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1
Introduction

When we want to solve a complex Artificial Intelligence (AI) problem like the

automatic categorization or labeling of images, the recognition of objects classes

inside an image or the conversion of speech into written text, a typical approach

is to transform the interest data from the low-level representation used to store

it in the machine into a high-level representation, called feature space. Although

this definition can be considered unnatural to the eyes of a layman, human beings

almost always describe objects using a more or less complex feature space.

Think of a customer in a clothing store that wants to buy a new coat and

ask help to the sales assistant. To be helpful, probably the sales assistant would

ask the customer some information about the garment like the color, the size, the

material or the shape. Let suppose now that the customer find a coat that he really

likes and he takes a photo of it with his smartphone. The content of the jpeg file

saved on the flash memory of the smartphone is far from the description that the

1



2 Introduction

customer gave to the sales assistant in order to find the coat. This happens because

the jpeg file is a low level representation of the coat and, although is indispensable

to display it on a monitor or to print it on paper, it can be hardly used directly to

classify the color or the shape of the garment. A further feature extraction phase

is thus required to create a semantic description of the object.

We are completely unaware of the process that, inside our brain, extracts high-

level information from the images allowing us to make a clear and detailed de-

scription of the objects with which we interact. The same argument can be made

for the sounds that we hear, tastes that we feel or scents that we smell, although

the view is for the majority of us the most pervasive sense.

Now we are convinced that the feature extraction phase plays a key role in the

semantic analysis of data, but the question is: given a specific AI problem, which

are the best features? The answer to this question depends very much on our test

configuration and, in particular, on some issues such as how many examples our

dataset have, how many the distribution of examples in the dataset reflects the

distribution of the data in the real world, how good is our evaluation metric, etc.

Let’s suppose that our dataset and our evaluation metrics have been chosen well.

Given an initial set of features, we can write down a simple greedy-like algorithm

that selects the best features according with our evaluation metric. However, even

in this case the quality of our AI method depends a lot on the set of initial features.

This observation is still valid even in the case of a more refined feature selection

algorithm like the well-known Boosting [3].

Consider now the problem of classifying images depicting fabric textures in two

classes: horizontal stripes and vertical stripes. In this case it is very important that

the set of initial features contains some edge-related feature like the Histogram of

Oriented Gradients (HOG) or some simpler features describing the distribution of

horizontal and vertical edges. Probably, at the end of the features selection, the

edge-related features will be selected and other features like the histogram of colors

will be discarded. Normally in such simple problems our intuition is enough to

select the best features, but if we treat much more complex problems, such as the
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Figure 1.1: This figure shows 16 images containing 8 classes of objects. Images

are taken from the Caltech-256 dataset.

classification of 30000 images containing 256 categories of objects1, we could no

longer be guided by our intuition. Even defining a large number of features, it is

not obvious that a combination of them giving decent classification results exists.

Look, for example, at the images in Figure 1.1, you will probably find it difficult

to propose few simple features capable of separating the 8 classes of objects. The

problem is that most of the features used to analyze images are handcrafted and

meant to solve specific problems, not very general problems like the one seen above.

A problem that we will discuss extensively in this thesis is the automatic un-

supervised segmentation of images according to their texture properties. A fact

that seems obvious is that separate different textured areas require less experience

than separate different classes of objects. Look for example at Figure 1.2, after a

glance the texture segmentation is automatically done by our visual system with-

out troubles. Now, the goal is to try to do it automatically and, since the problem

seems so easy, in an unsupervised way. As we shall see in later chapters, many

features and methods have been proposed in the literature to try to address this

problem, but we are still far from a robust and general solution.

1We refer to the Caltech-256 dataset, available at http://www.vision.caltech.edu/Image_

Datasets/Caltech256/

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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(a) (b) (c)

Figure 1.2: Two texture mosaics each one composed of 5 distinct textured regions

(a and b) and the solution to the segmentation problem (c).

Our conviction is that, in order to find a robust solution to these difficult prob-

lems, it is necessary to leave the old ”handcrafted feature” approach in favor of

a new methodology in which, using unsupervised techniques, the features arise

directly from the data. Proceeding in this way, the feature definition and selec-

tion phases are not required since they are performed automatically by a feature

learning module that does not require particular knowledge-based considerations.

Fortunately, this is not just our conviction, since in literature many methods that

learn features using unsupervised pre-training were proposed. A detailed survey on

the subject is contained in [4]. However the problem is that, with regard to images,

most of these methods are related only to the supervised classification of images

and recognition of handwritten characters [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15].

In this thesis we still focus on images but we show that, even for a problem like

the texture segmentation, relevant features can be found using an unsupervised

approach. In particular we employ a standard Self Organizing Map (SOM) neural

network and some very simple local pixel encodings, keeping the method as simple

as possible.

The main contributions of this thesis are the definition of a simple feature

learning method, based on the well-known SOM neural network, and its applica-

tion to the unsupervised description and segmentation of textures, a problem that

is usually dealt with using ad-hoc computer vision and image processing methods.

We further demonstrate that, the use of our method to learn features for a super-
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vised image classifier, provides some interesting additional properties compared

with other similar methods in literature.





2
Unsupervised Feature Learning

2.1 Introduction

Given an image or a set of images, our target is to analyze a large set of small

patches, extracted from the images and composed of few squared pixels, in order

to find any regularity that allows us to moving away from the standard, ”hardware

oriented”, RGB representation and getting closer to a more semantic representa-

tion. This chapter starts describing the methods used to extract local patterns

from the image and the feature learning phase performed by the SOM. Then we

explain how to combine multiple feature extraction stages in order to create a

much powerful feature extractor that, as experimentally demonstrated in Chap-

ter 3, gives a representation which is very suitable to describe textures.

Since the model proposed in this chapter has been successfully applied to two

different branches of computer vision, unsupervised texture segmentation and su-

7



8 Unsupervised Feature Learning

pervised image classification, we performed two separate studies of the state of

the art and reported them in Chapter 3 and Chapter 4. This chapter is purely

descriptive and does not contain experiments, in the following chapters we analyze

how the model described here can be used, as mentioned before, to solve practical

computer vision problems.

2.2 Unsupervised Training

Before delving into the details, we anticipate that the method described in this

section can be seen as a black box where, firstly, a set of images I0 is used to

train the model and, after the training, any input image I0 can be remapped into

the new image I1. We call this black box Feature Learning Unit (FLU) and we

represent it as reported in Figure 2.1. We have to introduce the FLU concept

because it is useful to explain, in the following section, the composition of more

than one feature learning units.

Let’s see now how FLU works. As discussed in the Chapter 1, the proposed

feature learning model is based on the SOM, an artificial neural network first

proposed by Teuvo Kohonen in early 1981 and published in [16]. This neural

network is able to produce, without supervision, a spatially organized internal

representation of various features of input signals [17].

Figure 2.2(a) depicts a typical SOM, a neural network composed of m neurons,

where each neuron with index i is fully connected to the input layer through a

series of weighted links

wi = [wi1, wi2, . . . , win]T (2.1)

where 0 ≤ wij ≤ 1 and n is the dimension of the input data. The general SOM

model admits a N-dimensional grid of neurons, but in this thesis we will focus

only on the 1-dimensional and 2-dimensional versions of the network, reported in

Figure 2.2.

The proposed method involves an initial unsupervised training phase, where

a large number of vectors are presented to the network and the neural weights

are updated according to a particular rule. The training vectors are extracted
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FLU 
 

Feature 
Learning 

Unit 

I0 

(a)

FLU 
 

Feature 
Learning 

Unit 

I0 

I1 

(b)

Figure 2.1: Scheme used to represent a Feature Learning Unit. (a) Configuration

for the training, using a set of input images. (b) Configuration for the remapping

of a single image.
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...

Input layer 

Neurons

Weighted link
wi=[wi1 , … , win]T

1 2 3 i m... ...

b1 bn

(a)

...

Input layer 

2D 
neuron 
lattice 

C

R

Weighted link
wi=[wi1 , … , win]T

i

b1 bn

(b)

Figure 2.2: Schemes for the 1-dimensional (a) and the 2-dimensional (b) versions

of the SOM neural network.
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from the input images using an overlapping window that slides over each image,

in literature this approach is known as receptive field [18] and is widely used for

its simplicity and efficiency [15, 14, 13]. In order to make patterns that the SOM

can learn, the pixels within the receptive field should be encoded in some way. We

used two encodings, the first called intensity encoding and the second that we call

histogram encoding.

Intensity encoding involves the concatenation of pixel intensities within the

receptive fields, where intensities are real numbers, normalized in order to vary

within 0 and 1. Formally

b = [b1, b2, . . . , bj, . . . , bn]T (2.2)

where 0 ≤ bj ≤ 1 is the intensity value of the pixel j. The size of the pattern

obtained using the intensity encoding strategy is determined by the size of the

receptive field, in particular with a receptive field θ = {θW , θH} of θW × θH pixels,

the pattern size n = θW θH .

With histogram encoding, the receptive field is used to compute an histogram

with n bins and each bin i = 1, 2, . . . , n in the histogram fi represents the number

of pixel in the receptive field that have an intensity value (i− 1)/n < b < i/n. A

typical value for n is 256, that gives one histogram bin to each intensity value of

a 8-bit grayscale image. Once the value of each bin fi is determined, the pattern

is normalized so that
∑n

i=1 bi = 1, in particular

b =

(
1∑n
i=1 fi

)
· [f1, f2, . . . , fi, . . . , fn]T (2.3)

Let us describe now how the unsupervised learning happens. The learning

process requires ttot iterations and, at the first iteration, the values of the neural

weights are randomly chosen between 0 and 1. At each iteration t, a new input

vector is presented to the SOM and a single neuron k is activated in a particular

location of the network. We call this neuron the winner. The winner selection

occurs by satisfying the identity

‖b−wk‖ = min
i
{‖b−wi‖} (2.4)
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The step previously described is followed by the update of the weights in the

neighborhood of the winner. The update, described by the equation

wi(t+ 1) = wi(t) + α(t)hik(t)[b(t)−wi(t)] (2.5)

depends on two functions: α(t), called adaptation gain or learning rate, and hik(t),

called neighborhood function, that is a bell curve kernel function.

Since the SOM only updates neurons near the winner, the function hik(t) de-

pends on the dimensionality of the neuron lattice. For the 1-dimensional SOM we

have

hik(t) = exp

(
−‖i− k‖

2

2σ2(t)

)
(2.6)

while for the generic N-dimensional SOM

hik(t) = exp

(
−‖qi − qk‖2

2σ2(t)

)
(2.7)

where ‖qi − qk‖2 denotes the Euclidean distance between the coordinates of the

winning neuron k and the neuron to be updated i. In the case N = 2, depicted in

Figure 2.2(b), we can consider qk = [qkr, qkc]
T and qi = [qir, qic]

T , where 1 ≤ r ≤ R

in subscript is in reference to the row number inside the 2D neuron lattice and

1 ≤ c ≤ C refers to the column number.

In order to speed up the convergence of the learning process, the two parameters

σ2 and α can be chosen as time-variable functions that decrease monotonically and

linearly with the iterations. How to configure σ2 and α and how many iterations

are required depend on the problem to be treated, this details are discussed in

the following experimental chapters. The one just described is the standard setup

for a SOM, for an extended discussion on the parameters and on the model itself

we recommend the book [19]. We also tested other weights initialization methods

and other non-standard functions for σ2 and α, but during the experiments we did

not noticed significant changes that may justify the increase in complexity of the

method.

Since we have an arbitrarily large set of input (or training) images, the number

of iterations will probably not match the total number of patches ttot extracted by
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[ b1, b2, …, bj , bj+1, …, b2j ]T

Input image I0 
(multichannel)

Output image I1
(2-channels)

Sliding window
pattern generation

SOM

Image remapping

Winner 
neuron k

Receptive field
(contains j pixels)

Figure 2.3: Schema representing the image remapping strategy, performed using

a 2-dimensional SOM.

sliding the receptive field. The strategy adopted is to extract all the patches and

sort them randomly, then the first ttot patches were involved in the training process

while other patches are discarded. If the number of patches is less than ttot, the

patches are cyclically presented to the SOM, this event may happen, for example,

when we have a single input image. To create a random permutation of the patches

we use a modern version of the Fisher-Yates shuffle algorithm, proposed in [20],

that has a O(n) complexity, where n is the number of patches.

At the end of the training phase, the spatial location, represented by the co-

ordinates of each neuron in the network, corresponds to a particular domain or

feature of input signal patterns [17] and the weights of each neuron contain a good

prototype of the input patches [21]. Summarizing, by using a small window of

local context around each pixel, the proposed method tries to associate to each

neuron a particular local feature.

Once the SOM is trained, its neural weights w can be treated as constant values,

and employing the same sliding window approach used during the previous training

phase, we can map each pixel of the input image in the N-dimensional Euclidean

space of the activated neurons within the SOM lattice. Using again Equation 2.4,

we thus generate a new image with N-channels that we call remapped image.
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(a) (b)

Figure 2.4: (a) A sample textured image and a receptive field of 20 × 20 pixels.

(b) The same image with a 10-pixel padding obtained using a mirror strategy.

The remapped image I1(x, y) can be formally computed from the input image

I0(x, y) using

I1(x, y) =
k

m
(2.8)

and, for the 2-dimensional SOM

I1(x, y) =
[qkr
R
,
qkc
C

]T
(2.9)

where, for each pattern b centered on the pixel (x, y) of the input image I0, the

winner neuron k is found using Equation 2.4. R and C refer to the size, in rows and

columns, of the 2-D neural lattice. Note that the image defined in Equation 2.9

is a two-channels image, therefore each pixel contains two intensity values. The

resampling procedure for a 2-dimensional SOM is visually explained in Figure 2.3.

For some applications, like texture segmentation, it may be necessary that the

remapped image I1 has the same size of the input image I0. For this purpose the

input image can be border-padded so that, in total, H ·W training vectors will be

extracted, where H is the height and W is the width in pixels of the input image

I0. For texture segmentation, we tested the ”mirror” border padding strategy, as

explained in [22] and depicted in Figure 2.4.
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2.3 Feature Learning Unit Composition

As we will see in Chapter 3 and Chapter 4, the FLU is a powerful tool that is

able to process images and find, in an unsupervised way, salient local features.

For problems like the classification of scene images the features can be extracted

by the FLU, sliding the receptive field over the whole image, and then globally

aggregated using some encoding like a pyramidal histogram. However, when we

deal with the segmentation of images, a highly accurate local feature description

is needed because we can no longer rely on a global encoding [23]. For this reason

we empirically found that the composition of more than one FLUs with different

receptive field sizes and local encodings can provide a highly reliable local features.

This property was largely demonstrated in the convolutional neural networks

literature, a model biologically inspired by the cells in the mammalian visual cor-

tex and successfully applied to handwritten character recognition [5, 6] and class

object recognition [10]. In [24], convolutional networks were also applied to face

recognition and a SOM is used to reduce the dimensionality of input images.

In this section we describe how the learning process happens when we compose

more FLUs. The proposed learning algorithms are easy and intuitive, but a formal

description is required.

Let’s start with the serial composition of two FLU. The learning scheme for

the serial composition is depicted in Figure 2.5(a). The learning process starts

training the FLU1 with a set of input images I0. The method used to train the

unit is the one described in the previous section. When the training of the first

unit is done, FLU1 is used to remap all input images, creating a new set of images

I1, that is in turn used to train FLU2, with the same method used until now.

For the parallel composition, depicted in Figure 2.5(b), the learning process

starts training FLU1 and FLU2 with the same set of input images I0. It is im-

portant to notice that the two trainings are completely independent and can be

carried out in parallel. Once FLU1 and FLU2 are trained, the sets of remapped

images I1 and I2 are created and, for each image in this two sets, the channels

are concatenated in order to create a new set of images I1,2. Formally, given

the image I1 ∈ I1 with two channel I1 = {Ia1 , Ib1} and the single-channel image
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Figure 2.5: (a) Two FLU in series. (b) Parallel composition of two FLUs and a

third FLU that aggregates the results.
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I2 ∈ I2, I2 = {Ia2}, the resulting image I1,2 ∈ I1,2 is defined as I1,2 = {Ia1 , Ib1, Ia2}.
The set I1,2 is then used to train FLU3.

The two cases of composition discussed in this section should be seen as building

blocks that give the essential tools to create more complex models.

2.4 Summary

In this chapter we introduced the concept of FLU and explained how the unsuper-

vised learning happens. Summarizing, the FLU is model that uses local patterns

from input images to train a SOM neural network and then, using a process called

remapping, acts as a local feature extractor. Then we described the basic building

blocks to combine multiple FLUs and increase the local accuracy of the feature. An

application of the FLUs composition will be used as a texture descriptor and dis-

cussed in Chapter 3. However, even the features yielded by a single well-configured

FLU can be successfully used, with a proper encoding, to solve a complex problem

like the classification of scene images, discussed in Chapter 4.





3
Unsupervised Texture Descriptor

3.1 Introduction and State of the Art

In order to automatically produce a description of a natural image, a fundamental

role is played by texture descriptors. Images representing real objects often do

not exhibit regions with uniform intensities but, due to the physical properties

of real surfaces, they contain frequent variations of brightness which form certain

repeated patterns called visual texture or, more simply, texture.

Over the years, many problems involving texture analysis have been proposed,

the main ones are listed below. Texture classification aims to produce a clas-

sification map of an image where each uniform textured region is identified by

a particular texture class which belong to. Texture segmentation is focused on

finding texture boundaries even if it is not possible to classify each region. Fig-

ure 3.1 shows an example of unsupervised texture segmentation obtained applying

19
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Figure 3.1: Segmentation between two areas with different textures obtained using

the proposed descriptor. Segmentation border is depicted with a white line.

a K-means clustering to the local descriptor proposed in this chapter. Texture

synthesis is used for image compression and in computer graphics, with the aim

of rendering object surfaces which need to be as realistic as possible. Finally, with

shape from texture, we aim to extract the three-dimensional shape of objects in a

scene using texture information, distorted by imaging process and the perceptive

projection [25]. Despite the final purpose is quite different, each of the problems

listed above requires a texture descriptor, which becomes an essential tool in many

applications.

A common denominator for most successful texture descriptors is that the

textured image is submitted to a linear transform, filter or filter bank. Methods

using this common scheme are called filtering approaches, and received an extensive

survey in [26], a comparative study where various filtering approaches have been

evaluated within a texture classification framework.

An important issue that characterizes most of the filtering approaches is the

selection of an appropriate filter bank. The most commonly are the Gabor filters,

inspired by experiments with animal visual systems [27], and signal-processing

based filters, designed with desirable band-pass properties in the Fourier domain
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[28]. However, the optimal choice of a filter bank is often influenced by the par-

ticular application and may require a lot of experimentation.

A simple and promising strategy to combine multiple filters, resulting in a

compact description of the texture, is the spectral histogram, first suggested in

psychophysical studies on texture modeling [29] and later used for texture analysis

and synthesis [30] [31]. Spectral histogram is based on the assumption that all of

the spatial information characterizing a texture image can be captured in the first

order statistics of an appropriately chosen set of linear filter outputs. Spectral

histogram can also be used as a local descriptor, using and appropriately sized

receptive field, in this case the descriptor is often called Local Spectral Histogram

(LSH).

LSH is a powerful local texture descriptor, able to seize general aspects of

texture as well as non-texture regions. In [1] a LSH based on a receptive field

θ = {19, 19} and on a filter bank based composed of eight filter (pixel intensity,

two gradient filters, two-scales Laplacian of Gaussian and three Gabor filters) has

been used for texture segmentation, attaining the state of the art in the field of

unsupervised texture segmentation methods based on filter bank.

The choice of a suitable filter bank can be carried out automatically with

applications involving a supervised learning, where a filter-selection algorithm may

choose, from among a set of pre-configured filters, a subset that maximizes the

quality of the result [32]. However, the parameters of a good generic descriptor

should not depend on the particular application.

The main drawback of LSH is that it requires large integration windows to

extract meaningful texture features from the image, this results in a poor reliabil-

ity of the description along texture boundaries. A solution to the aforementioned

problem has been proposed in [1] by using asymmetric windows and a refined prob-

ability model based on seed points automatically extracted from the segmented

regions.

Some work tried to generalize the methods based on multichannel filtering by

training, in a supervised fashion, a neural network in order to find a minimal set of

specific filters. These methods may delegate to the neural network the dual task
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of extracting features and classifying textures [33] [34], or perform separately the

second phase using a more powerful classifiers such as Support Vector Machines

(SVMs) [35].

In this chapter we propose an application of the model presented in Chapter 2

as texture descriptor. The potential of our method is its total independence from

a feature bank, since the unsupervised training is able to automatically extract

salient information using only simple pixel encodings from small image patches.

We exploit two topological configurations. The first is based on a pyramidal com-

position of three FLUs that use intensity as input encoding. The second configura-

tion has a more complex topology and use a histogram-based input encoding. For

both configurations, the unsupervised image analysis is distributed across multiple

FLU modules, using a local receptive field which become progressively larger. At

each node of the composition, only the most relevant feature for the particular

context will be extracted by the FLU and the image will be ”redrawn” deprived

of redundant information.

Considering the complexity of the non-linear dimensionality reduction intro-

duced by each FLU, the validity of the proposed approach is difficult, if not im-

possible, to prove analytically. However, to evaluate the method, we used a very

simple unsupervised texture segmentation strategy, based on a K-means clustering

algorithm applied on the remapped image yielded by the terminal FLU node. In

this way we highlight the goodness of the features, extracted in an unsupervised

fashion by the FLU composition, and we exclude any contributions attributable

to a supervised machine learning method or a post-processing/refinement phase.

In the experimental phase, we will use only mosaics of textures with a fixed

number of regions forming the same shape. This choice is justified by the fact that

we are proposing and evaluating a texture descriptor able to describe complex

textures but not segment scene images. To segment a complex scene image, a

simple K-means clustering is not adequate and other grouping strategies such as

Region Growing or Watershed can be used in its place [36]. However, the definition

of a texture segmentation method is beyond the scope of this thesis and can be a

future work.
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The main results collected in this chapter have been published in [37].

3.2 The Proposed Configurations

As argued in Chapter 2.3, image segmentation and consequently texture segmen-

tation, requires a highly accurate local feature description. We experimentally

verified that, to increase the accuracy of the local feature, we can combine more

FLUs using some simple learning algorithms. The final descriptor is therefore

based on a proper composition of FLUs. In particular we used the two configura-

tions depicted in Figure 3.2.

The first configuration, reported in Figure 3.2(a), is based on a pyramidal

composition of three FLU elements. We called it Config. A. The encoding used to

create patterns from the input images (and from images resampled by each FLU)

is the intensity encoding. At each level of the pyramid the size of the receptive is

increased by a factor 2, starting from a receptive field θ = {2, 2} applied on the

input images and ending with a receptive field θ = {8, 8} used to yield the output

remapped image.

The second configuration, called Config. B and represented in Figure 3.2(b),

processes the input images with a parallel composition of three FLU with different

receptive field sizes, θ = {2, 2}, θ = {4, 4}, θ = {8, 8}. Then the three remapped

images are aggregated with a further θ = {8, 8} node. All the FLU involved in

this second configuration use a receptive field with histogram encoding.

For the configurations used in this chapter we use 2-dimensional SOM with

20 × 20 neuron in each FLU. The SOM parameters varies within two learning

phases, known in literature as the ordering and tuning phase.

During the ordering phase, that involves the first 1000 iterations, parameters

vary as follows:

• α linearly decreases from 0.1 to 0.01

• σ linearly decreases from max(R,C)/2 to 1

The tuning phase involves a number of iterations that depends on the size of
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Figure 3.2: The FLU configurations used as texture descriptor. (a) intensity

configuration called Config. A. (b) histogram configuration called Config. B.
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the network, in particular it is 500 ·m. During this second phase the parameters

vary as follows:

• α linearly decreases from 0.01 to 0.001

• σ linearly decreases from 1 to 0

This parameter configuration is widely used and documented in many works using

the SOM model [17, 38].

We found these two FLU compositions trying a lot of configurations and using

a trial and error strategy on the evaluation images. In the following section we

analyze the results obtained using the two configurations and compare them with

other state-of-the-art texture segmentation methods.

3.3 Experiments

In this section we evaluate the two configurations, introduced in the previous sec-

tion, within a simple segmentation framework based on the K-means algorithm.

We also evaluate the contribution of each individual FLU to the overall segmenta-

tion. This last aspect is very important and justifies the use of a FLU composition.

For each image, the set of patterns to be clustered is created by concatenating

pixel intensities, taken from the remapped image, to their normalized coordinates.

This simple strategy is done in order to create a raw topological constraint that

leads to a more reliable segmentation. Formally

P =
W⋃
x=1

H⋃
y=1

(
IFLU(x, y)||

[ x
W
,
y

H

]T)
(3.1)

where IFLU is usually called the remapped image obtained as the output of a FLU

composition, composed of W ×H pixels.

Our first experiments involves the Config. A, since it has a plain topology and

uses the simplest encoding, based on the pixel intensity. However, in the second

part of this section we show that the Config. B can be used to further improve

the results. We used as evaluation metric the percentage of pixels incorrectly

segmented, this metric is a common choice in the texture segmentation literature.
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(a) (b)

(c) (d)

(e)

Figure 3.3: (a) Input image, a mosaic composed of 5 textures. (b)(c)(d) Two

channels images remapped by FLU1 (b), FLU2 (c) and FLU3 (d). (e) From the

left, the final segmentation, the ground truth segmentation and the segmentation

error map. Wrong pixels are shown in black.
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(a) (b) (c)

Figure 3.4: Results obtained on the texture mosaic in Figure 3.3(a) by [1] with (a)

and without (b) boundary region localization. (c) Our result for comparison.

Figure 3.5: On the right, a false-color image representing the feature extracted by

the FLU3 and, on the left, a detail of the boundary between three textures.
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Figure 3.3(a) depict a 5-texture mosaic used in [1] to test an unsupervised

segmentation method. The authors have obtained a 3.90% error using a LSH

texture descriptor with a receptive field θ = {19, 19} and a filter bank composed

of one intensity filter, two gradient filters, two-scales Laplacian of Gaussian and

three Gabor filters. By applying a refined probability model to localize the region

boundaries, they have reduced the error to 0.95%. The proposed method using

Config. A performs with an error of 1.75%, Figure 3.3(e) shows the resulting

segmentation, the ground truth segmentation and a map that highlights wrong

segmented pixels. Figure 3.4 reports a visual comparison between results obtained

by [1] and the proposed segmentation method.

A typical problem shared by several texture descriptors, and visible in Fig-

ure 3.4(b), is the bad handling of the area near texture boundaries, this happens

when the receptive field overlaps two areas with different textures. Luckily, the

topological ordering property owned by the SOM network and inherited by the pro-

posed texture descriptor makes the transition between different textures smoothed.

Since the local texture description has a gradient-like trend near texture bound-

aries, the K-means clustering that uses the common Euclidean distance as a metric

of distance, is able to recognize and separate with a good precision the two tex-

tures along the real boundary. Figure 3.5 shows the feature extracted by the

FLU3 in false-colors1 and highlights the boundary area where the feature descrip-

tor is smoothed. Considering that we do not use any handcrafted feaure/filter and

mostly that our method does not rely on a specific border localization technique,

the result obtained is very challenging.

Figure 3.6(a) is another 5-texture mosaic used in [2] to test a supervised ap-

proach based on empirical marginal distributions of local texture features, in par-

ticular a co-occurrence distribution and 2 Gabor magnitude distributions extracted

using a θ = {11, 11} receptive field. They have obtained an error of 22.87% training

a model with only one Gabor magnitude distribution and 3.1% using all the three

distributions. Our segmentation error is 4.51%. The two results are comparable,

1The two channels of the remapped image are merged into the R and G channels of an RGB

image.
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(a) (b)

(c) (d)

(e)

Figure 3.6: (a) Texture mosaic composed of 5 textures. (b)(c)(d) Two channels

images remapped by FLU1 (b), FLU2 (c) and FLU3 (d). (e) From the left, the

final segmentation, the ground truth segmentation and the segmentation error

map. Wrong pixels are shown in black.
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(a) (b) (c)

Figure 3.7: Comparison of results for the texture mosaic in Figure 3.6. (a) Results

obtained using the full method proposed by [2] and (b) using only a single Gabor

magnitude distribution. (c) Our result for comparison.

but the problem studied here is essentially more difficult, given the unsupervised

nature of the feature extraction process and, then, of the image segmentation.

[39] proposed the 2-class mosaic in Figure 3.1 as a challenging image since it

show two textures that are both irregular and have similar means and gradient-

magnitudes. No numerical result is available in their paper, but the results that

we achieved is qualitatively comparable with that shown in [39], obtained using an

unsupervised approach that minimizes the entropy-based metric on the probability

density functions of image neighborhoods.

To investigate the contribution of each FLU in the overall process, we evaluated

the method by excluding different subsets of FLUs. The worst result is obtained

without any FLU, just applying the K-means clustering directly on the intensity

levels of the input image, while the best configuration involves all the three FLUs

composed as in the Config. A. Results in Table 3.1 show that the strength of the

descriptor lies primarily in the pyramidal approach that at each level refines the

quality of the descriptor. This process is also visible in Figure 3.8 that shows the

segmentation images obtained segmenting the remapped image at each level of the

pyramid. It’s clear that a shallow architecture, based on a single FLU, is not able

to provide a feature that can be used with the K-means segmenter to create a

satisfactory segmentation.

We also tested a set of images artificially generated in order to prove if the pro-

posed method is only able to segment textures or also non-textured areas. The first
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Table 3.1: Segmentation results obtained using different features and subsets of

the 3-layers architecture proposed in Figure 3.2(a).

Figure 3.3(a) Figure 3.6(a)

error (%) error (%)

Raw pixels 29.45 52.45

Only FLU1 17.12 18.89

Only FLU2 27.56 23.70

Only FLU3 28.88 34.90

Composition of FLU1 → FLU2 11.03 9.75

Composition of FLU1 → FLU3 8.52 4.83

Full Config. A 1.75 4.51

Input image Raw pixels FLU1 FLU1 → FLU2 All FLUs

Figure 3.8: Segmentations obtained using different subsets of the 3-layers archi-

tecture proposed in Config. A.
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(a)

(b)

Figure 3.9: (a) Three synthetically created texture-non texture mosaics. (b) Seg-

mentation results obtained using the features extracted by the Config. A.

image is composed by two wave-gradient regions with two different orientations.

The mean intensity is constant within the two regions and the only discriminant

information is the orientation of the wave pattern. The second image shows two

regions, one with a wave-gradient texture and one with a solid color. Also in this

case both regions have the same mean intensity. The third image contains two

non-textured areas with different intensities. These test images are depicted in

Figure 3.9(a) and, as can be seen in Figure 3.9(b), in all three cases, the proposed

method has been able to distinguish the two regions almost perfectly. This result

suggests that the proposed descriptor can handle, at the same time, texture regions

as well as non-textured regions.

Results obtained with the 3-stacked FLUs are very promising, but we want to

further stress the method using a much larger and complex dataset. The problem is

that, to the best of our knowledge, in the literature there are no standard datasets

suitable to test an unsupervised texture segmentation method. For this reason
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Figure 3.10: Sample images taken from the Mosaic-5 dataset and the ground truth

segmentation image.
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we created a new dataset, called Mosaic-5, composed of 100 images containing

5-texture mosaics. Textures was randomly taken from the well-known Brodatz

album [40] and the Vision Texture Dataset2. There is only one ground truth

segmentation for the entire Mosaic-5 dataset and this is shared by all the 100

images. As evaluation metric we still use the percentage of pixels incorrectly

segmented, but in this case the error is averaged between all the images, resulting

in more reliable evaluation metric. Figure 3.10 contains some sample images taken

from the Mosaic-5 dataset and the ground truth segmentation. The Mosaic-5

dataset is publicly available on the web site http://www.dicom.uninsubria.it/

~marco.vanetti/.

Testing the Config. A we obtained an high mean error of 36.8%, this is prob-

ably due to the high complexity of the dataset, that combines textures with very

different spatial homogeneities. This fact convinced us to find a new composition

of FLUs able to provide acceptable errors on the Mosaic-5 dataset. After an ex-

tensive trial and error phase, we found the configuration referred as Config. B and

depicted in Figure 3.2(b). Config. B is based on a parallel composition of three

FLU with different receptive field sizes and a histogram encoding. Remapped im-

ages produced by the first three FLUs are aggregated by a fourth FLU in order

to yield the final texture description. The use of a local receptive field with a

histogram encoding of pixel intensities was inspired by the texture segmentation

method proposed in [1], based on a bank of different filters.

In Table 3.2 we collect the results obtained on the Mosaic-5 dataset using the

two configurations in Figure 3.2. As done before for the single evaluation images,

we isolate the contribution of each FLU element to the final texture description.

Results shows that the Config. B, scoring a mean error of 10.7%, is a very powerful

texture descriptor that, although is not based on any handcrafted feature or filter,

can well characterize even very hard texture mosaics. It’s important to notice that

the training and the following remapping and segmentation are performed serially

and independently for each image of the dataset. For this reason the proposed

2The Vision Texture Dataset is provided by the MIT Vision and Modeling Group, available

on the web site http://vismod.media.mit.edu/

http://www.dicom.uninsubria.it/~marco.vanetti/
http://www.dicom.uninsubria.it/~marco.vanetti/
http://vismod.media.mit.edu/
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Table 3.2: Mean segmentation error obtained with the proposed configurations on

Mosaic-5 dataset.

Mean segmentation

error (%)

K-means on pixels 64.9

Only FLU1 57.2

Composition of FLU1 → FLU2 43.1

Full Config. A 36.8

Only FLU4 38.8

Only FLU5 23.7

Only FLU6 15.5

Full Config. B 10.7

method, in order to be used as a generic texture segmenter, does not require to be

pre-trained because the training is limited only to the image to be segmented.

As a final point, we want to consider the time complexity of each FLU that

is, fixing the SOM size, O(θW θH). Before being processed, each input image is

scaled to 100 × 100 pixels. Under these conditions, the time required to process

an image with a receptive field of θ = {2, 2} and any type of encoding is about

3 seconds. With a receptive field of θ{8, 8}, the time required rises to about 8

seconds. Tests showed that a complete training and resampling of the 3-stacked

FLUs model requires about 15 seconds using an unoptimized, single C# thread,

on an Intel(R) Core(TM) i5 mobile CPU at 2.30Ghz.

3.4 Summary

In this chapter we have applied two FLU compositions as a new texture descriptor

able to characterize textured as well as non-textured regions with high accuracy.

The potential of the method lies in its independence from a feature bank and

its ability to automatically extract, without supervision, salient information us-
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ing only simple pixel encodings from small image patches. Our method exploits

the important topological ordering property of the SOM and allows a smoothed

and reliable image description even in areas with strong transitions, such as the

boundary between two different textures or two different solid colors.

Comparison with other state-of-the-art methods shows that our solution gives

comparable results even without a directly managing of difficult areas, such as

texture boundaries. The provided configurations offers good results on different

types of evaluation images and on the very challenging Mosaic-5 texture segmenta-

tion dataset, that we proposed in order to allow a reliable comparison with future

methods.



4
Image Classification

4.1 Introduction and State of the Art

For the automatic categorization of scene images, a very complex computer vision

problem, a common trend in recent years consists in the use of feature learning

and deep learning algorithms to learn a set of features from unlabeled data in

an unsupervised way. Features learned are typically used to train a supervised

discriminative model, e.g. a SVM classifier. As discussed in previous chapters,

feature learning algorithms are opposed to methods that use specific handcrafted

features, chosen by a domain expert.

In deep learning literature many methods such as K-means and Gaussian Mix-

tures [14], Autoencoder [8, 11], Restricted Boltzmann Machine [7, 12] and Sparse

Coding [9] have been successfully applied to the problem of single-layer feature

learning and multi-layers deep learning. Even in the computer vision have been

37
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proposed methods that exploit the K-means algorithm to create a dictionary or bag

of visual words used as a feature in many visual class recognition problems [41, 42].

In this chapter we train a single FLU node to learn single-layer features from

the extremely challenging CIFAR-10 dataset, containing 60.000 tiny natural im-

ages belonging to 10 classes, with 6.000 images per class [12]. As remarked in the

previous chapters, the features learned by the FLU arise straight from the raw pixel

values within a local receptive field and not from a knowledge-based feature selec-

tion. In the experimental section we show that a supervised linear SVM classifier

trained with opportunely encoded learned features provides significantly better re-

sults than using raw pixels values or the Pyramid Histogram of Oriented Gradients

(PHOG), a popular handcrafted feature used in computer vision to represent the

shape of objects and to perform visual class recognition in natural images [43, 44].

Contrary to most feature learning algorithms, the proposed method is fast and

requires just few minutes to train the FLU, despite the large number of images

involved in the process. It may seem strange that a method successfully employed

as a texture descriptor can be used to classify complex scene images. However it

has been shown in literature that early scene identification can be explained with

a simple texture recognition model [45].

The major contribution of this chapter is the empirical study of the SOM neu-

ral network used to learn features from a very big and challenging datasets, the

CIFAR-10. The unsupervised learning process is fast and can be controlled by

adjusting the size of the SOM. Moreover our results show that using the proposed

method it is possible to arbitrarily reduce the number of features without repeat-

ing the feature learning process by combining topologically close neurons. This

interesting property follows directly from the topological ordering property of the

SOM neural network.

The main results collected in this chapter have been published in [46].
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4.2 Image Representation

This section describes the feature learning phase, performed by the FLU on a large

set of images, and the encoding that we used to represent the input image and

then perform the supervised classification.

Given a large set of input images (in our case the training set of the CIFAR-10

dataset) we train a single FLU with the method described in Chapter 2.2. The

FLU used in this chapter is based on a one-dimensional SOM with m neurons, as

depicted in Figure 2.2(a). Once the FLU is trained, the neural weights w can be

treated as constant values and, given a new input, according to Equation 2.4, a

single neuron is selected as the winner and is therefore activated. To represent an

image we slide the receptive field, pixel by pixel, over the whole image obtaining

a distribution of neurons activations. These activations are then encoded using

a histogram representation, where each bin i = 1, 2, . . . ,m in the histogram fi

represents the activation count for a single neuron.

Following the spatial pyramid scheme proposed in [41], we compute more local

histograms on the same image, starting from a single histogram at the first level

and quadrupling the number of histograms for each new level of the pyramid.

Considering only the histograms on a single level: they are computed in order

to cover non-overlapping regions of the image, have always a rectangular shapes

and have all the same area. To form the final feature that describes the image,

the histograms from all levels and all regions are concatenated as can be seen in

Figure 4.1, showing an example of a pyramidal histogram with 3 levels.

The final feature is a vector with dimensionality
∑L

l=1

(
m · 4l−1

)
, where L is the

number of levels and m is the number of neurons in the SOM. Each histogram in

the pyramid is individually normalized in order to satisfy the identity
∑m

i=1 fi = 1.

This encoding is similar to the PHOG feature, where each bin in the his-

togram represents the number of edges having orientations within a certain angular

range [43].
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Figure 4.1: Encoding of a pyramidal histogram feature with 3 levels using a 4-

neurons FLU. Each red square yields a 4-bins histogram. Each 4-bins histogram

represents the activation of the four neurons when we slide the receptive field on

the local area surrounded by the red square.

4.3 Experiments and Analysis

In this section we conduct several experiments using features extracted from images

with the FLU-based method just described and a linear SVM as supervised training

classifier [47].

As specified in Section 4.1, the dataset used to analyze the method is the

CIFAR-10, a very challenging image classification dataset that contains 60.000

tiny annotated natural images divided into 10 classes, with 6.000 images for each

class [12]. The images, each with a resolution of 32 × 32 pixels, contain differ-

ent classes of objects, in particular animals and vehicles. Figure 4.2 shows some

example images taken from the CIFAR-10 dataset. In all experiments we used

the training set, composed by 50.000 images, to learn features and to train the

SVM and the test set, composed by 10.000 images, to test the overall classification

accuracy. As evaluation metric we used the percentage overall accuracy, which

represents the number of images correctly classified on the total number of images
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Figure 4.2: Some example images extracted from the CIFAR-10 dataset.

of the test set.

In order to improve the statistical reliability of accuracy values, for each exper-

iment we trained the SVM 5 times, using 5 disjoint sets of training images, and

we have averaged the test results, obtained each one on the whole test set. We

found experimentally that a third level in the pyramidal histogram increases too

much the size of the training vectors reducing the OA in all experiments, for this

reason we reported results only for the first two levels.

All the tests reported in the following sections, except those in Section 4.3.4 and

Section 4.3.5, were performed using ”grayscale” pixel intensities within receptive

field of θ = {6, 6} pixels with no local brightness and contrast normalization.

4.3.1 Standard Classification Methods

We now describe the results obtained on the CIFAR-10 dataset using three stan-

dard image classification methods. The first method, which we call icon classifier,

represents each image as the concatenation of the intensity values of the pixels.
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Figure 4.3: Overall accuracy obtained using the icon classifier with pixel intensities

and colors.

For the color version of the icon classifier, the feature is formed by concatenat-

ing for each pixel the value of the three RGB channels. To control the size of

the feature vector we scaled the image to different sizes using linear interpolation.

Results obtained with the icon classifier are presented Figure 4.3. Notice how, by

reducing the entire image to a single pixel corresponding to the average value of

all pixels, the SVM is able to correctly classify almost 15% of the images. We also

verified that the color is very important for the classification process, giving an

improvement to the accuracy from 8 to 11%.

We then tested the classifier proposed in [43], based on a SVM and using the

PHOG feature. Results are shown in Figure 4.4. We trained the SVM using

a pyramidal histogram of the gradients computed on both the intensities of the

pixels and the RGB channels. With the PHOG feature the performance is always

acceptable and grows increasing the levels of the pyramid. Due to the small size

of the images we could not test the PHOG with 4 levels.

To exclude that the classification results obtained with features learned by the

FLU can be due only to the pyramidal encoding, we performed a test using a

pyramidal histogram of RGB pixel values. To form the histogram feature, the

RGB space is linear quantized over the bins of the histograms. Figure 4.5 shows
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Figure 4.4: Overall accuracy obtained using the PHOG based classifier, with and

without colors.



44 Image Classification

2 4 8 16 32 64 128 256

Histogram bins

28%

30%

32%

34%

36%

38%

40%

O
v
e
ra

ll 
A

cc
u
ra

cy

1 Level
2 Levels
3 Levels

Figure 4.5: Overall accuracy obtained using a pyramidal histogram on RGB pixel

values and varying the number of the bins.

the results obtained with the RGB pyramidal histogram classifier, using histograms

with different number of bins. It appears that the contribution of the pyramidal

coding is not sufficient to outperform the results obtained with the previously

analyzed icon classifier. The last experiment confirms that the CIFAR-10 dataset

is very hard and we need to learn ad-hoc features from the dataset itself in order

to achieve results that exceed the 40% accuracy.

4.3.2 FLU Configuration

In all experiments presented in this chapter we used a FLU configured according

to the following specifications. The learning rate α decreases linearly with the first

1000 ordering iterations from 0.1 to 0.01 and for the next 500 ·m tuning iterations

from 0.01 to 0.001. The parameter σ decreases linearly from m/2 to 1 during

the ordering phase and from 1 to 0 during the tuning phase. As explained in the

previous chapter, this parameter configuration is widely used across the literature

on SOM. We tried to double, triple and quadruple ordering and tuning iterations,

but this did not lead to any change of more than 0.5% in the classification accuracy.
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Figure 4.6: Overall accuracy obtained varying the number of neurons of the FLU

and the pyramidal histogram levels.

We conducted first experiments using FLUs with 64 to 1024 neurons, dou-

bling at each experiment the number of neurons. The receptive field was set to

θ = {6, 6}. Figure 4.6 shows overall accuracies in function of the size of the FLU

and the number of levels in the pyramid. In accordance with the literature on

feature learning, increasing the number of features leads to improved results, in

particular in our case there is a linear relationship between the square of the num-

ber of neurons involved in the unsupervised learning and the overall classification

accuracy. Using the second level of the pyramid, the accuracy increases from 2.3%

to 2.7%.

The computational time required to train a FLU with 512 neurons, using

θ = {4, 4} receptive fields, was about 20 minutes, or 10 minutes using a 256-

neurons FLU. Our implementation is a single threaded C# code on an Intel(R)

Xeon(TM) @ 2.66GHz CPU.

4.3.3 Reducing the Feature Size

An important property of the SOM model is that the weights of spatially close

neurons correspond to similar features [17]. This property is called topological
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ordering and is a consequence of the Equation 2.5 that forces the weight vector

of the winning neuron and its neighborhood to move toward the input vector.

Exploiting this property we can arbitrarily reduce the number of features used to

describe an image by grouping neighboring neurons in the same histogram bin.

For example, by grouping all pairs of neighboring neurons it is possible to halve

the size of the final feature. Grouping more close neurons, we can further reduce

the size of the feature and significantly speedup the supervised learning performed

by the SVM 1.

We performed some experiments grouping neurons from FLUs with different

sizes in order to obtain several description of images involving histograms with

different number of bins. For example, the representation obtained by a 256-

neurons FLU was reduced in size obtaining histograms with 128, 64 and 32 bins.

We also performed a test with a 1024-neurons FLU where, at the end of the

unsupervised learning process, the neurons were randomly ordered in order to

nullify the effect of the topological ordering.

Results reported in Figure 4.7 clearly shows that the topological ordering of

the SOM allows to efficiently reduce the size of the features without having to

retrain the unsupervised model and without sacrificing the classification quality

for more than 1− 2% accuracy. The procedure described above can not be carried

out in such a simple way using other not supervised methods that do not have the

topological ordering property, such as the K-means clustering.

4.3.4 Effect of Color, Local Image Normalization and Re-

ceptive Field Size

In this section we report the results obtained using different receptive field sizes,

adding the RGB color information and applying a local brightness and contrast

normalization to the patches extracted from the image. Let’s assume that the

intensity value of the pixels varies between 0 and 1, we employed on every patch

extracted from the image a simple normalization, subtracting the mean intensity

1In our tests we noticed a 40 − 50% speedup every time we halved the size of the features

used to train the SVM.
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Figure 4.7: Overall accuracy obtained using applying the topological grouping

to reduce the number of bins in the histogram. In this test we used a 1 Level

pyramidal histogram.

value, dividing by the standard deviation of its elements and summing 0.5. Pixel

intensities that fall outside the 0 to 1 range after the process are clipped to lie

within this range. Local brightness and contrast normalization is one of many

methods used in feature learning algorithms to improve the quality of the classifi-

cation results [14].

Figure 4.8 shows the effects of the introduction of color and local brightness and

contrast normalization, while in Figure 4.9 we have shown how the classification

accuracy varies in function of the receptive field size. It is interesting to notice that

the use of local normalization makes the contribution of the color less important,
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Figure 4.8: Effect of color, local brightness and contrast normalization for a 64-

neurons FLU.

this fact can be seen also in Figure 4.10, where the weights of a 64-neurons FLU,

trained with and without the local normalization are shown.

An overall accuracy of 54% was obtained using a 128-neurons FLU, θ = {4, 4}
receptive field, color and local brightness and contrast normalization, and is com-

parable with results obtained by [14] using a K-means with a hard pooling feature

encoding and a number K of centroids similar to the number of neurons in our

FLU. Figure 4.11 shows the confusion matrix for this last experiment.

4.3.5 Other datasets

Cifar-10 is a very challenging dataset and is well accepted in literature to test

machine learning and feature learning methods. However, for completeness, we

want to test the applicability of our method to other classes of images and, in

particular, to some datasets widely used in computer vision. In particular we

chose to test other two standard image classification dataset, the Caltech-101 [48]

and the Caltech-256 [49]. The Caltech-101 dataset contains 9145 images belonging

to 101 classes plus a clutter class, while the Caltech-256 contains 30.608 images
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(a)

(b)

Figure 4.10: Weights plot obtained from a 64-neurons FLU trained with color

θ = {6, 6} receptive fields. Effects of training with (a) and without (b) local con-

trast and brightness normalization of patches. Notice that the features extracted,

plotted from top-left to bottom-right, are topologically ordered.
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Figure 4.11: Confusion matrix obtained with a 128-neurons FLU, color, local

contrast/brightness normalization and a θ = {4, 4} receptive field.
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Table 4.1: Classification results obtained with five different datasets. In the last

column the difference in OA% between the classification carried out using the

PHOG feature and the proposed method.

Dataset Images Classes PHOG FLU ∆

Number OA% OA%

CIFAR-10 50.000 10 38 56 +18

CALTECH-256 30.607 256 49 75 +26

CALTECH-101 9.144 101 79 87 +8

Drezzy-46 4.841 46 87 90 +3

Artelab Mobile Fashion 502 5 96 95 -1

and 256 + 1 classes 2.

We also tested the proposed method on two much smaller dataset, to see the

influence of the number of training images on the quality of learned features.

In particular we employed the Drezzy-46 and Artelab Mobile Fashion datasets,

proposed in our previous work [50].

We chose the standard 2:1 train-test split for all these datasets, so each dataset

has been split into two sets, 2/3 of the images for training purposes and 1/3 for

testing. In order to be processed efficiently, each image has been scaled to fit inside

a 64× 64 pixels square.

The model used for this test is a FLU with a 512 neurons SOM, a θ = {4, 4}
receptive field, 2 pyramid levels, colors and local brightness and contrast normal-

ization. For comparison we tested also the classifier based on a SVM and the

PHOG feature, configured with 15-bins and 3 levels.

Table 4.1 reports information about the four datasets and the results obtained.

Results on the two Caltech dataset are very good and the standard PHOG method

is significantly outperformed. As expected, the quality of the learned features

decreases if the number of images used in the unsupervised learning is too low

2The two Caltech datasets are available for download on the web page http://www.vision.

caltech.edu/archive.html

http://www.vision.caltech.edu/archive.html
http://www.vision.caltech.edu/archive.html
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Table 4.2: Classification results obtained with other state of the art image classi-

fication methods.

Method Caltech-101 Drezzy-46

OA%

FLU 87 90

LP-β 82 80

MKL 74 89

VLFeat 66 71

R.Forests* 80 -

*the source code is not available

[4, 51], consequently we have a very little gain in performances using the FLU

with the Drezzy-46 dataset and a very little regression with the 502-images Artelab

Mobile Fashion dataset.

We also performed tests with other state-of-the-art methods for image classifi-

cation proposed in the computer vision literature. In particular, we considered

• LP-β, a multi-class classification method based on a Boosting of SVM weak

learners [52]

• MKL, a classifier based on multiple kernel [53]

• VLFeat, a method based on bag of visual words and Random Forests con-

tained within the VLFeat framework [54]

• RForests, an image classification approach that combines the PHOG feature

with a bag of visual words strategy [44]

It is interesting to notice that the LP-β and MKL methods require, using the

Caltech-101 dataset on our platform, days for the training phase, minutes to clas-

sify each image during the testing phase and gigabytes of disk space to store all the

features data extracted from the training dataset. Results reported in Table 4.2
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show an improvement of 5% over the LP-β method using the Caltech-101 dataset

and a slightly improvement of 1% over the MKL method on the Drezzy-46.

4.4 Summary

In this chapter we presented a model that exploits a single FLU node to learn fea-

tures from images without requiring any supervision. Our experiments performed

on the very challenging CIFAR-10 and on other computer vision datasets show

that the features learned by the FLU and encoded using a pyramidal histogram

approach significatively outperform the classification methods based on raw pixels

values and other state-of-the-art methods designed specifically for image classifi-

cation.

Despite the large number of images processed in the datasets, the proposed

feature learning process is fast and requires few minutes also using FLUs with

hundreds of neurons. Moreover, employing the presented model it is possible to

control the size of the features used to train the supervised classifier by grouping

close neurons in the histogram encoding scheme. This property allows to speed up

the learning process without having to repeat the unsupervised feature learning.

Experiments show that the accuracy of the classification can be improved by

applying appropriate normalizations and fine tuning to the receptive field. Other

normalization methods, such as whitening [55], and feature encoding schemes, such

as hard or soft pooling [41, 56], can be applied to improve the results and can be

considered in future work.
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Conclusions

In recent years a great amount of research has focused on algorithms that learn

features from unlabeled data. These approaches are known as feature learning or

deep learning methods and have been successfully applied to classify scene images

and recognize with high precision handwritten characters.

In this thesis we showed that a feature learning approach can be used to segment

complex textures, a problem for a long time addressed proposing a large amount of

handcrafted descriptors and local optimization strategies. We employed the SOM

neural network for its ability to natively provide a set of topologically ordered

features. These features allowed us to obtain a highly accurate local description,

even in areas characterized by a transition from one texture to another. We also

showed that a single feature learning unit can be combined with others in order

to significantly improve the quality of the texture description and, consequently,

reduce the segmentation errors. The results obtained proved that the proposed

55
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segmentation method is valid and provides a real alternative to other state-of-the-

art methods.

Since the proposed framework is simple, we easily combined it with a pyramidal

histogram encoding and a SVM supervised network in order to classify scene im-

ages. We showed that the important topological ordering property, inherited from

the SOM network, allow us to resize the feature set, obtained during the initial

unsupervised learning, avoiding an unpredictable performance loss. Moreover, the

results obtained on the standard Caltech-101 dataset proved a significant improve-

ment on some state-of-the-art computer vision methods, designed specifically for

image classification.

Future research could be made in order to further improve the texture segmen-

tation accuracy by defining a method that automatically find a FLU configuration

and an optimal parameters setting for the receptive field size and the type of en-

coding. As regards the classification of scene image, to improve the results, other

normalization methods and feature encoding schemes can be tested and integrated

within the classification framework.
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