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ABSTRACT 

 
 
Rett syndrome (RTT) is an X-linked form of mental retardation that occurs sporadically once 

every 10,000-15,000 female births. After a period of normal development (6-18 months), the 

patients show a rapid regression of acquired speech and motor skills and the development of 

several symptoms including mental retardation, seizures, intermittent hyperventilation and 

stereotypic hand movements. This condition is mainly stable and signs of progressive 

neurodegeneration are absent. Almost 80% of Rett cases are associated with mutations in the 

MECP2 (methyl CpG binding protein 2) gene. MeCP2 is a nuclear protein that binds 

methylated DNA and recruits histone deacetylases and co-repressor complexes to suppress 

transcription. It belongs to the MBD family of proteins involved in the epigenetic regulation 

of gene-expression. 

Recently, mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been 

found in patients characterized by a subset of Rett clinical phenotypes and generally suffering 

of infantile spasms and severe mental retardation. The product of CDKL5 is a serine/threonine 

kinase that belongs to the CMGC family; the exact functions exerted by this kinase and its 

regulatory mechanisms remain mainly unknown. 

CDKL5 is present in the nucleus and in the cytosol of neurons and its expression shows a 

continued increase during development; accordingly, CDKL5 is a critical regulator of 

neuronal morphogenesis, neurite growth and dendritic arborization. In the cytosol, CDKL5 

phosphorylates NGL-1 (Netrin-G1 Ligand 1), a regulator of early synapse formation and 

maturation. In the nucleus, CDKL5 binds and phosphorylates in vitro MeCP2.  Furthermore, 

in the nucleus CDKL5 colocalizes with nuclear speckles and is probably involved in the 

regulation of mRNA splicing. 

Recently our group has demonstrated that the expression levels and the subcellular 

distribution of CDKL5 are modified by neuronal activation. In particular, a glutamate bath 

induces in cultured hippocampal neurons the rapid exit of the kinase from the nucleus and its 

proteasome-dependent degradation. The significance of this response remains to be 

elucidated. Furthermore, BDNF induces in rat cortical cultures, a rapid phosphorylation of 

CDKL5.   

The main aim of this work was to study how neuronal depolarization or activation by BDNF 

affects Cdkl5 regulation, in terms of gene transcription, post translation modifications of its 

final protein product and the involved signaling pathway(s). We found that, both in primary 

murine neuronal cultures and cortical slices, depolarization affects the expression of the gene, 
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both at the transcriptional and post-transcriptional levels, together with its phosphorylation 

state. The response is affected by the maturation stage of the treated neurons and the involved 

signaling pathways have been characterized. We speculate that the observed regulation of 

Cdkl5 during neuronal depolarization could be related to a role of the kinase in neuronal 

activation.  Electrophysiological approaches will be required to confirm the involvement of 

CDKL5 in the regulation of neuronal activity; furthermore, the identification of novel 

interactors of Cdkl5 should help in understanding its physiological functions in the central 

nervous system and the pathological consequences of a malfunctioning CDKL5. 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INTRODUCTION 
 
 
 

Rett Syndrome 
 
Rett syndrome (RTT) is a severe progressive neurodevelopmental disorder mainly affecting 

female patients during early childhood. The prevalence is estimated to be approximately one 

in 10.000/15.000 females [1]. Pediatric patients with RTT develop normally up to 6–18 

months of age when the development unexpectedly slows down and the patients show general 

growth retardation, weight loss and muscle hypotonia. Deceleration of head growth, a sign 

linked to the neurological involvement, is very precocious and leads to microcephaly within 

the second year of life. Simultaneously,  stagnation and progressive loss of the cognitive skills 

that patients had previously gained (speech, purposeful hand use) occur. Patients start 

presenting autistic features (self-abusive behavior, irritability, loss of visual contact, loss of 

speech and social skills, indifference to the environment) and characteristic repetitive hand 

stereotypies (typically wringing/washing hand-movements, but also flapping and mouthing). 

Other signs, proving an involvement of the central nervous system (CNS), are the loss of 

motor coordination, the deterioration of autonomic functions,  breathing irregularities 

(hyperventilation followed by breath-holding and apnea) and sleep disorders [2,3]. Seizures 

are common in Rett syndrome (50-80% of cases [4]), often starting at 2-3 years of age and 

becoming most common with age through puberty.  The occurrence of seizures is described 

as a factor associated with the worst clinical phenotype. No correlation between seizure-onset 

and head growth has been established [4]. Seizures range from easily controlled to medically 

refractory epilepsy, but the most common presentation is given by partial complex and tonic-

clonic seizures [5]. Between 5 to 10 years of age it is possible to see an improvement in the 

autistic features and in the communication skills of the patients, although they continue to 

have major physical problems as osteopenia, scoliosis, and rigidity. Also emotional disorders 

like night crying, irritability, low mood and anxiety become less evident  [6,7,8]. Adolescent 

girls are characterized by a severe worsening of the motor abilities consisting of rigidity, 

curvature of the spine and spasticity associated with deformity. Some autonomic problems 

can also become more acute (cold blue feet, constipation, tachy-bradycardia).  During 

adolescence, cognition and social skills in general do not decline and a decrease of hand 

stereotypies may be observed [3,9]. Summarizing, the clinical outcome can be subdivided in 4 

stages (Table 1). 
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Tab.1 Typical RTT syndrome clinical outcome 
 
 

Period Clinical features 
STAGE 1  
 
“Developmental stagnation” 
6-18 months of age 

 
decreasing head growth  
reduced eye contact  
reduced interest in environment 
delayed motor development 
 

STAGE 2  
 
“Developmental regression”  
1-3 years of age 

 
loss of acquired hand and speech skills 
stereotypies and motor difficulties 
regression of social communication  
autistic-like symptoms  
breathing irregularities  
 

STAGE 3 
 
“Stationary state - Seizures” 
3-10 years of age 

 
onset of seizures 
motor difficulties 
improvement in behavior and communication 
 

STAGE 4 
 
“Motor worsening” 
Adolescence and adulthood 

 
reduced mobility 
stop walking 
scoliosis 
spasticity and deformity   
cognition and social interactions do not decline 
  

 
 
 
 
Historical overview of RTT and diagnostic criteria 
 
Andreas Rett in 1966 published the first description of a girl with the syndrome that later got 

his name [10]; worldwide recognition of RTT was obtained in 1983 when Hagberg and 

colleagues published a report describing 35 cases [11].  

In 1985, Dr. Hagberg developed consensus criteria exclusively for females [12], which were 

afterwards modified (1988) to include also males [13]. Subsequently, after the identification 
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of the gene involved in most cases of typical RTT [14], those criteria were further modified to 

achieve a major diagnostic selectivity (International Consensus Meeting, European Paediatric 

Neurology Society, Baden 2001). Consequently Hagberg proposed necessary and supportive 

diagnostic criteria [15,16] for typical RTT syndrome, which were further revised in 2010 by 

the RettSearch Consortium, an international group of clinicians (Tab.2) [17]. The criteria 

proposed by Hagberg and revised in 2010 underline the concept of “regression” (“loss” of 

purposeful hand skills,  “loss” of acquired speech, “regression followed by recovery or 

stabilization”). The importance of regression for the diagnosis of RTT was described since 

1986, when Goutieres and Aicardi wrote: “The absence of normal initial development, 

followed by secondary deterioration and of loss of previously acquired voluntary hand grasp 

is especially important, as it is one of the essential traits of Rett Syndrome” [18]. 

In 1985, Dr. Hanefeld described a girl with infantile spasms who also developed many 

characteristics of RTT syndrome. Soon after the “Hanefeld variant” of RTT (infantile spasms, 

early-onset seizures and RTT-like features) was reported, the discovery of a large number of 

other clinical variations led the International Medical Community to draw up an increasing 

list of “atypical” manifestations of RTT, leading to the identification of clinically independent 

entities. Consequently, the development  of consensus criteria for variant forms of RTT 

became important [19]. More recently, RettSearch Consortium completed the review of the 

main criteria for the diagnosis of atypical RTT [17] (Tab. 2), including those core features 

that are essential to clarify the diagnosis of RTT or its variants [20]. The presence of 

regression in atypical RTT syndrome was emphasized, although the timing of appearance is 

different in comparison with typical RTT. In typical RTT syndrome the regression is 

generally present at the age of 6 months, while in atypical RTT syndrome it could be delayed. 

Although the majority of patients carrying mutations in CDKL5 (cyclin-dependent kinase-like 

5) are female, there are rare occurrences in males suffering from infantile spasms, early-onset 

epilepsy and severe mental retardation [3].  

To summarize, several clinically defined variant forms of RTT have been recognized, but 

three distinct forms are the most frequent: a) the preserved speech variant, or “Zappella-RTT” 

(hand stereotypies, regression, autism), b) the congenital variant  (hypotonia and mental 

retardation from the very first months of life), c) the early-onset seizure variant (Hanefeld 

variant, which starts with generalized convulsions or spasms at 10 days – 1.5 months). 
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Tab.2 RTT Diagnostic Criteria (adapted from Neul et al., 2010 [17]) 

 
RTT Diagnostic Criteria 2010  

Main Criteria 
 
1.  Partial or complete loss of acquired purposeful hand skills 
2.  Partial or complete loss of acquired spoken language 
3.  Gait abnormalities: impaired (dyspraxic) or absence of ability. 
4.  Stereotypic hand movements such as hand wringing/squeezing, clapping/tapping,  

mouthing and washing/rubbing automatisms 
 
Required for typical or classic RTT 
 
1.  A period of regression followed by recovery or stabilization 
2.  All main criteria and all exclusion criteria 
3.  Supportive criteria are not required, although often present in typical RTT 
 
Required for atypical or variant RTT 
 
1.  A period of regression followed by recovery or stabilization 
2.  At least 2 out of the 4 main criteria 
3.  5 out of 11 supportive criteria 
 
Exclusion Criteria for typical RTT 
 
1.  Brain injury secondary to trauma (peri- or postnatally), neurometabolic disease, or severe 

infection that causes neurological problems 
2.  Grossly abnormal psychomotor development in first 6 months of life 
 
Supportive Criteria for atypical RTT 
 
1.  Breathing disturbances when awake 
2.  Bruxism when awake 
3.  Impaired sleep pattern 
4.  Abnormal muscle tone 
5.  Peripheral vasomotor disturbances 
6.  Scoliosis/kyphosis 
7.  Growth retardation 
8.  Small cold hands and feet 
9.  Inappropriate laughing/screaming spells 
10.  Diminished response to pain 
11.  Intense eye communication - “eye pointing” 
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Typical RTT syndrome is related to MECP2-gene mutations 
 
Given that the majority of patients with RTT are females, it had been speculated for many 

years that genetic defects in the X chromosome might be involved and that an X-linked 

dominant mode of inheritance could explain the male lethality in this condition. RTT 

syndrome was initially described as a “postnatal phenotypic manifestation of a prenatal 

developmental alteration” [21,22] and linkage studies were not possible, since more than 99% 

of RTT cases are sporadic.  However, in 1998 a family with a maternal inheritance was 

identified, permitting exclusion mapping studies and leading to the identification of the Xq28 

locus (1-5) as a candidate region for the involved gene. Using a systematic gene screening 

approach, Amir and colleagues identified the first mutations in the MECP2-gene (methyl CpG 

binding protein 2) in 5 sporadic cases. It is now clear that not all RTT patients carry mutations 

in MECP2; indeed, by considering typical RTT patients, MECP2 mutations can be identified 

in almost 90-95% of cases. The number of MECP2-negative patients increase to up to 30-

50% when considering patients with atypical presentations of RTT.  

 
 
 
MeCP2 structure and functions 
 
The MECP2 gene is located at q28 of the human X chromosome and four exons code for the 

two different isoforms of the protein derived from alternative splicing of exons 1 and 2.  

Furthermore, four different transcripts, differentially expressed in nervous and non-nervous 

tissues, can be alternatively generated because of a large 3’-untranslated region containing 

multiple polyadenylation sites.  

The MECP2 gene codes for a nuclear protein, MeCP2, that constitutes the founding member 

of the Methyl-CpG binding protein family. Indeed, MeCP2 was isolated in 1992 as a protein 

capable of binding selectively to methylated DNA containing just one single symmetrically 

methylated CpG [23]. MeCP2 is composed of four functional domains (Fig.1): the methyl-

binding domain (MBD), the transcriptional repression domain (TRD), a nuclear localization 

signal (NLS) and the WW domain binding region [123]. The MBD, located in the N-

terminus, is sufficient to direct specific binding to methylated DNA whereas the TRD, located 

in the central core of the protein, recruits transcriptional corepressors such as c-Ski, N-CoR 

and mSin3A, which interact with class I histone deacetylases, therefore regulating chromatin 

conformation and gene-transcription. The WW domain (also known as WWP domain) of the 

MeCP2 interactors is a short domain with two signature tryptophan residues, that provides a 

platform for the assembly of multiprotein networks involved in molecular processes, such as 
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transcription and RNA processing [24]. 

 

 

 
 
Figure 1. A schematic representation of MeCP2 illustrating the positions of the methyl-CpG-binding domain 

(MBD), the nuclear localization signal (NLS) and the transcriptional repression domain (TRD). Phosphorylation 

sites relative to serine 80, serine 399, serine 421 and serine 424 are also reported (adapted from  [38]) 
 
 
 
The expression of MeCP2 is ubiquitous in peripheral tissues and in CNS, with highest 

expression levels in neurons. During embryogenesis, the expression levels of MeCP2 in 

neurons increase [25] and correlate with the maturation of the central nervous system; indeed, 

in mouse, Mecp2 appears first in ontological older tissues (spinal cord and brainstem) and 

then in cortex, where the expression in deeper cortical layers precedes that in the superficial 

layers [26]. The modulation of MeCP2 expression is complete only when cells reach maturity 

and, in humans (but not in mice), expression increases also during the post-natal period (until 

the age of 10 years).  

The functions of MeCP2 in the nucleus are mainly directed to the regulation of gene 

expression in the context of epigenetic mechanisms linked to the presence of methylated 

DNA sequences. 

Considering the well-known role of DNA methylation in transcriptional silencing, several 

laboratories have used candidate approaches and genome-wide expression profile studies to 

identify direct target genes of MeCP2. These studies have contributed to the notion that 

MeCP2 might function as transcriptional repressor of brain derived neurotrophic factor 

(BDNF) gene [27-29]. However, this first suggestion has not always been confirmed by 

following reports and so far no bona fide MeCP2-target genes are univocally recognized. Also 

the first classification of MeCP2 as a transcriptional repressor is reductive considering a 

recent work showing the ability of MeCP2 to activate the transcription of some genes through 

the association with CREB1 [30,31].  Furthermore, it has been demonstrated that MeCP2 can 

function as an architectural chromatin protein, functioning directly without corepressor or 
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enzymatic activities [39]. Indeed, depending on the molar ratio of MeCP2 to nucleosomes, 

MeCP2 assembles novel secondary and tertiary chromatin structures. Importantly, recent data 

finely measuring the abundance of MeCP2 in neurons have led to hypothesize that in brain 

MeCP2 could be considered a global regulator of chromatin architecture, coating all 

chromosomes by tracking methylated DNA. In accordance with a structural role of MeCP2, 

its deficiency leads to global changes in chromatin structure, such as an increase in histone 

acetylation and H1 levels. Indeed, MeCP2 can substitute histone H1 in methylated chromatin 

[32,33].  

Besides a role of MeCP2 in regulating gene expression and chromatin structure, a role in 

regulating protein synthesis has also been hypothesized. Indeed, a recent publication has also 

shown that both Mecp2-null hemizygous males and heterozygous females are characterized 

by a reduction in the AKT/mTOR signaling (a crucial pathway involved in controlling 

neuronal cell soma, dendrite arborization, synaptic function, structure and plasticity) and a 

significant impairment in protein synthesis [39]. It is worthwhile to recall that aberrant 

neuronal protein synthesis is considered a probable cause of the clinical features of autism 

spectrum disorders; thus these data might suggest a novel, direct or indirect function of 

MeCP2 that could be relevant for understanding the pathogenesis of RTT. 

A second mechanism by which MeCP2 could be implicated in the regulation of protein 

synthesis is represented by its role in mRNA-splicing processes. Indeed, in the mammalian 

brain,  MeCP2 directly interacts with the splicing factor Prpf3 (pre-mRNA processing factor 

3), forming a novel brain-derived MeCP2 complex proposed to regulate mRNA splicing. This 

function of MeCP2 could be related with RTT pathophysiology, since many MECP2 RTT 

truncations disrupt the MeCP2-Prpf3 complex, probably leading to the aberrant mRNA 

splicing evident in a mouse model for RTT [40]. 

A new approach for the comprehension of MeCP2 functions is given by the study of its site-

specific phosphorylation. Indeed, it has been demonstrated that MeCP2 functions in the 

nucleus are regulated by specific events of phosphorylation that affect its activity in response 

to extracellular cues. In particular, in rodent brain, serine 80 (S80) and S399 are the two major 

phosphorylation sites of MeCP2 under resting conditions, whereas S424 and S421 show 

specific depolarization-dependent phosphorylation [37, 38]. It has been suggested that S80 

phosphorylation increases the affinity of MeCP2 for euchromatin whereas the modification of 

S421 was found in vitro to lead to a decrease in the binding of MeCP2 to specific methylated 

promoters. We still need to reveal the consequences of these post-translational modifications 

for gene expression. Furthermore, very recent ChIP-seq analyses of the phosho-S421 isoform 

of MeCP2 suggest that in vivo this form is globally bound to methylated DNA, therefore 
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questioning once again the previous results. Furthermore, the kinases and the phosphatases 

involved in the post-translational modifications of MeCP2 remain mainly uncharacterized 

even though the involvement of CaMKIV in the phosphorylation of S421-MeCP2 and of 

HIPK2 in S80 phopshorylation have been suggested. CDKL5, the kinase mutated in some 

patients with a RTT variant (see below), is also capable of phosphorylating MeCP2 in vitro 

on yet non-identified sites [41]. This observation underlines the importance of MeCP2-

phosphorylation in the clinical presentation of RTT [243].  Accordingly, some symptoms 

observed in RTT patients, such as the weight gain and the decreased locomotor activity, are 

also present in a knock-in mouse model carrying a substitution of S80 with the non-

phosphorylatable alanine (S80A), whereas a S421/424A model is characterized by 

hyperactivity [37]. 

 
 
 
MECP2 mutations 
 
So far, hundreds of different mutations in MECP2 have been described, including missense, 

nonsense, frameshift mutations, wide deletions of whole exons and complex rearrangements. 

Eight missense and nonsense mutations (in the MBD and in the TRD) account for 

approximately 70% of all mutations. These so called “hot spot mutations” are C to T 

transition mutations, probably caused by unrepaired deamination of methylated cytosine bases 

in the paternal germline.  Small C-terminal deletions account for approximately 10% of 

mutations: indeed, a section with repetitive sequence elements between nucleotides 1050 and 

1200, encoding the C-terminus of MeCP2, is a hot spot for this kind of deletions and for 

larger rearrangements present in around the 16% of the remaining patients. Alterations in the 

expression levels of MeCP2 could also be related to neurologic disfunctions, like the MECP2 

duplication syndrome (hypotonia, mental retardation, poor speech development, progressive 

spasticity, seizures), 100% penetrant in males [124,125]. Mouse models have confirmed that 

RTT-like features can be caused both by loss of expression, underexpression and 

overexpression of Mecp2 [42,43]; this is important considering that the MeCP2 levels are 

sensitive also to the presence of some point mutations [44].    

The establishment of a link between genotype and phenotype in RTT patients is not easy 

because of the X-chromosome inactivation that renders females mosaics for the mutation  

[45].  However, several genotype-phenotype correlation studies have been reported and some 

data are starting to emerge. Some clinical differences between patients with truncating versus 

missense mutations have been described [46]. Generally, point mutations involving the MBD 
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or the NLS, affecting the possibility of MeCP2 to bind methylated DNA, and truncating 

mutations in the N-terminus of the protein lead to a more severe phonotype [79]. On the 

contrary, point mutations affecting the TRD (e.g. R306C, associated only with language 

disabilities [77]) or late-truncating mutations, where the functions of the protein are partially 

conserved,  are usually associated with a less severe phenotype [78]. In a large cohort of 

typical RTT syndrome, patients with the early truncating mutation R168X  showed very poor 

abilities to walk, to use the hands and to speak in comparison with the patients carrying the 

R294X truncation [77].  In addition, different mutations in the MBD, probably affecting DNA 

binding to different degrees, are related to more severe (e.g. T158M, a mutation found in 

particularly ataxic and rigid patients) or more favourable (e.g. R133C [48,76])  prognosis.  

 
 
 
Atypical RTT syndrome is frequently caused by mutation in genes other 
than MECP2 
 
Mutations in loci other than MECP2 have been found in some atypical RTT patients. In 

particular, the genes identified so far are related to two different and well characterized RTT 

variants:  the early-onset seizure variant and the congenital form. The first gene to be 

identified was CDKL5, located on the X-chromosome and coding for the serine-threonine 

kinase cyclin-dependent kinase-like 5. Mutations in CDKL5 were for the first time described 

in 2003 [47] in two unrelated epileptic patients, at the age of respectively two and three 

months, with identical phenotypes: early-onset severe infantile spasms, global developmental 

arrest, hypsarrhythmia and severe mental retardation. In 2004, Weaving et al. demonstrated 

for the first time the presence of CDKL5-mutations in a girl with a RTT-overlapping 

phenotype, in her sister with autistic disorder and in her brother with profound intellectual 

disability and seizures who died at the age 16 years. MECP2 mutations were absent in these  

patients and three candidate regions were identified by microsatellite mapping (Xp22.31-pter; 

Xp22.12-p22.11 and Xq21.33); the authors sequenced two genes, the ARX and CDKL5 genes, 

located within the Xp22 region, leading to the establishment  of the involvement of CDKL5 in 

RTT [48]. In 2005, Scala et al. [80], by analyzing two MECP2-negative patients affected by 

the Hanefeld variant of RTT and by considering the clinical overlap between the Hanefeld 

variant and West syndrome,  studied the same two genes CDKL5 and ARX; CDKL5 

frameshift deletions were found in both patients, confirming the involvement of this gene in 

RTT. It is important to mention that CDKL5 mutations have never been found in patients with 

typical Rett syndrome, thus linking this gene to a very specific clinical picture.  
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The second gene involved in atypical RTT syndrome was identified by Ariani et al. [49] in 

2008; the authors reported the presence of FOXG1-gene truncation mutations in two patients 

affected by the congenital variant of Rett syndrome. The FOXG1 gene is located on 

chromosome 14 and codes for a brain-specific transcription repressor, forkhead box protein 

G1. 

 
 
 
 
CDKL5 structure  
 
The human CDKL5 gene (Xp22 [50,51]) is composed of 24 exons of which the first three 

(exons 1, 1a and 1b) are untranslated [52]. Due to alternative splicing of exons 19-21 and 

exon 16b, four different hCDKL5 isoforms might exist, differing within the C-terminal 

region. The first isoform to be identified was the 1030 a.a. protein (CDKL5-115; 115 kDa) 

that is specific for primates and is mainly expressed in testis. A second isoform is a 960 a.a. 

protein (CDKL5-107; 107 kDa), conserved in human and mouse, that seems to be the 

predominant one in brain. The presence of exon 16b would generate the CDKL5-115+ex.16b 

and/or CDKL5-107+ex.16b (Fig.2). At the functional level,  the only difference that has been 

observed between these isoforms  is their stability:  in fact, CDKL5-107 appears to be more 

stable than the longer human CDKL5-115 isoform [53]. Considering the first non-translated 

exons (1, 1a and 1b), other two CDKL5-mRNA splice variants with distinct 5‘UTRs have 

been found: isoform I, containing exon 1, is present in a wide range of tissues, whereas 

isoform II, containing exons 1a and 1b, is present only in testis and fetal brain [51,52,53]. 
 
A) 
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B) 
 

 
 
 
 
C) 
 

 
 
 
Fig.2 The genomic structure of CDKL5 and its splice variants. 

A) The human CDKL5 gene can be subdivided in 6 regions: I) the non translated exons 1, 1a and 1b (gray), II) 

the exons encoding the catalytic domain (blue), III) the exons encoding the common C-terminal region 

(white), IV) exons 19-21 specific for CDKL5-115 (red), V) exon  16b (green), VI) intron 18 retained in 

CDKL5-107 (hatched).  

B) Human CDKL5 protein isoforms differing in the C-terminal region (the color code corresponds to that of 

panel A).   

C) The murine CDKL5 isoforms. a) mCDKL5-105 harbors a distinct C-terminal region encoded by a mouse-

specific exon 19 (orange); b) mCDKL5-107 isoform, with the retention of  intron 18. Adapted from [52] 

 
 
 
In expression studies in human and mouse tissues, the CDKL5/Cdkl5 mRNA was detected in 

a wide range of peripheral districts such as testis, lung, spleen, placenta, uterus and prostate, 

but highest levels were found in the brain [50,52,53].  

Cdkl5-mRNA levels in adult mouse brain are particularly high in the forebrain. Interestingly, 

higher expression levels are detected in the most superficial cortical layers, involved in the 

intercortical connectivity. In particular, there are some cortical areas in which the mRNA-

expression is more evident (the frontal cortex,  the motor cortex and the cingulate gyrus), 

suggesting a region specific role of CDKL5 and the putative involvement of the kinase in 

mental diseases related to the physiology of these areas [52].  High expression levels detected 
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in the entorhinal cortex and in the hippocampus might suggest an involvement of CDKL5 in 

high cognitive functions like learning, memory, and the development of individuality. 

Between different neuronal sub-populations, there are also differences in the expression of 

Cdkl5: the glutamatergic and the gabaergic neurons (the main populations in the striatum) are 

the two cellular types expressing highest CDKL5 levels in brain; in particular, Cdkl5 is 

expressed in both glutamatergic and GABAergic primary mouse cultured neurons, but is 

certainly better detectable in the latter cell type [52,54]. Specific future experiments are 

required to explain the role and the regulatory mechanisms of Cdkl5 expression in different 

brain regions, including the thalamic geniculate nuclei and the cerebellum where the 

transcripts are also detected even if at later stages.  

Studies of CDKL5-protein expression applied to adult rat extracts mainly confirmed the 

mRNA-expression studies [56]. At the cellular level, the kinase is highly expressed in 

virtually all NeuN-positive neurons while very low levels are present in the glia [56].  In 

mouse brain, the kinase is widely distributed in hippocampus, cortex, thalamus, and striatum, 

mainly in neurons [52,54]. 

The expression profile of Cdkl5 is finely regulated during development: indeed, the kinase is 

only minimally detectable at embryonic stages, it is induced during late pre-natal and early 

post-natal stages and its levels increase till reaching a plateau at P14 [54].  

The CDKL5 gene codes for a serine-threonine kinase, named CDKL5 (Cyclin-Dependent 

Kinase–Like 5), belonging to the CMGC family of kinases which includes the family of 

cyclin-dependent kinases (CDK), the mitogen-activated protein kinases (MAP kinases or 

extracellular-signal-regulated kinases (ERKs)), the glycogen synthase kinases  (GSK) and 

the CDK-like kinases. 

The catalytic domain of CDKL5 is homologous to that of the other CDKL-family members, 

while the presence of a long C-terminus of more than 600 amino acids is unique for CDKL5.   

The catalytic domain of CDKL5 (Fig. 3), which is located in the N-terminal portion of the 

protein (13-297 a.a.), presents three kinase signatures homologous to other serine–threonine 

kinases: 

 

1) the ATP-binding motif, located between amino acids 13-43 a.a., with a glycine-rich 

stretch close to a lysine residue (K42) involved in ATP binding [60]; 

 

2) the serine/threonine protein kinase active site, between amino acids 127-144, with a 

conserved aspartic acid (D135) important for the catalytic activity  [60];  
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3) the “activation-loop” with a DFG domain and a TEY motif 

(DFGFARNLSEGNNANYTEY; 153-171 a.a.). It is important to mention that the 

universally conserved DFG motif forms polar contacts with other regions of the kinase, 

stabilizing its active conformation either directly or through the coordination of 

magnesium atoms; the TEY motif, mainly studied in the activation loop of ERK kinases 

is dually phosphorylated during activation by the MEK-MAPKK (MAPK/ERK kinase - 
MAPK kinase) [62]. It has been shown that CDKL5, as some other members of the 

CMGC group, is capable of autophosphorylating its TEY motif [55,61].  
 
The long C-terminal tail of CDKL5 (from a.a. 298) that does not share homology with other 

human proteins acts as a negative regulator of the catalytic domain and is also involved in the 

regulation of the stability of CDKL5 [55]. Three putative signals, regulating the intra-cellular 

localization of CDKL5, are present in the tail: two nuclear localization signals (NLS) and one 

nuclear export signal (NES), as shown in Fig.3. Lastly, three PxxP sites in the C-terminal tail 

(within 525 a.a. and 781 a.a.) constitute a putative binding site for Src homology 3-domain 

proteins [55].  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Schematic representation of CDKL5-115 with the functional domains and signatures indicated. In blue 

the catalytic domain with the ATP-binding site and the TEY motif.  In white and red the COOH-terminal tail. 

NLS: nuclear localization signal; NES: nuclear export signal (adapted from [52]).   
 
 
 
CDKL5 mutations  
 
Almost 90 different CDKL5 patients have been described so far, harboring a wide range of 

clinical conditions. Data from genetic screenings for CDKL5 in cohorts of patients with 

atypical RTT syndrome show a wide range of pathogenic mutations including missense and 

nonsense mutations, deletions, insertions, aberrant splicing and frameshifts (Fig.4).  

Among almost 75 identified mutations so far, only 5 can be considered as “hot spots” 
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(indicated with an asterisk in Fig.4) [52].  

Missense mutations localize mainly in the catalytic domain, confirming the relevance of the 

kinase activity of CDKL5 for proper neuronal functions, and lead generally to loss of 

funtions. Two missense mutations in the catalytic domain (C152F and R175S) have been 

suggested to interfere with, respectively, phosphotransfer and either kinase activation or 

substrate specificity [61]. On the contrary, truncating mutations occur anywhere in the gene. 

The relevance of the rather uncharacterized C-terminal part of CDKL5 is suggested by the 

fact that many pathogenic alterations involve this region. The C-terminal tail  is, as already 

mentioned, probably involved in regulating the catalytic activity and the subcellular 

localization [52]. 

Regarding the subcellular localization of CDKL5, the protein is present in both the cytoplasm 

and nucleus of expressing cells. Importantly mis-localization of the kinase is evident in both 

the pathogenic derivatives, L879X and R781X, causing the truncation of the very last portion 

of the C-terminus and confining CDKL5 to the cell nucleus. 

Some studies have reported pathogenic duplications of X chromosome regions including 

CDKL5 [52,70] suggesting that also CDKL5 levels must be finely tuned within the brain. 

This is in accordance with the fact that the expression of the kinase is finely regulated in 

developing and mature neurons. 

So far, no clear genotype-phenotype correlation of CDKL5 mutations have been established. 

Some reports, not always confirmed, suggested that mutations in the C-terminal tail originate 

milder clinical pictures than those caused by mutations in the catalytic domain [52]. The 

phenotypic variability of the patients is probably due to the different penetrance of mutations 

[71] and to skewed X-Chromosome inactivation. Weaving et al. [48] reported two genetically 

identical CDKL5-mutated twin girls with a significant discordant phenotype (the first proband 

showed a phenotype overlapping RTT, while her sister showed autistic disorder and mild-to-

moderate intellectual disability); in this particular case, the reason of these different 

phenotypes could be attributed primarily to environmental and/or epigenetic factors. 
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Fig.4 All mutations in CDKL5 reported to date. Mutations shown above the CDKL5 gene are deletion and 

frame shift mutations as well as splice variants indicated with cDNA nomenclature. Missense and nonsense 

mutations (fuchsia and black, resp.) are represented with amino acid nomenclature below the CDKL5 gene. ∗: 

recurrent mutations; �: uncertain pathogenicity. Adapted from [52]. 
 

 

 

CDKL5 functions 
 
Our present knowledge of CDKL5 functions is still rather limited, but first evidences suggest 

the involvement of the kinase in processes related to the regulation of gene expression  and 

neuronal morphogenesis. CDKL5 is present in neurons both in the nucleus and in the cytosol, 

where it interacts with specific proteins. The study of these interactions provide a platform to 

understand the functions of CDKL5, the signaling pathways in which it could be involved 

and, finally, the relationship between CDKL5 mutations and the pathogenesis of Rett 

syndrome. In the nuclear compartment of primary hippocampal neurons (E18, DIV10-12), 

endogenous CDKL5 shows a diffuse staining with brilliant nuclear dots that do not overlap 

with heterochromatic DAPI-positive DNA [63], while the cytosolic CDKL5-immunostaining 

is finely dotted in both the soma and along the dendrites. Similarly, in adult (P21) mouse 

brain the punctate pattern of CDKL5-immunoreactivity is evident in cell bodies, along 

dendrites and in synaptic spines [64]. In the nucleus, clinical and biochemical data suggest 

that CDKL5 belongs to the same molecular pathway as MeCP2, since CDKL5 binds, both in 

vitro and in vivo, and phosphorylates MeCP2 in vitro [59].  Two other nuclear CDKL5-

interactors have also been found, both involved in the regulation of gene expression.  The first 

was DNMT1 (DNA (cytosine-5)-methyltransferase 1), an enzyme that recognizes and 
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methylates hemimethylated CpG after DNA replication. Indeed, it was found that a truncation 

derivative of CDKL5, containing only the catalytic domain, binds and phosphorylates in vitro 

DNMT1 in the N-terminal region in the presence of DNA [65]; further studies are required to 

confirm the interaction in vivo and with a full length kinase. The second nuclear CDKL5-

interacting protein is the SR-family splicing factor, SC35, which co-localizes with CDKL5 in 

the neuronal nuclear speckles both in vitro and in vivo and also co-immunoprecipitates with 

the kinase [66]. Regarding the putative functions of CDKL5 in the nucleus, we can conclude 

that this kinase could represent an important regulator of gene expression via different 

molecular interactions, but so far no bona fide CDKL5-target genes are univocally 

recognized. 

In the cytoplasmic compartment, CDKL5 was recently found to participate in the regulation 

of the excitatory dendritic spine development and dendritic morphogenesis.  The first 

regulatory mechanism involves the molecular interaction between CDKL5 and NGL-1 

(Netrin-G1 Ligand 1), a transmembrane protein localized in the Post Synaptic Density 

compartment (PSD) [64]. NGL-1 specifically interacts with Netrin-G1, a lipid-anchored 

protein related to the netrin family of axon guidance molecules, promoting the early synapse 

formation and subsequent maturation [67].  Among PSD-enriched proteins, the three 

components of the NGL-family (NGL-1, NGL-2 and NGL-3) were identified as CDKL5-

interacting partners. CDKL5, which co-localizes both in vitro and in vivo with PSD95 and 

with excitatory synapse markers (Shank, NR2 and GLUT1), binds and phosphorylates NGL-1 

in vitro and this phosphorylation strengthens the interaction between NGL-1 and PSD95  

[64]. On the other hand, CDKL5 participates in neuronal morphogenesis regulation through 

the interaction with Rac1 (Ras-related C3 botulinum toxin substrate 1), a critical regulator of 

actin remodeling. Accordingly, this small signaling G protein, which is a member of the Rho 

family, appears to regulate cell growth and cytoskeletal reorganization [68]. BDNF 

stimulation enhances the interaction between CDKL5 and Rac1, leading to the effects of 

CDKL5 on neuronal morphogenesis (see below). Furthermore,  CDKL5 was found to co-

localize with F-actin in the peripheral domain of growth cones in cultured neurons at DIV2, 

suggesting that CDKL5 might be involved in regulating the actin cytoskeleton also in this 

compartment [56]. 

Chen et al. [56] recently studied the effects of CDKL5 silencing in rat hippocampal primary 

cultures and reported a decrease in total length of both dendrites and axons (DIV3 neurons 

silenced at DIV0), and a marked reduction in dendritic arborization (DIV8 neurons silenced at 

DIV5). The same data were confirmed in vivo (P4 rats)  when CDKL5 was silenced in 

neuronal progenitors through in utero electroporation at E15.  In these experiments, also the 



22 

migration of neurons in the cortex showed defects. Migration was not blocked but delayed, 

since neurons devoid of CDKL5 were able to migrate into cortical layers during the first post-

natal days, extending apical dendrites toward the pial surface by P14. The impairment in 

dendritic arborization was not a secondary consequence of the migratory defect because 

similar deficits in arborization were seen using a less effective shRNA construct that had little 

effect on neuronal migration.  

In a recent paper, Ricciardi et al. demonstrated the importance of CDKL5 in the development 

of dendritic spines. Knocking down CDKL5 in mouse primary neuronal cultures increases the 

dendritic protrusion density and alters their morphology: the protrusions are thinner and show 

a filopodia-like configuration. These morphological alterations are associated with a reduction 

in the number of excitatory synapses and synaptophysin puncta. The electrical counterpart is 

represented by a significant decrease of mEPSCs, suggesting an involvement of CDKL5 in 

the regulation of neuronal activity. Confocal images of coronal slices of P11 mouse brain 

after CDKL5-silencing by in-utero electroporation at E13.5 confirms the data in vitro: cortical 

pyramidal neurons showed an increase in the protrusion density along with abnormal 

morphology. In the same neurons also the density of VGLUT-1 puncta, identifying excitatory 

pre-synaptic buttons, was reduced.  

Altogether these data suggest that, since the regulation of dendritic and spine morphogenesis 

is one of the essential target points of synaptic plasticity,  CDKL5, showing a crucial role in 

these processes, could be considered as an interesting new plasticity-related molecule.  

Rett syndrome is characterized by a number of synaptic deficits [69] and the impairment in 

synaptic plasticity could explain, although partially, some clinical features such as motor 

disabilities, the speech absence or the severe cognitive dysfunctions. Interestingly the 

expression of CDKL5 increases during development, correlating with neuronal maturation 

and the formation of new complex synaptic networks in cortical and sub-cortical areas. Other 

molecular processes linked to neuronal activation during synaptic plasticity (transcription and 

post-transcriptional events) could also be regulated by CDKL5 via specific interactions with 

transcriptional regulators and epigenetic factors (MeCP2, DNMT1), or with splicing factors 

(SC35).  

Lastly, to complete this hypothetic overlap between CDKL5-functions and plasticity-related 

processes, we can mention the response of the kinase to specific neuronal stimuli.  In a recent 

publication [63], the sensitivity of CDKL5 to glutamate, the most abundant excitatory 

neurotransmitter, was tested in hippocampal cultured neurons in terms of expression and sub-

cellular localization of the kinase. A rapid exit of CDKL5 from the nucleus, followed by a 

massive proteasome-dependent degradation was observed after glutamate treatment. The 
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meaning of this response remains to be elucidated, but probably the expression levels and the 

sub-cellular localization of the kinase could be related with different roles played by different 

molecular interactions. Interestingly, the kinase-dead K42R-CDKL5 is much less abundant in 

the nucleus than in the cytosol [61], suggesting a link between the kinase activity and its sub-

cellular localization. Other mechanisms, related to unknown signals during development, can 

regulate this nucleocytoplasmic distribution since the abundance of CDKL5 in the nucleus 

increases during development and reaches, in several brain districts of adult mice, almost 50% 

of total CDKL5 levels [54,63].  In the future it would be very interesting to understand better 

the response of CDKL5 to different stimuli and the signaling pathways involved in regulating 

its expression and sub-cellular localization in different developmental stages.  
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RESULTS 

 
 
 
 
CDKL5 expression during early neuronal activation 
 
As already mentioned, recent biochemical data suggest that CDKL5 is involved in proper 

neuronal functions and in the regulation of dendritic and spine morphogenesis [56,64], but 

very little is known about the molecular pathways regulating its activities in developing and 

mature neurons. It is already known that CDKL5 in neurons is sensitive to specific neuronal 

stimuli, such as glutamate, that regulates the sub-cellular localization and degradation of the 

kinase [63]. Therefore, we decided to investigate the response of CDKL5, in terms of 

transcription, translation, post-translational modifications, and sub-cellular localization to 

neuronal depolarization induced by KCl treatment. We started evaluating the endogenous 

Cdkl5-expression levels in hippocampal primary cultures prepared from E18 mouse embryos 

before and after KCl treatment. Neurons were cultured for 3, 7 and 12 days in vitro (DIV), 

and were exposed for 5 min (minutes) to 50 mM KCl or, as control, to KRH containing 5 mM 

KCl. Neurons were directly collected in Laemmli buffer and Cdkl5-expression was assayed 

by Western blotting (8% SDS-PAGE) using the signal of neuron-specific Class III β-tubulin 

(Tuj1) as internal standard. Moreover, the efficacy of the KCl treatment in activating neurons 

was assessed by the increase in Erk-1/2 phosphorylation using a phospho-specific antibody. 

Interestingly, we found that in KCl treated neurons, Cdkl5-expression was increased 

significantly up to 60% (Fig.5A, B), while other proteins that are known to play essential 

roles in the early phase of neuronal activation (c-Fos, Erk-1 and Erk-2) did not change their 

expression levels during the first 5 min of stimulation (Fig.5A, C, D). In accordance with 

literature, we found an increase in c-fos expression only after 40 min of KCl treatment (data 

not shown).  

In agreement with a recently published article [54], we found that endogenous Cdkl5 levels 

gradually increase with maturation in vitro from DIV3 to DIV12.  Furthermore, KCl 

treatment caused an increase in Cdkl5 protein levels also when DIV3, 7 and 12 hippocampal 

neurons were treated for 5 min. Moreover, similar results were obtained when cortical 

primary neuronal cultures obtained from E18 mouse embryos were treated with KCl (data not 

shown) altogether indicating that the KCl induced increase in Cdkl5 levels does not depend 

on maturation stage and neuronal type. To investigate the mechanisms involved in the KCl-

dependent activation of the Cdkl5-gene, we analyzed the synthesis of the kinase at the 
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transcriptional and translational levels after 5 min stimulation with KCl. For the 

transcriptional response, total RNA was extracted from treated and non-treated hippocampal 

primary cultures (DIV7) and Cdkl5-mRNA levels, along with those of c-fos-mRNA, were 

analyzed by quantitative RT-PCR (qPCR). Both mRNA levels, Cdkl5 and c-fos, were 

significantly increased during early depolarization (+34% and +59% respectively, Fig.5E).  

Since an increase in mRNA content reflects a change in gene transcription and/or a 

modification of mRNA stability, we used actinomycin-D to block RNA pol II activity 

allowing us to analyze whether the increase in Cdkl5 mRNA levels might be due to a KCl 

induced alteration of the mRNA half life. Transcription was inhibited by treating neurons with 

20 µg/ml of actinomycin-D for 30 min whereafter depolarization was obtained by a 5 min 

KCl treatment. No increase in Cdkl5-mRNA and c-fos-mRNA levels were observed, 

suggesting that the KCl-dependent activation of Cdkl5 is mediated by transcriptional 

activation (data not shown).  

A prolonged stability of the kinase might also participate in the observed up-regulation; 

therefore, cultured neurons were treated with cycloheximide (an inhibitor of translation 

elongation) for 30 min before applying KCl; no increase in the level of Cdkl5 expression was 

found, suggesting that protein synthesis plays a dominant role in the observed response (Fig. 

5F).  
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Fig. 5 Cdkl5 expression is induced during early neuronal depolarization in hippocampal neurons in vitro. 

Hippocampal neurons were isolated from E18 mouse embryos and treated with 50 mM KCl or, as control, KRH 

for 5 min at DIV7. All values are expressed as the average of at least 3 different experiments ± standard error of 

the mean (SEM). The significance was evaluated by Student’s t test and statistical significance was established 

as p < 0.05 (*) or p < 0.01 (**). 

A) Western blot analysis of Cdkl5 and c-fos expression in E18-DIV7 hippocampal neurons treated with KCl as 

indicated. Beta-tubulin III (TUJ1) was used as internal standard.  B) Statistical analysis (t-test, N>3) after 

densitometric quantification (QuantityOne Biorad software). C, D) Western blot analysis of Erk-1/2 expression 

in treated neurons and t-test statistical analysis. E) Cdkl5 and c-fos mRNA levels determined by RT-qPCR 

(N=3). Total RNA was collected from E18-DIV7 hippocampal neurons treated for 5 min with 50 mM KCl and 

subjected to RT-qPCR analysis.  c-fos mRNA levels were used as indicator of neuronal activation, and the 
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expression of Gapdh as internal standard. The statistical analysis was performed by using the “ΔΔCt method” to 

compare relative expression. F) Graphic illustration showing Cdkl5 protein levels in E18-DIV7 hippocampal 

neurons treated for 30 min with 40 µM cycloheximide (CHX) and then exposed to 50 mM KCl for 5 min. No 

increase in the level of Cdkl5 protein levels was found. Statistical analysis (t test, N=3) after densitometric 

analysis of WB (QuantityOne Biorad software).  
 

To validate these results with a different model of neuronal activation, KCl was applied to 

cortical slices. Frontal cortical slices of adult mice (P35-P38) were prepared and maintained 

alive in a solution saturated with 95% oxygen and 5% carbonic anhydride. Depolarization was 

obtained with a perfusion buffer (1 ml/min) containing 30 mM KCl for 5 min [110-112]. 

Cdkl5 levels in depolarized slices were determined by Western blotting and compared with 

those in paired slices perfused for the same time using a low-KCl solution (3 mM). 

Interestingly, an increase in Cdkl5 levels similar to that observed in cultured primary neurons 

could be observed also in this in vivo system (+60%, Fig.6A, 6B).  As before, Erk-1 and Erk-

2 expression levels (Fig. 6C, 6D) were not significantly changed.  
 

 
 
 
Fig.6 Cdkl5 expression is induced during early neuronal depolarization in cortical neurons in an ex-vivo 

model. A, C) Western blot analysis showing Cdkl5 and Erk-1/2 protein levels in P35-P38 mouse cortical slices 

treated or not with 30 mM KCl for 5 min. The cortical slices were maintained in a solution with 95% oxygen and 
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5% CO2 for 30 min at 32°C and at 25°C for other 30 min before perfusion with a gassed solution containing 30 

mM KCl for 5 min. The control slices were perfused using a low-KCl (3 mM) gassed solution. Beta-tubulin III 

(TUJ1) was used as internal standard. B, D) Graphic illustration of Cdkl5 and Erk-1/Erk-2 protein expression 

levels in treated and untreated slices (N=3; standard error expressed as SEM; the significance of results was 

evaluated by Student’s t test and statistical significance was established as p < 0.01 (**)). 
 
 
 
Signaling pathway(s) involved in the regulation of CDKL5 expression 
 
In order to characterize the receptors and signaling pathway(s) activated by KCl and leading 

to the observed increase in Cdkl5-expression, we evaluated the activation of the excitatory 

synapses [64] by inhibiting specific molecular targets essential for synaptic transmission. The 

entry of calcium in neurons after glutamatergic transmission activates downstream pathways 

involving PI-3K, PKA, PKC, αCaMKII and MAPKs (mitogen-activated protein kinases) 

(Fig. 7), which we choose as targets for our experiments.  

 
 
 
 

 
 
Figure 7. Glutamatergic synapse: proposed sequences leading to changes in long term potentiation (LTP). 

Glutamate released from the pre-synaptic membrane binds both AMPA and NMDA receptors, but the NMDA-

Rs remain functionally blocked by magnesium ions. AMPA-Rs conduct mostly sodium ions thereby 

depolarizing the post-synaptic membrane. With sufficient post-synaptic depolarization, magnesium ions are 

released from the NMDA-Rs and calcium ions enter the cell triggering the activation of molecules related to the 

LTP signaling pathways:  PI-3K, PKA, PKC, αCaMKII and ERKs/MAPKs.  
Abbreviations: NMDA, N-methyl D-aspartate; mGlu: Metabotropic glutamate receptors; AMPA, α-amino-3-
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hydroxy-5-methyl-4-isoxazolepropionic acid; αCaMKII, Ca2+/calmodulin-dependent protein kinases II; 

MAPKs/ERKs, Mitogen-activated protein kinases/Extracellular-signal-regulated kinases; PKA, Protein kinase 

A; PKC, Protein kinase C.  Adapted from [126,127,128,131-133 http://www.mindsmachine.com/asf04.02.html] 
 
 
 
To test the involvement of calcium for the KCl mediated Cdkl5 increase, DIV7 hippocampal 

neurons were maintained for 20 min in their medium supplemented with 2 mM EGTA (a 

chelator of calcium ions) before being treated with KCl. As shown in Figure 4, KCl treatment 

does not induce any increase in Cdkl5 levels in neurons treated with EGTA, demonstrating 

that the observed activation of Cdkl5 is calcium dependent. We proceeded analyzing a 

possible involvement of NMDA receptors (Rs), which are key molecules for the influx of 

calcium into the cells [90]. Thus, neurons were pretreated for 30 min with 100 µM AP5, a 

pharmacological antagonist of NMDA-Rs, before the standard KCl activation. Cdkl5 

induction was found to be NMDA-R dependent since no change in Cdkl5 expression was 

observed after AP5 treatment. The importance of NMDA-Rs in the regulation of Cdkl5-

expression in activated neurons was also confirmed by using CNQX, an AMPA channel 

antagonist, since the AMPA-Rs work in the glutamatergic synapse permitting and regulating 

the NMDA-R activation [91]. Cdkl5-expression remained unaltered when DIV7 hippocampal 

neurons were treated with 40 µM CNQX for 30 min before and during the KCl treatment.  

The intracellular signaling cascades activated by calcium influx upon opening of NMDA-Rs 

involve various signaling molecules, protein phosphatases, and protein kinases such as 

mitogen activated protein kinases (MAPKs), the PKA (Protein Kinase A), PI3K etc. [92-99, 

118-122]. The rapid and transient activation of MAPKs and PKA are essential for proper 

induction of long-term potentiation (LTP) [100-105, 113, 114]; indeed, they are associated 

with a specific regulatory pathway that can couple NMDA-R opening to the activation of 

translation initiation factors in the hippocampus, triggering protein synthesis during LTP via 

the MnK1 (mitogen-activated protein kinase-interacting kinase 1) activation and the 

phosphorylation of eIF4E (eukaryotic translation initiation factor 4E) [95, 115] (Fig. 9).  

Therefore, we exposed hippocampal neurons to specific inhibitors of ERK-1/2 (10 µM 

UO126) and PKA (20 µM H89) for 20 and 30 min, respectively, before and during KCl 

treatment. Cdkl5 protein levels remained unaltered upon KCl treatment in the presence of 

these inhibitors (Fig. 8). Similarly, the lack of KCl-induced Cdkl5 increase was also observed 

when the hippocampal neurons were pre-treated with 2 µM wortmannin, a specific PI3K 

inhibitor (data not shown). 

 
 



30 

 
  

Fig. 8. NMDA receptor-dependent signaling pathway(s) are involved in the KCl-mediated increase of 

Cdkl5 expression. Cdkl5 protein levels in E18-DIV7 hippocampal neurons treated with 50 mM KCl for 5 min 

alone or upon pre-treatment with inhibitors of specific signaling pathways (EGTA 2 mM, AP-V 100 µM, CNQX 

40 µM, UO126 10 µM, H89 20 µM). All values are expressed as the average of 3 different experiments ± 

standard error of the mean (SEM). The significance of results was evaluated by Student’s t test and statistical 

significance was established as p < 0.05 (*) or p < 0.01 (**). Cdkl5 levels were normalized to β-tubulin III 

(TUJ1). 

 
 
 

 
 
 
Fig.9 The interaction of three major signaling pathways in post-synaptic neurons during LTP, converging 

on the regulation of translation. The influx of calcium through NMDA-Rs or voltage-dependent calcium 

channels (VDCC) can engage signaling cascades that activate MAPKs and αCaMKII. PKA can be activated by 
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beta-adrenergic receptors (β-AR) and by the influx of calcium through NMDA-Rs. The intracellular calcium 

stimulates Ca/CaM (calcium and calmodulin) sensitive adenylyl cyclase increasing cAMP levels. Cytosolic 

cAMP can bind to regulatory subunits of PKA holoenzymes causing the release of the free catalytic subunits that 

translocate to the nucleus and phosphorylate the transcription factor CREB. αCaMKII, MAPKs and PKA are all 

required for the induction of LTP. 

The activation of MAPKs and PKA are both required for the activation of MnK1-eIF4E, involved in activity 

dependent protein synthesis; for exemple, MAPKs are required for an increase in αCaMKII levels produced by 

LTP-inducing stimulation.  

Abbreviations: NMDA, N-methyl D-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; 

VDCC, voltage gated calcium channels; AC, adenylyl cyclase; PP2b, protein phosphatase 2b (calcineurin); I-

1●P, phosphorylated protein phosphatase inhibitor-1; Ras, Rap1, Raf-1, B-Raf, and MAPK/ERK kinase (MEK) 

are all components of the MAPKs cascade; αCaMKII, Ca2+/calmodulin-dependent protein kinases II; 

MAPKs/ERKs,  Mitogen-activated protein kinases/Extracellular-signal-regulated kinases; PKA, Protein kinase 

A. Adapted from [95,129,130] 
 
 
 
The role of NMDA-Rs and PKA in the regulation of Cdkl5 expression was confirmed by 

using specific activators of these molecules. DIV7 hippocampal neurons were stimulated for 5 

min with N-Methyl-D-aspartate (50 µM), an agonist of NMDA-Rs, or forskolin (100 µM), an 

adenylyl cyclase activator that activates PKA by increasing cAMP levels. These results 

confirmed the importance of NMDA and PKA for the increase in Cdkl5-expression (Fig. 

10A, 10B). It is also interesting to consider the response of Cdkl5 in cultured hippocampal 

neurons treated with BDNF (brain-derived neurotrophic factor), a neurotrophic factor that is 

a member of the "neurotrophin” family of growth factors. Interestingly, BDNF treatment of 

DIV12 neurons, when the TrkB receptors are likely to be expressed, caused an increase in 

Cdkl5 levels (Fig. 11A, 11B; N=2) [105,106,183]. To conclude, these results show that Cdkl5 

is a target of intracellular cascades activated by NMDA-Rs or TrkB-Rs during early neuronal 

activation.  
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Fig.10 Cdkl5 expression is induced by activation of NMDA-Rs and PKA. 

A) Immunoblot analysis of Cdkl5 expression in unstimulated DIV7 hippocampal neurons or in neurons treated 

for 5 min with 100 µM forskolin or with 50 µM NMDA.    

B) Graphic illustration of Cdkl5 levels in treated versus untreated cells. Cdkl5 protein levels were normalized to 

β-tubulin III (TUJ1). All values are expressed as the average of different experiments (NMDA N=3; forskolin 

N=2) ± standard error of the mean (SEM). t-test statistical analysis, p < 0.05 (*). 
 
 
 

 
 
Fig.11 BDNF induces Cdkl5 expression in mature neurons. A) Western blot analysis of Cdkl5 expression in 

DIV12 hippocampal neurons after 5 min of treatment with 50 µg/ml BDNF.  B) Graph showing Cdkl5 levels 

normalized to those of TUJ1 in neurons treated or not with BDNF. The values are expressed as the average of 2 

different experiments ± standard error of the mean (SEM). p < 0.05 (*).  
 
 
 
CDKL5 expression during the late phase of neuronal activation 
 
Having demonstrated that Cdkl5 gets activated soon after neuronal depolarization, we decided 

to evaluate what happens to its expression upon prolonged stimulation. Thus, we performed a 



33 

time-course analysis addressing the expression levels of the kinase during KCl-stimulation of 

DIV3 and DIV7 hippocampal neurons. Cells were directly collected in Laemmli buffer at 

different time points after KCl stimulation (5, 20, 40 min, 1 and 3 hrs) and Cdkl5 expression 

assayed by Western blotting. Interestingly, we found that in both cases a prolonged KCl 

treatment leads to a significant down-regulation of the expression of the kinase, leading to its 

disappearance after 3 hours of stimulation. However, a different kinetics can be observed 

depending on the neuronal maturation stage. Indeed, as already reported above, in more 

mature neurons (DIV7; Fig. 12A, 12B) Cdkl5 levels increase soon after KCl treatment (5 

min) and then progressively diminish, becoming indetectable at 3 hrs. Conversely, in DIV3 

neurons, Cdkl5 levels, which are lower in comparison to DIV7 neurons, increase with the 

same kinetics (5 min) but remain elevated for much longer; indeed, a significant reduction in 

the Cdkl5 signal appears only at 1 hour and a faint signal is visible even 3 hrs after KCl 

administration (Fig. 12C, 12D). The half-life of Cdkl5 (expressed exogenously in cell lines 

though) has been estimated to almost 6 hrs [53], we therefore reasoned that the observed 

down-regulation might probably be mediated by an active proteolysis of Cdkl5. The 

degradation of Cdkl5 could also be observed in frontal cortical slices of adult mice after 

prolonged KCl stimulation (1 hour) in comparison with control slices, while Erk-1/2 levels 

were not altered (Fig. 12E, 12F). 
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Fig.12 A prolonged KCl treatment down-regulates Cdkl5 expression in hippocampal neurons and in 

cortical slices. A,C) Western blot analysis of Cdkl5 expression in DIV7 (A) and DIV3 (C) hippocampal neurons 

after 5, 20, 40, 60 and 180 min of 55 mM KCl treatment. B, D) Statistical analyses of Cdkl5 expression in DIV7 

(B), DIV3 (D) hippocampal neurons. E) Western blot showing Cdkl5 and Erk-1/2 levels in cortical slices after 1 

hour of perfusion with 30 mM KCl solution (lane b) or with buffer alone (lane a). F) Statistical analysis of (E); 

expression levels of Cdkl5 (lane b), Erk-1 (lane c) and Erk-2 (lane d) in comparison with the control level in not 

treated slices (lane a). All values are expressed as the average of 3 different experiments ± standard error of the 

mean (SEM). The results were evaluated by Student’s t test and the statistical significance was established as p < 

0.05 (*) or p < 0.01 (**). 
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To determine the mechanisms by which Cdkl5 gets degraded during the late phase of 

neuronal depolarization, cultured hippocampal neurons (DIV3 or DIV7) were treated with 50 

µM MG132, an inhibitor of proteasomal activity, for 3 hours before stimulating with KCl. In 

DIV7 hippocampal neurons, Cdkl5 degradation was partially prevented by the presence of 

MG132 (Fig. 13A). Indeed, by quantifying three independent experiments we found that, in 

the absence of MG132, 80% of Cdkl5 disappears upon the prolonged KCl stimulation, 

whereas by inhibiting proteasome degradation, more than 50% of Cdkl5 resists to the KCl 

treatment (Fig. 13B). It is worth noting that MG132 per se led to a significant increase in 

Cdkl5 levels, indicating that, in “mature” neurons, the kinase is a constitutive target of the 

proteasome that regulates its turn over.  

 

 

 
 
 
Fig.13 Cdkl5 turnover is regulated by the proteasome activity in DIV7 hippocampal neurons. A) Western 

blot analysis of Cdkl5 expression after 3 hours of treatment with 55 mM KCl preceded or not by a treatment of 3 

hours with 50 µM MG132 (lanes d and c, respectively). As control, neurons were treated for 6 hours exclusively 

with MG132 (lane b) and compared with non-treated neurons (lane a). B) Statistical analysis; the letters below 

the bars correspond to panel A. All values are expressed as the average of 3 different experiments ± standard 

error of the mean (SEM). The significance of the results was evaluated by Student’s t test; statistical significance 

was established as p < 0.05 (*) or p < 0.01 (**). Beta-tubulin III (TUJ1) was used as internal standard. 

 
 
 
On the contrary, in immature neurons (DIV3), Cdkl5 levels are not regulated by the 

proteasome; indeed, its turn over, both in unstimulated or long-lasting depolarized conditions 

appear insensitive to MG132 (Fig. 14A, 14B). Therefore, summarizing the obtained results 

we suggest that during neuronal maturation the proteasome becomes one of the factors 

controlling Cdkl5 levels. The fact that 50% of the proteins gets degraded even when the 

proteasome has been inhibited suggests that in our experimental conditions the turnover of the 
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kinase might be also regulated by its synthesis and/or by lysosomal degradation.  

 

 

 

 
 
 
 
Fig.14 In immature hippocampal neurons Cdkl5 protein levels are not affected by the proteasome. A) 

Western blot analysis of Cdkl5 expression in control neurons (lane a) and after 6 hours of treatment with 50 µM 

MG132 (lane c), or 3 hours of treatment with 55 mM KCl pretreated or not for 3 hrs with MG132 (lane d and b). 

B) Statistical analysis (t-test, N=3) after W.B. densitometry (QuantityOne Biorad software). The lanes are the 

same described in (A). As above, significance of the t test was established at p < 0.05 (*) or p < 0.01 (**); n.s.: 

not significant. 

 
 
 
Considering that a previous publication from our laboratory demonstrated that upon glutamate 

stimulation CDKL5 exits the nuclear compartment and then gets degraded [63], we evaluated 

the subcellular localization of endogenous Cdkl5 in non-treated and KCl-treated hippocampal 

neurons. However, no difference in the kinase localization was observed in any tested time 

point (KCl 5, 20, 40 min., 1 and 3 hours; data not shown).  

 
 
 
Post-translational modification of CDKL5 during neuronal depolarization 
 
While depicting the reactivity of Cdkl5 upon depolarization at different time points, we 

noticed that Cdkl5 was showing a faster electrophoretic mobility when neurons were treated 

with KCl for 20 min (Fig.8A). We reasoned that different levels of Cdkl5 phosphorylation 

might cause the observed change in mobility.  

Importantly, few publications have already suggested a regulation of CDKL5 

phosphorylation. In particular, it has been demonstrated that CDKL5, as some other kinases 
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belonging to the CMGC group, is capable of auto-phosphorylating its TEY motif [55,61]; 

however, the timing and duration of this phosphorylation, as well as the specific stimuli 

driving it and its functional meanings remain unknown. Of possible relevance, it is interesting 

to observe that CDKL5 shows some similarity, including the presence of the TEY motif, with 

the extracellular signal-regulated kinases (ERKs); in these kinases, the dual phosphorylation 

of the TEY motif is generally required for the activation of their catalytic site [108,117]. 

However, in ERK-7, a member of the family, this motif is constitutively phosphorylated by 

auto-phosphorylation and the kinase is constitutively activated [109]. Interestingly, Chen et 

al. have recently reported a transient increase in DIV5 rat cultured cortical neurons of CDKL5 

threonine phosphorylation, showing the highest level 5 min after BDNF stimulation; these 

data indicate the presence of rapid post-translational modifications of the kinase during 

neuronal activation [56].  

In order to investigate whether the observed change in Cdkl5 mobility is caused by its 

dephosphorylation, we performed an in vitro dephosphorylation assay. DIV7 hippocampal 

cultured neurons were collected directly in lysis buffer and the lysate was incubated with 

Lambda Protein Phosphatase (presenting activity towards phosphorylated serine, threonine 

and tyrosine residues; PPase).  Samples were run on a 7% SDS-PAGE followed by 

immunoblotting. After Lambda PPase treatment, a “fast-migrating” band was detected using 

the anti-CDKL5 specific antibody, therefore corresponding to a dephosphorylated form of the 

kinase (Fig. 15A). These data suggest that in non-stimulated mouse hippocampal neurons, 

Cdkl5 is constitutively phosphorylated. 

We proceeded by comparing the electrophoretic mobility of Cdkl5 after prolonged KCl 

treatment to that obtained by dephosphorylation. Thus, DIV7 hippocampal neurons were 

treated with KCl for 40 min and Cdkl5 migration analyzed by Western blotting. Interestingly, 

after prolonged depolarization Cdkl5 presents the same “fast-migrating band” as obtained 

with Lambda PPase treatment (Fig. 15B). These data suggest a KCl-dependent loss of Cdkl5-

phosphorylation. Immunofluorescence experiments of KCl treated neurons showed that the 

overall ratio of Cdkl5 remains constant between the nucleus and the soma suggesting that the 

KCl-mediated dephosphorylation targets both nuclear and cytoplasmic Cdkl5 (Fig. 15 C). 
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Fig.15 CDKL5 is dephosphorylated during the late phase of neuronal depolarization. A) DIV7 

hippocampal neurons were collected in lysis buffer and treated with Lambda PPase as indicated. The samples 

were separated by 7% SDS-PAGE (acrylamide/bisacrylamide 77/1) and analyzed by Western blotting. The 

mobility of Cdkl5 is increased upon PPase treatment compared to control non-treated neurons (lanes b and c, 

respectively). Mock control: the extract was incubated as for lane b (3h, 30°C, Lambda PPase, buffer) but 

omitting the enzyme (lane c). B) After KCl-treatment (55 mM 40 min) of DIV7 hippocampal neurons, Cdkl5 

migration is identical to that of the PPase treated sample (lanes c and b, respectively). Control: non-treated DIV7 

neurons (lane a). C) Cdkl5 maintains its subcellular distribution after 40 min of KCl treatment. Representative 

immunofluorescence assays, using antibodies against CDKL5 (red) or DAPI staining (blue), of unstimulated 

hippocampal neurons at DIV7 and neurons exposed for 40 min to 55 mM KCl. 

 
 
 
By analyzing CDKL5 mobility at different time points after KCl stimulation, we could 

observe that dephosphorylation starts already at 5 min of depolarization, when a doublet can 

be recognized (shown by arrows, Fig. 16A) and becomes more pronounced at 20 min of KCl-

treatment (Fig. 16B). It is interesting to note that when tested in younger hippocampal 

neurons (DIV3), the KCl-dependent dephosphorylation of Cdkl5 was not apparent (Fig. 16C), 

suggesting that the mechanisms related to the dephosphorylation of Cdkl5 depends on 

neuronal maturation. We hypothesize that a relationship exists in DIV7 cultured hippocampal 

neurons between Cdkl5 dephosphorylation and the subsequent proteasome-dependent 

degradation of the kinase, both of which are absent in younger neurons (DIV3).  

To summarize, CDKL5 appears to be constitutively phosphorylated in cultured mouse 

hippocampal neurons and is sensitive to KCl-treatment in terms of expression, post-

translational modification and degradation. 
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Fig.16 Cdkl5 dephosphorylation starts early after depolarization. A) DIV7 hippocampal neurons were 

treated or not with 55 mM KCl for 5 min and Cdkl5 migration analyzed by 7% SDS-PAGE followed by Western 

blotting. Arrows indicate the slow and fast migrating bands corresponding to phosphorylated and 

dephosphorylated Cdkl5 isoforms. B) The dephosphorylation of Cdkl5, hardly detectable after 5 min of 

depolarization, proceeds and becomes clearly visible after 20 min. C) Cdkl5 is not dephosphorylated in DIV3 

hippocampal neurons when treated with 55 mM KCl for 20, 40 and 60 min (lanes b,c,d). The height of the band 

of Cdkl5 is the same in non-treated neurons at DIV3 (lane a) and DIV7 (lane e). 
 
 
 
The phosphatases PP1/PP2A regulate the overall phosphorylation state of 
CDKL5 
 
To identify the phosphatase(s) involved in Cdkl5 dephosphorylation, we treated DIV7 

hippocampal neurons with specific inhibitors against tyrosin phosphatases and the 

serine/threonine phosphatases PP1/PP2A (sodium orthovanadate and okadaic acid, 

respectively) before treating with KCl. Whereas treatment with sodium orthovanadate 

(Na3VO4 for 1 hour) did not inhibit Cdkl5 dephosphorylation (Fig. 17A), the administration 

of okadaic acid for 45 min (O.A.) revealed three important features (Fig. 17B): 

 

a) in unstimulated DIV7 hippocampal neurons,  the state of Cdkl5 phosphorylation  is 

influenced by the activity of PP1/PP2A phosphatases. Indeed, a retardation of Cdkl5 

migration is evident in DIV7 hippocampal neurons treated with okadaic acid when compared 

to untreated neurons (lanes c and d, respectively).  This band probably corresponds to a 



40 

“hyper-phosphorylated” form of Cdkl5 or to another phosphorylation dependent post-

translationally modified isoform of the kinase. 

 

b) the KCl-induced dephosphorylation, observed after 20 min treatment, is blocked by 

PP1/PP2A inhibitors (lanes e and f). We speculate that PP1/PP2A might be directly or 

indirectly involved. The basal conformation of Cdkl5 in resting neurons, regulated by these 

phosphatases, might represent a necessary condition for the intervention of other 

phosphatases. Furthermore, since in depolarized neurons treated with OA we could not detect 

any band corresponding to the slowest migrating band (lanes c and f), we speculate that other 

phosphatases are involved in this regulation and/or that a cross-talk between post-translational 

modifications exist, influencing the overall state of phosphorylation.  

 

c) exploiting a long electrophoresis, a doublet of Cdkl5 becomes visible also after 5 min 

of KCl treatment that differs from the bands observed after 20 min of KCl treatment (compare 

lanes b and e). This suggests, once again, that a complex pattern of post-translational 

modifications occur on Cdkl5 upon specific stimuli. This double-band is also sensitive to 

O.A. treatment (lane a), indicating its dependence on PP1/PP2A phosphatases.  

 
 

 
 
 
Fig. 17 The phosphatases PP1A/PP2A alter Cdkl5 phosphorylation during neuronal depolarization.  

A) The KCl dependent dephosphorylation of Cdkl5 is not mediated by tyrosine phosphatases. Immunoblotting of 

DIV7 hippocampal neurons (lane a) treated as indicated with 1 mM Na3VO4 for 1h before the KCl-dependent 
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depolarization (20 min; lanes b,c).  

B) DIV7 hippocampal neurons were treated as indicated with 1 µM okadaic acid (O.A.) for 45 min and KCl for 

the indicated time points. Cdkl5 migration was analyzed by Western blotting after separation of total extracts on 

7% SDS-PAGE. Arrow-heads indicate the fast and slow migrating Cdkl5 isoforms.  
DIV7 hippocampal neurons treated with okadaic acid compared to untreated neurons (lanes c and d, 

respectively).   

The KCl-induced dephosphorylation, observed after 20 min treatment (lane e), is blocked by PP1/PP2A 

inhibitors (f).  

The KCl-induced post-translational modification of Cdkl5 (lane b) is inhibited when PP1/PP2A are inhibited 

(lane a). 

 
 
 
Summarizing the presented data concerning a direct or indirect involvement of PP1/PP2A in 

the regulation of Cdkl5 phosphorylation, we propose the following model (Fig. 18): 

 

i) in non treated neurons, the basal level of Cdkl5 phosphorylation is affected by a 

constitutive action of PP1/PP2A; 
 

ii)  soon after neuronal depolarization, the levels of Cdkl5 phosphorylation decrease 

depending directly or indirectly on PP1/PP2A; 
 

iii) upon sustained depolarization, Cdkl5 gets extensively dephosphorylated. This 

dephosphorylated form is the target of proteasomal degradation. 
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Fig.18 Schematic model of the cross-talk between Cdkl5 phosphroylation and degradation in depolarized 

hippocampal neurons. Our data suggest the presence of distinct Cdkl5 isoforms in hippocampal neurons: 

a. a “hyperphosphorylated form” that is undetectable without inhibiting PP1/PP2A phosphatases; probably, it 

represents a very labile state of Cdkl5 appearing soon after synthesis or depending on stimuli that still remain 

to be discovered; 

b. the “basal” form of Cdkl5, carrying at least one phosphate group, in unstimulated neurons; 

c. the “modified form” of Cdkl5  appears soon after depolarization and is probably characterized by a reduction 

of its phosphorylation state; however, at least one phosphate group is bound to the kinase; 

d. the “dephosphorylated form” of Cdkl5. Prolonged depolarization leads to a dephosphorylated form of Cdkl5 

that constitutes the target of the proteasome. 

 
 
 
Is CDKL5 involved in the regulation of genes associated to the early 
neuronal activation?  
 
Considering that CDKL5 is an interactor of molecules related to the regulation of Immediate 

Early Genes expression, like MeCP2 [30, 41, 150] or DNMT1 [65, 297, 298], we decided to 

investigate whether Cdkl5 affects gene expression during neuronal activation. In particular, 

we started focusing on transcription during the first 5 min of KCl-treatment, when Cdkl5 
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expression is up-regulated. Indeed, the transcriptional regulation of the iEGs (immediate 

Early Genes) results from the activation of pre-existing transcription factors and does not 

require protein synthesis [295, 296]. 

We used RT2 Profiler PCR Arrays to obtain the transcription profiles of 84 immediate early 

genes (iEG; listed in Fig. 19C) involved in synaptic plasticity, testing their expression in 

DIV7 control and Cdkl5-silenced hippocampal neurons before and after KCl treatment. To 

down-regulate Cdkl5-expression, DIV0 hippocampal neurons were infected with recombinant 

lentiviral particles produced using the pLentiLox 3.7 GFP plasmid and expressing a short-

hairpin sequence against mouse Cdkl5-mRNA (shCdkl5). Similarly, DIV0 hippocampal 

neurons were infected with a control lentivirus carrying a short hairpin against the β-

galactosidase-mRNA (shLacz). The efficient silencing of Cdkl5 was verified by Western 

blotting (Fig. 19A). The mRNA-expression levels were monitored by RT-qPCR following the 

indications of "RT2 profiler PCR Array Handbook" (QIAGEN), as described in 

“Experimental procedures”. The ΔCt (Ct of iEGs - Ct of housekeeping genes) of 2-3 

independent measurements was mediated and then ΔΔCt (Average ΔCt after KCl treatment - 

Average ΔCt in non treated neurons) was calculated. The Ct of 5 housekeeping genes was 

averaged and used as internal standard, as indicated by the manufacturers ("RT2 Profiler PCR 

Array PAMM-126ZA", QIAGEN).  

An increase (p≤0,05; N=3) in the expression of some iEGs was evident after 5 min KCl 

treatment of control neurons: Akt1 (+20%), Egr1 (+30%), Grm2 (+45%), Rela (+10%), 

Timp1 (+60%) etc. (data not shown). In Cdkl5-silenced neurons, the expression of the same 

genes was similarly increased upon KCl treatment, while the induction of Timp1-gene (Fig. 

19B) (tissue inhibitor of metalloproteinases) was inhibited, suggesting a role of Cdkl5 in 

regulating the expression of this gene, which is involved in the synaptic mechanisms 

underlying learning and memory [116].  

In the future, it will be interesting to confirm these preliminary data and to understand the role 

of CDKL5 as a transcriptional co-factor involved in the early phases of neuronal activation.  
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Fig.19 KCl dependent induction of transcription is altered of neurons devoid of Cdkl5.   A) Western blot of 

Cdkl5 and GFP from DIV7 hippocampal neurons infected at DIV0 with lentiviral particles expressing GFP and a 

shRNA against Cdkl5 (shCdkl5) (lanes c, d) or β-galactosidase (shLacz) (lanes a, b). At DIV7 the neurons were 

treated with KCl for 5 min (lanes b, d) and the expression of Cdkl5 was compared to neurons at basal conditions 

(lanes a, c). The signal of TUJ1 is used as loading control. B) Expression levels of Timp-mRNA in neurons 

expressing Sh-Lacz (lane b)  or shCdkl5 (lane c) treated for 5 min with KCl. The increase of expression in 

control ShLacz neurons (blue bar) is significant (p≤0,05; N=3) and has been compared with 1, the value of the 

expression of the relative gene in non KCl-treated neurons (lane a). In Cdkl5-silenced neurons, the expression of 

the same gene after KCl treatment is reported as the average of 2 measurements (red bar, N=2). C) List of the 

iEGs analyzed. 
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DISCUSSION 
 
 
 
Rett syndrome is a postnatal progressive neurodevelopmental disorder that manifests in girls 

during early childhood. Its typical form is characterized by the appearance of 

neurodevelopmental arrest and regression, after a period of apparent normal psychophysical 

development up to 6–18 months of age. As the syndrome progresses, patients lose purposeful 

use of their hands and develop stereotypic hand movements. Loss of language and social 

skills, irritability, breathing anomalies and autistic features become apparent during this 

period of infantile life and will persist throughout adulthood. The severe mental retardation 

and the neurologic malfunctioning prevent patients from leading an independent social life.  

Mutations in the MECP2-gene are associated to the classical form of Rett syndrome [3, 14]. 

MeCP2 is a nuclear protein that binds methylated DNA and recruits histone deacetylases and 

co-repressor complexes to suppress transcription. It belongs to the MBD family of proteins 

involved in the epigenetic regulation of gene-expression [27, 30]. MeCP2 is widely expressed 

but is significantly more abundant in brain, primarily in mature postmigratory neurons [3, 26, 

33, 240]. Its expression in humans increases during the late fetal stage and in infancy [241]. 

Recently, new roles of MeCP2 as a transcriptional activator [30] and a splicing modulator [32, 

230] have also been described. Interestingly, it has been proposed that in neurons MeCP2 

could be considered a global chromatin structure regulator, since its abundance in nuclei is 

similar to one molecule every second nucleosome and its deficiency results in alterations of 

histone acetylation and doubling of histone H1 levels [33]. The role of MeCP2 in the 

regulation of chromatin structure could explain its putative involvement in the suppression of 

transcriptional noise [33] and in the inhibition of Long interspersed nuclear elements-1 

transcription [226]. 

Recently MeCP2 has been described as having a role in the regulation of dendritic 

arborization and spine morphogenesis. Indeed, membrane depolarization triggers MeCP2 

phosphorylation at serine 421, allowing transcription of BDNF [28, 38]. It was demonstrated 

that MeCP2 S421 phosphorylation has a role in chromatin remodeling during neuronal 

activity and synapse development [35]. Furthermore, MeCP2 regulates the strength of 

synaptic response in hippocampal neurons by promoting the formation of glutamatergic 

synapses during early postnatal development [34]. During morphological differentiation of 

neurons and in adult stage, MeCP2 is involved in the regulation of dendritic arborization and 

dendritic spine density and regulates the expression of several synaptic proteins, including 

α/β CaMKII, AMPA, and NMDA receptors [242, 244, 245]. Mouse models have shown that 
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a phenotype similar to that of RTT syndrome can be caused by dysregulation in the 

expression of MeCP2 (underexpression or overexpression), confirming prior studies showing 

that either loss or doubling of MeCP2 results in postnatal neurodevelopmental disorders [34, 

227-229, 244]. 

Atypical forms of Rett syndrome that deviate from the typical clinical presentation have been 

recognized since 1985 when a girl with infantile spasms and RTT-like features was described 

(Hanefeld variant). The atypical presentations of RTT are very different, and vary from 

milder phenotypes such as the “preserved speech variant” to more severe manifestations, such 

as the “congenital form” and the Hanefeld variant, with onset of intractable seizures before 

the age of 6 months [3]. The rare disorder Hanefeld variant was demonstrated related with 

mutations in the X-linked gene cyclin-dependent kinase like 5 (CDKL5). Mutations in the 

CDKL5 gene have also been involved in a wider range of phenotypes including West 

syndrome, mental retardation and autism. In general, CDKL5-mutations are associated to the 

following clinical features: the onset of intractable seizures during the first months of life, 

infantile spasms and severe developmental delay and hypotonia [49, 231]. The product of 

CDKL5 is a serine/threonine kinase that belongs to the CMGC family (named after the initials 

of some members: cyclin-dependent kinases, mitogen-activated protein kinases, glycogen 

synthase kinases and CDK-like kinases). Its catalytic domain, at the N-terminus, shares high 

homology with that of MAPK and CDK family members, while its long C-terminal tail does 

not share homology with other proteins. CDKL5 is a widely distributed protein expressed in a 

lot of peripheral districts, but highest levels are found in brain, particularly in the forebrain 

[50, 52, 53]. At the cellular level, the kinase is highly expressed in neurons, both in nucleus 

and in cytoplasm, whereas very low levels are present in glia. Similarly to MAPKs, the 

cytoplasmic form of CDKL5 is expressed in dendrites and somas of cortical and hippocampal 

neurons, a localization that suggests a role in postsynaptic functions [63, 305]. In non-

neuronal cell lines the kinase shows a constitutive shuttling between the cytoplasm and the 

nucleus through an active nuclear export mechanism utilizing a signal in its C-terminal tail 

[41, 54, 56, 61, 63]. During development, the relative concentration of CDKL5 in the nuclear 

and cytoplasmic compartments of neurons varies (with an increase in the nuclear 

subpopulation during maturation) [54], as well as the expression levels in different brain 

areas. High expression levels were detected in the entorhinal cortex, in the hippocampus and 

in the most superficial cortical layers, involved in the intercortical connectivity, suggesting an 

involvement of the kinase in high cognitive functions (Fig.20) [52, 54].  
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Fig.20 Cdkl5 expression patterning in the adult male mouse brain (C57BL/6J, postnatal day 56). Each Nissl-

stained section is coupled by a quantitative in situ hybridization screening at different sectioning levels. The 

color bar in (a) might be used to follow transcription level intensity. (b), (c), (d), (e), (f), and (g) are 

representative of different brain levels, therefore, different brain areas.  

Abbreviations: cg (cingulated cortex), st (striatum), pc (piriform cortex), hyp (hypothalamus), ec (entorhinal 

cortex), dg (dentate gyrus), ca1, 2, 3 (hippocampal CA fields), vta (ventral tegmental area), gn (geniculate 

nuclei), sn (substantia nigra), lc (locus ceruleus), pc (Purkinje cells). Adapted from [52]. 
 
 
 
The expression of CDKL5 in brain is generally induced during the late phase of pre-natal 

neuronal development and the early post-natal stage, suggesting an involvement of the kinase 

in the formation and in the maturation of dendritic branches and synapses [54]. Accordingly, 

it has been demonstrated that CDKL5 is a critical regulator of neuronal morphogenesis, 
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neurite growth and dendritic arborization [56]. The cytoplasmic localization of CDKL5 and 

its catalytic activities are essential for the kinase to acquire its functions [56]. Furthermore, in 

the cytosol, CDKL5 phosphorylates NGL-1 (Netrin-G1 Ligand 1), a transmembrane protein 

interacting with Netrin-G1, a regulator of the early synapse formation and subsequent 

maturation [67].  

In spite of the clear importance of CDKL5 for the central nervous system, the exact functions 

exerted by this kinase and its regulatory mechanisms remain mainly unknown. In the nucleus, 

CDKL5 binds MeCP2 and is certainly able to phosphorylate it in vitro [55, 59]; it remains to 

be demonstrated whether in vivo CDKL5 is involved in MeCP2 and Dnmt1 (DNA 

methyltransferase I) phosphorylation [65]. Furthermore, in the nucleus CDKL5 colocalizes 

with nuclear speckles and is probably involved in the regulation of mRNA splicing [66]. 

As mentioned, the levels of CDKL5 and its sub-cellular distribution gets modified during 

neuronal activation. A recent article from our group suggested that the expression and 

subcellular distribution of Cdkl5 appears tightly regulated in mouse hippocampal neurons by 

exposure to glutamate, the most abundant excitatory neurotransmitter in brain. Indeed, a 

glutamate bath induces a rapid exit from the nucleus (through an active nuclear export system, 

mainly occurring in glutamatergic neurons) and a massive proteasome-dependent degradation 

of the kinase [63]. The meaning of this response remains to be elucidated; it was speculated 

that CDKL5 could have different roles in the cytosol and in the nucleus during neuronal 

activation and that different stimuli could regulate its sub-cellular distribution. Furthermore, 

CDKL5 phosphorylation is sensitive to neuronal activation; indeed, in rat cortical cultures 

treated with BDNF for 5 min (minutes), the activation of the TrkB receptor leads to the 

phosphorylation of a CDKL5 threonine residue [56]. The intra-cellular mechanisms involved 

in the response of CDKL5 to the neuronal activation are not known hitherto; it has been 

shown that CDKL5 is capable of autophosphorylating its TEY motif [3, 55, 61] but according 

to the primary structure it is highly possible that CDKL5 contains a lot of phosphorylation-

sites and many kinases or phosphatases could be involved in the post-translational 

modification of CDKL5. Accordingly, proteomic approaches, aimed at revealing in HeLa 

cells phosphoproteins related to the cell-cycle, identified the presence of 14 sites of 

phosphorylation in human CDKL5 (S306, S375, S377, S407, S476, S526, T528, S543, S646, 

S681, S720, S726, S761); in particular, S646 and S761 were found phosphorylated in mitosis 

[337], whereas S407 in G phase [338]. Furthermore, one site of phosphorylation was 

identified in tyrosine-171, belonging to the TEY motif [337]. 

Considering all above, during my Ph.D. activity I decided to start characterizing mechanisms 

that might regulate CDKL5 expression and subcellular localization in murine primary 



49 

cortical/hippocampal neurons and in cortical slices using KCl-bath as a depolarizing agent 

mimicking the KCl-LTP (Long Term Potentiation) model [307, 356-362]. To better 

understand our results and their interpretation, let me discuss what I consider relevant 

information about LTP and LTD (Long Term Depression) in culture.  

KCl depolarization-induced LTP (KCl-LTP or Chemical-LTP) is an electrophysiological 

model of induction of synaptic potentiation in cultured neurons in which a brief 

depolarization (application of 90 mM KCl: 3 x 1 second) is used to induce an increase in 

synaptic activity in neurons; as a consequence NMDARs are activated by the release of 

endogenous L-glutamate.  

The advantage of studying dissociated neurons cultures consists in the possibility of rendering 

more accessible single synapses and evaluating the activity-related mechanisms during the 

initial steps of synaptic maturation. We focused our attention on DIV3 and DIV7 since 

significant changes in synaptic maturity occur between these two stages. In a recent 

publication, Sohya et al. reported opposite effects of KCl-dependent depolarization on spine 

morphology of rat hippocampal cultured neurons at different stages of maturation, 

demonstrating that high KCl induces synaptogenesis early in development (DIV3) but not 

later (DIV6) [187]. Interestingly, in E15 mouse primary cortical neurons the expression of 

PSD-95, a protein belonging to a multi-protein complex  important in positioning signaling 

molecules for induction of LTP and LTD, starts to be detectable only at DIV7 and shows a 

progressive increase in its levels during synaptic maturation [339, 340].  

ERKs have different functions in the nucleus, where they regulate activity-dependent 

transcription [301, 305] and in the cytoplasm, where they promote synaptic transmission and 

filopodia formation by phosphorylating ion channels [300, 302]. In addition, ERKs are 

activated in the hippocampus following convulsions [300, 301, 305; in vitro models of 

epilepsy using long exposure to KCl: 308, 311]. Other protein kinase cascades are required in 

the induction of the early phase of LTP in the CA1 area [317], subsequently to the stimulation 

of NMDA-Rs [305]; indeed the induction of LTP is blocked by general inhibitors of ser/thr 

protein kinases or tyrosine kinases [317]; accordingly it is well-known that a SRC-dependent 

tyrosine-phosphorylation of NR2B starts within 1-5 min after LTP induction [305, 315, 317]. 

In our experiment, we interpret the observed KCl-induced MAPKs activation (both at DIV3, 

when precocious neuronal processes leading to the synapse formation are activated [184-186], 

and DIV7/DIV12, when the synapses are getting matured) as a sign of neuronal  LTP-related 

processes induced by depolarization. We verified the KCl-induced neuronal depolarization 

following Erk-1/2 activation with an antibody detecting the phosphorylated form of these 

kinases. In 1997, English and Sweatt demonstrated that the induction of LTP in the CA1 
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region of hippocampus activates the ERKs, whereas, a selective inhibition of the MAPKs 

cascade markedly attenuates the induction of LTP, without affecting basal NMDA-Rs-

mediated transmission [113, 300, 302, 305, 326, 331]. NMDA-Rs stimulation in response to 

LTP-inducing high frequency stimulation leads to ERK-2 phosphorylation on tyrosine 42 

after only 2 min (LTP, induced in “artificial” models by extremely brief patterns of afferent 

stimulation, reaches a peak within 30-60 seconds and then declines over time) [299-305]; the 

maximal activation of ERKs occurs within 5 min [302], followed by a slight decrease. Indeed, 

ERKs activation remains observable for at least 2 hours of KCl-bath [301]. In such a 

prolonged KCl treatment (in our conditions up to 3 hours), the onset of processes of 

saturation/resource depletion or active homeostatic regulation might occur [363]. Generally, 

as described in different models, the induction of E-LTP starts soon after the stimulation 

[316] and 2 to 4 hours are required to transit from the Early to the Late phase of LTP [273, 

274, 316], the transcription- and translation-dependent phase that lasts many hours [317, 343]. 

The decline may be due to a naturally occurring activity-dependent LTD (“Long Term 

Depression”) rather than a strictly time-dependent decay [269, 271]. LTD is a form of 

synaptic plasticity [301] important during the activity-dependent “selection” of neuronal 

circuitry; it has been hypothesized that LTP may be responsible for memory formation, while 

LTD may be involved in active suppression of pre-established memory [301]. Experiments in 

vitro and in vivo demonstrated in the rat amygdala the correlation between the induction of 

LTD and a reduced degree of MAPKs-phosphorylation [324]. An increase in post-synaptic 

calcium probably to levels below those necessary to induce LTP is one condition to induce 

LTD. 

Hippocampal LTP is one of the most studied models of synaptic plasticity since its first 

demonstration through high frequency stimulation of afferent nerve fibers [276, 279]. The 

interest for LTP is due to the close parallels between this molecular mechanism and the 

persistence of hippocampus-dependent memory [274]. The most studied form of LTP 

develops through the activation of NMDARs and the consequent increase in AMPARs 

expression at the post-synaptic membrane [275]. The rapid transient depolarization in KCl-

LTP models is due to AMPARs expression on the neuronal surface and is given by an 

increase in mEPSC frequency [270, 278].  

LTP and LTD are both models of neuronal activity proposed after electrophysiological 

studies, using respectively high- or low- frequency stimulations; thus, it is difficult to follow a 

parallel model of activation in KCl-induced depolarized neuronal cultures. In these 

conditions, in fact, we do not know “if” and “when” a prolonged exposure to KCl saturates 

the responsivity of the cell. However, some elements could be considered  good indicators of 
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LTP and LTD, such as the MAPKs phosphorylation status [305, 331], the expression of iEGs 

(immediate Early Genes) [317, 334, 335] or the presence of phosphorylated/dephosphorylated 

isoforms of some proteins related to synaptic plasticity [259, 317, 336]. 

Considering the literature, we can define two different stages of synaptic potentiation during 

LTP: 

 

1) “short-term effects” (or Early-LTP, E-LTP) due to post-translational modifications of 

synaptic proteins, as well as alteration of their availability in correspondence of 

postsynaptic density [273]. Accordingly, it was demonstrated that αCaMKII-

phosphorylation in KCl-LTP models was necessary for the cell surface delivery of 

AMPARs in hippocampal cultures [266, 267, 270, 280].  

 

2) “long-term effects” (or Late-LTP, L-LTP) due to activity-dependent transcription, which is 

coupled to a PKA/MAPKs signaling pathways [322], and protein synthesis [262]. The 

events occurring during E-LTP, such as the recruitment of calcium-permeable AMPARs, 

can explain the activation of signaling pathways that in L-LTP drives spine morphological 

changes [234, 235, 270, 281]. New proteins reinforce the synaptic changes initiated during 

E-LTP, leading to the strengthening of the inter-neuronal transmission.  

 

The same stages are present also in LTD [316]. 

Some authors describe a very precocious stage, which lasts only 15 min and is called STP 

(Short Term Potentiation) [317]. 

In neurons, an activity-dependent protein synthesis has been found to be related to the late 

phase of LTP [148, 153, 159], a long-term memory formation [160, 161] and seizure [146, 

157, 158]. Protein synthesis starts within the first minutes of neuronal activation, depending 

on a coordinated program of stimulated gene transcription and translation, and the new 

proteins exert their functions during Late-LTP [272, 273, 352, 353]. In 1986, Goelet et al. 

proposed that iEGs, such as c-fos, might mediate the late phase of memory acquisition [138,  

143, 144, 146, 147, 175]. We now recognize that iEGs and specific transcription factors are 

the most important mediators between L-LTP and the functional/structural changes of 

synapses [188-192, 273, 159, 277]. The iEGs-induction has been well studied in many cell 

types [176-179] and appears to be regulated mainly by alteration in intracellular calcium ions 

[180-182, 189-191, 193-195], in response to a variety of external stimuli, including 

neurotransmitters, growth factors and membrane depolarization [139, 140, 141]. The modality 

of induction follows a similar pattern in different in vitro and in vivo models: mRNA 
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transcription occurs within 5 min and reaches the steady-state level in 30-45 min, while 

protein synthesis starts at least 30 to 45 min after the stimulus and the peak can be reached 

even 2 hours after the stimulation [137, 139, 140, 142, 232, 233]. NMDA-Rs are strictly 

involved in the activation signals of the early transcriptional events; indeed specific inhibitors 

prevent glutamate-mediated induction of iEGs-mRNA both in vitro and in vivo [141, 143-

145, 148-152]. 

Interestingly, new evidences suggest that LTP requires an initial period of activity-dependent 

translation of pre-existing mRNA which reinforces the switch from Early to Late LTP 

mechanisms [159]. Some authors described this reinforcement of E-LTP mechanisms as an 

“intermediate” phase [159, 282]. Pre-existing mRNA translation is essential for the late phase 

of LTP in the CA1 region also in spines and “isolated” dendritic preparations [115, 260-264, 

306, 307, 312-314]. NMDA-Rs directly promote the translation of pre-existing mRNAs [95, 

233] mainly in the soma but also in the dendritic processes. The activity-dependent translation 

has been described for some iEGs, such as Arc and αCaMKII, highly abundant in dendrites 

[115, 143, 154, 155, 233, 234, 236, 239, 252-254], permitting a rapid increase of their protein 

expression levels 3-10 min after NMDA-Rs activation. The new synthesis in loco of Arc and 

αCaMKII is important to regulate L-LTP, while the post-translational modification of 

αCaMKII (autophosphorylation after 1 min of neuronal activation [270, 276]) is important to 

permit and regulate E-LTP related processes [233, 234, 252-254, 270, 159, 276, 280, 283-

286, 292-294]. Indeed, the activated αCaMKII is translocated to the PSD and phosphorylates 

AMPA-Rs [317]. Both, the new protein synthesis in loco and the targeting to synapses of 

proteins synthetized in the soma are important to guarantee the “synapse-specificity” of 

plasticity.  

Molecularly, the translation of pre-existing mRNA during E-LTP is given by an increase in 

the phosphorylation of the eukaryotic initiation factor 4E (eIF4E), mediated by the opening of 

NMDA-Rs [95, 233, 237,307].  

Some recent papers confirmed the link between neuronal activation and changes in both the 

expression level and the sub-cellular distribution of CDKL5 [63, 64]. Therefore, we wanted to 

decipher both of these aspects during KCl-stimulation of neurons in vitro and ex vivo.    
In non-stimulated cultured neurons, Cdkl5 expression level increases during neuronal 

maturation and distributes between the nucleus and the cytosol [54, 63]. We found that, in 

cortical and hippocampal cultured neurons at different stages of maturation  (DIV3, DIV7 and 

DIV12), as well as in adult mouse cortical slices (P35-P38), a KCl-bath of 5 min induces the 

expression of Cdkl5 (+60%). This increase is due to a new synthesis of the kinase since it is 

abolished by blocking translational elongation through cycloheximide treatment. According to 
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literature, other proteins, such as Erk-1/2 and c-Fos, did not show any change in their 

expression level after 5 min of treatment. Similarly, Cdkl5 induction was observed 

stimulating for 5 min at DIV12 cultured hippocampal neurons (characterized by receptorial 

maturity [183]) with BDNF, which is known to regulate Early-LTP processes by activating 

the peripheral translation of mRNA and the trafficking of eIF4E into spines [159, 252-254, 

287-289]. 

This early induction of CDKL5 might suggest a requirement of novel synthesis of the kinase 

for early/intermediate phase of LTP. This hypothesis has to be confirmed through 

electrophysiological experiments performed on stimulated neurons ablated for Cdkl5.  

In hippocampal cultured neurons, calcium entry and the activity of NMDA-Rs and AMPA-

Rs, as well as the PKA and MAPKs activity, are required for observing the Cdkl5 response to 

KCl. 

Since we were interested in examining whether Cdkl5-transcription was increased  as well. 

Cdkl5-mRNA was quantified in KCl-depolarized neurons. An increased expression of Cdkl5-

mRNA and c-fos-mRNA was found after 5 min of KCl administration, suggesting a reactivity 

of Cdkl5 to neuronal activation similar to that of iEGs. The augmented level of Cdkl5-mRNA 

was probably due, similarly to c-fos, to increased transcription of the gene, since it was 

abolished by pre-treating neurons with the transcriptional repressor actinomycin-D. 

Interestingly, in analogy with the Arc-gene [233], we identified in the regulatory sequences of 

Cdkl5 a CRE motif (cAMP response element; TGAGCTCA) and in the future it would be 

interesting to investigate whether it has a role in the transcriptional activation.  Summarizing, 

we can conclude that after 5 min of exposition of cultured neurons to an elevated level of 

extracellular K+, or BDNF, there is an increase in Cdkl5 expression levels and the activation 

of its transcription. The precocious mRNA-translation is mediated by the opening of NMDA-

Rs and the subsequent activation of PKA and MAPKs, probably through the involvement of 

specific regulators, such as Mnk1 and eIF4E.    

Generally, factors induced during LTP increase their expression at the beginning of 

stimulation, reach a plateau and then return to control levels [188, 196, 197]. Therefore, we 

wanted to investigate whether CDKL5 was characterized by a similar behavior. DIV3/7 

hippocampal neurons were exposed to KCl for different time points and we observed such a 

triphasic profile by western assay, whereas no changes in the subcellular distribution of Cdkl5 

were detected by immunofluorescence. 

Interestingly, after returning to basal levels, Cdkl5 expression decreased rapidly and 

dramatically, suggesting an active degradation in depolarized neurons, both at DIV3 and 

DIV7. A significant decrease of Cdkl5 expression level was evident also in cortical slices 
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treated for 1 hour with KCl, while the same treatment did not cause the degradation of the 

LTP-related proteins Erk-1 and Erk-2. We demonstrated that a KCl-dependent degradation 

mediated by the proteasome is present only when the synapses are getting matured (DIV7) but 

not before this stage. Accordingly, at DIV7, but not at DIV3, Cdkl5 shows a proteasome 

dependent constitutive turnover.  

The ubiquitin-proteasome system is the major pathway for protein degradation in cells [266]. 

It is important to note that the expression of proteasome is very precocious in neurons, 

probably being already present at DIV3 in neurons [198, 199]. Furthermore, synaptic activity 

promotes proteasome sequestration within spines for the consolidation of the Early-LTP into 

Late-LTP, similarly to the activity-dependent mRNA-translation [233, 255, 257, 258, 262, 

263, 264, 266, 290]. 

Both L-LTP and the late phase of the NMDA-Rs-related LTD are dependent on both protein 

synthesis and proteasome activation [159]. Although LTP and LTD specific gene expression 

profiles have not been fully characterized so far [159], there are important suggestions 

regarding a balance between protein-synthesis and protein-degradation during synaptic 

activation, mainly involving some plasticity-related proteins in the synapses. This balance 

could explain the restore of L-LTP when both proteasome and protein synthesis inhibitors are 

co-applied [262, 291].  

Considering all above, we can hypothesize that CDKL5 levels could be yet another important 

element involved in the balance of synaptic protein composition during both Early- and Late- 

LTP. A further indication might be given by a recent publication demonstrating a co-

localization of CDKL5 with PSD95 and excitatory synapse markers [64].  

Eventually, we found that neuronal depolarization affects Cdkl5 post-translational 

modifications.  In particular, electrophoretic mobility studies suggested that Cdkl5 in non-

stimulated neurons and cortical slices is constitutively phosphorylated, similarly to ERK-7, a 

member of the MAPK family [109]. Indeed, KCl treatment leads to a rapid and progressive 

dephosphorylation of Cdkl5. So far, very little is known about the “phosphorylation status” of 

CDKL5. The kinase is capable of autophosphorylating its TEY motif [55, 61], but the 

involved stimuli are unknown.  

Increased phosphorylation of MAPKs and other plasticity-related proteins has been associated 

to LTP, whereas their dephosphorylation has been linked to LTD.  Particularly, LTP and LTD 

are related respectively to the inhibition or to the activation of protein phosphatases, such as 

PP1/PP2A (Phosphoprotein phosphatase 1; Phosphoprotein phosphatase 2A), as well as 

protein kinases [321],  regulating the reversible phosphorylation of synaptic proteins, such as  
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αCaMKII, AMPA-Rs and NMDA-Rs [200, 204, 208, 209-211, 213, 214, 255-264, 301, 321, 

322].  

After synaptic maturation, NMDA-Rs activation results in the recruitment of PP1 to the 

synapses [219] where presumably it can target synaptic proteins, raising the intriguing 

possibility that the pattern of synaptic activity controls the phosphorylation status of Cdkl5, a 

kinase localized at excitatory synapses [64]. Thus, we wanted to study the putative 

involvement of endogenous phosphatases in this activity dependent dephosphorylation of 

Cdkl5. The PP1/PP2A mediate a basal process of dephosphorylation of Cdkl5 and, when 

inhibited by okadaic acid (O.A.), the kinase is “hyperphosphorylated”. The PP1/PP2A are 

also involved, directly or indirectly, in the KCl-dependent dephosphorylation of Cdkl5, since 

the “large double band”, corresponding to a progressive dephosphorylation of Cdkl5, is not 

detectable if the inhibition of the phosphatases precedes KCl treatment, while tyrosine 

phosphatases appear to be unrelated with this process. Interestingly, KCl-dependent 

dephosphorylation of Cdkl5 occurs in neurons at DIV7 but not in less mature neurons at 

DIV3, therefore correlating with the development of more complex systems related to 

synaptic transmission. Considering that PP1, which regulates many processes in young 

neurons (the formation of filopodia, the maturation of neuronal filopodia into dendritic spines, 

the functional maturation of excitatory synapses, the axonal targeting [217, 218]), is 

precociously and ubiquitously expressed in mouse embryo brain (starting from E15.5) and in 

plated cortical neurons [215, 216], we speculate that PP1 is present at DIV3 hippocampal 

neurons but the maturation of other interacting proteins bridging PP1 to Cdkl5 (probably in 

the PSD fraction) is required to trigger the activity dependent dephosphorylation of Cdkl5 

observed at DIV7. Furthermore, we hypothesize that Cdkl5 dephosphorylation represents a 

signal for the activation of its proteasomal degradation, indeed Cdkl5 becomes a target of the 

proteasome, both in basal condition and during depolarization, only in DIV7 neurons.   

Chen et al. reported a transient increase in CDKL5 phosphorylation 5 min after BDNF 

stimulation of DIV5 rat cultured cortical neurons, suggesting the presence of rapid post-

translational modifications of the kinase during neuronal activation [56]. Thus, we 

investigated the presence of post-translational modifications, presumably activating the kinase 

and indicating a putative role during E-LTP, soon after KCl treatment of DIV7 hippocampal 

neurons. Interestingly, after a long gel running, we identified the presence of a different 

isoform of Cdkl5, which remains to be characterized but is certainly regulated, either directly 

or indirectly, by PP1/PP2A.  

In conclusion, considering some similarities, during neuronal activation, between the behavior 

of CDKL5 and other molecules known to have a role in LTP (NMDA-Rs related intra-cellular 
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pathways, transcriptional/translational activation, post-translational modifications, sensitivity 

to the proteasome), we propose CDKL5 as a new kinase involved in LTP (Fig. 21). New 

insights in the future are required to confirm the role of CDKL5 in LTP using both 

electrophysiological approaches and studies addressing whether the kinase interacts with 

other LTP-related molecules (ion channels, membrane receptors, transcription factors etc.). A 

role of the kinase in LTD-processes, depending on its sensitivity to PP1/PP2A activity, is also 

plausible [330]. 

 

 

 
 
 
Fig. 21 CDKL5 is sensitive to neuronal activity and shows similarities to some molecules involved in 

synaptic plasticity, suggesting a role of the kinase in the LTP. During the first minutes of stimulation, 

CDKL5 expression levels increase and the protein undergoes rapid post-translational modifications, compatible 

with a role during the E-LTP. After more than 5 minutes of stimulation, the behavior of CDKL5 in KCl treated 

neurons is different depending on the maturational stage of the cells: in immature neurons, the expression levels 

increase from 5 min to 1 hour; conversely, in mature neurons, a mechanism involving CDKL5 

dephosphorylation and degradation is active, suggesting that low levels CDKL5 are required during L-LTP at 

this stage. At last, the sensitivity of CDKL5 to PP1/PP2A could indicate an involvement of CDKL5 in an LTD-

related process. 
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EXPERIMENTAL PROCEDURES 
 
 
 
 
Primary cortical and hippocampal cultures were prepared from brains of CD1 mouse 

embryos at 18 days (E18). The mice were sacrificed by cervical dislocation; brains were 

removed from the embryos and the cortex and hippocampus rapidly dissected. After two 

washes in HBSS (GIBCO), neurons from the cortex and the hippocampus were dissociated by 

15’ incubation at 37°C in 0,25% trypsin (Sigma Aldrich). The cells were suspended with 

“dissection medium” [D-MeM with GlutaMAX-I (Gibco), horse serum 10%, 2 mM-L-

Glutamine (Sigma), 1 mM NaPyruvate (Gibco)] to block the action of the trypsin. Finally, 

counting the cells in a Bürker chamber, the definitive Neurobasal medium (Gibco) was added 

to the cells (supplemented with B27 (Gibco) and 2 mM-L-Glutamine) that were plated on 

Poly-L-lysine hydrobromide (Sigma P2636) coated dishes (0.1 mg/ml) or glass coverslips (1 

mg/ml). The number of the plated cells is reported in the following table: 

 
 

    number of cells 

cortical neurons, dishes 26.000 cells/cm2 

cortical neurons,  
glass coverslips 

2.500 cells/cm2 

hippocampal neurons, dishes 16.000 cells/cm2 

hippocampal neurons, glass coverslips 2.500 cells/cm2 

 
 
 
After 3 days in vitro (DIV), cytosine-1-b-D-arabinofuranoside (Ara-c, Sigma Aldrich), at the 

final concentration of 2 µM, was added to prevent astroglial proliferation.   
 
 
Treatments of cultured cells: 

Neurons were treated after 3, 7, and 12 days in vitro (DIV) with KCl at a final concentration 

of 50-55 mM. The Neurobasal medium contains 5 mM KCl, which corresponds to the 

physiological range. We used two different protocols of KCl-stimulation: 
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1) 5 min (minutes) KCl treatment: the cells were stimulated in Krebs-Ringer solution 

(KRH; KH2PO4 1.2 mM; MgSO4 1.2 mM; CaCl2 2 mM; Hepes pH 7.5 25 mM; 

glucose 1.1 mg/ml) with KCl 50 mM and NaCl 85 mM. The “control cells” were 

simultaneously treated with an isotonic bath in KRH with 5 mM KCl and 130 mM 

NaCl.  

2) Time course (5, 20, and 40 min; 1 hour, 3 hours) with 55 mM KCl.  

 

Treated and control cells were collected directly in Laemmli buffer. 

When necessary, KCl-dependent depolarization was anticipated by incubating with EGTA (2 

mM, 20 min), UO126 (10 µM, 20 min; Promega), H-89 (20 µM, 30 min; Cell Signaling), 

wortmannin (2 µM, 30 min; Sigma Aldrich), AP5 (100 µM, 30 min; Sigma Aldrich), CNQX 

(40 µM, 30 min; Sigma Aldrich),  

Actinomycin-D (20 µg/ml; 1 hour; Sigma Aldrich), cycloheximide (40 µM; 30 min; Sigma 

Aldrich).  

Neurons were also exposed to specific activators like Forskolin (100 µM, 5 min; Sigma 

Aldrich), NMDA (50 µM, 5 min; Sigma Aldrich) and BDNF (50 µg/ml, 5 min; Sigma 

Aldrich). Treated and control cells were collected directly in Laemmli buffer. 

 

 

KCl-treatment of mouse brain slices 

WT C57Bl6J female mice were anesthetized at P35-P38 with halothane (Sigma-Aldrich, 

Milan, Italy) and decapitated. The brain was quickly removed and put in ice-cold cutting 

solution (NaCl 125 mM; KCl 2.5 mM; NaH2PO4 1.25 mM; NaHCO3 26 mM; glucose 10 

mM; CaCl2 2 mM; MgCl2 1 mM) saturated with 95% oxygen and 5% CO2 (pH 7.4). 200 

μm-thick cortical-subcortical coronal frontal slices (anteriorly to the lateral ventricle) were 

then cut on the vibratome Leica VT1000S and maintained at 32°C for 30 min and at 25°C for 

other 30 min in the same buffer to allow functional recovery. 

Recovered slices were incubated in perfusion chamber and perfused (1 ml/min) at room 

temperature for 5 min, 20 min and 1 hour with gassed (95% 02/5% CO2) solution (KH2PO4 

1.25 mM, MgSO4 1.3 mM, CaCl2 2.5 mM, NaHCO3 17.6 mM, D-glucose 10 mM, pH 7.4) 

containing isomolar low or high [K+] (NaCl 125 mM, KCl 3 mM or NaCl 98 mM, KCl 30 

mM, respectively) in accordance with a previously published protocol [222].  After perfusion, 
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the slides were rapidly lysed in a potter with 200 ul of lysis buffer (PMSF 1 mM, Tris HCl pH 

7,4 50 mM, NaCl 150 mM,  Triton X-100 1%, EDTA 2mM, DTT 1mM, NaF 1mM, Na3VO4 

1mM, Phosphatse Inhibitor Cocktail (Roche), Protease Inhibitor Cocktail Sigma)) and the 

protein content of the samples was measured using the Bio-Rad Bradford method. Finally, the 

samples were conserved in Laemmli buffer and processed by immunoblotting. 

 

 

Cdkl5 silencing 

The lentiviral knock-down construct, sh-Cdkl5, were generated by cloning a short hairpin 

sequence against Cdkl5-mRNA (5’-CTATGGAGTTGTACTTAAAT-3’) into pLentiLox 3.7 

that also expresses GFP from an independent promoter. As control, a shLacZ construct, 

directed against β-galactosidase, was used. Recombinant lentivirus was produced by 

cotransfecting the pLentiLox 3.7 plasmid with the packaging vectors pREV, VSVG and 

pMDL into 293T cells. The viral particles were collected 36 hours post-transfection and 

concentrated by ultracentrifugation at 20.000 rpm for 2 hours. The viruses were resuspended 

in PBS and stored at -80°C. 

Cultured hippocampal neurons were infected at DIV0 (2 hours after plating) and collected at 

DIV7 after pharmacological/KCl treatment. Samples (300.000 cells silenced with 3 µl of 

vector concentrated stock [109 viral particles/ml] [223-225]) were collected directly in Laemli 

buffer 1X and processed by Western blot to confirm GFP expression and Cdkl5 silencing. For 

RT-qPCR analysis, cells were collected in RLT buffer (RNeasy Mini Kit Cat. No. 74104, 

QIAGEN) and analyzed as described in the section “Gene expression analysis”. 

 

 

Gene expression analysis: 

 

* RNA preparation and real-time qPCR 

Total RNA was isolated from treated neurons using the “miRNeasy mini Kit” 

(Cat.No.217004; QIAGEN) according to the manufacturer's instructions.   Contaminating 

DNA was removed with DNA-free reagent (RQ1 RNase-free DNase Cat.# M6101; Promega) 

and extracted RNA was quantified with Biotech Ultrospec 2000 UV visible 

spectrophotometer and its quality assessed through agarose gel electrophoresis (denaturing 

1% gel with EtBr).  

cDNA was synthetized from 200 ng of RNA using the “SuperScript II Reverse Transcriptase” 
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Kit (Cat. No. 18064-014; Invitrogen) as indicated by manufacturers. Quantitative Real-Time 

PCR was performed using 10 ng of cDNA mixed with the “GoTaq® qPCR Master Mix” 

(Ref.A6002, Promega) and the following primers:   

 

mCDKL5 forward:  TTCCCAGCTGTTAACCATCC 

mCDKL5 reverse:  AAGGAGACCGGTCCAAAAGT 

c-Fos forward:  GGCAAAGTAGAGCAGCTATCTCCT 

c-Fos reverse:   TCAGCTCCCTCCTCCGATTC 

mGAPDH forward:  AAGGTCGGTGTGAACGGATTTG 

mGAPDH reverse:  GCAGTGATGGCATGGACTGTG 

 

The RT-qPCR reaction was performed according to the following conditions:  

 

1) Mix:  

GoTaq® qPCR Master Mix: 1X 

Primer Mix 0,6 µM 

cDNA: 10 ng 

H2O (total volume 25 µl) 

 

2) Program: 

95°C 3 min 

Loop: 40 cycles (95°C 15 sec, 60°C 30 sec, 72°C 30 sec.) 

 

The reactions were performed with Multiplate PCR plates™Low 96-Well White 

(Cat.No.MLL9651, Bio-Rad) using a real-time cycler BioRad/MJ Research Chromo4. 

Each sample was assayed in triplicate, and the experiment was repeated three times. The data 

were analyzed using the DDCT method: replicates were averaged and compared to the mean 

value of the normalizer GAPDH in the same sample. A melting curve was automatically 

generated for each sample and confirmed that a single amplicon was generated in each 

reaction. 

 

* RT2 Profiler PCR arrays 

Total RNA from DIV7 hippocampal cultures was isolated as above using the RNeasy® Mini 

Kit (Cat. No. 74104, QIAGEN) and purified from contaminating DNA directly in the RNeasy 

Spin Column Membrane (DNase I Stock Solution QIAGEN). Cdkl5-silenced and control 
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hippocampal neurons treated with KCl at DIV7 were collected (300.000 cells per sample) 

directly in RLT buffer with 40 uM DTT (RNeasy Mini Kit QIAGEN) and processed as 

following. Extracted RNA was quantified with Varian Cary 50 scan UV-visible 

spectrophotometer and the quality assessed calculating the O.D. 260/280 ratio after 

spectrophotometer quantification and through a denaturing 1% agarose gel (with EtBr). 

350 ng of RNA was retro-transcribed using “RT2 First Strand Kit” (330401; QIAGEN) and 

gene transcription profiling was analyzed using the “RT2 Profiler™ PCR Arrays” technology 

(QIAGEN), following the procedures illustrated in the “RT2 Profiler™ PCR Array User 

Manual”. cDNA was added to “RT2 SYBR Green ROX™ qPCR Mastermix” (330522, 

QIAGEN) and the mix was aliquoted into “RT2 Profiler PCR Array Format C” (96 wells) 

(PAMM-126ZA, QIAGEN). Next, the real-time PCR cycling program was run into a Bio-

Rad/MJ Research Chromo4 real-time cycler, programmed according to the following table:   

 

Cycles  Duration  Temperature 
1 
 

40 

10 min 
 

15 sec 
35 sec 
30 sec 

95°C 
 

95°C 
55°C 
72°C 

 

 

Data analysis was performed as indicated in the RT2 Profiler™ PCR Array User Manual. 

Results were obtained analyzing three DIV7 hippocampal cultures and 2 Cdkl5-silenced 

DIV7 hippocampal cultures treated or not with KCl. 

 

 

In vitro dephosphorylation assay 

For analyzing the phosphorylation status of endogenous murine Cdkl5, we collected 

hippocampal DIV7 neurons (300.000) before or after KCl treatment, directly in lysis buffer 

(Protease Inhibitor Cocktail Sigma, PMSF 1 mM, NP40 1%, Tris-HCl pH8 50 mM, EDTA 1 

mM, NaCl 150 mM, DTT 0,5 mM, SDS 0,1%) with or without phosphatase inhibitors (NaF 1 

mM; NaVO4 1 mM; Phosphatase Inhibitor Cocktail (Roche)). Protein concentration was 

estimated using the Bradford method (Bio-Rad). An amount of 50 µg of total protein from the 

lysate was exposed to 800U of lambda phosphatase (Lambda-PPase, BioLabs) in PPase 

Reaction Buffer (Tris-HCl 50mM; DTT 5mM; EDTA 0,1mM; Brij 35 0,01%; pH 7.5), 

supplemented with 2 mM MnCl2, for 3 hours at 30°C. The reactions was stopped by 
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incubation at 65°C for 15 min and the samples analyzed by immunoblotting. 

 

 

PP1/PP2a inhibition assay 

Cultured hippocampal neurons (DIV7) were treated with 1 µM okadaic acid (O.A.; Sigma 

Aldrich) for 45 min or with 1 mM sodium orthovanadate ( Na3VO4, Sigma Aldrich) for 1 hour 

and then depolarized with the addition of 50 mM KCl for 5 and 20 min.  

 

 

Proteasome inhibition assay 

Hippocampal neurons (DIV7 and DIV3) were treated with MG132 (50 μM; Sigma Aldrich), a 

proteasome inhibitor, for 6 hours. Treated and control cells were collected directly in 

Laemmli buffer.  When necessary, 3 hours-KCl treatment was anticipated by MG132 (50μM; 

Sigma Aldrich) pre-treatment for 3 hours.  

 

 

Western Blotting Analysis 

Western blot analysis was performed using standard methods. 30 µl of the lysate was heated 

(at 70°C when we wanted to preserve phosphorylation, otherwise at 98°C), separated by 8% 

SDS-PAGE (Acrylamide solution Euro-Clone, Mix 37,5:1) and transferred to nitrocellulose 

membranes. To enhance the separation of phosphorylated and non-phosphorylated Cdkl5 

isoforms, a 7% SDS-PAGE was prepared with a particular concentration of the two forms of 

acrylamide (acrylamide/bisacrylamide Mix 77:1). Filters were developed by using a 

chemiluminescence-based detection system (SuperSignal West Pico Chemiluminescent 

Substrate Pierce; GE Healthcare, Piscataway, NJ) and quantified by scanning densitometry 

using the QuantityOne software package (Bio-Rad, Hercules, CA, USA). To evaluate 

phosphorylation, we made a ratio between the normalized phospho-protein and the 

normalized total isoforms of the same protein (phosphorylated and unphosphorylated).  

 

 

Immunofluorescence 

Hippocampal E18 neurons were seeded on glass coverslips. At DIV7 the cells were treated 

with KCl and fixed by 4% paraformaldehyde (PFA) in HBSS (15 min), washed and subjected 

to immunofluorescence. After 1 hour in permeabilization-blocking buffer (0,2% triton X-100, 

5% foetal bovine serum in PBS) at room temperature the neurons were incubated overnight at 
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4°C with primary antibodies in 5% foetal bovine serum and 0,1% triton X-100. After 24 

hours, cells were rinsed in PBS three times and incubated with the secondary antibodies (anti-

rabbit Alexa Fluor 555 and anti-mouse Alexa Fluor 488, Invitrogen) in blocking solution for 1 

hour at room temperature. Nuclei were stained with DAPI (Sigma) and the signal was 

analysed with an Olympus BX51 fluorescence microscope. 

 

 

Antibodies 

The following antibodies were used for western blotting and immunofluorescence 

experiments 

- Rabbit polyclonal anti-CDKL5 antibody (Sigma Prestige HPA002847; 0,37mg/ml) 

- Purified Mouse monoclonal α-tubulin Sigma T6074 (specific for human, mouse, rat) 

- Affinity isolated rabbit polyclonal antibody anti-MeCP2 Sigma M9317 (a.a. 465-478); 0,6 

mg/ml 

- Polyclonal rabbit antibody anti-Erk-1|2 (C-terminal 35 a.a. in human and mouse) Millipore 

Cat.#06-182  

- Rabbit polyclonal anti-phospho-p44/42 Erk (Thr202/Tyr204) antibody, Cell Signaling 

#9101 

- Mouse monoclonal anti-GAD67 Millipore Cat.#MAB5406 

- Anti-GFP mouse monoclonal antibodies Roche Cat.No.1814460 

- Monoclonal mouse anti-neuronal class III-beta-tubulin (clone TUJ1) antibodies, Covance 

MMS-435P; 1mg/ml 

- Rabbit polyclonal cleaved caspase-3 (Asp175) antibody, Cell Signaling #9661 

- Rabbit polyclonal anti-GAPDH antibody Millipore AB2302 

- HRP-conjugated goat anti-mouse or anti-rabbit secondary antibodies for Western 

blotting from Thermo Scientific 

- Secondary Alexa Fluor anti-rabbit and anti-mouse antibodies (and DAPI) for 

immunofluorescence experiments were from Invitrogen 

 

 

Statistical Analysis 

All values are expressed as the average of at least three different experiments ± standard error 

(S.E.M.). The significance of results was evaluated by Student's t test, and statistical 

significance was established as p < 0.05. 
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199. Baris Tursun, Anne Schlüter, Marvin A. Peters, et al., The ubiquitin ligase Rnf6 

regulates local LIM kinase 1 levels in, axonal growth cones, Genes Dev. 2005 19: 2307-

2319 



87 

 

200. Richard P. Munton, Sandor Vizi, Isabelle M. Mansuy The role of protein phosphatase-1 

in the modulation of synaptic and structural plasticity, FEBS Letters 567 (2004) 121–128 

 

201. A.T. Sim, J.D. Scott, Targeting of PKA, PKC and protein phosphatases to cellular 

microdomains, Cell Calcium (1999) 26 (5), 209–217 

 

202. Scott Waddell, Protein phosphatase 1 and memory: practice makes PP1 imperfect?, 

TRENDS in Neurosciences Vol.26 No.3 March 2003 117-119 

 

203. K.Koshibu, J. Graff and I. M. Mansuy, Nuclear protein phosphatase-1: an epigenetic 

regulator of fear memory and amygdala long-term potentiation, Neuroscience 173 (2011) 

30–36 

 

204. Isaac J,  Protein phosphatase 1 and LTD: synapses are the architects of depression,  

Neuron 2001 Dec 20;32(6):963-6 

 

205. Aggen JB, Nairn AC, Chamberlin R., Regulation of protein phosphatase-1, Chem Biol. 

2000 Jan;7(1):R13-23 

 

206. George P. Brown, Robert D. Blitzer, John H. Connor, Tony Wong, Shirish Shenolikar, 

Ravi Iyengar and Emmanuel M. Landau, Long-Term Potentiation Induced by u Frequency 

Stimulation Is Regulated by a Protein Phosphatase-1-Operated Gate, The Journal of 

Neuroscience, November 1, 2000, 20(21):7880–7887 

 

207. Peineau, Taghibiglou, Bradley, Wong, Liu, Lu, Lo, Wu, Saule, Bousch, Matthews, 

Isaac, Bortolotto, Wang, Collingridge, LTP inhibits LTD in the hippocampus via 

regulation of GSK3beta, Neuron, 2007 Mar 1;53(5):703-17 

 

208. J. Michael Bradshaw, Yoshi Kubota, Tobias Meyer, and Howard Schulman, An 

ultrasensitive Ca2calmodulin-dependent protein kinase II–protein phosphatase 1 switch 

facilitates specificity in postsynaptic calcium signaling, PNAS September 2, 2003 vol. 100 

no. 18 10512–10517  

 

209. Sarah C. Harney, Michael Rowan and Roger Anwyl, Long-Term Depression of NMDA 



88 

Receptor-Mediated Synaptic Transmission Is Dependent on Activation of Metabotropic 

Glutamate Receptors and Is Altered to Long- Term Potentiation by Low Intracellular 

Calcium Buffering, The Journal of Neuroscience, January 25, 2006, 26(4):1128 –1132 

 

210. Lüscher C, Malenka RC.,  NMDA receptor-dependent long-term potentiation and long-

term depression (LTP/LTD), Cold Spring Harb Perspect Biol., 2012 Jun 1;4(6). pii: 

a005710. doi: 10.1101/cshperspect.a005710 

 

211. Graham L. Collingridge, Stephane Peineau, John G. Howland and Yu Tian Wang, 

Long-term depression in the CNS, Nature Reviews | Neuroscience volume 11 | juLy 2010 | 

459-473 

 

212. David Genoux, Paula Bezerra and Johanna M. Montgomery, Intra-spaced stimulation 

and protein phosphatase 1 dictate the direction of synaptic plasticity,  European Journal of 

Neuroscience, Vol. 33, pp. 1761–1770, 2011 

 

213. Danny G.Winder and J.David Sweatt, Roles of serine/threonine phosphatases in 

hippocampal plasticity, NATURE REVIEWS | NEUROSCIENCE VOLUME 2 | JULY 

2001 | 461-474 

 

214. Bear MF, Abraham WC., Long-term depression in hippocampus, Annu Rev Neurosci. 

1996;19:437-62 

 

215. Anat Shmueli, Amos Gdalyahu, Sivan Sapoznik, Tamar Sapir, Miki Tsukada and Orly 

Reiner, Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 

(PP1), Mol. Cell. Neurosci. 32 (2006) 15– 26 

 

216. Stephanie L. Bielas, Finley F. Serneo, Magdalena Chechlacz, Thomas J. Deerinck, Guy 

A. Perkins, Patrick B. Allen, Mark H. Ellisman, and Joseph G. Gleeson, Spinophilin 

Facilitates Dephosphorylation of Doublecortin by PP1 to Mediate Microtubule Bundling at 

the Axonal Wrist, Cell 129, 579–591, May 4, 2007 

 

217. Ryan T. Terry-Lorenzo, David W. Roadcap, Takeshi Otsuka, Thomas A. Blanpied, 

Pedro L. Zamorano, Craig C. Garner, Shirish Shenolikar and Michael D. Ehlers, 

Neurabin/Protein Phosphatase-1 Complex Regulates Dendritic Spine Morphogenesis and 



89 

Maturation, Molecular Biology of the Cell Vol. 16, 2349–2362, May 2005 

 

218. Kavita Babu, Sami Bahri, Luke Alphey and William Chia, Bifocal and PP1 interaction 

regulates targeting of the R-cell growth cone in Drosophila, Developmental Biology 288 

(2005) 372 – 386 

 

219. Wade Morishita, John H. Connor, Houhui Xia, Elizabeth M. Quinlan, Shirish 

Shenolikar and Robert C. Malenka, Regulation of Synaptic Strength by Protein 

Phosphatase 1, Neuron, Vol. 32, 1133-1148, December 20, 2001, Copyright 2001 by 

Cell Press 

 

220. Proc. Nati. Acad. Sci. USA; Vol. 87, pp. 2031-2035, March 1990 Neurobiology 

 

221. Musílková J, Kovár J., Additive stimulatory effect of extracellular calcium and 

potassium on non-transferrin ferric iron uptake by HeLa and K562 cells, Biochim Biophys 

Acta. 2001 Sep 3;1514(1):117-26 

 

222. Lombardi et al., Br J Pharmacol. 1996 Jan;117(1):189-95; Lombardi et al. Br J 

Pharmacol. 1993 Dec;110(4):1407-12 

 

223. Gustavo Tiscornia, Oded Singer & Inder M Verma, Production and purification of 

lentiviral vectors, Nature Protocols 1, - 241 - 245 (2006)  

 

224. Gustavo Tiscornia, Oded Singer & Inder M Verm,  Design and cloning of lentiviral 

vectors expressing small interfering RNAs,  Nature Protocols 1, - 234 - 240 (2006) 

 

225. Tal Kafri, Henriette van Praag, Fred H. Gage, and Inder M. Verma, Lentiviral Vectors: 

Regulated Gene Expression, MOLECULAR THERAPY Vol. 1, No. 6, June 2000 

 

226. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH., L1 

retrotransposition in neurons is modulated by MeCP2, Nature 2010 Nov 

18;468(7322):443-6 

 

227. Hsiao-Tuan Chao & Huda Y Zoghbi, MeCP2: only 100% will do, Nature neuroscience 

volume 15 | number 2 | february 2012 



90 

 

228. Chen R.Z., Akbarian S., Tudor M. & Jaenisch R., Deficiency of methyl-CpG binding 

protein-2 in CNS neurons results in a Rett-like phenotype in mice, Nat. Genet. 27, 327–

331 (2001) 

 

229. Lawson-Yuen, A. et al., Ube3a mRNA and protein expression are not decreased in 

Mecp2R168X mutant mice, Brain Res. 1180, 1–6 (2007) 

 

230. Juan I. Young, Eugene P. Hong, John C. Castle, Juan Crespo-Barreto, Aaron B. 

Bowman, Matthew F. Rose, Dongcheul Kang, Ron Richman, Jason M. Johnson, Susan 

Berget, and Huda Y. Zoghbi, Regulation of RNA splicing by the methylation-dependent 

transcriptional repressor methyl-CpG binding protein 2,  PNAS December 6, 2005 vol. 102 

no. 49 17551–17558 

 

231. Artuso, R., Mencarelli, M. A., Polli, R., Sartori, S., Ariani, F., Pollazzon, M., Marozza, 

A., Cilio, M. R., Specchio, N., Vigevano, F., Vecchi, M., Boniver, C., Dalla Bernardina, 

B., Parmeggiani, A., Buoni, S., Hayek, C., Mari, F., Renieri, A., and Murgia, A., Early-

onset seizure variant of Rett syndrome: definition of the clinical diagnostic criteria, Brain 

Dev Jan;32, 17-24 (2010)  

 

232. Müller R, Bravo R, Burckhardt J, Curran T., Induction of c-fos gene and protein by 

growth factors precedes activation of c-myc, Nature, 1984 Dec 20-1985 Jan 

2;312(5996):716-20 

 

233. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, 

Soule J, Tiron A, Wibrand K., The Arc of synaptic memory, Exp Brain Res. 2010 

Jan;200(2):125-40 

 

234. Scheetz AJ, Nairn AC, Constantine-Paton M., N-methyl-D-aspartate receptor activation 

and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role 

for N-methyl-D-aspartate receptors in controlling protein synthesis, Proc Natl Acad Sci U 

S A. 1997 Dec 23;94(26):14770-5 

 

235. Schuman EM, Synapse specificity and long-term information storage, Neuron, 1997 

Mar;18(3):339-42 



91 

 

236. Czerniawski J, Ree F, Chia C, Ramamoorthi K, Kumata Y, Otto TA., The importance of 

having Arc: expression of the immediate-early gene Arc is required for hippocampus-

dependent fear conditioning and blocked by NMDA receptor antagonism, J Neurosci. 

2011 Aug 3;31(31):11200-7 

 

237. Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, Bramham 

CR., Novel translational control in Arc-dependent long term potentiation consolidation in 

vivo, J Biol Chem. 2009 Nov 13;284(46):31498-511 

 

238. Carasatorre M, Ramírez-Amaya V., Network, Cellular, and Molecular Mechanisms 

Underlying Long-Term Memory Formation, Curr Top Behav Neurosci. 2012 Sep 13 

 

239. Messaoudi E, Kanhema T, Soulé J, Tiron A, Dagyte G, da Silva B, Bramham CR., 

Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through 

regulation of local actin polymerization in the dentate gyrus in vivo, J Neurosci. 2007 Sep 

26;27(39):10445-55 

 

240. Jung B.P., Jugloff D.G., Zhang G., Logan R., Brown S. and Eubanks J.H., The 

expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in 

the developing rat brain and in cultured cells, J. Neurobiol. 55, 86–96 (2003) 

 

241. Zoghbi HY,  Postnatal neurodevelopmental disorders: meeting at the synapse?, Science, 

2003 Oct 31;302(5646):826-30 

 

242. Nguyen MV, Du F, Felice CA, Shan X, Nigam A, Mandel G, Robinson JK, Ballas N.,  

MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy 

during late stages of postnatal brain development and in the mature adult brain, J Neurosci. 

2012 Jul 18;32(29):10021-34 

 

243. Gonzales ML, Adams S, Dunaway KW, LaSalle JM., Phosphorylation of distinct sites 

in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation, 

Mol Cell Biol. 2012 Jul;32(14):2894-903 

 

244. Marshak S, Meynard MM, De Vries YA, Kidane AH, Cohen-Cory S., Cell-autonomous 



92 

alterations in dendritic arbor morphology and connectivity induced by overexpression of 

MeCP2 in Xenopus central neurons in vivo,  PLoS One 2012;7(3):e33153. Epub 2012 Mar 

9 

 

245. Christopher M. McGraw, Rodney C. Samaco, Huda Y. Zoghbi, Adult Neural Function 

Requires MeCP2,  JULY 2011 VOL 333 SCIENCE p.186 

 

246. Lee PR, Cohen JE, Becker KG, Fields RD, Gene expression in the conversion of early-

phase to late-phase long-term potentiation, Ann N Y Acad Sci 1048:259–271, 2005 

 

247. Park CS, Gong R, Stuart J, Tang SJ, Molecular network and chromosomal clustering of 

genes involved in synaptic plasticity in the hippocampus, J Biol Chem 281(40):30195–

30211, 2006 

 

248. Wibrand K, Messaoudi E, Havik B, Steenslid V, Lovlie R, Steen VM, Bramham CR, 

Identification of genes co-upregulated with Arc during BDNF-induced long-term 

potentiation in adult rat dentate gyrus in vivo, Eur J Neurosci 23(6):1501–1511, 2006 

 

249. Havik B, Rokke H, Dagyte G, Stavrum AK, Bramham CR, Steen VM, Synaptic 

activity-induced global gene expression patterns in the dentate gyrus of adult behaving 

rats: Induction of immunity-linked genes, Neuroscience 148(4):925–936, 2007 

 

250. Proud CG, Signaling to translation: how signal transduction pathways control the 

protein synthetic machinery, Biochem J 403(2):217–234, 2007 

 

251. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H,  Structural basis of long-term 

potentiation in single dendritic spines, Nature, 429:761–766 (2004) 

 

252. John R. Sinnamon and Kevin Czaplinski, mRNA trafficking and local translation: the 

Yin and Yang of regulating mRNA localization in neurons, Acta Biochim Biophys Sin 

2011, 43: 663–670 

 

253. Christopher J. Donnelly, Mike Fainzilber, and Jeffery L. Twiss, Subcellular 

communication through RNA transport and localized protein synthesis, Traffic, 2010 

December ; 11(12): 1498–1505. doi:10.1111/j.1600-0854.2010.01118.x 



93 

 

254. Clive R Bramham, Local protein synthesis, actin dynamics, and LTP consolidation, 

Current Opinion in Neurobiology 2008, 18:524–531 

 

255. Yoshiro Tomimatsua, Satoru Idemoto, Shigeki Moriguchia, Shigenori Watanabeb, 

Hiroshi Nakanishia, Proteases involved in long-term potentiation, Life Sciences 72 (2002) 

355–361 

 

256. Su-Jane Wang and Po-Wu Gean, Long-Term Depression of Excitatory Synaptic 

Transmission in the Rat Amygdala, The Journal of Neuroscience, December 15, 1999, 

19(24):10656–10663 

 

257. Y.Chen, P.Yuanxiang, T.Kno Pfel, U.Thomas and T.Behnisch, Hippocampal LTP 

Triggers Proteasome-Mediated SPAR Degradation in CA1 Neurons, SYNAPSE 66:142–

150 (2012) 

 

258. F.Cai, J.U.Frey, P.P.Sanna and T.Behnisch, Protein degradation by the proteasome is 

required for synaptic tagging and the heterosynaptic stabilization of hippocampal late-

phase long-term potentiation, Neuroscience 169 (2010) 1520–1526 

 

259. Patric K. Stanton, LTD, LTP, and the Sliding Threshold for Long-Term Synaptic 

Plasticity, HIPPOCAMPUS 6-35-42 (1991) 

 

260. Isaac J, Protein phosphatase 1 and LTD: synapses are the architects of depression, 

Neuron, 2001 Dec 20;32(6):963-6 

 

261. Jocelyn C. Mauna, Takeaki Miyamae, Benjamin Pulli, and Edda Thiels, Protein 

Phosphatases 1 and 2A Are Both Required for Long-Term Depression and Associated 

Dephosphorylation of cAMP Response Element Binding Protein in Hippocampal Area 

CA1 In Vivo, HIPPOCAMPUS 21:1093–1104 (2011) 

 

262. Rosalina Fonseca, Ramunas M. Vabulas, F. Ulrich Hartl Tobias Bonhoeffer and U. 

Valentin Nagerl, A Balance of Protein Synthesis Report and Proteasome-Dependent 

Degradation Determines the Maintenance of LTP Neuron 52, 239–245, October 19, 2006 

 



94 

263. Anna Karpova, Marina Mikhaylova, Ulrich Thomas, Thomas Knopfe and Thomas 

Behnisch, Involvement of Protein Synthesis and Degradation in Long- Term Potentiation 

of Schaffer Collateral CA1 Synapses, The Journal of Neuroscience, May 3, 2006, 

26(18):4949–4955 

 

264. Roger Anwyl,  Induction and expression mechanisms of postsynaptic NMDA receptor-

independent homosynaptic long-term depression, Progress in Neurobiology 78 (2006) 17–

37 

 

265. Lynch G, Baudry M, The biochemistry of memory: A new and specific hypothesis, 

Science 1984;224(4653):1057–63 

 

266. Amadou T. Corera, Guy Doucet, Edward A. Fon, Long-Term Potentiation in Isolated 

Dendritic Spines, PLoS ONE | June 2009 | Volume 4 | Issue 6 | e6021 

 

267. Frey U, Krug M, Reymann KG, Matthies H, Anisomycin, an inhibitor of protein 

synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro, 

Brain Res 452: 57–65 (1988) 

 

268. Rozov A, Zivkovic AR, Schwarz MK, Homer1 gene products orchestrate Ca(2+)-

permeable AMPA receptor distribution and LTP expression, Front Synaptic Neurosci, 

2012;4:4. doi: 10.3389/fnsyn.2012.00004 

 

269. Morris RG, Davis S, Butcher SP., Hippocampal synaptic plasticity and NMDA 

receptors: a role in information storage?, Philos Trans R Soc Lond B Biol Sci. 1990 Aug 

29;329(1253):187-204 

 

270. Elek Molnár, Long-term potentiation in cultured hippocampal neurons, Seminars in Cell 

& Developmental Biology 22 (2011) 506– 513 

 

271. Barnes CA, Memory deficits associated with senescence: a neurophysiological and 

behavioral study in the rat,  J Comp Physiol Psychol, 1979 Feb;93(1):74-104 

 

272. Jan Pláteník, Nobuyuki Kuramoto, Yukio Yoneda, Molecular mechanisms associated 

with long-term consolidation of the NMDA signals, Life Sciences 67 (2000) 335-364 



95 

 

273. Yuan Lu, Kimberly Christian, Bai Lu, BDNF: A key regulator for protein synthesis-

dependent LTP and long-term memory?, Neurobiology of Learning and Memory 89 (2008) 

312–323 

 

274. Cohen I, Parra P, Miles R, Long-term depression of excitatory synapses in the cortex 

and hippocampus, C R Acad Sci III, 1998 Feb-Mar;321(2-3):121-4  

 

275. Collingridge GL, Isaac JT, Wang YT, Receptor trafficking and synaptic plasticity, Nat 

Rev Neurosci 2004;5:952–62 

 

276. Fukunaga K, Stoppini L, Miyamoto E, Muller D, Long-term potentiation is associated 

with an increased activity of Ca2+/calmodulin-dependent protein kinase II, J Biol Chem 

1993;268:7863–7 

 

277. Dana Hevroni, Amir Rattner, Marsha Bundman, Doron Lederfein, Awni Gabarah, 

Miriam Mangelus, Michael A. Silverman, Hilla Kedar, Cathy Naor, Masayo Kornuc, 

Tamar Hanoch, Rony Seger, Lars E. Theili, Elly Nedivi, Gai Richter-Levin and Yoav 

Citri,  Hippocampal Plasticity Involves Extensive Gene Induction and Multiple Cellular 

Mechanisms, Journal of Molecular Neuroscience, Volume 10, 1998 p.75-98 

 

278. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT, Activation of synaptic 

NMDA receptors induces membrane insertion of new AMPA receptors and LTP in 

cultured hippocampal neurons, Neuron 2001;29:243–54 

 

279. Bliss T. Y. P. and Lamo T.,  Long-lasting potentiation of synaptic transmission in 

hippocampal slices, J. Physiol. (Lend.) 232, 357-374 (1973) 

 

280. Appleby VJ, Correa SAL, Duckworth JK, Nash JE, Noel J, Fitzjohn SM, Collingridge 

GL, Molnàr E, LTP in hippocampal neurons is associated with a CaMKII-mediated 

increase in GluA1 surface expression, J Neurochem 2011;116:530–43 

 

281. Fortin DA, Davare MA, Srivastava T, Brady JD, Nygaard S, Derkach VA, Solderling 

TR, Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-

permeable AMPA receptors recruited by CaM-kinase I, J Neurosci 2010;30:11565–75 



96 

 

282. Raymond, C. R., Thompson, V. L., Tate, W. P., & Abraham, W. C., Metabotropic 

glutamate receptors trigger homosynaptic protein synthesis to prolong long-term 

potentiation, Journal of Neuroscience, 20, 969–976 (2000) 

 

283. Oh MC, Derkach VA, Dominant role of the GluR2 subunit in regulation of AMPA 

receptors by CaMKII, Nat Neurosci 2005;8:853–4 

 

284. Otmakhov N, Tao-Cheng J, Carpenter S, Asrican B, Dosemeci A, Reese TS, Lisman J, 

Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic 

spines after induction of NMDA receptor-dependent chemical longterm potentiation, J 

Neurosci 2004;24:9324–31 

 

285. Guzowski, J. F., Lyford, G. L., Stevenson, G. D., Houston, F. P., McGaugh, J. L., 

Worley, P. F., Barnes C. A., Inhibition of activitydependent arc protein expression in the 

rat hippocampus impairs the maintenance of long-term potentiation and the consolidation 

of longterm memory, Journal of Neuroscience, 20, 3993–4001 (2000) 

 

286. Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., Mao 

X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit 

R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bösl MR, 

Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D, Arc/Arg3.1 is essential for the 

consolidation of synaptic plasticity and memories, Neuron, 52, 437–444 (2006) 

 

287. Kang, H. J., & Schuman, E. M. (1996), A requirement for local protein synthesis in 

neurotrophin-induced hippocampal synaptic plasticity, Science, 273, 1402–1406 

 

288. Rex C. S., Lin C. Y., Kramar E. A., Chen L. Y., Gall C. M., & Lynch G. , Brain-derived 

neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult 

hippocampus, The Journal of Neuroscience, 27, 3017–3029 (2007) 

 

289. Yano H., Ninan I., Zhang H., Milner T. A., Arancio O., & Chao M. V., BDNF-mediated 

neurotransmission relies upon a myosin VI motor complex, Nature Neuroscience, 9, 1009–

1018 (2006) 

 



97 

290. Bingol B. & Schuman E. M., Activity-dependent dynamics and sequestration of 

proteasomes in dendritic spines, Nature, 441, 1144–1148 (2006) 

 

291. Colledge M., Snyder E.M., Crozier R.A., Soderling J.A., Jin Y., Langeberg L.K., Lu H., 

Bear M.F. and Scott J.D., Ubiquitination regulates PSD-95 degradation and AMPA 

receptor surface expression, Neuron 40, 595–607 (2003) 

 

292. John Lisman, Long-term potentiation: outstanding questions and attempted synthesis, 

Phil. Trans. R. Soc. Lond. B (2003) 358, 829–842 

 

293. Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M, Disruption of 

dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and 

memory consolidation,  Neuron, 2002 Oct 24;36(3):507-19 

 

294. John Lisman, Howard Schulman and Hollis Cline, The molecular basis of CaMKII 

function in synaptic and behavioural memory, NATURE REVIEWS | NEUROSCIENCE 

VOLUME 3 | MARCH 2002 | 175-190 

 

295. Herschman HR., Primary response genes induced by growth factors and tumor 

promoters, Annu Rev Biochem 1991;60:281–319 

 

296. Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM., Immediate-

early and delayed primary response genes are distinct in function and genomic 

architecture, J Biol Chem 2007;282:23981–95 

 

297. I.Stancheva and R.R. Meehan, Transient depletion of xDnmt1 leads to premature gene 

activation in Xenopus embryos, GENES & DEVELOPMENT 14:313–327 © 2000 313-327 

 

298. J. Graff, I. M. Mansuy, Epigenetic codes in cognition and behaviour, Behavioural Brain 

Research 192 (2008) 70–87 Review article 

 

299. A.R. Vaillant, I. Mazzoni, C. Tudan, M. Boudreau, D.R. Kaplan and F.D. Miller, 

Depolarization and Neurotrophins Converge on the Phosphatidylinositol 3-Kinase–Akt 

Pathway to Synergistically Regulate Neuronal Survival, The Journal of Cell Biology, 

Volume 146, Number 5, September 6, 1999 955–966 http://www.jcb.org 



98 

 

300. Jean-Christophe Corvol, Emmanuel Valjent, Madeleine Toutant, Herve´ Enslen,  

The´ano Irinopoulou, Sima Lev, Denis Herve´, and Jean-Antoine Girault, Depolarization 

Activates ERK and Proline-rich Tyrosine Kinase 2 (PYK2) Independently in Different 

Cellular Compartments in Hippocampal Slices, THE JOURNAL OF BIOLOGICAL 

CHEMISTRY Vol. 280, No. 1, Issue of January 7, pp. 660–668, 2005 

 

301. Xianju Zhou, Changjong Moon, Fei Zheng, Yongneng Luo, Deborah Soellner,  Joseph 

L. Nuñez, and Hongbing Wang, NMDA-stimulated ERK1/2 Signaling and the 

Transcriptional Upregulation of Plasticity-related Genes are Developmentally Regulated 

following in vitro Neuronal Maturation, J Neurosci Res, 2009 September ; 87(12): 2632–

2644, doi:10.1002/jnr.22103 

 

302. Seungshin Ha, Lori Redmond, ERK Mediates Activity Dependent Neuronal Complexity 

via Sustained Activity and CREB-Mediated Signaling Developmental Neurobiology, 

Published online 3 October 2008 in Wiley InterScience (www. interscience.wiley.com). 

DOI 10.1002/dneu.20682 

 

303. L. Rosen, D. Ginty, M. Weber, M. Greenberg, Membrane depolarization and calcium 

influx stimulate MEK and MAP kinase via activation of Ras, Neuron,1994 

Jun;12(6):1261-21 

 

304. Guo-qiang Bi and Mu-ming Poo, Synaptic Modifications in Cultured Hippocampal 

Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type, 

The Journal of Neuroscience, December 15, 1998, 18(24):10464–10472 

 

305. Joey D. English and J. David Sweatt, Activation of p42 Mitogen Activated Protein 

Kinase in Hippocampal Long Term Potentiation, THE JOURNAL OF BIOLOGICAL 

CHEMISTRY Vol. 271, No. 40, October 4, pp. 24329–24332, 1996 

 

306. Naïla Ben Fredj, Julien Grange, Rémy Sadoul, Stéphane Richard, Yves Goldberg and 

Véronique Boyer1, Depolarization-induced translocation of the RNAbinding protein 

Sam68 to the dendrites of hippocampal neurons, Journal of Cell Science 117, 1079-1090 

 

307. Il Soo Moon, Sun-Jung Cho1,  Dae-Hyun Seog and Randall Walikonis, Neuronal 



99 

activation increases the density of eukaryotic translation initiation factor 4E mRNA 

clusters in dendrites of cultured hippocampal neurons, EXPERIMENTAL and 

MOLECULAR MEDICINE, Vol. 41, No. 8, 601-610, August 2009 

 

308. Paulette A. McRae, Esther Baranov, Stephanie L. Rogers and Brenda E. Porter, 

Persistent decrease in multiple components of the perineuronal net following status 

epilepticus, European Journal of Neuroscience, pp. 1–12, 2012 doi:10.1111/j.1460-

9568.2012.08268.x 

 

309. Kimiko Shimizu, Trongha Phan, Isabelle Mansuy and Daniel R. Storm, Proteolytic 

Degradation of SCOP in the Hippocampus Contributes to Activation of MAP Kinase and 

Memory, Cell 2007 March 23; 128(6): 1219–1229 

 

310. Howard P. Goodkin, Suchitra Joshi, Zakaria Mtchedlishvili, Jasmit Brar and Jaideep 

Kapur, Subunit-Specific Trafficking of GABAA Receptors during Status Epilepticus, J 

Neurosci. 2008 March 5; 28(10): 2527–2538 

 

311. Timothy O’Leary, Mark C. W. van Rossum and David J. A.Wyllie, Homeostasis of 

intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to 

chronic depolarization, J Physiol 588.1 (2010) pp 157–170 

 

312. Joan B. Cracco, Peter Serrano, Shaye I. Moskowitz,  Peter J. Bergold and Todd 

Charlton Sacktor, Protein Synthesis-Dependent LTP in Isolated Dendrites of CA1 

Pyramidal Cells, HIPPOCAMPUS 15:551–556 (2005) 

 

313. Catherine A. Vickers, Kirsten S. Dickson and David J A.Wyllie, Induction and 

maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal 

CA1 pyramidal neurones, J Physiol 568.3 (2005) pp 803–813  

 

314. Yan-You Huang and Eric R. Kandel, Theta frequency stimulation induces a local form 

of late phase LTP in the CA1 region of the hippocampus, Learn Mem, 2005 Nov-

Dec;12(6):587-93 

 

315. Yue-Qiao Huang, Wei-Yang Lu, Declan W. Ali, Kenneth A. Pelkey, Graham M. 

Pitcher, You Ming Lu, Hiroshi Aoto, John C. Roder, Terukatsu Sasaki, Michael W. Salter 



100 

and John F. MacDonald, CAKb/Pyk2 Kinase Is a Signaling Link for Induction of Long-

Term Potentiation in CA1 Hippocampus, Neuron Vol. 29, 485–496, February, 2001 

 

316. Parvez, Ramachandran and Frey, Properties of subsequent induction of long-term 

potentiation and/or depression in one synaptic input in apical dendrites of hippocampal 

CA1 neurons in vitro,  Neuroscience 171 (2010) 712–720 

 

317. Thomas R. Soderling and Victor A. Derkach, Postsynaptic protein phosphorylation and 

LTP, Trends Neurosci. (2000) 23, 75–80 

 

318. George P. Brown, Robert D. Blitzer, John H. Connor, Tony Wong, Shirish Shenolikar, 

Ravi Iyengar and Emmanuel M. Landau, Long-Term Potentiation Induced by u Frequency 

Stimulation Is Regulated by a Protein Phosphatase-1-Operated Gate, The Journal of 

Neuroscience, November 1, 2000, 20(21):7880–7887 

 

319. Keiko Tominaga-Yoshino, Tomoyoshi Urakubo, Masayoshi Okada, Hiroko Matsuda 

and Akihiko Ogura, Repetitive Induction of Late-Phase LTP Produces Long-Lasting 

Synaptic Enhancement Accompanied by Synaptogenesis in Cultured Hippocampal Slices, 

HIPPOCAMPUS 18:281–293 (2008) 

 

320. George J. Siegel, Basic Neurochemistry: Molecular, Cellular And Medical Aspects, 

Volume 1, Elsevier Academic Press, Seventh Edition, p.407 

 

321. Anne Jouvenceau, Gael Hedou, Brigitte Potier, Melanie Kollen, Patrick Dutar and 

Isabelle M. Mansuy, Partial inhibition of PP1 alters bidirectional synaptic plasticity in the 

hippocampus, European Journal of Neuroscience, Vol. 24, pp. 564–572, 2006 

 

322. Eric Klann, Metaplastic Protein Phosphatases, Learn. Mem. 2002 9: 153-155 

 

323. Peter R. Moult, Sonia A. L. Correa, Graham L. Collingridge, Stephen M. Fitzjohn and 

Zafar I. Bashir, Co-activation of p38 mitogen-activated protein kinase and protein tyrosine 

phosphatase underlies metabotropic glutamate receptor-dependent long-term depression, J 

Physiol 586.10 (2008) pp 2499–2510 

 

324. Chia-Ho Lin, Chia-Ching Lee and Po-Wu Gean, Involvement of a Calcineurin Cascade 



101 

in Amygdala Depotentiation and Quenching of Fear Memory, Mol Pharmacol 63:44–52, 

2003 

 

325. Sean M. Gallagher, Christine A. Daly, Mark F. Bear and Kimberly M. Huber, 

Extracellular Signal-Regulated Protein Kinase Activation Is Required for Metabotropic 

Glutamate Receptor-Dependent Long-Term Depression in Hippocampal Area CA1, The 

Journal of Neuroscience, May 19, 2004 24(20):4859–4864  

 

326. M.Roberto, T. E. Nelson, C. L. Ur, M. Brunelli, P. P. Sanna and D. L. Gruol, The 

transient depression of hippocampal CA1 LTP induced by chronic intermittent ethanol 

exposure is associated with an inhibition of the MAP kinase pathway, European Journal of 

Neuroscience, Vol. 17, pp. 1646–1654, 2003 

 

327. Peter V. Massey and Zafar I. Bashir, Long-term depression: multiple forms and 

implications for brain function, TRENDS in Neurosciences Vol.30 No.4 176-184 

 

328. Anne Kemp and Denise Manahan-Vaughan, Hippocampal long-term depression: master 

or minion in declarative memory processes?, TRENDS in Neurosciences Vol.30 No.3 111-

118 

 

329. S.F. Cooke and T.V.P. Bliss, Plasticity in the human central nervous system, Brain 

(2006), 129, 1659–1673 

 

330. Stéphane Peineau, Céline S Nicolas, Zuner A Bortolotto, Ratan V Bhat,  W Jonathan 

Ryves, Adrian J Harwood, Pascal Dournaud,  Stephen M Fitzjohn and Graham L 

Collingridge, A systematic investigation of the protein kinases involved in NMDA 

receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine 

kinases, Molecular Brain 2009, 2:22 

 

331. English J.D. and Sweatt J.D., A requirement for the mitogen-activated protein kinase 

cascade in hippocampal long term potentiation, J. Biol. Chem. 1997, Aug 

1;272(31):19103-6 

 

332. Toyoda H, Zhao MG, Xu H, Wu LJ, Ren M, Zhuo M., Requirement of extracellular 

signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in 



102 

adult mouse anterior cingulate cortex, Mol Pain. 2007 Dec 1;3:36 

 

333. Selcher JC, Weeber EJ, Christian J, Nekrasova T, Landreth GE, Sweatt JD, A role for 

ERK MAP kinase in physiologic temporal integration in hippocampal area CA1, Learn 

Mem. 2003 Jan-Feb;10(1):26-39 

 

334. Dragunow M, A role for immediate-early transcription factors in learning and memory, 

Behav Genet. 1996 May;26(3):293-9 

 

335. Abraham WC, Dragunow M, Tate WP, The role of immediate early genes in the 

stabilization of long-term potentiation, Mol Neurobiol. 1991;5(2-4):297-314 

 

336. Massicotte G, Baudry M,  Brain plasticity and remodeling of AMPA receptor properties 

by calcium-dependent enzymes, Genet Eng (N Y) 2004;26:239-54 

 

337. Henrik Daub, Jesper V. Olsen, Michaela Bairlein, Florian Gnad, Felix S. Oppermann, 

Roman Korner, Zoltan Greff, Gyorgy Keri, Olaf Stemmann and Matthias Mann, Kinase-

Selective Enrichment Enables Quantitative Phosphoproteomics of the Kinome across the 

Cell Cycle, Molecular Cell 31, 438–448 

 

338. Noah Dephoure, Chunshui Zhou, Judit Villen, Sean A. Beausoleil, Corey E. Bakalarski, 

Stephen J. Elledge  and Steven P. Gygi, A quantitative atlas of mitotic phosphorylation, 

PNAS August 5, 2008 vol. 105 no. 31 10762–10767 

 

339. Zheng S, Gray EE, Chawla G, Porse BT, O'Dell TJ, Black DL, PSD-95 is post-

transcriptionally repressed during early neural development by PTBP1 and PTBP2, Nat 

Neurosci. 2012 Jan 15;15(3):381-8 

 

340. Matthew G. Gold, A frontier in the understanding of synaptic plasticity: Solving the 

structure of the postsynaptic density, Bioessays 34: 599–608 

 

341. Grzegorz Hess, Synaptic plasticity of local connections in rat motor cortex, Acta 

Neurobiol Exp 2004, 64: 271-276 

 

342. Bruno Bozon, Aine Kelly, Sheena A. Josselyn, Alcino J. Silva, Sabrina Davis and Serge 



103 

Laroche, MAPK, CREB and zif268 are all required for the consolidation of recognition 

memory, Phil. Trans. R. Soc. Lond. B (2003) 358, 805–814 

 

343. Erik D. Roberson, Joey D. English, Joel C. Selcher and J. David Sweatt, J. Paige 

Adams,  MAPK regulation of gene expression in the central nervous system, Acta 

Neurobiol. Exp. 2000, 60: 377-394 

 

344. E. Tan and S.S. Chen, The Activation of Calcium/Calmodulin-Dependent Protein 

Kinase II After Glutamate or Potassium Stimulation in Hippocampal Slices, Brain 

Research Bulletin, Vol. 43, No. 3, pp. 269–273, 1997 

 

345. Jian Xu, Pradeep Kurup, Jason A. Bartos, Tommaso Patriarchi, Johannes W. Hell, Paul 

J. Lombroso, Striatal-Enriched Protein Tyrosine Phosphatase (STEP) Regulates Pyk2 

Activity, J Biol Chem. 2012 Jun 15;287(25):20942-56 

 

346. Kiran Pandey and Shiv Kumar Sharma, Activity-Dependent Acetylation of Alpha 

Tubulin in the Hippocampus, J Mol Neurosci (2011) 45:1–4 

 

347. Janice W. Kansy, S. Colette Daubner, Akinori Nishi, Naoki Sotogaku, Michael D. 

Lloyd, Chan Nguyen, Lin Lu, John W. Haycock, Bruce T. Hope, Paul F. Fitzpatrick and 

James Bibb, Identification of tyrosine hydroxylase as a physiological substrate for Cdk5, J 

Neurochem, 2004 October ; 91(2): 374–384 

 

348. Martina Gooney and M. A. Lynch, Long-term potentiation in the dentate gyrus of the 

rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation 

of TrkB, Journal of Neurochemistry, 2001, 77, 1198±1207 

 

349. M.Gooney, K. Shaw, A. Kelly, S. M. O’Mara and M. A. Lynch, Long-Term 

Potentiation and Spatial Learning Are Associated With Increased Phosphorylation of TrkB 

and Extracellular Signal-Regulated Kinase (ERK) in the Dentate Gyrus: Evidence for a 

Role for Brain-Derived Neurotrophic Factor, Behavioral Neuroscience 2002, Vol. 116, 

No. 3, 455–463 

 

350. E.Vereker, E. O’Donnell, and M. A. Lynch, The Inhibitory Effect of Interleukin-1b on 

Long-Term Potentiation Is Coupled with Increased Activity of Stress-Activated Protein 



104 

Kinases, The Journal of Neuroscience, September 15, 2000, 20(18):6811–6819 

 

351. Lukas C. Kapitein, Kah Wai Yau, Susana Montenegro Gouveia, Wouter A. van der 

Zwan, Phebe S. Wulf, Nanda Keijzer, Jeroen Demmers, Jacek Jaworski, Anna Akhmanova 

and Casper C. Hoogenraad, NMDA Receptor Activation Suppresses Microtubule Growth 

and Spine Entry, The Journal of Neuroscience, June 1, 2011  31(22):8194–8209 

 

352. Kaczmarek L,  Expression of c-fos and other genes encoding transcription factors in 

long-term potentiation, Behav Neural Biol., 1992 May;57(3):263-6 

 

353. M.Walton, C. Henderson, S. Mason-Parker, P. Lawlor, W.C. Abraham, D. Bilkey and 

M. Dragunow, Immediate Early Gene Transcription and Synaptic Modulation, Journal of 

Neuroscience Research 58:96–106 (1999) 

 

354. Jurado S, Benoist M, Lario A, Knafo S, Petrok CN, Esteban JA., PTEN is recruited to 

the postsynaptic terminal for NMDA receptor-dependent long-term depression, EMBO J. 

2010 Aug 18;29(16):2827-40 

 

355. Vanessa Schubert, Jorge Santos Da Silva and Carlos G. Dotti, Localized recruitment 

and activation of RhoA underlies dendritic spine morphology in a glutamate receptor–

dependent manner, The Journal of Cell Biology, Vol. 172, No. 3, January 30, 2006 453–

467 

 

356. Kim BW, Choi M, Kim YS, Park H, Lee HR, Yun CO, Kim EJ, Choi JS, Kim S, Rhim 

H, Kaang BK, Son H., Vascular endothelial growth factor (VEGF) signaling regulates 

hippocampal neurons by elevation of intracellular calcium and activation of 

calcium/calmodulin protein kinase II and mammalian target of rapamycin, Cell Signal. 

2008 Apr;20(4):714-25 

 

357. Yang Zhou, Hao Wu, Shuai Li, Qian Chen, Xue-Wen Cheng, Jing Zheng, Hiroshi 

Takemori, Zhi-Qi Xiong, Requirement of TORC1 for Late-Phase Long-Term Potentiation 

in the Hippocampus, PLoS ONE | www.plosone.org 1 December 2006 | Issue 1 | e16 

 

358. Guy C.-K. Chan, Susumu Tonegawa and Daniel R. Storm, Hippocampal Neurons 

Express a Calcineurin-Activated Adenylyl Cyclase, The Journal of Neuroscience, October 



105 

26, 2005; 25(43):9913–9918 

 

359. Maurizio Cammalleri, Robert Lutjens, Fulvia Berton, Alvin R. King, Cindy Simpson, 

Walter Francesconi and Pietro Paolo Sanna, Time-restricted role for dendritic activation of 

the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the 

CA1,  PNAS  November 25, 2003 vol.  100 no. 24, 14368–14373 

 

360. Arai JA, Li S, Feig LA., Sos2 is dispensable for NMDA-induced Erk activation and 

LTP induction, Neurosci Lett. 2009 May 8;455(1):22-5 

 

361. Michel Baudry, Joel L. Davis, Long-Term Potentiation: A Debate of Current Issues, 

Volume 1, Editorial Services of New England, 1991 Massachusetts Institute of 

Technology, The MIT Press, Cambridge 02142, p.48 

(http://books.google.it/books?id=aOBesaTJ0dMC&pg=PA49&lpg=PA49&dq=LTP+stimu

lated+by+KCl++min&source=bl&ots=ecp4hq6OSF&sig=TBc3oHl54NPsBT4y7PocR2Y

ZnAc&hl=it&sa=X&ei=c5m7UICMG6eF4AT8z4CoCA&ved=0CCwQ6AEwADgK#v=o

nepage&q=LTP%20stimulated%20by%20KCl%20%20min&f=false) 

 

362. Myung Jong Kim, Kensuke Futai, Jihoon Jo, Yasunori Hayashi, Kwangwook Cho and 

Morgan Sheng, Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by 

Phosphorylation of Serine-295 of PSD-95, Neuron 56, 488–502, November 8, 2007 

 

363. Claudia Roth-Alpermann, Richard G. M. Morris, Martin Korte and Tobias Bonhoeffer, 

Homeostatic shutdown of long-term potentiation in the adult hippocampus, PNAS  July 18, 

2006  vol. 103  no. 29  11039–11044 

 

 

 



106 

Acknowledgements 

 
 
 
First of all, I would like to thank my friends from my laboratory for their congeniality and 

affability: Anna B., Chetan C., Dalila C., Dionigio P., Elisa G., Francesco B., Francesco G., 

Gilda S., Isabella B., Laura R. and Marta S., Sarfaraz N. 

I am deeply indebted to Chetan Chandola and Sarfaraz Nawaz for their perseverance in 

assisting me in English. 

A special thanks to my family for their psychological support. 

Finally I thank my God for helping me through all the difficulties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Ph.D. Thesis 
Dott. Paolo La Montanara  
Laboratory of Genetic and Epigenetic Control of Gene Expression 
Department of Theoretical and Applied Sciences 
Section of Biomedical Research 
University of Insubria 
Via A.da Giussano 12 
21052 Busto Arsizio (VA), Italy 
 

 



107 

 

 

 
 


