Terminal) antibody produced in rabbit (Sigma-Aldrich) 

and Tyramide Signal Amplification kit with HRP—goat anti-rabbit IgG and 

Alexa Fluor® 488 (Life Technologies). Samples were observed with 

epifluorescence microscope (Olympus IX 51 Microscope). 

Specificity of Anti-β-Glucuronidase (N-Terminal) antibody in detecting E. 

coli GUS  present in pollen extract was confirmed using western blot. 

 

DNA and RNA extraction  

 

Genomic DNA was extracted from fresh leaves (60 mg of tissue) using 

Invisorb® Spin Plant Mini Kit (Stratec molecular, Berlin) according to the 

manufacturer’s protocol.  
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For RNA extraction, N. tabacum and A. thaliana samples were grinded in 

liquid nitrogen and in some cases (pollen and roots) in the presence of 

quartz sands. Extraction was then performed by Trizol® Reagent method 

(Invitrogen-Life Technologies), following manufacturer’s protocol.  

After extraction, RNA was treated with DNAse I, following manufacturer’s 

protocol, to eliminate any genomic contamination (Ambion-Life 

Technologies) and resuspended in 10 mM Tris-HCl  buffer pH 7.5.  

RNA integrity was controlled by gel electrophoresis. RNA was quantified by 

spectroscopic technique measuring absorbance at 260 nm and considering 

that an absorbance of 1 unit at 260 nm corresponds to 40 μg/mL. RNA 

purity was determined by measuring the A260/A280 ratio. 

 

Reverse transcription and PCR amplification  

 

RNA obtained were reverse transcribed into first-strand cDNA with 

SuperScript® III First-Strand Synthesis System for RT-PCR and oligo dT 

primer (Invitrogen-Life Technologies). 

Gene specific primers for cDNA amplification were synthesized by Life 

Techonologies (Carlsbad, USA) and IDT  (Coralville,USA). The sequence 

was generally determined by the software Primer 3 (developed by Steve 

Rozen Helen J. Skaletsky, 1996, 1997) free available on-line. When necessary 

primers were designed by hand and checked by OligoCalc (Kibbe 2007) and 

PerlPrimer v. 1.1.21.  

When possible primers were selected in such a way that the 5' and the 3' 

primers span different exons, so that the amplification product obtained 

from the cDNA would be of different length from that obtained from any 

contaminant genomic DNA comprising intron sequences.  

Specificity of primer was verified by sequencing PCR products.  

All sequencing reactions were performed by BMR Genomics (Italy, Padova). 
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According to the GUSs and Actin gene sequences reported in literature 

(Bréhélin et al 2003, Woo et al 2007)., the following gene specific primers for 

A. thaliana were obtained: 

AtGUS1 FW 5'-TTTGGTCGGAGGTTTCTACG-3' 

ATGUS1 BW 5'-TTCAAATATCCGTCCGAAGC-3' 

AtGUS2 FW 5'-GCTACGGGTTTACGCACATT-3' 

AtGUS2 BW 5'-CAACACACCGTTTTCTGGTG-3' 

AtGUS3 FW 5'-CTGGACCAAGAGGCAAAAAG-3' 

AtGUS3 BW 5'-TTGTCTTGCACAATGGGTGT-3' 

AtUGT85A1 FW 5'-GGGTGGAACTCGATATTGGA-3' 

AtUGT85A1 BW 5'-CTAAGCGCTGCCACTCTACC-3' 

AtUGT85A2 FW 5'-GAGGATGTTGGCAAGTTGGT-3' 

AtUGT85A2 BW 5'-CTCTTCCGCCTTCTCTCTCA-3' 

AtUGT85A3 FW 5'-GGGTGGAATTCGACGTTAGA-3' 

AtUGT85A3 BW 5'-TTCCCAAGAGAACCTTGTTGA-3' 

AtGUT85A4 FW 5'-TCGGGAGTCTAACGGTTTTG-3' 

AtGUT85A4 BW 5'-ACACCGGCGTACAAACTCTC-3' 

AtGUT85A7 FW 5'-AGAGTCTCGCTGGTGGTGTT-3' 

AtGUT85A7 BW 5'-AGATTCATGACCGACGAACC-3' 

 

Semiquantivative PCR was conducted using Taq DNA Polymerase 

recombinant (Invitrogen-Life Technologies) and the following parameters: 

95°C for 4 min, 28 cycles of 95°C  for 50 sec 55°C for 40 sec and 72°C for 1 

min and the last step of 72°C  for 5 min. Actin gene was use as control and 

internal standard for semiquantitative evaluation of genes expression. 

The following primers for N. tabacum were obtained by using predicted 

sequences derived from EST (NCBI) analysis (see following paragraph 

sequence precition): 

NtGUS1 FW 5'-GACACAAGCACATTTATCCC-3' 

NtGUS1 BW 5'-GGTGGTTGCACTAGATTCG-3' 

NtGUS2 FW 5’-CTTCTATTAGCACCAGGAGG-3’ 

NtGUS2 BW 5’-GCCAAGCTGATCTAAGTACC-3’ 

NtGUS3 FW 5'-GTGGAGGGGTTTATAACAGTG-3' 

NtGUS3 BW 5'-CAACAACGGTGTGATTCCG-'3 

NtACT  FW 5’-CACTGAGAGAGGTTACATG-3’ 

NtACT  BW 5’-TGGAGTTGTAGGTAGTCTC-3’. 

As internal control was used actin gene (Accession number GQ339768). 
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PCR reactions were performed using Taq DNA Polymerase Recombinant 

(Life Technologies -Invitrogen) . 

The following reaction conditions were used: initial denaturation 95°C for 1 

min., denaturation 95°C  for 45 sec., annealing 55°C for 45 sec., extension 

72°C for 1 min., final extension 72°C for 5 min, 4°C ad libitum. Steps from 

denaturation to extension were repeated for 35 cycles. Gel electrophoresis of 

PCR products were conducted in some cases with MetaPhor agarose 

(Cambrex Bio Science) instead traditional agarose in order to obtain an 

optimal separation of different bands. 

 

Multi-probe in situ hybridization in Arabidopsis 

 

Multi-probe in situ hybridization were performed according  to the method 

previously published (Bruno et al. 2011). Addition of tyramide amplification 

stage to multi-probe method is only at preliminary level so protocol isn’t 

reported here.  

Synthesis of labelled RNA probes were obtained by using in vitro 

transcription by RNA polymerase T7 or SP6 (DIG, Biotin, FITC RNA 

labeling Mix, Roche) in the presence of Digoxigenin-11-UTP, Biotin-16-UTP 

or Fluoroscein-12-UTP (Hejatko et al. 2006). cDNA was used as template and 

the primers were the same used in semiquantitative PCR, with addition of 

an extension (CCAAGCTTCTAATACGACTCACTATAGGGAGA) at 3’ end 

of forward primers.   

 

Predicted sequences verification  

 

PCR reaction were performed using Platinum Taq Polymerase High Fidelity 

(Life Technololgies-Invitrogen) according to the manufacturer’s protocol . 

The amplification products were excised from the gel and sent to be 

sequenced by BMR Genomics (Italy, Padova). 

The sequence of NtGUS2 was obtained also by cDNA amplification with the 

following primers: 

FW 5’TGACTCGGTTCAAACAGTGGTG-3’ 

BW 5’-ACTAGTGATTAGCGTGGTCG-‘3. 
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The 3’ end part of NtGUS2 sequence was completed using 5’/3’ RACE Kit  

2nd Generation (Roche) and  the following primer:  

5'-GGTACTTAGATCAGCTTGGC-3'. 

 

Sequence retrieval from databases 

 

A research in different databases was performed to retrieve β-glucuronidase 

(heparanase) sequences of different plant species: GenBank, Solanum 

Genomics Network (http://solgenomics.net), Genome Database for 

Rosaceae (www.rosaceae.org), and The Banana Genome Hub 

(http://banana-genome.cirad.fr).  

Orthologous GUS genes were obtained by using as query in BLAST research 

the known sequences of Arabidopsis thaliana genes (Woo et al 2007). 

 

Sequence prediction 

 

Nicotiana tabacum GUS gene sequences, before the availability of progenitors 

genome, were predicted by CLUSTAL Omega (EBI)  aligning  the 

homologue genes of Arabidopsis thaliana and Solanum lycopersicum (previous 

retrieved from database) with the Expressed Sequence Tag (NCBI and 

Solanum Genomics Network) of Nicotiana tabacum.  

 

Gene Arabidopsis thaliana Solanum lycopersicum 

GUS1 NM_125518 XM_004241543 

GUS2 NM_120865 XM_004235932 

GUS3 NM_180762 XM_004249554 

 

GUS gene sequences of Nicotiana tomentosiformis and Nicotiana sylvestris were 

identified by aligning their genomics sequences with cDNA sequences of S. 

lycopersicum obtained from GenBank (see  tab). Sequences were aligned 

using CLUSTAL Omega (EBI) and BLAST (NCBI). 
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Phylogenetic analysis 

 

The phylogenetic reconstruction was performed by the software package 

MEGA 5.2 (Tamura et al 2011). The original cDNA sequences were first 

aligned by ClustalW. The alignment was resampled by bootstrap 1000 times. 

Distance matrices were obtained according to the Kimura-2 parameters 

method (Kimura 1980) and clustering was obtained by the UPGMA method. 

Alternatively, the tree was built by Maximum-Likelihood (ML) with the 

general time reversible model and the results displayed by Neighbour-

Joining (NJ).  

Proteins alignment, prediction of protein sequence, protein sorting 

and post-translational modifications 

 

The protein sequences were predicted by ORF Finder (NCBI) and ExPASy 

(EMBL-EBI). Protein sequences were then aligned by  Clustal Omega 

(EMBL-EBI).  

Protein sorting was predicted using different tools: TargetP (Emanuelsson et 

al 2000), ESLpred2 (Garg & Raghava 2008) , Psort (Nakai & Horton 1999), 

WolfPsort (Horton et al 2007), CELLO (Yu et al 2006), N-terminal 

hydrophobic signal peptide SignalP 4.1 (Petersen et al 2011) and PrediSi (by 

Karsten Hiller,  Institute for Microbiology, Technical University of 

Braunschweig). 

Post-translational modifications were predicted by means of ScanProsite 

(Sigrist et al 2013) and Plant-Specific Myristoylation Predictor (Podell & 

Gribskov 2004). 

 

Motif analysis  

 

The presence of conserved motifs present in  the protein sequences was 

investigated by MEME 4.6.1 and MAST motif search software 

(http://meme.sdsc.edu/meme/cgi-bin/meme.cgi) with the following 

parameters: any number of repetition as distribution of motif occurrences, 

maximum numbers of different motifs to find= 20, minimum motif width as 

6 and a maximum motif width set to 50.  
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Functional annotation of these motifs was analyzed by InterProScan 

(http://www.ebi.ac.uk/Tools/pfa/iprscan/). 

 

Identification of regulatory elements involved in transcription 

 

Regulatory elements involved in transcription were identified according an 

in silico hypothesis-driven approach presented by Bernard and co-workers  

(Bernard et al 2010). In particular the authors explore, in A. thaliana and 

Oryza sativa, the  bioinformatics-based evidence that sequences other than 

the TATA-box and TATA-variants but located in the same region relative to 

the TSS may be functional core-promoter elements. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 

 

GUS as a reporter gene in pollen 

 

We demonstrated that, on the contrary of what previously hypothesized 

(Gerola et al 2000), LAT52 expression is not differentially regulated during 

pollen tube growth. The previous observations, which led to hypothesize 

regulation of LAT52 promoter activity, were based on the use of GUS as a 

reporter gene and artefacts affected histochemical detection of GUS activity. 

In fact we observed that the  localization of GUS activity by X-glu 

histochemical assay can be affected by the dispersion of the soluble 

intermediate reaction product and by the presence of GUS inhibitors. This is 

particularly true in the case of GUS histochemical detection in pollen tubes..  

ELF® 97 results to be a better substrate for histochemical detection of GUS 

activity with respect to X-glu. However its industrial production has been 

discontinued.  

 

Endogenous GUS activity in pollen 

 

N. tabacum pollen germination and elongation are inhibited by treatment 

with saccharolactone, an inhibitor of GUS activity, thus supporting the 

hypothesis previously reported in literature (Sudan et al 2006) that GUS 

activity is involved in cell growth processes and, in particular, in apical 

growth.  

Further studies for the determination of GUS roles in pollen will involve the 

selective inhibition of GUS genes expression and also the 

immunomodulation of GUS enzymes.  

The finding of gametophytic expression of GUS genes paves the way for 

potential application to plant breeding based on gametophytic selection also. 
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GUS genes expression  

 

GUS activity was histochemically detectable in all plant organs of N. tabacum 

and A. thaliana  seedlings. Specific primers were determined for GUS1, GUS2 

and GUS3 genes and, by PCR amplification, their expression has been 

demonstrated in all the organs of both plant species.  

The expression patterns of GUS genes in Arabidopsis thaliana was 

investigated in root tip by whole mount multi probe in situ hybridization 

technique.  

A specific expression of GUS3 was observed in root border like cells. It was 

hypothesized that this gene might play a role in the cell wall remodelling 

required for the detachment of border like cells from the root tip.  

Particularly interesting was also GUS2 and GUS1 expression in the root cup 

meristem. This might indicate their involvement, in tandem action with UGT 

genes, in regulation of mitosis, according to the previously proposed model 

(Woo et al 2007). To this regard experiments are planned to investigate the 

expression of the different UGT genes in the root tip of Arabidopsis. 

 

GUS genes in plants 

 

By analysis of genome data bank of Solanum lycopersicum, and of the two 

progenitors of N. tabacum (N. sylvestris and N. tomentosiformis) we identified 

five different GUS genes, two more than those characterized in A. thaliana 

(Woo et al 2007).  In N. tabacum we got the complete sequence of GUS2 gene 

and partial sequences of two GUS1 and two GUS 3 genes.   

Comparison of GUS genes actually present in the different species of 

Nicotiana will shed light on the genomic processes that have led to the 

evolution of these species. 

Phylogenetic analysis of GUS genes in angiosperms show that GUS genes 

cluster in three groups: one formed by the two GUS3 genes, one that 

includes GUS1 and GUS2 genes of Arabidopsis and one formed by a GUS 

gene that is not present in Arabidopsis and which has been erroneously 

named GUS1 in Solanum. 
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Analysis of the phylogenetic group which includes GUS1 and GUS2 of 

Arabidopsis reveal that the two genes derive from a “recent” gene duplication 

which took place independently several times inside the group. This might 

explain the similar expression pattern of GUS1 and GUS2  observed by in 

situ hybridization in A. thaliana. 

Further phylogenetic studies are needed to support a revision of the 

classification GUS genes, now based on those identify in A. thaliana.  

The analysis of GUS genes of ancestral plants (from Gymnosperms to 

Charophyta) will allow a better comprehension of the evolution of GUS 

genes in land plants. 
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Annex 1  

Accession numbers    

Species 

Accession  

nucleotide 

Accession 

protein Name 

Arabidopsis lyrata XM_002866376 XP_002866422 Arabidopsis lyrata  GUSA 

Arabidopsis lyrata XM_002870363.1 XP_002870409.1 Arabidopsis lyrata  GUSB 

Arabidopsis lyrata XM_002871245.1 XP_002871291.1 Arabidopsis lyrata  GUSC 

Arabidopsis thaliana NM_125518 NP_200933 Arabidopsis thaliana GUS1 

Arabidopsis thaliana NM_120865 NP_196400 Arabidopsis thaliana GUS2 

Arabidopsis thaliana NM_180762.2 NP_851093.1 Arabidopsis thaliana GUS3 

Brachypodium distachyon XM_003578543.1 XP_003578591.1 Brachypodium distachyon GUS2  

Brachypodium distachyon XM_003570281.1 XP_003570329.1 Brachypodium distachyon GUS3  

Brachypodium distachyon XM_003560971.1 

 

Brachypodium distachyon GUS3  

Cicer arietinum XM_004508644.1 

 

Cicer arietinum GUS1 

Cicer arietinum XM_004508362.1 XP_004508419.1 Cicer arietinum GUS3 

Cucumis sativus XM_004135393.1 XP_004135441.1 Cucumis sativus GUS2A 

Cucumis sativus XM_004157412.1 XP_004157460.1 Cucumis sativus GUS2B 

Cucumis sativus XM_004159341.1 XP_004159389.1 Cucumis sativus GUS3 

Fragaria vesca XM_004299278.1 XP_004299326.1 Fragaria vesca GUS2 

Fragaria vesca XM_004298345.1 XP_004298393.1 Fragaria vesca GUS1 

Fragaria vesca XR_184038.1 XP_004292974.1 Fragaria vesca GUS3 

Glycine max XM_003527051.1 

 

Glycine max GUS1B 

Glycine max XM_003520056.1 

 

Glycine max GUS1A 

Glycine max XM_003546530.1 XP_003546578.1 Glycine max GUS3  

Hordeum vulgare AJ495772 CAD42650 Hordeum vulgare GUS 

Lotus japonicus BT140493.1 AFK40288.1 Lotus japonicus GUS 

Medicago truncatula XM_003609426 XP_003609474 Medicago truncatula GUSB 

Medicago truncatula XM_003613964.1 XP_003614012.1 Medicago truncatula GUSA 

Megachile rotundata XM_003708560 XP_00370860 Megachile rotundata GUS 

Musa acuminata GSMUA_Achr4T32620_001*  

 

Musa acuminata GUS2 

Musa acuminata GSMUA_Achr7T17860_001* 

 

Musa acuminata GUS3 



Nicotiana benthamiana NbS00028845g0015.1** 

 

Nicotiana benthamiana GUS2 

Nicotiana benthamiana NbS00010101g0016.1** 

 

Nicotiana benthamiana GUS1 

Nicotiana benthamiana NbS00010101g0016.1** 

 

Nicotiana benthamiana GUS3 

Oryza sativa NM_001054955.1 NP_001048420.1 Oryza sativa GUSB 

Oryza sativa NM_001055885.1 ABF94603.1 Oryza sativa GUS1 

Phyllostachys edulis FP091857.1 

 

Phyllostachys edulis GUS 

Populus trichocarpa XM_002330977 XM_002330977 Populus trichocarpa GUSA 

Populus trichocarpa XM_002321428.1 XP_002321464 Populus trichocarpa GUSB 

Populus trichocarpa XM_002314974.1 XP_002315010.1 Populus trichocarpa GUSC 

Prunus persica ppa003804m*** 

 

Prunus persica GUS 

Scutellaria baicalensis AB040072 BAA97804 Scutellaria baicalensis GUS 

Setaria italica XM_004954196.1 XP_004954253.1 Setaria italica GUS3 

Setaria italica XM_004962933.1 XP_004962990.1 Setaria italica GUS1 

Solanum lycopersicum XM_004235932.1 XP_004235980.1 Solanum lycopersicum GUS2 

Solanum lycopersicum XM_004241543.1 XP_004241591.1 Solanum lycopersicum GUS1B 

Solanum lycopersicum XM_004239417.1 XP_004239465.1 Solanum lycopersicum GUS1A 

Solanum lycopersicum XM_004249554 XP_004249602.1 Solanum lycopersicum GUS3B 

Solanum lycopersicum XM_004242684.1 XP_004242732.1 Solanum lycopersicum GUS3A 

Solanum tuberosum PGSC0003DMC400042675** 

 

Solanum tuberosum GUSA 

Solanum tuberosum PGSC0003DMC400019475** 

 

Solanum tuberosum GUSB 

Sorghum bicolor XM_002452946 XM_002452946 Sorghum bicolor GUS 

Triticum aestivum AK334371.1 

 

Triticum aestivum GUS 

Vitis vinifera XM_002283224 XP_002283260 Vitis vinifera GUS3A 

Vitis vinifera XM_002283218.2 XP_002283254.2 Vitis vinifera GUS3B 

Vitis vinifera XM_002284434 XP_002284470 Vitis vinifera GUS2  

Vitis vinifera XM_002274707.1 XP_002274743.1 Vitis vinifera GUS1  

Xenopus tropicalis BC160516 AAI60516 Xenopus tropicalis putative GUS 

Zea mays EU972798 ACG44916 Zea mays GUS1 

Zea mays NM_001158611 NP_001152083 Zea mays GUS3 

* The Banana Genome Hub, ** Solanum Genomics Network, *** Genome Database for Rosaceae.  



Annex 2 

Nicotiana tomentosiformis and Nicotiana sylvestris GUS coding 

DNA sequences 

 

>NsGUS1A 

ATGGATTCAAGAACTAGGTTGTTTTGTTTGGTTCTTTTAGTGTCGTCTTGTTTTTGTTTGTC

TAATTCAGATGAATTAAAGGTGATAGTAAAAGGAGTGACATCTATAGCTAAAACAGATGATA

ATTTCATATGTGCAACTTTAGATTGGTGGCCAGAAAACAAGTGTGATTATAATCAATGTCCA

TGGGGAAAAGCTGGTATCCTTAATCTGGACTTGAAAAACAAGATTCTTACAAACGCCGTTAA

AGCATTCAATCCACTAAGAATCAGAATAGGAGGTTCACTACAAGATCAGGTTTACTACAAAG

TTGGAAAATTCCCAAAGCAATGCTCAAACTTTGAGAAAAAATCAGATGGCCTCTTTGGATTT

GCTGAAGGATGTCTCCACATGAATAGATGGGATGAATTGCATGATTTATTTAACAAAACAGG

GTGGGCTGCATTAACATTTTCATTGAATGCCTTACTTGGAAGGATACAATCAGATGAAGATG

ATACTCTTTGGGAAGGAGATTGGAATCAGTTTAATGCAAAATCATTAATGAAATACACTATT

AGAAAAGGATACAAGATTGACTCATATGAAGTAGGTAATGAGCTTTGTGCAGGAGGGGTTGC

TGCAAAAATAAGGCCTCAACAATATGGCAAAGATGTCAAGAAATTAAAGAAACTTATAACAC

ATATGTACCCTGACCCTGCTACTAGACCAAAAATCTTGGCCCCTGGTGGATTTTATGATGAA

GAATGGTTCAAAGTCTTCCTTCAAACTACCGGTCCAGACGTCATAGACGGATTGACACATCA

TATTTACAATCTTGGAGCAGGTGTTGATCCAACTTTGATTGACAAACTTCAGGATCCAATTT

ACCTTAGTCAAGTAGCTCAAACATTTAATGATGTTTCAAATACTGCTAAATTGTTTTCACCA

TCTTCTGGACCTTGGGTTGGTGAATCTGGTGGAGCATATAATAGTGGTGGCAAAACCACTTC

ACATACCTTCGTCAACGGCTTCTGGTATTTGGATCAACTCGGAATGACATCAACTTTCAACC

ATAAGGTATACTGCAGACAATCCTTAATTGGTGGAAACTATGGTCTTCTCAACACTACAAGT

TTCATCCCAAATCCAGATTACTATGGTGCTCTTTTGTGGCATAAGCTGATGGGAAAGAATGT

GCTTTCTACTACTCATGAGGGCTCTCCTTACTTGCGAACCTATGCTCATTGCTCAAAGTCAA

GTGGTGTTACAGTTCTACTGATTAACATGGACAAGTCGACAACATTTGAAGTATCTGTGGTA

GATGACTTGAACATGTATCCTAGTAGGATTGAGCCTATACATCAAAGGGAAGAGTACCATTT

GACACCAAAAGATGGCAACATCCAAAGTGATGTTTTGTTGCTAAATGGCACTCCATTGAAGC

TCACTGCCTCATTCGACATCCCAGAAATGAATCCTCAGCTCGTTGATCCAACGTTGCCTATC

TCCGTTGCTCCACGTTCTATCGTCTTTGCCACCTTGAGAGGGTTCCAAGCTCCTGCTTGTGC

ATAG 

 

>NsGUS1B 

ATGGGCTTCCCACCCTTCTTGTTAATCTTTCTGGCAGTATGTCCTGCATTTTTGGCACAAAT

AGTTGAAGATACAGCACTTTTGATTGATGCAACTGTAAAAATTGCTGAGACTGATGCTAATT

ATGTATGCGCTACCCTTGACTGGTGGCCTAAAGAAAAGTGTGACTACAACGACTGCCCTTGG

GGCTACACGTCTCTGATGAATCTGGATTTGTCTCACCCCTTTCTGGCAAATTCTATTCAAGC

TTTCAACCCTTTGAGACTACGACTTGGAGGTTCTTTGCAAAACCGAGTAATATATGATGTAG

GCAATTTGGAGTCTCGTTGCCATGCATTTACCAAGCAGGAGGATGGGTTGTTTGGATTTTCA

AAGGGATGCTTACATATGAATAGATGGGATGAGCTAAATAGCTTTTTCAAGAAGACAGGAGC

ACTTGTGACCTTTGGCCTGAATGCATTGCATGGAAGGCAGCGGGCAGGTAAGCGTGTGTGGG

GAGGGAATTGGGATTCCAGCAACGCTCGTGATTTCATAAATTACACTATTTCCAAGGGCTAC

CAGATACACTCATGGGAATTTGGAAATGAGTTAAGTGGTAAGGGTATTGGTGCAAATGTTGA

TGCGGAGCAATACGGAAAAGATGTTATCCATCTTAACAATCTCATAGACCAATTGTATAAGA

ATTTCCAACCCCGACCACTTCTCTTAGCACCAGGAGGATTCTATGATAAAGAGTGGTATGAG

AAGCTTCTTGAGGTGTCAGGGCCAGGCACTGTCGATGCCTTGACTCATCATATATATAATCT

TGGTCCAGGATCGGACCACAATCTCGTCAACAAAATTTTAAATCCTCTGCACTTAAATAAAA

TTGCTAACACATTCAGTAACCTTAGCCAAACCATTGAAATGAATGGTCCTTGGACTTCAGCT

TGGGTTGGAGAATCTGGTGGGGCCTTCAACAATGGAGGTCATAACGTGTCTAACACATTTGT

GAACAGTTTTTGGTACTTGGATCAGCTTGGGATGGCAGCCAAGTACCACACTAAAGTATATT

GCAGGCAGACTTTTATTGGAGGAAACTATGGGCTCCTTGACACAAGCACATTTATCCCAAAT

CCTGATTATTACAGTGCACTTCTTTGGCATCGGCTAATGGGAAAAGGAGTTTTTGCTGTTAG

CAGCAATTCATCATCATATCTGCGCTCTTATGCCCACTGTACAAGAAATAGAGTAGGTGTGA



CATTACTTTTGATCAATTTAAGCAACCAAACTCAGTACAGAGTCAGCATCGAATCTAGTGTA

CACACCTCCTCGCATGCCAACGAGAAATCAAATCACAAGAAGTCGTTTATACACGGTCTTAA

GAAAACTTTTTCATGGGTTGGAAGTAAATCATCAGACGTTACATTGTCACGCGAAGAATACC

ATCTGACTCCACTAAATGGCAACCTTCACAGCAAAACTATGCTCCTGAATGGATTACCATTA

CAGCTCACAGAAATTGGAGACATCCCAAGTTTGTCTCCGGTCCTTGTAAACATAGTGTCTCC

AATATCAGTTGCCCCCTTGTCCATCAAATTCATTGTCTTTCCCAACTATAATTCTCCAGGTT

GTAGATAG 

 

>NsGUS2 

ATGGACTTCCGAACCTTGTTGTTAATCTTTCTGGCGCTGTGTCCTGCATTTTCAGCGCAAAC

AGTTGAAGATACCGAACTTATGATTGATACATCTGTAAGAATTGCCTGGACAGATGATAATT

ATATTTGTGCTACCATTGATTGGTGGCCTAAAGAGAAGTGCAATTATAAGCAATGTCCTTGG

GACTTGGCATCTATTATAAATCTGGATTTATCTCACCCTTTTCTGGAAAATGCTATACGAGC

TTTCAAGGGTTTGAGATTACGACTTGGAGGTTCTTTACAGGACCAAGTAATATATGATGTAG

GCAACTTGAAATCTTCTTGCCATCCCTTCACCAAGCAGAAGGATGGGTTGTTTGGATTCTCT

AAGGGATGCTTACATATGCATAGATGGGATGAGTTAAACAACCTTTTCAAGAAGACAGGAGC

ACTTGTGACTTTTGGTTTGAATGCGTTGTATGGGAGACGACGGATCAATAGGCATGCATGGG

GAGGAAATTGGGATTCCAGCAATGCCCGCGATTTCATGAAATACACTGTTGCCAAAGGCTAC

CAGATACACTCATGGGAATTTGGAAATGAATTGAGTGGTCAGGGAATTGGTGCAAGTGTTAA

TGCTGTACAGTACGGAAAAGATGTTATCCATCTGCACAATCTCATAGACCAAGTATACAAGA

AATTTGACCAACGTCCTCTTCTATTAGCACCAGGAGGATTCTATAGTCCTGAGTGGTTCAGC

AAGCTCCTTGAGGTTTCAGGGCCTGGCATAGTCAACGTCTTGACGCATCATATTTATAATCT

TGGCCCAGGGTCCGAGGGAAGCAAGCTTGTAGATAAAATTTTAAATCCTCAATACTTGAATA

AAATATCAGACACATTCGGCAATCTTACTCAAACCATTAAAATGAAGGGTCCTTGGGCTTCA

GCTTGGGTTGGAGAATCTGGTGGAGCCTACAACAGTGGAGGTCCTAATGTGTCTAACGCCTT

CGTAGATAGCTTTTGGTATTTAGATCAGCTTGGGATAGCAGCCAAGCACCATACTAAAGTAT

ACTGCCGACAGACTCTTATTGGAGGAAATTATGGGCTCCTTGATACCAGCACGTTTGTTCCA

AATCCTGATTATTATAGTGCACTTCTTTGGCATAGACTGATGGGAAAAGAAGTTCTTCATAT

TAGCAGCAAAGCATCACCATATTTGCGCTCTTATGCCCATTGTACAAAAGATAGAGTAGGTG

TGACTTTACTTCTGATCAATTTAAGCAACCAGATTCAGTATGGGGTCAACATCCAATCCAGT

GCATATACCAGCTTGCAAGTCGGTAAGAAAAAAAATCACAAGAAAAGTTCATTCGTGCACGG

TCTTAAAGAAACTGTTTCGTGGGTAGGAAGCAAATCATCAGATGTTACATTATATCGAGAAG

AGTATCATCTAACTCCAGAAGGCGGCAACCTTCAGAGCAGAACTATGCTCCTCAATGGGAAA

CCATTGCAACTCACAGAAACAGGAGATATTCCAAGTTTGTCTCCAGTTCTTGAAAATATCAA

ATCTCCAATATCAGTTGCACCATTGTCCATCAAGTTCATTGTATTCCCCAACTTTAATTCTC

CTAGTTGTAGATAA 

 

>NsGUS3A 

ATGGGTTCTTTATTTTTGCAAAAGGGAATGTTGGTGTGGATTTGTTTGTTTAGTTTGAGATT

AATTTGTGGGTACTCAGAGGTTGCTCAAGGTAGTGTGTTTATAGATGGGAAGAATGCCATTG

GAAGAACAGACAATAATTTTATTTGTGCTACTTTGGATTGGTGGCCACCTGAGAAATGTGAT

TATGGAACTTGTGCTTGGGACCATGCTTCTTTCCTTAATCTGGATCTTAACAACATTATTTT

TCTCAATGCAATAAAAGATATTCTTCATAATTATGTTGCAGCCTTCTCGCCATTAAAGATTC

GGTTAGGAGGCACTTTACAAGACAAAGTCATATACGAAACTGAAGATCATAAACAGCCCTGT

GTTTCATTTGTTAAAAACACATCAGAGATGTTTGGTTTTACTTCAGGGTGCCTTCCCTTATC

TAGATGGGATGAACTCAATGCATTCTTTAATAAATCCGGGGCTAGCATAATTTTTGGATTGA

ATGCTCTCTATGGAAGATCTGTACACCCTGACGGTTTATCTGTCGGAGCTTGGGATTCAAGC

AATGCTGAATCGCTTATACGTTATACTGTCAAAAAAGGATACGCTATCCACGGTTGGGAGCT

TGGGAATGAATTGTGTGGAAGTGGAGTTGGAACCAGAGTTGCAGCAGATCAATATGCATCTG

ATACTACTGCCTTGTACAAAATAGTACTAGATGCTTACAAGAATTTTGAACCTAGGCCTCTG

GTCATTGCGCCAGGAGGTTTCTTCGACGAAGGCTGGTTTAGGGAATTAATAAATAAAACTGG

GAAATCATTTGATGTGGCTACTCACCACATATATAACCTTGGTCCAGGAAGAGATGAACACC

TAGTTGATAAAATCCTCGATCCATCTTATCTCGATGGTGAGGCCGACACATTTAGCAAACTT



CAGAATGTACTCAAGACGTCTGGTACTTCAGTGGTTGCTTGGGTTGGTGAGGCTGGAGGGGC

TTACAACAGCGGTCGCGACCATGTCACAAATGCCTTTGTTTTTAGCTTCTGGTATTTGGACC

AGCTTGGGATGTCAGCTGCTTATGATACTAAAGCATACTGTCGACAGACACTGATTGGTGGA

AACTATGGTTTACTCAACACCACTACCTTTGTACCCAATCCAGATTACTACAGTGCTCTTCT

TTGGCACCGATTAATGGGAAGGAACGTTTTGTCAACAACTTTCTCAGGATCAAAGAAAATAC

GTGCCTACGCACATTGTGCAAAGCAATCTCGAGGTATCACCTTATTGTTGATCAATCTTGAC

GGCAACACTACCATGAGTGCCAACGTTGCTTTTAACGGTACTATGTTGCATCAAAGAAAGCA

CAGACATCATAGCCACAGAAAGAGTTCTTCAATTAGACTGCCTAAAAGTAGAAAGATAGCAT

CAAATACAAGACAAGAATACCATTTAACAGCAAAAGATGGAGATTTACAGAGCCAGACTATG

CTGCTGAATGGGAAACCACTAACTATAGATTCATTTGGAAATATACCATCATTGGAGCCTAT

ATTTGTCAATTCAACAGAGCCATTAACAGTAGCTCCATTCTCTATTGTATTTGTACACATAC

CATATGTTATTTTGCCTGCTTGTAGCTGA 

 

>NsGUS3ch10B 

ATGGCTTCTTTGTTCAGCTGCTTCTTGGAGTTGTATTTCTTGCTATTGTTGTTGTACAATAG

CCAATGTTCAAGAGCAGAAGAGTCTTCGTCAAAAAGTAGTGCTAGTTTTGAAAAGGGGAGTA

TTTACATTGATGGGTCAGCAGCCATTGCAAAGATAGATGAGGATTTCATTTGTGCAACCTTA

GATTGGTGGCCTTCTAATAAATGTGATTATGGAACTTGTAGCTGGGGAAATTCTTCTCTCCT

TAATCTTGATCTAAGCAACAAGGTTTTGTTGAATGCAATTAGAGCGTTTTCGCCGTTAAAAA

TTAGACTCGGAGGCACATTGCAAGACAAAATAGTATACCAAACGGCGCATTATGAGCAACCA

TGTTCTCCTTTTCTCCTTAATAATAAAGAGTTGTTTGGCTTCACCCAAGGTTGCTTACCTTT

GTCTCGTTGGGATGAACTCAACCAATTCTTCAAGAAAACGGGGGCAAAAGTAACTTTTGGGT

TGAATGCTTTAAATGGAAAGACGATAGCTCCTAATGGCTCTGCTTTGGGAGATTGGGATTCC

AGCAATGCAGAGTCTTTCATCAGATATACGGTTAGCAGAGGTTATACTATCCTCGGCTGGGA

ACTTGGAAATGAATTGAATGGAAATGGAATTGGTGCAAATATCACAGCCAATCAGTACAGCC

GTGATGTCATCGCACTTCACAAATTACTGCAAGAAATATACAAAGGGAAGGACGTTATGCCA

TTAGTCCTTGCACCAGGAGGAATATTTGACGTTGTTTGGTTCTCAAAGCTTATAGATAAAGC

ATCCAATTATCTTCAAGTGGTTACACATCACATTTACAATGTTGGCGGAGGTGACAGCGACC

TAGTTCAGAAAATACTTGATCCTTCTCATCTGGATGAAGACTCCGAAATATTCAGACATGTT

CAAGGTGTTCTCCAAAAGTTTGGAACTTCATCAGTAGCATGGGTTGGTGAAAGTGGAGGGGT

TTATAACAGTGGTCGCGATCTTGTTTCCAATAGCTTTGTGTCCAGCTTTTGGTATTTGGATC

AGCTTGGGATGTCAGCCACGTTCGACACTAAGACATATTGTCGACAAACATTGGTTGGTGGA

AACTATGGTCTCCTCAATACCATAACTTTTCATCCAAATCCTGATTATTATGGCGCTCTTCT

TTGGCACCGTTTGATGGGAAGGTCTGTTCTGTCAACACAATTCAAAGGAACGAAAAAGCTAC

GAGCTTATACCCACTGTTCAAAATCTTCTGACGGAATCACACTGTTGTTGATCAACATGGAT

GGTGGTGCAACGGTTAATGTAAGTGTTTCGGTCACACTTGCTAACGCAAACAAGGTGTCACT

GCTGCTGCGAGACATAAATGATCAGAATCCGAGACACGAAATCTGGAGGGAAGAATATCACC

TTACAGCCAAAGATGGTGAATTACATAGCCAAACAGTGCTTTTGAATGAAAAGGAACTTAGT

GTAGATCATTTTGGAAGAATCCCTCACTTGGAACCTCTACGAGTGAAATCGTCCGAACCATT

AGCTATTGCTCCTTTCTCAATTGTATTTGTTGACATCCCCATTGTTCAAGTTCCTGCTTGCA

GTATGTTTACCAGAGAGTACATGTAA 

 

>NtomGUS1A 

ATGGATTCAAGAACTAGGTTGTTTTGTTTGGTTCTTTTAGTGTTTTCTTGTTTTTGTTTGTC

TAAGGCAGATGAATTGAAGGTAATGGTAAAAGGAGTGACATCTATAGCTAAAACAGATGATA

ATTTCATATGTGCAACTTTAGATTGGTGGCCAGAAAACAAGTGTGATTATAATCAATGTCCA

TGGGGAAAAGCTGGTATTCTTAATCTGGATTTGAAGAACAAGATTCTTACAAACGCCGTTAA

AGCATTCAATCCACTAAGAATCAGAATAGGAGGTTCACTACAAGATCAGGTTTACTACAAAG

TTGGAAAATTCCCAAAGCAATGCTCAAACTTAGAGAAAAAATCAGATGGCCTTTTTGGATTT

GCTGAAGGCTGTCTCCACATGAATAGATGGGATGAATTGCATGATTTGTTTAACAAAACAGG

GTCTGCATTAACATTTTCATTGAATGCCTTACTTGGAAGGATACAATCAGATGAAGATGATA

CTCTTTGGGAAGGAGATTGGAATCAGTATAATGCAAAATCATTGATGAAATACACTGTTAAA

AAAGGATACAAGATTGACTCATATGAATTAGGTAATGAGCTTTGTGCAGGAGGGGTTGCTGC



AAAAATAAAAGCTCAGCAATATGGCAAAGATGTCAAGAAATTGAAGAAACTTGTAACACATA

TGTACCCTGACCCTGCTTCTAGACCAAAAATCTTGGCCCCTGGTGGATTTTATGATGAAGAA

TGGTTCAAAATCTTCCTTCAAACTACCGGTCCGGACGTCGTCGATGGATTAACACATCATAT

TTACAACCTTGGAGCAGGTGTTGATCCAACTTTGATTAACAAACTTCAGGATCCATTTTACC

TTAGTCAAATAGCTCAAACTTTTAATGATGTTTCAAATACTGCTAAATTGTTTTCACCATCT

TCTGGACCTTGGGTTGGTGAATCTGGTGGAGCTTATAATAGTGGTGGCAAAACCACTTCACA

TACCTTTGTCAACGGCTTCTGGTATTTGGATCAACTCGGAATGACATCAACTTTCAACCATA

AGGTATACTGCAGACAATCCTTAATTGGTGGAAACTATGGTCTTCTCAACACTACAAGTTTC

ATCCCAAATCCAGATTACTATGGTGCTCTTTTGTGGCATAAGCTCATGGGAAAGAATGTGCT

TTCTACTACTCATGAGGGCTCGCCTTACTTGCGCACTTATGCTCATTGCTCAAAGACAAGTG

GTGTTACAGTTCTATTAATTAACATGGACAAGTCGACAACATTTGAAGTATCTGTGGTAGAT

GACTTGAACATGTATCCTAGTAGGATTGAGCCTATACATCAAAGGGAAGAGTACCATTTGAC

ACCAAAAGATGGCAACATTCAAAGTGATGTTTTGTTGCTAAATGGCACTCCATTGAAGCTCA

CTGCCTCATTCGACATCCCAGAAATGAATCCTCAGCTCGTTGATCCAACGTTGCCTATCTCC

GTTGCTCCTCGTTCTATCGTCTTTGCCACCTTGAGAGGGTTCCAAGCTCCTGCTTGTGCATA

G 

 

>NtomGUS1B 

ATGGGCTTCCCACCCTTCTTGTTAATCTTTCTGGCGCTGTGTCCTGCATTTTTGGCACAAAT

AGTTGAAGATACAGCACTTGTGATTGATGGAACTGTAAAAATTGCTGAGACAGATGCTAATT

ATGTATGCGCTACCCTCGATTGGTGGCCTAAAGAAAAATGTAACTACAACGAATGCCCTTGG

GGCTACACATCTCTGATGAATCTGGATTTGTCTCACCCCTTTCTGGCAAATTCTATTAAAGC

TTTCAACCCTTTGAGATTACGACTTGGAGGTTCTCTGCAAAACCGAGTAATATATGACGTAG

GCAATTTGGAGTCTCGTTGCCATCCGTTTACCAAGCAGGGGGATGGGTTGTTTGGATTTTCA

AAGGGATGCTTACATATGAATAGATGGGATGAGCTAAATAGCTTTTTCAAGAAGACGGGAGC

ACTTGTGACCTTTGGCCTGAATGCCTTGCATGGGAGGCAGCGGACGGGTAAGCGTTTGTGGG

GAGGGAATTGGGATTCCAGCAACGCCCATGATTTCATAAATTACACTATTTCCAGGGGCTAC

CAGATACACTCATGGGAATTTGGAAATGAGTTGAGTGGTAAGGGGATTGGTGCAAATGTTGA

TGCCGAGCAATACGGAACAGATGTTATCCATCTTAACAATCTCATAGACCAACTGTATAAGC

ATTTCCAACCCCGACCACTTCTCTTAGCACCAGGAGGATTCTACGATAAAGAGTGGTATGAG

AAGCTCCTTGAGGTGTCAGGGCCAGGCACTGTCGATGCCTTGACTCATCATATATATAATCT

TGGTCCAGGATCTGACCGCAATCTCGTCAACAAAATTTTAAATCCCCTGCACTTAAATAAAA

TTGCCGACACATTCAGTAATCTTACCCAAACCATTGCAATGAATGGTCCTTGGACGTCAGCT

TGGGTTGGAGAATCTGGTGGGGCCTTCAACAATGGAGGTCATAACGTGTCTAACACATTTGT

GAACAGTTTTTGGTACTTGGATCAGCTTGGGATGGCAGCCAAGTACCTCACTAAAGTATATT

GCAGGCAGACTTTTGTTGGTGGAAATTATGGGCTCCTTGACACAAGCACATTTATCCCAAAT

CCTGATTATTACAGTGCACTTCTTTGGCATCGGCTGATGGGAAAAGGAGTTCTTGCTGTTAG

CAGAAATTCATCATCATATCTGCGCTCTTATGCCCACTGTACAAGAGATAGAGTAGGTGTGA

CATTACTTTTGATCAATTTAAGCAACCAAACTCAGTATGGAGTCAGCATCGAATCTAGTGCA

ACCACCACCTCGCATGCCAACGAGAAATCAAATCACAAGAAGTCGTTTATACATGGTCTTAA

GAAAACTTTTTCATGGGTTGGAAGTAAATCATCAGACGTTACATTGTCACGAGAAGAGTATC

ATCTGACTCCACTAGATGGGAACCTTCACAGCAAAATTATGCTCCTGAATGGATTACCATTA

CAGCTCACAGAAGATGGAGACATCCCAAGTTTGTCTCCAGTCATTGTAAACATAAAGTCCCC

AATATCAGTTGCCCCCTTGTCCATCAAATTCTTAGTATTCCCCAACTATAATTCTCCAGGTT

GTAGATAG 

 

>NtomGUS2 

ATGGACTTCCGAACCTTGTTGTTAATCTTTCTGGCGCTGTGTCCTGCATTTTTGGCGCAAAC

AGGTGAAGATACAGAACTTATGATTGATACATCTGTGAAAATTGCCTGGACAGATGATAATT

ACATTTGTGCTACCCTTGATTGGTGGCCTAAAGAAAAGTGTAACTATAAACAATGTCCTTGG

GACTTGGCATCTATTATAAATCTGGATTTATCTCATCCATTTCTGGAAAATGCTATACGAGC

TTTCAAGGGTTTGAGATTACGACTCGGAGGTTCATTACAGGACCAAGTAATATATGGTGTAG

GCAACTTGAAATCTTCTTGCCATCCGTTCACCAAGCAGAGGGATGGGTTGTTTGGATTCTCT



AAGGGATGCTTACATATGCATCGATGGGATGAGTTAAACAACCTTTTCAAGAAGACAGGAGC

ACTTGTGACTTTTGGCTTGAATGCGTTGTATGGGAGACGGCGGATCAATAGGCATGCGTGGG

GAGGAAATTGGGATTCCAGCAATGCCCTCGATTTCATAAAATACACTGTTGCCAAGGGCTAC

CAGATACACTCATGGGAATTTGGAAATGAATTGAGTGGTCAGGGAATTGGTGCAAGTGTTAA

TGCTGTACAGTATGGAAAAGATGTTATCCATCTGCACAATCTCATAGACCAAGTATACAAGA

ATTTCGACCAACGTCCTCTTCTATTAGCACCAGGAGGATTCTATAGTCCTGAGTGGTTCAGC

AAGCTCCTTGAGGTTTCAGGGCCTGGCATAGTCAATGTCTTGACGCATCATATTTATAATCT

TGGCCCAGGGTCTGAAGGAAGCAAGCTTGTAGATAAAGTTTTAAATCCTCAATACCTGAATA

AAATATCAGACACATTTGGTAATCTTACTCAAACCATAAAAATGAAGGGTCCTTGGGCTTCA

GCTTGGGTTGGAGAATCTGGTGGAGCCTACAACAGTGGAGGTCCTAATGTGTCTAACGCCTT

CGTAGATAGCTTTTGGTATTTAGATCAGCTTGGCATGGCGGCGAAGCACCATACTAAAGTAT

ACTGCCGGCAGACTCTTATTGGTGGAAATTATGGGCTCCTTGATACCAGCACGTTTGTTCCA

AATCCTGATTATTATAGTGCACTTCTTTGGCATAGACTGATGGGAAAAGAAGTTCTTGATGT

TAGCAGCAACGCCTCACCATATTTGCGCTCTTATGCCCATTGTACAAAAGATAGAGCAGGTG

TGACTTTACTTCTGATCAATTTAAGCAACCAGATTCAGTATGGGGTCAACATCCAATCCAGT

GCATATACCAGCTTGCAAGTCGGTGAGAAAAAAAATCACAAGAAAAATGCATTCGTGCACGG

TCTTAAAGAAACTGTTTCGTGGGTAGGAAGCAAATCATCAGATGTTACATTATATCGAGAAG

AGTATCATCTAACTCCAGAAGGCGGCGACCTTCAGAGTAGAACTATGCTCCTCAACGGGAAA

CCATTACAACTCACAGAAACAGGAGACATTCCAAGTTTGACTCCAGTTCTTAAAAATATTGA

ATCTCCGATATCAGTTGCACCATTGTCCATCAAGTTCATTGTATTCCCCAACTTCAATTCTC

CCAGTTGTAGATAA 

 

>NtomGUS3A 

ATGGGTTCTTTATTTTTGCAAAAGGGAGTGTTGGTGTGGATTTGTTTGTTTAGTTTGAGATT

GATTTGTGGGTACTCAGAGGTTGCTCAAGGCAGTGTGTTTATAGATGGGAAGAATGCCATTG

GAAGAATAGACAATAATTTCATTTGTGCTACTTTGGATTGGTGGCCACCTGAGAAATGTGAT

TATGGAACTTGTGCTTGGGACCATGCTTCTTTCCTTAATCTGGATCTTAACAACATTATTTT

TCTCAATGCAATAAAAGATATTCTTCATAATTATGTTGCAGCCTTCTCGCCATTAAAGATTC

GGTTAGGAGGCACCTTGCAAGACAAAGTCATATACCAAACTGAAGATCATAAACAGCCCTGT

GTTTCATTTGTTCAAAACACTTCAGAGATGTTTGGTTTTACTCCAGGGTGTCTTCCCTTGTC

TAGATGGGATGAACTCAATGCATTCTTTAATAAATCCGGGGCTAGTATAATTTTTGGATTGA

ATGCTCTCTACGGAAGATCTGTACACCCCGATGGTTTATCCATGGGAGCTTGGGATTCAAGC

AATGCTGAATCGCTTATACGTTATACTGTCAAAAAGGGATACATTATCCACGGTTGGGAGCT

TGGGAATGAATTGTGTGGGAGTGGAGTTGGAACCAGAGTTGCAGCAGATCAATATGCATCTG

ATACTACTGCCTTGTACAAAATAGTACAAGATGCTTACAAGAATTTTGAACCTAGGCCTCTG

GTCATTGCACCAGGAGGTTTCTTCGACGAAGGCTGGTTTAGGGAATTAATAAATAAAACTGG

GAAATCATTTGATGTGGCCACTCACCACATATATAACCTTGGTCCAGGAAGAGATGAACACC

TTGTTGATAAAATCCTCGATCCATCTTATCTCGATGGTGAGGCCGACACATTTAGCAAACTT

CAGAATGTACTCAAGACCTCTGGTACTTCAGTGGTTGCTTGGGTTGGTGAGGCTGGAGGGGC

TTACAACAGCGGTCGCAACCATGTCACAAATGCCTTTGTTTTTAGCTTCTGGTATTTGGACC

AGCTTGGGATGTCAGCTGCTTATGATACCAAGACATACTGTCGACAGACACTAATTGGTGGA

AACTATGGTTTACTCAACACCACTACCTTTGTACCCAATCCAGATTACTACAGTGCTCTTCT

TTGGCACCGATTAATGGGAAGGAACGTCTTGTCAACAAGTTTCTCAGGATCAAAGAAAATAC

GTGCCTACACACATTGTGCAAAGCAATCTCAAGGCATCACCTTATTGTTGATCAATCTTGAC

GGCAACACTACCATTCGCGCAAACATTGCTTTTAACGGTACTCTGTTGCACCACAGAAAGCA

CAGACATCATAGCCACAGAAAGAGTTCTTCAATTAGACTGCCTAAAAGTAGAAAGATAGCAT

CAAATACAAGACAAGAATACCATTTAACAGCAAAAGATGGAGATTTGCAAAGCCAGACAATG

CTGCTAAATGGGAAACCACTAACTATAGATTCATTTGGAAATATACCATCATTGGAGCCTAT

ATTTGTCAATTCAACAGAGCCATTAACAGTAGCTCCATTCTCTATTTTGTTTGTACACATAC

CATATGTTATTTTGCCTGCTTGTAGCTGA 

 

 

 



>NtomGUS3B 

ATGGCTTCTTTGTTCAGCTGCTTCTTGGGGTTGTGTTTCTCGCTATTATTGTTGTACAGCAG

CCAATGTTCAAGAGCAGAAGAGGAAGAGGGGACTCTTTACATTGATGGGTCAGCAGCCATTG

CAAAGATAGATGAGGACTTCATTTGTGCAACCTTAGATTGGTGGCCTTCTAATAAATGTGAT

TATGGAACTTGTAGCTGGGGAAATTCTTCTCTCCTTAATCTTGTAACCCCTCTTTCACTTTT

TGATCTAAGCAACAAGGTTTTGTTGAATGCAATTAGAGCGTTTTCTCCATTAAAAATTAGAC

TCGGAGGCACATTGCAAGACAAAATAGTATACCAAACGGCGCATTATGAGCAACCATGTAGT

CCTTTTTTCCTTAATAATACAGAGTCGTTTGGCTTCACCCAAGGTTGTTTACCTTTGTCTCG

TTGGGATGAACTCAACGAAATCTTCAAGAAAACGGGGGCAAAAGTAACTTTTGGGTTGAATG

CTTTAAATGGAAAGACAATAGCTCCTAACGGCTCTGCTTTGGGAGATTGGGATTCCAGCAAT

GCAGAGTCTTTCATCAGATATACAGTTAGCAGAGGTTATACTATCCTCGGCTGGGAGCTTGG

AAATGAATTGAATGGAAATGGAATCGGTGCAAATATCACAGCCAATCAATACAGCCGGGATG

TCATCGCGCTTCACAAATTATTGCAAGAAATATATAAAGGGAAGGACATTATGCCATTAGTC

CTTGCACCGGGAGGAATATTTGATGTTGGTTGGTTCTCAAAGCTTATAGATAAAGCATCCAA

TTCTCTTCAAGTGGTTACACATCACATTTATAATGTTGGTGGAGGCGACAGCGGCCTAGTTC

AGAAAATACTTGATCCTTTTCATCTGGATGAAGACTCCAAAATATTCAGAAATGTTCAAGGC

GTTCTCCAAAATTTTGGAACTTCAGCAGTAGCATGGGTTGGTGAAAGTGGAGGGGTTTATAA

CAGTGGTCGCAATCTTGTTTCCAATAGCTTTGTGTCCAGCTTTTGGTATTTGGATCAGCTTG

GGATGTCAGCCATGTTCGACACAAAGACATATTGTCGACAAACATTGGTTGGTGGAAACTAT

GGTCTCCTTAATGCCAGAACGTTTCGTCCAAATCCTGATTATTATGGTGCTCTTCTTTGGCA

CCGTTTGATGGGAAGGTCTGTTCTATCAACACAATTCCAAGGAACGAAAAAGCTACGAGCTT

ACGCCCACTGTTCAAAATCTTCTGACGGAATCACACTGTTGTTGATCAACATGGATGGTGAT

GCAACAGTTAATGTAAGTCTTTCCGTCACACTTGCTAACGCAAACAAGGCTCCGCTTCTGCT

GCAAGTCATAAATGGTCAGAATTCGAGACACGAAATTTGGAGGGAAGAATATCACCTTACAG

CCAAAGATGGTGAATTACATAGCCAAACACTGCTTTTAAATGGAAAGGAACTTAGTGTAGAT

CATTTTGGAAGAATCCCTCACTTGGAACCGATACGAGTAAAATCCTCCGAACCATTAGCTAT

TGCTCCTTTCTCAATTGTATTTGTTGACATCCCCACTGTTCAAGTTCCTGCTTGCAGTATGT

TTAAAAGTGAGTACATGTAA 

 

 



Annex 3  

 

Alignment of amino acid sequences and identification of some conserved motif  

 

SbGUS          -MGFQVWQKGLCVLCFSLIF-I--------------CGVIGEETTIVKIEENPVAQTDEN 44 

SlGUS3B        -MQMASSFKCLLVLYFLL-LSLYFTQISRAGD-------IVEEGILYIDGVSSIAKIDKD 51 

NsGUS3B        ---MASLFSCFLELYFLL-LLLYNSQCSRAEESSSKSSASFEKGSIYIDGSAAIAKIDED 56 

NtomGUS3B      ---MASLFSCFLGLCFSL-LLLYSSQCSRAEE---------EEGTLYIDGSAAIAKIDED 47 

AtGUS3         ---MA-YRQILAIVLFLCVFQFLDCTV---------SSAVEENGTVFVYGRAAVGTIDED 47 

SlGUS3A        ---MGSLFLQKGVLVWLFLFSLRF-IC---------GTK--AQGTVFIDGKIAIGRIDRH 45 

NsGUS3A        ---MGSLFLQKGMLVWICLFSLRL-IC---------GYSEVAQGSVFIDGKNAIGRTDNN 47 

NtomGUS3A      ---MGSLFLQKGVLVWICLFSLRL-IC---------GYSEVAQGSVFIDGKNAIGRIDNN 47 

SlGUS1A        MVSRRSRFFCLFFLVSSCLF----------------NLSNSDELKVVVKGVTSIAQTDDN 44 

NsGUS1A        -MDSRTRLFCLVLLVSSC-F----------------CLSNSDELKVIVKGVTSIAKTDDN 42 

NtomGUS1A      -MDSRTRLFCLVLLVFSC-F----------------CLSKADELKVMVKGVTSIAKTDDN 42 

SlGUS1B        -MGFP---PLLLIFLA-----LCPAF----------LAQIVEETEFLIDGTVKIAETDNN 41 

NsGUS1B        -MGFP---PFLLIFLA-----VCPAF----------LAQIVEDTALLIDATVKIAETDAN 41 

NtomGUS1B      -MGFP---PFLLIFLA-----LCPAF----------LAQIVEDTALVIDGTVKIAETDAN 41 

SlGUS2         -MNFR---TLFLIFVA-----LCPAL----------SAQIVKQIVLTIDASTKVAWTDAN 41 

NsGUS2         -MDFR---TLLLIFLA-----LCPAF----------SAQTVEDTELMIDTSVRIAWTDDN 41 

NtomGUS2       -MDFR---TLLLIFLA-----LCPAF----------LAQTGEDTELMIDTSVKIAWTDDN 41 

NtGUS2         -MDFR---TLLLIFLA-----LCPAF----------LAQTGEDTELMIDTSVKIAWTDDN 41 

AtGUS2         -MGFR---VCVIVVFLGCLLLVPEKT----------MAQEMKRASIVIQGARRVCETDEN 46 

AtGUS1         -MGFN------VVVFLSCLLLLPPVT----------FGSNMERTTLVIDGSRRIAETDEN 43 

                            .                               .       :   * . 

                          Signal peptide 

 

 

 

 

 

 

 

 



 

SbGUS          YVCATLDLWPPTKCNYGNCPWGKSSFLNL-------DLNNNIIRNAVK--------EFAP 89 

SlGUS3B        FICATLDWWPPTKCDYGTCSWGNASLLNL-------DLSNKVLVNAIR--------AFSP 96 

NsGUS3B        FICATLDWWPSNKCDYGTCSWGNSSLLNL-------DLSNKVLLNAIR--------AFSP 101 

NtomGUS3B      FICATLDWWPSNKCDYGTCSWGNSSLLNLVTPLSLFDLSNKVLLNAIR--------AFSP 99 

AtGUS3         FICATLDWWPPEKCDYGSCSWDHASILNL-------DLNNVILQNAIK--------AFAP 92 

SlGUS3A        FICATLDWWPPEKCDYGTCAWDYSSFLNL-------DLNNIIFLNAIK--------AFSP 90 

NsGUS3A        FICATLDWWPPEKCDYGTCAWDHASFLNL-------DLNNIIFLNAIKDILHNYVAAFSP 100 

NtomGUS3A      FICATLDWWPPEKCDYGTCAWDHASFLNL-------DLNNIIFLNAIKDILHNYVAAFSP 100 

SlGUS1A        FICATLDWWPENKCDYNQCPWGKAGILNL-------DLKNRILTNAVK--------AFNP 89 

NsGUS1A        FICATLDWWPENKCDYNQCPWGKAGILNL-------DLKNKILTNAVK--------AFNP 87 

NtomGUS1A      FICATLDWWPENKCDYNQCPWGKAGILNL-------DLKNKILTNAVK--------AFNP 87 

SlGUS1B        YVCATLDWWPKEKCNHNDCPWGSTSLINL-------DLSHPFLANSIQ--------AFNH 86 

NsGUS1B        YVCATLDWWPKEKCDYNDCPWGYTSLMNL-------DLSHPFLANSIQ--------AFNP 86 

NtomGUS1B      YVCATLDWWPKEKCNYNECPWGYTSLMNL-------DLSHPFLANSIK--------AFNP 86 

SlGUS2         YICATIDWWPKEKCNYKQCPWGSASILNL-------DLTHPYLVNAIR--------AFKG 86 

NsGUS2         YICATIDWWPKEKCNYKQCPWDLASIINL-------DLSHPFLENAIR--------AFKG 86 

NtomGUS2       YICATLDWWPKEKCNYKQCPWDLASIINL-------DLSHPFLENAIR--------AFKG 86 

NtGUS2         YICATLDWWPKEKCNYKQCPWDLASIINL-------DLSHPFLENAIQ--------AFKG 86 

AtGUS2         FVCATLDWWPHDKCNYDQCPWGYSSVINM-------DLTRPLLTKAIK--------AFKP 91 

AtGUS1         FICATLDWWPPEKCNYDQCPWGYASLINL-------NLASPLLAKAIQ--------AFRT 88 

               ::***:* **  **::  * *  :..:*:       :*    : ::::         *   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

SbGUS          LKLRFGGTLQDRLVYQTSRDEPCDSTFYNNTNLILDFSHACLSLDRWDEINQFILETG-S 148 

SlGUS3B        LTIRLGGTLQDKLIYQTMHDKQPCLPFFHDDTELFKFTQGCLPLSRWDELNEFFKKTG-A 155 

NsGUS3B        LKIRLGGTLQDKIVYQTAHYEQPCSPFLLNNKELFGFTQGCLPLSRWDELNQFFKKTG-A 160 

NtomGUS3B      LKIRLGGTLQDKIVYQTAHYEQPCSPFFLNNTESFGFTQGCLPLSRWDELNEIFKKTG-A 158 

AtGUS3         LKIRIGGTLQDIVIYETPDSKQPCLPFTKNSSILFGYTQGCLPMRRWDELNAFFRKTG-T 151 

SlGUS3A        LKIRLGGTLQDKVIYQTEDHQQPCVSFVRNTTEMFGFTPGCLPLSRWDELNAFFNKSG-A 149 

NsGUS3A        LKIRLGGTLQDKVIYETEDHKQPCVSFVKNTSEMFGFTSGCLPLSRWDELNAFFNKSG-A 159 

NtomGUS3A      LKIRLGGTLQDKVIYQTEDHKQPCVSFVQNTSEMFGFTPGCLPLSRWDELNAFFNKSG-A 159 

SlGUS1A        LRLRIGGSLQDQVYYKVGNYPKNCSNFEKKSDGLFGFSDGCLHMNRWDELHDMFNKTG-A 148 

NsGUS1A        LRIRIGGSLQDQVYYKVGKFPKQCSNFEKKSDGLFGFAEGCLHMNRWDELHDLFNKTGWA 147 

NtomGUS1A      LRIRIGGSLQDQVYYKVGKFPKQCSNLEKKSDGLFGFAEGCLHMNRWDELHDLFNKTGS- 146 

SlGUS1B        LRLRLGGSLQNRIIYDVGNLESPCHPFTKQGDELFGFSNGCLRMDRWDELNSFFNKTG-A 145 

NsGUS1B        LRLRLGGSLQNRVIYDVGNLESRCHAFTKQEDGLFGFSKGCLHMNRWDELNSFFKKTG-A 145 

NtomGUS1B      LRLRLGGSLQNRVIYDVGNLESRCHPFTKQGDGLFGFSKGCLHMNRWDELNSFFKKTG-A 145 

SlGUS2         LRLRLGGSLQDQVIYGVGNLISPCRPFTQHKDGLFGFSKGCLPMQRWDELNNLFKKTG-A 145 

NsGUS2         LRLRLGGSLQDQVIYDVGNLKSSCHPFTKQKDGLFGFSKGCLHMHRWDELNNLFKKTG-A 145 

NtomGUS2       LRLRLGGSLQDQVIYGVGNLKSSCHPFTKQRDGLFGFSKGCLHMHRWDELNNLFKKTG-A 145 

NtGUS2         LRLRLGGSLQDQVIYGVGNLKSSCHPFTKQRDGLFGFSKGCLHMHRWDELNNLFKKTG-A 145 

AtGUS2         LRIRIGGSLQDQVIYDVGNLKTPCRPFQKMNSGLFGFSKGCLHMKRWDELNSFLTATG-A 150 

AtGUS1         LRIRIGGSLQDQVIYDVGDLKTPCTQFKKTDDGLFGFSEGCLYMKRWDEVNHFFNATG-A 147 

               * :*:**:**: : * .         :       : :: .** : ****:. ::  :*   

 

 

 

 

 

 

 

 

 

 



SbGUS          EAVFGLNALRGKTVEIKGIIKDGQYLGETTTAVGEWDYSNSKFLIEYSLKKGYKHIRGWT 208 

SlGUS3B        KVTFGLNTLNGKKIAS-----------DGRTALGDWDSSNAESLIRYTVSRGYN-IHGWE 203 

NsGUS3B        KVTFGLNALNGKTIAP-----------NG-SALGDWDSSNAESFIRYTVSRGYT-ILGWE 207 

NtomGUS3B      KVTFGLNALNGKTIAP-----------NG-SALGDWDSSNAESFIRYTVSRGYT-ILGWE 205 

AtGUS3         KVIFGLNALSGRSIKS-----------NG-EAIGAWNYTNAESFIRFTAENNYT-IDGWE 198 

SlGUS3A        SIIFGLNALYGRSVHP-----------DS-LSVGAWDPSNAESLIRYTVKKGYD-IHGWE 196 

NsGUS3A        SIIFGLNALYGRSVHP-----------DG-LSVGAWDSSNAESLIRYTVKKGYA-IHGWE 206 

NtomGUS3A      SIIFGLNALYGRSVHP-----------DG-LSMGAWDSSNAESLIRYTVKKGYI-IHGWE 206 

SlGUS1A        AITFSFNALIGRIPSDE---------NDTTLWVGDWNHYNAKSLMKYTLNKGYK-IDSYE 198 

NsGUS1A        ALTFSLNALLGRIQSDE---------D-DTLWEGDWNQFNAKSLMKYTIRKGYK-IDSYE 196 

NtomGUS1A      ALTFSLNALLGRIQSDE---------D-DTLWEGDWNQYNAKSLMKYTVKKGYK-IDSYE 195 

SlGUS1B        LVTFGLNALRGRQRTS------------KRVWEGNWDSSNAHDFIDYTVSKGYQ-IHSWE 192 

NsGUS1B        LVTFGLNALHGRQRAG------------KRVWGGNWDSSNARDFINYTISKGYQ-IHSWE 192 

NtomGUS1B      LVTFGLNALHGRQRTG------------KRLWGGNWDSSNAHDFINYTISRGYQ-IHSWE 192 

SlGUS2         LVTFGLNALYGRRQAN------------RHAWVGNWDSSNALNFIKYTVAKGYH-IHSWE 192 

NsGUS2         LVTFGLNALYGRRRIN------------RHAWGGNWDSSNARDFMKYTVAKGYQ-IHSWE 192 

NtomGUS2       LVTFGLNALYGRRRIN------------RHAWGGNWDSSNALDFIKYTVAKGYQ-IHSWE 192 

NtGUS2         LVTFGLNALYGRRRIN------------RHAWGGNWDSSNALDFIKYTVAKGYQ-IHSWE 192 

AtGUS2         VVTFGLNALRGRHKLR------------GKAWGGAWDHINTQDFLNYTVSKGYV-IDSWE 197 

AtGUS1         IVTFGLNALHGRNKLN------------GTAWGGDWDHTNTQDFMNYTVSKGYA-IDSWE 194 

                  *.:*:* *:                     * *:  *:  :: ::  . *  * .:  

 

                                                      heparanase motif 

 

 

 

 

 

 

 

 

 

 

 



SbGUS          LGNELGGHTLFIGVSPEDYANDAKKLHELVKEIYQDQG-TMPLIIAPGAIFDLEWYTEFI 267 

SlGUS3B        LGNELNGNGIGPAISADQYACDIIALQKLVQDIYKGKD-VMPLILAPGGIFDAIWFPKFI 262 

NsGUS3B        LGNELNGNGIGANITANQYSRDVIALHKLLQEIYKGKD-VMPLVLAPGGIFDVVWFSKLI 266 

NtomGUS3B      LGNELNGNGIGANITANQYSRDVIALHKLLQEIYKGKD-IMPLVLAPGGIFDVGWFSKLI 264 

AtGUS3         LGNELCGSGVGARVGANQYAIDTINLRNIVNRVYKNVS-PMPLVIGPGGFFEVDWFTEYL 257 

SlGUS3A        LGNELSGSGVGTRVAADQYASDTIALHKIVKDAYENSE-TKPLVLAPGGFFDEGWFRELV 255 

NsGUS3A        LGNELCGSGVGTRVAADQYASDTTALYKIVLDAYKNFE-PRPLVIAPGGFFDEGWFRELI 265 

NtomGUS3A      LGNELCGSGVGTRVAADQYASDTTALYKIVQDAYKNFE-PRPLVIAPGGFFDEGWFRELI 265 

SlGUS1A        LGNELCGSGVAAKIKAHQYGNDVKKLKKLVTHMYPNPA-NRPKILAPGGFYDQKWFQEFL 257 

NsGUS1A        VGNELCAGGVAAKIRPQQYGKDVKKLKKLITHMYPDPA-TRPKILAPGGFYDEEWFKVFL 255 

NtomGUS1A      LGNELCAGGVAAKIKAQQYGKDVKKLKKLVTHMYPDPA-SRPKILAPGGFYDEEWFKIFL 254 

SlGUS1B        FGNELSGKGIGAKVDAEQYGEDVIHLNNLIDQLYKHFQ-PRPLLLAPGGFYDKEWFETFL 251 

NsGUS1B        FGNELSGKGIGANVDAEQYGKDVIHLNNLIDQLYKNFQ-PRPLLLAPGGFYDKEWYEKLL 251 

NtomGUS1B      FGNELSGKGIGANVDAEQYGTDVIHLNNLIDQLYKHFQ-PRPLLLAPGGFYDKEWYEKLL 251 

SlGUS2         FGNELSGSGIGARVDAAQYGKDVFQLHNLLNQAYQNTP-ERPLLLAPGGFYDPGWFGKLL 251 

NsGUS2         FGNELSGQGIGASVNAVQYGKDVIHLHNLIDQVYKKFD-QRPLLLAPGGFYSPEWFSKLL 251 

NtomGUS2       FGNELSGQGIGASVNAVQYGKDVIHLHNLIDQVYKNFD-QRPLLLAPGGFYSPEWFSKLL 251 

NtGUS2         FGNELSGQGIGASVNAVQYGKDVIHLHNLIDQVYKNFD-QRPLLLAPGGFYSPEWFSKLL 251 

AtGUS2         FGNELSGSGVGASVSAELYGKDLIVLKDVINKVYKNSWLHKPILVAPGGFYEQQWYTKLL 257 

AtGUS1         FGNELSGSGIWASVSVELYGKDLIVLKNVIKNVYKNSR-TKPLVVAPGGFFEEQWYSELL 253 

               .**** .  :   :    *. *   * .::   *       * ::.**.::.  *:   : 

 

 

                Acid-base residue (Glu212 in S. baicalensis) 

 

 

 

 

 

 

 

 

 

 



SbGUS          DRTP--ELHVATHHMYNLGSGGD-DALKDVLLTASFFDEATKSMYEGLQKIVNRPGTKAV 324 

SlGUS3B        NKASN-SLQVVTHHIYSVGGGDD-TNLVQKILEPSHLDEESK-YLQNLQGVLRNSGTSAV 319 

NsGUS3B        DKASN-YLQVVTHHIYNVGGGD--SDLVQKILDPSHLDEDSE-IFRHVQGVLQKFGTSSV 322 

NtomGUS3B      DKASN-SLQVVTHHIYNVGGGD--SGLVQKILDPFHLDEDSK-IFRNVQGVLQNFGTSAV 320 

AtGUS3         NKAEN-SLNATTRHIYDLGPGVD-EHLIEKILNPSYLDQEAK-SFRSLKNIIKNSSTKAV 314 

SlGUS3A        NKAGA-SFDVATHHIYNLGPGRD-EHLLEKILDPSYLDGEAD-TFSKLQNILKTSGSSVV 312 

NsGUS3A        NKTGK-SFDVATHHIYNLGPGRD-EHLVDKILDPSYLDGEAD-TFSKLQNVLKTSGTSVV 322 

NtomGUS3A      NKTGK-SFDVATHHIYNLGPGRD-EHLVDKILDPSYLDGEAD-TFSKLQNVLKTSGTSVV 322 

SlGUS1A        ETTGPGVVDGLTHHIYNLGAGVD-PTLIDKLQNPFFLSQIAQ-TFKNVDNDAKLFSPSSG 315 

NsGUS1A        QTTGPDVIDGLTHHIYNLGAGVD-PTLIDKLQDPIYLSQVAQ-TFNDVSNTAKLFSPSSG 313 

NtomGUS1A      QTTGPDVVDGLTHHIYNLGAGVD-PTLINKLQDPFYLSQIAQ-TFNDVSNTAKLFSPSSG 312 

SlGUS1B        EMSGPGTVDALTHHIYNLGAGSD-LNLVNKILNPLHLNKIAD-TFSNLSQTIEMNGPWSS 309 

NsGUS1B        EVSGPGTVDALTHHIYNLGPGSD-HNLVNKILNPLHLNKIAN-TFSNLSQTIEMNGPWTS 309 

NtomGUS1B      EVSGPGTVDALTHHIYNLGPGSD-RNLVNKILNPLHLNKIAD-TFSNLTQTIAMNGPWTS 309 

SlGUS2         QVSGRGTVNVLTHHIYNLGPGSD-SKLVDKILNPEYLSRTEG-TFSSLTQTILRNGPWAS 309 

NsGUS2         EVSGPGIVNVLTHHIYNLGPGSEGSKLVDKILNPQYLNKISD-TFGNLTQTIKMKGPWAS 310 

NtomGUS2       EVSGPGIVNVLTHHIYNLGPGSEGSKLVDKVLNPQYLNKISD-TFGNLTQTIKMKGPWAS 310 

NtGUS2         EVSGPGIVNVLTHHIYNLGPGSEGSKLVDKVLNPQYLNKISD-TFGNLTQTIKMKGPWAS 310 

AtGUS2         EISGPSVVDVVTHHIYNLGSGND-PALVKKIMDPSYLSQVSK-TFKDVNQTIQEHGPWAS 315 

AtGUS1         RLSGPGVLDVLTHHIYNLGPGND-PKLVNKILDPNYLSGISE-LFANVNQTIQEHGPWAA 311 

                 :    ..  *:*:*.:* *     * . :    .:.         :       .     

                   Heparanase motif                 heparanase motif 

                                              

 

             Tyr residue important for glycosyl hydrolase activity 

 

 

 

 

 

 

 

 

 



SbGUS          AWIGEAGGAFNSGQDGISNTFINGFWYLNMLGYSALLDTKTFCRQTLTGGNYGLLQTGTY 384 

SlGUS3B        AWVGESGGVYNSGRNLVSNSFVSGFWYLDQMGMSATFDTKTYCRQTLVGGNYGLLNTTTF 379 

NsGUS3B        AWVGESGGVYNSGRDLVSNSFVSSFWYLDQLGMSATFDTKTYCRQTLVGGNYGLLNTITF 382 

NtomGUS3B      AWVGESGGVYNSGRNLVSNSFVSSFWYLDQLGMSAMFDTKTYCRQTLVGGNYGLLNARTF 380 

AtGUS3         AWVGESGGAYNSGRNLVSNAFVYSFWYLDQLGMASLYDTKTYCRQSLIGGNYGLLNTTNF 374 

SlGUS3A        AWVGEAGGAYNSGRNHVTNAFAFSFWYLDQLGMSAAYDTKTYCRQTLIGGNYGLLNTTTF 372 

NsGUS3A        AWVGEAGGAYNSGRDHVTNAFVFSFWYLDQLGMSAAYDTKAYCRQTLIGGNYGLLNTTTF 382 

NtomGUS3A      AWVGEAGGAYNSGRNHVTNAFVFSFWYLDQLGMSAAYDTKTYCRQTLIGGNYGLLNTTTF 382 

SlGUS1A        PWVGESGGAYNSGGKTTSHTFVNGFWYLDQLGMTSTFNHKVYCRQSLIGGNYGLLNTTSF 375 

NsGUS1A        PWVGESGGAYNSGGKTTSHTFVNGFWYLDQLGMTSTFNHKVYCRQSLIGGNYGLLNTTSF 373 

NtomGUS1A      PWVGESGGAYNSGGKTTSHTFVNGFWYLDQLGMTSTFNHKVYCRQSLIGGNYGLLNTTSF 372 

SlGUS1B        AWVGESGGAFNNGGPNVSNTFVNSFWYLDQLGMAATYHTKVYCRQTFIGGNYGLLDTSTF 369 

NsGUS1B        AWVGESGGAFNNGGHNVSNTFVNSFWYLDQLGMAAKYHTKVYCRQTFIGGNYGLLDTSTF 369 

NtomGUS1B      AWVGESGGAFNNGGHNVSNTFVNSFWYLDQLGMAAKYLTKVYCRQTFVGGNYGLLDTSTF 369 

SlGUS2         AWVGESGGAFNSGGPDVSNAFVDSFWYLDQLGMAAKHHTKVYCRQTLIGGNYGLLDTATF 369 

NsGUS2         AWVGESGGAYNSGGPNVSNAFVDSFWYLDQLGIAAKHHTKVYCRQTLIGGNYGLLDTSTF 370 

NtomGUS2       AWVGESGGAYNSGGPNVSNAFVDSFWYLDQLGMAAKHHTKVYCRQTLIGGNYGLLDTSTF 370 

NtGUS2         AWVGESGGAYNSGGPNVSNAFVDSFWYLDQLGMAAKHHTKVYCRQTLIGGNYGLLDTSTF 370 

AtGUS2         PWVGESGGAYNSGGRHVSDTFIDSFWYLDQLGMSARHNTKVYCRQTLVGGFYGLLEKGTF 375 

AtGUS1         AWVGEAGGAFNSGGRQVSETFINSFWYLDQLGISSKHNTKVYCRQALVGGFYGLLEKETF 371 
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SbGUS          IPNPDYYSALLWHRLMGSKVLKTEIVGTKNVYIYAHCAKKSNGITMLVLNHDGESSVKIS 444 

SlGUS3B        HPNPDYYGALLWHRLMGRNVLSTQFQGMKKLRSYAHCSKSSEGIALMLINMHSSITVNIS 439 

NsGUS3B        HPNPDYYGALLWHRLMGRSVLSTQFKGTKKLRAYTHCSKSSDGITLLLINMDGGATVNVS 442 

NtomGUS3B      RPNPDYYGALLWHRLMGRSVLSTQFQGTKKLRAYAHCSKSSDGITLLLINMDGDATVNVS 440 

AtGUS3         TPNPDYYSALIWRQLMGRKALFTTFSGTKKIRSYTHCARQSKGITVLLMNLDNTTTVVAK 434 

SlGUS3A        EPNPDYYSALLWHRLMGRNVLATSFSGTKKLRAYAHCAKQSQGITLLLINLDGNTTIHPR 432 

NsGUS3A        VPNPDYYSALLWHRLMGRNVLSTTFSGSKKIRAYAHCAKQSRGITLLLINLDGNTTMSAN 442 

NtomGUS3A      VPNPDYYSALLWHRLMGRNVLSTSFSGSKKIRAYTHCAKQSQGITLLLINLDGNTTIRAN 442 

SlGUS1A        IPNPDYYGALLWHKLMGKNVLSITHEGSPYIRTYAHCSKT-SGITVLLINMDKSTTFDVS 434 

NsGUS1A        IPNPDYYGALLWHKLMGKNVLSTTHEGSPYLRTYAHCSKS-SGVTVLLINMDKSTTFEVS 432 

NtomGUS1A      IPNPDYYGALLWHKLMGKNVLSTTHEGSPYLRTYAHCSKT-SGVTVLLINMDKSTTFEVS 431 

SlGUS1B        VPNPDYYSALLWHRLMGKGVLAVSNNASSYLRSYAHCTRHRAGVTLLLINLSNQTHYGVN 429 

NsGUS1B        IPNPDYYSALLWHRLMGKGVFAVSSNSSSYLRSYAHCTRNRVGVTLLLINLSNQTQYRVS 429 

NtomGUS1B      IPNPDYYSALLWHRLMGKGVLAVSRNSSSYLRSYAHCTRDRVGVTLLLINLSNQTQYGVS 429 

SlGUS2         IPNPDYYSALLWNRLMGKVVLGVVNSAAPHLRTYAHCTKDRAGVTLLLINLSTQIQYQVN 429 

NsGUS2         VPNPDYYSALLWHRLMGKEVLHISSKASPYLRSYAHCTKDRVGVTLLLINLSNQIQYGVN 430 

NtomGUS2       VPNPDYYSALLWHRLMGKEVLDVSSNASPYLRSYAHCTKDRAGVTLLLINLSNQIQYGVN 430 

NtGUS2         VPNPDYYSALLWHRLMGKEVLDVSSNASPYLRSYAHCTKDRAGVTLLLINLSNQIQYGVN 430 

AtGUS2         VPNPDYYSALLWHRLMGKGVLAVQTDGPPQLRVYAHCSKGRAGVTLLLINLSNQSDFTVS 435 

AtGUS1         VPNPDYYSALLWHRLMGKGILGVQTTASEYLRAYVHCSKRRAGITILLINLSKHTTFTVA 431 
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SbGUS          LDP------------------------------------SKYGSKREEYHLTPVNNNLQS 468 

SlGUS3B        LSVTVANTN--ES------PMLLQVT---------NDQNARHEIEREEYHLTAKDGDLHS 482 

NsGUS3B        VSVTLANAN--KV------SLLLRDI---------NDQNPRHEIWREEYHLTAKDGELHS 485 

NtomGUS3B      LSVTLANAN--KA------PLLLQVI---------NGQNSRHEIWREEYHLTAKDGELHS 483 

AtGUS3         VELNNSFSLRHTKHMKSYKRASSQLF---------G--GPNGVIQREEYHLTAKDGNLHS 483 

SlGUS3A        VDFNGTMLHQQKHRHHHNHRKSSIKL---------PRSNKVASNTREEYHLTAKDGNLQS 483 

NsGUS3A        VAFNGTMLHQRKHRHHSHRKSSSIRL---------PKSRKIASNTRQEYHLTAKDGDLQS 493 

NtomGUS3A      IAFNGTLLHHRKHRHHSHRKSSSIRL---------PKSRKIASNTRQEYHLTAKDGDLQS 493 

SlGUS1A        VVDDLNMYAEGVA---------------SVEYINPNPDSVDSMHPREEYHLTPKDGNIQS 479 

NsGUS1A        VVDDLNMYPS----------------------------RIEPIHQREEYHLTPKDGNIQS 464 

NtomGUS1A      VVDDLNMYPS----------------------------RIEPIHQREEYHLTPKDGNIQS 463 

SlGUS1B        IESSVSITSHVKEKSNH-KSSFVQRLKKTISWV--GRKSSDVTLSREEYHLTPLDGNLQS 486 

NsGUS1B        IESSVHTSSHANEKSNH-KKSFIHGLKKTFSWV--GSKSSDVTLSREEYHLTPLNGNLHS 486 

NtomGUS1B      IESSATTTSHANEKSNH-KKSFIHGLKKTFSWV--GSKSSDVTLSREEYHLTPLDGNLHS 486 

SlGUS2         IHSTAETSLQVGKKMDHNKKSFARSIKQSVSWV--GTKSSDITLSREEYHLTPEGRNIRS 487 

NsGUS2         IQSSAYTSLQVGKKKNHKKSSFVHGLKETVSWV--GSKSSDVTLYREEYHLTPEGGNLQS 488 

NtomGUS2       IQSSAYTSLQVGEKKNHKKNAFVHGLKETVSWV--GSKSSDVTLYREEYHLTPEGGDLQS 488 

NtGUS2         IQSSAYTSLQVGEKKNHKKNAFVHGLKETVSWV--GSKSSDVTLYREEYHLTPEGGDLQS 488 

AtGUS2         VSNGINVVLNAE---SRKKKSLLDTLKRPFSWI--GSKASDGYLNREEYHLTPENGVLRS 490 

AtGUS1         VSNGVKVVLQAE---SMKRKSFLETIKSKVSWV--GNKASDGYLNREEYHLSPKDGDLRS 486 
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SbGUS          RLVKLNGELLHLDPSGVIPALNPVEKDNSKQLEVAPYSFMFVHLPGPTMFSACEKPAGK- 527 

SlGUS3B        QTVLLNGNELNVDHFGRIPLLEPVRVNPSHPISIAPLSIVFVHIPSIQV-PACSMYTREY 541 

NsGUS3B        QTVLLNEKELSVDHFGRIPHLEPLRVKSSEPLAIAPFSIVFVDIPIVQV-PACSMFTREY 544 

NtomGUS3B      QTLLLNGKELSVDHFGRIPHLEPIRVKSSEPLAIAPFSIVFVDIPTVQV-PACSMFKSEY 542 

AtGUS3         QTMLLNGNALQVNSMGDLPPIEPIHINSTEPITIAPYSIVFVHMRNVVV-PACA------ 536 

SlGUS3A        QTMLLNGKALIVDSSGNIPTFEPIYVNSTEAITVAPLSIVFVHIPYVLL-PACS------ 536 

NsGUS3A        QTMLLNGKPLTIDSFGNIPSLEPIFVNSTEPLTVAPFSIVFVHIPYVIL-PACS------ 546 

NtomGUS3A      QTMLLNGKPLTIDSFGNIPSLEPIFVNSTEPLTVAPFSILFVHIPYVIL-PACS------ 546 

SlGUS1A        DVLLLNGTPLKLTSSLDIPVMKPKLVDPTLPISVAPQSIVFATLRGFQA-PACA------ 532 

NsGUS1A        DVLLLNGTPLKLTASFDIPEMNPQLVDPTLPISVAPRSIVFATLRGFQA-PACA------ 517 

NtomGUS1A      DVLLLNGTPLKLTASFDIPEMNPQLVDPTLPISVAPRSIVFATLRGFQA-PACA------ 516 

SlGUS1B        RTMLLNGKPLQLAENGNIPSLSPVLVKLKSPISISPLSIKFIVFPYLSS-PVCT------ 539 

NsGUS1B        KTMLLNGLPLQLTEIGDIPSLSPVLVNIVSPISVAPLSIKFIVFPNYNS-PGCR------ 539 

NtomGUS1B      KIMLLNGLPLQLTEDGDIPSLSPVIVNIKSPISVAPLSIKFLVFPNYNS-PGCR------ 539 

SlGUS2         RTMLLNGKLLQLTETGDIPSLSPVFTNLNSPLSIEPLSIKFIVFPNFNS-PSCT------ 540 

NsGUS2         RTMLLNGKPLQLTETGDIPSLSPVLENIKSPISVAPLSIKFIVFPNFNS-PSCR------ 541 

NtomGUS2       RTMLLNGKPLQLTETGDIPSLTPVLKNIESPISVAPLSIKFIVFPNFNS-PSCR------ 541 

NtGUS2         RTMLLNGKPLQLTETGDIPSLTPVLKNIESPISVAPLSIKFIVFPNFNS-PSCR------ 541 

AtGUS2         KTMVLNGKSLKPTATGDIPSLEPVLRSVNSPLNVLPLSMSFIVLPNFDA-SACS------ 543 

AtGUS1         KIMLLNGKPLVPTATGDIPKLEPVRHGVKSPVYINPLSISFIVLPTFDA-PACS------ 539 
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SbGUS          - 527 

SlGUS3B        M 542 

NsGUS3B        M 545 

NtomGUS3B      M 543 

AtGUS3         - 536 

SlGUS3A        - 536 

NsGUS3A        - 546 

NtomGUS3A      - 546 

SlGUS1A        - 532 

NsGUS1A        - 517 

NtomGUS1A      - 516 

SlGUS1B        - 539 

NsGUS1B        - 539 

NtomGUS1B      - 539 

SlGUS2         - 540 

NsGUS2         - 541 

NtomGUS2       - 541 

NtGUS2         - 541 

AtGUS2         - 543 

AtGUS1         - 539 
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