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1. Strategies to control insect pest damage 

Insect pests are a worrying problem in agriculture and, with a projected 

increase in the world population to ten billion over the next four decades, an 

immediate priority for agriculture is to achieve maximum production of food and 

other products in a environmentally sustainable and cost-effective manner. Losses 

due to insect herbivores, estimated at 10-20% for major crops, are significant factors 

in limiting food production (Ferry et al., 2004). Various types of strategies have been 

utilized to control insect pests; the most used is still the chemical treatment. 

Although the use of chemical pesticides is effective, the cost and toxicity to humans 

and the environment has motivated the search for alternative pest control strategies 

(Whangbo and Hunter, 2008). In fact, the production of transgenic plants as strategy 

to control insect pests has become widely used in America. The most successful 

strategy was the transformation of the plants with genes encoding Bt toxins. 

However, recent reports of resistance to Bt toxins being observed in field populations 

of insects exposed to transgenic plants (Tabashnik et al., 2008; Gahan et al., 2001) 

have been provided an additional impetus for the development of alternative crop-

protection strategies. 

Methods, based on the use of self-defensive plant proteins or of insecticidal 

proteins are applied, but have limited application to control pests in agriculture. 

The most powerful alternative crop-protection technology remains RNA 

interference. It has a high specificity and is used for applications where Bt-based 

approaches have proved difficult, for example protection against flies (dipterans), or 

where no effective Bt toxins are known, for example protection against sap-sucking 

homopteran pests such as aphids, leafhoppers and whitefly (Borovsky, 2005; Gordon 

and Waterhouse, 2007; Price and Gatehouse, 2008).  

 

1.1. Bt toxins 

The source of the insecticidal toxins produced in commercial transgenic 

plants is the soil gram-positive spore-forming bacterium Bacillus thuringiensis (Bt). 

Bt strains show differing specificities of insecticidal activity toward pests, and 

constitute a large reservoir of genes encoding insecticidal proteins, which are 

accumulated in the crystalline inclusion bodies produced by the bacterium on 

sporulation (Cry proteins, Cyt proteins) or expressed during bacterial growth (Vip 
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proteins). The three-domain Cry proteins have been extensively studied, up to date 

the tertiary structures of six different three-domain Cry proteins, Cry1Aa, Cry2Aa, 

Cry3Aa, Cry3Bb, Cry4Aa and Cry4Ba have been determined by X-ray 

crystallography (Fig. 1, Bravo et al., 2007) (Li et al., 1991; Grochulski et al., 1995; 

Morse et al., 2001; Galitsky et al., 2001; Boomserm et al., 2005; Boomserm et al., 

2006). The N-terminal domain (domain I) is a bundle of seven α-helices and this 

helical domain is responsible for membrane insertion and pore-formation. Domain II 

consists of three anti-parallel β-sheets with exposed loop regions, and domain III is a 

β-sandwich. Exposed regions in domain II and domain III are involved in receptor 

binding (Bravo et al., 2005). 

The mode of action of Cry toxins has been characterized principally in 

lepidopteran insects. It is widely accepted that the primary action of Cry toxins is to 

lyse midgut epithelial cells in the target insect by forming pores in the apical 

microvilli membrane of the cells (Aronson and Shai, 2001; de Maagd et al., 2001). 

Nevertheless, it has been recently suggested that toxicity could be related to G-

protein mediated apoptosis following receptor binding (Zhang et al., 2006). Cry 

proteins pass from crystal inclusion protoxins into membrane-inserted oligomers that 

cause ion leakage and cell lysis. The crystal inclusions ingested by susceptible larvae 

dissolve in the alkaline environment of the gut, and the solubilized inactive protoxins 

are cleaved by midgut proteases yielding 60–70 kDa protease resistant proteins. 

Toxin activation involves the proteolytic removal of an N-terminal peptide and 

approximately half of the remaining protein from the C-terminus in the case of the 

long Cry protoxins. The activated toxin then binds to specific receptors on the brush 

border membrane of the midgut epithelium columnar cells before inserting into the 

membrane. Toxin insertion leads to the formation of lytic pores in microvilli of 

apical membranes. Subsequently cell lysis and disruption of the midgut epithelium 

releases the cell contents providing spores a germinating medium leading to a severe 

septicemia and insect death. 

One of the major applications of Bt toxins is in the development of 

transgenic insect resistant plants. Transformation of the nuclear genome with genes 

encoding Bt toxins gives very low levels of expression unless extensive 

modifications, which include removal of AT-rich regions from the coding sequence 

and use of modified constitutive or tissue-specific promoters, are carried out.  
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Figure 1. 
Three dimensional structures of insecticidal toxins produced by Bacillus 
thuringiensis Cry1Aa, Cry2Aa, Cry3Aa, Cry3Bb, Cry4Aa, Cry4Bb and Cyt2A. 
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These methods were established within the first stage of the development 

of this technology and are now considered routine, although they do pose significant 

technical problems.  

In contrast, introduction of unmodified Bt genes into the chloroplast 

genome results in high levels of toxin accumulation (3%-5% of total leaf protein; 

McBride et al., 1995), as the plastid genome is bacterial in origin. This method has 

not been widely adopted, due to significant technical problems in achieving stable 

transformation of the plastid genome and in transforming plastids in species other 

than tobacco (Nicotiana tabacum).  

Although the specificity of Bt Cry toxins toward target pest species is a 

major advantage in agriculture, because effects on non-target insects and other 

organisms in the ecosystem are minimized, deployment of transgenic crops 

expressing a single specific Bt toxin can lead to problems in the field, where 

secondary pest species are not affected, and can cause significant damage to the crop 

(Gatehouse, 2008).  

Introduction of additional Bt cry genes into the crop can afford protection 

against a wider range of pests and can also be beneficial in prevention of resistance 

to toxin activity in the target pest(s). Although the ‘‘approved’’ refuge strategy has 

been highly successful in containing pest resistance to Bt toxins expressed in 

transgenic plants (Tabashnik et al., 2005), targeting different receptors in the insect is 

(theoretically) more effective because multiple mutations are required to produce the 

loss of sensitivity to the toxins. Nevertheless results have shown that pests can even  

acquire resistance to multiple toxins; for example, a strain of the lepidopteran cotton 

pest Heliothis virescens has simultaneous resistance to Cry1Ac and Cry2Aa, with a 

different genetic basis of resistance to each toxin (Gahan et al., 2005). 

The structural similarity of all members of the family of three-domain Bt 

toxins, and the separate roles of the domains in the processes of receptor binding and 

channel formation, suggested that combining domains from different proteins could 

generate active toxins with novel specificities. More remarkably, a hybrid Cry 

protein, containing domains I and III from Cry1Ba and domain II of Cry1Ia, 

conferred resistance to the lepidopteran pest potato tuber moth (Phthorimaea 

operculella) and to the coleopteran Colorado potato beetle (Leptinotarsa 

decemlineata) when expressed in transgenic potato (Naimov et al., 2003). The 

‘‘parental’’ Cry proteins in this hybrid are lepidopteran specific, with no toxicity 
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toward coleopterans such as the potato beetle, demonstrating the creation of a novel 

specificity. 

Finally modification of Bt toxins by site-directed mutagenesis to increase 

toxicity toward target pests has been employed as an alternative to the ‘‘domain 

swap’’ approach. However, recent reports of resistance to Bt toxins being observed 

in field populations of insects exposed to transgenic plants have provided an 

additional impetus for the development of alternative crop-protection strategies. 

 

1.2. Self defense: exploiting plant defensive proteins 

Since some plant pests, such as hemipteran, are not affected by known Bt 

toxins, alternative strategies as transgenic plants expressing particular lectins were 

exploited. Lectins are carbohydrate-binding proteins, involved in plant defense and 

are the only plant proteins that are capable of recognizing and binding 

glycoconjugates present on the surface of microorganisms (i.e. bacteria and fungi) or 

exposed along the intestinal tract of insect or mammalian herbivores (Peumans and 

Van Damme, 1995). 

Expression of the Man-specific snowdrop lectin (GNA) in transgenic rice 

plants using constitutive or phloem-specific promoters gave plants that were partially 

resistant to rice brown planthopper (Nilaparvata lugens) and other hemipteran pests. 

Reductions of up to 50% in survival were observed, with reduced feeding, 

development, and fertility of survivors (Rao et al., 1998; Foissac et al., 2000). 

Concerns about possible consequences to higher animals of ingesting snowdrop 

lectin have limited further progress, although a recent study incorporating a 90-d 

feeding trial found no adverse effects resulting from consumption of transgenic rice 

expressing GNA by rats (Poulsen et al., 2007).  

Another strategy, used to control insect pest damages, was producing 

plants expressing proteins that are end-products of the wounding response, such as 

proteinase inhibitors and polyphenol oxidase. Unfortunately, this technology failed, 

because it gave only partial protection against insect herbivores, due to pre-

adaptation by the pests (Morton et al., 2000).  

Engineering volatiles emitted by plants offers possibilities for new 

methods of crop protection as well (Wang et al., 2001; Aharoni et al., 2003): they 

can be used as repellents for insect colonization, and as attractants for natural 



	
   12	
  

enemies of pests, but unfortunately these transgenic plants are not fully resistant 

(Schnee et al., 2006). 

 

1.3. Novel approaches: insecticidal proteins 

Nematodes of Heterorhabditis species that contain symbiotic 

enterobacteria are widely used for small-scale biological control of insect pests. 

When nematodes enter in insect host, bacterial cells from the nematode gut are 

released into the insect circulatory system. Toxins secreted by the bacteria cause cell 

death in the insect host, leading to a lethal septicemia. P.luminescens, the most well-

investigated bacterial species of this type, contains a large number of potentially 

insecticidal components. One of the orally toxic components, toxin A, was selected 

for further study. The encoding gene tcdA was cloned and assembled into expression 

constructs, containing 5’ and 3’ untranslated region sequences from a tobacco 

osmotin gene to improve expression levels of mRNA and protein in transgenic 

plants. Expression of toxin A at levels >0.07% of total soluble protein in leaves of 

transgenic Arabidopsis (Arabidopsis thaliana) plants (Liu et al., 2003) gave almost 

complete protection against larvae of the lepidopteran tobacco hornworm (Manduca 

sexta). Leaf extracts from these plants were also toxic to corn rootworm, showing 

cross-species protection. Commercial development of this technique is likely. 

Bacterial cholesterol oxidase has an insecticidal activity comparable to Bt 

toxins, dependent on its enzyme activity, which is thought to promote membrane 

destabilization. Expression constructs containing part or all of the coding sequence of 

the protein, or the coding sequence fused to a chloroplast-targeting peptide, resulted 

in production of active enzyme in transgenic tobacco (Corbin et al., 2001). However, 

phenotypic abnormalities were observed in transgenic plants unless the enzyme was 

localized in chloroplasts, possibly as a result of interference with steroidal signalling 

pathways. Leaf tissue from all transgenic plants was toxic to boll weevil larvae. The 

cholesterol oxidase gene appears to be an obvious candidate for introduction into the 

chloroplast genome rather than the plant nuclear genome, which would avoid 

potential problems caused by enzyme activity in the cytoplasm; however, no further 

development of this promising method has been reported. 
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1.4. RNAi 

Plant expression of dsRNAs directed against genes in pathogens has 

become an established technique, and plants showing increased resistance to plant 

viruses (Niu et al., 2006; Waterhouse et al., 1998; Pooggin and Hohn, 2003) and 

bacteria (Escobar et al., 2001) through an RNAi effect have been described. 

Several research groups have recently explored the possibility of 

conducting RNAi in insects through feeding: an overview is given in Table 1. It 

emphasizes interesting targets for RNAi in insect control: there is a wide pallet of 

target organisms from different insect orders (from pest insects of important crops in 

agriculture to vectors of human diseases), target genes and feeding methods, 

demonstrating the richness in application of dsRNA and the potentials of RNAi. 

In 2007, Baum et al. published a break through paper on insect control 

through dsRNA feeding experiments. They provided evidence for the potential use of 

RNAi to control pest insects in crop protection and demonstrated the fact that it is 

possible to silence genes in insects when they consume plant material expressing 

hairpin dsRNA constructs against well chosen target genes. They utilised a screening 

approach where genes from Western corn rootworm (WCR; Diabrotica virgifera 

virgifera LeConte; Coleoptera) were identified in cDNA libraries, and genes 

encoding polypeptides predicted to provide an essential biological function were 

classified as ‘targets’. The most effective dsRNA, directed against a gene encoding 

V-type ATPase A, demonstrated rapid knockdown of endogenous mRNA within 24 

h of ingestion and triggered a specific RNAi response with low concentrations of 

dsRNA.  

The specificity of RNAi-mediated insecticidal effects is an important 

consideration for the use of this technology in a practical application; effects on non-

target insects should be minimised. dsRNAs directed against three target genes (β-

tubulin, V-ATPase A and V-ATPase E) demonstrated an effective RNAi response in 

WCR that resulted in high larval mortality. These dsRNAs were also delivered to 

three other coleopteran plant pests: Southern corn root- worm (SCR; Diabrotica 

undecimpunctata howardii), Colorado potato beetle (CPB; Leptinotarsa 

decemlineata) and cotton boll weevil (Anthonomus grandis Boheman). The dsRNAs 

demonstrated significant larval mortality in SCR and CPB, although only at higher 

concentrations than those used for WCR.  
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Table 1. 
Overview on use of RNAi in insects with dsRNA being applied through feeding. The 
insect species and test stage, the target gene and its location are given. The 
application method with used amount and length of dsRNA is mentioned and if the 
data were present, the amount of silencing, the recovery of the gene expression and 
evaluation method are summarized. 
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Table 1.  
(continued) 
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Cotton boll weevil was not only completely insensitive to the three 

WCR-directed dsRNAs, but was also insensitive to dsRNAs directed against 

orthologous boll weevil genes, emphasising the differences between insect species in 

susceptibility to orally delivered RNAi strategies. 

To demonstrate the practical application of this technology, transgenic 

corn was engineered to express dsRNA directed against WCR V-ATPase A. The 

plants were subjected to WCR infestation and demonstrated a significant level of 

protection compared to controls; that is, they showed reduced damage from WCR 

feeding. 

A different approach was used by Mao et al. (2007). By studying the 

interaction between cotton bollworm (Helicoverpa armigera; Lepidoptera) and 

cotton, they identified a cytochrome P450 gene, CYP6AE14, which is highly 

expressed in the insect midgut and whose expression is correlated with larval growth 

when gossypol, a cotton secondary metabolite, is added to artificial diets. The 

authors concluded that expression of CYP6AE14 is causally related to gossypol 

tolerance, presumably via detoxification of this compound, and that suppression of 

the expression of this gene could increase the sensitivity of the insect larvae to the 

plant endogenous defence. Tobacco and Arabidopsis plants were engineered to 

produce dsRNAs directed against the bollworm CYP6AE14 gene. When plant 

material of both species was fed to larvae, effective repression of the endogenous 

CYP6AE14 transcript was observed, and the insects showed increased sensitivity to 

gossypol when transferred to artificial diets.  

When the striped flea beetle (Phyllotreta striolata) was fed specific 

dsRNA, the invertebrate specific phosphotransferase arginine kinase was 

successfully silenced in the gut, and due to disruption of cellular energy homeostasis, 

the development of the beetle was severely impaired (Zhao et al., 2008). Bautista et 

al. (2009) studied the influence of silencing the cytochrome P450 gene CYP6BG1 

that is over-expressed in a permethrin-resistant diamondback moth (Plutella 

xylostella) strain. When the gene was silenced after consumption of a droplet of 

dsRNA solution, the moths became significantly more sensitive to the pyrethroid 

insecticide. Instead, in the Zhou et al. research (2008), the eastern subterranean 

termites (Reticulitermes flavipes) were fed with cellulose disks supplemented with 

dsRNA, silencing of the digestive cellulose enzyme and caste regulatory hexamerin 

storage protein led to reduced termite fitness and increased mortality  
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Based on the literature, it’s possible to summarize five important factors 

largely influencing the silencing effect and therefore the efficiency of RNAi as insect 

control technique: 

• Concentration of dsRNA: for every target gene and organism an optimal 

concentration has to be determined to induce optimal silencing. It is not true that 

exceeding that optimal concentration results in more silencing (Meyering-Vos 

and Muller, 2007; Shakesby et al., 2009). 

• Nucleotide sequence: the sequence used will determine possible off-target 

effects in the target organism, but also in other insects. (Araujo et al., 2006). 

• Length of the dsRNA fragment: this is a determinant of uptake and silencing 

efficiency in intact organisms and cell lines (Saleh et al., 2006). In feeding 

experiments most sequences range between 300 and 520 bp. However, there is a 

study using only one siRNA (Kumar et al., 2009). 

• Persistence of the silencing effect: the silencing effect on aquaporin in A. pisum 

persists for 5 days and is then reduced (Shakesby et al., 2009). As reported by 

Turner et al. (2006) this transient effect of dsRNA against the pheromone binding 

protein in the light brown apple moth (Epiphyas postvittana) may be correlated 

with the turnover rate of the target protein. 

• Life stage of the target organism: although older life stages are more efficient 

for handling, the younger stages often show larger silencing effects. For instance, 

no silencing effect was observed after treating 4th instars of R. prolixus with 

nitropin 2 dsRNA compared to 42% silencing when using 2nd instars (Araujo et 

al., 2006). Also in the case of the fall armyworm (Spodoptera frugiperda) a 

stronger silencing effect was observed in 5th instar larvae compared to adult 

moths (Griebler et al., 2008). 

It is striking that there are no reports on feeding experiments with the red 

flour beetle, T. castaneum, probably due to the success of the injection experiments. 

Intriguing is the presence of five successful experiments with four different 

Lepidoptera species in the list since it is presumed that it is very difficult to establish 

RNAi in this insect order. Also, in some feeding experiments environmental RNAi 

worked, but systemic RNAi did not (Walshe et al., 2009), and some injection 

experiments succeeded to cause silencing of targets, but feeding experiments could 

not (Rajagopal et al., 2002). This discrepancy might be due to factors depending on 

the uptake mechanism of the different cell types, but not due to insensitivity of the 
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target. Besides, these experiments clearly illustrate that RNAi is not a knockout, but 

a knockdown method: there is no total silencing and often the effect is transient 

(Shakesby et al., 2009). When the technique is used to control pest insects, this 

implies that the dsRNA should be present until the pest insect is killed to minimize 

the risks of resistance development. However, it should not be an insurmountable 

drawback to use this technique, because in many cases partial silencing of certain 

genes is known to cause severe damage and irreversible detrimental/lethal effect on 

the insect. 

Although there are several factors that largely influence the silencing 

effect and therefore the efficiency of RNAi as insect control technique, today the 

RNA interference (RNAi) still represents a breakthrough technology for conducting 

functional genomics research in non-model organisms and for the highly targeted 

control of insect pests. 

 

2. RNA interference pathway 

To understand the RNAi technology and its applications in agriculture, it is 

important to have clues on how it works and what are the important pathways 

leading to the generation of the silencing molecules.  

A hallmark of RNAi is that short (~20-30 nucleotide) dsRNAs, known as small 

RNAs, are generated by the activity of RNaseIII enzymes (either Dicer alone or 

Drosha and Dicer). Two main categories of small RNAs have been defined on the 

basis of their precursors. The cleavage of exogenous long dsRNA precursors in 

response to viral infection or after artificial introduction generates short interfering 

RNAs (siRNAs), whereas the processing of genome-encoded stem-loop structures 

generates microRNAs (miRNAs) (Siomi and Siomi, 2009).  

 

2.1. siRNA biogenesis 

Dicer processes long RNA duplexes and generates siRNAs. These small 

RNAs are ~21-25-nucleotide duplexes with a phosphate group at both 5ʹ ends, and 

hydroxyl groups and two-nucleotide overhangs at both 3ʹ ends, all hallmarks of 

RNaseIII-mediated cleavage. The Dicer protein contains a PAZ domain, which binds 

to the 3ʹ end of a siRNA, and two RNaseIII domains, which have the catalytic 

activity. It functions as a monomer (Zhang et al., 2004) but the RNaseIII domains 
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associate with each other to form an ‘internal dimer’. The distance between the PAZ 

domain and the two RNaseIII domains is the length spanned by 25 base pairs (bp) of 

RNA (MacRae et al., 2007). Thus, Dicer itself is a molecular ruler. 

 

2.2. Loading and sorting by the RISC 

In gene silencing pathways initiated by dsRNA precursors, Dicer-

mediated cleavage yields small dsRNA intermediates (small RNA duplexes). These 

small RNA duplexes are converted from a duplex into a single-stranded form as are 

loaded into effector complexes, called RISCs. For each small RNA duplex, only one 

strand, the guide strand, is loaded onto a non-sequence-specific RNA binding protein 

(Argonaute) and assembled into the active RISC; the other strand, the passenger 

strand, is destroyed. Many eukaryotes express more than one Argonaute protein, and 

these proteins bind to small RNAs in a sequence-independent manner. RISC has two 

forms - precursor form (the pre-RISC), which contains the small RNA duplex and 

mature form (the holo- RISC), which contains the guide strand. The key steps in 

converting pre-RISC to holo-RISC are small RNA strand unwinding and preferential 

strand selection. 

 The prevalent view of RISC loading is that thermodynamic asymmetry 

along small RNA duplex determines which RNA strand is retained and which is 

discarded. More specifically, the strand that has its 5ʹ end at the thermodynamically 

less stable end of the small RNA duplex is preferentially loaded into the RISC as the 

guide strand, a phenomenon referred to as the asymmetry rule (Schwarz et al., 2003; 

Khvorova et al., 2003). 

For siRNAs, the known interactions between Dicer and the Argonaute 

proteins (Hutvagner and Simard, 2008) indicate that the production of the small 

RNA and the assembly of the RISC might be physically coupled. For example, in D. 

melanogaster, DCR-2 (RNaseIII) does not simply transfer siRNAs to a distinct RISC 

but, instead, forms part of the RISC together with the siRNAs, indicating that the 

role of DCR-2 extends beyond the initiation phase. The loading of siRNA duplexes 

onto AGO2 is facilitated by the RISC-loading complex, which contains DCR-2 and 

its dsRBD-containing partner (double-stranded-RNA-binding domain), R2D2 (Liu et 

al., 2003; Liu et al., 2006). The particular strand of the siRNA duplex that is loaded 

onto AGO2 seems to be determined by the orientation of the DCR-2–R2D2 
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heterodimer on the siRNA duplex (Tomari et al., 2004). R2D2 is thought to sense the 

thermodynamic stability of the siRNA duplexes and bind to the more stable end of 

the siRNA, whereas DCR-2 is recruited to the less stable end. The heterodimer 

probably recruits AGO2 through an interaction between DCR-2 and AGO2.  

It is recently demonstrated, in D. melanogaster, that DCR-2 also interacts 

with D-elp1, elongator subunit 1 of the Drosophila pol II core elongator complex. D-

elp1 has RdRP activity, RNA-dependent RNA polymerase, and cytoplasmic location 

and its role in RNAi suggested it might be interacting with components of the RISC 

(Lipardi and Paterson, 2009).  

The unwinding of the siRNA duplex and the loading of a single strand 

into the RISC are facilitated by the slicing of the unincorporated (passenger) strand 

by AGO2 (Matranga et al., 2005; Rand et al., 2005; Miyoshi et al., 2005), (Fig. 2). 

Cleavage in the middle of the passenger strand, as though the passenger strand were 

an mRNA target, would be expected to reduce the annealing temperature and the free 

energy of duplex formation, which in turn facilitates the separation of the siRNA 

strands. These data support a model in which siRNAs are initially loaded as duplexes 

onto an AGO2-containing pre-RISC (Fig. 3). 

Once assembled, RISCs mediate a range of the effector steps in all RNA 

silencing mechanisms, from repressing translation to maintaining genome stability. 

The specialized functions of RISCs are likely to result from the particular proteins 

that associate with each Argonaute protein. In other words, the different RISC 

variants are distinguished by their constituent Argonaute protein. Thus, it is crucial 

that a specific set of small guide RNAs is directed to a specific Argonaute protein. 

Analyses of how different types of small RNA are channelled to different Argonaute 

proteins show that there are multiple mechanisms: the determinants for small RNA 

sorting vary from the structure of the small RNA duplex to the identity of the 5ʹ 

nucleotide and the presence and extent of modifications to this nucleotide. 

In D. melanogaster, pre-miRNAs are processed by DCR-1, whereas exo-

siRNA duplexes are produced by DCR-2 from long dsRNAs (Lee et al., 2004), (Fig. 

3). Small RNAs then seem to be loaded onto either AGO1 or AGO2, depending on 

the structure of a small intermediate RNA duplex (Tomari et al., 2007). If the duplex 

has a bulge in the middle (frequently observed in miRNA precursors), the small 

RNA is routed to AGO1. If the duplex is perfectly matched, the small RNA is 

channelled to AGO2.  
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Figure 2. 
Natural transcripts that form dsRNAs and hairpin-shaped structures can be sources of 
small RNAs. These precursors are processed by an RNaseIII enzyme (such as 
Drosha or Dicer), yielding small RNA duplexes. Duplexes with a perfect match (left 
pathway) are further processed by an enzyme with slicer activity (an Argonaute 
protein) into single-stranded small RNAs. By contrast, small RNA duplexes with a 
mismatch or bulge in the centre (right pathway) are not substrates for the slicer and 
thus become single- stranded in a cleavage-independent manner. The identity of the 
protein that carries out this unwinding is unknown. Single-stranded small RNAs are 
then loaded onto Argonaute proteins. The particular strand that is selected (sense or 
antisense) depends on thermodynamic stability. The loaded Argonaute proteins are 
guided to target mRNAs containing complementary sequence, and the expression of 
the corresponding genes is silenced. 
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Figure 3. 
Small RNAs are sorted onto specific Argonaute proteins, and this process occurs by 
several mechanisms. In Drosophila melanogaster, small RNAs originating from a 
duplex are loaded onto one of two Argonaute proteins (AGO1 or AGO2), on the 
basis of the structure of the small RNA duplex. If the duplex has a mismatch or a 
bulge in the centre (as miRNAs do), then the RNA is routed to AGO1. If the duplex 
is perfectly matched (as siRNAs are), then the small RNA is routed to AGO2. This 
selectivity occurs because the small RNAs are loaded onto Argonaute proteins from 
a Dicer-containing complex, and the two forms of Dicer, DCR-1 and DCR-2, 
associate with different RNA structures. DCR-2 pairs with R2D2, and this 
heterodimer binds to highly paired small RNA duplexes but recognizes small RNA 
duplexes with a central mismatch only poorly. AGO2 favours binding to DCR-2–
R2D2 over binding to the other Dicer- containing complex, DCR-1–LOQS, which 
binds to small RNAs with bulges.  
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This is because the DCR-2-R2D2 heterodimer, which recruits AGO2 to 

form the pre-RISC, binds well to highly paired small RNA duplexes but poorly to 

duplexes with central mismatches. Thus, the DCR-2–R2D2 heterodimer not only 

determines the polarity of siRNA loading on the basis of thermodynamic stability 

rules but also functions as a gatekeeper for AGO2-containing RISC assembly, 

promoting the incorporation of siRNAs over miRNAs. These observations suggest 

that each siRNA duplex dissociates from the active site of the Dicer protein after it is 

produced and is subsequently recaptured by the DCR-2–R2D2 heterodimer.  

The identity of the nucleotide at the 5ʹ end and the extent to which this 

nucleotide is phosphorylated also influence which Argonaute protein the small RNA 

associates with.  

 

2.3. Safeguards in silencing pathways 

To avoid ‘off-target’ silencing, gatekeepers, which ensure that Argonaute 

as non-sequence-specific RNA-binding protein can bind to small guide RNAs but 

not to degraded small RNAs, are required: such gatekeeper systems seem to depend 

mainly on structural features specific for small guide RNAs. 

As described earlier, Dicer helps to load siRNAs into the RISC, 

preventing siRNAs from diffusing freely in the cytoplasm after their production. This 

function of Dicer probably also aids in the discrimination of genuine siRNAs from 

various RNA-degradation products in the cell. Processing by RNaseIII enzymes 

(such as Dicer) characteristically yields small RNAs with 5ʹ monophosphates and 3ʹ 

two-nucleotide overhangs. The PAZ domain of Argonaute proteins might, as a first 

step, distinguish degraded RNAs (derived from unrelated pathways) from these small 

RNAs by binding to the characteristic 3ʹ overhangs of the small RNAs (Chapman 

and Carrington, 2007). In addition, to become incorporated into the RISC and 

mediate cleavage of the target mRNA, the guide strand of a siRNA must have a 

phosphate group at the 5ʹ end (Pham and Sontheimer, 2005). 

 

2.4. Target-sensing modes and effector modes of the RISC 

Most of the binding energy that tethers a RISC to a target mRNA is from 

nucleotides in the seed region of the small RNA (Haley and Zamore, 2004). It seems 

that the accessibility of the target site can be sensed by the intrinsic, nonspecific 
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affinity of RISC for ssRNA, which follows the initial specific association between 

the RISC and the target (through the 5ʹ seed region of the small RNA) (Ameres et al., 

2007). But the accessibility of the target site correlates directly with the efficiency of 

cleavage, indicating that the RISC cannot unfold structured RNA. 

Target mRNAs are present in the cell in complex with ribonucleo-

proteins (RNPs) (Dreyfuss et al., 2002), so target accessibility is also controlled by 

several RNA-binding proteins that either mask the target binding site or facilitate 

unfolding of the target. Therefore, the function of a RISC seems to be context-

dependent, with its effector mode influenced not only by the structures of the small-

RNA-binding sites on the target but also by the particular proteins associated with 

each Argonaute protein.  

 

2.5. Transport of RNAi information between cells 

An important aspect of the RNA interference pathway is the transport of 

RNAi information, because it is important to understand when a siRNA enters in a 

cell what is its diffusion. The transport mechanism is different from insects to plants. 

In insects 

RNAi can be divided in cell-autonomous and non-cell-autonomous 

RNAi (Fig. 4). As the name suggests, in the case of cell-autonomous RNAi, the 

silencing process is limited to the cell in which the dsRNA is introduced/expressed 

and encompasses the RNAi process within individual cells. 

In case of non-cell-autonomous RNAi, the interfering effect takes place 

in tissues/cells different from the location of application or production of the dsRNA. 

There are two different kinds of non-cell-autonomous RNAi: environmental RNAi 

and systemic RNAi (Fig. 4).  

Environmental RNAi describes all processes in which dsRNA is taken 

up by a cell from the environment. Therefore, this process can also be observed in 

unicellular organisms.  

Systemic RNAi can only take place in multicellular organisms because it 

includes processes in which a silencing signal is transported from one cell to another 

or from one tissue type to another.  
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Figure 4.  
A schematic overview of the different types of RNAi, explained through the 
silencing effect of an essential gene for cell viability in healthy cells. The first row 
represents the cell-autonomous RNAi. dsRNA of a gene essential for cell viability is 
applied to or expressed in a healthy cell. The silencing effect is limited to the cell. In 
case of environmental RNAi, the dsRNA is taken up from the environment of the 
cell, the silencing effect is observed in all cells which can take up the dsRNA. This 
can take place in unicellular and multicellular organisms. Systemic RNAi encloses 
all processes in which the silencing signal is transported from the cell in which the 
dsRNA is applied or expressed to other cells, also to other tissues, in which the 
silencing will then take place. 
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In multicellular organisms environmental RNAi can be followed by 

systemic RNAi and non-cell-autonomous RNAi will always be followed by cell-

autonomous RNAi. 

For the efficient application of RNAi in insect control, we have to focus 

on non-cell-autonomous RNAi. The insect will have to internalize the dsRNA of a 

target gene through feeding. In order to silence the target gene, this dsRNA must be 

taken up from the gut lumen into the gut cells, representing environmental RNAi.  

The insect midgut consists of a single layer of columnar cells with 

microvilli, endocrine cells, and stem cells at the base, grouped in the so-called nidi. 

The midgut is designed to absorb nutrients from the gut lumen with its large 

absorption area created by the microvilli, with many channels and endocytosis 

apparati (Lehane and Billingsley, 1996; Hakim et al., 2010). These characteristics 

make the tissue very interesting as a potential dsRNA uptake location. If the target 

gene is expressed in a tissue outside of the gut, the silencing signal will also have to 

spread via cells and tissues, which is systemic RNAi. 

The best studied dsRNA uptake mechanism is that of C. elegans. 

Research with systemic RNAi defective mutants (sid) resulted in the description of 

two proteins involved in non-cell-autonomous RNAi. SID-1 is a multispan 

transmembrane protein essential for systemic RNAi. It functions probably as a 

multimer, transporting dsRNA passively into the C. elegans cells. However, it is not 

essential for the export of dsRNA from the cell (Winston et al., 2002; Jose et al., 

2009). 

The other protein, SID-2, is mainly found in the intestine tissue of the 

worm and facilitates environmental RNAi (Winston et al., 2007). Three hypotheses 

are proposed on the relation/cooperation/coordination between the two proteins:  

(i) SID-2 modifies the SID-1 molecule to activate the transport 

(ii) SID-2 binds the dsRNA from the environment and delivers it to SID-1 

(iii) SID-2 induces the endocytosis pathway of the dsRNA, in which case SID-1 

delivers the dsRNA to the cytoplasm (Whangbo and Hunter, 2008). 

A sid-1 gene orthologue was found in the cotton aphid (Aphis gossypii). 

The online analysis of the topological structure showed large similarities with SID-1 

of C. elegans, suggesting a possible role in the dsRNA uptake, however neither the 

expression nor its functionality were determined (Xu and Han, 2008). In the honey 

bee (Apis mellifera) and in T. castaneum the role of the orthologue genes in dsRNA 
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uptake were evaluated, and the results are contradictory. In an RNAi experiment with 

honey bee, the expression of the sid-1 orthologue increased just before the target 

gene was knocked down, leading to the conclusion that sid-1 was involved in the 

uptake of dsRNA (Aronstein et al., 2006). However, the direct correlation between 

increased sid-1 expression and the silencing effect was not proven. When the three 

sid-1 orthologues of T. castaneum were silenced individually or all together, RNAi 

was not influenced. However involvement was not excluded because of possible 

complementary of the genes versus weakening of the RNAi effect due to competition 

for the cell-autonomous core RNA machinery of the cells. 

Interestingly, from the in silico analysis of the presence of sid-1 

orthologues in insects, it appears that the sid-1 orthologues show more similarities 

with the tag-I30 genes than with the sid-1 genes of C. elegans. In the worm these 

genes are not involved in systemic RNAi. These data suggest that SID-1 is not 

essential for systemic RNAi/dsRNA uptake in certain insects. Moreover, it also 

suggests an alternative dsRNA uptake mechanism in insects since systemic RNAi is 

very robust in T. castaneum (Tomoyasu et al., 2008). 

Intriguingly, in the best known model insect, D. melanogaster, which has 

no robust systemic RNAi, no sid gene orthologs were found. However, there is a 

cell-autonomous RNAi mechanism present and hemocytes are able to respond to 

environmental RNAi (Roignant et al., 2003; Gordon and Waterhouse, 2007; Miller et 

al., 2008). 

In plants 

Plant cells transport silencing information to adjacent cells through 

intercellular pores called plasmodesmata and to distant cells through the vascular 

tissue called phloem (Figure 5a).  

Most plant cells are connected with each other through dynamic pores 

called plasmodesmata (Zambryski, 2004), thus forming a cytoplasmic continuum. 

Mature guard cells that regulate gaseous exchange in the leaf are not part of the 

cytoplasmic continuum and consequently, transport of the silencing signal can cause 

silencing in guard cells only if the signal is received by immature guard cells that 

have not yet lost their plasmodesmatal connections (Himber et al., 2003; Voinnet et 

al., 1998).  
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Figure 5. 
Plants use distinct mechanisms for cell-to-cell and long-distance transport of 
silencing information. (a) Schematic showing the organization of plant vasculature. 
Long-distance transport of silencing information occurs through the phloem, 
comprised of companion cells that support associated sieve elements. Cell-to-cell 
transport in leaves occurs through plasmodesmal connections, which connect the 
cytoplasm of all cells except guard cells that surround sites of gaseous exchange 
(stomata). (b) Model for the generation and amplification of a cell-to-cell silencing 
signal. The RNAi trigger, long dsRNA, is converted to 21-nt siRNAs by DCL4, and 
modification of these 21-nt siRNAs for transport and/or their transport through 
plasmodesmata is controlled by the silencing movement defective genes (SMD1, 2, 
3). This signal can travel for ∼10-15 cells without any amplification. However, in the 
presence of target mRNA, a cellular RNA-dependent RNA polymerase (RDR6) and 
an RNA helicase (SDE3) can direct the synthesis of secondary dsRNA, which may 
then be processed just as the trigger long dsRNA. (c) Model for the long-distance 
transport of a silencing signal. The silencing signal (likely RNA) may be transported 
as single-stranded short RNAs through the phloem since the phloem small RNA-
binding protein 1 (PSRP1) of pumpkin specifically binds short single-stranded 
RNAs.  
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Water and minerals are transported through xylem tubes, which are lined 

with dead cells, while photoassimilates, RNA, proteins, and silencing information are 

transported through phloem tubes, which are made of living enucleated sieve 

elements supported by companion cells. Transport through the phloem occurs from 

mature, photosynthetically autonomous organs (phloem sources) to new growth 

(phloem sink), and transport of silencing information over long distances also occurs 

from phloem source to phloem sink (Crete et al., 2001; Palauqui et al., 1997; 

Tournier et al., 2006). 

The physiological status and surrounding environment of a tissue dictate 

the extent of transport of silencing information. When silencing is initiated in single 

cells or small groups of cells, the movement of silencing information is restricted to 

about 10-15 cells in diameter in phloem source tissues such as mature leaves 

(Palauqui et al., 1996). Conversely, in phloem sink tissues, such as new growth, 

silencing information progressively spreads from the phloem into the entire lamina 

of the leaves. Further, when mature leaves are converted into phloem sinks by 

shading, the transport of silencing information within the leaf becomes more 

extensive. Nutrient depletion may thus increase phloem flow bringing more silencing 

signals and nutrients to the leaf and/or may induce signal amplifiers such as RdRPs 

(RNA-dependent RNA polymerase) in the leaf. 

Plant cells appear to use 21-nt siRNAs to transport silencing information 

through plasmodesmata. In the absence of amplification the spread of silencing is 

limited to 10-15 neighboring cells (Figure 5b), while more extensive spread of the 

silencing information can be achieved by a relay mechanism, whereby a silencing 

signal received by a cell in a leaf is amplified by the action of cellular RdRPs 

allowing additional cell-to-cell spreading within the leaf.  

The results suggest a model (Figure 5b) whereby long dsRNA is 

processed into 21-nt siRNAs by DCL4 (Dicer-like-4) during silencing. The 

movement of these 21-nt siRNAs through plasmodesmata is dependent on the 

silencing movement defective genes SMD1, 2, 3. This results in the spread of 

silencing to ∼10-15 neighboring cells. RDR6 (RNA-dependent RNA polymerase) 

and SDE3 (RNA helicase) in these neighboring cells amplify the signal, producing 

secondary dsRNA beyond the original trigger. These cells then process the secondary 

dsRNA and relay the silencing information further by spreading the 21-nt siRNAs. 

The extent of spread depends upon the physiological state of the tissue and this 
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regulation may occur through modulation of RDR6 and SDE3 activity. 

Plants can also transport silencing information over long distances (∼20 

cm) through the phloem (Figure 5c).  

The molecular mechanism that controls phloem-dependent transport of 

silencing information is largely unknown. Although in one study phloem-dependent 

transport was found to be strictly correlated with the presence of ∼24-nt siRNAs 

(Hamilton et al., 2002), conflicting results suggest that phloem-dependent transport 

does not correlate with any RNA species (Mallory et al., 2003). However, a phloem 

small RNA-binding protein, PSRP1, has been isolated biochemically from pumpkin 

phloem sap and found to bind small RNAs with high affinity (Yoo et al., 2000). 

Although PSRP1 preferentially binds to small RNAs, the precise nature and size of 

the RNA bound by PSRP1 during the transport of silencing information is unknown. 

Similar small RNA binding proteins were detected in the phloem saps of cucumber 

and lupine plants, suggesting that small RNAs involved in long-distance silencing 

may be transported through the phloem as parts of ribonucleoprotein complexes. 

Thus, the sequence-specific silencing signal that is transported through the phloem as 

well as the pathway responsible for its biogenesis and transport remain largely 

unclear. 

 

3. G protein coupled receptors 

An ideal target for RNAi would be a protein involved in many different insect 

vital functions, such as development, feed, reproduction and movement; interfering 

with all these functions at the same time can drastically affect the insect pest vitality. 

G-protein-coupled receptors (GPCRs) represent nearly half of the current 

market for therapeutic agents in human, constitute annual revenues in excess of $40 

billion, and remain a primary focus of many biomedical research and pharmaceutical 

drug discovery programs. 

GPCRs comprise a diverse family of integral membrane proteins that are 

responsible for conveying extracellular signals to the inside of the cell via 

interactions intracellular heterotrimeric G proteins, which in turn affect enzymes, ion 

channels, and other intracellular messengers. Nearly a thousand GPCRs exist, 

mediating a host of molecular physiological functions by serving as receptors for 

hormones, neurotransmitters, cytokines, lipids, small molecules, and various sensory 
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signals (such as light and odors), to name a few. All GPCRs possess seven 

transmembrane helices, three extracellular loops, and three intracellular loops, with 

an extracellular N-terminal tail and an intracellular C-terminal tail (Figure 6; Bridges 

and Lindsley, 2008). The heptahelical transmembrane domain is largely 

hydrophobic, whereas the extracellular (e1-e3) and intracellular (i1-i3) segments, or 

loops, are generally hydrophilic. The seven transmembrane helices are each ∼24 

amino acids long, while the C- and N-terminal tails as well as the loops can vary 

widely in length with up to hundreds of amino acids. Based on sequence homology 

and functional similarity, all known GPCRs are divided into six major categories, 

including Rhodopsin-like receptors (Class A), Secretin receptors (Class B), 

Metabotropic glutamate/pheromone receptors (Class C), Fungal mating pheromone 

receptors (Class D), Cyclic AMP receptors (Class E), and Frizzled/Smoothened 

GPCRs (Class F) (Sadowski and Parish, 2003). However the most common division 

is into three main families (or classes): A (rhodopsin-like), B (secretin-like), and C 

(metabotropic receptor-like) (Figure 7). The families are readily distinguished by 

comparing their amino acid sequences, wherein Family B is characterized by a large 

extracellular loop and Family C has a large, bilobed extracellular Venus-flytrap-like 

domain. A second major difference between the families concerns the location of the 

orthosteric binding site and the nature of the orthosteric ligand. As shown in Figure 

7, the orthosteric binding domain (OBD) of Family A GPCRs is located with the 

7TM domain, whereas the OBD is located in the large extracellular loop within 

Family B and within the extracellular Venus- flytrap-like domain in Family C. 

According to traditional two-state models of receptor theory, GPCRs can be 

conceptualized as operating in equilibrium between two functional conformations, an 

active (R*) and inactive (R) state (Limbird, 1986). In the R* state, the receptor has 

higher affinity for G-proteins, which normally exist apart from the receptor as a 

GDP-bound Gαβγ heterotrimer in their inactive form. Ligand binding to the receptor 

alters the equilibrium, with agonists shifting it toward the R* state, inverse agonists 

shifting it toward the R state, and antagonists preventing other ligands (such as 

endogenous agonists) from binding without altering the basal R*: R equilibrium.  
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Figure 6.  
Representative structure of a generic GPCR. GPCRs all have a common core 
composed of seven transmembrane helices (the 7TM domain composed of TM-
I!TM-VII) with an extracellular N-terminal domain and an intracellular C-terminal 
domain. The TMs are connected by three extracellular loops (e1-e3) and three 
intracellular loops (i1-i3). The GPCR receives an extracellular stimulus (light, 
calcium, odorants, pheromones, small molecules, proteins) that induces a 
conformational change in the receptor that either facilitates or inhibits the coupling 
of the receptor to a G-protein, composed of α-, β-, γ-subunits. The G-protein, in turn, 
interacts with a diverse group of effectors that control intracellular messengers. 
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Figure 7.  
Representative structures of the three families of GPCRs, Family A, Family B, and 
Family C. Note the location of the OBD varies for the families, as does the structure 
of the extracellular domain. The nature of the orthosteric ligand also varies across 
GPCR families. For Family A, a prototypical native agonist is acetylcholine (1), for 
Family B, a large 33-amino acid peptide such as orexin A (2), and for Family C, 
glutamate (3) is a representative native ligand. 
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Upon receptor activation, the GDP-bound G-protein interacts with the 

intracellular face and C-terminus of the receptor, inducing GDP to GTP exchange on 

the Gα subunit and concurrent dissociation of the Gα and Gβγ subunits. The now 

active GTP-Gα and Gβγ subunits then bind to their respective downstream effectors, 

which include kinases, phosphatases, small GTPases, integral membrane proteins, 

and a multitude of additional targets and signalling cascades. These downstream 

effectors exist in complex regulatory networks that control cellular functions such as 

movement, metabolism, membrane potential, neurotransmitter release, and gene 

expression.  

The specific effectors influenced by a given GPCR depend on the type of G-

protein that the receptor activates. There are many types of Gα, Gβ and Gγ subunits, 

allowing for diverse combinations, although the most commonly used simple 

categorization of GPCRs is by designation of coupling to either Gαq, Gαi, or Gαs 

(Oldham and Hamm, 2006). The mutual effector for both Gαi and Gαs is adenylyl 

cyclase (AC), which resides on the inner leaflet of the plasma membrane and 

generates cyclic-AMP in response to stimulation or inhibition by Gαs and Gαi, 

respectively. The primary effector for Gαq by contrast is phospholipase Cβ, a 

membrane-bound enzyme that converts phosphatidylinositol-4,5-bisphosphate into 

diacylglycerol and inositol-1,4,5-trisphosphate. Following effector binding, the GTP-

Gα subunit hydrolyzes its γ-phosphate by augmentation of its intrinsic GTPase 

activity via binding of GTPase activating proteins (GAPs), resulting in conversion to 

GDP-Gα. This GDP-bound form possesses higher affinity for its Gβγ subunit 

partner, which causes reformation of the inactive heterotrimer, marking completion 

of the G-protein activation cycle. Figure 8 depicts the cycle in this simplified form. 

Many accessory proteins and lipids are also involved in regulating G-proteins, which 

play important roles in controlling the G-protein cycle. 

Classical GPCR ligands modulate receptor signalling by directly stimulating a 

receptor response (agonism), blocking the binding of the native agonist (competitive 

antagonism), or blocking constitutive activity (inverse agonism) of the GPCR.  

All GPCRs possess a distinctive binding site for their respective endogenous 

ligand(s) that is known as the orthosteric site. Ligands that bind to this site are 

considered classical or traditional orthosteric ligands.  
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Figure 8.  
Generalized diagram of the G-protein cycle. Upon agonist activaion of the receptor, 
GTP binds to the Gα subunit, displacing GDP, which causes dissociation of the 
protein complex from the receptor, allowing respective effector activation by Gα-
GTP and Gβγ. GAPs then bind Gα and accelerate hydrolysis of GTP to GDP, which 
deactivates Gα and causes disengagement of the effector. Finally, Gα reassociates 
with Gβγ, marking cycle completion. 
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This group includes small-molecule agonists, partial agonists, antagonists, and 

inverse agonists; in general, the most physiologically common and relevant of these 

ligands are the endogenous agonists. 

In addition to orthosteric sites, many GPCRs have been found to possess 

allosteric (Greek, “other site”) binding sites that are spatially and often functionally 

distinct (Christopoulos, 2002; Christopoulos and Kenakin, 2002; May et al., 2007). 

The presence of allosteric sites allows for numerous additional ligand-receptor 

interactions beyond those associated with the orthosteric site. Allosteric agonists, 

antagonists, and inverse agonists for a given GPCR will bind to the allosteric site and 

induce a similar effect as their orthosteric relatives. Beyond such types of ligands, 

allosteric modulators bind to an allosteric site where they stabilize a receptor 

conformation and equilibrium shift that increases or decreases the affinity and/or 

efficacy of an orthosteric agonist at the receptor, without activating the receptor on 

its own. 

 

4. G protein coupled receptors in insects 

As well as in the other eukaryotic organisms, also in insects GPCRs have key 

roles in the regulation of vital functions, and thus may represent excellent targets for 

RNAi technology. 

In addition to the above GPCRs classes (A, B, C, D, E and F), in insects there 

are two other classes: olfactory receptors and gustatory receptors. These receptors in 

insects were previously considered as Class A GPCRs. However, later studies 

indicated that they possess a distinct 7TM topology with the amino terminus located 

at the intracellular side, and function as heteromeric ligand-gated ion-channels (Sato 

et al., 2008; Smart et al., 2008; Wicher et al., 2008). Therefore, the involvement of G 

proteins in insect olfactory signal transduction is still under question (Pellegrino and 

Nakagawa, 2009). 

 

The following section is not a faithful list of all insect GPCRs classes but 

only the classes of the GPCRs chosen for this work were reported. 
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4.1. Rhodopsin-like family (Class A) 

This family encompasses receptors that bind a large variety of ligands, 

such as biogenic amine neurotransmitters, neuropeptides, peptide hormones, lights, 

nucleotides, prostaglandins, leukotrienes, chemotactic peptides, and chemokines. The 

rhodopsin-like family is the largest family of B. mori GPCRs, which can be divided 

further into 4 subfamilies: biogenic amine receptors (16 sequences), neuropeptide 

and protein hormone receptors (46 sequences), opsin receptors (6 seq) and purine 

receptors (1 sequence). 

 

4.1.1. Biogenic amine receptors 

In insects, as well as in mammals, amines play a prominent role in the 

physiology of the nervous system. They are involved in the transmission and 

integration of sensory information, in the control of muscular and glandular 

activities, and in complex processes such as learning, memory, and behaviour. But 

they are also involved in many other physiological processes, such as diuresis and 

immune responses (Blumenthal, 2003; Roeder, 2005; Birman, 2005). The known 

insect biogenic amines are dopamine, tyramine, octopamine, serotonin, acetylcholine 

and histamine.  

Octopamine (OA) is a physiologically important invertebrate biogenic 

amine that has structural and functional similarities to the vertebrate biogenic amines 

adrenaline and noradrenaline (Roeder, 1999). OA is engaged in sensory inputs, 

rhythmic behaviors, endocrine regulation, mobilization of lipids and carbohydrates, 

sleep and aggression as well as more complex physiological events, such as learning 

and memory, as a neurotransmitter, neuromodulator or neurohormone (Farooqui, 

2007; Crocker and Sehgal, 2008; Zhou et al., 2008). 

The first insect OA receptor was isolated from the fruit fly Drosophila 

melanogaster (Han et al., 1998). Following the initial isolation in fruit flies, a variety 

of OA receptors were cloned from several other insect species. To classify the 

various OA receptors, Evans and Maqueira (2005) proposed a novel classification 

system in which OA receptors are designated as α-adrenergic-like OA receptors 

(OctαRs), β-adrenergic-like OA receptors (OctβRs) or OA/ TA (or tyraminergic) 

receptors. This classification is based on the similarities of these proteins to 
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vertebrate adrenergic receptors in terms of amino acid sequence and signaling 

pathway. Activation of α-adrenergic-like OA receptors expressed in cell lines 

primarily leads to an increase in intracellular Ca2+ concentration ([Ca2+]i), whereas 

activation of β-adrenergic-like OA receptors induces an increase in intracellular 

cAMP concentration ([cAMP]i) but no increase in [Ca2+]i (Balfanz et al., 2005; 

Maqueira et al., 2005).  

The physiological role of TA is less understood than that of OA. 

While TA is a synthetic precursor of OA, several lines of evidence have indicated 

that TA is also involved in a variety of physiological processes, including 

carbohydrate metabolism, muscle contraction, locomotion, excretion, reproduction, 

oviposition, olfaction and behavioral sensitization in insects (Downer, 1979; Huddart 

& Oldfield, 1982; McClung & Hirsh, 1999; Kutsukake et al., 2000; Nagaya et al., 

2002; Sasaki & Nagao, 2002; Blumenthal, 2003; Donini & Lange, 2004; Saraswati et 

al., 2004). Most of the cloned insect TA receptors, although categorized as OA/TA 

receptors in the newly proposed classification, are negatively coupled to adenylate 

cyclase via the Gi protein to reduce [cAMP]i (Arakawa et al., 1990; Saudou et al., 

1990; Vanden Broeck et al., 1995; Blenau et al., 2000; Ohta et al., 2003). 

The receptors of Octα class have mayor affinity to octopamine than 

tyramine like the octopamine receptor of A. mellifera, AmOA1, (Grohmann, 2003) 

or Bombyx mori receptor, BmOAR1, (Ohtani et al., 2006). 

To date, only β-adrenergic-like OA receptors from D. melanogaster 

have been cloned, and they are DmOctβ1R, DmOctβ2R and DmOctβ3R (Maqueira 

et al., 2005). Recently, it is cloned a β-adrenergic-like OA receptors from Bombyx 

mori, BmOAR2, (Chen et al., 2010). 

 

4.1.2. Neuropeptide and protein hormone receptors 

The neuropeptide and protein hormone receptors are the largest 

subfamily in the rhodopsin-like family. This subfamily of GPCRs plays a central role 

in control of insect behaviour, reproduction, development, feeding and many other 

physiological processes. They exert their functions through a large variety of peptide 

transmitters and hormones, indeed, similar to other insects, B. mori rhodopsin-like 

neuropeptide and protein hormone receptors can be classified into eighteen groups 

based on their ligands, i.e. the Allostatin receptors, Allatotropin receptors, 
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FSH/TSH/LH-like receptors, Sulfakinin receptors, Myosuppressin receptors, 

Diapause hormone receptors, Adipokinetic hormone/corazonin/ACP receptors, 

Neuropeptide Y receptors, Neuropeptide F receptors, Tachykinin receptors, 

Leukokinin receptors, Capa receptors, CCAP receptors, PBAN receptors, ETH 

receptors, SIFamide receptors, FMRFamide receptors and several orphan GPCRs  

(Fan et al., 2010). 

 

4.1.2.1. Allatostatine receptors 

The insect allatostatins are neuropeptides that obtained their 

names because of their ability to inhibit juvenile hormone biosynthesis in the corpora 

allata, two small organs (commonly fused) near the insect brain (Woodhead et al., 

1989). Juvenile hormone is a terpene that plays crucial roles in insect development 

and reproduction. There exist three families of allatostatins that are structurally 

unrelated, the allatostatins- A, -B, and -C. It appears that all insects have all three 

types of allatostatins, but that, in each species, only one allatostatin type inhibits 

juvenile hormone biosynthesis, while the other allatostatins have different inhibitory 

functions (Lenz et al., 2000a; Williamson et al., 2001a,b; Nassel, 2002).  

C-type allatostatins are 15 amino-acid residues long cyclic 

neuropeptides that have originally been isolated from the moth Manduca sexta, 

where they inhibit juvenile hormone biosynthesis (Kramer et al., 1991).  

In Drosophila, two allatostatin-C receptor genes have been 

identified, Drostar1 (CG7285) and Drostar2 (CG13702) (Kreienkamp et al., 2002). 

The honey bee genome contains one close orthologue (Am 31) to these two 

Drosophila receptor genes. Recently, it is cloned allatostatin-C receptor gene in 

Bombyx mori, BNGR-A1 (Bombyx neuropeptide GPCR), that it is expressed at high 

level in the corpora allata and the corpora cardiaca (Yanamaka et al., 2008). 

 

4.1.2.2. FSH/TSH/LH-like receptors 

Drosophila produces a receptor that was structurally and 

evolutionarily related to the LH/FSH receptors from mammals. Mammals have at 

least four glycoprotein hormones (LH, FSH, choriogonadotropin (CG), and thyroid-

stimulating hormone (TSH)) and at least three glycoprotein hormone receptors (the 

LH/CG, FSH, and TSH receptors) that are all closely related. A characteristic of 
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these glycoprotein hormone receptors is the presence of a very large, extracellular 

amino terminus that constitutes about half of the receptor protein and that contains 9 

Leu-rich repeats, each measuring about 24 amino acid residues. These nine Leu-rich 

repeats probably form a horseshoe-like structure to which the glycoprotein hormone 

ligand binds (Jiang et al. 1995; Kajava et al. 1995). Drosophila has four Leu-rich 

repeats-containing G protein-coupled receptor (DLGR) that we named DLGR1–4 

(Hauser et al., 1997; Eriksen et al., 2000). It was also identified the natural ligand for 

DLGR2, which is a heterodimeric cystine-knot protein with bursicon bioactivity 

(Mendive et al., 2005; Luo et al., 2005). Bursicon was described more than 40 years 

ago as a neurohormone that causes hardening and tanning of the soft cuticle from a 

newly hatched fly after adult ecdysis (Fraenkel and Hsiao, 1962; Fraenkel et al., 

1966). Later studies showed that bursicon also induces apoptosis of the wing 

epithelial cells after completed wing expansion (Kimura et al., 2004). The honey bee 

genome contains a clear orthologue of the Drosophila bursicon receptor gene 

(CG8930/DLGR2). 

 

4.1.2.3. Adipokinetic hormone receptors 

Adipokinetic hormones (AKH) are insect neuropeptide 

produced by the corpora cardiaca, a neuroendocrine organ closely associated with the 

insect brain. They are a large family of small peptides, all being 8-10 amino acid 

residues long; they are involved in the mobilization of sugar (trehalose) and lipid 

from the insect fat body during energy-requiring activities such as flight or 

locomotion (Gäde et al.,1997). They are also reported to contribute to hemolymph 

sugar homeostasis, regulating energy homeostasis and orchestrating different 

processes within a physiological context (Staubli et al., 2002). Multiple adipokinetic 

hormone (AKH) like receptors (4 sequences) had been identified in Bombyx, as in 

the case of Drosophila (2 sequences), Anopheles (3 sequences) and Apis (2 

sequences). 

 

4.1.2.4. PBAN receptors 

Pheromone-Biosynthesis-Activating Neuropeptide is a 

member of the PBAN/Pyrokinin neuropeptide family, characterized by a common 

amino acid sequence FXPRLamide motif in the C-terminus. PBAN is released into 
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the hemolymph of females during the scotophase and is drastically reduced after 

mating, contributing to the loss in female receptivity. Pheromone production is age-

dependent and Juvenile Hormone is involved in its regulation. PBAN activates 

pheromone production through its binding to a PBAN-Receptor (PBAN-R) and 

subsequent up-regulation of key enzymes in the biosynthetic pathway. Differential 

expression studies reveal its localization in pheromone glands, neural tissues and the 

male aedeagus (Rafaeli, 2009). 

The pyrokinins can be subdivided into two groups, depending 

on their peptide structures, and Drosophila has representatives from each class, 

pyrokinin-1 and -2 (Cazzamali et al., 2005b). Furthermore, Drosophila has three 

pyrokinin receptors, one specific for pyrokinin-1 (CG9918), and two for pyrokinin-2 

(CG8784 and CG8795) (Park et al., 2002; Rosenkilde et al., 2003; Cazzamali et al., 

2005b). The honey bee has two receptor genes (Am 25 and Am 26) that clearly are 

the orthologues to the three Drosophila pyrokinin receptor genes. The Bombyx 

receptor is related to Drosophila pyrokinin-2 receptors (CG8784, CG8795) and 

Anopheles GPRghp1.  

 

4.2. Secretin-like receptors family (Class B) 

The secretin-like family includes receptors for many hormones such as 

secretin, calcitonin, vasoactive intestinal peptide, and parathyroid hormone and 

related peptides; furthermore it comprises several members having key functions in 

the regulation of water balance and diuresis. The secretin-like receptors are 

characterized by long NH2-terminal domains containing five conserved cysteine 

residues that may form disulfide bonds and by short third cytoplasmic domains. 

 

4.2.1. Diuretic hormones receptors 

Fluid secretion (diuresis) in insects occurs in the Malpighian tubules 

and reabsorption of water and other small molecules takes place in the hindgut. 

Several insect hormones control this important process of water and salt homeostasis.  

There are two diuretic hormones (named DH) acting on the insect 

Malpighian tubules that are longer neuropeptides (Coast et al., 2001; Coast and 

Garside, 2005). One is structurally related to mammalian calcitonin and the 

Drosophila calcitonin-like peptide is called Drome-DH31, (Coast et al., 2001), 
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whereas the other is structurally related to mammalian corticotropin-releasing-factor 

(CRF) and in Drosophila is called Drome-DH44, (Cabrero et al., 2002). Drome-

DH31 and Drome-DH44 are not structurally related. Two Drosophila DH receptors 

have recently been identified, CG32843 (for Drome-DH31) and CG8422 (for Drome-

DH44) (Johnson et al., 2004, 2005). DH44-R1 has a receptor paralog, encoded by 

CG12370 (DH44-R2), (Hewes and Taghert, 2001), which, based on the high degree 

of sequence similarity, is predicted to be an additional target of DH44 activation. It 

has now found a honey bee gene, Am 55, that is a clear orthologue to CG32843, and 

it has also found another honey bee receptor gene, Am 53, that is clearly related to 

CG8422. BNGR-B1 and BNGR-B2, Bombix calcitonin-like receptors, are 

orthologous to Drosophila CG32843. Additionally, one Bombyx diuretic hormone-

like receptor was identified in this family, which is homologous to the Drosophila 

diuretic hormone 44 (DH44-R1), (Hector et al., 2009) and the Anopheles receptors 

GPRdih1 and GPRdih2.  

 

4.3. Odorant receptors 

Insect chemosensory systems detect a wide range of volatile and soluble 

chemicals and are important for finding and assessing the quality of food sources, in 

addition to identifying mates and oviposition sites. Chemosensory neurons are 

present in specialized sensory hairs called sensilla. In many insects olfactory sensilla 

are present on two pairs of olfactory organs on the head, the antennae and the 

maxillary palps.  

Odorant receptors are expressed in distinct subpopulations of olfactory 

neurons in either the antennae or the maxillary palps. Individual sensory neurons 

appear to be functionally distinct and perhaps express only a single odorant receptor 

gene (Vosshall et al., 2000). These neurons send axonal projections towards 

topographically invariant glomeruli in the antennal lobe. Therefore, different 

olfactory signals are probably “transmitted” to the brain via spatially distinct 

pathways of sensory information input (Gao et al., 2000; Vosshall et al., 2000). 

Olfactory receptors are implicated in one step of the olfactory cascade of 

events, which consist of combinatorial systems from stereochemical recognition to 

the generation of an odor code in the brain. Insect chemical odorant messages are 

translated into neuronal electrical activities through specialized organs, principally 
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the antennae, and processed by brain centers to elicit behavioral–physiological 

responses.  

Or83b is an unusual Or gene; it is the most conserved chemoreceptor gene 

in insects (Robertson et al., 2003; Hill et al., 2002; Melo et al., 2004; Jones et al., 

2005; Nakagawa et al., 2005), and unlike other Or genes, it is expressed in most 

olfactory neurons, (Ng et al., 2002; Larsson et al., 2004). Epitope mapping of OR83b 

indicated that this protein (and likely other insect ORs) had a flipped topology in 

comparison with GPCRs, with an intracellular N-terminus and extracellular C-

terminus (Benton et al. 2006). 

Or83b orthologues have been found in other flies, Anopheles, AgOR7, 

(Pitts et al., 2004), Bombix mori, BmorR2, and Heliothis virescens, HvirR2 (Krieger 

et al., 2003). 

OR83b, which heterodimerizes with other ORs (Neuhaus et al. 2005; 

Benton et al. 2006), is required for normal functioning of ORs and OR-expressing 

OSNs (Olfactory sensory neurons), (Larsson et al. 2004; Laissue and Vosshall 2008; 

Sato and Touhara 2008; Benton et al. 2006). The function of Or83b is also conserved 

across insect orders: Or83b orthologues from the medfly, the mosquito and the moth 

can all substitute for Or83b in Drosophila. In mosquitoes, the expression of the 

Or83b orthologue is also detected in a subset of neurons in the proboscis and legs, 

suggesting a role in the gustatory system (Pitts et al., 2004). 
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As widely described previously, insects represent one of the major challenges for the 

plants in their natural environment. Spodoptera littoralis is certainly one of the most 

destructive lepidopterans in the tropical and sub-tropical areas. It is a polyphagous 

noctuid, that feeds on plants belonging to different families: Malvaceae, 

Cruciferaceae, Graminae and Rosaceae. Various types of strategies have been 

utilized so far to control this insect pest, in particular the chemical treatment with 

methyl-parathion, organophosphorus compounds, synthetic pyrethroids and others 

insecticides. However, the use of these compounds has generated the phenomena of 

acquired resistance. Some recent papers reported the potential use of RNA 

interference (RNAi) induced by hairpin RNAs as a new strategy to defend plants 

against coleopteran and lepidopteran pests.  

On the basis of this information, I decided to use the RNA interference strategy to 

interfere with important molecular targets in the insect Spodoptera littoralis. An 

ideal target would be a protein involved in many different insect vital functions, such 

as development, feed, reproduction and movement; interfering with all these 

functions at the same time can drastically affect the insect pest vitality. I chose as 

molecular targets the receptors coupled to G protein (GPCRs), involved in the 

signaling transduction of variety extracellular signals through the G proteins 

activation.  

Thus the aim of my work is the production and characterization of transgenic 

Nicotiana tabacum plants, expressing dsRNA specific to G protein coupled receptors 

of Spodoptera littoralis as new strategy to protect plants against insect pests. After an 

attentive selection of the most appropriate GPCRs, I will characterize the plant lines 

for the expression of the dsRNA and check the stability of this molecule over time. 

The positive plants will be employed in bioassays where Spodoptera larvae will be 

fed on the plants in order to find any interesting phenotypic effects on the insect 

vitality. 
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1.  Database search 

The insect cDNA sequences corresponding to chosen receptors are available in 

database NCBI (www.ncbi.nlm.nih.gov). For the alignments the algorithms of blast 

(www.ncbi.nlm.nih.gov/BLAST) and the software of multiple alignment multalin 

(http://multalin.toulouse.inra.fr/multalin) have been utilized. The algoritms utilized 

for the prediction of the GPCRs transmembrane domains are: phobius.sbc.su.se; 

www.cbs.dtu.dk/services/TMHMM/; 

bioweb2,Pasteur.fr/seqanal/interfaces/toppred.html. 

 

2.  Growth of Spodoptera littoralis larvae 

The Spodoptera littoralis larvae were maintained at temperature of 23°C, 70% 

of relative humidity, under 16/8 hours light/dark period. The artificial diet utilized 

for the larvae growth is composed from wheat germ, brewer’s yeast, cornmeal, 

ascorbic acid, benzoic acid and agar. The larvae were maintained in these conditions 

until VI instar. After this, the larvae were transferred in boxes with vermiculite to 

arrive to the pupa instar. After one week, the pupae became nymphs. The nymphs 

didn’t feed for two weeks until the adult instar. The adults were left to couple to 

obtain the eggs. 

 

3.  Isolation and cloning of AlstC receptor from Spodoptera littoralis 

RNA extraction and cDNA synthesis 

Total RNA was isolated from Spodoptera littoralis using Promega kit. The 

RNA samples were treated with DNAses (Ambion) in order to eliminate potential 

genomic DNA contamination. 2 µl of RNA are loaded on 1% agarose gel in presence 

of denaturant loading dye and quantified using as standard a specific marker for RA 

(Fermentas). For the quantification it was used the software Gene tools (Perkin 

Elmer). The cDNA was synthesized using 0,3-1 µg of RNA with Reverse 

Transcriptase (Fermentas) using 500 ng of oligodT primer. 

 

Enzymes and conditions for PCR reactions 

For the cloning I used a high fidelity DNA polymerase: Phusion of Finnzymes. 
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The conditions for this enzyme are the following: 

Denaturation: 98°C for 2 s 

25-35 cycles: 98°C for 10 m 

                      45°C-72°C (depends on the primers Tm) for 30 m 

                     72°C for 30 m / 1 kb 

Extension: 72°C for 10 s. 

The degenerate PCR reactions were performed in 50 µl reaction volume with 2,5 µM 

of primers, 0,2 mM of  dNTPs (Fermentas) and 1 unit of High-Fidelity Phusion DNA 

Polymerase (Finnzymes). The reactions with specific primers were performed in the 

same mix reaction but the primers concentration is 0,25 µM. 

The fragments obtained have blunt ends then it is necessary to treat them 15 minutes 

with DNA polymerase (Euroclone) to insert them in the cloning vector pCR2-TOPO 

(Invitrogen). 

 

4.  Sub-cloning of selected receptors in the plant expression vector 

The selected receptor genes were sub-cloned into the plant expression vector. 

pH7GWIWG2(I), using the gateway technology. 

The receptor genes were first transferred into the gateway entryvector (pENTR 2B-

Invitrogen) (Fig. 9), which is designed to clone DNA sequence using restriction 

endonuclease and ligase to create a gateway entry clone. This vector contains attL1 

and attL2 sites necessary for the next cloning and the gene for the resistance to the 

kanamycin. The destination binary vector (pH7GWIWG2(I)-Plant Systems Biology) 

(Fig. 10) contains attR1 and attR2 sites. These sites are recognized by LR clonase, 

enzymes that does homologue recombination recognizing attL1 and attL2 sites 

gateway entry vector. Moreover, this plant expression vector contains the gene for 

the resistance to the spectinomycin, the 35S  promoter, necessary for the constitutive 

expression of the downstream gene, and due to the presence on an intronic sequence 

between the two strands (sense and antisense) of the newly transcribed RNA, a 

dsRNA is finally produced in the plant. The recombinant plasmids have been 

characterized using restriction endonuclease and verified by sequencing. 
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Figure 9. 
Map of pENTR 2B-Invitrogen, gateway entry vector. 
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Figure 10. 
Map of pH7GWIWG2(1)-Plant Systems Biology, destination binary vector. 
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5.  Bacterial transformation 

The competent cells DH5α (Invitrogen) were transformed with 100 ng of 

plasmidic DNA and put in ice for 30 minutes, then they were incubated at 42°C for 1 

minute and subsequently in ice for 2 minutes. After the adding of 1 ml of LB 

medium the cells were incubated at 37°C for 1 hour, then they were centrifuged for 3 

minutes at 5000 rpm. The sediment obtained, after the elimination of medium, was 

resuspended in the remaining volume (about 100 µl) and plating on LB agar 

containing 100 µg/ml kanamycin or 100 µg/ml spectinomycin. 

 

6.  Preparation of Agrobacterium tumefaciens (strain C58) competent cells 

and transformation 

A bacterial single colony was grown for two days at 28°C in YEP medium 

with rifampicin 100 µg/ml. The saturated culture was diluted 1:100 and grow until 

O.D. 500 = 0,5. The cells were made competent with 20 mM of CaCl2. 5 µg of 

plasmidic DNA were utilized for the transformation of the cells. These were 

incubated for 5 minutes in ice, 10 minutes in dry ice with ethanol and the thermic 

shock is performed at 37°C for 15 minutes. After that it was added 1 ml of YEP. The 

cells were grown for 2-4 hours at 28°C. the bacteria were plating on YEP agar with 

the appropriate antibiotics and grown. 

 

7.  In vitro growth of Nicotiana tabacum plants 

The wild type and transgenic plants, variety N-N Samsung, were grown in 

growth chambers in these conditions: 16 hours of light, 8 hours of dark, 250 

µEinsten m-2s-1, 23°C of temperature and 70% of humidity. 

 

8.  Plant transformation by agro infection 

The tobacco leaves were cut into 0,5-1 cm2 squares, avoid the mid-rib and the 

primary nerves, and don’t damage the surface of the squares. Of course, all work was 

done in a laminar flow hood. 10-20 leaf squares were put to float on 10 ml of A10 

medium (Table 2) in a Petri dish, upside up.  
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Added prior to use medium: 

 
Table 2. 
Medium used in the tobacco plants transformation by agro infection. 
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After that I infected the 10 ml with 100 µl of Agrobacteria overnight culture (in 

MGL medium) grown at 28°C and I added also acetosiringone 10 µM, substance that 

attracts the bacteria into the leaves. A Petri dish without Agrobacteria is used as 

positive and negative control. The plates were kept for 2-3 days under low light 

density, avoid the direct light, to promote the bacteria growth and then its access in 

the leaves. I transferred the leaves to a fresh dish with 10 ml of A10 and incubated 

for 15 minutes, swirling gently 2-3 times to allow bacteria to come off the plant cells. 

I repeated a second wash in the same conditions instead the final wash is carried out 

using A10 supplemented with 500 µg/ml cefotaxime, bacteriostaticum that stops the 

bacteria replication and doesn’t cause them death. I transferred the leaves to solid 

A11 medium (Table 2), pressing them very gently to the surface to allow good 

contact. The leaves were transferred to a fresh plate after 7 days, and after 10 more 

days. The calli obtained (1-2 mm) (Fig.11) were transferred on A12 medium (Table 

2), this allows good contact with the medium to ensure proper selection as well as 

nutrition. This incubation can be up to 2 weeks but no longer, because the cefotaxime 

instability. From this moment on, the orientation of the callus should not be changed. 

The calli of 5 mm were placed in small jars containing A13 medium (Table 2) and 

incubated for a further 2 weeks. If no shoots of good quality appear after 2 weeks, 

this step can be repeated. The shoots (Fig. 11) obtained were cut with a sharp scalpel 

and placed on MS30 medium in presence of selection. Each shoot with roots is 

directly analyzed using RT-PCR to verify the presence of transgene, and after that 

they were propagated in vitro.   

 

9.  RT-PCR in Nicotiana tabacum transgenic plants 

To verify the presence of transgene in the different Nicotiana tabacum lines, 

the total RNA was extracted from 0,05 g of fresh tissue using Genelute mammalian 

total RNA kit (Sigma).  

The cDNA was synthesized using 2 µg of total RNA with RevertAidTM M-

MuLV Reverse Transcriptase (Fermentas Life Sciences). All PCR reactions were 

carried out using as internal control the ribosomal RNA QuantumRNATM 18s 

Internal Standards (Ambion). I utilized different combinations of Internal Standards 

18s for each analyzed gene. In all PCR reactions I utilized the enzyme Taq DNA 

polymerase (Euroclone) and the master cycler ep-gradients (Eppendorf). 
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Figure 11. 
Agrobacterium tumefaciens mediated transformation: (A) callus formation, (B) shoot 
differentiation and (C) root differentiation. 
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The typical scheme utilized for amplification is the following: 

Initial denaturation: 94°C for 2 minutes; denaturation: 94°C for 30 second, 

annealing: 52-60°C for 1 minute (different temperatures for each primers couples), 

extension: 72°C for 30 seconds. The cycles were repeated for 30 times, after that 

there was a final extension of 10 minutes at 72°C, followed by the cooling of the 

samples at 4°C. The amplified fragments were controlled by electrophoresis on 

agarose gel with ethidium bromide 0.5 µg/ml, and displayed with the instrument 

Geliance 200 Imaging system (Perkin Elmer). The quantification of amplified bands 

it was performed using the software Gene tolls (Perkin Elmer). 

 

10.  Feeding bioassays of Spodoptera littoralis caterpillars on transgenic 

Nicotiana tabacum plants 

To evaluate the toxicity of transgenic plants I performed feeding bioassays 

using the insect Spodoptera littoralis. The bioassays were carried out using the first 

instar larvae fed on artificial diet and on plant leaf disk until the second instar. The 

leaves were placed in a Petri dish containing 2% agar, in order to keep them turgid 

and thus more appetizing for the insects. At the third instar, 15-20 larvae were 

selected and were placed on cut leaves, in plastic glasses, until the pupa instar. All 

larvae were fed with a fixed quantity of leaf (1cmx1cm), to be sure that all larve have 

the same food quantity; obviously this quantity increased according to larva growth. 

Every day the leaf was changed and the mortality rate was measured. 

 

11.  Real-time PCR 

500 ng of the extracted total RNA was reverse-transcribed primed by random 

hexamers in a final reaction mixture volume of 20 µl as described in the provide 

protocol of the high-capacity cDNA Reverse Transcription kit (Applied Biosystem). 

To minimize variations during the cDNA synthesis step, all RNA samples were 

reverse-transcribed simultaneously.  

Real-time PCR reactions were performed in triplicate each in a 20 µl reaction 

mixture volume following the manufacturer’s instructions for the PowerSYBR Green 

PCR MasterMix (Applied Biosystem) on an ABI Prism 7300 sequence detection 

system (Applied Biosystem) using the following thermal cycling profile starting with 
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2 m at 95°C, 41 repetitions of 15 s at 95°C, 1 m at 60°C. I used as endogenous 

control the β-actin. 10 to 20 ng of the reverse transcription reaction mixture was used 

as a cDNA template. The entire experiment was performed at least twice. For each 

transcript, values were analyzed by means of the ABI Prism 7300 SDS software and 

normalized relative to the endogenous β-actin control values. Calculations were done 

by relative quantification with the aid of the standard curve. 
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1.  Selection of Spodoptera littoralis GPCRs 

The first step of my thesis involved the selection of some Spodoptera littoralis 

GPCRs to be used as targets of RNA interference (RNAi) experiments. Several 

receptors have been described in literature as potential targets in insects, since they 

are involved in vital functions during different developmental stages, such as water 

balance, nutrition, chemoreception, reproduction and regulation of metabolism.  

The rhodopsin-like family (Class A), as previously described, encompasses 

receptors that bind a large variety of ligands, such as biogenic amine 

neurotransmitters, neuropeptides, peptide hormones, lights, nucleotides, 

prostaglandins, leukotrienes, chemotactic peptides, and chemokines. 

Among the receptors belonging to the rhodopsin-like family, I chose some 

members of neuropeptide and protein hormone receptors since, according to 

literature, they represent the most important regulators of vital functions in 

Lepidoptera (Fan et al., 2010). 

In particular, I selected: 

•        The allatostatin-C receptor (AstCR), which binds allatostatins, small 

neuropeptides acting on the corpora allata and blocking the release of 

juvenile hormone. Moreover this receptor is expressed in the insect gut 

where it regulates the smooth muscle contraction. Based on this 

information, I believed that the AstCR could be an ideal target to interfere 

with several mechanisms involved in insect development and feeding. 

•       The Leu-rich repeats-containing GPCR 1 (LGR1), which is a glycoprotein 

hormone receptor whose expression is developmentally regulated and is 

also involved in sexual reproduction. In this case, by interfering with its 

activity may lead to dramatic dysfunctions in insect development. 

•        The adipokinetic hormone receptor (AKHR), which is involved in the 

mobilization of sugar (trehalose) and lipids from the insect fat body during 

energy-requiring activities such as flight or locomotion. Thus, it may 

represent an ideal target to interfere with feeding and food searching. 

•        The Pheromone-Biosynthesis-Activating-Neuropeptide receptor 

(PBANR), which activates pheromone production, control reproduction 

and communication between the two sexes. The interference with its 

activity may easily lead to reproductive alterations.  
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• The octopamine/tyramine receptor (Oct/TyrR), which belongs to the 

tyraminergic receptors, and is capable of recognizing both the tyramine 

and the octopamine. This receptor, interacting with the major biogenic 

amines in insects, has a prominent role in the physiology of the nervous 

system and represents an excellent target for the RNAi experiments. 

The Secretin-like receptor family (Class B), widely described in the 

introduction, includes also receptors for many hormones, such as secretin, calcitonin, 

vasoactive intestinal peptide, parathyroid hormone and related peptides. Furthermore 

it comprises several members having key functions in the regulation of water balance 

and diuresis. Within this class, I chose the diuretic hormone receptor (DHR), that 

represents an attractive target for the discovery of novel insecticides because it has a 

central role in the regulation of fluid and ion secretion, a very important function for 

the insect survival.  

Finally, among the family of the odorant receptors (OR), I decided to choose a 

particular receptor: the OR83b. This receptor, unlike the conventional odour ligand-

binding OR expressed in small subpopulations of Olfactory Sensory Neurons, is 

expressed in all neurons and is needed for the membrane localization of all the 

odorant receptors. Due to this specific role, this receptor represents a good target 

because in case the OR83b was inhibited, the whole insect olfactory system would be 

shut down causing severe behavioural disorders. 

In conclusion, the selected Spodoptera littoralis receptors are the following: 

Adipokinetic Hormone receptor (AKHR), Allatostatin C Receptor (AstCR), Diuretic 

Hormone Receptor (DHR), Leucine-rich Repeat-containing GPCR 1 (LGR1), 

Octopamine/Tyramine receptor (Oct/TyrR), Odorant Receptor 83b (OR83b), and 

Pheromone-Biosynthesis-Activating-Neuropeptide receptor (PBANR). 

 

2.  Cloning of the selected GPCRs 

Most of the receptors chosen had already been cloned at Arterra Bioscience 

and their sequences deposited in the gene bank with the following accession 

numbers: SlAKHR=HC321173; SlDHR=FJ374690; SlLGR1=FJ374692; 

SlOct/TyrR=FJ374691; SlOR83b=FJ374688 (Tito, 2007). The Spodoptera littoralis 

PBANR sequence was cloned by other authors (Arciello et al., 2006) and present in 

the gene bank with the accession number HC321177. 
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For the receptor AstCR, no sequence data were available thus I had to clone 

part of the sequence using as template the total RNA extracted from adult heads. RT-

PCR was performed using degenerate primers based on homologous sequences of 

different insect species published on the gene bank. The protocols used for RT-PCR 

experiments are reported in the “Materials and Methods” section. After various 

attempts, I was able to clone a fragment of the AstCR sequence of 800 bp and, in 

order to extend the fragment to 1372 bp, I used the 5’ and 3’ Race technique. The 

obtained sequence is not complete as about 100 bp are still missing at the 5’ end. 

In order to express the dsRNA, corresponding to each receptor, in Nicotiana 

tabacum plants, all the receptor sequences were sub-cloned in an appropriate plant 

expression vector, pH7GWIWG2(I), using the Gateway technology. 

Gateway Technology provides an innovative and highly efficient method for 

transferring DNA fragments across multiple systems and into multiple vectors, 

replacing tedious and time-consuming cloning and sub-cloning steps. Based on the 

well-characterized lambda phage site-specific recombination, any DNA fragment 

flanked by a recombination site can be transferred into any vector that has a 

corresponding site (Landy, 1989).   

I decided to clone the whole coding sequence of each receptor gene, except for 

AstCR, where I used the 1372 bp fragment  

The receptor genes were transferred into the gateway entry vector (pENTR 2B-

Invitrogen) (Fig. 9 - Materials and Methods), which is designed to clone DNA 

sequence using restriction endonuclease and ligase to create a gateway entry clone. 

This vector contains attL1 and attL2 sites necessary for the subsequent cloning step. 

The destination binary vector (pH7GWIWG2(I)-Plant Systems Biology) (Fig.10 - 

Materials and Methods) contains attR1 and attR2 sites. These sites are recognized by 

LR clonase, enzyme that allows homologue recombination recognizing attL1 and 

attL2 sites of gateway entry vector. Moreover, this plant expression vector contains 

the 35S promoter, necessary for the constitutive expression of the downstream gene, 

and an intronic sequence between the two strands (sense and antisense) of the newly 

transcribed RNA, necessary to produce a dsRNA in the plant. 

The recombinant plasmids have been characterized using restriction endonuclease 

and verified by sequencing. These plasmids have been transferred into 

Agrobacterium tumefaciens competent cells (strain C58) (de la Riva et al., 1998) for 



	
   61	
  

the subsequent transformation of Nicotiana tabacum leaf discs by Agrobacterium 

infection.  

 

3.  Production, selection and characterization of transgenic Nicotiana   

tabacum plants expressing dsRNA 

I produced transgenic Nicotiana tabacum plants expressing the double-strand 

RNA (dsRNA) of the each cloned Spodoptera littoralis GPCR, using Agrobacterium 

tumefaciens mediated transformation. The Nicotiana tabacum plant transformation 

procedure using Agrobacterium infection consists of 3 basic steps: transgenic callus 

formation, shoot differentiation and root differentiation. The protocol used to 

produce transgenic plants is reported in the “Materials and Methods” section. All the 

obtained transgenic plants were propagated and analyzed for dsRNA expression level 

using semi-quantitative RT-PCR. I analyzed 20 transgenic plants for each receptor, 

and selected 10 positive transgenic plants for the following receptors: AKHR, 

AstCR, DHR, Oct/TyrR and PBANR. For LGR1 and OR83b only 2 positive 

transgenic plants were obtained (Table 3). In figure 12, I reported only three 

examples of RT-PCR analysis, relative to AstCR, Oct/TyrR and PBAN-R: the results 

of the experiment show that there is a detectable expression level of the dsRNA in all 

the transgenic lines. This result was expected since the sequences are all under the 

control of the 35S promoter.  

I also decided to produce Nicotiana tabacum transgenic plants expressing two 

dsRNA-GPCRs (double transformants), in order to produce a stronger interference in 

the insect. In particular, I produced transgenic plants expressing both the dsRNA of 

AstCR and of DHR, expecting to interfere with the insect development, feeding and 

regulation of the fluid at the same time. I also produced plants expressing both the 

dsRNA of DHR and of Oct/TyrR, which would interfere with the insect regulation of 

the fluid and physiology of the nervous system. I analyzed 40 transgenic plants for 

each double transformant and obtained 2 positive transgenic plants expressing both 

dsRNA of AstCR and DHR, and 5 positive transgenic plants expressing both dsRNA 

of DHR and Oct/TyrR (Table 3). In figure 13, I reported the RT-PCR analysis of the 

positive transgenic plants transformed with DHR and Oct/TyrR. 
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Table 3. 
Transgenic plant lines transformed with Spodoptera littoralis receptors, number of 
tested transgenic plants and number of positive transgenic plants. 
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Figure 12. 
RT-PCR of Nicotiana tabacum transgenic plants.  
(A) M: 1Kb DNA ladder; Lanes 2-7: different transgenic plants expressing AstCR-
dsRNA (520 bp band); wt1 and wt2: untransformed tobacco plants; C+: pENTR-
2B+AstCR (positive control of the PCR); B: negative PCR control. 
(B) C+: pENTR-2B+Oct/TyrR (positive control of the PCR); M: 1Kb DNA ladder; 
Lanes 3-12: different transgenic plants expressing Oct/TyrR-dsRNA (520 bp band); 
wt: untransformed tobacco plants; B: negative PCR control. 
(C) C+: pENTR-2B+PBANR (positive control of the PCR); M: 1Kb DNA ladder; 
Lanes 1-13: different transgenic plants expressing PBANR-dsRNA (1200 bp band); 
wt: untransformed tobacco plants; B: negative PCR control.	
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Figure 13. 
RT-PCR of transgenic plants expressing both dsRNA of Oct/TyrR and DHR.  
(a) C+: pENTR-2B+DHR (positive control of the PCR); lanes 1, 7, 8, 22, 24: samples 
of the transformed plants; wt: untransformed tobacco plants; B: negative PCR 
control; (b) M: 1kb DNA ladder; C+: pENTR-2B+Oct/TyrR (positive control of the 
PCR); lanes 1, 7, 8, 22, 24: samples of the transformed plants; wt: untransformed 
tobacco plants; B: negative PCR control.  
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Once obtained and characterized all the single and double transformants, 

before performing the feeding bioassays, I evaluated the stability of the dsRNA 

molecules in the Nicotiana tabacum leaves by performing a time course experiment. 

 

4.  Analysis of the dsRNA stability in the transgenic plants 

Considering that many of the feeding bioassays had to be carry out on cut 

leaves, I wanted to verify the time stability of the dsRNA, to understand how long 

the dsRNA remains undegraded in the excised leaves of the plant. 

To verify that, I conducted a time-course RT-PCR experiment by using excised 

leaves. Leaves were collected from transgenic Nicotiana tabacum plants expressing 

dsRNA for AlstCR, and total RNA was extracted after 3, 6 and 24 hours after the 

excision. The results of the semi-quantitative RT-PCR analysis (Fig. 14) showed that 

the transgene expression level was stable during the 24h time period, suggesting that 

no significant degradation of the dsRNA occurred in the leaves after the cut. 

 

5.  Feeding bioassays of Spodoptera littoralis caterpillars by using transgenic 

Nicotiana tabacum plants 

All the feeding bioassays were performed by me in the laboratories of Arterra 

Bioscience, by the group of Dr. Chiara Sargiotto at Isagro Ricerca, and by the PhD 

student Ilaria Di Lelio in the laboratory of Prof. Francesco Pennacchio at the 

Department of Entomology, University of Naples "Federico II". ,  

For these assays I decided to start with the plants transformed with AlstCR, 

DHR and OCT/TyrR, since, among all the cloned receptors, were those that could 

give the highest chances of success.  According to literature data (Mao et al., 2007) 

and unpublished results obtained at Arterra, both AlstCR and DHR represent 

accessible targets for RNAi technology because mostly expressed in the gut or 

Malpighian tubules. Although the Oct/Tyr receptor appears a more difficult target to 

reach by RNAi, it acts in the central nervous system and is the most important 

regulator of the basal metabolism.  
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Figure 14. 
Time course analysis of dsRNA stability in transgenic plants expressing the AstC 
receptor. 
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5.1.  Feeding bioassays with AlstCR-dsRNA expressing plants 

A preliminary feeding experiment on the whole plants was performed in the 

labs of Isagro Ricerca. The purpose of this experiment was to screen a large number 

of transgenic AlstCR plants and to choose those producing the most evident 

phenotypic effects in the larvae. 

The bioassay was performed using 30 Spodoptera littoralis larvae which were 

fed on 7 different transgenic tobacco lines (AlstC 2, 3, 4, 5A, 5B, 6, 7). The first 

instar larvae were fed on artificial diet and on plant leaf disks until the second instar. 

Then, 15-20 larvae were selected and transferred onto the transgenic plants, and onto 

wild type (wt) plants, used as control. At the fourth-fifth instar, larvae were 

transferred again and placed on cut leaves, in plastic glasses, until the pupa instar. 

During the experiments the mortality rate was calculated and the larvae observed for 

eventual phenotypic defects. As shown in figure 15, although the mortality rate of 

the larvae fed on wt plants was unexpectedly high (50%), the plants of the transgenic 

line AlstC-6 produced an 80% mortality rate. Since in this preliminary screening 

only the transgenic line AlstC-6 gave positive results, I decided to use this line in all 

the other following feeding tests. In the laboratory of Prof. Francesco Pennacchio, 

Ilaria Di Lelio measured the mortality rate in larger populations of larvae (200 

individuals), which were fed on plant leaf disks during the entire life cycle. The 

results of this experiment, showed in figure 16, revealed that after five days the 

mortality of the larvae fed on the transgenic plants was 25% higher than that of 

larvae fed on wt plants. After 10 days, all the larvae fed on transgenic plants died, 

while the mortality of larvae fed on wt plants reached 65%. To validate these results, 

the experiment was repeated 2 times and similar mortality percentage values were 

obtained. Although in all the experiments the mortality rate of the control larvae was 

unexpectedly high, the transgenic plants expressing dsRNA of AlstCR gave always a 

significant effect of mortality, most likely due to the interference with the GPCR 

expression in the insects.  
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Figure 15. 
Percentage of mortality of Spodoptera littoralis larvae fed on transgenic AlstCR-
dsRNA plants (red bars) and wt plants (green bar).  
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Figure 16. 
Daily percentage of mortality of Spodoptera littoralis larvae fed on transgenic 
AlstCR-dsRNA plants (red line) and wt plants (green line).  
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5.2.  Feeding bioassay with DHR-dsRNA expressing plants  

Analogously to what previously done for the AstCR plants, the transgenic 

tobacco lines expressing the dsRNA of DHR were used in a preliminary screening 

test to find those producing significant phenotypic effects on the Spodoptera larvae.  

Among all the 11 transgenic lines analyzed  (DHR 5, 7, 8, 9, 11, 13, 14, 15, 18, 19, 

20), 4 lines showed a significantly higher mortality rate than those fed on wt plants 

(Fig. 17). Thus, I decided to use the plants belonging to lines DHR 7 and DHR 19 for 

further experiments of feeding. 200 larvae were fed on leaf disks excised from DHR-

dsRNA and wt plants, and the mortality rate was measured over 12 days after the 

beginning of the experiment.  The results, reported in figure 18, show the daily 

mortality percentage of the larvae fed on transgenic plants in comparison with that of 

larvae fed on wt plants: the mortality rate of the larvae fed either on the plant DHR7 

or DHR19 reached 100% after 8 and 12 days, respectively, while the mortality rate 

of the control larvae was only 60% and 85%. The experiment was repeated one more 

time, and the results were consistent with what previously obtained. I can conclude 

that also the plants expressing DHR-dsRNA produced significant effects on insect 

vitality, suggesting the validity of the employed RNAi strategy.  

 

5.3.  Feeding bioassay with Oct/TyrR-dsRNA expressing plants  

The feeding assays on the transgenic plants transformed with Spodoptera 

littoralis Oct/TyrR didn’t follow the experimental protocol used for AlstCR and 

DHR. To save time, the bioassays were performed at the same time by the 3 different 

laboratories - Isagro Ricerca in Novara, the Department of Entomology (University 

of Naples "Federico II") and Arterra Bioscience. All the experiments followed the 

same protocol reported in “Material and methods” section. Spodoptera littoralis 

larvae were fed on plants belonging to 7 different lines of Oct/TyrR transgenic plants 

(3, 4, 6, 7, 8, 11 and 12), and the mortality rate was measured.  

In the table 4 the results of all the bioassays are summarized. Delta (Δ) 

represents the difference of the mortality rate of larvae fed on transgenic plants and 

that of the larvae fed on WT plants (control), expressed in percentage. The lines 

Oct/TyrR 6, 7 and 11 gave the best results in these tests.  
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Figure 17. 
Percentage of mortality of Spodoptera littoralis larvae fed on transgenic DHR-
dsRNA plants (blue bars) and wt plants (green bar).  
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Figure 18. 
Daily percentage of mortality of Spodoptera littoralis larvae fed on transgenic DHR-
dsRNA plants belonging to line DHR7 (red line), line DHR19 (blue bar) and of 
larvae fed on wt plants (green line). 
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Table 4. 
Feeding bioassays on different lines of Nicotiana tabacum transgenic plants (3, 4, 6, 
7, 8, 11 and 12) expressing the dsRNA of Oct/TyrR. 
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Line 6 produced the highest percentage of mortality in three out of five 

experiments; line Oct/TyrR 7 gave the highest percentage of mortality in two out of 

four experiments, while line 11 only in one out of two experiments. On table 4, it is 

possible to note that the results of the tests, even though performed on plants of the 

same line, are often variable: for example, analyzing the results obtained on 

transgenic line 6, only three bioassays gave a Δ of about 30-50% (those performed at 

Arterra and at Isagro), the other one gave a Δ of about 0-6% (those performed at the 

University and at Isagro). Unfortunately, the results of the tests performed by the 

different labs don’t always agree, which can be explained by the different protocols 

used, and maybe by the slight different experimental conditions.  

	
  

6.  Discussion of the results obtained from the feeding bioassays 

Most of the results suggest that the transgenic plants expressing dsRNA 

corresponding to the insect receptor cause a significant mortality rate in the larvae 

that fed on them. On the other hand, the results are not always consistent, which 

indicate the presence of experimental problems giving:  

i) an unusually high mortality rate of the control larvae 

ii) lack of repeatability of the tests.  

I can only hypothesize the following:  

i) The unusual high mortality rate of the larvae fed on wt plants can be 

explained by the fact that there is always a basal mortality in insect populations, even 

in those grown under controlled experimental conditions. This basal mortality can be 

higher when the larvae are domesticated and thus become more susceptible to slight 

environment changes. A high mortality in the insect populations can be also due to 

the toxicity of nicotine, the alkaloid normally present in the leaves of Nicotiana 

tabacum plants. It was shown that insect fed on tobacco plants have problems in the 

neurotransmission because the nicotine acts as agonists at the nicotinic acetylcholine 

receptor (nAChR) that is widely and predominantly distributed in the neuropil 

regions of the central nervous system (CNS), (Tomizawa and Casida, 2003). 

ii) Concerning the repeatability of the assays, the problems could be related to 

either the insect system or the plants. In the insect, there could be redundancy in the 



	
   75	
  

receptor genes, which implies a bigger resistance to loose a specific gene 

functionality. In particular, the inconsistent results obtained for the Oct/TyrR suggest 

that a reduction of the activity of this gene may be very hard to achieve due to the 

presence of analogous genes which are expresses differentially in the various stages 

of the insect development. Indeed, in Lepidoptera there are three classes of 

Octopamine (OA) receptors (Evans and Maqueira, 2005): α-adrenergic-like OA 

receptors (OctαRs), β-adrenergic-like OA receptors (OctβRs) and OA/TA (or 

tyraminergic) receptors. Moreover, the Oct/Tyr receptor, which I studied, is 

expressed in the insect central nervous system and thus it may be a more difficult 

target to reach by the dsRNA molecules. 

Finally, to exclude that the inconsistency of the results of the bioassays with 

Oct/TyrR plants was due to genetic recombination phenomena occurring in the 

plants, I checked the presence of genetic chimaeras. In botany, “chimaeras” are 

plants consisting of two or more genetically distinct kinds of cells that can arise by a 

mutation in a certain region of the plant after cells divide. If this phenomenon had 

happened in my transformed plants, some clones would have expressed the transgene 

and other ones not. To verify that, I performed the transgene expression analysis in 

all the clones derived from the same line (Fig. 19). The results obtained showed that 

all the clones had a comparable expression level of the transgene and thus they were 

not genetic chimaeras.   

 

7.  Validation of the strategy: expression study in the interfered larvae fed on 

dsRNA transgenic plants 

To verify whether the effect of insect mortality I observed in the bioassays was 

effectively due to the interference of the dsRNA with the specific insect receptor, I 

performed an expression analysis in the interfered larvae fed on dsRNA transgenic 

plants. I conducted this analysis on the larvae fed on transgenic Nicotiana tabacum 

plants expressing DHR-dsRNA since I obtained the most reproducible results by 

using these plant lines. Moreover, preliminary results obtained at Arterra on RNAi in 

insects by microinjection indicated that dsRNA can actively reduce the level of the 

GPCR expression (unpublished results).  
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Figure 19. 
RT-PCR of transgenic plants expressing dsRNA of Oct/TyrR.  
C+: pENTR-2B+Oct/TyrR (positive control of the PCR); M: 1kb DNA ladder; lane 
OCT4 (clones 1-2), OCT6 (clones 1-2), OCT7 (clones 1-3), OCT12 (clones 1-3): 
samples of the transformed plants; wt (1, 2, 3, 4): untransformed tobacco plants; B: 
negative PCR control. 
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To perform the expression studies on DHR gene in Spodoptera, I fed the larvae 

on Nicotiana tabacum transgenic plants belonging to the line DHR 7, and on 

Nicotiana tabacum wild type plants, as control. For each sample, 5 larvae were 

picked-up at days 3, 5 and 7 after the beginning of the experiment and total RNA 

was extracted. I chose these days for the pick-up on the basis of the results obtained 

from the feeding bioassays. In fact, recalling to figure 18, at the day 3 it is already 

possible to observe a slight difference between the percentage mortality of the larvae 

fed on transgenic plants and that of the larvae fed on WT plants (Δ=10%). Then, 

after the day 5 the Δ value overcomes 50%, to reach a maximum at day 7. The 

expression level of DHR was measured by using semi-quantitative RT-PCR on the 

larvae fed on the transgenic at days 3, 5 and 7. The values reported in figure 21, 

which refer to the amplification bands shown in figure 20, are averages of two 

independent experiments. On day 3, the expression of the DHR gene is higher in the 

interfered larvae than that in the control larvae, while on day 5 and 7 it goes down 

significantly only in the interfered larvae. At the day 7, the decrease of DHR gene 

expression in the interfered larvae is around 35% lower than that in the control 

larvae. These results clearly indicate that the interference caused by the transgenic 

plants had the specific effect of reducing the expression of the DHR gene in 

Spodoptera littoralis larvae.  

To confirm the results obtained from RT-PCR analysis I quantified the 

expression level of the DHR gene also by using Real Time PCR technique. The 

results of the Real Time PCR analysis (Fig. 22), as expected, were more accurate and 

showed a trend very similar to the one obtained from the semi-quantitative RT-PCR: 

at the day 5, the expression of DHR gene started decreasing until reaching around 

65% of the initial value at day 7. The result obtained at the day 3 was quite 

unexpected, but hardly due to an experimental artifact since confirmed even by the 

Real Time analysis. This could be explained by the fact that after the feeding the 

larvae accumulate siRNA molecules, as result of the RNAi mechanism, and also 

amplify these molecules due to activity of RNA-dependent RNA polymerase (RdRP) 

(Lipardi and Paterson, 2009).  
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Figure 20. 
RT-PCR of the interfered larvae.  
a: day 3; b: day 5; c: day 7. From lane 1 to 5: larvae fed on WT plants; from lane 6 to 
10: larvae fed on DHR-dsRNA transgenic plants; B: negative PCR control; M: 1kb 
DNA ladder. 
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Figure 21. 
DHR gene expression level, using semiquantitative RT-PCR analysis, in Spodoptera 
littoralis larvae fed on WT plants (green bar) and transgenic plants (red bar), at the 
days 3, 5 and 7; (* p < 0,05). 
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Figure 22. 
DHR gene expression level, using real-time PCR analysis, in Spodoptera littoralis 
larvae fed on WT plants (green bar) and transgenic plants (red bar), at the days 3, 5 
and 7; (* p < 0,05). 
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In conclusion, the results of the expression analysis obtained for DHR 

suggested that the effect of mortality observed in the populations of larvae fed on the 

transgenic plants was most likely due to a reduction of the amount of specific mRNA 

in Spodoptera, causing severe phenotypic effect on the metabolism and leading to 

the insect death. 	
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CONCLUSIONS 
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The aim of my PhD project thesis was the production and characterization of 

transgenic Nicotiana tabacum plants, expressing dsRNA specific to G protein 

coupled receptors of Spodoptera littoralis as new strategy to protect plants against 

insect pest. For this purpose, seven Spodoptera littoralis GPCRs (AKHR, AstCR, 

DHR, LGR1, Oct/TyrR, OR83b and PBANR) were chosen and cloned in an 

appropriate plant expression vector. Using Agrobacterium tumefaciens mediated 

transformation transgenic Nicotiana tabacum plants were produced for each cloned 

GPCR. All the plants were characterized for the presence of the transgene using RT-

PCR. 

 Nicotiana tabacum transgenic plants expressing dsRNA for AstCR, DHR and 

Oct/Tyr-R were also chosen for further feeding bioassays with the target insect 

Spodoptera littoralis. This because these 3 receptors represented the most attractive 

targets due to their central roles in the regulation of insect development and vitality. 

In particular, DHR has a key role in the regulation of fluid and ion secretion, and 

Oct/TyrR works as neurotransmitter in different functions, from insect metabolism 

regulation to modulation of respiration and muscles contraction. Moreover, AlstCR 

may represent an interesting target also for its localization in the larval body: 

literature data have highlighted that the RNA interference by feeding works better on 

genes expressed in the gut (Mao et al., 2007). 

In all the performed bioassays  the percentage of mortality was measured every 

day. Some of the lines produced significant mortality rates compared to wt plants. To 

verify that the observed mortality was due to the interference with the specific gene 

and to validate this new strategy, an expression analysis of DHR gene in interfered 

larvae was performed using semi-quantitative RT-PCR and Real-time PCR 

techniques. Some authors reported that is very difficult to interfere with genes 

expressed in Lepidoptera, and that the interference preferentially works with genes 

expressed in the gut (Huvenne and Smagghe, 2010).   

The results obtained with both, semi-quantitative RT-PCR and Real-time PCR, 

show that the DHR expression level was significantly reduced in Spodoptera 

littoralis interfered larvae, proving that the interference technology can be used also 

in Lepidoptera. Moreover the DHR is not expressed in the gut but only in the 

Malpighian tubules. The reduction of the expression level of DHR that we observed 

in the larvae fed on DHR-dsRNA transgenic plants demonstrated that the 

interference technology can be applied to a wide range of insect genes and not only 
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in those expressed in the gut. In conclusion, all these results could be an input for 

further field trials and the development of a non-conventional crop protection 

strategy based on the use of the transgenic plants as bio-insecticides.  
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