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Introduction

By the results contained in the paper by Birman and Skvortsov “On the
square summability of the highest derivatives of the solution to the Dirichlet
problem in a region with piecewise smooth boundary” (see reference [1]),
the Laplace operator ∆◦

Ω on a plane curvilinear polygon Ω with domain the
Sobolev space H2(Ω) and homogeneous Dirichlet boundary conditions is a
closed symmetric operator with deficiency indices (n, n), where n is the num-
ber of non-convex corners. Therefore on a non-convex polygon, ∆◦

Ω has infi-
nite self-adjoint extensions. Such extensions have been recently determined
by means of Krĕın’s resolvent formula in [8]. The purpose of this thesis
is to extend such results to the case of different, more general, boundary
conditions.

In the first part of the thesis (see Chapter 2) we consider the case of mixed
Dirichlet-Neumann conditions, thus allowing each side Γj of the polygon
boundary to support either a Dirichlet or a Neumann homogeneous boundary
condition. In this case, building on results by Grisvard (see [3], [4] and
references therein), we have that, differently from the pure Dirichlet case,
non-convexity is no more a necessary condition in order to have not zero
deficiency indices. Indeed in this case the precise result is the following:
Let ωj the interior angle at the j-th vertex Sj. If dj denotes the contribution
to the dimension of the defect space due to the vertex Sj, then{

dj = 0 , 0 < ωj ≤ π

dj = 1 , π < ωj < 2π ,

both in the pure Dirichlet-Dirichlet and Neumann-Neumann cases, and
dj = 0 , 0 < ωj ≤ 1

2
π

dj = 1 , 1
2
π < ωj ≤ 3

2
π

dj = 2 , 3
2
π < ωj < 2π

(1)

in the mixed Dirichlet-Neumann case.
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Thus while in the pure Neumann case the dimensions of the defect spaces
is the same as in the case of the pure Dirichlet case already studied by Birman
and Skvortsov, the mixed case has a different behavior, allowing both convex
cases (with vertex contribution equal to one) and non-convex cases with
double vertex contribution.

After explicitly characterizing the defect subspace we determined the self-
adjoint extensions by a Krĕın’s resolvent formula proceeding analogously to
the pure Dirichlet case given in [8], however taking into account the double
contribution due to the vertices with mixed boundary conditions.

In the second part of the thesis we further extend our analysis by allowing
some sides Γj to support Robin boundary conditions of the kind (here nj
denotes the exterior normal at the j-th side)

u(x) + αj
∂u

∂nj
(x) = 0 , x ∈ Γj , αj > 0 .

While this is a deformation of the case considered in the first part, some not
completely trivial calculations are necessary in order to get results similar to
the ones concerning the mixed Dirichlet-Neumann case. By such calculations
(which fill the entire Chapter 3) it turns out that in the Robin case the
contribution dj of the j-th vertex to the dimension of the defect space is
given by the number of eigenvalues λj belonging to the interval (0, 1) of the
1-dimensional Robin boundary value problem

−u′′(θ) = λju(θ) , θ ∈ (0, ωj)

u(0) + αju
′(0) = 0 ,

u(ωj)− αj+1u
′(ωj) = 0 .

Thus, by tuning the parameters αj, one can recover results anologous to the
ones in (1). However also different behaviors are possible:
1. for any ϵ > 0, for any 0 < ωj < ϵ, there are parameter values which give
dj = 1;
2. for any xπ < ωj ≤ (3/2)π, x ≃ 1.43, there are parameter values which
give dj = 2.

Moreover, as expected, the dj’s converge to the ones corresponding to
the mixed Dirichlet-Neumann case as the αj’s converge to either 0 or ∞
accordingly to the different possible cases.

Again as in the mixed Dirichlet-Neumann a Krĕın’s formula giving the
classification of all the self-adjoint extension is provided in Chapter 4.

In the final chapter we give, to enhance the reader intuition, some simple
examples regarding the case in which Ω is a wedge.
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Chapter 1

Preliminary results

1.1 Sobolev spaces on Polygons

In this section we recall the basic definitions and general results1 that will be
used in the following part of this work. Let Ω be an arbitrary open subset of
Rn with boundary ∂Ω. Denoting by L2(Ω) the space of all square integrable
(complex valued) functions for the Lebesgue measure on Ω, we denote by
C∞
c (Ω) (resp. C∞

c (Ω̄)) the space of all infinitely differentiable unctions with
compact support in Ω (resp. the restriction to Ω of functions in C∞

c (Rn)).
Given s any real number, we shall denote by m its integral part and by σ
its fractional part. According one has s = m + σ with 0 ≤ σ ≤ 1. Also we
denote by Di the differentiation with respect to xi for 1 ≤ i ≤ n and for an
arbitrary multi-integer α = (α1, α2, ...αn) with nonnegative components we
set Dα = Dα1Dα2 ...Dαn .

Definition 1.1.1. We denote Hs(Ω) the space of all distributions u defined
in Ω such that
i) Dαu ∈ L2(Ω) for |α| ≤ m when s = m is a nonnegative integer
ii) u ∈ Hm(Ω) and ∫

Ω×Ω

|Dαu(x)−Dαu(y)|2

|x− y|n+2σ
dxdy <∞ ,

for |α| = m when s = m+ σ is a nonnegative and non integral integer.
We define a Hilbert norm on Hs(Ω) by

∥u∥m,Ω =

( ∑
|α|≤m

∫
Ω

|Dαu(x)|2dx
)1/2

1Proofs can be found e.g. in [3], Chapter 1, and [4], Chapter 1.
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in the case i) and by

∥u∥s,Ω =

(
∥u∥m,Ω +

∑
|α|=m

∫
Ω×Ω

|Dαu(x)−Dαu(y)|2

|x− y|n+2σ
dxdy

)1/2

,

in case ii).

Definition 1.1.2. We denote by Hs
0(Ω) the closure of C∞

c (Ω) in Hs(Ω).

Definition 1.1.3. We denote by H−s(Ω) the dual space of Hs
0(Ω).

Definition 1.1.4. For every positive s we denote by H̃s(Ω) the space of all
u defined in Ω such that ũ ∈ Hs(Rn) where ũ is the continuation of u by zero
outside Ω.

On H̃s(Ω) we define the norm ∥ũ∥s,Rn . A simple calculation shows that
this norm is equal to ∥u∥s,Ω when s is an integer and equivalent to

∥u∥s,Ω +
∑
|α|≤m

(∫
Ω

|Dαu(x)|2w(x)dx
)1/2

when s is not an integer, where w(x) is an appropriate weight. If Ω is a
Lipschitz 2 bounded domain, the weight w(x) is equivalent to ρ(x)−2σ where
ρ(x) denotes the distance from x to the boundary.

Theorem 1.1.1. Let Ω be a Lipschitz open subset of Rn. Then C∞
c (Ω̄) is

dense in Hs(Ω) for all s ≥ 0.

Theorem 1.1.2. Let Ω be a Lipschitz open subset of Rn. Then C∞
c (Ω)

is dense in H̃s(Ω) for all s ≥ 0. Moreover C∞
c (Ω) is dense in Hs(Ω) for

s ∈ [0, 1/2).

Definition 1.1.5. We denote by H̃−s(Ω) the dual space of H̃s(Ω).

Theorem 1.1.3. Let Ω be a bounded Lipschitz open subset or Rn then for
every s > 0 there exists a continuous linear operator Ps from Hs(Ω) into
Hs(Rn) such that

Psu
∣∣
Ω
= u ,

for any u ∈ Hs(Ω).

2By a Lipschitz domain we mean that the boundary of Ω is locally the graph of a
Lipschitz function.
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Theorem 1.1.4. Let s′ > s′′ ≥ 0 and assume that Ω is a bounded Lipschitz
open subset or Rn then the injection of Hs′(Ω) into Hs′′(Ω) is compact.

Theorem 1.1.5. Let s′ > s′′ > s′′′ ≥ 0 and assume that Ω s a bounded
Lipschitz open subset or Rn then there exists a constant C (which depends
on Ω, s′, and s′′) such that

∥u∥s′′,Ω ≤ ϵ∥u∥s′,Ω + Cϵ−(s′′−s′′′)/(s′−s′′)∥u∥s′′′,Ω ,

for all u ∈ Hs′(Ω).

Theorem 1.1.6. Assume that Ω is any bounded open subset of Rn then there
exists a constant K(Ω) which depends only on the diameter of Ω such that

∥u∥0,Ω ≤ K(Ω)
(∑

1≤n

∫
Ω

|Diu|2dx
)1/2

for any u ∈ Hs
0(Ω)

Theorem 1.1.7. 3 The following inclusions hold

Hs(Rn) ⊂ Lq(Rn)

for s < n/2 and q ≥ 2 such that 1/q = 1/2− s/n and

Hs(Rn) ⊂ Ck(Rn)

for any integers k < s− n/2.

Theorem 1.1.8. Given Ω be a bounded Lipschitz open subset of Rn and
denote by ρ(x) the distance from x to Γ. Then one has u/ρs ∈ L2(Ω) for all
u ∈ Hs(Ω) when 1 < s < 1/2 and for all u ∈ Hs

0(Ω) when 1/2 < s < 1.

Let us now recall the well known trace theorem on an hyperplane. Given
u a smooth function on Rn we define the function γ0u by

γ0u(x1, . . . , xn−1) := u(x1, . . . , xn−1, 0) .

The density property allows one to extend γ0 to a continuous linear operator
from Hs(Rn) onto Hs−1/2(Rn−1) provided s > 1/2. As direct consequence
one has

3Applying Theorem 1.1.3 one obtains the same inclusions for spaces over a bounded
Lipschitz domain Ω.
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Theorem 1.1.9. The mapping

u→
(
γ0u, γ0

∂u

∂xn
, ..., γ0

∂ku

∂xkn

)
defined on C∞

c (Rn) has for k < s − 1/2 an unique continuous extension as
an operator from

Hs(Rn) onto
∏

0≤p≤k

Hs−p−1/2(Rn−1) .

From now on Ω will be a polygonal domain in R2 where the boundary
∂Ω is given by the union the of sides Γj, j = 1, . . . N .

Given u ∈ Hs(Ω) we define

γkj u := γkPsu

by taking a system of orthogonal coordinates (x1, x2) ∈ R2 with respect to
which Γj ⊂ {(x1, 0) , x1 ∈ R}. Given such a definition one has the following

Theorem 1.1.10. Let Ω be a bounded polygonal open subset of R2, then for
each j the mapping

u→ {γlj , 1 ≤ l ≤ k, 1 ≤ j ≤ N}

which is defined for u ∈ C∞(Ω̄) has for k < s − 1/2 a unique continuous
extension from

Hs(Ω) into
N∏
j=1

∏
0≤p≤k

Hs−p−1/2(Γj) .

As regards the range of the application given in the previous theorem one
has the following

Theorem 1.1.11. Let Ω be a bounded polygonal open subset of R2. Then
the mapping

u 7→ {γlju , 0 ≤ l ≤ m− 1 , 1 ≤ j ≤ N }

is linear continuous from Hm(Ω) onto the subspace of∏
1≤j≤N

∏
0≤l≤m−1

Hm−l−1/2(Γj)
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defined by the following conditions. Let L be any differential operator with
constant coefficients and order d ≤ m − 1. Denote by Pj,l the differential
operators tangential to Γj such that

L =
∑
l

Pj,l
∂l

∂nlj
,

where nj denotes the exterior normal at γj. Then one has

i)
∑

l(Pj,lfj,l)(Sj) =
∑

l(Pj+1,lfj+1,l)(Sj) for d ≤ m− 2

ii)
∑

l(Pj,lfj,l) ≡
∑

l(Pj+1,lfj+1,l) at Sj for d = m− 1.

As regards “half” and ’full” Green Formula the result is the following:

Theorem 1.1.12.∫
Ω

u△v dx+
∫
Ω

∇v∇u dx =
∑
j

∫
Γj

γ0juγ
1
j v dσ , u ∈ H1(Ω) , v ∈ H2(Ω) ,

∫
Ω

u△v dx−
∫
Ω

v△u dx =
∑
j

( ∫
Γj

γ0juγ
1
j v dσ−

∫
Γj

γ0j vγ
1
j v dσ

)
, u, v ∈ H2(Ω) .

(1.1)

The linear maps γ0j and γ1j can be extended to a larger domain and this
implies an extension of Green’s folmulae also. Indeed, defining the maximal
domain

D(△max
Ω ) := {u ∈ L2(Ω) : △u ∈ L2(Ω) } , (1.2)

one has

Theorem 1.1.13. Let Ω be a bounded polygonal open domain in R2. Then
the maps γ0j and γ1j v have unique continuous extensions

γ̂0j : D(△max
Ω ) → H̃−1/2(Γj) ,

γ̂1j : D(△max
Ω ) → H̃−3/2(Γj) .

Moreover

Theorem 1.1.14.∫
Ω

v△udx+
∫
Ω

∇v∇udx =
∑
j

⟨γ0ju, γ̂1j v⟩ ,

for every v ∈ D(△max
Ω ) and every u ∈ H1(Ω) such that

γ0ju ∈ H̃1/2(Γj) .
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Theorem 1.1.15.∫
Ω

u△vdx−
∫
Ω

v△udx =
∑
j

(
⟨γ0ju, γ̂1j v⟩ − ⟨γ̂0j v, γ1ju⟩

)
,

for every v ∈ D(△max
Ω ) and every u ∈ H2(Ω) such that

γ0ju ∈ H̃3/2(Γj) , γ1ju ∈ H̃1/2(Γj) .

1.2 Self-adjoint extension and Krĕın’s formula

Let us consider the Hilbert space H equipped with the inner product ⟨·, ·⟩
and the self-adjoint operator

A : D(A) ⊆ H → H .

Then we define HA as the Hilbert space given by the domain D(A) equipped
by the inner product

⟨ϕ, ψ⟩A = ⟨ϕ, ψ⟩+ ⟨Aϕ,Aψ⟩.

Now, given a closed subspace N ⊂ HA dense in H , let us define S as the
closed, densely defined, symmetric operator obtained by restricting A to N .
Our purpose is to describe all self-adjoint extensions of S together with their
resolvent.
Since N is closed, HA = N ⊕N ⊥, and then N coincides with the kernel of
the orthogonal projection onto N ⊥. Now, since N ⊥ ≃ HA/N is an Hilbert
space, without lost of generality we can always suppose that N coincides
with the kernel of a surjective bounded linear operator:

τ : HA → h,

with h an auxiliary Hilbert space. Since this suffices for our purposes, we
will suppose that h is finite dimensional, thus we can pose

h = Cn .

This meas that S has finite deficiency indices.
In the following

K (L), R(L), ρ(L),

will be respectively the kernel, the range and the resolvent set of a given
linear operator L. Given τ as above one has

S = A|K (τ), R(τ) = Cn, K (τ) = H . (1.3)
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For any z ∈ ρ(A) we define the resolvent of A, i.e. the bounded linear
operator from HA to H as:

Rz := (−A+ z)−1 (1.4)

For any element of ρ(A) we also consider the continuous linear map:

Gz := (τRz̄)
∗ : Cn → H , (1.5)

that is injective being τ surjective. One has that (1.3) are equivalent to:

R(Gz) ∩ D(A) = {0}. (1.6)

Furthermore, by the first resolvent identity one has ([6], lemma 2.1):

(z − w)RwGz = Gw −Gz, (1.7)

R(Gw −Gz) ∈ D(A). (1.8)

Let us now consider a family of linear operators Γ : Cn → Cn such that

(Γz)
∗ = Γz̄, (1.9)

Γz − Γw = (z − w)G∗
w̄Gz. (1.10)

Let us observe that this class is nonempty, in fact by (1.7) and the definition
of Γ(z) one can prove (see [6], lemma 2.2) that each of these families differs
by a z-independent, symmetric operator from the family Γ̂w(z) defined as

Γ̂w(z) := τ

(
Gw +Gw̄

2
−Gz

)
, w ∈ ρ(A).

Notice that Γ̂w(z) is well defined by (1.8).
In the case 0 ∈ ρ(A), the easiest choice (the one we will take in the following
chapters) is

Γz = τ(G0 −Gz) ≡ zG∗
0Gz . (1.11)

Given the orthogonal projector

Π : Cn → Cn

we pose
Cn

Π := R(Π),
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and for any symmetric operator:

Θ : Cn
Π → Cn

Π,

we can define the linear operator

Γz,Π,Θ := (Θ + ΠΓzΠ) : Cn
Π → Cn

Π, (1.12)

and the open set

ZΠ,Θ := {z ∈ ρ(A) : det ΓΠ,Θ(z) ̸= 0}.

Now we have the following result

Theorem 1.2.1. 4 Let A, τ , S Π, Θ and Γz,Π,Θ as above. Then

C \ R ⊆ ZΠ,Θ

and the bounded linear operator:

Rz,Π,Θ := Rz +GzΠΓ−1
z,Π,ΘΠG

∗
z̄, z ∈ ZΠ,Θ, (1.13)

is the resolvent of the self-adjoint extension AΠ,Θ of S defined as

AΠ,Θ : D(AΠ,Θ) ⊆ H → H , (−AΠ,Θ + z)ϕ := (−A+ z)ϕz,

D(AΠ,Θ) := {ϕ ∈ H : ϕ = ϕz +GzΠΓ−1
z,Π,ΘΠτϕz, ϕz ∈ D(A)}.

The definition is z-independent and the decomposition appearing in D(AΠ,Θ)
is univocal.

Proof. By (1.9) e (1.10) we have

|ζ · Γz,Π,Θζ|2 ≥ Im (z)2∥Gzζ∥4

for any ζ ∈ CΠ. So det Γz,Π,Θ ̸= 0 for any z ∈ C\R. Now by (1.10), from [6]
we have that Rz,Π,Θ satisfies the resolvent identity

(z − w)Rw,Π,ΘRz,Π,Θ = Rw,Π,Θ −Rz,Π,Θ (1.14)

and by (1.9),
R∗
z,Π,Θ = Rz̄,Π,Θ . (1.15)

Furthermore by (1.6), Rz,Π,Θ is injective. Then the extension

AΠ,Θ := z −R−1
z,Π,Θ

is well defined on
D(AΠ,Θ) := R(Rz,Π,Θ),

and z-independent, respectively symmetric, by (1.14), respectively by (1.15).
Finally it is self-adjoint since R(−AΠ,Θ ± i) = H by construction.

4See [6], theorem 2.1
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Corollary 1.2.2. Suppose that 0 ∈ ρ(A). Then

AΠ,Θ : D(AΠ,Θ) ⊆ H → H , AΠ,Θϕ = Aϕ0,

D(AΠ,Θ) := {ϕ ∈ H : ϕ = ϕ0+G0ξϕ, ϕz ∈ D(A) , ξϕ ∈ CΠ , Πτϕ0 = Θξϕ}.

Notwithstanding the easy proof the self-adjoint extensions provided above
exhaust the class of all self-adjoint extension of the symmetric operator S:

Theorem 1.2.3. 5 The family of AΠ,Θ, given by Theorem 1.2.1, coincides
with the family F of all self-adjoint extensions of the symmetric operator S.
Thus F can be parameterized by bundle

p : E(Cn) → P (Cn),

where P (Cn) denotes the set of orthogonal projectors in Cn and p−1(Π) de-
notes the set of symmetric operators in Cn

Π. In particular the set of sym-
metric operators on Cn, i.e. p−1(1), parameterize the extensions such that
D(A1,Θ) ∩ D(A) = N , also called relatively prime extensions.

The next result 6 give us informations about the spectrum and eigenfunc-
tions of AΠ,Θ

Theorem 1.2.4.

λ ∈ σp(AΠ,Θ) ∩ ρ(A) ⇔ 0 ∈ σp(Γλ,Π,Θ),

where σp(·) denotes the point spectrum. Moreover

Gλ : K (Γλ,Π,Θ) → K (−AΠ,Θ + λ)

is a bijection for any λ ∈ σp(AΠ,Θ) ∩ ρ(A).

The next theorem provides the quadratic forms corresponding to the self-
adjoint extension given above. Since this suffices for our purposes we suppose
here that 0 ∈ ρ(A).

Theorem 1.2.5. Let

F : D(F )× D(F ) ⊆ H × H → R

be the quadratic form associated to −A and suppose that

R(G0) ∩ D(F ) = {0} .
5See [7], section 3
6See [7], section 2
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Then
FΠ,Θ : D(FΠ,Θ)× D(FΠ,Θ) ⊆ H × H → R ,

D(FΠ,Θ) = {ϕ ∈ H : ϕ = ϕ0 +G0ξϕ , ϕ0 ∈ D(F ) , ξϕ ∈ Cn
Π} ,

FΠ,Θ(ϕ, ψ) = F (ϕ0, ψ0) + Θξϕ ·ξψ ,

is the quadratic form associated to −AΠ,Θ.

Proof. Let L : D(L) ⊆ H → H be the linear operator associated to FΠ,Θ,
i.e.

D(L) :=

{ϕ ∈ D(FΠ,Θ) : ∃ϕ̃ ∈ H s.t. ∀ψ ∈ D(FΠ,Θ) , FΠ,Θ(ϕ, ψ) = ⟨ϕ̃, ψ⟩H } ,

Lϕ := ϕ̃ .

Since D(F ) ⊆ D(FΠ,Θ), D(FΠ,Θ) is dense and so L is well-defined.
By the definition of D(FΠ,Θ) and by taking, in the definition of D(L), at

first ξψ = 0 and then ψ = G0ξψ, one gets that ϕ = ϕ0 +G0ξϕ ∈ D(L) if and
only if there exists ϕ̃ such that

∀ψ0 ∈ D(F ) , F (ϕ0, ψ0) = ⟨ϕ̃, ψ0⟩H

and
∀ξ ∈ Cn

Π , Θξϕ ·ξ = ⟨ϕ̃, G0ξ⟩H .

Thus ϕ0 ∈ D(A), Lϕ = −Aϕ0, and

⟨ϕ̃, G0ξ⟩H = −⟨Aϕ0, G0ξ⟩H = −(τR0Aϕ0)·ξ = (τϕ0)·ξ = (Πτϕ0)·ξ .

This gives Πτϕ0 = Θξϕ, and so L = −AΠ,Θ.
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Chapter 2

Self-Adjoint Extensions of
Symmetric Laplacians with
Mixed Dirichlet-Neumann
Boundary Conditions

We start this sections recalling some important results about the Laplace
operator on a polygon with mixed boundary conditions at the boundary1.
Let Ω ⊂ R2 be a plane bounded open curvilinear polygon. This means that
the boundary ∂Ω is a piecewise smooth closed curve with no cups points.
The point where such a curve fails to be differentiable are called vertices. To
simplify the exposition we further suppose that a such curve coincides with a
broken line in a neighborhood of each vertex. If the whole boundary is made
of broken lines we says that Ω is a classical polygon.
We also assume that Ω is connected and simply connected domain and we
will denote each open smooth segment of ∂Ω (i.e. its sides) by Γj where the
index j ranges from 1 to some integer N . These segments are numbered in
such a way that Γj+1 follows Γj according to the positive orientation. We
also denote by Sj the vertex which is the endpoint of Γj.
Furthermore we define nj (resp. tj) as the unit outward normal (resp. tan-
gent) vector on Γj and by ωj the measure of the interior angle at Sj. Polar
coordinates (rj, θj) with origin at Sj will be used. Such coordinates are
choosen in such a way that Γj is on the half-axis θ = ωj and Γj+1 is on the
half-axis θ = 0. Then we introduce the cartesian coordinates attached to
each corner with vertex Sj as

xj = rj cos θ , yj = rj sin θ ,

1All the missing proofs can be found in [3], Sections 2.1 - 2.3.
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accordingly Γj+1 is a subsegment of the line yj = 0.
In considering mixed boundary conditions, it is useful to fix a partition of

{1, ..., N} (the set numbering the vertices) by the subsets D and N defined
according to the following rule:

• j ∈ D if Γj supports a Dirichlet boundary condition;

• j ∈ N if Γj supports a Neumann boundary condition.

We also will consider the sets D2, N 2, (N ,D), (D ,N ), defined by

• j ∈ D2 if both Γj and Γj+1 support Dirichlet boundary conditions;

• j ∈ N 2 if both Γj and Γj+1 support Neumann boundary conditions;

• j ∈ (N ,D) if Γj supports a Neumann boundary condition and Γj+1

supports a Dirichlet boundary condition;

• j ∈ (D ,N ) if Γj supports a Dirichlet boundary condition and Γj+1

supports a Neumann boundary condition.

Finally we introduce the set corresponding to mixed boundary conditions:

M := (D ,N ) ∪ (N ,D)

and for later convenience we also define

M1 := {j ∈ D2 ∪ N 2 : ωj > π} ∪ {j ∈ M : ωj > π/2} ,

M2 := {j ∈ M : ωj >
3

2
π} .

We will always suppose that
D ̸= ∅ (2.1)

Let △Ω be the distributional Laplace operator on the curvilinear polygon Ω
and let us define

△max
Ω : D(△max

Ω ) ⊂ L2(Ω) → L2(Ω) , △max
Ω u := △Ωu

where D(△max
Ω ) is defined in (1.2).

We introduce the spaces V (Ω) and V 2(Ω), respectively containing the
variational and the strong solutions of the boundary value problem

∆Ωu = f , f ∈ L2(Ω)

γ0ju = 0 , j ∈ D

γ1ju = 0 , j ∈ N ,
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defined by
V (Ω) = {u ∈ H1(Ω) : γ0ju = 0 , j ∈ D} (2.2)

and
V 2(Ω) = {u ∈ H2(Ω) : γ0ju = γ1i u = 0 , j ∈ D , i ∈ N } . (2.3)

The results given by the next theorems will be useful in the following:

Theorem 2.0.6. The space Hm(Ω)∩V (Ω) is dense in V (Ω) for every m > 1.

Theorem 2.0.7. The space Hm(Ω) ∩ V 2(Ω) is dense in V 2(Ω) for every
m > 1.

For any function in V 2(Ω) a Caccioppoli’s type inequality holds true:

Theorem 2.0.8. Assume that Ω is a bounded polygonal open subset of R2

and that (2.1) holds. Then there exists a constant CΩ such that

∀u ∈ V 2(Ω) , ∥u∥H2(Ω) ≤ CΩ∥∆Ωu∥L2(Ω) . (2.4)

As a direct consequence of Poincaré inequality (see Theorem 1.1.6) V (Ω)
is a Hilbert space for the scalar product induced by the bilinear form

F (u, v) :=

∫
Ω

∇u · ∇v dx , u , v ∈ V (Ω) .

This allow us to apply the Lax-Milgram Theorem and to conclude2 that there
exists a unique self-adjoint operator

△F
Ω : D(△F

Ω) ⊆ V (Ω) ⊂ L2(Ω) → L2(Ω)

such that

F (u, v) = ⟨−∆F
Ωu, v⟩L2(Ω) , u ∈ D(∆F

Ω) , v ∈ V (Ω) .

On the other hand by Theorem 2.0.8 and by Green’s Formula the linear
operator

△◦
Ω : V 2(Ω) ⊆ L2(Ω) → L2(Ω) , △◦

Ωu := △u ,

is closed and symmetric. Thus a natural question arises: is △◦
Ω self-adjoint?

Equivalently: does △◦
Ω coincide with △F

Ω?
The answer to the previous question depends on the shape of Ω and in order

2see e.g. [2], Chapter IV, Section 1.
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to answer to this question we need some more definition. For any vertex Sj
we consider the measure ωj of the corresponding interior angle and define3

n1 := #M1 , n2 := #M2

In the following we will see that the deficiency indices of ∆◦
Ω are both equal

to n1 + n2.
Consequently if n1 +n2 ̸= 0 we have D(△F

Ω) ̸= V 2(Ω). This is an immediate
consequence of the fact that for every j ∈ D2 (respectively j ∈ N 2) the
function

r
π/ωj

j sin
π

ωj
θj ,

(respectively r
π/ωj

j cos π
ωj
θj) belongs to K (△max) ∩H1(W ), where W is the

wedge

W = {(x, y) ≡ (rj cos θj , rj sin θj) : 0 ≤ rj < R , 0 < θj < ωj } ,

but fails to be in H2(W ) when π/ωj < 1.
In the case j ∈ M the conclusion is quite similar considering for example
the pair of functions

um = r
(m−1/2)π

ωj

j sin
(m− 1/2)π

ωj
θ , m = 1, 2 .

From now on we will suppose that n1 + n2 ̸= 0 so that

V 2(Ω) ≡ D(△◦
Ω) ( D(△F

Ω) .

Thus any self-adjoint extension of △◦
Ω will be a restriction of its adjoint

△◦∗
Ω . Since △max

Ω is the adjoint of the restriction of △Ω to C∞
c (Ω), one has

△◦∗
Ω ⊂ △max

Ω .
Inequality (2.4) shows that△◦

Ω is injective and has a closed range and, posing

N := R(∆◦
Ω)

⊥ = K ((∆◦
Ω)

∗)

one has the following results, which completely characterize the linear set N :

Lemma 2.0.9. Let v ∈ N . Then v belongs to D(△max
Ω ) and solves the (ad-

joint) boundary value problem
△v = 0 in Ω

γ̂0j v = 0 j ∈ D

γ̂1i v = 0 i ∈ N .

3Here #S denotes the cardinality of the set S.
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Lemma 2.0.10. Every v ∈ N is such that∫
Ω

v△ ηjdx = 0 , (2.5)

for any j ∈ N 2 , ∫
Ω

v△(yjηj)dx = 0 , (2.6)

for any j ∈ (N ,D) with either ωj = π/2 or ωj = 3π/2,∫
Ω

v△(xjηj)dx = 0 , (2.7)

for any j ∈ (D ,N ) with either ωj = π/2 or ωj = 3π/2.

Here ηj ∈ C∞
c (Ω) is a truncation function which depends only on the dis-

tance to Sj and such that ηj ≡ 1 near Sj and vanishes near all sides Γk, k ̸= j.

Theorem 2.0.11. Let v ∈ D(△max
Ω ) be such that

△v = 0 in Ω

γ̂0j v = 0 j ∈ D

γ̂1i v = 0 i ∈ N .

and that it fulfill the conditions in Lemma 2.0.10. Then v ∈ N .

Lemma 2.0.12. Let v ∈ N then v ∈ C∞(Ω̄\V ) where V is any neighborhood
of the corners Sj.

Denoting by I ⊂ L2(Ω) the set of function satisfying the conditions ap-
pearing in Lemma 2.0.10, we can resume the results above by stating the
following

Theorem 2.0.13.

K ((△◦
Ω)

∗) = K (△max
Ω ) ∩ K ∩ I ,

where K := {u ∈ D(△max
Ω ) : γ̂0ju = γ̂1i u = 0 , j ∈ D , i ∈ N }

Moreover, by Theorem 2.3.7 in [3], one has that

Theorem 2.0.14.
dimK ((△◦

Ω)
∗) = n1 + n2 . (2.8)

More precisely each corner contributes to the dimension of K (△◦∗
Ω ) as fol-

lows:
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• the contribution of a Dirichlet corner (i.e. j ∈ D2) is 0 if ωj ≤ π and
1 if ωj > π;

• the contribution of a Neumann corner (i.e. j ∈ N 2) is 0 if ωj ≤ π
and 1 if ωj > π;

• the contribution of a mixed-corner (i.e. j ∈ M ) is 0 if ωj ≤ π/2, 1 if
π/2 < ω ≤ 3/2π and 2 if ωj > 3/2π.

In order to better characterize the above kernel we introduce some more
definitions. We consider function C2

c (Ω) depending only on the radial vari-
able as follows: given R1 < R2 < R,

χj = 1 , if r < R1 , χj = 0 , if r > R2 ∀k ∈ D ∪ N ,

For any vertex Sj ∈ ∂Ω such that j ∈ D ∪ N we consider the disc

DR
j = {x ∈ R2 : ∥x− Sj∥ < R }

and define the wedge
WR
j := Ω ∩DR

j

≡ {(x, y) ≡ (r cos θj, r cos θj) : 0 ≤ r ≤ R, 0 < θj < ωj} ,
where we choose R in such way that WR

j ∩WR
h = ∅ for j ̸= h.

On any disk Dj centered at Sj we define the functions u∓jm

u∓j1 =
1√
π
r∓π/ωj sin

( π
ωj
θj
)
, ∀j ∈ D2 ,

u∓j1 =
1√
π
r∓π/ωj cos

( π
ωj
θj
)
, ∀j ∈ N 2 ,

and (here m = 1, 2)

u∓jm = Cjmr
∓ (m−1/2)

ωj
π
sin

(
(m− 1/2)

ωj
π θj

)
, ∀j ∈ (D ,N ) ,

u∓jm = Cjmr
∓ (m−1/2)

ωj
π
sin

(
(m− 1/2)

ωj
π(ωj − θj)

)
, ∀j ∈ (N ,D) ,

with

Cjm =

√
2(4−m)

3π
, m = 1, 2 . (2.9)

With such a choice we have that the functions χju
∓
jm are in L2(Ω) and L2(Ω)-

orthogonal.
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Lemma 2.0.15. Let us define

s0km := χku
+
km , skm := χku

−
km , σkm := skm − (△F

Ω)
−1△Ωskm .

Then
1)

s0km ∈ D(△F
Ω) , skm ∈ D(△max

Ω ) ;

2) σkm is the unique function in K (△◦∗
Ω ) such that

σkm − skm ∈ D(△F
Ω) ;

3) the σkm’s are linearly independent;
4)

⟨σhj ,−△F
Ωs

0
km⟩L2(Ω) = δkhδmj .

5) The △F
Ωs

0
km’s are orthogonal and thus linearly independent.

Proof. 1) follows by noticing that u∓km is harmonic near any vertex Sk and
C∞(R2 \ Sk).
2) follows by K (△F

Ω) = {0} and by Theorem 1.1, noticing that u∓km ∈ K ∩I.
3) Take the coefficients ck, c̃k such that∑

k∈M1

ckχkσk1 +
∑
k∈M2

c̃kχkσk2 = 0 ,

then

(△F
Ω)

−1△Ω

( ∑
k∈M1

ckχku
−
k1 +

∑
k∈M2

c̃kχku
−
k2

)
=

=
∑
k∈M1

ckχku
−
k1 +

∑
k∈M2

c̃kχku
−
k2 .

This gives ck = c̃k = 0 for all k, since the skm’s are linearly independent and
do not belong to D(△F

Ω).
4) First we consider the case of Neumann corner in which k ∈ N 2. Posing
W 2
k := WR2 \WR1 one has

⟨σkm ,△F
Ωs

0
km⟩L2(Ω) = ⟨σk ,△F

Ωs
0
k⟩L2(Ω)

= ⟨χku−k ,△
F
Ωχku

+
k ⟩L2(Wk) − ⟨△Ωχku

−
k , χku

+
k ⟩L2(Wk)

=

∫
Wk

χku
−
k

(
χ′′
ku

+
k +

(
1− 2π

ωk

)
1

r
χ′
ku

+
k

)
dx
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−
∫
Wk

χku
+
k

(
χ′′
ku

−
k +

(
1 +

2π

ωk

)
1

r
χ′
ku

−
k

)
dx

=
2

ωk

∫ R2

R1

2χ′
kχk dr

∫ ωk

0

cos2
(
π

ωk
θ

)
dθ = − 2

π

∫ π

0

cos2 θ dθ = −1

The case k ∈ D2 is the same.
Let us consider the case j ∈ M . We will first study the case j = m and
without loss of generality we can omit this index assuming that is equal to
1. Consequently we have

⟨σk ,△F
Ωs

0
k⟩L2(Ω) = ⟨χku−k ,△

F
Ωχku

+
k ⟩L2(Wk) − ⟨△Ωχku

−
k , χku

+
k ⟩L2(Wk) =

= C2
k

∫
Wk

χku
−
k

(
χ′′
ku

+
k +

(
1 +

π

ωk

)
1

r
χ′
ku

+
k

)
dx+

−C2
k

∫
Wk

χku
+
k +

(
χ′′
ku

−
k +

(
1− π

ωk

)
1

r
χ′
ku

−
k

)
dx

= C2
k

π

ωk

∫ R2

R1

2χ′
kχk dr

∫ ωk

0

sin2

(
π

2ωk
θ

)
dθ = −1

It remains to show the L2(Ω)-orthogonality between σkm and △F
Ωs

0
kj. We

assume m ̸= j and suppose m = 1 and j = 2. So

⟨σk1 ,△F
Ωs

0
k2⟩L2(Ω) = ⟨σk1 ,△F

Ωs
0
k2⟩L2(W 2

k )

= CkmCkj
4π

ωk

∫
Wk

1

r
u+k2χkχ

′
ku

−
k1 dx

= CkmCkj
4π

ωk

∫ R2

R1

r
π
ωk χkχ

′
k dr

∫ ωk

0

sin

(
3π

2ωk
θ

)
sin

(
π

ωk
θ

)
dθ .

The orthogonality then follows by the value of the last integral.
5) follows noticing that

⟨△Ωs
0
k1,△Ωs

0
k2⟩L2(Ω) =

= ⟨χ′′
ku

+
k1 + χ′

ku
+
k1

1

r
, χ′′

ku
+
k2 + χ′

ku
+
k2

1

r
⟩L2(Wk)
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and that in any mixed corner Sk the angular part of each u∓km is orthogonal
to the other ones.

Now (2.8) can be specified:

Theorem 2.0.16. For any u ∈ K ((△◦
Ω)

∗) there exists unique ξu ∈ Cn1+n2,
ξu ≡ (ξu1 , . . . , ξ

u
n1
, ξ̃u1 , . . . , ξ̃

u
n2
) such that

u =
∑
j∈M1

ξuj σj1 +
∑
j∈M2

ξ̃uj σj2 .

By (2.8) and Theorem 2.0.16 one obtains:

Theorem 2.0.17.

D((△◦
Ω)

∗) = {u ∈ D(△max
Ω ) : u ∈ K }

= {u ∈ L2(Ω) : u = u0+
∑
j∈M1

ξuj σj1+
∑
j∈M2

ξ̃uj σj2 , u0 ∈ D(△F
Ω) , ξ

u ∈ Cn1+n2 }

= {u ∈ L2(Ω) : u = u0+
∑
j∈M1

ξuj sj1 +
∑
j∈M2

ξ̃uj sk2 , u0 ∈ D(△F
Ω) , ξ

u ∈ Cn1+n2 } .

Proof. 1) For the first equality it’s sufficient to prove D(△◦∗
Ω ) ⊆ K . For any

v ∈ D(△◦∗
Ω ), remembering that H2(Ω) is dense in D(△◦∗

Ω ) let us take the
sequence {vn} ⊂ D(△◦∗

Ω ) ∩H2(Ω) such that vn → v.
By the Green Formula we have:

0 =

∫
Ω

△u vn dx −
∫
Ω

u△vn dx

=
∑
j∈N

∫
Γj

γ̂0ju γ
1
j vn dx −

∑
j∈D

∫
Γj

γ0j vn γ̂
1
ju dx ∀n .

Since the last equality holds for every u ∈ D(△◦
Ω), this means that vn ∈ K ,

for every n. Then by continuity of trace operators one obtains

γ̂1i v = lim
n→∞

γ1i vn = 0 = lim
n→∞

γ0j vn = γ̂0j v ∀j ∈ D , i ∈ N

and so v ∈ K . For any v ∈ D(△max
Ω ) ∩ K let us define v0 := (△F

Ω)
−1△Ωv.

Noticing that v − v0 ∈ K (△◦∗
Ω ), the converse inclusion is consequence of

Theorem 2.0.16.
2) For the second identity let us again define v0 := (△F

Ω)
−1△Ωv, for any

v ∈ D(△◦∗
Ω ). Since v − v0 ∈ K (△◦∗

Ω ), by Theorem 2.0.16 one has D(△◦∗
Ω ) ⊆

D(△F
Ω)+K (△◦∗

Ω ). The reverse inclusion follows from △◦
Ω ⊂ △F

Ω which gives
D(△F

Ω) ⊂ D(△◦∗
Ω ) proving the the statement.

3)Finally the last identity follows from point 2 in Lemma 2.0.15.
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The next theorem gives a decomposition for D(△F
Ω):

Theorem 2.0.18.

D(△F
Ω) = {u ∈ L2(Ω) , : u = u◦ +

∑
k∈M1

ζuk s
0
k1 +

∑
k∈M2

ζ̃uk s
0
k2

u◦ ∈ D(△◦
Ω) , ζ

u ≡ (ζu1 , . . . , ζ
u
n1
, ζ̃u1 , . . . , ζ

u
n2
) ∈ Cn1+n2 } .

Proof. Given D(△F
Ω), since the △F

Ωs
0
km’s are linearly independent by 5) in

Lemma 2.0.15 and not orthogonal to K (△◦∗
Ω ) by 4) in the same lemma, the

decomposition L2(Ω) = R(△◦
Ω) ⊕ K (△◦∗

Ω ) implies that there exists unique
u◦ ∈ D(△◦

Ω) such that

△F
Ωu =

∑
k∈M1

ζk△F
Ωs

0
k1 +

∑
k∈M2

ζ̃ks
0
k2 ,

and the proof is done.

Corollary 2.0.19.

D(△◦∗
Ω ) = {u ∈ L2(Ω) , : u = u◦+

n∑
k∈M1

(ζuk s
0
k1+ ξ

u
ksk1)+

∑
k∈M2

(ζ̃uk s
0
k2+ ξ̃

u
ksk2) ,

u◦ ∈ D(△◦
Ω) , ζ

u , ξu ∈ Cn1+n2 } .
Lemma 2.0.20. The linear map

τΩ : D(△F
Ω) → Cn1+n2 τΩu := ζu

is well defined, surjective and continuous.

Proof. By Theorem 2.0.19 D(△F
Ω) = D(△◦

Ω)+V+ where V+ is the (n1+n2)-
dimensional vector space generated by s0km. Since V+ is closed and D(△◦

Ω)∩
V+ = 0, τΩ is the composition of the continuous projection P : D(△F

Ω) → V+

with the continuous map which identifies V+ with Cn1+n2 .

Next results provide an alternative definition of τΩ:

Lemma 2.0.21. For all k ∈ M1\N 2 there exists constants4 Ckl such that

ξuk = lim
R↓0

Ckl
R2−π/ωkβ

⟨χRk , u⟩L2(Ω) , u ∈ D((∆◦
Ω)

∗) , k ∈ Ml ,

where χRk is the characteristic function of the wedge WR
k and β = 1 if k ∈ D2,

β = 1/2 if k ∈ M and ωk < π and β = 3/2 otherwise.
In the case k ∈ M1 ∩ N 2 similar results hold with u and χRk replaced re-
spectively by ∂2u/∂r2 and the characteristic function of the half wedge (i.e.
0 < θ < ω/2).

4Such constants can be made explicit: see the proof below.
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Proof. Let us define the constants Ckl by∫
WR

k

u±kl(r, θ)rdrdθ =
R2±π/ωk

Ckl
, k ∈ D2 ∪ M ,

and ∫
WR

k

∂2ru
±
kl(r, θ)rdrdθ =

R±π/ωk

Ckl
, k ∈ N 2 .

The proof of is then concluded noticing that the last integral is equivalent to
the first, in the case k ∈ D2, and by∫ R

0

∫ ωk

0

|u0(r, θ)|rdrdθ ≤
√
ωk
2

R2

(∫ R

0

∫ ωk

0

|u0(r, θ)| 2
drdθ

r

)1/2

,

for all u0 ∈ D(△F
Ω), being the last integral finite since u0 ∈ H1

0 (Ω) (see e.g.
[3], Theorem 1.2.15).

By the previous theorem and the above lemma there follows that D(△◦
Ω) =

K (τΩ). Thus we can write all self-adjoint extension of △◦
Ω, together their

resolvent, by using general theory of Krein’s resolvent formula as provided
in Chapter 1, Section 2. To this end we give the following

Lemma 2.0.22. If

G0 : Cn1+n2 → L2(Ω) , G0 := −(τΩ(△F
Ω)

−1)∗

then, posing ξ ≡ (ξ1, . . . ξn1 , ξ̃1, . . . , ξ̃n2),

G0ξ =
∑
k∈M1

ξkσk1 +
∑
k∈M2

ξ̃kσk2 .

Proof. By Lemma 2.0.15 one has

⟨σkm ,△F
Ωu⟩L2(Ω) = ⟨△◦∗

Ω σkm , u◦⟩L2(Ω) + δ1m
∑
j∈M1

ζuj ⟨σkm ,△F
Ωs

0
j1⟩L2(Ω) +

+ δ2m
∑
j∈M2

ζ̃uj ⟨σkm ,△F
Ωs

0
j2⟩L2(Ω) = −(δ1mζ

u
k + δ2mζ̃

u
k ) .

Thus, by the definition of τΩ,

⟨G0ξ , u⟩L2(Ω) = −⟨ξ , τΩ(△F
Ω)

−1u⟩L2(Ω)

=
∑
k∈M1

ξk⟨σk1 , u⟩L2(Ω) +
∑
k∈M2

ξ̃k⟨σk2 , u⟩L2(Ω) .
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By (1.7) and (1.11) one has then

Gzξ =(1− zRz)G0ξ

=
∑
k∈M1

ξk(σk1 − z(−∆F
Ω + z)−1σk1) +

∑
k∈M2

ξ̃k(σk2 − z(−∆F
Ω + z)−1σk2)

=
∑
k∈M1

ξk(sk1 − (−∆F
Ω + z)−1(−∆Ω + z)sk1)

+
∑
k∈M2

ξ̃k(sk2 − (−∆F
Ω + z)−1(−∆Ω + z)sk2)

and
Γz : Cn1+n2 → Cn1+n2 , (Γz)ik = z(G∗

0Gz)ik ,

has the block decomposition

Γlmz : Cnl → Cnm , l = 1, 2 , m = 1, 2 ,

where Γlmz is represented by the matrix

(Γlmz )ik = z⟨σil, σkm − z(−∆F
Ω + z)−1σkm⟩L2(Ω) , i ∈ Ml , k ∈ Mm .

In conclusion, by the results provided in Section 1.2 one then obtains the
following

Theorem 2.0.23. Any self-adjoint extension of ∆◦
Ω is of the kind

∆Π,Θ
Ω : D(∆Π,Θ

Ω ) ⊂ L2(Ω) → L2(Ω) , ∆Π,Θ
Ω u := ∆Ωu ,

D(∆Π,Θ
Ω ) := {u ∈ D((∆◦

Ω)
∗) : ξu ∈ Cn1+n2

Π , Πζu = Θξu} ,
where (Π,Θ) ∈ E(Cn1+n2). Moreover

(−∆Π,Θ
Ω + z)−1 = (−∆F

Ω + z)−1 +GzΠ(Θ + ΠΓzΠ)
−1ΠG∗

z̄ .

The quadratic form corresponding to −∆Π,Θ
Ω is given by

FΠ,Θ
Ω : D(FΠ,Θ

Ω )× D(FΠ,Θ
Ω ) ⊂ L2(Ω)× L2(Ω) → R ,

FΠ,Θ
Ω (u, v) = ⟨∇u0,∇v0⟩L2(Ω) + fΘ(ξ

u, ξv) ,

D(FΠ,Θ
Ω ) = {u ∈ L2(Ω) : u = u0 +

∑
k∈M1

ξuk σk1 +
∑
k∈M2

ξ̃uk σk2 ,

u0 ∈ V (Ω) , ξu ∈ Cn1+n2
Π } ,

where fΘ is the quadratic form corresponding to Θ.
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Chapter 3

Symmetric Laplacians with
Mixed Robin Boundary
Conditions in a Polygon

In this chapter we study the qualitative properties of the solutions of the
Laplace equations under mixed Robin boundary conditions on a polygon Ω.
Let we start defining the set of indices j characterized by Robin boundary
conditions:

• j ∈ R if Γj supports a Robin boundary condition;

• R2 := {j : j ∈ R , j + 1 ∈ R};

• (D ,R) := {j : j ∈ D , j + 1 ∈ R};

• (R, D) := {j : j ∈ R , j ∈ D};

• (N ,R) := {j : j ∈ N , j + 1 ∈ R};

• (R, N ) := {j : j ∈ R , j ∈ N }.

Now introduce the variational solution u of the Laplace equation

△u = f on Ω , (3.1)

with boundary conditions

γ̂0j v = 0 , j ∈ D , γ̂1j v = 0 , j ∈ N ,

γ̂0ju+ αj γ̂
1
ju = 0 , j ∈ R , (3.2)

where f is a given function and αj > 0.
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According to (2.1), the Poincaré inequality holds and the space of vari-
ational solutions V (Ω), defined in 2.2, is an Hilbert space for the scalar
product

a(u, v) :=

∫
Ω

∇u · ∇vdx +
∑
j∈R

1

αj

∫
Γj

γ0juγ
0
j v dσ . (3.3)

Therefore, assuming f ∈ L2(Ω), the mapping

v 7→
∫
Ω

fvdx ,

is a continuous linear form on V (Ω) and by Riesz Theorem there exists a
unique u ∈ V (Ω) such that

a(u, v) = −
∫
Ω

fvdx , (3.4)

for every v ∈ V (Ω). We want now to see in what sense u solves the mixed
Robin problem introduced above.
According to (3.4) if v ∈ C∞

c (Ω̄) one has that (3.1) holds in the sense of
distributions. Moreover, being u ∈ V (Ω) one as automatically that γ0ju = 0
for any j ∈ D .
Then by Theorem 1.1.14 since u ∈ D(△max

Ω ), for very v ∈ V (Ω) such that
γ̂0j v ∈ H̃1/2(Γj) one has∫

Ω

∇u · ∇vdx = −
∫
Ω

fvdx+
∑
j

⟨γ̂1ju, γ̂0j v⟩ ,

and consequently∑
j∈N

⟨γ̂1ju, γ̂0j v⟩+
∑
j∈R

⟨γ̂1ju, γ̂0j v⟩+
∑
j∈R

1

αj
⟨γ̂0ju, γ̂0j v⟩ = 0 .

So that if j ∈ N one has that, being γ̂0j v an arbitrary function, it must be

γ̂1ju = 0 , j ∈ N

and
γ̂0ju+ αj γ̂

1
ju = 0 , j ∈ R .

A converse statement is also true1:

1The proof follows by contradiction and by [3], Theorem 2.1.1.
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Theorem 3.0.24. Assume that Ω is a bounded polygonal open subset of R2

and that u ∈ H1(Ω) solves (in distributional sense) the equation ∆Ωu = f
together with the boundary conditions γ0ju = 0 if j ∈ D , γ̂1ju = 0 if j ∈ N
and γ̂0j + αj γ̂

1
ju = 0 if j ∈ R. Then u ∈ V (Ω) and is the unique solution of∫

Ω

∇u∇vdx+
∑
j∈R

1

αj

∫
Γj

γ̂0juγ̂
0
j vdσ = −

∫
Ω

fvdx ,

for every v ∈ V (Ω).

Now let us consider the space of strong solutions

W 2(Ω) :=

{u ∈ H2(Ω) : γ0ju = 0 , j ∈ D , γ1ju = 0 , j ∈ N , γ0j +αjγ
1
ju = 0 , j ∈ R} .

Then

Theorem 3.0.25. The spaceWm(Ω) :=W 2(Ω)∩Hm(Ω) is dense inW 2(Ω),
∀m ≥ 2.

Proof. Let us suppose that there exist u0 ∈ W 2(Ω) such that

∀v ∈ Wm(Ω) , ∥u0 − v∥H2(Ω) > δ > 0 , (3.5)

and for simplicity let us assume, without loss of generality, that exists an
unique index k ∈ R. Now let us consider the decomposition

u0 = u00 + u10 ∈ V 0,2(Ω)⊕ V 1,2(Ω) ,

where we defined, for i = 0, 1,

V i,2(Ω) = {u ∈ H2(Ω) : γ̂0ju = γ̂1i u = 0 ,∀j ∈ D , i ∈ N } .

By Theorem 2.0.7 there exist two sequences {v0,n} ⊂ V 0,m(Ω) and {v1,n} ⊂
V 1,m(Ω) such that

lim
n→+∞

∥u0 − vn∥H2(Ω) = 0 , vn := v0,n + v1,n .

Obviously vn ̸∈ Wm(Ω), but, by the continuity of the trace maps γ̂0k and γ̂1k ,
for any ϵ > 0 the sequence {vn} definitively belongs to

Wm,ϵ(Ω) :=

{u ∈ Hm(Ω) : γ̂0ju = γ̂1i u = 0 , |γ̂0ku+ αkγ̂
1
ku| ≤ ϵ , ∀j ∈ D , i ∈ N , k ∈ R } .
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Since ∩
ϵ>0

Wm,ϵ(Ω) = Wm(Ω) ,

there exists v ∈ Wm(Ω) such that

∥v − vn∥H2(Ω) ≤ δ/2 ,

for any n sufficiently large. Hence in conclusion there exists n sufficiently
large such that

∥u0 − v∥H2(Ω) ≤ ∥u0 − vn∥H2(Ω) + ∥vn − v∥H2(Ω) ≤ δ ,

inconsistent with (3.5)

Now we define

△◦
Ω : W 2(Ω) ⊆ L2(Ω) → L2(Ω) , △◦

Ωu := ∆Ωu

and we look for a generalization of Theorem 2.0.8.
Let us first consider the following inequality:2

∀ϵ > 0 ∃Kϵ > 0 such that ∀u ∈ H1(Ω)∑
j

∫
Γj

|γ0ju|2dσ ≤ ϵ

∫
Ω

∥∇u∥2dx+Kϵ

∫
Ω

|u|2dx . (3.6)

Then we have the following

Lemma 3.0.26. If u ∈ W 2(Ω) then then there exists CΩ > 0 such that∫
Ω

(
|∂2xxu|2 + 2|∂2xyu|2 + |∂2yyu|2

)
dx ≤ CΩ

(∫
Ω

|△u|2dx+
∫
Ω

|∇u|2dx
)

Proof. It is sufficient to estimate
∫
Ω
2∂2xyu∂

2
xyudx. By integrating by parts,

one has∫
Ω

2∂2xyu∂
2
xyudx = 2

∫
Ω

∂2xxu∂
2
yyudx+

∑
j

2

∫
Γj

(
∂xu∂

2
xyuny − ∂xu∂

2
yyunxdx

)
(3.7)

where nx and ny denotes the components of the normal vector nj to Γj. If
j ∈ N or j ∈ D the last term is zero by Lemma 2.2.2 of [3].
Then let us suppose that j ∈ R. Without loss of generality we can chose a

2See [5], equation 2.25 page 49.
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system of coordinates x, y such that Γj is represented by equation x = 0.
Then

∂u

∂x
(0, y) = αju (0, y) , (3.8)

and on Γj one has
∂2u

∂x∂y
(0, y) = αj

∂u

∂y
(0, y) .

Substituting this identity in the last integral of (3.7) (noticing that according
to the chosen coordinates system nx = 0 and ny = 1) one obtains

2

∫
Γj

(
∂xu∂

2
xyuny − ∂xu∂

2
yyunxdx

)
= 2αj

∫
Γj

∂xu∂yudσ .

Then (3.6) implies that

2

∫
Γj

∂xu∂yudσ ≤
∫
Γj

(∂xu)
2(∂yu)

2dσ

=

∫
Γj

∥∇u∥2L2(Ω)dσ ≤ ϵ

∫
Ω

(∂2xxu)
2 + 2(∂2xyu)

2 + (∂2yyu)
2dx

+Kϵ

∫
Ω

∥∇u∥2L2(Ω)dx .

This implies that ∫
Ω

2(∂2xyu)
2dx ≤ 2

∫
Ω

∂2xxu∂
2
yyudx

+

(∑
j∈R

αj

)(
ϵ

∫
Ω

(∂2xxu)
2 + 2(∂2xyu)

2 + (∂2yyu)
2dx+Kϵ

∫
Ω

∥∇u∥2L2(Ω)dx

)
.

Now, since that

2

∫
Ω

∂2xxu∂
2
yyudx ≤

∫
Ω

(∂2xxu)
2 + (∂2yyu)

2dx ,

choosing ϵ sufficiently small in order to have

ϵ
∑
j∈R

αj < 1

one has ∫
Ω

2(∂2xyu)
2dx ≤

ϵ
∑

j∈R αj + 1

1− ϵ
∑

j∈R αj

∫
Ω

(△u)2dx+
Kϵϵ

∑
j∈R αj

1− ϵ
∑

j∈R αj

∫
Ω

∥∇u∥2L2(Ω)dx .
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Now by (1.1.5) ∀ϵ > 0 there exists c > 0 such that

∥∇u∥L2(Ω) < ϵ ∥u∥H2(Ω) +
c

ϵ
∥u∥L2(Ω) .

Since, by our hypothesis αj > 0 for all j ∈ R, there follows that ⟨−∆Ωu, u⟩L2(Ω) ≥
λ∥u∥2L2(Ω) with λ > 0, applying Lemma 3.0.26 one gets the following

Theorem 3.0.27. If u ∈ W 2(Ω) then ∃CΩ > 0 such that

∥u∥H2(Ω) ≤ CΩ∥△Ωu∥L2(Ω) .

Now, as in Chapter 2, we look for a characterization of N := K ((∆◦
Ω)

∗).
The first step is the following.

Lemma 3.0.28. Let v ∈ N , then v belongs to D(△max
Ω ) and is solution of

the following (adjoint) boundary value problem
△v = 0 in Ω

γ̂0j v = 0 , j ∈ D ,

γ̂1j v = 0 , j ∈ N ,

γ̂0j v + αj γ̂
1
j v = 0 j ∈ R .

Proof. According to the definition of N any v ∈ N is a square integrable
function in Ω such that∫

Ω

v△udx = 0 , ∀u ∈ W 2(Ω) .

In particular this is true for every u ∈ C∞
c (Ω) and consequently v is harmonic.

This implies that v ∈ D(△max
Ω ) and it remains to check the boundary condi-

tions.
By Theorem 1.1.11 we know that given any φ ∈ C∞

c (Γj) for j ∈ D , and
ψj ∈ C∞

c (Γj) for j ∈ N there exists u ∈ H2(Ω) such that

γ̂0ju = φ , γ̂1ju = 0 , j ∈ N ,

γ̂0ju = 0 , γ̂1ju = ψj j ∈ D .

It remains to control the case j ∈ R. Then fixed φj, ψj and ϕ
1,2
k in C∞

c (Ω)
we know that ∃u1 ∈ H2(Ω) such that

i) γ̂0ju1 = 0 , γ̂1ju1 = φ/2 j ∈ D ,

ii) γ̂0ju1 = ψ/2 , γ̂1ju1 = 0 , j ∈ N ,
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and for the mixed conditions

iii) γ̂0ku1 = ϕ1
k , γ̂1ku1 = 0 .

In the same way one can find u1 ∈ H2(Ω) such that i) , ii) hold and

iv) γ̂0ku2 = 0 , γ̂1ku2 = αkϕ
2
k .

Then one conclude the case k ∈ R putting u = u1 + u2. This allows one to
apply the Green Formula∫

Ω

u△vdx−
∫
Ω

v△u =
∑
j

(⟨γ̂0ju , γ̂1j v⟩ − ⟨γ̂0j v , γ̂1ju⟩) .

Since v is harmonic and u ∈ W 2(Ω) the integrals on Ω vanishes and taking
into account the boundary conditions on u we have

0 =
∑
j∈N

⟨φj , γ̂1j v⟩ −
∑
j∈D

⟨γ̂0j v , ψj⟩+
∑
k∈R

(⟨ϕ1
k , γ̂

1
kv⟩+ ⟨γ̂0kv , αkϕ2

k⟩)

and posing ϕ2
k(x) ≡ −ϕ1

k(x) on Γk, one has∑
j∈N

⟨φj , γ̂1j v⟩ −
∑
j∈D

⟨γ̂0j v , ψj⟩+
∑
k∈R

⟨ϕ1
k , γ̂

0
j v + αj γ̂

1
j v⟩ = 0 ,

for any ψj ∈ C∞
c (Γj), j ∈ N , φj ∈ C∞

c (Γj), j ∈ D and ϕ1
k ∈ C∞

c (Γk), k ∈ R.
Then

γ̂1j v = 0 , for j ∈ N γ̂0j v = 0 , j ∈ D .

and
γ̂0j v + αj γ̂

1
j v , k ∈ R .

Lemma 3.0.28 shows that v ∈ N is a weak solution of the homogeneous
adjoint problem, however it does not characterize completely N .
To this purpose we need to the following results:

Lemma 3.0.29. Every v ∈ N is such that∫
Ω

v△ ηjdx = 0 , (3.9)

for any j ∈ N 2 , ∫
Ω

v△(yjηj)dx = 0 , (3.10)
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for any j ∈ (N ,D) with ωj = 3/2π , or π/2,∫
Ω

v△(xjηj)dx = 0 , (3.11)

for any j ∈ (D ,N ) with ωj = 3π/2 , or π/2, and ηj ∈ C∞
c (Ω) is the trunca-

tion function which depends only on the distance to Sj and such that ηj ≡ 1
near Sj and vanishes near all Γk.
Now we have to consider the case j ∈ R. Taking 0 < R1 < R2 such that for
any j

i) ηj(r) ≡ 1 , onBR1(Sj) ∩ Ω ,

ii) supp{ηj} ⊂ BR2(Sj) ∩ Ω ,

and χR2
j (r) the characteristic function of the set BR2(Sj) ∩ Ω, then for any

couple (ω1 , ω2) such that 0 < ω1 < ω2 < ωj, ∀j, we have that any v ∈ N is
such that for any u ∈ W 2(Ω) one has∫

Ω

v△ΦR
j, udx = 0 , (3.12)

for any j ∈ R, where

ΦR
j, u(r, θ) =

[
βj1 θ

2(θ − ωj)
2(θ − ω2)(r

2 − ∂θu(r, ω1))

+ βj2 θ
2(θ − ωj)

2(θ − ω1)
2 r∂ru(Sj)

]
ηj · χR2

j (r) ,
(3.13)

with

βj1 =
[
(ω1 − ωj)

2(ω1 − ω2)ω
2
1

]−1
and βj2 =

[
(ω2 − ωj)

2(ω2 − ω1)ω
2
2

]−1
.

Proof. The proof of (3.9), (3.10) and (3.11) is given by Lemma 2.0.10, (3.12)
follows noticing that ΦR

j, u(r, θ) ∈ W 2(Ω) by its definition.

Theorem 3.0.30. Let v ∈ △max
Ω ∩W 2(Ω) such that v is harmonic in Ω and

assume that v satisfyies the conditions of Lemma 3.0.29, then v ∈ N .

Proof. The case R = ∅ is given by Theorem 2.0.11 and therefore we can
suppose j ∈ R. Our thesis consist to show that∫

Ω

v△udx = 0 (3.14)

for every u ∈ W 2(Ω).
By Theorem 3.0.25 it suffices to consider the case u ∈ W 2(Ω) ∩ H4(Ω) ⊂
C2(Ω̄).
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Obviously for any j ∈ R \ R2 one has u(Sj) = 0 and the same holds for
every j ∈ R 2 such that αj ̸= αj+1, in fact

lim
r→0

|u(r, 0)| = |u(Sj)| = lim
r→0

|u(r, ωj)|

⇓
αj+1 lim

r→0
|∂θu(r, 0)| = |u(Sj)| = αj lim

r→0
|∂θu(r, ωj)| .

(3.15)

Therefore let us consider the case u(Sj) = 0, for any j ∈ R defining

w(r, θ) = u−
∑
j∈R

ΦR
j (r, θ) ,

so that, by Lemma 3.0.29,∫
Ω

v△udx =

∫
Ω

v△wdx .

By construction in any vertex characterized by Robin conditions, one has

lim
r↓0

1

r
w(r , ω1) = lim

r↓0

1

r

[
∂θu(r , ω1)− ∂θΦj(r , ω1)

]
= 0 . (3.16)

By the same considerations one has

∂rw(r , ω2) ≡ 0 , ∀r > 0, (3.17)

i.e. the gradient ∇w must be zero at the vertex Sj, being

∇w(r , ω1) ⊥ ∇w(r , ω2) , ∀r > 0 .

Now let us suppose αj+1 = αj = α and in particular u(Sj) ̸= 0, then

u0j(r, θ) :=
u(Sj)

ω2
j

(θ − ωj)
2 eA(ωj , α) ,

A(ωj, α) = −ω + 2α

ωα

in order to have u0j ∈ W 2(Ω) and u0j(r, 0) → u(Sj), for r ↓ 0.
Then it is sufficient to reproduce the above argumentation substituting u(r, θ)
with

u(r, θ)− u0j(r, θ) .

Thus one can always consider the function w(r, θ) such that

γjw ∈ H̃3/2(Γj) , and γj(∂w/∂nj) ∈ H̃1/2(Γj)
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and the Green formula of Theorem 1.1.15 may be applied to w and v. Finally
we conclude∫

Ω

v△wdx =
∑
j∈R

(
⟨γjw, γj(∂v/∂nj)v⟩H1/2(Γj) − ⟨γjv, γj(∂w/∂nj)⟩H1/2(Γj)

)
that coincides, being γjw = 0 for j ∈ D , and ∂w/∂nj = 0, for any j ∈ N ,
with ∑

j∈R 2

(
⟨γjw, γj(∂v/∂nj)⟩H1/2(Γj) − ⟨γjv, γj(∂w/∂nj)⟩H1/2(Γj)

)
= 0 ,

being respectively γjw = −αjγj(∂w/∂nj) and γjv = −αjγj(∂v/∂nj) .

Lemma 3.0.31. Let v ∈ N then v ∈ C∞(Ω̄\V ) where V is any neighborhood
of the corner Sj.

Proof. For j ∈ D andj ∈ N the proof is given by Lemma 2.0.12 so it suffices
to consider the case j ∈ R.
Noticing that v is harmonic and therefore smooth inside Ω, we must prove
the smoothness of v near any of the Γj. For our purpose, is sufficient consider
only the case with boundary conditions given by

γ̂0ju+ αj γ̂
1
ju = 0 . (3.18)

Now we perform a change of coordinates axes in order to consider the segment
Γj on the axis {x2 = 0} and such that Ω is above Γj.
Then we can introduce the cut-off function ϕ ∈ C∞

c (Ω̄) whose support does
not intersect any sides Γ̄k with k ̸= j and such that it is x2-independent for
small values of x2. Noticing that with this choice ϕ does not intersect any of
the corners, we shall now investigate on ϕv.
The function ω = ϕv belongs to L2(R2

+) where R2
+ = {x2 < 0}. In addition

ω is solution of {
−△ω + ω = f in R2

+

γ̂0jω + αj γ̂
1
jω = 0 , on {x2 = 0} ,

where, according to the choice of ϕ

f =

(
ϕv − 2

∂ϕ

∂x1

∂v

∂x1
− (△ϕ)v

)
,

and there follows that f ∈ L2(R+; H
−1(R)) if we agree to see f as a vector-

valued function of x2. This will allow us to show that ω ∈ H1(R2
+) as a first
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step.
We replace ω with Rω where R is the inverse operator of (1−D2

1)
1/2 so that

Rw = F−1
1 (1 + ξ21)F1ω ,

where F1 denotes the Fourier transform in x1. By Lemma 2.3.2.5. in [4] one
has Rω ∈ L2(R2

+) and{
−△Rω +Rω = Rf in R2

+

γ̂0jRω + αj γ̂
1
jRω = 0 , on {x2 = 0}

where Rf ∈ L2(R2
+). Then noticing that for any domain Ω1 ⊂ Ω with a

smooth boundary containing the support of ϕ and such that Γj ⊂ ∂Ω1, the
solution of the above problem is such that

Rω|Ω1 ∈ H2(Ω1) ,

one deduces that Rω ∈ H2(R2
+) and ω ∈ H1(R2

+). Varying ϕ an j one has

v ∈ H1(Ω \ V ) ,

where V is a neighborhood of the vertices of Ω.
Now we reiterate the previous steps of the proof. Since we know that v
belongs to H1(Ω \ V ), we also know that f ∈ L2(R2

+). Thus applying one
more time Lemma 2.3.2.5. in [4] to ω, instead to Rω one has

ω|Ω1 ∈ H2(Ω1) ,

and consequently
v ∈ H2(Ω \ V ) ,

where V is a neighborhood of the vertices of Ω.
Finally, repeated application of Theorem 2.5.1.1. in [4] in which Ω is replaced
by Ω1 as above, shows that

v ∈ Hk+2(Ω \ V ) ,

for every positive integer k and by Sobolev Imbedding Theorem one con-
cludes.

Now we shall study the behavior of v ∈ N near the corners. For technical
purpose we shall need the eigenfunctions of the operator

φ 7−→ −φ′′ ,
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under various boundary conditions on (0, ωj). More precisely let us define
the unbounded operator Λj in Hj := L2(0, ωj) as follows

Λjφ = −φ′′

where D(Λj) is given by:

D(Λj) = {φ ∈ H2(0, ωj) : φ(0) = φ(ωj) = 0} , j ∈ D2

D(Λj) = {φ ∈ H2(0, ωj) : φ′(0) = φ′(ωj) = 0} , j ∈ N 2

D(Λj) = {φ ∈ H2(0, ωj) : φ(0)+αjφ
′(0) = φ(ωj)−αj+1φ

′(ωj) = 0} , j ∈ R2 ,

D(Λj) = {φ ∈ H2(0, ωj) : φ(0) = φ′(ωj) = 0} , j ∈ (N ,D) ,

D(Λj) = {φ ∈ H2(0, ωj) : φ′(0) = φ(ωj) = 0} , j ∈ (D ,N ) ,

D(Λj) = {φ ∈ H2(0, ωj) : φ(0) + αjφ
′(0) = φ′(ωj) = 0} , j ∈ (R,N ) ,

D(Λj) = {φ ∈ H2(0, ωj) : φ′(0) = φ(ωj)− αj+1φ
′(ωj) = 0} , j ∈ (N ,R) ,

D(Λj) = {φ ∈ H2(0, ωj) : φ(0) = φ(ωj)− αj+1φ
′(ωj) = 0} , j ∈ (D ,R) ,

D(Λj) = {φ ∈ H2(0, ωj) : φ(0) + αjφ
′(0) = φ(ωj) = 0} , j ∈ (R,D) ,

The operator λj is self-adjoint, has a discrete spectrum and is strictly positive
under the following hypotheses that we assume from now on:

αj > 0 , αj+1 > 0 , αj + αj+1 ̸= ωj ,

We shall denote by φj,m, m ≥ 1, the normalized eigenfunction and by λ2j,m,
m ≥ 1 the corresponding eigenvalues in increasing order. We thus have

−φ′′
j,m = λ2j,mφj,m

where φj,m ∈ D(Λj) for every m.
With Dirichlet and Neumann boundary conditions these eigenfunction and
eigenvalues are well known. We have

φj,m(θ) =
√
2/ωj sin(θλj,m) , λj,m = mπ/ωj , j ∈ D2 .

φj,m(θ) =
√

2/ωj sin(θλj,m) , λj,m = [m− 1/2]π/ωj , j ∈ (N ,D) ,

φj,m(θ) =
√

2/ωj sin([ωj − θ]λj,m) , λj,m = [m− 1/2]π/ωj , j ∈ (D ,N ) ,

φj,m(θ) =
√
2/ωj cos(θλj,m) , λj,m = [m− 1]π/ωj , j ∈ N 2 ,m ≥ 2 .
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In the case of Robin boundary conditions one has

φj,m(θ) = sin(λj,mθ) − αjλj,m cos(λj,mθ) , j ∈ R2 ,

with λj,m ̸= kπ/2ωj solutions of

tan(λj,mωj) =
λj,m(αj + αj+1)

1− αjαj+1λ2j,m
(3.19)

For mixed Robin-Dirichlet conditions we have

φj,m(θ) = sin(λj,mθ) , j ∈ (R,D) ,

φj,m(θ) = sin[λj,m(θ − ωj)] , j ∈ (D ,R) ,

with λj,m ̸= kπ/2ωj solution of

tan(λj,mωj) = λj,mα , (3.20)

where α coincides with the unique not zero coefficient according to the Robin
conditions.
Finally with mixed conditions Robin-Neumann one has

φj,m(θ) = cos(λj,mθ) , j ∈ (R,N )

φj,m(θ) = cos[λj,m(θ − ωj)] , j ∈ (N ,R) ,

where λj,m ̸= kπ/2ωj is solution of

tan(λj,mωj) =
1

λj,mα
(3.21)

where α is defined as above.
Notice that, since Λj is symmetric, the eigenfunctions φj,m are orthogonal.
Using the polar coordinates (r, θ) with origin at Sj, we see that any v ∈ N
is solution of

∂2v/∂r2 + r−1∂v/∂r + r−2∂2v/∂θ2 = 0 , 0 < θ < ωj , 0 < r < ρ

for opportune ρ such that Dρ does not cut any side of Ω but Γj and Γj+1.
The boundary conditions at the sides θ = 0 and θ = ωj depends on which

set the index j belongs to.
These boundary conditions are meaningful since v is regular for r > 0 by

Lemma 3.0.31. In addition since

v(reiθ) ∈ H2(0, ωj) , ∀0 < r < ρ ,
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it follows that
v(reiθ) ∈ D(Λj) , ∀0 < r < ρ .

This allows us to rewrite the equation for v as

∂2/∂r2 + r−1∂/∂r − r−2Λj = 0 , 0 < r < ρ (3.22)

if we see v as an infinitely differentiable vector-valued function of r with
values inD(Λj). This implies that v can be expanded on the eigenfunctions
φj,m in the following fashion.

Theorem 3.0.32. Let v ∈ C∞(0, ρ;D(Λj)) be a solution of equation 3.22
and assume that v ∈ L2(Dρ) then

v(reiθ) =
∑
m≥2

2αmrλj,mφj,m(θ) +
∑

0<λj,m<1

2βmr−λj,mφj,m(θ) ,

where αm and βm are real numbers such that

|αm| ≤ Lm1/2ρ−λj,m

and L is a constant depending only on v.

Proof. 3 Since the sequence φj,m for m > 1 is an orthonormal basis for Hj

we have
v(reiθ) =

∑
m≥1

vm(r)φj,m(θ) ,

where

vm(r) =

∫ ωj

0

v(reiθ)φj,m(θ)dθ . (3.23)

However being v differentiable in r with values in D(Λj) the differential
equation (3.22) implies that

v′′m(r) + r−1v′m(r)− λ2j,mr
−2vm(r) = 0 , 0 < r < ρ .

Solving this last differential equation we see that (notice that λj,m > 0)

vm(r) = αmr
λj,m + βmr

−λj,m .

On the other hand since v belongs to L2(Dρ) it follows from identity (3.23)
that

vm(r)
2 ≤

∫ ωj

0

|v(reiθ)|2rdr ≤ ∥v∥2 .

3In this proof we use the same argumentation given in the proof of Proposition 2.3.5.
in [3].
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This implies that βm = 0 when λj,m ≥ 1 and that

|αm|2
∫ ρ

0

r2λj,m+1dr = |αm|2ρ2λj,m+2/[2λj,m + 2] ≤ ∥v∥2 ,

for λj,m ≥ 1. This complete the proof.

We shall now try bound the dimension of N . The previous proposition
gives precise enough information on the behavior of v ∈ N near of the corners
Sj. We have thus to match these expansions together in order to obtain global
information on v in Ω.

Lemma 3.0.33. For each j and each λj,m ∈ (0, 1) there exists σj,m ∈ N such
that

σj,m − ηjr
−λj,mφj,m(θ) ∈ H1(Ω) .

Proof. For j /∈ R the proof is given by Lemma 2.3.6 in[3] so that we shall
consider only the case j ∈ R. Then let j ∈ R. Denoting now the function
ηjr

−λj,mφj,m(θ) by uj,m, we have

△uj,m = fj,m ∈ C∞
c (Ω̄)

and
γ̂0juj,m = γ̂1i uj,m = 0 , j ∈ D , i ∈ N ,

γ̂0juj,m + αj γ̂
1
juj,m = 0 , j ∈ R .

By Theorem 3.0.24 and the above argumentation there exists a unique vj,m ∈
H1(Ω) variational solution of problem

△vj,m = fj,m

γ̂0j vj,m = 0 , j ∈ D ,

γ̂1j vj,m = 0 , j ∈ N ,

γ̂0juj,m + αj γ̂
1
juj,m = 0 , j ∈ R

meaning vj,m ∈ V (Ω) and according to (3.3)

a(vj,m, h) = −
∫
Ω

h△uj,m dx

for any h ∈ V (Ω). Then the conclusion follows by setting

σj,m = uk,m − vj,m . (3.24)

and proving that this is an element of N .
Obviously σj,m ∈ D(△max

Ω ) ∩W 2(Ω) and is harmonic in the interior of Ω, so
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that it remains to verify the orthogonality conditions of Lemma 3.12, i.e. for
any u ∈ W 2(Ω) ∩ C2(Ω)

0 =

∫
Ω

σj,m△ΦR
u, jdx =

∫
Ω

uj,m△ΦR
u, jdx−

∫
Ω

vj,m△ΦR
u, jdx .

Integrating by parts the last integral

=

∫
Ω

uj,m△ΦR
u, jdx +

∫
Ω

∇ΦR
u, j∇vj,mdx .

So that, remembering that ΦR
u, j satisfies the homogeneous Dirichlet and Neu-

mann conditions by construction, and integrating by parts again it suffices
to show that

0 =

∫
Ω

uj,m△ΦR
u, jdx . (3.25)

Now notice that the orthogonality conditions of Lemma 3.12 do not change
substituting ΦR

u, j with

Φ̂R
u, j := ΦR

u, j(r, θ) · (θ − α) ,

where α ∈ R. Then we have to prove that

α⟨uj,m, △ΦR
u, j⟩L2(Ω) = ⟨uj,m, θ△ΦR

u, j⟩L2(Ω) + 2 ⟨uj,m,
1

r2
∂θΦ

R
u, j⟩L2(Ω)

Noticing that ∂θu(r, ω1) goes to zero for r ↓ 0 at least linearly one has that
the two last integrals are finite and choosing

αj, u =
⟨uj,m, θ△ΦR

u, j⟩L2(Ω) − 2⟨uj,m, 1/r2∂rΦR
u, j⟩L2(Ω)

⟨uj,m, △ΦR
u, j⟩L2(Ω)

,

one then concludes the proof.

Thus we have the following

Theorem 3.0.34.

dim(N) =
∑
j

#{λj,m ; 0 < λj,m < 1} .

Proof. We will consider only the case R ̸= ∅. By Theorem 3.0.32 one has
an expansion for any v ∈ N near each corner. Then, substituting σj,m to
rλj,mφj,m(θ) in this expansion gives∑

m≥2

αmr
λj,mφj,m(θ) +

∑
0<λj,m<1

βmσj,m ∈ H1(Dρ) .
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by Lemma 3.0.33. Then we check that∑
m≥2

αmr
λj,mφj,m(θ) ∈ H1(Dρ′) (3.26)

for every ρ′ < ρ. Indeed denoting by w the series in 3.26 one has

∂rw =
∑
m≥2

αmλj,mr
λj,m−1φj,m(θ)

r−1∂θw =
∑
m≥2

αmλj,mr
λj,m−1φj,m(θ)

and consequently, according to the bounds for αm in Theorem 3.0.32

∥∇w∥ ≤ Cωj

∑
m≥2

|αm|λj,mrλj,m−1/ρλj,m

for a constant Cωj
depending only by ωj. Then it is square integrable in Dρ′

for ρ′ < ρ. Summing up, this shows

v(r eiθ)−
∑

0<λj,m<1

βmσj,m ∈ H1(Dρ) ,

at each corner. To make the notation consistent, at this stage, we must
reintroduce the subscript j everywhere. Thus there exists numbers βj,m such
that

v −
∑

0<λj,m<1

βmσj,m

is of class H1 near Sj.
By Lemma 3.0.31 it follows that globally holds

w = v −
∑
j

∑
0<λj,m<1

βmσj,m ∈ H1(Ω), .

We shall conclude the proof by showing that w vanishes. Indeed we already
know that w ∈ N ∩H1(Ω).
Theorem 3.0.24 shows that

a(w, v) = 0 ,

for ever v ∈ V (Ω) hence w ≡ 0. This shows that

v =
∑
j

∑
0<λj,m<1

βmσj,m ∈ H1(Ω), .

In other words v is a linear combination of the σj,m with 0 < λj,m < 1 and
these functions are linearly independent.
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Denoting as before by dj the contribute of vertex Sj to the dimension
of N , by Theorem 3.0.34, and looking for the solutions of equations (3.19),
(3.20), (3.21), one has that with Robin boundary conditions it is possible to
have results of the same kind of the ones obtained in Chapter 2 regarding
j ∈ M . However, by a simple graphical analysis the of equation (3.19),
it is possible to find also different behaviors. For example taking αj = ωj,
αj+1 = αϵ, αϵ ↓ 0 as ϵ ↓ 0, one has the following

Lemma 3.0.35. For any ϵ > 0, for any ωj < ϵ it is possible to choose αj
and αj+1 in such a way that dj = 1 .

Moreover, taking αj = θ0 where θ0 = 4.494309... is the first positive
solution of the equation tan θ = θ, and αj+1 = αϵ as before, one gets the
following result

Lemma 3.0.36. For any xπ < ωj < (3/2)π, x ≃ 1.43, it is possible to
choose αj and αj+1 in such a way that dj = 2 .

As expected when αj , αj+1 go to infinity (respectively to zero) the case
j ∈ R2 converges to the case j ∈ N 2, (respectively to j ∈ D2) with the first
solution disappearing to zero and the second going to π/ω. Similarly in the
case j ∈ R2 with coefficients αj , αj+1 such that αjαj+1 = 1, if one coefficient
goes to zero and the other one to infinity, then the case j ∈ R2 converges to
the case j ∈ M , with the two solutions λk that converge to (1/2+ k)π/ω for
k = 0, 1.
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Chapter 4

Self-adjoint Extensions for
Symmetric Laplacians with
Mixed Robin Boundary
Conditions

It this chapter we extend the results given in chapter 2 to the case of mixed
Robin boundary conditions.

First of all, denoting by I ′ ⊂ I the linear set of u ∈ L2(Ω) satisfying
the orthogonally conditions of Lemma 3.0.29, we can immediately generalize
Theorem 2.0.13:

Theorem 4.0.37.

K (△◦∗
Ω ) = K (△max

Ω ) ∩ K ∩ I ′ ,

where

K := {u ∈ D(△max
Ω ) : γ̂0ju+ αj γ̂

1
ju = γ̂0ku = γ̂1hu , k ∈ D , h ∈ R , j ∈ N } .

Proof. The proof of this theorem follows by Theorem 2.0.13 in the case j ̸∈ R
and by Lemma 3.0.29 and Theorem 3.0.30 in the remanent cases.

As a direct consequence of Poincaré inequality (see Theorem 1.1.6) and
the continuity results on trace operators given in chapter 1, V (Ω) is a Hilbert
space for the scalar product inducted by the bilinear form

F (u, v) :=

∫
Ω

∇u · ∇vdx +
∑
j∈R

1

αj

∫
Γj

γ0juγ
0
j v dσ . , u v ∈ V (Ω) .
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This allow us to apply the Lax-Milgram Theorem and conclude1 that exists
an unique self-adjoint operator defined as

△F
Ω : D(△F

Ω) ⊆ V (Ω) ⊂ L2(Ω) → L2(Ω) ,

such that

F (u, v) = ⟨−∆F
Ωu, v⟩L2(Ω) , ∀u ∈ D(∆F

Ω) , v ∈ V (Ω) .

On the other hand if we consider W 2(Ω) defined in (2.3), by the estimate

∀u ∈ W 2(Ω) , ∥u∥H2(Ω) ≤ cΩ∥△u∥L2(Ω) ,

provided in Theorem 2.0.8, there follows by the Green’s Formula, that

△◦
Ω : W 2(Ω) ⊂ L2(Ω) → L2(Ω) , △◦

Ωu := △u ,

is a closed symmetric operator. Similarly to the discussion made in Chapter 2
we investigate about the difference between △◦

Ω and the Friedrichs extension
∆F

Ω. In particular we will show as the Robin vertices give a contribute to the
kernel of (△◦

Ω)
∗.

We denote by M ′
1 the set of indices j ∈ R such that the contribution of Sj

to the dimension of N is either one or two and by M ′
2 the ones which give

contribution two. Then we pose

M̃1 := M1 ∪ M ′
1 , M̃2 := M2 ∪ M ′

2 ,

ñ1 := #M̃1 , ñ2 := #M̃2 .

Then one has the generalization of Theorem 2.0.14 given by

Theorem 4.0.38.
dimK ((△◦

Ω)
∗) = ñ1 + ñ2 .

Now on any diskDk centered at Sk we introduce the functions u
∓
jm defined

as
u±j,m(r, θ) := Cjmr

±λjm φj,m(θ) , j ∈ R ,

with Cjm a normalization constant such that

C2
j,m

∫ ωjλj,m

0

| sin(θ) − αjλj,m cos(θ)|2dθ = 1/2 , (4.1)

where φj,m is defined for j ∈ R accordingly to the results found in Chapter
3. In particular one has m = 1 if 0 < λj,1 < 1 ≤ λj,2, whereas m = 1, 2 if
0 < λj,1 < λj,2 < 1. Then one has the exact analogue of Lemma 2.0.15:

1See e.g. [2], Chapter IV, Section 1.
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Lemma 4.0.39. Let us define

s0km := χku
+
km , skm := χku

−
km , σkm := skm − (△F

Ω)
−1△Ωskm .

Then 1)
s0km ∈ D(△F

Ω) , skm ∈ D(△max
Ω ) ;

2) σkm is the unique (up to multiplication by constant) function in K (△◦∗
Ω )

such that
σkm − skm ∈ D(△F

Ω) ;

3) the σkm’s are linearly independent;
4)

⟨σhj ,−△F
Ωs

0
km⟩L2(Ω) = δkhδmj .

5) The △F
Ωs

0
km’s are orthogonal and thus linearly independent.

Proof. The proof are similar to the ones given for Lemma 2.0.15. The only
prove point 4 in the case k ∈ R: Let us start with the case of pure Robin
corner in which k ∈ R2. First of all we can assume the case in which the
corner contribute is equal to 1. Then posing W 2

k :=WR2 \WR1 one has

⟨σkm ,△F
Ωs

0
km⟩L2(Ω) = ⟨σk ,△F

Ωs
0
k⟩L2(Ω)

= ⟨χku−k ,△
F
Ωχku

+
k ⟩L2(Wk) − ⟨△Ωχku

−
k , χku

+
k ⟩L2(Wk)

=

∫
Wk

χku
−
k

[
χ′′
ku

+
k +

(
1 + 2λk

)
1

r
χ′
ku

+
k

]
dx

−
∫
Wk

χku
+
k

(
χ′′
ku

−
k +

(
1− 2λk

)
1

r
χ′
ku

−
k

)
dx

= 2λkC
2
k

∫ R2

R1

2χ′
kχk dr

∫ ωk

0

φ2
kθdθ

= −2λkC
2
k

∫ ωk

0

| sin(λkθ) − αkλk cos(λkθ)|2dθ = −1 .

It remains to show the L2(Ω)-orthogonality between σkm and △F
Ωs

0
kj in the

same Robin corner. So assuming m ̸= j we can suppose without loos of
generality m = 1 and j = 2. Then

⟨σkm ,△F
Ωs

0
km⟩L2(Ω) = ⟨σk ,△F

Ωs
0
k⟩L2(Ω) = 0
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by orthogonality of the φkm’s.
Let us consider the mixed-corner j ∈ (R,D). We will first study the case
j = m and without loss of generality we can omit this index assuming that
is equal to 1. Consequently we have

⟨σk ,△F
Ωs

0
k⟩L2(Ω)

= ⟨χku−k ,△
F
Ωχku

+
k ⟩L2(Wk) − ⟨△Ωχku

−
k , χku

+
k ⟩L2(Wk)

= 2C2
kλk

∫ R2

R1

2χ′
kχk dr

∫ ωk

0

sin2(λkθ) dθ = −1

Now, assuming m ̸= j, again we can suppose m = 1 and j = 2, then

⟨σk1 ,△F
Ωs

0
k2⟩L2(Ω) = 0

by orthogonality of the φkm’s. Finally we can conclude noticing that the same
argumentation holds for cases of Robin-Neumann mixed conditions and for
j ∈ (D ,R).

All the results provided in Chapter 2 following Lemma 2.0.15 can be
extended to the Robin case. The statements and the relative proofs remain
the same: it suffices to replace n1, n2 with ñ1, ñ2 and M1, M2 with M̃1, M̃2.

In conclusion, by the results contained in Section 1.2, one gets the follow-
ing

Theorem 4.0.40. Any self-adjoint extension of ∆◦
Ω is of the kind

∆Π,Θ
Ω : D(∆Π,Θ

Ω ) ⊂ L2(Ω) → L2(Ω) , ∆Π,Θ
Ω u := ∆Ωu ,

D(∆Π,Θ
Ω ) := {u ∈ D((∆◦

Ω)
∗) : ξu ∈ Cñ1+ñ2

Π , Πζu = Θξu} ,
where (Π,Θ) ∈ E(Cñ1+ñ2). Moreover

(−∆Π,Θ
Ω + z)−1 = (−∆F

Ω + z)−1 +GzΠ(Θ + ΠΓzΠ)
−1ΠG∗

z̄ .

The quadratic form corresponding to −∆Π,Θ
Ω is given by

FΠ,Θ
Ω : D(FΠ,Θ

Ω )× D(FΠ,Θ
Ω ) ⊂ L2(Ω)× L2(Ω) → R ,

FΠ,Θ
Ω (u, v) = ⟨∇u0,∇v0⟩L2(Ω) +

∑
k∈R

1

αk
⟨γ0ku0, γ0kv0⟩L2(Γk) + fΘ(ξu, ξv) ,

D(FΠ,Θ
Ω ) = {u ∈ L2(Ω) : u = u0 +

∑
k∈M̃1

ξuk σk1 +
∑
k∈M̃2

ξ̃uk σk2 ,

u0 ∈ V (Ω) , ξu ∈ Cñ1+ñ2
Π } ,

where fΘ is the quadratic form corresponding to Θ.
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Chapter 5

Examples

In this last chapter we give some simple examples in the case where Ω is the
wedge

W = {(r, θ) : 0 < r < 1 , 0 < θ < π/β} , β > 1/2 .

5.1 Case 1: Dirichlet boundary conditions

Let us consider the case of a non-convex wedge, i.e. we take β < 1, and
let ∆◦

W be the restriction of ∆ to H2(W) ∩ H1
0 (W). By the results given

in Chapter 2 we know that the kernel of (∆◦
W)∗ is one dimensional and is

generated by σ, the unique (up to the multiplication by a constant) square
integrable solution of the boundary value problem

∆σ(r, θ) = 0 , (r, θ) ∈ W ,

σ(r, 0) = 0 , 0 < r < 1 ,

σ(r, π/β) = 0 , 0 < r < 1 ,

σ(1, θ) = 0 , 0 < θ < π/β .

Thus

σ(r, θ) =
1√
π

(
1

rβ
− rβ

)
sin β θ .

Analogously we define σz by solving the boundary value problem
∆σ(r, θ) = zσ(r, θ) , (r, θ) ∈ W ,

σ(r, 0) = 0 , 0 < r < 1 ,

σ(r, π/β) = 0 , 0 < r < 1 ,

σ(1, θ) = 0 , 0 < θ < π/β .
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Thus

σz(r, θ)

=
1√
π

(√
z

2

)β
Γ (1− β)

(
J−β(

√
z r)− J−β(

√
z )

Jβ(
√
z)

Jβ(
√
z r)

)
sin β θ ,

where Jν denotes the Bessel function of order ν and Γ denotes Euler’s gamma
function. Here the constants are chosen in order to have σz → σ as z → 0.
Notice that σz is single-valued. Indeed, by

Jν(z) =
(z
2

)ν J̃ν(z2)
νΓ(ν)

, J̃ν(z) := 1 +
∞∑
k=1

(−1)k

k!(k + ν)!

(z
4

)k
(here (k + ν)! := (1 + ν) · · · (k + ν)), one has

σz(x) =
1√
π

(
J̃−β(zr

2)
1

rβ
− J̃−β(z)

J̃β(z)
J̃β(zr

2) rβ

)
sin β θ .

Therefore

z⟨σ, σz⟩L2(W) = 1 +

(√
z

2

)2β
Γ(−β)
Γ(β)

J−β(
√
z)

Jβ(
√
z)

= 1−Qβ(z) ,

where we posed

Qβ(z) :=
J̃−β(z)

J̃β(z)
.

Thus for any real α one can define a self-adjoint extension ∆α
W of ∆◦

W with
resolvent kernel

Rα
z (r, θ; r

′, θ′) = RD
z (r, θ; r

′, θ′) + (α−Qβ(z))
−1 σz(r, θ)σz(r

′, θ′) ,

where

RD
z (r, θ; r

′, θ′) =
∑
m,n≥1

ψm,n(r, θ)ψm,n(r
′, θ′)

λ2m,nβ − z

is the resolvent of the self-adjoint Dirichlet Laplacian ∆D
Ω ,

ψm,n(r, θ) = 2

√
β

π

Jnβ(λm,nβr)

Jnβ+1(λm,nβ)
sinnβθ

are the normalized eigenfunctions of ∆D
Ω and λm,nβ denotes the m-th positive

zero of Jnβ.

50



5.2 Case 2: mixed Dirichlet-Neumann bound-

ary conditions

Here we consider a non-convex wedge with β < 2/3. Let ∆◦
W be the restriction

on ∆ to {u ∈ H2(W) : ∂θu(r, 0) = u(r, π/β) = u(1, θ) = 0}. By the
results in Chapter 2 we know that in this case the kernel of (∆◦

W)∗ is two
dimensional and is generated by σk, k = 1, 2, the two linearly independent
square integrable solutions of the boundary value problem

∆σk(r, θ) = 0 , (r, θ) ∈ W ,

∂θσk(r, 0) = 0 , 0 < r < 1 ,

σk(r, π/β) = 0 , 0 < r < 1 ,

σk(1, θ) = 0 , 0 < θ < π/β .

Thus, posing βk = (k − 1/2)β,

σk(r, θ) = Ckm
1

(
1

rβk
− rβk

)
sin((k − 1/2)(π − βθ)) ,

Analogously we define σk,z, k = 1, 2, as the two linearly independent solutions
of the boundary value problem

∆σk,z(r, θ) = z∆σk,z(r, θ) , (r, θ) ∈ W ,

∂θσk,z(r, 0) = 0 , 0 < r < 1 ,

σk,z(r, π/β) = 0 , 0 < r < 1 ,

σk,z(1, θ) = 0 , 0 < θ < π/β .

Thus

σk,z(r, θ)

=Ckm

(√
z

2

)βk
Γ (1− βk)

(
J−βk(

√
z r)− J−βk(

√
z )

Jβk(
√
z)

Jβk(
√
z r)

)
φk(θ)

≡Ckm

(
J̃−βk(zr

2)
1

rβk
− J̃−βk(z)

J̃βk(z)
J̃βk(zr

2) rβk

)
φk(θ) . ,

with
φk(θ) = sin((k − 1/2)(π − βθ)) .

1The constants Ckm are defined in equation (2.9)
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Then for h, k = 1, 2 one has, since the φk’s are orthogonal,

z⟨σh, σk,z⟩L2(W) = δhk(1−Qβk(z)) .

Thus for any 2× 2 Hermitean matrix Θ ≡ {Θkh}2h,k=1 posing

MΘ(z) ≡ {MΘ
h,k(z)}2h,k=1 , MΘ

h,k(z) := Θkh + δhkQβk(z)

one can define a self-adjoint extension ∆Θ
W of ∆◦

W with resolvent kernel

RΘ
z (r, θ; r

′, θ′) = RN,D
z (r, θ; r′, θ′) +

∑
h,k

[MΘ(z)]−1
hk σh,z(r, θ)σk,z(r

′, θ′) ,

where

RN,D
z (r, θ; r′, θ′) =

∑
m,n≥1

ψm,n(r, θ)ψm,n(r
′, θ′)

λ2m,nβ/2 − z

is the resolvent of the self-adjoint Laplacian with mixed Dirichlet-Neumann
boundary conditions ∆N,D

W and

ψm,n(r, θ) = 2

√
β

π

Jnβ/2(λm,nβ/2r)

Jnβ/2+1(λm,nβ/2)
φk(nθ) ,

are the normalized eigenfunctions of ∆N,D
W .

5.3 Case 3: Robin boundary conditions

We consider here the case of pure Robin boundary conditions at the vertex,
so we let ∆◦

W be the restriction on ∆ to {u ∈ H2(W) : u(r, 0)+α1∂θu(r, 0) =
u(r, π/2) − α2∂θ(r, π/2) = u(1, θ) = 0}. To simplify the expositions we
suppose that 0 < αk ≤ π/2, k = 1, 2 2. By the results in Chapter 3 we know
that in this case the dimension of the kernel of (∆◦

W)∗ is given by the number
of solutions 0 < λ < 1 of the equation

tan(πλ/β) =
(α1 + α2)λ

1− α1α2λ2
(5.1)

In order to present an example describing a situation not covered by the
mixed Dirichlet-Neumann case, we take the convex right-angled wedge with
β = 2. Thus in the Dirichlet-Neumann case K ((∆◦

W)∗) should be zero-
dimensional and ∆◦

W should be self-adjoint.

2This hypothesis avoids eventual contributions given by the two (right-angled) corners
not at the origin
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By a trivial graphical analysis one can check that equation (5.1) has a
solution 0 < β′ < 1 for any α1 > 0, α2 > 0 such that

α1α2 < 1 , α1 + α2 >
π

2
.

Then the kernel of (∆◦
W)∗ is generated by the unique (up to the multiplication

by a constant) square integrable solution of the boundary value problem
∆σ(r, θ) = 0 , (r, θ) ∈ W ,

σ(r, 0) + α1∂θσ(r, 0) = 0 , 0 < r < 1 ,

σ(r, π/2)− α2∂θσ(r, π/2) = 0 , 0 < r < 1 ,

σ(1, θ) = 0 , 0 < θ < π/2 .

given by

σ(r, θ) = Ck1
3

(
1

rβ′ − rβ
′
)
φ′(θ) ,

where
φ′(θ) = sin(β′θ) − α1β

′ cos(β′θ) .

Denoting by σz the square integrable solution of the boundary value problem
∆σ(r, θ) = z σ(r, θ) , (r, θ) ∈ W ,

σ(r, 0) + α1∂θσ(r, 0) = 0 , 0 < r < 1 ,

σ(r, π/2)− α2∂θσ(r, π/2) = 0 , 0 < r < 1 ,

σ(1, θ) = 0 , 0 < θ < π/2 .

one has

σz(r, θ)

=Ck1

(√
z

2

)β′

Γ (1− β′)

(
J−β′(

√
z r)− J−β′(

√
z )

Jβ′(
√
z)

Jβ′(
√
z r)

)
φ′(θ)

=Ck1

(
J̃−β′(zr2)

1

rβ′ −
J̃−β′(z)

J̃β′(z)
J̃β′(zr2) rβ

′

)
φ′(θ) .

Then

z⟨σ, σz⟩L2(W) = 1−Qβ′(z) .

3The constants Ck1 are defined in equation (4.1)
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and for any real α one can define a self-adjoint extension ∆α
W of ∆◦

W with
resolvent kernel

Rα
z (r, θ; r

′, θ′) = RR
z (r, θ; r

′, θ′) + (α−Qβ′)−1σz(r, θ)σz(r
′, θ′) ,

where RR
z is the resolvent of the self-adjoint Laplacian ∆R

Ω with Robin bound-
ary conditions at the vertex.
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