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Introduction

By the results contained in the paper by Birman and Skvortsov “On the
square summability of the highest derivatives of the solution to the Dirichlet
problem in a region with piecewise smooth boundary” (see reference [1]),
the Laplace operator Ag on a plane curvilinear polygon 2 with domain the
Sobolev space H?(f2) and homogeneous Dirichlet boundary conditions is a
closed symmetric operator with deficiency indices (n,n), where n is the num-
ber of non-convex corners. Therefore on a non-convex polygon, Ag has infi-
nite self-adjoint extensions. Such extensions have been recently determined
by means of Krein’s resolvent formula in [8]. The purpose of this thesis
is to extend such results to the case of different, more general, boundary
conditions.

In the first part of the thesis (see Chapter 2) we consider the case of mixed
Dirichlet-Neumann conditions, thus allowing each side I'; of the polygon
boundary to support either a Dirichlet or a Neumann homogeneous boundary
condition. In this case, building on results by Grisvard (see [3], [4] and
references therein), we have that, differently from the pure Dirichlet case,
non-convexity is no more a necessary condition in order to have not zero
deficiency indices. Indeed in this case the precise result is the following:

Let w; the interior angle at the j-th vertex S;. If d; denotes the contribution
to the dimension of the defect space due to the vertex S;, then

dj:(), O<Wj§7T
di=1, 7m™<w;<2m,

both in the pure Dirichlet-Dirichlet and Neumann-Neumann cases, and

dj:O, O<wj§%7r
dj=1, tr<w;<3r (1)
d; =2, %7‘(‘<w]-<277'

in the mixed Dirichlet-Neumann case.



Thus while in the pure Neumann case the dimensions of the defect spaces
is the same as in the case of the pure Dirichlet case already studied by Birman
and Skvortsov, the mixed case has a different behavior, allowing both convex
cases (with vertex contribution equal to one) and non-convex cases with
double vertex contribution.

After explicitly characterizing the defect subspace we determined the self-
adjoint extensions by a Krein’s resolvent formula proceeding analogously to
the pure Dirichlet case given in [8], however taking into account the double
contribution due to the vertices with mixed boundary conditions.

In the second part of the thesis we further extend our analysis by allowing
some sides I'; to support Robin boundary conditions of the kind (here n;
denotes the exterior normal at the j-th side)

9]
u(x)+aja—§(a:):0, rely, a;>0.
J

While this is a deformation of the case considered in the first part, some not
completely trivial calculations are necessary in order to get results similar to
the ones concerning the mixed Dirichlet-Neumann case. By such calculations
(which fill the entire Chapter 3) it turns out that in the Robin case the
contribution d; of the j-th vertex to the dimension of the defect space is
given by the number of eigenvalues \; belonging to the interval (0,1) of the
1-dimensional Robin boundary value problem

—u"(0) = \ju(f), 6 € (0,w;)
u(0) + a;u/(0) =0,
u(wj) — aju’ (wy) = 0.
Thus, by tuning the parameters «;, one can recover results anologous to the

ones in (1). However also different behaviors are possible:
1. for any € > 0, for any 0 < w; < ¢, there are parameter values which give

dj = 1,
2. for any zm < w; < (3/2)7, v ~ 1.43, there are parameter values which
give d; = 2.

Moreover, as expected, the d;’s converge to the ones corresponding to
the mixed Dirichlet-Neumann case as the a;’s converge to either 0 or oo
accordingly to the different possible cases.

Again as in the mixed Dirichlet-Neumann a Krein’s formula giving the
classification of all the self-adjoint extension is provided in Chapter 4.

In the final chapter we give, to enhance the reader intuition, some simple
examples regarding the case in which 2 is a wedge.
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Chapter 1

Preliminary results

1.1 Sobolev spaces on Polygons

In this section we recall the basic definitions and general results® that will be
used in the following part of this work. Let €2 be an arbitrary open subset of
R" with boundary 9. Denoting by L?*(€2) the space of all square integrable
(complex valued) functions for the Lebesgue measure on €2, we denote by
C>(9) (resp. C=°(Q)) the space of all infinitely differentiable unctions with
compact support in € (resp. the restriction to Q of functions in C°(R™)).

Given s any real number, we shall denote by m its integral part and by o
its fractional part. According one has s = m + o with 0 < o < 1. Also we
denote by D; the differentiation with respect to z; for 1 <7 < n and for an
arbitrary multi-integer o = (v, @, ...a,,,) With nonnegative components we

set D = D™ D2 D%,

Definition 1.1.1. We denote H*(2) the space of all distributions u defined
in € such that

i) D*u € L?(Q) for |a] < m when s = m is a nonnegative integer

ii) u € H™(Q) and

dzdy < oo,

u/ | Du(z) — Du(y)|”
QxQ

|z —y[r 2

for || = m when s = m + o is a nonnegative and non integral integer.

We define a Hilbert norm on H*(Q2) by

il = (3 [ Iputo)Pac) "

la|<m
Proofs can be found e.g. in [3], Chapter 1, and [4], Chapter 1.

b}



in the case i) and by

|Du(z) = Du(y)? \"?
Ul|s,0 = U mQ+ / dffdy )
ol = P

in case i1).

Definition 1.1.2. We denote by H§(€2) the closure of C2°(Q2) in H*(Q).
Definition 1.1.3. We denote by H~*(£2) the dual space of Hj(£2).

Definition 1.1.4. For every positive s we denote by H*(Q) the space of all
u defined in  such that @ € H*(R™) where @ is the continuation of u by zero
outside €.

On [*(Q) we define the norm ||il|sge. A simple calculation shows that
this norm is equal to ||ul|so when s is an integer and equivalent to

e+ 3 ([ 17t >dx)1/2

la|<m

when s is not an integer, where w(x) is an appropriate weight. If Q is a
Lipschitz ? bounded domain, the weight w(z) is equivalent to p(x) ™27 where
p(x) denotes the distance from z to the boundary.

Theorem 1.1.1. Let Q be a Lipschitz open subset of R™. Then C=(Q) is
dense in H*(Q)) for all s > 0.

Theorem 1.1.2. Let 2 be a Lipschitz open subset of R™. Then C2°(52)
is dense in H*(Q2) for all s > 0. Moreover C°(2) is dense in H*(Q2) for
s€[0,1/2).

Definition 1.1.5. We denote by H~*(Q) the dual space of H*(Q).

Theorem 1.1.3. Let ) be a bounded Lipschitz open subset or R™ then for
every s > 0 there ezists a continuous linear operator Ps from H?®(2) into
H*(R™) such that

Pu 0 =U,

for any u € H*(Q).

2By a Lipschitz domain we mean that the boundary of  is locally the graph of a
Lipschitz function.



Theorem 1.1.4. Let ' > s > 0 and assume that € is a bounded Lipschitz
open subset or R" then the injection of H* (Q) into H*"(Q) is compact.

Theorem 1.1.5. Let s’ > s” > s” > 0 and assume that 2 s a bounded
Lipschitz open subset or R™ then there exists a constant C (which depends
on Q, s', and ") such that

s”—s”/)/(s/—s”)
[ulls.a,

ullsr 0 < €ljulls.o+ Ce
for all u € Hs/(Q),

Theorem 1.1.6. Assume that ) is any bounded open subset of R™ then there
exists a constant K(2) which depends only on the diameter of 0 such that

ulloq < K(Q)(Z/ | Dyuf*dz)"?
1<n /9

for any u € HF(Q)

Theorem 1.1.7. 3 The following inclusions hold
H*(R"™) C LY(R")

for s <n/2 and q > 2 such that 1/q=1/2 — s/n and
H*(R™) C C*(R™)

for any integers k < s —n/2.

Theorem 1.1.8. Given Q be a bounded Lipschitz open subset of R™ and
denote by p(x) the distance from x to T'. Then one has u/p* € L*(Q) for all
u € H*(Q) when 1 < s < 1/2 and for all u € HS(2) when 1/2 < s < 1.

Let us now recall the well known trace theorem on an hyperplane. Given
u a smooth function on R™ we define the function v°u by

Yu(wy, ... 2 1) == ul(zy, ..., 20 1,0).

The density property allows one to extend «° to a continuous linear operator
from H*(R") onto H*~Y/2(R"!) provided s > 1/2. As direct consequence
one has

3 Applying Theorem 1.1.3 one obtains the same inclusions for spaces over a bounded
Lipschitz domain ).



Theorem 1.1.9. The mapping

ou 8'%)

u — (’Youa 708:17 7"'7’70%

defined on C2°(R™) has for k < s —1/2 an unique continuous extension as
an operator from

H*R") onto [] H""'’®R"Y).

0<p<k

From now on € will be a polygonal domain in R? where the boundary
0S) is given by the union the of sides I';, j =1,... N.
Given u € H*(Q2) we define

yfu =" Pu

by taking a system of orthogonal coordinates (z1,22) € R? with respect to
which I'; C {(21,0),2; € R}. Given such a definition one has the following

Theorem 1.1.10. Let Q be a bounded polygonal open subset of R?, then for
each j the mapping

u— {7, 1<1<k1<j<N}
which is defined for u € C®(Q) has for k < s — 1/2 a unique continuous
extension from

N

H(Q) into [ [ #"2(T).

j=10<p<k

As regards the range of the application given in the previous theorem one
has the following

Theorem 1.1.11. Let Q be a bounded polygonal open subset of R?. Then
the mapping
uH{%u,OSlSm—l,lﬁjSN}

is linear continuous from H™()) onto the subspace of

I II #+"'"ry

1<j<N 0<I<m—1



defined by the following conditions. Let L be any differential operator with
constant coefficients and order d < m — 1. Denote by P;; the differential
operators tangential to I'; such that

al
L= Pugr:
l j

where n; denotes the exterior normal at vv;. Then one has
i) 2 (Pf50)(85) = 220(Pjrafina) () for d <m —2

i) 3 (Piafin) = 22(Py1afiv) at Sj ford=m — 1.
As regards “half” and ’full” Green Formula the result is the following:

Theorem 1.1.12.

/uAvdx—}—/VvVudx:Z/ Wuvyjvdo, we H'(Q),ve H*Q),
Q Q = Jr,

/uAv dx—/ vAudr = Z (/ ’yj(-)uv}v da—/ ’}/;-)U’}/;U da), u,v € H*(Q).
Q Q r : r;
(1.1)

The linear maps 730 and 7]1 can be extended to a larger domain and this
implies an extension of Green’s folmulae also. Indeed, defining the mazimal

domain
D(AG) :={u € LQ(Q) Au € Lz(Q) }, (1.2)

one has

Theorem 1.1.13. Let Q be a bounded polygonal open domain in R?. Then
the maps 7}) and ’}/;U have unique continuous extensions

A D(AG™) = HVATY),
A} D(AE™) — HPA(T).
Moreover

Theorem 1.1.14.

/ vAudx + / VoVudr = Z(fy?u, Aivy,
0 0 :

J

for every v € 2(AEL®) and every u € H'(Q) such that
Y € ov2(Ty).



Theorem 1.1.15.

/ ulAvdxr — / vAudr = Z ((VJu, A;v) — (AJv, vju))
Q Q -

J

for every v € 2(A%R®) and every u € H*(Q) such that

Yu e HP(T;), ~vjue HYA(T).

1.2 Self-adjoint extension and Krein’s formula

Let us consider the Hilbert space ## equipped with the inner product (-, -)
and the self-adjoint operator

A D(A)C H — A

Then we define 5 as the Hilbert space given by the domain Z(A) equipped
by the inner product

Now, given a closed subspace A" C 5, dense in 7, let us define S as the
closed, densely defined, symmetric operator obtained by restricting A to 4.
Our purpose is to describe all self-adjoint extensions of S together with their
resolvent.

Since A is closed, 5y = A ® A+, and then .4 coincides with the kernel of
the orthogonal projection onto .4#*. Now, since A+ ~ J#, /.4 is an Hilbert
space, without lost of generality we can always suppose that .4 coincides
with the kernel of a surjective bounded linear operator:

T — b,

with h an auxiliary Hilbert space. Since this suffices for our purposes, we
will suppose that b is finite dimensional, thus we can pose

h=C".

This meas that S has finite deficiency indices.
In the following
H (L), (L), p(L),

will be respectively the kernel, the range and the resolvent set of a given
linear operator L. Given 7 as above one has

S=AX(r), R(r)=C", A(r)=IH. (1.3)

10



For any z € p(A) we define the resolvent of A, i.e. the bounded linear
operator from 5, to J¢ as:

R, :=(-A+2)" (1.4)
For any element of p(A) we also consider the continuous linear map:
G,:=(TR;)" : C" = 2, (1.5)
that is injective being 7 surjective. One has that (1.3) are equivalent to:
Z(G.)ND(A) ={0}. (1.6)

Furthermore, by the first resolvent identity one has ([6], lemma 2.1):

(z —w)R,G, =G, — G, (1.7)
(G, —G,) € 2(A). (1.8)
Let us now consider a family of linear operators I' : C* — C” such that
(L) =15, (1.9)
I,-Ty,=(2—w)G;G,. (1.10)

Let us observe that this class is nonempty, in fact by (1.7) and the definition
of I'(2) one can prove (see [6], lemma 2.2) that each of these families differs
by a z-independent, symmetric operator from the family I',,(z) defined as

. (Gw+Gw

Lyp(z) =7 5 - GZ), w € p(A).

Notice that I',,(z) is well defined by (1.8).
In the case 0 € p(A), the easiest choice (the one we will take in the following
chapters) is

I, =7(Gy—G,) = 2G;G, . (1.11)
Given the orthogonal projector

Im:c"—cn

we pose
ﬁ = ‘%(H)7

11



and for any symmetric operator:

0 :Cy — Cf,
we can define the linear operator
I'.nme = (©+IIT.I) : Cf; — Cf, (1.12)

and the open set
Zne :={z€p(A) : detT'ne(z) #0}.

Now we have the following result

Theorem 1.2.1. * Let A, 7, S 11, © and I', e as above. Then
C\RC Zne
and the bounded linear operator:
R.ne = R. + G.IIT  JIIGE, =z € Zne, (1.13)
is the resolvent of the self-adjoint extension Ane of S defined as
Ane: 9(Ane) CH — A, (—Ane+2)¢:=(—A+2)o.,
D(Ane) ={pe A : ¢p=¢,+ G.II FZ_}L@HT@, ¢, € P(A)}.

The definition is z-independent and the decomposition appearing in Z(Ane)
18 univocal.

Proof. By (1.9) e (1.10) we have
¢ TomeC]® = Im (2)*(1G¢

for any ¢ € Cy. So detI', 1o # 0 for any z € C\R. Now by (1.10), from [6]
we have that R, 1o satisfies the resolvent identity

(Z - w)Rw,H,QRz,H,G - Rw,H,@ - RZ,H,@ (114)

and by (1.9),
‘ne = Rzme- (1.15)

Furthermore by (1.6), R, e is injective. Then the extension
AH’@ =z — R,;,IlI,@

is well defined on

P(Ane) = Z(R.ne),

and z-independent, respectively symmetric, by (1.14), respectively by (1.15).
Finally it is self-adjoint since Z(—Ane £ i) = J by construction. O

4See [6], theorem 2.1

12



Corollary 1.2.2. Suppose that 0 € p(A). Then
Ane : 9(Ane) CH — 7, Anep = Ady,
D(Ane) ={p € H : ¢ = do+Goly, ¢. € Z(A), & € Cn, Ity = O}

Notwithstanding the easy proof the self-adjoint extensions provided above
exhaust the class of all self-adjoint extension of the symmetric operator S:

Theorem 1.2.3. ° The family of Ane, given by Theorem 1.2.1, coincides
with the family § of all self-adjoint extensions of the symmetric operator S.
Thus § can be parameterized by bundle

p: E(C") — P(C"),

where P(C™) denotes the set of orthogonal projectors in C* and p~'(II) de-
notes the set of symmetric operators in C{. In particular the set of sym-
metric operators on C™, i.e. p‘l(l), parameterize the extensions such that
D(A10) N D(A) =N, also called relatively prime extensions.

The next result ¢ give us informations about the spectrum and eigenfunc-
tions of A e

Theorem 1.2.4.
A€ o,(Ane)Np(A) < 0eo,(Ixmo),
where 0,(-) denotes the point spectrum. Moreover
Gr: H(Tane) = H(—Ane + )
is a bijection for any X € o,(Ame) N p(A).

The next theorem provides the quadratic forms corresponding to the self-
adjoint extension given above. Since this suffices for our purposes we suppose
here that 0 € p(A).

Theorem 1.2.5. Let
F:9F)x9(F)CH xH# —R
be the quadratic form associated to —A and suppose that

Z(Go) N 2(F) = {0} .

®See [7], section 3
6See [7], section 2

13



Then
FH’@ : Q(FH’@) X .@(FH,@) - T X F — R,

D(Fue)={0 € : ¢=¢o+ Go&y, ¢o € Z(F), & € C},
Fre(¢,v) = F(¢o,%0) + O&s-&y

is the quadratic form associated to —Ane.

Proof. Let L : (L) C 5 — J be the linear operator associated to Fj e,
le.

P(L) =

{6.€ 2(F'°) : 3 € A5 € D(Fue), Fro(6,¥) = (6, ¥)ur}

Lo :=¢.
Since Z(F) C Z(Fue), Z(Fue) is dense and so L is well-defined.
By the definition of Z(Fre) and by taking, in the definition of Z(L), at
first £, = 0 and then ¢ = Go&y, one gets that ¢ = ¢g + Goéy € Z(L) if and
only if there exists ¢ such that

Vibo € D(F),  F(¢o,%0) = (¢, %0) #

and

VEECh, ©O&-&=(0,Gol) .
Thus ¢g € Z(A), Lo = — Ay, and

(6, Gol) o = — (Ao, Go€) s = —(TRoAdg)-€ = (T¢0)-& = (IIT¢hy)-€ .

This gives Ity = ©&;, and so L = —Ape. m

14



Chapter 2

Self-Adjoint Extensions of

Symmetric Laplacians with
Mixed Dirichlet-Neumann

Boundary Conditions

We start this sections recalling some important results about the Laplace
operator on a polygon with mixed boundary conditions at the boundary?!.
Let Q C R? be a plane bounded open curvilinear polygon. This means that
the boundary 0f2 is a piecewise smooth closed curve with no cups points.
The point where such a curve fails to be differentiable are called vertices. To
simplify the exposition we further suppose that a such curve coincides with a
broken line in a neighborhood of each vertex. If the whole boundary is made
of broken lines we says that € is a classical polygon.

We also assume that () is connected and simply connected domain and we
will denote each open smooth segment of 0€2 (i.e. its sides) by I'; where the
index j ranges from 1 to some integer N. These segments are numbered in
such a way that I';;; follows I'; according to the positive orientation. We
also denote by .S; the vertex which is the endpoint of I';.

Furthermore we define n; (resp. t;) as the unit outward normal (resp. tan-
gent) vector on I'; and by w; the measure of the interior angle at S;. Polar
coordinates (r;,0;) with origin at S; will be used. Such coordinates are
choosen in such a way that I'; is on the half-axis § = w; and I'j;; is on the
half-axis ¢ = 0. Then we introduce the cartesian coordinates attached to
each corner with vertex S; as

xj=rjcost, y; =r;sind,

LAll the missing proofs can be found in [3], Sections 2.1 - 2.3.
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accordingly I';;; is a subsegment of the line y; = 0.

In considering mixed boundary conditions, it is useful to fix a partition of
{1,..., N} (the set numbering the vertices) by the subsets 2 and .4/~ defined
according to the following rule:

e j € Zif I'; supports a Dirichlet boundary condition;
e j € N/ if I'; supports a Neumann boundary condition.
We also will consider the sets 2%, N2 (AN, D), (Z,./), defined by
e j € 2% if both I'; and I';;; support Dirichlet boundary conditions;
e j € #?if both T'; and T';;; support Neumann boundary conditions;

o j (AN, 92)if I, supports a Neumann boundary condition and I';4
supports a Dirichlet boundary condition;

o j € (2,/)if I'; supports a Dirichlet boundary condition and I';44
supports a Neumann boundary condition.

Finally we introduce the set corresponding to mixed boundary conditions:
M= (D, N)VU(N, D)
and for later convenience we also define

Mo={jEDPPUN? i w,>TIU{jEM : wj>7)2},

3
My ={je M : wj>§7r}.
We will always suppose that
2+ (2.1)

Let Aq be the distributional Laplace operator on the curvilinear polygon €2
and let us define

A Q(AR) © [2(Q) = LA(Q), ARy = Agu

where Z(A3*) is defined in (1.2).
We introduce the spaces V(Q) and V?(QQ), respectively containing the
variational and the strong solutions of the boundary value problem

Wu=0, je€
Yju=0, jeN,

16



defined by
V(Q) ={ue H(Q) : yju=0, j €2} (2.2)

and

VQ(Q):{UEHQ(Q)I’V?u:’}/ilu:(),jE.@,iGJV}. (2.3)
The results given by the next theorems will be useful in the following:

Theorem 2.0.6. The space H™(2)NV (§2) is dense in V (2) for every m > 1.

Theorem 2.0.7. The space H™(Q2) N VZ(Q) is dense in VZ(Q) for every
m > 1.

For any function in V?(Q) a Caccioppoli’s type inequality holds true:

Theorem 2.0.8. Assume that ) is a bounded polygonal open subset of R?
and that (2.1) holds. Then there exists a constant Cq such that

Yu € VQ(Q) , HUHHQ(Q) < CQHAQU”LQ(Q) . (2.4)

As a direct consequence of Poincaré inequality (see Theorem 1.1.6) V()
is a Hilbert space for the scalar product induced by the bilinear form

F(u,v) ::/Vu-Vvda:, u,ve V().
0

This allow us to apply the Laz-Milgram Theorem and to conclude? that there
exists a unique self-adjoint operator

NG D(NE) CV(Q) C LA(Q) — LA(Q)
such that
F(u,v) = <—Agu,U>L2(Q) ., u€ _@(Ag) 0 e V(Q).

On the other hand by Theorem 2.0.8 and by Green’s Formula the linear
operator

Ag:VEHQ) C LA(Q) — LA(Q), Adu:= Au,
is closed and symmetric. Thus a natural question arises: is Ag, self-adjoint?
Equivalently: does A coincide with AL?
The answer to the previous question depends on the shape of {2 and in order

Zsee e.g. [2], Chapter IV, Section 1.

17



to answer to this question we need some more definition. For any vertex S;
we consider the measure w; of the corresponding interior angle and define?

ny = #HM, ng = H M

In the following we will see that the deficiency indices of Ag, are both equal
to ny + no.

Consequently if ny +ny # 0 we have 2(Af) # V2(Q). This is an immediate
consequence of the fact that for every j € 9% (respectively j € A4?) the
function ) .
™ UJ] . )
;" sin w—]ﬂ] ,
/wj

(respectively ;"™ cos wljej) belongs to  (Apax) N HY(W), where W is the
wedge

W ={(z,y) = (rjcosb;,r;sinf;) : 0<r; < R,0<6; <w;},

but fails to be in H*(W) when 7/w; < 1.
In the case j € .# the conclusion is quite similar considering for example
the pair of functions

(m—1/2)7
T —1/2
Uy =T, sinMG, m=1,2.

j ,
Wi

From now on we will suppose that n; + ny # 0 so that
VA(Q) = 2(83) € 2(04).

Thus any self-adjoint extension of Ag will be a restriction of its adjoint
AY. Since AG™ is the adjoint of the restriction of Ag to C2°(Q2), one has
NG C A

Inequality (2.4) shows that A is injective and has a closed range and, posing

N = 2(A5)" = #((A5)")
one has the following results, which completely characterize the linear set V:
Lemma 2.0.9. Let v € N. Then v belongs to Z(AE™) and solves the (ad-
joint) boundary value problem
Av=0 1in
Av=0 j€2
Yo=0 ieN.

3Here #S denotes the cardinality of the set S.

18



Lemma 2.0.10. Every v € N is such that

/ vAndr =0, (2.5)
0

for any j € N2,
/QUA(yjnj)dx =0, (2.6)

for any j € (N, D) with either w; = 7/2 or w; = 37/2,

/QUA(xjnj)da: =0, (2.7)

for any j € (2, .4) with either w; = 7/2 or w; = 31/2.

Here n; € C2°(€2) is a truncation function which depends only on the dis-
tance to S; and such that 77; = 1 near S; and vanishes near all sides I', k # j.

Theorem 2.0.11. Let v € Z(AH™) be such that

Av=0 1in
Wv=0 j€2

Flo=0 ieN.
and that it fulfill the conditions in Lemma 2.0.10. Then v € N.

Lemma 2.0.12. Letv € N thenv € C*(Q\ V) where V is any neighborhood
of the corners S;.

Denoting by Z C L?(Q) the set of function satisfying the conditions ap-
pearing in Lemma 2.0.10, we can resume the results above by stating the
following

Theorem 2.0.13.
H((Lg)") = A (LG™)NA N,
where & = {u € D(AF™) : Yu=3u=0, j€P,iec N}
Moreover, by Theorem 2.3.7 in [3], one has that

Theorem 2.0.14.
dim # ((AL)*) = ny +na . (2.8)

More precisely each corner contributes to the dimension of # (1Y) as fol-
lows:
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e the contribution of a Dirichlet corner (i.e. j € 9?) is 0 if w; < and
1ifw; > 7

e the contribution of a Neumann corner (i.e. j € N?)is 0 if w; <7
and 1 if w; > m;

e the contribution of a mized-corner (i.e. j € M) is 0 if w; < 7/2, 1 if
/2 <w < 3/2m and 2 if w; > 3/27.

In order to better characterize the above kernel we introduce some more
definitions. We consider function C?(2) depending only on the radial vari-
able as follows: given R; < Ry < R,

X;=1,ifr<Ri, x;=0,ifr>R Vke 20N,
For any vertex S; € 02 such that j € Z U 4" we consider the disc
Df:{xE]R2 e =S5l < R}
and define the wedge
Wit =QnDf
= {(z,y) = (rcosbj, rcosb;) : 0<r <R, 0<6; <w;},

where we choose R in such way that W N W =0 for j # h.
On any disk D; centered at S; we define the functions u},

1 T/wi o T .

U;Fl = —WT:F fwi S111 (w—JH]) s VJ S @2,
1

uf, = —rT"/% cos (19]) , VjenN?,

SRV wj

and (here m = 1,2)

(m-1/2) _ —1/2
uf, = ijﬁ “i " sin (MW Gj) , Yje(D,N),

Wi

Wij

(m=1/2) _ —1/2
ui, = T #sin (M m(w; — @)) , Vie (AN, 9),
with
2(4 —m)
Cj = 3—71" m = 1,2 (29)

With such a choice we have that the functions x;uj,, are in L*(Q) and L*(€)-
orthogonal.
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Lemma 2.0.15. Let us define

0o ._ + o - o Fy\—1
Stem = XkUgp, > Skm = XkUgy, » Okm = Skm — (AQ) Astm .

Then

1)
Sim € D(DG), Skm € D(DG™);

2) Orm is the unique function in H (AY) such that
Okm — Skm € D(DG);

3) the o ’s are linearly independent;

4)

<Uhj ) _A552m>L2(Q) = 6kh5mj .

5) The NEsY. s are orthogonal and thus linearly independent.

Proof. 1) follows by noticing that uj  is harmonic near any vertex .Sj and
C>(R?\ Si).

2) follows by # (Af) = {0} and by Theorem 1.1, noticing that u;, € # NZ.
3) Take the coefficients ¢, ¢ such that

Z CkXkOk1 + Z CeXkok2 = 0,

ke ke

then

(Ag)_lﬁn( > rxuug + Y 6kxku;2) =

ke ke s

= Z CrXkUp, + Z ClXkUpgy -

kety kel

This gives ¢ = ¢, = 0 for all k, since the sg,,’s are linearly independent and
do not belong to Z(AL).

4) First we consider the case of Neumann corner in which k € .42, Posing
W2 = Wh2\ W one has

(Okm » Db Spm) 120) = (0%, DGSL) 129

= (Xxuy, AngU]j>L2(Wk) — (Daxwuy , XKUY 12wy

/ - (12 d
= u u _— — ’LL X
Wkak ka W rkk
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2m\ 1
—/ Xk (X'k'u,; + <1 + —) —X;u;) dx
Wk (Uk T

2 R W 2 ™
= — 2X 1 Xk dr/ cos? (19) do = ——/ cos?0df = —1
Wi Ry 0 Wi ™ Jo

The case k € 2? is the same.

Let us consider the case j € .#. We will first study the case 7 = m and
without loss of generality we can omit this index assuming that is equal to
1. Consequently we have

(o, DGsp) L2 @) = Xy, A ) 2wy — (Daxwty, » Xeufh) 2w, =
2 — ", + ™ 1 /o +
= C} Xety | Xeur + 1+ — | =xGus | dx+
Wk (A)k T

_ m\ 1 _
—sz/ Xkt + (XZ% + (1 - —) —xkuk)dfc
Wi, Wi r

Ro Wk
= C’,?1 25Xk dr / sin? (%0) df = —1
0

Wi Ry Wi

It remains to show the L?(Q)-orthogonality between oy, and Agsgj. We
assume m # j and suppose m = 1 and j = 2. So

(o1, DGSR) 12() = (k1 DGSRa) L2w2)

47 1

_ + r—

= CpmCri— — U X kX Uy AT
Wi Wi, r

4 Rz o W 3
= CimCrj w—:/ 79k XXk dr/ sin <2—:; 6) sin (wlk 0) do .
Ry 0

The orthogonality then follows by the value of the last integral.
5) follows noticing that

(Daspy, Dasig) r2) =
:< "o+ "o+

1 1
XkUgy T X;eug; s X Ugo T X;cuk+2;>L2(Wk)
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and that in any mixed corner Sy the angular part of each uf , is orthogonal
to the other ones. O]

Now (2.8) can be specified:
Theorem 2.0. 16 For any u € J ((AY)*) there exists unique £* € C™n2,

€= (&, €5 €. &%) such that
u=Y &op+ Y oy
JjeEAM JEM

By (2.8) and Theorem 2.0.16 one obtains:
Theorem 2.0.17.

D(AY)) ={ue D(AE™) : ue X}
— {u c LQ(Q) U= Up+ Z 5}‘0']«1—{— Z g‘;‘LO-jQ, Ug € @(Ag)’ gu e Cn1+n2 }

JjeA JEM
={u e LAQ) u=ut Y s+ s, o € D(AF), € €CMm Y
JEM JEM

Proof. 1) For the first equality it’s sufficient to prove Z(Ag) C # . For any
v € Z(AY), remembering that H?(Q) is dense in Z(Ag) let us take the
sequence {v,} C Z2(AY) N H*(Q) such that v, — v.

By the Green Formula we have:

O—/Auvndx —/uAvndx

—Z/ fy]ufijndx Z/ fy]vnfyjudx vn .

JjeN JED

Since the last equality holds for every u € Z(Ag,), this means that v, € %,
for every n. Then by continuity of trace operators one obtains

&SU:JLIEO%%,%:0:T}Lr£307?vn:'??v Vieg, ie N

and so v € . For any v € Z(AJ™) N let us define vy := (AL) 1 Aqu.
Noticing that v — vy € HF(Ag), the converse inclusion is consequence of
Theorem 2.0.16.

2) For the second identity let us again define vy := (AL)"'Aqu, for any
v e D(AY). Since v — vy € H (AY), by Theorem 2.0.16 one has Z(Ag) C
D(NE)+ 2 (Ag). The reverse inclusion follows from Ag C AL which gives
D(NE) € D(AY) proving the the statement.

3)Finally the last identity follows from point 2 in Lemma 2.0.15. ]
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The next theorem gives a decomposition for Z(AE):

Theorem 2.0.18.
DAG) ={ue L), u=us+ Y _ Gisty+ Y Cisty

ke ke s
U, € 2(0y), ¢ = (¢, ¢L LG, Gn) eCmm Y
Proof. Given 2(AE), since the ALs? ’s are linearly independent by 5) in
Lemma 2.0.15 and not orthogonal to £ (Ag") by 4) in the same lemma, the
decomposition L*(Q) = Z(AY) @ 4 (AY) implies that there exists unique
Us € Z(AY) such that
Agu= Y GAGsH+ Y sl
ke ke

and the proof is done. O
Corollary 2.0.19.

D(AF) ={uec LX(Q), t u=uo+ Y (Crshy+&rsi)+ > (st +Eisia)
ke ke

u, € 2(NY), ¢*, e Cm™2 ),
Lemma 2.0.20. The linear map
Tq: D(AE) = C 2 rqu = (M
1s well defined, surjective and continuous.

Proof. By Theorem 2.0.19 2(AL) = (L) + ¥, where ¥, is the (ny + ny)-
dimensional vector space generated by s? . Since ¥, is closed and 2(Ag)N
¥, =0, 7q is the composition of the continuous projection P : Z(AL) — ¥,
with the continuous map which identifies ¥, with C"*"2, O

Next results provide an alternative definition of 7q:

Lemma 2.0.21. For all k € .#,\N"? there exists constants* Cy such that

u . Ckl o\ *
§k = %ﬁ%m (X urey, we€ D((AY)), ke,

where X2 is the characteristic function of the wedge W,E and 8 =1 if k € 9?,
B=1/2ifk e A and wy <7 and B = 3/2 otherwise.

In the case k € A\ N AN? similar results hold with uw and x£ replaced re-
spectively by 0?u/0r? and the characteristic function of the half wedge (i.e.
0<6<w/2).

4Such constants can be made explicit: see the proof below.
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Proof. Let us define the constants Cy,; by

247wy

/ uis (1, 0)rdrdd = , ke*u.,
WE Ckl

and
+7/wp

/ O%uz (1, 0)rdrdf = , ke?.
WR Ckl

k
The proof of is then concluded noticing that the last integral is equivalent to
the first, in the case k € 22, and by

R Wi R Wi 1/2
o (r, 0)|rdrdo < Y2 g2 o, 0|22
) 2 ) T )
0 0 0 0

for all ug € Z(AL), being the last integral finite since ug € H} () (see e.g.
[3], Theorem 1.2.15).

]

By the previous theorem and the above lemma there follows that Z2(Ag) =
H (1q). Thus we can write all self-adjoint extension of AP, together their
resolvent, by using general theory of Krein’s resolvent formula as provided
in Chapter 1, Section 2. To this end we give the following

Lemma 2.0.22. [f
Go:CH2 5 [2(Q),  Gyi= —(ro(A5)71)
then, posing & = (&1, .. .{nl,fl, . ,ém),

Goé =Y &om + Y &Goa.

ke ke
Proof. By Lemma 2.0.15 one has

(Tkm » ASU>L2(Q) = (AG Okm > Uo) 12(2) + O1m Z ¢ (Thm » A5521>L2(Q) +
JjEA

+0om > CHOkm > DG r20) = — (G1mGh + SamCE) -
JEAM>

Thus, by the definition of 7q,
(Go€  u)r2i) = — (€, Ta(A5) " u)r2()
= Z Er{on1 , u) L2 () + Z ék(ész LU L2(Q) -

ke ke
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By (1.7) and (1.11) one has then
G.£ =(1 - zR,)G¢
= Z Eu(or — 2(=AE + 2)7lop) + Z Enlone — 2(=AL + 2) o)

ke #4 ke 5
= &lsim — (AL +2) 7 (—Aa + 2)sk)
ke
+ Z gk(sm — (—Ag + Z)_l(—AQ + Z)Skg)
ket

and
Fz . (Cn1+n2 N Cn1+n2 ’ (Fz)m — Z(G(’;GZ)Z’“

has the block decomposition
rm.cn - Cc, 1=1,2, m=1,2,
where T is represented by the matrix
(T ik = (05, Okm — 2(—AS + 2) ' owmd 12y, i€ M, k€ M.

In conclusion, by the results provided in Section 1.2 one then obtains the
following

Theorem 2.0.23. Any self-adjoint extension of Ag is of the kind
AL D(AG®) € LX) = L2(Q), Ag®u:= Aqu,
2(85°) = {u e 2((A)) : & e Cpt™, TI¢" = 66"},

where (II,0) € E(C™*2). Moreover

(—AG° +2) = (AL +2) 7+ GLIT(O© + TITLIN I GE.
The quadratic form corresponding to —Ag’@ s given by

EY® 9(FY°) < 2(FY®)  LA(Q) x L2(Q) — R,
F?(u,v) = (Vug, Vo) r2(0) + fo(§",€")
DFyO)={uec L*(Q) tu=u+ Y &Gou+ » & o,

ke ke
ug € V(Q), £ € Clrtmy,

where fg is the quadratic form corresponding to ©.
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Chapter 3

Symmetric Laplacians with
Mixed Robin Boundary
Conditions in a Polygon

In this chapter we study the qualitative properties of the solutions of the
Laplace equations under mixed Robin boundary conditions on a polygon €.
Let we start defining the set of indices j characterized by Robin boundary
conditions:

o j€ZifT'; supports a Robin boundary condition;
o #*={j jER,j+1ER};
o (D,%)={j:7j€D,j+1eR};
o (#,9)={j:j€R,je D},
(N R)={j:jeN,j+]1eR};
(Z, N)={j:jeER,jeN}
Now introduce the variational solution u of the Laplace equation
Au=f on§, (3.1)
with boundary conditions
Wo=0, jeg, Yo=0, jeN,
Wu+ofju=0, jeX, (3.2)

where f is a given function and o; > 0.
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According to (2.1), the Poincaré inequality holds and the space of vari-
ational solutions V(2), defined in 2.2, is an Hilbert space for the scalar
product

a(u,v) /Vu Vudz + —/ Vurjv do . (3.3)
JEZ

Therefore, assuming f € L*(€2), the mapping

v|—>/fvdx,
Q

is a continuous linear form on V() and by Riesz Theorem there exists a
unique u € V() such that

= —/vadx, (3.4)

for every v € V(Q). We want now to see in what sense u solves the mixed
Robin problem introduced above.

According to (3.4) if v € C>(Q) one has that (3.1) holds in the sense of
distributions. Moreover, being u € V(Q2) one as automatically that 7Ju = 0
for any j € 2.

Then by Theorem 1.1.14 since u € Z(AZ*), for very v € V() such that
49 € HY2(I';) one has

/ Vu - Vodx = —/ fodx + Z(ﬁ;u, ﬁ?w
Q 9) ;
and consequently

Z’YJU 7] +Z7Ju 73 +Z 73“ 73 =0.

JjeEN jez jea Vi
So that if j € .4 one has that, being ’ij% an arbitrary function, it must be
Yiu=0, jeN

and
&?u+aﬂ}u=0, jER.

A converse statement is also true':

!The proof follows by contradiction and by [3], Theorem 2.1.1.
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Theorem 3.0.24. Assume that 2 is a bounded polygonal open subset of R*
and that uw € H'(Q) solves (in distributional sense) the equation Aqu = f
together with the boundary conditions ygu =0ifj e, ?Jlu =0ifjeN
and %Q + aﬂ;u =0ifj€R. Thenu e V(Q) and is the unique solution of

1
/Vqudx—l—Z;/ &?uﬁ?vdaz —/fvdx,
Q e Ty Q

for every v € V(Q).
Now let us consider the space of strong solutions
W2(Q) :=
{fue H*(Q) : yju=0,j€Z, yju=0,jeN, VW+ayju=0, jecR}.
Then

Theorem 3.0.25. The space W™(Q) := W2(Q)NH™(Q) is dense in W2(Q),
VYm > 2.

Proof. Let us suppose that there exist ug € W?(2) such that
Vo e W), |luo —v|lg2@) > 6 >0, (3.5)

and for simplicity let us assume, without loss of generality, that exists an
unique index k € Z. Now let us consider the decomposition

o = up + 1y € VOHQ) @ V()
where we defined, for 1 = 0, 1,
Vi2(Q) ={ue H*(Q): u=4u=0,Yj€ P, ic N}

By Theorem 2.0.7 there exist two sequences {vg,} C Vo™ (Q) and {v;,} C
V1m(Q) such that

lim |jug — vnllp2@) =0, vp = Vo + V1.
n——+00

Obviously v, € W™(Q), but, by the continuity of the trace maps 4y and 4,
for any € > 0 the sequence {v,} definitively belongs to

Wm™(Q) ==
{fue H™(Q) : Au=3u=0,fu+aiul <e, Vi€ Z,ie N keR}.
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Since
(YW™(Q) = W™(Q),

>0
there exists v € W™(Q2) such that

HU — UnHH?(Q) S (5/2,

for any n sufficiently large. Hence in conclusion there exists n sufficiently
large such that

[uo — vllm2@) < lluo — vallm2) + lvn — vlla2@0) <6,
inconsistent with (3.5) O
Now we define
A W3HQ) C L*(Q) — L*(Q), Aju = Aqu

and we look for a generalization of Theorem 2.0.8.
Let us first consider the following inequality:?
Ve > 0 3K, > 0 such that Vu € H*(Q)

Z/ |7?u|2d0§6/ ||Vu||2dx+KE/ |u|*dz . (3.6)
= Jry Q Q

Then we have the following

Lemma 3.0.26. If u € W2(Q) then then there exists Cq > 0 such that

/ (|8§$u|2+2|8§yu|2+|8§yu|2)dx§ C’g(/ |Au|2dx+/ |Vu|2dm>
Q Q Q

Proof. 1t is sufficient to estimate [, 207 ud? udx. By integrating by parts,
one has

/Q 28§yu8§yudx =2 /Q aixuajyudx + ZQ /F (&Euﬁgyuny — axuagyunxdx)
j J

(3.7)
where n, and n, denotes the components of the normal vector n; to I';. If
Jj €N orje P the last term is zero by Lemma 2.2.2 of [3].

Then let us suppose that j € Z. Without loss of generality we can chose a

2See [5], equation 2.25 page 49.
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system of coordinates x,y such that I'; is represented by equation x = 0.
Then
ou

T (0.3) = aju 0.3), (33)

and on I'; one has
0%u 8

Substituting this identity in the last 1ntegral of (3.7) (noticing that according
to the chosen coordinates system n, = 0 and n, = 1) one obtains

Q/F (@u@iyuny — Gxuﬁgyunxdx) = 2aj/F O, udyudo .

Then (3.6) implies that

2/ &Cu@yudag/ (0,u)?(0yu)*do
r; r

J

:/F ||Vu||2L2(Q)dU < e/ﬂ(@ixu)Q + 2(8§yu)2 + (8§yu)2dx

This implies that

/2(8§yu)2da§ < 2/8§xu8§yudx
Q Q
+ < 3 aj) <e /Q (O2,u)? + 202 u)* + (2,u)da + K, /Q HVUH%Q(Q)dx) |

je#
Now, since that

2 92 2 \2 2 2
2/Qc9mu8yyudx < /Q(amu) + (0, u) dzx
choosing € sufficiently small in order to have

EZ a; <1
JER
2 2
/Q 2(03,u)dz <

€Y .0+ 1 K.e Qo
Pier [ (i g

1 - 62]‘6% 7 ]ej Qi

one has
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Now by (1.1.5) Ve > 0 there exists ¢ > 0 such that
c
1Vl L2) < €l|ullmz@) + . w20 -

Since, by our hypothesis o; > 0 for all j € Z, there follows that (—Aqu, u) 12(q) >
Alul|Z2(q) With A > 0, applying Lemma 3.0.26 one gets the following

Theorem 3.0.27. If u € W?(Q) then 3Cq > 0 such that

Now, as in Chapter 2, we look for a characterization of N := JZ((Ag)*).
The first step is the following.

Lemma 3.0.28. Let v € N, then v belongs to 2(AF*) and is solution of
the following (adjoint) boundary value problem

Av = in
v =0, i€,
Fjv =0, jeN,

ﬁ?v—l—aj%lv:() JEXR.

Proof. According to the definition of N any v € N is a square integrable
function in 2 such that

/ vAudr =0, Yue€ W?(Q).
Q

In particular this is true for every u € C2°(2) and consequently v is harmonic.
This implies that v € Z(Ag**) and it remains to check the boundary condi-
tions.

By Theorem 1.1.11 we know that given any ¢ € C*(I';) for j € 2, and
Y; € C(T;) for j € N there exists u € H*(2) such that

Ru=¢, Ju=0, jeN,
‘y})u:(), ’Ay}u:wj jE€9D.

It remains to control the case j € #. Then fixed ¢;,1; and ¢, in C2(Q)
we know that Ju; € H?(Q) such that

Zl)ﬁ2u1:¢/2, ’Ay]lulzoa jGJV,
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and for the mixed conditions
iii) fgur = ¢, Apur = 0.
In the same way one can find u; € H?(2) such that i) ,i7) hold and
i) Apus = 0, Alug = apdy .

Then one conclude the case k € Z putting u = u; + us. This allows one to
apply the Green Formula

/ ulNvdx — / vAu = Z((&?u,‘y}v} — (Fjv,4ju)) -
Q Q

J

Since v is harmonic and u € W?(Q2) the integrals on € vanishes and taking
into account the boundary conditions on u we have

0="> {0, 4jv) = > _Av, ) + > (k. 5k} + (pv, axe}))
JEN JjED kex

and posing ¢7(x) = —¢r(x) on [y, one has

D e A) = D (AT ) + ) (8,40 + agfju) =0,

JjEN = ke

for any ¢; € C(1y),j € N, ; € CX(T;),j € Z and ¢}, € C*(Ty), k € Z.
Then
’Ay;v:(), forjEJV’Ay?v:O, JED.

and
&?v+aﬁ}v, keZ.

]

Lemma 3.0.28 shows that v € N is a weak solution of the homogeneous
adjoint problem, however it does not characterize completely V.
To this purpose we need to the following results:

Lemma 3.0.29. Every v € N is such that
/ vAndr =0, (3.9)
Q

for any j € N7,
[ vsmyis =o. (3.10)
Q
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for any j € (N, D) with w; =3/27, orn/2,

/ vA(zjn;)de =0, (3.11)

for any j € (2,/) with w; = 31/2, orw/2, and n; € C(R2) is the trunca-
tion function which depends only on the distance to S; and such that n; =1
near S; and vanishes near all Ty,

Now we have to consider the case j € Z. Taking 0 < Ry < Ry such that for

any j
i)n;(r) =1, on Bg,(S;) N,

i) supp{n;} C Br,(5;) N,

and sz (r) the characteristic function of the set Bg,(S;) N, then for any
couple (wy ,ws) such that 0 < wy < wy < wj, Vj, we have that any v € N is
such that for any u € W?(Q) one has

/QvAcbfuda; =0, (3.12)

for any 5 € Z, where

(I)fu(’f’, 9) = [ﬂ{ 92(9 - wj)2<0 - w2)(7’2 - 89u(r, wl)) (3 13)
+ ﬂ% 92(0 - wj)2<9 - w1)2 T@TU(S]') ]nj : XfQ (T) ) .
with

Bl = [(wr —wy)*(wr — w2)wﬂil and 3 = [(ws — w;)*(wn — wl)wg]il '

Proof. The proof of (3.9), (3.10) and (3.11) is given by Lemma 2.0.10, (3.12)
follows noticing that &%, (r,0) € W?(Q2) by its definition. O

Theorem 3.0.30. Let v € AZ* NW?2(Q) such that v is harmonic in Q and
assume that v satisfyies the conditions of Lemma 3.0.29, then v € N.

Proof. The case #Z = () is given by Theorem 2.0.11 and therefore we can
suppose j € Z. Our thesis consist to show that

/ vAudr =0 (3.14)
Q

for every u € W?2(Q).
By Theorem 3.0.25 it suffices to consider the case u € W?(Q2) N H4(Q) C
C%(Q).
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Obviously for any j € Z \ #? one has u(S;) = 0 and the same holds for
every j € Z* such that a; # 41, in fact

lim u(r, 0)] = |u(S;)] = lim Ju(r, w))]
\ (3.15)
ajr lim [Ggu(r, 0)] = [u(5;)] = a; lim [Dpu(r, w; )|

Therefore let us consider the case u(S;) = 0, for any j € % defining
w(r,0) =u — ZCI);J(T,Q),
je#

so that, by Lemma 3.0.29,

/UAudx:/vAwdx.
Q Q

By construction in any vertex characterized by Robin conditions, one has

.1 1
lrlﬂ)l;w(r,wl) = 17%1; [Ogu(r,wi) — Bp®;(r,wi)] = 0. (3.16)

By the same considerations one has
Orw(r,we) =0, Vr >0, (3.17)
i.e. the gradient Vw must be zero at the vertex S;, being
Vw(r,w) L Vw(r,wsy), Vr>0.

Now let us suppose a1 = o; = v and in particular u(S;) # 0, then

ug(r, 0) = ui:zj) (0 — wj)2 el )
j
w+ 2«
A<wj7 Oé) - wor

in order to have u§ € W?(Q) and uj(r,0) — u(S;), for r | 0.
Then it is sufficient to reproduce the above argumentation substituting u(r, 0)
with

u(r,0) — u?(r, 9).

Thus one can always consider the function w(r, #) such that

vaw € HY*(T;), and~;(0w/on,) € HY*(T,)
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and the Green formula of Theorem 1.1.15 may be applied to w and v. Finally
we conclude

/QUAUJdCC = Z ((’Yjwa ’Vj(av/anj)@mm(rj) — (v, ’Yj(aw/anj»mﬂ(rj))

JEX

that coincides, being y,w = 0 for j € 2, and Jw/dn; = 0, for any j € A,
with

Z ((’Yjw, ’Yj(ﬁv/anj»m/?(rj) — (v, ’Yj(ﬁw/anj»mﬂ(rj)) =0,

JER?
being respectively v,w = —a;7v;(0w/0n;) and vjv = —ayv;(Ov/On;) . O

Lemma 3.0.31. Letv € N thenv € C®(Q\V) where V is any neighborhood
of the corner S;.

Proof. For j € & andj € 4 the proof is given by Lemma 2.0.12 so it suffices
to consider the case j € Z.

Noticing that v is harmonic and therefore smooth inside €2, we must prove
the smoothness of v near any of the I';. For our purpose, is sufficient consider
only the case with boundary conditions given by

&?u + ozj&}u =0. (3.18)

Now we perform a change of coordinates axes in order to consider the segment
I'; on the axis {3 = 0} and such that § is above T';.

Then we can introduce the cut-off function ¢ € C>°(Q) whose support does
not intersect any sides I';, with k& # j and such that it is z,-independent for
small values of x5. Noticing that with this choice ¢ does not intersect any of
the corners, we shall now investigate on ¢uv.

The function w = ¢v belongs to L*(R?%) where R3 = {5 < 0}. In addition
w is solution of

—Nw+w=f in R%
Pw + ayjw =0, on {z, =0},

where, according to the choice of ¢

B ¢ Ov
f= (dw o 22l <A¢>v) ,

and there follows that f € L?*(Ry; H }(R)) if we agree to see f as a vector-
valued function of z,. This will allow us to show that w € H*(R%) as a first
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step.
We replace w with Rw where R is the inverse operator of (1 — D?)/2 so that

Rw=F'(1+ &)Fw,

where F; denotes the Fourier transform in x;. By Lemma 2.3.2.5. in [4] one
has Rw € L*(R%) and

—ARw+ Rw=Rf inR2
AJRw + oy Rw =0, on {xy =0}

where Rf € L*(R%). Then noticing that for any domain Q; C Q with a
smooth boundary containing the support of ¢ and such that I'; C 9€2;, the
solution of the above problem is such that

RW|Q1 S HQ(Ql),
one deduces that Rw € H*(R%) and w € H'(R?%). Varying ¢ an j one has
ve H(Q\V),

where V' is a neighborhood of the vertices of €.

Now we reiterate the previous steps of the proof. Since we know that v
belongs to H*(Q\ V), we also know that f € L?*(R?%). Thus applying one
more time Lemma 2.3.2.5. in [4] to w, instead to Rw one has

W|Q1 € HQ(Ql) )

and consequently
ve H* (Q\V),

where V' is a neighborhood of the vertices of €.
Finally, repeated application of Theorem 2.5.1.1. in [4] in which €2 is replaced
by €, as above, shows that

ve H2Q\ V),

for every positive integer k and by Sobolev Imbedding Theorem one con-
cludes. [

Now we shall study the behavior of v € N near the corners. For technical
purpose we shall need the eigenfunctions of the operator

2 — _Spllv
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under various boundary conditions on (0,w;). More precisely let us define
the unbounded operator A; in 5% := L?(0,w;) as follows

1

Njp=—p
where Z(A;) is given by:
P(Aj) = {p € H*(0,w5) : 9(0) = p(w;) =0}, je€ P
P(Nj) ={p € H*(0,w)) : ¢'(0) =¢'(w;) =0}, je AN
P(N;) = {p € H*(0,w)) : p(0)+0;¢'(0) = p(wy) =y (wj) = 0}, j€#?,
2(0;) ={p € H*(0,w;) : ¢(0) = ¢'(w;) =0}, je(AN,9),
P(N;) ={p € H}0,w)) : ¢(0) = p(w;) =0}, je€ (2,4,
D(Ng) = {p € H*(0,05) = (0) + ojp'(0) = ¢(w;) =0}, j € (%, N),
2(A;) ={p € H*(0,w5) : ¢'(0) = p(w;) —ajny(w;) =0}, je (AN, R),
2(A;) = {p € H(0,w;) : 9(0) = p(w;) — a1 (w;) =0}, j € (2, %),
2(0;) = {p € H*(0,w5) : 9(0) + a;¢'(0) = p(w;) =0}, j€ (% D),

The operator J; is self-adjoint, has a discrete spectrum and is strictly positive
under the following hypotheses that we assume from now on:

Oéj>0,aj+1>0, Oéj—i‘OéjJrl#w]',

2
j7m7

We shall denote by ¢;,n, m > 1, the normalized eigenfunction and by A
m > 1 the corresponding eigenvalues in increasing order. We thus have

2
_(p‘;l,m = )\j,m(p.%m
where ¢, € Z(A;) for every m.

With Dirichlet and Neumann boundary conditions these eigenfunction and
eigenvalues are well known. We have

©im(0) = 1/2/w;sin(0N; ), Njm=mm/w;, jE€E 9?
im(0) = \/2/w;sin(0Nj ), Ajm = [m —1/2]7/w;, jE€ (N, D),
@jm(0) =/ 2/wisin([w; — O1Njm) s Ajm = [m —1/2|m/w;, jE€(Z,A0),
pim(0) = \/2/wjcos(0Njm) ,  Ajm = [m — 17 jw;, j€ AN m=>2.
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In the case of Robin boundary conditions one has
©im(0) = sin(\jml) — aj\jmcos(\jb), € R,
with A; ., # km/2w; solutions of

Njm(0y + aji1)
tan(Aimw;) = 1J— OéjJOéjH)j\; (3.19)
J,m

For mixed Robin-Dirichlet conditions we have
ng,m(@) - Sin(>\j,m9> ) ] € (‘@7 @) )
©jm(0) = sin[A; (0 —wj)], J€(2,%2),
with A;,, # km/2w; solution of
tan(Aj’ij) = /\j’mOé, (320)

where « coincides with the unique not zero coefficient according to the Robin
conditions.
Finally with mixed conditions Robin-Neumann one has

©im(l) =cos(\;jn0), je(#,N)
@j,m(e) = COSP‘J}m(e - wj)] , JE (JV,,@) )
where \;,,, # k7 /2w, is solution of

1
)\j’mCt

tan(\; ,wj) = (3.21)
where « is defined as above.

Notice that, since A; is symmetric, the eigenfunctions ;,, are orthogonal.
Using the polar coordinates (r, ) with origin at S;, we see that any v € N
is solution of

O*v/or* + r~10v/Or +r?0%0 /00> =0, 0<0<w;,0<r<p

for opportune p such that D, does not cut any side of 2 but I'; and I'; ;.
The boundary conditions at the sides # = 0 and ¢ = w; depends on which
set the index j belongs to.
These boundary conditions are meaningful since v is regular for r > 0 by
Lemma 3.0.31. In addition since

v(re”) € H*(0,w;), Y0<r<p,
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it follows that .
v(re®) € 2(A;), YOo<r<p.

This allows us to rewrite the equation for v as
%)Or® +r710/0r —r 2N\, =0, 0<r<p (3.22)

if we see v as an infinitely differentiable vector-valued function of r with
values inZ(A;). This implies that v can be expanded on the eigenfunctions
©;m in the following fashion.

Theorem 3.0.32. Let v € C*(0, p; Z(A;)) be a solution of equation 3.22
and assume that v € L*(9,) then

o(re) = 3 2N (B) Y 2T ng(6),

m>2 0<Ajm<1
where o, and 3, are real numbers such that
’Oém’ < Lml/pr)\j,m
and L is a constant depending only on v.

Proof. * Since the sequence ¢;,,, for m > 1 is an orthonormal basis for JZ

we have
v(re”) = " vm(r)pim(0)
m>1
where W
om(r) = / " o) p; m(6)d6 . (3.23)
0

However being v differentiable in r with values in Z(A;) the differential
equation (3.22) implies that

v (r) + 7, (r) = XS P (r) =0, 0 <1 < p.
Solving this last differential equation we see that (notice that A;,, > 0)
U (1) = Q™™ 4 By

On the other hand since v belongs to L?(D,) it follows from identity (3.23)
that

Wy )
o()? g/ o (re®) [2rdr < [[v]|2.
0

3In this proof we use the same argumentation given in the proof of Proposition 2.3.5.
in [3].
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This implies that 3,, = 0 when A;,, > 1 and that
P
nl? [ 1y = a2 204 2 < o,
0

for A\, > 1. This complete the proof. O

We shall now try bound the dimension of N. The previous proposition
gives precise enough information on the behavior of v € N near of the corners
S;. We have thus to match these expansions together in order to obtain global
information on v in 2.

Lemma 3.0.33. For each j and each A; ., € (0,1) there exists 0, € N such
that
T — 10" 05 (0) € H' ().

Proof. For j ¢ % the proof is given by Lemma 2.3.6 in[3] so that we shall
consider only the case j € Z. Then let j € Z. Denoting now the function
nr =m0 0 (0) by Uj,m, we have

AU = fjm € C>(Q)
and
&;)u],m:’?zluj,m :Oa j S Q,Z € </Va
fs/?uj,m + Oéj’A}/;ULm = 0, j cZ.

By Theorem 3.0.24 and the above argumentation there exists a unique v;,, €
H'(Q) variational solution of problem

A'Uj’m = fj,m
’A)/;-)Uj’mzo, jE.@,
/?;Uj,m:Ov j€</V7

’??Uj,m + aﬂ}uj,m = O, ] EX
meaning v;,,, € V(€2) and according to (3.3)
a(vjm, h) = —/ hAw; ,, dx
Q
for any h € V(). Then the conclusion follows by setting

Ojm = Ukm — Vjim - (3.24)

and proving that this is an element of V.
Obviously ., € 2(A%*)NW?2(Q) and is harmonic in the interior of 2, so
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that it remains to verify the orthogonality conditions of Lemma 3.12, i.e. for
any u € W2(Q) N C?*(Q)

R % %
0:/ngmAq)u’jdx:/Quj7mA<I>7‘fjdx—/ij,mA<I>fjdx.

Integrating by parts the last integral
— / Wi AP S + / VO Vv mda.
Q Q

So that, remembering that @f ; satisfies the homogeneous Dirichlet and Neu-
mann conditions by construction, and integrating by parts again it suffices
to show that

oz/guj,mA@fjdx. (3.25)

Now notice that the orthogonality conditions of Lemma 3.12 do not change
substituting @f ; with

S . HZ
Q=07 (r,0) (0 —a),
where a € R. Then we have to prove that
17 17 1 7
tjm, A‘I’{fﬂm(m = (Ujm, 0 Aq’{fj)m(ﬂ) + 2 (Ujm, 2 an){LZ:j>L2(Q)

Noticing that dyu(r, wy) goes to zero for r | 0 at least linearly one has that
the two last integrals are finite and choosing

<Uj7m, HA(D{?]>L2(Q) — 2<Uj7m, 1/T28T(I)fj>L2(Q)
<Uj7m, A(I)ﬁ%;J>L2(Q) ’

aj7u =

one then concludes the proof. O]

Thus we have the following

Theorem 3.0.34.

dim(N) =) " #{ Xm0 < Ajm < 1}
J

Proof. We will consider only the case Z # (). By Theorem 3.0.32 one has
an expansion for any v € N near each corner. Then, substituting o;,, to
rXimep; . (0) in this expansion gives

Z Q™05 1 (0) + Z Bnoim € H'(D,).

m>2 0<Ajm<1
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by Lemma 3.0.33. Then we check that
> anrgin(6) € H(D,) (3.20)
m>2

for every p/ < p. Indeed denoting by w the series in 3.26 one has

&«w = Z Oém)\j7m7’)\j’m_1g0j’m(¢9)

m>2
T_laéw = Z am)‘j,mr/\j'm_lgpj,m<9)
m>2
and consequently, according to the bounds for a,,, in Theorem 3.0.32
IVw] < Coy Y lam|Agmrim ="/ phom
m>2

for a constant C,,; depending only by w;. Then it is square integrable in D,
for p/ < p. Summing up, this shows

v(re?) — Z Bnoim € H(D,),
0<)\j,m<1

at each corner. To make the notation consistent, at this stage, we must
reintroduce the subscript j everywhere. Thus there exists numbers 3;,, such

that
v — E Bma-j,m
0<Ajm<1

is of class H' near S;.
By Lemma 3.0.31 it follows that globally holds

w="v— Z Z Bnoim € H'(Q),.
J o 0<Ajm<1

We shall conclude the proof by showing that w vanishes. Indeed we already
know that w € N N HY(Q).
Theorem 3.0.24 shows that

a(w, v) =0,

for ever v € V() hence w = 0. This shows that
v=> Y Buoim <€ H(Q),.
J 0<)\j,m<1

In other words v is a linear combination of the o, with 0 < \;,, <1 and
these functions are linearly independent. ]
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Denoting as before by d; the contribute of vertex S; to the dimension
of N, by Theorem 3.0.34, and looking for the solutions of equations (3.19),
(3.20), (3.21), one has that with Robin boundary conditions it is possible to
have results of the same kind of the ones obtained in Chapter 2 regarding
j € #. However, by a simple graphical analysis the of equation (3.19),
it is possible to find also different behaviors. For example taking o; = wj,
Q1 = Q, a¢ | 0 as e | 0, one has the following

Lemma 3.0.35. For any € > 0, for any w; < € it is possible to choose «;
and o1 in such a way that d; = 1.

Moreover, taking a; = 6, where 6, = 4.494309... is the first positive
solution of the equation tanf = 60, and o1 = a, as before, one gets the
following result

Lemma 3.0.36. For any am < w; < (3/2)7, x ~ 1.43, it is possible to
choose a; and ajyq in such a way that d; = 2.

As expected when «; , j41 go to infinity (respectively to zero) the case
J € #* converges to the case j € A2, (respectively to j € 2?) with the first
solution disappearing to zero and the second going to 7/w. Similarly in the
case j € #* with coefficients «; , aj;1 such that a1 = 1, if one coefficient
goes to zero and the other one to infinity, then the case j € %2 converges to
the case j € ., with the two solutions A that converge to (1/2+ k)m/w for
k=0,1.
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Chapter 4

Self-adjoint Extensions for
Symmetric Laplacians with

Mixed Robin Boundary
Conditions

It this chapter we extend the results given in chapter 2 to the case of mixed
Robin boundary conditions.

First of all, denoting by Z' C Z the linear set of u € L*(Q) satisfying
the orthogonally conditions of Lemma 3.0.29, we can immediately generalize
Theorem 2.0.13:

Theorem 4.0.37.
H(NY) = H(AF™S YN A NT',
where
Ho={ue€ DAY : u+afju=3u=%u, ke D, he Z,jeN}.

Proof. The proof of this theorem follows by Theorem 2.0.13 in the case j & Z
and by Lemma 3.0.29 and Theorem 3.0.30 in the remanent cases. [

As a direct consequence of Poincaré inequality (see Theorem 1.1.6) and
the continuity results on trace operators given in chapter 1, V() is a Hilbert
space for the scalar product inducted by the bilinear form

F(u,v) ::/Vu-Vvdx +Z
Q

jER

1
—/ ’y?uv?vda., uv € V(Q).
@ Jr;
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This allow us to apply the Laz-Milgram Theorem and conclude® that exists
an unique self-adjoint operator defined as

AE - 9(NE) CV(Q) c LAHQ) — LX),
such that
Fu,v) = (—A{u, v) 2y, Yu € Z(Af) v e V(Q).
On the other hand if we consider W?2(Q) defined in (2.3), by the estimate
Vue WQ), ulluzo) < callDull ),
provided in Theorem 2.0.8, there follows by the Green’s Formula, that
Ay W2Q) C LA(Q) — L*(Q), Aqu:= Au,

is a closed symmetric operator. Similarly to the discussion made in Chapter 2
we investigate about the difference between A and the Friedrichs extension
AL Tn particular we will show as the Robin vertices give a contribute to the
kernel of (Ag)*.

We denote by . the set of indices j € # such that the contribution of S
to the dimension of N is either one or two and by .Z; the ones which give
contribution two. Then we pose

%122%1U%1/, %Q:Z%QU%é,
T~l1 = #%1 5 ﬁg = #%2 .
Then one has the generalization of Theorem 2.0.14 given by

Theorem 4.0.38.
dim Z((A)*) =y + g .

Now on any disk Dy, centered at Sy, we introduce the functions u},, defined

as
ujfm(r, 0) = C'jmri’\jm oim0), jEZX,

with C},, a normalization constant such that
WiNjm )
. / [5in(8) — A cos(0)2d0 = 1/2, (4.1)
0
where ¢, ,, is defined for j € #Z accordingly to the results found in Chapter

3. In particular one has m = 1if 0 < A\j; <1 < \jo, whereas m = 1,2 if
0 < Aj1 < Aj2 < 1. Then one has the exact analogue of Lemma 2.0.15:

1See e.g. [2], Chapter IV, Section 1.
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Lemma 4.0.39. Let us define

0o ._ + . - . Fy\—1
Shm = XkUpm s Skm = XkUpm s Okm ‘= Skm — (8g) " DaSkm -

Then 1)
St € D(DG) s skm € D(DE™) 5

2) Ogm 1S the unique (up to multiplication by constant) function in JH (Ag)
such that
Okm — Skm € @(Ag) )

3) the oy ’s are linearly independent;

4)

<Uhj ) _A£82m>L2(Q) - 6kh6mj .

5) The NESY s are orthogonal and thus linearly independent.

Proof. The proof are similar to the ones given for Lemma 2.0.15. The only
prove point 4 in the case k € #: Let us start with the case of pure Robin
corner in which k € %#?. First of all we can assume the case in which the
corner contribute is equal to 1. Then posing W2 := W2 \ W% one has

(Okm » DS ) £2(2) = Ok, DGR 12(0)

= (xetg » Aoxul) Lawy) — (Daxaty Xkt ) r2ow)
— |+ 1 o+
= XeUy [ XeUr + | 1420 ) =X, |do
Wi r
+ "o o— 1 /-
— Xety | Xty + (1 —2M: ) =xpuy, |do
Wi r
Ro Wi
= 2)\kC,§/ 2X) Xk dr/ ©020d0
R1 0

Wi
= —2\,.C} / |sin(A\f) — aF Ay cos(A\0)[2dO = —1.
0

It remains to show the L?(Q)-orthogonality between oy, and Agsgj in the
same Robin corner. So assuming m # j we can suppose without loos of
generality m = 1 and j = 2. Then

<0km 5 A552m>L2(Q) = <Uk 5 A582>L2(Q) = 0
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by orthogonality of the yg,,’s.

Let us consider the mixed-corner j € (%, 7). We will first study the case
j = m and without loss of generality we can omit this index assuming that
is equal to 1. Consequently we have

<O'k y Agsg)p(m
= (xwuy » Ao ) 2w — (Daxwty » Xwt) ) 2wy

R Wi
= 20,3)%/ 25Xk dr / sin®(A\gf) df = —1
R1 0

Now, assuming m # j, again we can suppose m = 1 and j = 2, then
<O’k1 y A5822>L2(Q) =0

by orthogonality of the yg,,’s. Finally we can conclude noticing that the same
argumentation holds for cases of Robin-Neumann mixed conditions and for

€(2,%). O
All the results provided in Chapter 2 following Lemma 2.0.15 can be
extended to the Robin case. The statements and the relative proofs remain
the same: it suffices to replace ny, ny with iy, fip and Ay, My with Ay, Ms.
In conclusion, by the results contained in Section 1.2, one gets the follow-
ing
Theorem 4.0.40. Any self-adjoint extension of Ag is of the kind
Ag®: 2(A5°) C LA Q) = LA(Q), AgCu:= Aqu,
D(AG°) = {u € 2((A)7) : € € CRt™  TIC" = ©¢"},
where (I1,0) € E(C™*72). Moreover
(—ALC +2) = (=AL + )P+ GLII(© + LI I GE.
The quadratic form corresponding to —Ag’@ 18 given by
Fe - 9(FLO) x .@(FH’G) C L*Q) x L*(Q) = R,

Fg’e(% v) = (Vug, Vug) L2(Q) + Z %UO; 72U0>L2(1“k) + fo(&u,&o),
rew @

D(FY®) ={ue L} Q) : u=ug+ Z Ep ok + Z £ oha s

kE//Z1 kEJ/ZQ
uy € V(Q), & e Chrtmy,

where fg is the quadratic form corresponding to ©.
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Chapter 5

Examples

In this last chapter we give some simple examples in the case where €2 is the

wedge
W={(r0) :0<r<1,0<0<w/B}, [>1/2.

5.1 Case 1: Dirichlet boundary conditions

Let us consider the case of a non-convex wedge, i.e. we take § < 1, and
let Ay, be the restriction of A to H*(W) N H}(W). By the results given
in Chapter 2 we know that the kernel of (A},)* is one dimensional and is
generated by o, the unique (up to the multiplication by a constant) square
integrable solution of the boundary value problem

Ao(r,0) =0, (r,0) e W,
o(r,0) =0, 0<r<l,
olr,m/8) =0, 0<r<l1,
o(1,0) =0, 0<f<m/5.

Thus

o(r,0) = % (Tiﬁ—rﬁ) sin 5 6.

Analogously we define o, by solving the boundary value problem

Ao(r,0) = zo(r,0), (r,0)eW,

o(r,0) =0, 0<r<l1,
o(r,m/p) =0, 0<r<l,
0(1,0) =0, 0<f<n/B.
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Thus

o,(r,0)

Z% (%)B r-g) (J_B(\/Zr) - % Jﬂ(\/zr)) sin B0,

where J, denotes the Bessel function of order v and I' denotes Euler’s gamma
function. Here the constants are chosen in order to have o0, — ¢ as z — 0.
Notice that o, is single-valued. Indeed, by

1= () s =14 ()

Therefore

Z(O', UZ>L2(W) =1+ <—

where we posed

Thus for any real o one can define a self-adjoint extension A{, of Ay, with
resolvent kernel

R (r,0;7",6") = RZD(T, 0;r",0) + (o — Qﬂ(z))_l o.(r,0)o.(r',0),

where

RDT’Q T 9/ Z 77Z)mnrewmw,(T 9/)
m,n>1 mnﬁ <

is the resolvent of the self-adjoint Dirichlet Laplacian AL,

B Jug(Ammpr) .
¢m,n r,0) =2 \/j —————~ sinnf0
0 =2 Tt o)

are the normalized eigenfunctions of AS and \,, .5 denotes the m-th positive
zero of J,z.
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5.2 Case 2: mixed Dirichlet-Neumann bound-
ary conditions

Here we consider a non-convex wedge with 5 < 2/3. Let A}y be the restriction
on A to {u € H*(W) : Jpu(r,0) = u(r,m7/8) = u(1,0) = 0}. By the
results in Chapter 2 we know that in this case the kernel of (Ay,)* is two
dimensional and is generated by oy, kK = 1,2, the two linearly independent
square integrable solutions of the boundary value problem

Aog(r,0) =0, (r,0) e W,
Opor(r,0) =0, 0<r<1,
or(r,m/B) =0, 0<r<1,
0,(1,0) =0, 0<f0<m/pB.

Thus, posing (3, = (k — 1/2),

or(r,0) = Crm?! (L — rﬁ’“) sin((k — 1/2)(w — 80)),

Tﬁk

Analogously we define oy, ., k = 1, 2, as the two linearly independent solutions
of the boundary value problem

Aoy . (1,0) = 2z Aoy, .(1,0), (r,0) e W,

090k,z(7“,0):0, O<’l“<1,
ok (r,m/B) =0, 0<r<1,
ok.(1,60) =0, 0<b<m/5.
Thus
ak’z(r, 0)
Bk
~Con () 1060 (LatwEn) - SV 5 (/20 ) o)
_ T 1 j* k(z) T &
=Cim (J_Bk(zrz) o % Jg, (21%) r8 ) ox(0) .,
with

pr(0) = sin((k = 1/2)(m — 56)).

!The constants C,, are defined in equation (2.9)
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Then for h, k = 1,2 one has, since the ;’s are orthogonal,

2(Oh, Oz 2wy = One(1 — Qp,(2)) -

Thus for any 2 x 2 Hermitean matrix © = {©,}} ,_; posing

MO(2) = {Mpr() o1 s Mik(2) = Oun + 01Qs, (2)

one can define a self-adjoint extension A of Ay, with resolvent kernel

RO(r,0;7".0") = RNP(r,0:¢0') + Z[M@(z)],:klahyz(r, 0)or.(r',0'),
hk

where

G (7, 0) o n (1, ')
RYP(r, 050,60 = ) U
m,n>1 m,nf3/2

is the resolvent of the self-adjoint Laplacian with mixed Dirichlet-Neumann
boundary conditions Ay” and

Ing/2(Amons/2r
Y1, 0) = 2\/§J 5/2( . 52T ou(nf)
T Jngja+1(Amns/2)

: : . N,D
are the normalized eigenfunctions of A, ".

5.3 Case 3: Robin boundary conditions

We consider here the case of pure Robin boundary conditions at the vertex,
so we let Ay be the restriction on A to {u € H*(W) : u(r,0)+a;0pu(r,0) =
u(r,m/2) — aedy(r,m/2) = wu(1,0) = 0}. To simplify the expositions we
suppose that 0 < ay, < 7/2, k = 1,2 2. By the results in Chapter 3 we know
that in this case the dimension of the kernel of (Ay,)* is given by the number
of solutions 0 < A < 1 of the equation

(041 + OéQ))\
1— alOéz/\2

tan(mA\/fB) = (5.1)
In order to present an example describing a situation not covered by the
mixed Dirichlet-Neumann case, we take the convex right-angled wedge with
B = 2. Thus in the Dirichlet-Neumann case £ ((Ay,)*) should be zero-
dimensional and Ay, should be self-adjoint.

2This hypothesis avoids eventual contributions given by the two (right-angled) corners
not at the origin
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By a trivial graphical analysis one can check that equation (5.1) has a
solution 0 < B’ < 1 for any a; > 0, ap > 0 such that

s
a1+ Qg > —.

061062<1, 7

Then the kernel of (Ayy)* is generated by the unique (up to the multiplication
by a constant) square integrable solution of the boundary value problem

Ao(r,0) =0, (r,0) e W,

o(r,0) + a10po(r,0) =0, 0<r<l1,

o(r,m/2) — awdgo(r,m/2) =0, 0<r<1,

o(1,0) =0, 0<0<m/2.
given by

1 /
— 3 - _..B /
o) = (5 =1 ) 10),

where

¢'(0) = sin(B'0) — a5 cos(5'9).

Denoting by o, the square integrable solution of the boundary value problem

Ao(r,0) = zo(r,6), (r,0) e W,
o(r,0) + a10p0(r,0) =0, 0<r<l1,
o(r,m/2) — adyo(r,m/2) =0, 0<r<1,
o(1,0) =0, 0<O<m/2.
one has
o,(r,0)
z 4 ’ z
~cu () =) (i - 2 g En ) )
s b Jg(z) 5 a e
=Cn1 ( o (ar) 5~ %ng(zr )7"’8> ©'(0).

Then

Z(U, UZ>L2(W) =1- QB/(Z) .

3The constants Cy; are defined in equation (4.1)
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and for any real a one can define a self-adjoint extension Ay, of Ay, with
resolvent kernel

R (r,0;7",0") = Rf(r, 0;r',0") + (o — QBI)_laz(r, 0)o.(r',0),

where R is the resolvent of the self-adjoint Laplacian AE with Robin bound-
ary conditions at the vertex.
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