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SUMMARY 

Under the European REACH regulation (Registration, Evaluation, Authorisation and Restriction of 

Chemical substances - (EC) No 1907/2006), there is an urgent need to acquire a large amount of 

information necessary to assess and manage the potential risk of thousands of industrial chemicals. 

Meanwhile, REACH aims at reducing animal testing by promoting the intelligent and integrated use 

of alternative methods, such as in vitro testing and in silico techniques. Among these methods, 

models based on quantitative structure-activity relationships (QSAR) are useful tools to fill data gaps 

and to support the hazard and risk assessment of chemicals.  

The present thesis was performed in the context of the CADASTER Project (CAse studies on the 

Development and Application of in-Silico Techniques for Environmental hazard and Risk assessment), 

which aims to integrate in-silico models (e.g. QSARs) in risk assessment procedures, by showing how 

to increase the use of non-testing information for regulatory decision-making under REACH. The aim 

of this thesis was the development of QSAR/QSPR models for the characterization of the (eco-

)toxicological profile and environmental behaviour of chemical substances of emerging concern. The 

attention was focused on four classes of compounds studied within the CADASTER project, i.e. 

brominated flame retardants (BFRs), fragrances, prefluorinated compounds (PFCs) and (benzo)-

triazoles (B-TAZs), for which limited amount of experimental data is currently available, especially for 

the basic endpoints required in regulation for the hazard and risk assessment. 

Through several case-studies, the present thesis showed how QSAR models can be applied for the 

optimization of experimental testing as well as to provide useful information for the safety 

assessment of chemicals and support decision-making.  

In the first case-study, simple multiple linear regression (MLR) and classification models were 

developed ad hoc for BFRs and PFCs to predict specific endpoints related to endocrine disrupting 

(ED) potential (e.g. dioxin-like activity, estrogenic and androgenic receptor binding, interference with 

thyroxin transport and estradiol metabolism). The analysis of modelling molecular descriptors 

allowed to highlight some structural features and important structural alerts responsible for 

increasing specific ED activities. The developed models were applied to screen over 200 BFRs and 33 

PFCs without experimental data, and to prioritize the most hazardous chemicals (on the basis of ED 

potency profile), which have been then suggested to other CADASTER partners in order to focus the 

experimental testing.   

In the second case-study, MLR models have been developed, specifically for B-TAZs, for the 

prediction of three key endpoints required in regulation to assess aquatic toxicity, i.e. acute toxicity 

in algae (EC50 72h Pseudokirchneriella subcapitata), daphnids (EC50 48h Daphnia magna) and fish 

(LC50 96h Onchorynchus mykiss). Also in this case, the developed QSARs were applied for screening 

purposes. Among over 350 B-TAZs lacking experimental data, 20 compounds, which were predicted 
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as toxic (EC(LC)50 ≤ 10 mg/L) or very toxic (EC(LC)50 ≤ 1 mg/L) to the three aquatic species, were 

prioritized for further experimental testing.  

Finally, in the third case-study, classification QSPR models were developed for the prediction of ready 

biodegradability of fragrance materials. Ready biodegradation is among the basic endpoints required 

for the assessment of environmental persistence of chemicals. When compared with some existing 

models commonly used for predicting biodegradation, the here proposed QSPRs showed higher 

classification accuracy toward fragrance materials. This comparison highlighted the importance of 

using local models when dealing with specific classes of chemicals. 

All the proposed QSARs have been developed on the basis of the OECD principles for QSAR 

acceptability for regulatory purposes, paying particular attention to the external validation procedure 

and to the statistical definition of the applicability domain of the models. QSAR models based on 

molecular descriptors generated by both commercial (DRAGON) and freely-available (PaDEL-

Descriptor, QSPR-Thesaurus) software have been proposed. The use of free tool allows for a wider 

applicability of the here proposed QSAR models.  

Concluding, the QSAR models developed within this thesis are useful tools to support hazard and risk 

assessment of specific classes of emerging pollutants, and show how non-testing information can be 

used for regulatory decisions, thus minimizing costs, time and saving animal lives.  

Beyond their use for regulatory purposes, the here proposed QSARs can find application in the 

rational design of new safer compounds that are potentially less hazardous for human health and 

environment.  
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1.1. Background 

1.1.1. Emerging pollutants 

Defining the ever-expanding universe of chemicals that surrounds, sustains and constitutes our life is 

extremely complex. Industrial and technological development of the modern society has inevitably 

increased the amount of chemicals produced and released into the environment. As a consequence of 

this, living systems have been continuously exposed to multitudes of chemicals with potential serious 

adverse effects over the years. Great efforts have been made by the scientific community and regulators 

in order to understand, prevent, control and mitigate the environmental pollution by chemicals, but this 

is still an open issue. 

Until now, over 70 million organic and inorganic substances have been indexed in the Chemical Abstract 

Service register (C.A.S.) by the American Chemical Society
1
, and this number increases on a daily basis. In 

contrast, less than 300,000 substances have been inventoried or regulated by government bodies 

worldwide
2
, and for these chemicals, very limited information is currently available on intrinsic 

properties, environmental behaviour and health effects. 

Since the 1970s, the attention of authorities and scientific research has mainly been focused on 

“conventional” pollutants, such as pesticides, HPVCs (High Production Volume Chemicals) and POPs 

(Persistent Organic Pollutants), and many of them are already regulated or inserted in priority lists (e.g., 

Stockholm Convention on Persistent Organic Pollutants
3
). However these chemicals represent just a 

small piece of the universe of existing chemicals that have the potential to cause adverse effects to the 

exposed organisms. In the last decades, concerns raised over new groups of substances, referred to as 

“emerging pollutants”, whose presence in environment and/or adverse effects had not been detected 

before, or simply were not investigated since they were assumed to be innocuous. The term “emerging” 

refers to i) chemicals which have been newly introduced on the market and therefore in the 

environment, ii) substances that have been present in the environment for a long time but whose 

presence and effects are currently being elucidated, iii) chemicals naturally present in the environment 

but whose adverse effects to human health and the environment were not known in the past (e.g. 

natural hormones, phytoestrogens and algal toxins), and iv) a new concern raised for an old pollutant 

related to new aspects of their occurrence, fate and effects (e.g. the production of acrylamide during the 

cooking of many starchy foods) (Daughton, 2005). Examples of emerging pollutants are pharmaceuticals 

                                                 
1
 http://www.cas.org/content/chemical-substances (Accessed 12 December 2012) 

2
 http://www.cas.org/content/regulated-chemicals (Accessed 12 December 2012) 

3
 http://chm.pops.int/Convention/tabid/54/Default.aspx (Accessed 12 December 2012) 
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and personal care products (referred to as PPCPs), industrial and household chemicals (e.g. brominated 

flame retardants and perfluorinated chemicals), and nanomaterials. These chemicals, assumed to be 

innocuous and widely used to improve our life styles, have been gradually and continuously introduced 

into the environment at low doses leading to a chronic exposure of living systems.  

Emerging pollutants may enter the environment in several ways, depending on their use pattern. 

Compounds like industrial by-products can be directly released in water bodies and air through the 

industrial discharges (either authorized or abusive). Industrial processes of synthesis or molecule’s 

destruction, such as incineration, are also responsible for the accidental formation of dangerous by-

products, e.g. polychloro- and polybromodibenzo dioxins and furans (PCDDs, PBDDs, PCDFs and PBDFs). 

Household products, pharmaceuticals and personal care products enter the environment indirectly, and 

continuously, through domestic discharges; in fact, many of these chemicals are not efficiently degraded 

in wastewater treatment plants (WWTPs) and may reach receiving water bodies and groundwater 

aquifers. The same may apply to drugs and diagnostic agents derived from treated/untreated hospital 

waste. Veterinary drugs, which are often added to animal feed, can be released to the environment with 

animal waste through land application (e.g., soil amendment/fertilization) or leakage from storage 

structures (Kolpin et al., 2002). 

Emerging pollutants are detected increasingly throughout the environment as well as in  every level of 

trophic chains (e.g. fish, amphibians, terrestrial animals and man). This is currently possible because of  

the improvement of the analytical techniques, which allow to sensibly reduce the detection limits (low-

nanogram and even picogram per liter) and which are now capable of detecting compounds (previously 

not possible) at very low concentrations (Richardson, 2007). 

A monitoring study by Kolpin and co-workers (Kolpin et al., 2002), in which water samples were collected 

from a network of 139 U.S. streams, demonstrated the presence of a wide variety of  organic wastewater 

contaminants (OWCs), including pharmaceuticals, hormones, steroids, insect repellents, detergent 

metabolites, disinfectants, plasticizers, flame retardants, antibiotics and fragrances (Figure 1.1).  
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Figure 1.1. Frequency of detection (A) and percentage of total measured concentration (B) of OWCs by general use 

category. Number of compounds in each category is shown above the bars (Figure from Kolpin et al., 2002). 

 

This study by Kolpin is just an example of the large amount of literature reporting the ubiquitary 

presence of emerging pollutants in water bodies all around the world (e.g., Hirsch et al., 1999; Weigel et 

al., 2002; Carballa et al., 2004; Le and Munekage, 2004), and highlights the problem of the 

ineffectiveness of wastewater treatment plants to remove certain of these contaminants before 

discharge into receiving waters. Despite that the detected concentrations (usually in the order of ng-

µg/L) are often below the threshold limits defined in regulation or in water quality criteria (e.g., Directive 

67/548/EEC, Water Framework Directive
4
) for acute toxicity, the continuous exposure of aquatic species 

to emerging pollutants raised concerns on potential long-term and mixtures effects (Wollenberger et al., 

2000).  

Emerging pollutants represent a matter of concern also for the terrestrial environment. A review by 

Thiele-Bruhn (2003) exposed the problem of the presence of antibiotic compounds in soils, whose 

                                                 
4
 EU Water Framework Directice (WFD): Directive 2000/60/EC of the European Parliament and of the Council 

establishing a framework for the Community action in the field of water policy. 
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measured concentrations range from a few µg/kg up to g/kg, corresponding to those found for 

pesticides. The main problem posed by the presence of antibiotics in soil is the high biologic activity of 

these chemicals to the soil fauna, especially on soil microorganisms. Effects related to dose and 

persistence may change the composition of the microbial community and cause  resistance phenomena 

in soil microorganisms.  

The ubiquitary presence of emerging pollutants throughout the environment raised questions, which 

have not been solved yet, about i) the effects that these chemicals may have on humans, wildlife and 

ecosystems, ii) the ability to understand their environmental fate and behaviour (which require the 

characterization of physico-chemical and degradation properties, and metabolism), and iii) the adequacy 

of regulatory measures currently used  to handle  their introduction into the environment.  

1.1.2. Chemical Risk Assessment 

A central theme in the control of chemicals consists of the Chemical Risk Assessment (CRA), which is a 

systematic procedure finalized at characterizing the risk derived by the exposure of humans (human 

health risk assessment, HRA) and the environment (environmental risk assessment, ERA) to chemical 

substances. Risk assessment provides information based on the analysis of scientific data which describe 

the likelihood of harm to humans or the environment. CRA consists of four main steps, which include: 

(1) hazard identification, i.e. the identification of the adverse effects that a substance is inherently able 

to cause. This first step involves gathering and evaluating data on the health effects (to humans and 

wildlife) that may be produced by the exposure to a chemical, as well as the characterization of the 

behaviour of a chemical within the body and in the environment.  

(2) exposure assessment, i.e. the estimation of the concentrations/doses of a chemical to which human 

populations or environmental compartments are or may be exposed. Exposure can be assessed by 

measuring exposure concentrations or by applying multimedia exposure models, which estimate the 

emissions, pathways and rates of movement of a substance and its transformation or degradation. When 

performing ERA, the output of this step consists in the estimation of a predicted environmental 

concentration (PEC) for single environmental compartments. 

(3) effect assessment, i.e. the estimation of the relationship between dose or level of exposure to a 

substance, and the incidence and severity of an effect (dose-response assessment). Data can be obtained 

from experimental plant and animal laboratory studies (i.e. in-vivo tests on standard species, preferably 

performed according to standardised guidelines), from field and epidemiologic studies, but also from 

alternative methodologies, including in-vitro testing and in-silico estimations such as quantitative 
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structure-activity relationships (QSARs) and read-across. The output of this step is the identification of a 

safe level under which adverse effects are not expected to occur. Considering the uncertainty derived by 

the extrapolation from model systems to humans or ecosystems (inter- and intra-species extrapolation), 

for most chemicals data generated from dose-response curves (e.g. EC50, LC50, LD50, etc…) are converted 

into predicted no effect concentrations/levels (PNECs, PNELs) by applying specific assessment factors. 

Assessment factors are numbers, usually in the range of 10-10000, which reflect  the estimated degree 

of uncertainty in the available data. 

(4) risk characterization, i.e. the estimation of the likelihood of the adverse effects to occur in a human 

population or environmental compartment due to actual or predicted exposure to a substance. In ERA, a 

quantitative estimation of the risk is commonly expressed as PEC/PNEC ratios (i.e., risk quotients). The 

likelihood of adverse effects increases as the exposure/effect level ratios increase (van Leeuwen and 

Vermeire, 2007). 

In the complex framework of chemical control and decision-making, risk assessment (RA), which is 

mainly a scientific task, is followed by the risk management (RM) process. Risk management is mainly a 

political process, which integrate information from RA with legal, political, socio-economic, ethical and 

technical considerations to develop, analyse and compare regulatory options and select the appropriate 

regulatory response to a potential health or environmental hazard (van Leeuwen and Vermeire, 2007). 

Figure 1.2 summarizes the main steps involved in the RA and RM procedures. 



Chapter 1                                                                                                                                                    Introduction 

 6 

 

Figure 1.2. Main steps involved in risk assessment (RA) and risk management (RM) processes. 

 

1.1.3. European regulation for chemical assessment 

The European legislative framework in the context of chemical control and risk management evolved in 

the last decades. In the late 1960s, the increased environmental awareness highlighted the need to 

establish legally binding actions for the control of chemicals. The first legislative instrument adopted by 

the European Commission was the 1967 Council Directive on the classification, packaging and labelling of 

Dangerous Substances (Directive 67/548/EEC), which focused on harmonizing trade of industrial 

chemicals and protecting workers and consumers from exposure. In 1979, an important amendment to 

the Directive 67/548/EEC established a distinction between “new” chemicals (introduced onto the 

market after 1981) and “existing” chemicals (placed on the marked before 1981). While new substances 

had to be tested and assessed for their risks before they were placed on the market, existing chemicals, 

which counted more than 100,000 substances and over 99% of commercial chemicals in terms of 

tonnage, were not subject to the same requirements (Orellana, 2006), thus preventing a complete 

assessment of these chemicals.  
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In subsequent years EU legislation introduced separate legislations, which are dealing with water and air 

pollution,  and are primarily aimed at the protection of human health. Separate legislations were also 

developed for specific categories of substances, e.g. plant protection products (Directive 91/414/EEC), 

biocides (Directive 98/8/EC), veterinary and human drugs (Directive 2004/28/EC and Directive 

2004/27/EC, respectively), and cosmetics (Directive 2003/15/EC).  

Two main conceptual shifts characterize the evolution of the European chemical legislation. First, the 

initial focus on the hazards of chemicals moved to the assessment of risks, thus promoting the 

development of exposure assessment methodologies and risk assessment models. Secondly, it was 

gradually recognized that legislation should not only protect human health but also seek to protect the 

environment, taking into account the entire life cycle of a chemical (van Leeuwen and Vermeire, 2007). 

In the first years of 2000, it was recognized that the situation of the EU’s legal framework on chemicals 

consisted of a patchwork of Directives and Regulations, which demonstrated a scarce efficiency in the 

assessment and management of chemicals and that were inadequate to secure a healthy environment 

for present and future generations. In fact, in three decades the EU had managed to fully assess 

approximately 140 chemicals out of the 2750 HPVCs
5
, most of which (~85%) were lacking the basic 

information on physico-chemical properties, environmental fate and (eco-)toxicological effects.  

The urgent need for a comprehensive and effective regulatory system for the management and 

marketing of chemicals led to the development of a new legal framework, i.e. the REACH regulation (EC) 

No 1907/2006, which was proposed for the first time in 2001 by the EU Commission in the form of a 

White Paper, and entered into force on 1
st

 June 2007.  

The aim of REACH (Registration, Evaluation, Authorisation and Restriction of Chemical substances) is to 

ensure a high level of protection of human health and the environment and, at the same time, to 

enhance innovation and competitiveness of the EU chemicals industry. Additional important objectives 

of REACH are the reduction of animal-testing, by promoting the use of alternative methods (e.g. in vitro 

testing and in silico techniques), and the progressive substitution of the most dangerous chemicals when 

suitable alternatives have been identified. 

REACH introduces a single system for the regulation of both new and existing industrial chemicals, 

replacing about 40 existing EU Directives and Regulations. 

The REACH Regulation moves the burden of risk identification and management from national 

authorities to the industry. All companies manufacturing or importing chemicals into EU in quantities of 

one tonne or more per year are required to gather information on the properties of chemicals, in order 

                                                 
5
 HPVCs (High Production Volume Chemicals), chemicals produced or imported in the EU in quantities of 1000 

tonnes or more per year. 
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to ensure that they manufacture, place on the market or use substances that do not adversely affect 

human health or the environment. It is also mandatory for industries to register the information on 

chemicals in a central database that is managed by the newly established European Chemicals Agency 

(ECHA), placed in Helsinki, Finland.  

REACH Regulation applies to all substances, preparations and articles produced or imported in quantities 

equal or above one tonne per year, while it doesn’t include medicinal products for human or veterinary 

use, PPP (plant protection products) and biocides, cosmetic products, medical devices, food additives 

and feeding stuffs, non isolated intermediates, polymers and substances used for national defence. 

Special provisions have been approved for substances used in R&D (research and development). 

The central requirements of REACH are defined by its acronym, i.e. Registration, Evaluation, and 

Authorization of chemicals, which define the supporting pillars of the new approach to chemical safety 

assessment. More in detail, REACH requires: 

1) Registration: all the substances manufactured or imported in the EU in quantities above 1 tonne/year 

have to be registered by producers/importers to ECHA. The timing and amount of information required 

for registration depends partly on the volume produced/imported. For substances above one ton, a 

technical dossier (containing information on the properties, uses, classification, and guidance on safe 

use) must be submitted to the authorities. For substances above ten tons, a chemical safety assessment 

(“CSA”) is required (and properly documented in a Chemical Safety Report – CSR), which includes the 

hazard classification of a substance and the assessment as to whether the substance is persistent, 

bioaccumulative and toxic (“PBT”) or very persistent and very bioaccumulative (“vPvB”). Further, the CSR 

also describes exposure scenarios, including appropriate risk management measures, for all identified 

uses of dangerous, PBT, and vPvB substances. To reduce testing on vertebrate animals, data sharing is 

required for studies on such animals. New tests are only required when it is not possible to provide the 

information in any other permitted way, in order to minimize animal testing. In these situations, the 

manufacturer/importer would submit proposals for testing, which will be scrutinized by ECHA in the 

evaluation process before the tests are performed. According to the production/importation volumes 

and the potential hazard of chemicals (e.g. substances classified as carcinogenic, mutagenic and toxic to 

reproduction - CMRs), specific deadlines, between 2008 and 2018, have been fixed for the registration 

process. 

2) Evaluation: this process consists of an examination of the data contained in the registration dossiers 

provided by industry, which undergo a double evaluation: dossier evaluation and substance evaluation. 

The dossier evaluation includes a check of the compliance with the registration requirements (if not, 
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industry is asked to provide further information), and a check of testing proposals, in order to prevent 

unnecessary testing with vertebrate animals (e.g. repetition of existing tests and poor quality tests). The 

substance evaluation includes the investigation of chemicals with potential risks to human health or the 

environment in order to identify substances of higher concern.  

3) Authorization: an authorization is required for the use and marketing of “substances of very high 

concern” (SVHCs), which include substances classified as carcinogenic, mutagenic and toxic to 

reproduction (CMRs), PBT and vPvB substances, and substances of equivalent concern (e.g. endocrine 

disrupters). ECHA will grant an authorization for the use of such substances only if the industry 

demonstrates that either the risks associated to the use of the substance is adequately controlled, or 

that the socio-economic benefits outweigh the risks, taking into account alternative substitutes.  

4) Restriction: restrictions, e.g. prohibition or specific conditions for the manufacture, trade or use, can 

be applied for certain dangerous substances. This procedure provides a safety net to manage risks that 

have not been adequately addressed by another part of the REACH system. 

In addition to REACH, a new legislative tool for the classification, labelling and packaging of substances 

and mixtures, i.e. CLP Regulation (EC) No 1272/2008, was adopted by the EU and entered into force in 

January 2009. The CLP Regulation amends and replaces two previous directives related to the 

classification, packaging and labelling of dangerous substances (Directive 67/548/EEC) and preparations 

(Directive 1999/45/EC). With the purpose to facilitate worldwide trade and, at the same time, protect 

human health and the environment, the present Regulation incorporates and harmonises criteria for 

classification and labelling agreed at United Nations level, resulting in the Globally Harmonised System of 

Classification and Labelling of Chemicals (GHS). The GHS provides a harmonized system for globally 

uniform environmental, health and safety information on hazardous chemicals (substances and 

mixtures), aiming to protect workers, consumers and the environment by means of labelling which 

reflects possible hazardous effects of dangerous substances. Taking into account earlier EU legislations, 

the CLP Regulation introduces new classification criteria, hazard symbols (pictograms) and labelling 

phrases (risk and safety phrases, “R” and “S” respectively). The classification and labelling of chemicals is 

based on the intrinsic properties of chemicals. 

Under CLP Regulation, companies are required to classify, label and package their hazardous chemicals 

appropriately before placing them on the market.  

The implementation process of the new EU regulations requires that a large amount of data on the 

exposure and effects has to become available for thousands of chemicals, estimated to be around 30000, 



Chapter 1                                                                                                                                                    Introduction 

 10 

in a short period of time (11 years). It is evident that to reach this challenging objective, a change in mind 

set was needed among regulatory authorities, industry and other stakeholder in order to accelerate the 

risk assessment and management processes (Schaafsma et al., 2009). To meet these needs, intensive 

efforts have been made to elaborate Intelligent or Integrated Testing Strategies (ITS), which are aimed at 

speeding up RA and RM procedures through a reduction of animal testing and an optimized intelligent 

use of the available information. ITS are integrated approaches comprising both testing and non-testing 

methods, such as in vitro testing, computational methods (i.e., (Q)SARs and kinetic models), chemical 

categories and read-across, Exposure-Based Waiving (EBW)
6
, and optimized in vivo tests (Schaafsma et 

al., 2009). The combined use of these approaches allows to make the best use of the available 

information (on exposure and hazard) and to derive a Weight of Evidence (WoE) decision. In order to be 

effectively applied in regulation, results obtained from ITS approaches (as standalone methods or in 

combination) should be equivalent to those generated by standard testing and adequate to draw up an 

overall assessment, e.g. assessment of persistent, bioaccumulative and toxic chemicals (PBT 

assessment), or conclusions for classification and labelling (Ahlers et al., 2008). 

The next section is dedicated to one of the ITS approaches mentioned above, i.e. quantitative structure-

activity relationships (QSARs), to define its basic principles, regulatory requirements, and potential 

applications.    

 

 

 

                                                 
6
 Exposure-Based Waiving is based on the concept that toxicological testing is not necessary in case of “no 

relevant/significant”, “limited” or “negligible” exposure (Schaafsma et al., 2009). 
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1.2. Quantitative Structure-Activity Relationship (QSAR) 
 

The basic concept behind QSAR (Quantitative Structure-Activity Relationship) is to identify a quantitative 

relationship between the structure of a chemical and its biological activity, or, in case of QSPRs 

(Quantitative Structure-Property Relationship), a specific physico-chemical property.  

In the last decades, QSAR modelling has become an important tool in different fields, e.g. chemistry, 

biochemistry and toxicology, because of its useful applications in environmental toxicology and 

chemistry as well as in drug discovery. The fundamental role of QSAR in the control of chemicals has 

been recognized by chemical industry and regulators (within the EU and elsewhere), especially after the 

REACH Regulation entered into force, requiring a large amount of data for thousands of chemicals in a 

relatively short period of time. 

Current QSAR methodologies find their foundations in the pioneering works, in the mid-1960s, of Hansch 

and co-workers (Hansch C. et al., 1962; Hansch and Fujita, 1964), and Free and Wilson (Free and Wilson, 

1964). According to the Hansch approach, hydrophobic, electronic and steric properties of molecules are 

combined to derive the following QSAR equation:  

Biological Activity = a + b(logP) + c(E) + d(S) 

where the biological activity of a chemical is represented as a function of some physico-chemical and 

structural properties, which are responsible for the transport of the chemical into the cell and the 

binding to specific target. LogP (i.e. partition coefficient between n-octanol and water) is the term 

describing hydrophobicity, and represents the probability of a chemical to cross the cell membrane 

(driven by hydrophobic interactions) and reach the target site. The terms E and S encode for the 

electronic and steric properties of the chemical respectively, and represent the possibility of a chemical 

to interact with the target and be active. The toxicity of many chemicals has been modelled and 

predicted by equations of this kind. The limitation of the Hansch approach is that this equation is 

applicable only to chemicals “very similar” to, or congener with, those used to obtain the equation itself 

(i.e. “congenericity principle”).  

The Hansch method initiated the beginning of the modern QSAR, which has made important progresses 

in the last 50 years toward more complex modelling approaches, supported by  the continuous increase 

of the computing power and the introduction of several new methods (e.g. Partial Least Square 

Regression (PLS), Artificial Neural Networks (ANN), Bayesian approaches). An example is the 3D-QSAR 

analysis which starts from the 3D conformation of chemicals and correlates biological activities with 3D-

property fields. A step further is the integration of 3D modelling with molecular docking and molecular 
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dynamics (MD) simulations, which allows to take into account inter-molecular interactions (e.g. ligand-

receptor interactions) and to predict the behaviour of the whole complex. These approaches are widely 

applied for drug design. 

The implementation of the REACH Regulation explicitly asks for the use of alternative techniques to 

animal testing, including QSARs, to assist in the assessment of hazardous properties of a substance, and 

which can, in certain cases, replace results from animal testing. The need to guarantee the scientific 

validity of the QSAR estimations to be used for regulatory purposes and to promote the mutual 

acceptance of QSAR models, led to the development of a set of general and internationally recognized 

principles for QSAR validation. Several principles for assessing the validity of QSARs were first proposed 

in 2002 at an international workshop held in Setubal (Portugal), which are known as the “Setubal 

Principles” (Jaworska et al., 2003). These principles were then modified in 2004 by the OECD Work 

Programme on QSARs, and are now referred to as the OECD Principles for the validation of (Quantitative) 

Structure-Activity Relationship models, for regulatory purposes (OECD, 2004). The agreed principles 

provide member countries with a scientific basis for evaluating regulatory applicability of (Q)SAR 

models
7
. 

To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should fulfil the following 

requirements and have: 

1) a defined endpoint 

A (Q)SAR should be associated with a “defined endpoint”, where endpoint refers to any physicochemical, 

biological or environmental effect that can be measured and therefore modelled. The intent of this 

principle is to ensure transparency in the endpoint being predicted by a given model, since a given 

endpoint could be determined by different experimental protocols and under different experimental 

conditions. Ideally, (Q)SARs should be developed from homogeneous datasets in which the experimental 

data have been generated by a single protocol. However, this is rarely feasible in practice, and data 

produced by different protocols are often combined. 

2) an unambiguous algorithm 

The intent of this principle is to ensure transparency in the model algorithm that generates predictions 

of an endpoint from information on chemical structure and/or physicochemical properties. Therefore a 

clear description of the dataset, molecular descriptors generation, modelling procedure and statistical 

                                                 
7
 This notation refers both to quantitative (QSAR) and qualitative (SAR) structure-activity relationship models. 
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methods and parameters used for validation is required. This principle also includes the need for 

reproducible predictions.  

3) a defined domain of applicability 

A (Q)SAR should be associated with a defined domain of applicability (AD), in which the model makes 

estimates with a defined level of accuracy (reliability). When applied to chemicals within its applicability 

domain, the model is considered to give reliable results. There aren’t unique measures to define a 

model's AD or unique criteria to asses model reliability. Model reliability should be regarded as a relative 

concept, depending on the context in which the model is applied. 

4) appropriate measures of goodness-of-fit, robustness and predictivity 

This principle expresses the need to provide two types of information: a) the internal performance of a 

model (as represented by goodness-of-fit and robustness), which is determined by using a training set; 

and b) the predictivity of a model, determined by using an appropriate test set. It is important to note 

that there is no absolute measure of predictivity that is suitable for all purposes, since predictivity can 

vary according to the statistical methods and parameters used in the assessment.  

5) a mechanistic interpretation, if possible 

A (Q)SAR should be associated with a “mechanistic interpretation”, wherever such an interpretation can 

be made. Clearly, it is not always possible to provide a mechanistic interpretation of a given (Q)SAR. The 

intent of this principle is therefore to ensure that there is an assessment of the mechanistic associations 

between the descriptors used in a model and the endpoint being predicted, and that any association is 

documented (OECD, 2007). 

OECD principles constitute a conceptual framework to guide the development and validation of (Q)SARs, 

and represent a reference for the assessment of the scientific validity of the (Q)SAR models as well as of 

the reliability of QSAR predictions (Principle 3).  

According to REACH, in order to consider a QSAR prediction for a given regulatory purpose, the adequacy 

of the QSAR result should be demonstrated, which means: 

i. the estimate should be generated by a valid model, 

ii. the model should be applicable to the chemical of interest with the necessary level of reliability, and 

iii. the model endpoint should be relevant for the regulatory purpose (ECHA, 2008). 

These conditions are illustrated in Figure 1.3.  
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Figure 1.3. Interrelated concepts for considering a (Q)SAR prediction adequate for regulatory purposes within 

REACH (Figure from ECHA, 2008a).  

 

Complete information regarding the scientific validity of QSAR models and adequacy of the generated 

predictions can be documented by using the appropriate QSAR Model reporting Format (QMRF) and 

QSAR Prediction reporting Format (QPRF). These reporting formats are required by REACH regulation 

(Annex XI) for the acceptance of QSAR predictions instead of test data. 
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1.3. The CADASTER Project 

As described in section 1.1, one of the main goals of the REACH regulation is to gather the necessary 

amount of information to adequately assess and manage the risk of thousands of chemicals on the 

market, and, meanwhile, to reduce animal testing by optimized use of alternative approaches, e.g. in 

silico and in vitro information.  

In the last decades, intensive efforts have been made by the scientific community in order to develop 

and improve valid instruments to meet that goal, i.e. alternatives to animal-testing,  which can be used 

to support risk assessment and decision-making. These procedures, which are known as Intelligent 

Testing Strategies (ITS), include in vitro testing, (Q)SARs models, read-across and chemical grouping, and 

exposure-based waiving. To provide a practical support for their application in regulation (REACH and 

other regulations), several projects have been started under the EU sixth and seventh Framework 

Programmes for Research (e.g., OSIRIS, CAESAR, OpenTox
8
, etc…). All these projects aimed at promoting 

the use of non-testing information for regulatory decision-making and, thus, minimizing the need for 

animal testing. Among these projects, CADASTER
9
 (CAse studies on the Development and Application of 

in-Silico Techniques for Environmental hazard and Risk assessment), which was started in 2009 and will 

be concluded in 2012, aims at providing a practical guidance for the integration of alternative in-silico 

techniques, like QSAR and read-across, in the procedures of hazard- and risk assessments. The basic idea 

was to obtain the information needed for carrying out hazard and risk assessments for large numbers of 

substances by integrating multiple methods and approaches, with the aim to minimize testing, costs, and 

time. Chemicals belonging to four classes of emerging pollutants have been evaluated within the project, 

i.e. brominated flame retardants (BFRs), poly- and perfluorinated chemicals (PFCs), triazoles and benzo-

triazoles (B-TAZs), as well as fragrances.  

Within the CADASTER project, operational procedures for experimental design, QSAR development and 

validation, risk assessment and economic evaluations have been developed, tested, and disseminated in 

order to guide a transparent evaluation of the above mentioned four classes of emerging chemicals, 

taking into account variability and uncertainty in experimental data and in models. 

The CADASTER Project involved nine partners from different European universities, public institutes and 

research centres, covering expertise in the fields of experimental testing, data mining, in-silico 

approaches, risk assessment and IT knowledge (Table 1.1). 

                                                 
8
 OSIRIS: Optimized Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-Test and Test 

Information. CAESAR: Computer Assisted Evaluation of industrial chemical Substanced According to Regualtions. 

OpenTox: An open source predictive toxicology Framework. 
9
 http://www.cadaster.eu/ 
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Table 1.1. List of participants involved in the CADASTER Project. 

Beneficiary name Abbreviation Country 

Rijksinstituut voor Volksgezondheid en Milieu  RIVM Netherlands 

Public Health Institute Maribor PHI Slovenia 

University of Insubria (Varese) UI Italy 

IVL Swedish Environmental Research Institute IVL Sweden 

Linnaeus University LnU Sweden 

Helmholtz Zentrum München - German Research 

Center for Environmental Health (GmbH) 

HMGU Germany 

Ideaconsult Ltd. IDEA Bulgaria 

Radboud University Nijmegen RUN Netherlands 

Mike Comber Consulting MCC Belgium 

 

In line with the general overview described above, CADASTER had 4 main objectives, which, apart from a 

work package on coordination (WP1), have been operationalized within 4 work packages (WPs).  

1) Collection of data and models (WP 2) 

This WP included the collection of existing experimental data and (Q)SAR models on the most common 

regulatory endpoints considered in the Screening Initial Data Set Dossier (SIDS
10

 - internationally agreed 

data on the intrinsic hazards of a chemical) for the four classes of chemicals selected. Within WP2 new 

experimental data have been generated on endpoints and chemicals for which, as identified in WP 3, 

insufficient data were available for model validation and proper hazard/risk assessment. 

2) Development and validation of QSAR models (WP 3) 

WP3 activities were mainly focused on the development and validation of QSAR models for the 

prediction of physico-chemical properties and (eco-)toxicity for the four classes of chemicals selected. 

The models were developed in agreement with the OECD principles for the validation, for regulatory 

purpose, of (Q)SAR models (OECD, 2004). A preliminary evaluation of existing QSARs for the chemical 

classes studied, and their quality (i.e. compliance with OECD principles), was performed in order to 

identify the information gaps where new models were needed. An additional WP3 activity consisted of 

the application of similarity analysis and multivariate ranking methods for the identification of priority 

chemicals in the four selected classes to orient the experimental tests in WP2. 

                                                 
10

 http://www.oecd.org/env/chemicalsafetyandbiosafety/testingofchemicals/49944183.pdf 
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3) Integration of QSARs within hazard and risk assessment (WP 4) 

The central issue of WP4 has been the integration of QSAR models into a probabilistic risk assessment 

framework. This activity included the quantitative characterization of uncertainty of QSAR predictions, 

sensitivity analyses of individual models with regard to their contributions in the overall risk assessment 

framework, and QSAR modelling of species sensitivity distributions (SSDs). Additional activities within 

this WP included i) the evaluation of methods and criteria  for the establishment of scientific validity and 

applicability domains for QSAR models, ii) the evaluation of the ECETOC TRA screening risk assessment 

tool, in order to establish the ability of the tool for identifying chemicals of concern, at varying levels of 

data/information, and iii) the evaluation of the economic impacts of the substitution of chemicals from 

the four chemical classes, thus, fulfilling the aim of REACH of achieving a proper balance between social, 

economic and environmental objectives. 

4) Development of website, newsletters/workshops and standalone tools for dissemination of project 

results (WP 5)  

The core of WP5 has been the development of a on-line and standalone Decision Support System (DSS) 

for development, publishing and use of QSAR/QSPR models for REACH. This implied the development of 

a database storing all the collected experimental data and (Q)SAR models developed within the 

CADASTER project (QSPR-Thesaurus database
11

), which can be freely applied to generate predictions for 

new chemicals. In addition to (Q)SAR development and application, the QSPR-Thesaurus database allows 

the users to calculate molecular descriptors, and to perform experimental design, fate assessment and 

species sensitivity distribution (SSD). 

A brief description of the four classes of chemicals studied within the CADASTER project is provided in 

the following paragraphs. 

1.3.1 Brominated Flame Retardants (BFRs) 

 

Brominated flame retardants (BFRs) are a class of hydrophobic chemicals that are incorporated in a 

variety of consumer products (e.g. electronic devices, building materials, textiles, etc..) to increase their 

fire resistance. Among the large number of commercially available brominated flame retardants, the 

three most marketed products are tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), 

and polybrominated diphenyl ethers (PBDEs) (Figure 1.4) (Alaee et al., 2003).  

                                                 
11

 http://qspr-thesaurus.eu/login/show.do?render-mode=full 
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Figure 1.4. Chemical structures of PBDEs (a), TBBPA (b) and HBCD (c). 

 

PBDEs potentially include 209 congeners divided into 10 congeneric groups (mono- to 

decabromodiphenyl ethers) which are characterized by different number and position of bromine 

substituents.  

The widespread production and use of BFRs in the last 40 years has caused them to disperse throughout 

the environment (de Wit, 2002; Hale et al., 2006; Law et al., 2003; Law et al., 2006). BFRs are being 

found in almost all the environmental compartments (Watanabe et al., 1992) as well as the indoor 

environment (e.g. because of their release from electronic devices), raising concerns for human exposure 

(Bergman, 1997; Sjödin et al., 2001; Sjödin et al., 2003; Harrad et al., 2004). Geographic trends show that 

BFRs may be subject to long range transport (LRT), thus contaminating also remote areas like polar 

regions (Wania and Dugani, 2003; Ikonomou et al., 2002; Stern and Ikonomou, 2000). 

BFRs are very lipophilic compounds (logKow>5, Palm et al., 2002), characterized by high environmental 

persistence and bioaccumulation tendency (Tomy et al., 2004; Streets et al., 2006; Burreau et al., 2006). 

These properties make them likely to accumulate into organisms and in the food chains, thus explaining 

the high concentrations measured in biota, especially at the top levels of the trophic chains, such as 

birds, whales, polar bears, and even in humans (e.g. liver, adipose tissue and breast milk) (Burreau et al., 

2006; Muir et al., 2006; Sjödin et al., 2003; Meironyté et al., 2001; Norén and Meironyté, 1998).  

The structural similarity of many BFRs to other classes of organohalogenated compounds, such as 

polychlorinated biphenyls (PCBs) and dioxins, suggests a potential dioxin-like toxicity. Several in vivo and 

in vitro studies highlighted for some groups of BFRs potential carcinogenic and teratogenic effects 
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(Helleday et al., 1999), effects on neurobehavioural development (Eriksson et al., 2001) and evidence of 

endocrine disrupting potency (Meerts et al., 2001; Hamers et al., 2006).  

1.3.2 Fragrances 

Fragrance materials are a heterogeneous group of chemicals widely used in many consumer products, 

including cosmetics, toiletries, household and laundry products, products used to scent the air (e.g., air 

fresheners and fragranced candles), as well as additives for food and drinks.  

Despite that they share a common use pattern, it is not correct to consider fragrances as a single class of 

compounds. More than 2000 different organic chemicals have been identified as fragrance ingredients, 

exhibiting a wide range of physico-chemical properties. As can be observed in Table 1.2, 23 major 

structural classes have been identified on the basis of their chemical structure (Bickers et al., 2003). 

Table 1.2. Classification of fragrance ingredients based on chemical structure (Bickers et al., 2003). 

Structural group  No. of chemicals Structural group  No. of chemicals 

Esters 707 Pyrans 27 

Alcohols 302 Miscellaneous 27 

Ketones 259 Schiff's bases 26 

Aldehydes 207 Heterocyclics 25 

Ethers 100 Epoxides 25 

Hydrocarbons 82 Sulfur containing 24 

Acetals 63 Pyrazines 22 

Lactones 61 Amines/amides 18 

Carboxylic acids 42 Quinolines 14 

Phenols 40 Musks 10 

Nitriles 39 Coumarins 4 

Dioxanes 31   

  Total 2155 

 

Examples of compounds used as fragrance ingredients are musks (polycyclic, macrocyclic, alicyclic and 

nitromusks), salicylates, cinnamates and other esters with fragrances behaviour, substituted 

benzophenones, and terpene derivatives (Figure 1.5). 
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Figure 1.5. Examples of chemical structures of some of the most known fragrance materials. 

  

In view of their typical use pattern, fragrance materials enter in the environment mainly through the 

wastewater treatment plants. Hence, it is the efficiency of WWTPs in removing these chemicals (through 

sorption, biodegradation or transformation mechanisms) that determines their presence in receiving 

waters and soils (through the use of WWTP sludge as a soil amendment in agriculture) (Salvito et al., 

2004).   

Considering the wide use and potential exposure, there is limited information available related to human 

health and environmental effects of fragrances. Fragrance materials have been long recognized as skin 

allergens and irritants. However some of these chemicals, according to their physico-chemical and 

partition properties, are able to enter the body through numerous routes (e.g. skin absorption, 

inhalation, ingestion and the olfactory pathways) and impact any organ or system, thus posing concerns 

for systemic effects. Evidence of carcinogenicity, effects on development and reproduction, as well as 

endocrine disrupting potency have been reported for several fragrances (e.g. safrole, coumarin, 

methyleugenol, musk xylene, etc…) (Bridges, 2002 and references therein). Health concerns are also 

related to the potential of fragrances to induce adverse effects, or worsen existing problems (e.g. 

asthma) for the respiratory system (Bridges, 2002 and references therein).  
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The olfactory pathways represent a direct point of entry for chemicals into the brain (e.g. volatile 

fragrances contained in scented products), thus affecting the nervous system. Neurotoxic properties as 

well as physiological and drug-like effects (e.g. addiction to fragrances) have been also demonstrated for 

some fragrances (Aoshima and Hamamoto, 1999; Jirovetz et al., 1991; Hastings et al., 1991; Spencer et 

al., 1978; Spencer et al., 1984).  

1.3.3 Perfluorinated Chemicals (PFCs) 

Per- and polyfluorinated chemicals (PFCs) are a family of straight or branched long carbon chain analogs 

predominantly substituted by fluorine. The majority of PFCs are characterized by an hydrophobic 

fluorinated alkyl chain and a polar terminal group, mainly consisting of sulfonates or carboxylates (Figure 

1.6). 

 

Figure 1.6. Examples of chemical structures of PFCs: (a) perfluooctanoic acid (PFOA), (b) perfluorooctane sulfonic 

acid (PFOS), (c) 6:2 fluorotelomer alcohol (6:2 FTOF). 

 

Their amphiphylic nature makes PFCs suitable as surfactants. Because of their great thermal stability and 

stress resistance, these compounds are extensively used in a variety of household and industrial 

products (Laue et al., 2007; Prevedouros et al., 2006; Holzapfel, 1966), including waterproof fabrics, food 

packaging, non-adhesives, fire-fighting foams, cleansers, paints, etc… 

The global production of some PFCs, such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate 

(PFOS) and perfluorooctane sulfonyl fluoride (PFOSF) (a precursor of PFOS), has been estimated to 

exceed 1000 tons/year (Harada and Koizumi, 2009).  

The widespread production and use of PFCs for decades, combined with their high persistence, led to 

their global distribution, from urban to remote areas, contaminating almost all the environmental media 

and biota (Laue et al., 2007; Prevedouros et al., 2006; Dreyer et al., 2009; Giesy and Kannan, 2001; 
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Houde et al., 2006). Of particular concern is their occurrence in human blood, breast milk and tissue 

samples, due to the daily exposure to PFC-contaminated outdoor and indoor air, house dust, food and 

drinking water (Fromme et al., 2009). 

The polar hydrophobic nature of PFCs determines a high affinity for physiological proteins (Biffinger et 

al., 2004). Once entered into the body, PFCs tend to accumulate in blood and in organs such as liver, 

kidneys, spleen, testicles, and brain. Among the possible toxic effects reported in literature, evidence of 

endocrine disruption (ED) has been found both in vivo and in vitro, and includes alteration of serum 

hormones levels (e.g. testosterone, estradiol, thyroxine) and expression of many genes involved in 

cholesterol transport and steroidogenesis (Jensen and Leffers, 2008; Shi et al., 2009; Weiss et al., 2009; 

Liu et al., 2010). 

1.3.4 Triazoles and Benzotriazoles (B-TAZs) 

Triazoles and benzotriazoles (B-TAZs) are a class of synthetic molecules, which are structurally highly 

heterogeneous and characterized by the presence of a simple or condensed aromatic heterocyclic ring 

(2C + 3N atoms) (Figure 1.7). 

 

Figure 1.7. Chemical structures of triazoles and benzotriazoles. 

 

B-TAZs are produced in large amounts (HPV chemicals) and are broadly used in various industrial 

processes, in agriculture as well as in households. Applications include their use as pesticides, 

pharmaceuticals (e.g. antimycotics, antidepressants), anti-corrosives, UV-light stabilizers for plastics, 

dishwashing additives, and as components of runway and aircraft de-icing fluids (ADFs).  
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B-TAZs, in particular benzotriazoles, may persist in the environment for a very long time due to their 

resistance to oxidation under environmental conditions, UV stability (Wu et al., 1998), and resistance to 

biodegradation (Hem et al., 2003). B-TAZs are known to be fairly well soluble in water and to have a 

limited sorption tendency. 

Releases to the environment, due to the wide production and multiple applications, caused their 

contamination of different environmental media. Environmental occurrence of B-TAZs was first detected 

in areas surrounding airports (Cancilla et al., 1998; Breedveld et al., 2003; McNeill and Cancilla, 2008), 

probably due to their abundant use in ADFs. Because of the high water solubility and environmental 

persistence, B-TAZs have become ubiquitous contaminants of the aquatic compartment (Wolschke et al., 

2011, Giger et al., 2006), thus raising concerns on the potential effects on aquatic organisms. Endocrine 

disrupting effects, such as pro-feminization or alteration of the thyroid system, and developmental 

toxicity have been observed both in aquatic and terrestrial organisms (Taxvig et al., 2007, Kadar et al., 

2010). 
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1.4. Aim of the Thesis 
 

In the context of the CADASTER project, the main topic of the present PhD thesis was the development 

of QSAR/QSPR models for the characterization of the (eco-)toxicological profile and environmental 

behaviour of chemical substances of emerging concern. The attention was focused on the four classes of 

compounds studied within the CADASTER project, i.e. brominated flame retardants (BFRs), fragrances, 

prefluorinated compounds (PFCs) and (benzo)-triazoles (B-TAZs). An important objective of this thesis 

was to make the best use of the available information to derive valid QSAR models that could be applied 

for the screening and prioritization of a large number of chemicals without experimental data. This was 

particularly relevant considering the limited amount of experimental data available for these emerging 

pollutants, especially for the basic endpoints required in regulation (e.g. REACH) for the hazard and risk 

assessment of chemicals. 

Through several case-studies performed within the CADASTER project, the present thesis shows how 

QSAR models can be applied for the optimization of experimental testing as well as to provide useful 

information for the safety assessment of chemicals and support decision-making.  

In the first case-study, the QSAR approach was applied for the characterization of endocrine disrupting 

properties (e.g. dioxin-like activity, estrogenic and androgenic receptor binding, interference with 

thyroxin transport and estradiol metabolism) of BFRs and PFCs (Chapter 3). An important issue stressed 

within this study was the dual role of QSAR models, i.e. i) their application for screening purposes 

(“predictive QSARs”) and ii) their application for mechanistic investigation of a specific activity 

(“descriptive QSARs”). 

The second case-study presents the QSAR models developed for the prediction of three key endpoints 

required in regulation for the assessment of aquatic toxicity (i.e. acute toxicity in algae, daphnids and 

fish) for B-TAZs (Chapter 4), thus showing the potential use of QSAR estimations to support the overall 

assessment on chemicals’ toxicity.  

Finally, the third case-study addresses the development of QSPR models for the classification of ready 

biodegradability of fragrance materials, which is among the basic endpoints required for the assessment 

of the environmental persistence of chemicals (Chapter 5). The possibility to predict the potential 

biodegradability of chemicals on the basis of their structure, even before their synthesis, highlights the 

utility of QSAR/QSPR approaches in the rational design of new alternative compounds that are less 

persistent in the environment. 
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2.1 QSAR Procedure 

As was stated in the previous section, QSA(P)R models are based on the definition of a quantitative 

relationship between the structure of a chemical and its biological activity (QSAR) or a specific 

physico-chemical property (QSPR). Figure 2.1 represents the theoretical scheme of the classic QSAR 

approach. For a given set of compounds, experimental data of physico-chemical properties or 

biological activities are determined by the measures M and A respectively. The structural information 

of the chemicals is described by molecular descriptors, which can be theoretically calculated by the 

procedure D. The relationships R1 and R2 are the mathematical functions of the QSARs and QSPRs. In 

some cases also mathematical function to quantify the Property-Activity relationships (QPAR) can be 

defined (R3) (Gramatica P., 2001). 

 

 

Figure 2.1. General scheme of the QSA(P)R approach. 

 

Fundamental prerequisites to obtain good quality QSARs are the availability of input experimental 

data of high quality, an exhaustive representation of the chemical structure (e.g. through molecular 

descriptors, structural fragments), and the use of valid (i.e. statistically robust and predictive) and 

adequate (i.e. applicable to the compounds of interest) quantitative methods. 

 

The following paragraphs will go through the principal steps involved in the development of QSAR 

models, describing the theoretical and methodological basis as well as the current challenging 

aspects. 
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2.2. Molecular representation and descriptors 

A molecule is a complex structural system that can be represented through several different 

molecular representations, each constituting a different conceptual model and including different 

information related to chemical structure (e.g. 2D or 3D information). Examples of molecular 

representations commonly used for QSAR modelling, and used in the present thesis, include: 

• the Simplified Molecular Input Line Entry Specification (SMILES), which is a line notation for 

molecules including information on connectivity among atoms, but not encoding for 2D or 

3D coordinates. 

• MOL files, for holding information about the atoms, bonds, connectivity and coordinates of a 

molecule. 

• HIN files, which represent the minimum energy molecular geometries optimized by the 

HYPERCHEM software and encode for the mono-, bi- and tri-dimensional information of the 

molecules.  

Chemical information from the different molecule representations is then extracted through the 

calculation of molecular descriptors, which are numerical variables quantifying the structural 

information of a chemical. “The molecular descriptor is the final result of a logic and mathematical 

procedure which transforms chemical information encoded within a symbolic representation of a 

molecule into a useful number or the result of some standardized experiment.” Many molecular 

descriptors have been proposed and derived from different theories and approaches, with the aim of 

predicting biological and physico-chemical properties of molecules (Todeschini and Consonni, 2000). 

The information content of a molecular descriptor depends on the kind of molecular representation 

that is used and on the defined algorithm applied for its calculation. All the molecular descriptors 

must contain, to varying extents, the chemical information, must satisfy some basic invariance 

properties and general requirements, and must be derived from well-established procedures, which 

enable molecular descriptors to be calculated for any set of molecules.  

Molecular descriptors are divided in two main classes: those derived by experimental measures (such 

as logP), and theoretical molecular descriptors, derived from a symbolic representation of the 

molecule.  

LogP (or logKow) represents the octanol-water partition coefficient and is one of the most used 

parameter in QSAR modelling, especially in the past (it was already included in the Hansch equation). 

LogP is a property that can be either measured experimentally or calculated by freely and 

commercial packages (such as C-logP, DRAGON, and KowWIN from the EPIsuite software). However 

it is known that LogP values can be characterized by high variability, which may affect the quality of 

models based on logP (Renner, 2002; Papa et al., 2005; Benfenati et al., 2003). 

The classical theoretical molecular descriptors can be derived in different ways: 
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• counting some atom-types or structural fragments in the molecule (0D and 1D- Descriptors). 

Some examples are the molecular weight (MW), the number of atoms included in the 

structure (nA), as well as list of fragments, functional groups or substituents present in the 

molecule. 

• describing how the atoms are connected on the basis of the two dimensional representation, 

i.e. defining the connectivity of atoms in the molecule in terms of the presence and the 

nature of the chemical bonds (topological representation). Molecular descriptors derived 

from algorithms applied to a topological representation are called 2D-descriptors. 

• representing the molecule as a rigid geometrical object in a three-dimensional space. This 

view allows a representation not only of the nature and connectivity of the atoms, but also 

the overall spatial configuration of the molecule. This representation of a molecule is called 

geometrical representation and the derived molecular descriptors are called 3D-descriptors 

 

In the present thesis, three different software (one commercial and two freely available) have been 

used for the calculation of molecular descriptors: 

• DRAGON software (ver. 5.5, 2007 – commercial software) was used to calculate mono-, bi- 

and tri-dimensional descriptors starting from the (x,y,z) coordinates of the chemical structure 

(HIN files). 

A list of the DRAGON descriptors calculated in this thesis is reported in Table 2.1. 

Table 2.1. List of descriptors blocks included in the DRAGON package. 

 Descriptor Blocks 

Constitutional Functional group counts 

Atom centered Fragments Charge descriptors 

Molecular Properties Topological descriptors 

Walk and Path counts Connectivity indices 

Information indices 2-D autocorrelations 

Burden eigenvalues Topological charge indices 

Eigenvalues based indices 2D binary fingerprints 

0D, 1D and 2D descriptors 

2D frequency fingerprints 

 
 

Randic Molecular Profiles Geometrical descriptors 
3D descriptors 

Whim descriptors GETAWAY descriptors 

 

 

• PaDEL-Descriptor software (ver. 2.12, 2011 - freely available) was used to calculate mono- 

and bi-dimensional molecular descriptors and fingerprints starting from MOL files. 

A list of the PaDEL descriptors calculated in this thesis is reported in Table 2.2. 
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Table 2.2. Groups of descriptors included in the PaDEL-Descriptor software. 

 Descriptor type  

1D-2D descriptors Acidic group count Fragment complexity 

 ALOGP Hbond acceptor count 

 APol  Hbond donor count 

 Aromatic atoms count HybridizationRatioDescriptor 

 Aromatic bonds count Kappa shape indices 

 Atom count Largest chain 

 Autocorrelation (charge) Largest Pi system 

 Autocorrelation (mass) Longest aliphatic chain 

 Autocorrelation (polarizability) Mannhold LogP 

 Basic group count McGowan volume 

 BCUT Molecular distance edge 

 Bond count Molecular linear free energy relation 

 BPol  Petitjean number 

 Carbon types Ring count 

 Chi chain Rotatable bonds count 

 Chi cluster Rule of five 

 Chi path cluster Topological polar surface area 

 Chi path Van der Waals volume 

 Crippen logP and MR 
Vertex adjacency information 

(magnitude) 

 Eccentric connectivity index Weight 

 
Atom type electrotopological 

state 
Weighted path 

 Extended topochemical atom Wiener numbers 

 FMFDescriptor XLogP 

  Zagreb index 

Fingerprints CDK fingerprints EStateFingerprinter 

 
SubstructureFingerprinter 

 

KlekotaRothFingerprinter 

 

 

• QSPR-Thesaurus (on-line platform developed within the CADASTER Project
1
 - freely available) 

was used to calculate mono- and bi-dimensional molecular descriptors and fingerprints 

starting from SMILES strings. 

A list of the molecular descriptors calculated using the QSPR-Thesaurus database is reported 

in Table 2.3. 

Table 2.3. Groups of descriptors calculated in the QSPR-Thesaurus database. 

 Descriptor type  

E-state AMBIT Descriptors 

ALogPS MolPrint  1D-2D descriptors 

GSFragment ISIDA fragments 

 

                                                
1
 http://www.qspr-thesaurus.eu/home/show.do 
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In this thesis the 3D structure of each studied compound was drawn in the software HYPERCHEM 

(ver. 7.03 for Windows, 2002) or imported as SMILES string, and converted into 3-D structures. The 

energy optimisation was performed by AM1 semi-empirical method in the HYPERCHEM software. 

2.3. Exploratory data analysis 

Measurements related to biological activities and phisico-chemical properties, as well as structural 

properties (i.e. molecular descriptors) of compounds can be represented by complex matrices of 

multivariate data. To analyse these kind of data, chemometrical tools can be applied in order to 

extract information and select the most appropriate method to handle them. Therefore, exploratory 

analysis of the dataset, both in terms of structural representation and response domain, is an 

important step preceding model development. 

In this thesis different exploratory techniques have been applied for different purposes, and are here 

briefly described.  

2.3.1. Principal Component Analysis 

Principal Component Analysis (PCA) is one of the best known procedures in multivariate statistics, 

which find application in many fields (e.g., chemistry, biology, economics, etc…). PCA allows the 

examination of the correlation pattern among variables and an evaluation of their relevance, the 

visualization of the elements by analyzing their inter-co-relationships (e.g., outliers, clusters), the 

synthesis of data description discarding noise, the reduction of data dimensionality by discarding 

unnecessary variables, and the finding of principal properties in multivariate systems. From a 

mathematical point of view, the aim of PCA is to transform p-correlated variables into a set of 

orthogonal variables which reproduce the original variance/covariance structure of the data. This 

means rotating a p-th dimensional space to achieve independence between variables. The new 

variables, called principal components (PCs), are linear combinations of the original variables along 

the direction of maximum variance in the multivariate space, and each linear combination explains a 

part of the total variance in the data. Starting from the original dataset containing p variables, a 

maximum of p principal axes can be derived. Additional details on the mathematical basis of PCA can 

be found elsewhere (e.g., Pearson, 1901; Todeschini, 1998; Jolliffe, 1986).  

Because of their properties, PCA analysis is used to summarize, in few dimensions, most of the 

variability of a dispersion matrix of a large number of variables, providing a measure of the amount 

of variance explained by a few independent principal axes. The first two principal components define 

a plane, which represents the largest amount of variance. The elements are projected in this plane 

according to their score
2
 values, in such a way as to preserve, as much as possible, the relative 

                                                
2
 Scores, the transformed variable values corresponding to a particular data point. 
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Euclidean distances they have in the multidimensional space. The loadings
3
 show the contributions of 

the variables to each component. The score and loading plots allow to overview the relation between 

the objects and the variables, respectively. The relation between the objects and the variables is 

derived by comparing (or plotting together) the scores and the loadings calculated for M principal 

components.  

2.3.2. Experimental Design by Factorial Analysis   

Statistical experimental design is a very useful method for the selection of chemicals to include in a 

training or an experimental set, as a fraction of a larger dataset. Statistical experimental design 

introduces systematic variation of several parameters simultaneously, in order to obtain as much 

information as possible from as few experiments or observations as possible (or, often, to optimize 

the number of experiments that need to be performed in order to acquire sufficient information to 

meet specific aims within acceptable time and/or cost constraints) (Box et al., 1978). 

In a factorial design observations are selected at high (+) and low (-) levels of each variable and in all 

the possible combinations. Center points are also included to detect and describe all the statistical 

variation of the data. Center points are located at the mean of the high and low settings for each 

variable and usually 3-4 observations are selected.  

In this study four variables, represented by the score values extracted from the PCA analysis 

performed on molecular descriptors, were used to generate a factorial experimental design (2
4
 

observations) to select fragrances to be included in the training set of ready biodegradation (Chapter 

5). 

2.4. Modelling methods  

2.4.1. Multiple Linear Regression (MLR) 

The purpose of regression analysis is to describe the relationship between a dependent variable Y 

(quantitative response) and a set of independent variables (or predictor), in order to predict the 

values of Y from given values of the independent variables x1, x2, x3, …, xp. The regression model is the 

mathematical equation used to describe the relationship among response and predictor variables. 

Regression modelling may be used for descriptive or predictive purposes. The multiple linear 

regression model is described in algebraic form as: 

iii exbby ++= ∑0      or      ebXy +⋅=  

where x denotes the predictor variable(s), y the response variable, , and e is the random error, also 

called model error or residual. In the alternative expression of the MLR equation, y and b are the 

vectors of the responses and estimated regression coefficients, respectively; the matrix X is usually 

                                                
3
 Loadings, the weight by which each standardized original variable should be multiplied to get the component score. 
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called model matrix, whose columns are the independent variables used in the regression model 

(Todeschini R., 1995; software MOBY-DIGS, 2004). 

In this thesis, the method used for the development of regression models was the Ordinary Least 

Squares (OLS) regression. 

2.4.1.1 OLS method 

OLS regression calculates a parametric linear model for a single response, and calculates unbiased, 

least squares coefficients. OLS should be used if the data set is well determined, i.e. if there are more 

observations than predictors and the predictors are not too highly correlated. This model assumes 

that the response is a linear function of the predictors, and that the errors are identically and 

independently distributed. Using OLS regression, the vector of regression parameters is computed 

minimizing the sum of squares of the differences between observed values (y) and values calculated 

using the regression equation ( ŷ ). Thus, to obtain a least squares best fit, each member of the 

matrix equation y = Xb is multiplied by the transpose of matrix X (X’), i.e. X’y = X’Xb.  

In this way, the rectangular matrix X produces a square matrix X’X, which can be inverted. The values 

of the coefficients of the OLS regression equation (bOLS) are computed inverting the square matrix 

[X’X]:  

yXXXbOLS ')'( 1−=  

Once the regression coefficient vector b has been estimated, the calculated responses are 

obtained from  OLSXby =ˆ  and the estimated error vector e from  yye −= ˆ . 

2.4.2. Classification models  

The purpose of classification analysis is to identify the relationship between a dependent categorical 

variable C (qualitative response) and a set of independent variables (or predictor), in order to predict 

the category (or class) C from given values of the independent variables x1, x2, x3, …, xp.  

Classification consists in finding a mathematical model able to recognize the membership of each 

object to its proper class (G). Once obtained a classification model, the membership of new objects 

to one of the defined classes can be predicted.  

Classification methods based on the calculation of distances between each i-th object and the class 

centroids
4
 are among the most simple and popular approaches to classification. There are several 

distance measures that can be used, such as the Euclidean distance, which is one of the most 

commonly used, Manhattan distance, Canberra distance, Minkowski distance, Lagrange distance, 

Mahalanobis distance, etc… (Todeschini, 1998). 

                                                
4 The centroid of the g-th class is the p-dimensional vector of average values of the p variables calculated on the objects 

belonging to that class. 
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The class assignment of each object is based on the minimum distance between the object and each 

class centroid.  

Classification results are commonly summarized in the confusion matrix, which is a square matrix 

GxG, where the rows represent the known (true) object assignments and the columns represent the 

assignments as provided by a classifier. An example of confusion matrix is given in Table 2.4 for 3 

classes (A, B, C), where A, B, C and A', B', and C' represent true and assigned classes, respectively. 

Table 2.4. Example of the confusion matrix.  

 A' B' C' Row sums 

A 14 1 0 nA = 15 

B 3 10 2 nB = 15 

C 0 0 20 nC = 20 

Column sums 17 11 22 n = 50 

 

The diagonal elements are the number of objects belonging to the g-th class correctly classified. 

The confusion matrix is the main tool to estimate the classification parameters (section 2.5.3.2.). 

Several classification methods have been defined (Frank and Friedman, 1989) which are based on 

different mathematical approaches. In this thesis the k-Nearest Neighbours (k-NN) method has been 

applied for classification purposes.  

2.4.2.1 k-NN Classification method  

k-NN is a not parametric (free from assumptions on the data distribution) classification method,  

which is performed on the basis of local information around each object and can be applied also for 

modelling datasets characterized by a nonlinear separation among classes (Sharaf et al., 1986;  Zheng 

and Tropsha, 2000). The k-NN method is based on similarity of objects (chemicals), where each 

object is assigned to the class most represented in its k nearest neighbours (i.e., k most similar 

compounds) and the k value represents the number of considered nearest neighbours of each 

objects. In this thesis, the similarity was measured by calculating the Euclidean distances between 

the descriptor vectors.  

The k-NN final model is not a function but is given by an assembly of the selected distance measure, 

the best k value and all the training set objects. 

2.5. Modelling approach 

Figure 2.2. summarizes the modelling approach that was applied within this thesis.  

As was anticipated in section 2.1, an important prerequisite for the development of good quality 

QSARs is the availability of input experimental data of high quality. Data curation represents a 

fundamental step preceding QSAR modelling (Gramatica et al., 2012; Tropsha, 2010;  Fourches et al., 
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2010;  Muehlbacher et al., 2011; Porcelli et al., 2008; Li and Gramatica, 2010). Data curation do not 

only involves the careful selection of high quality data, but also the verification of chemical structures 

used as input for molecular descriptors generation. It has been demonstrated that even a small error 

in a chemical structure can result in significant differences in the prediction of the accuracy of a 

model, not only for chemicals with erroneous structural information, but also in the prediction of 

other chemicals using models that contain such errors (Young et al., 2008). This issue is also well 

described in the recent publication by our research unit (Gramatica et al., 2012), where practical 

examples are provided to highlight the importance of manual verification of structures generated 

from different sources and different molecular representation files (e.g., SMILES codes, MOL files, 

HIN files), as well as their influence on descriptors calculation.  

The following paragraphs describe the conceptual scheme and principal steps characterizing the 

development and validation of the QSARs proposed in this thesis.  

 

Figure 2.2. Scheme for the modelling approach (Figure from Publication V). 
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2.5.1. Dataset splitting 

When a sufficient number of data was available (at least 15-20 compounds with experimental 

response), the dataset was divided to form a training set (used to build the model) and a prediction 

set, on which the external predictivity of the model was verified (section 2.5.3).  

The splitting in training and prediction set should be balanced so that each of them is adequately 

representative of the structural and response domain of the original dataset.  

To obtain this result, in most of cases two different splitting techniques were applied: a) by sorted 

response, and b) by structural similarity using Kohonen Artifical Neural Networks (K-ANN) (Gasteiger 

and Zupan, 1993). 

In the first case, i.e. splitting by response, chemicals are ordered according to their increasing 

activity, and one out of every two (or three) chemicals are put in the prediction set. The resulting 

prediction set includes 50% (or 30%) of chemicals of the original dataset. The most and the least 

active compounds of the dataset are normally kept in the training set. In case of categorical 

responses, 50% (or 30%) of prediction set chemicals are randomly sampled within each class.  

This splitting guarantees that both training and prediction sets cover the entire range of the 

experimental response and are numerically representative of the dataset. However, such splitting 

does not guarantee that the two sets represent the entire structural space of the original dataset. 

Therefore, it is possible that some compounds in the prediction set are outside the structural domain 

of the training set and could be wrongly predicted. 

The splitting of the data set based on structural similarity, realized by K-ANN method, takes 

advantage of the clustering capabilities of K-ANN, allowing the selection of a structurally meaningful 

training set and an equally representative prediction set. Chemicals are grouped into clusters of 

similar compounds in a Kohonen map. Structural information is provided by molecular descriptors (in 

this thesis, the first three principal components of each block of DRAGON descriptors were used). As 

an output of the K-ANN, structurally similar chemicals are grouped within the same cluster (i.e., 

neurons of the top map). From each cluster, a selected percentage of compounds (30-50%) are 

randomly selected to be included in the prediction set. This splitting techniques allows to generate 

training and prediction sets that are structurally balanced.  

2.5.2. Variable selection methods and model development 

Variable selection is a necessary step to find simple and predictive QSARs, which should be based on 

the least number of low correlated descriptors (following Ockham’s Razor philosophy). This 

procedure is particularly important since is known that some molecular descriptors provide only 

different views of the same molecular aspect. This implies the presence of highly correlated 

descriptors within a dataset. A selection of significant descriptors highly correlated to the studied 
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response is performed by applying unbiased mathematical tools, and starting from a large amount of 

molecular descriptors that can be calculated for the molecules included in a dataset.  

The first step consists in a pre-reduction procedure that allows to remove all the constant and near-

constant descriptors, as well as those characterized by a high pair-wise correlation (in general over 

0.9, 0.95 or 0.98). The selection of the descriptors highly related to the response is then performed. 

Several selection methods are currently available (e.g. stepwise regressions, forward selection, 

backward elimination, simulated annealing, evolutionary and genetic algorithms, etc.) (Todeschini, 

1998). In the present thesis, the Genetic Algorithms (GAs) were used for the variable selection in 

both regression and classification models. GAs are useful methods that are widely and successfully 

applied in many QSAR approaches (Leardi R., 1992). 

The GA strategy for variable subset selection (GA-VSS) is based on the evolution of a population of 

models, i.e. a set of ranked models according to some objective function. In genetic algorithm 

terminology, each population individual is called chromosome and is a binary vector, where each 

position (a gene) corresponds to a variable (1 if included in the model, 0 otherwise). Each 

chromosome represents a model given by a subset of variables. 

The Genetic Algorithm (GA) works, based on three main steps: 

 

• Random initialisation of the population. The model population is built initially by random 

models with a number of variables between 1 and L. The value of the selected objective 

function of each model is calculated in a process called evaluation. The models are then 

ordered with respect to the selected objective function – model quality - (the best model is 

in first place in the population, the worst at position P);  

• Crossover. From the actual population, pairs of models are selected (randomly or with a 

probability function of their quality). Then, from each pair of selected models (parents), a 

new model is generated, preserving the common characteristics of the parents (i.e. variables 

excluded in both models remain excluded, variables included in both models remain 

included) and mixing the opposite characteristics according to the crossover probability. If 

the generated son coincides with one of the individuals already present in the actual 

population, it is rejected; otherwise, it is evaluated. If the objective function value is better 

than the worst value in the population, the model is included in the population, in the place 

corresponding to its rank; otherwise, it is no longer considered. This procedure is repeated 

for several pairs;  

• Mutation. After a number of crossover iterations, the population proceeds through the 

mutation process. This means that for each individual of the population every gene is 

randomly changed into its opposite or left unchanged. Mutated individuals are evaluated and 

included in the population if their quality is acceptable. This process is controlled by 
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mutation probability which is commonly set at low values, thus allowing only a few 

mutations and new individuals not too far away from the generating individual.  

 

An important characteristic of the GA-VSS method is that does not provide a single model but a 

population of acceptable models. Within this population, there could be various models with similar 

predictive power, but based on different molecular descriptors.  

In fact different descriptors are alternative viewpoints to represent the structural features, whose 

combination lead to, not equivalent, but similar results for the studied end-point. Thus, there could 

be many possible “best” models. 

In the context of this thesis, different software were used for variable selection and model 

development. The MobyDigs software was used for the development of the regression QSAR models 

for the prediction of endocrine disrupting potency of BFRs and PFCs (Chapter 3). An “in house” 

application was used for the selection of  the classification models (Chapter 3 and Chapter 5). Finally, 

the QSARINS software (2012), which was recently proposed by our research unit, was used to 

develop QSAR models for aquatic toxicity of B-TAZs (Chapter 4).  

2.5.3. Validation of QSARs for their goodness-of-fit, robustness and predictivity 

To guarantee scientific validity and reliability, QSAR models should always be verified for their ability 

to reproduce data used for training the model (i.e., goodness-of-fit), for their internal robustness 

and, when possible, for their ability to predict new data (i.e., external predictivity). External 

predictivity is of particular importance when QSAR models are proposed for screening, ranking and 

prioritization purposes.  

The importance of QSAR validation is also stressed in the fourth principle established by OECD for the 

acceptability of QSARs for regulatory purposes (OECD, 2004).  

2.5.3.1. Validation techniques and parameters used for regression models 

There are many statistical indices useful to evaluate the performance of the developed regression 

models. A first group of them are devoted to evaluate model’s fitting ability, providing a measure of 

how well the regression model accounts for the variance of the response variable. Several fitness 

functions have been proposed and are here summarised. 

- Residual Sum of Squares (RSS): sum of squared differences between the observed (y) and 

estimated response ( ŷ ) 

2

1

^

)( yyRSS
i

n

i

−=∑
−

 

being n the number of training objects. This quantity is minimized by the least square estimator. 



Chapter 2                                                                                                                            Material and Methods 

 39 

- Model Sum of Squares (MSS): sum of the squared differences between the estimated responses 

( ŷ ) and the average response ( y ) 

2
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−

−=∑ yyMSS
i

n
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This is a part of the total variance explained by the regression model as opposed to the residual sum 

of squares RSS. 

- Total Sum of Squares (TSS): sum of the squared differences between the experimental responses 

and the average response 
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This is the total variance that a regression model has to explain and is used as a no-model reference 

quantity to calculate standard quality parameters such as the coefficient of determination. 

 

- Coefficient of determination (R
2
): total variance of the response explained by a regression model. It 

can be calculated from the model sum of squares MSS or from the residual sum of squares RSS 
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A value of one indicates perfect fit, i.e. a model with zero error term. 

- Root Mean Square of Errors (RMSETR, if calculated for the training set; RMSEP if calculated for the 

prediction set): sum of the overall error of the model. It is calculated as the root square of the sum of 

the squared errors in predictions divided by their total number:  

n

yy
PRMSE i ii∑ −

=

2
)ˆ(

)(  

Differently from R
2
, whose values vary between 0 and 1, RMSE values are influenced by the range of 

the response. Therefore, this parameter is useful if applied to compare different models based on 

the same (or very similar) training set, and developed for the same range of experimental response. 

A second group of regression parameters are devoted to evaluate the goodness of prediction, i.e. the 

model capability to estimate future data, providing a measure of how well the regression model 

estimates the response variable given a set of values for predictor variables. These quantities are 
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obtained using validation techniques and are also used as criteria for model selection. A number of 

statistical techniques have been proposed to simulate the predictive ability of a model: 

- Leave-One-Out and Leave-many-Out 

The simplest and most general cross-validation procedures are the leave-one-out (LOO) and leave 

many (LMO) techniques, where a number of objects (one or more than one at time) are excluded 

during the model development. For each reduced data set, the model is calculated and responses for 

the excluded objects are predicted from the model. The squared differences between the true 

response and the predicted response for the object left out are added to PRESS (predictive residual 

sum of squares). From the final PRESS, the Q
2
 value is normally calculated (Cruciani et al., 1992).  

TSS

PRESS
Q CV−= 12

 

LOO and LMO, widely applied as internal validation (or cross validation “CV”) techniques, give in 

several cases a too optimistic predictive ability, particularly considering the LOO that introduces just 

a small perturbation in the dataset. However, even if LMO gives a more realistic idea of the internal 

predictivity than LMO, it can’t be considered as a representative parameter for the real predictivity 

(external predictivity) of a model (Tropsha A. et al., 2003). 

- Y-scrambling  

This validation technique is adopted to check models with chance correlation, i.e. models where the 

independent variables are randomly correlated to the response variables. The test is performed by 

calculating (several hundred of times) the quality of the model (usually R
2
 and Q

2
) randomly 

modifying the sequence of the response vector y, i.e. by assigning to each object a response 

randomly selected from the true responses (Lindgren et al., 1996). Low values of the averaged R
2
 and 

Q
2
 scrambled (R

2
YS, Q

2
YS) are indicative of a well founded (not by chance) model. 

- QUIK rule 

The Quik rule (Todeschini et al., 1999) is normally applied in order to select only models where the 

correlation between the block of the modeling descriptors and the response (KXY) is higher than the 

correlation among the descriptors (KXX), i.e. KXY > KXX. 
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- External validation 

External validation techniques verify model predictivity toward compounds never used for model 

development. This set of “external compounds” can either be obtained by a priori splitting of the 

data set (prediction set), according to the procedures explained in paragraph 2.5.1, or be represented 

by new data became available, or produced, after model development. Several validation parameters 

are currently available to evaluate external predictive ability of QSARs and are summarized in Table 

2.5. 
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Table 2.5. Statistical parameters for external validation 

Statistic Definition Equations and terms 
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[Shi et al., 

2001] 
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TRn  = number of training objects 
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ix  = external response observed for the i-th 

object 

iy  = external response predicted using the 

model 

x  = average of observed responses 

y = average of responses predicted by the 

model  

 

2.5.3.2. Validation techniques and parameters used for classification models 

Validation techniques applied for classification models are the same explained for the regression 

models, and include cross validation techniques (by LOO and LMO) and external validation. Several 

validation parameters are used to evaluate model classification accuracy, i.e. ability of the model to 

assign chemicals to the correct (real) class. 

 

- Non-Error Rate (NER) or Overall Accuracy (OA): percentage of objects correctly classified 

100% ×=
∑

n

c
NER

g gg
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where cgg are the diagonal elements of the confusion matrix. 

It represents the ability of a classifier to correctly assign all the objects of the classes. 

The same quantity can be defined for each class separately (Class Non-Error Rate, NERg): 

100% ×=
g

gg

g
n

c
NER  

When dealing with binary classification models, i.e. models classifying objects into two groups on the 

basis of whether they have some property or not (Table 2.6) (such as carcinogen/not carcinogen, 

active/inactive), two statistical parameters are commonly used to evaluate classification accuracy, 

i.e.: 

- Sensitivity (Sn): proportion of actual positives which are correctly identified 

Sn = TP / (TP + FN) 

- Specificity (Sp): proportion of negatives which are correctly identified 

Sp = TN / (TN + FP) 

where TP (true positive) is the number of compounds correctly classified as active, TN (true negative) 

is the number of compounds correctly classified as inactive, FN (false negative) is the number of 

active compounds classified as inactive, and FP (false positive) is the number of inactive compounds 

classified as active (Cooper et al., 1979). 

Table 2.6. Confusion matrix in binary classification. 

 Assigned class 

Real class Positive Negative 

Positive TP FN 

Negative FP TN 
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2.5.4. Applicability Domain Analysis  

As stressed in the third OECD principle (OECD, 2004), any QSAR model is characterized by a specific 

Applicability Domain (AD), i.e. a theoretical spatial region in which the model is expected to provide 

predictions with a given reliability. Ideally, model AD should express the structural, physico-chemical 

and response space of the model, which is mainly dependent on the nature of the chemicals used to 

develop the model.  

Several methods are currently available for the evaluation and definition of the applicability domain 

of QSAR models (Netzeva et al., 2005; Sushko et al., 2010; Sahigara et al., 2012).  

In the present thesis, the approach used to define model AD was based on the theoretical structural 

space defined by the descriptors used in the models (i.e. modelling descriptors). In most of cases, the 

AD was quantitatively defined by the leverage approach (Tropsha et al., 2003; Gramatica, 2007; 

Eriksson et al., 2003). The leverage (h) is a measure used to quantify the distance of a compound 

from the structural space of a model. Leverage values are the diagonal elements of hat matrix 

(Atkinson, 1985) and are calculated by:  

hi =  xi
T
 (X

T
X)

-1
xi  (i = 1, …, m) 

where xi is the descriptor row-vector of the query compound i, m is the number of query compounds 

and X is the n x p matrix of the training set (n is the number of training set samples and p the number 

of model descriptors).  

The boundaries of model domain are defined by the leverage cut-off (h*), which is set as 3(p+1)/n. 

Leverage values greater than h* mean that the query compound is outside of the model AD; 

predictions generated for these chemicals are extrapolations of the model and could be not reliable. 

The leverage approach takes into account the multivariate combination of the modelling descriptors.  

Model AD can be graphically visualized using the Williams plot (Figure 2.3), which is the plot of 

leverage values versus standardized residuals (std residuals between experimental and predicted 

responses). This plot allows to verify the presence in the training and prediction sets of structural 

outliers (i.e. compounds with hii greater than h*) and response outliers (i.e., compounds with 

standardized residuals greater than 2.5 standard deviation units). It is particularly useful to identify 

structural outliers within the training set since these chemicals are structurally highly influential on 

the selection of the modelling variables. 
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Figure 2.3 Example of Williams plot. 

 

The leverage approach can be also applied to evaluate the degree of extrapolation of the predictions 

obtained for chemicals lacking experimental data. The chemicals with hii greater than h* fall outside 

the AD of the model. Predictions generated for these chemicals are extrapolated by the model and 

should be considered as not reliable. Graphically, the plot of hat diagonal values versus predicted 

values was proposed by our research unit (and referred to as Insubria Graph) to visualize 

interpolated and extrapolated predictions for chemicals without experimental data (Figure 2.4). 

 

 

Figure 2.4 Example of Insubria graph. 
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3.1 Introduction 

An important issue in chemical risk assessment concerns the potential risk to humans and wildlife 

posed by exposure to both natural and man-made chemicals that are capable of modulating or 

disrupting the endocrine system. A comprehensive definition of endocrine-disrupting chemicals 

(EDCs) have been proposed by Kavlock et al. (1996), who defined EDCs as “exogenous agents that 

interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones 

in the body which are responsible for the maintenance of homeostasis, reproduction, development 

and behavior". Adverse effects caused by endocrine disruptors not only affect the exposed 

organisms, but also their progeny and populations.  

There is a fair agreement in considering endocrine disruption as a mode or mechanism of action, 

rather than an adverse health effect, which can potentially lead to other outcomes, such as 

carcinogenic, reproductive, or developmental effects, routinely considered for regulatory decision-

making. Evidence of endocrine disruption alone can influence priority setting for further testing and 

the assessment of the results of this testing could lead to regulatory action if adverse effect are 

shown to occur (EPA, 2011
1
; van Leeuwen and Vermeire, 2007). 

Endocrine disruption is a complex area to address since there are many possible modes of action to 

take into account, and it is difficult to establish causal links between exposure to suspected EDCs and 

any measured effects (Vos et al., 2003). 

Different mechanisms have been recognized through which EDCs may interfere with the endocrine 

system: (i) agonistic effect, by binding to the cellular receptor of a hormone and activating normal 

cell response at the wrong time or to an excessive extent; (ii) antagonistic effect by binding to the 

receptor, preventing natural hormonal binding and activation of the receptor; (iii) alteration of 

hormonal blood levels by binding to hormone transport proteins; (iv) interference with metabolic 

processes by affecting the synthesis, or the elimination rate, of hormones
2
.  

The universe of endocrine disrupting chemicals is wide and not yet fully defined. Chemicals with ED 

activity include natural and synthetic hormones (e.g. contraceptive pills), which are released to the 

environment, mainly through sewage treatment plants, and can exert hormonal actions on other 

animals, and man-made chemicals intended for other purposed but that may interfere with the 

endocrine system of living organisms. Man-made chemicals that are associated with endocrine 

disruption in wildlife and in human individuals include some pesticides, such as DDT 

(dichlorodiphenyltrichloroethane), its metabolites and other chlorinated compounds, and a number 

of industrial chemicals, industrial by-products and chemicals used in consumer products, such as  

                                                             

1
 http://www.epa.gov/endo/pubs/edsparchive/2-3attac.htm 

2
 http://ec.europa.eu/environment/endocrine/definitions/endodis_en.htm 
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dioxins, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and respective 

polychlorinated/polybrominated dibenzo-p-dioxins (PCDDs/PBDDs) and dibenzofurans 

(PCDFs/PBDFs). Despite experimental evidences show that the hormonal activity of the majority of 

these chemicals is many times weaker than the physiological hormones (e.g., Moore et al., 1997; 

Hamers et al., 2006), endocrine-mediated adverse effects on human and wildlife due to exposure to 

EDCs, which are ubiquitous in the environment, have been demonstrated (Harrison et al 1995; 

Colborn et al., 1995 and references therein).  

In the EU REACH regulation, endocrine disrupting chemicals are included in Title VII (Article 57-f), 

which deals with the authorization of substances of very high concern (SVHC). SVHCs include: i) 

substances classified as carcinogenic, mutagenic or toxic for reproduction (CMR) category 1 or 2, in 

accordance with Directive 67/548/EEC, ii) substances which are persistent, bioaccumulative and toxic 

(PBT) or very persistent and very bioaccumulative (vPvB) in accordance with the criteria set out in 

Annex XIII of REACH, and iii) substances having endocrine disrupting properties (or those having PBT, 

vPvB properties without fulfilling the criteria for PBT, vPvB) for which there is scientific evidence of 

probable serious effects to human health or to the environment which give rise to an equivalent level 

of concern to those of CMR, PBT or vPvB substances. Always according to article 57, endocrine 

disrupters are identified on a case-by-case basis. In fact, while clear guidance exists for CMR and PBT 

substances, internationally agreed methodologies or criteria are not available at the moment for the 

assessment of endocrine disrupting properties. Therefore, decision for inclusion of EDCs in Annex XIV 

(i.e. authorization list) will be based on the available information, e.g. from several independent 

sources or newly developed test methods leading to the assumption/conclusion that a substance has 

or has not ED property, and a weight of evidence approach will be used.  

In this context, information derived from (Q)SAR predictions is useful to identify chemicals with 

endocrine disrupting potency, avoiding time-consuming and expansive testing, and to support 

decision-making.  

In the present thesis, endocrine disrupting potential of two classes of halogenated pollutants studied 

within the CADASTER Project, i.e. brominated flame retardants (BFRs) and perfluorinated chemicals 

(PFCs), was investigated by means of non-animal testing methods. In vitro data measuring specific 

endocrine modulating effects (e.g. estrogenic and androgenic receptor binding, interference with 

thyroxin transport and estradiol metabolism) were used to develop quantitative structure-activity 

relationships.  

This chapter is organised in two sections. The first section summarizes the QSAR models that have 

been developed for different endpoints related to ED activity of BFRs, and highlights the potential 

use of in silico techniques, like QSARs, for the screening and prioritization of chemicals, starting from 

a limited amount of experimental information. The second section is focused on a specific 
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mechanism of endocrine disruption, i.e. the interference with thyroxin transport by T4-TTR 

competition, for which experimental evidences have been reported for both BFRs and PFCs. In this 

case the main issue stressed is the role of QSAR models to identify and quantify the most important 

structural features involved in a specific mechanism of action.    

Section I. Endocrine disrupting potency of BFRs 

This section deals with the QSAR models that have been developed for the characterization of the 

toxicological profile of brominated flame retardants (BFRs), which was based on their potential 

ability to interfere with the endocrine system. Several pathways and mechanisms of endocrine 

disruption were investigated, and are here briefly described. 

Ahryl hydrocarbon Receptor (AhR) mediated pathway 

The ahryl hydrocarbon receptor (AhR), also known as dioxin receptor (DR), is a cytosolic transcription 

factor, which is a member of the family of bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) proteins.  

The physiological ligands of this receptor are unknown, but it binds several exogenous ligands such as 

synthetic aromatic hydrocarbons, halogenated aromatic compounds (HACs), including dioxins and 

dioxin-like compounds, and polycyclic aromatic hydrocarbons (PAHs).  

AhR is normally inactive, bound to several chaperones
3
. The binding of the intracellular AhR with 

such exogenous ligands implies the dissociation of the chaperones, resulting in AhR translocation into 

the nucleus and heterodimerization with the nuclear protein ARNT (AhR nuclear translocator). The 

complex AhR-ligand-ARNT recognises specific regulatory sequences in DNA, called dioxin-responsive 

enhancer (DRE), leading to changes in gene transcription. These changes include the induction of the 

cytochrome P-450 isozyme CYP 1A1 (Okey et al., 1994; Whitlock, 1993; Hu and Bunce, 1999), which is 

a member of the cytochrome P450 superfamily of enzymes (monooxygenases), and is involved in the 

metabolic activation of aromatic hydrocarbons
4
. CYP 1A1 induction can be assayed as 7-

ethoxyresorufin-O-deethylase (EROD) activity. 

The activation of AhR-mediated pathway is a critical toxicological mechanism for many HACs, 

including PBDEs. Particularly high binding affinity has been found for the 2,3,7,8-tetrachlorodibenzo-

                                                             

3
 Chaperones, proteins assisting the folding of other proteins and with additional functions. The AhR cytosolic 

complex consists of a dimer of Hsp90 and a single molecule of XAP2 (immunophilin-like protein hepatitis B virus 

X-associated protein 2), which are responsible for the protection of the receptor from proteolysis, maintenance 

of the correct conformation for ligand binding and prevention of the premature translocation into the nucleus 

and binding to ARNT. 

4
 http://www.ncbi.nlm.nih.gov/gene/1543. 
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p-dioxin (TCDD), which is commonly used as reference compound when analysing AhR binding and 

AhR-mediated signal transduction activation. 

Estrogenic, androgenic and progestagenic activity 

Estrogens, androgens and progestogens are steroid hormones responsible for the regulation of a 

number of functions related to reproduction, sexual development and behaviour, maintenance of 

sexual characteristics, as well as other physiological functions.  Androgens (e.g. testosterone) are 

commonly considered as “male sex hormones” in vertebrates since they control the development 

and maintenance of male characteristics (i.e. male sex organs and male secondary sex 

characteristics), spermatogenesis and sperm production, as well as other functions, including 

inhibition of fat deposition and increasing of muscle mass (Singh et al., 2006; Sinha-Hikim et al., 

2004). Estrogens (e.g. estradiol - E2) and progestogens (i.e. progesterone) are considered as "female 

sex hormones”, since they promote the development, maturation and maintenance of female 

primary and secondary sexual characteristics (e.g. uterus, ovaries and breasts), regulate reproductive 

cycles and control all the physiological and morphological changes occurring during pregnancy in 

order to support the gestation.  

The actions of these hormones are mediated by specific receptors belonging to the hormone nuclear 

receptors superfamily, i.e. estrogen receptor (ER), androgen receptor (AR) and progesterone 

receptor (PR). The steroid hormones enter passively into the cells and bind to respective receptors. 

The hormone-receptor complex binds to specific DNA sequences, called hormone responsive 

elements, and regulate gene expression. Estrogens, androgens and progesterone can enter all cells, 

but their actions are dependent on the presence of the specific receptors (ER, AR and PR 

respectively) in the cell.  

Experimental evidences show that several environmental pollutants are able to interact with these 

hormone receptors (HR) leading to the activation of the ER/AR/PR-mediated pathway (agonists) or 

preventing the binding of the natural hormones (antagonists) (Fang et al., 2003; Kojima et al., 2004; 

Colborn, 1995; Jensen et al., 1995).  

Several in vitro assays have been developed for the detection of chemicals with the potential to bind 

to hormone receptors, such as the reporter gene assays that measure HR binding-dependent 

transcriptional activity (Fang et al., 2000; Murk et al., 1996). 

As described in the introduction (paragraph 3.1), an alternative mechanism of endocrine disruption is 

the interference with metabolic processes of hormones. It has been demonstrated, for example, that 

some HACs are able to affect the elimination rates of the hormone estradiol (E2) by inhibiting the 

enzyme estradiol-sulfonyltransferase (E2SULT), which is responsible for E2 inactivation (Kester et al., 

2002).  



Chapter 3                                                  QSAR Modeling of Endocrine Disrupting Potency: BFRs and PFCs 

 53 

Interference with thyroid hormones (TH) 

The thyroid hormones, triiodothyronine (T3) and thyroxine (T4), are tyrosine-based hormones 

produced by the thyroid gland that are responsible for regulation of the energetic metabolism of the 

organism, including increase of the basal metabolic rate, promotion of growth and development, 

regulation of protein, fat, and carbohydrate metabolism.  

Several in vivo and in vitro studies have shown that environmental pollutants, such as 

organohalogens, can interfere with the thyroid hormone system by affecting: 

i) the thyroid gland function and regulation, with potential induction of adverse effects including 

thyroid hyperplasia, tumors or hypothyroidism;  

ii) the thyroid hormone metabolism (e.g. sulfation, deiodiation and glucuronidation) and transport 

mechanisms (e.g. by binding to the plasma thyroid hormone transport protein transthyretin (TTR), 

thereby displacing the natural ligand T4); 

iii) the binding of TH to respective TH receptors (TR) and activating, or preventing, the TR-mediated 

pathway (Brower et al., 1998, Legler et al., 2003). 

Among the suspected EDCs, brominated flame retardants (BFRs) are ubiquitary pollutants that have 

been identified as potential endocrine disrupters. Experimental evidences show that BFRs are 

endocrine-active compounds with the potential to interfere with thyroid hormone homeostasis, as 

well as to interact with steroid receptors (e.g. estrogens, androgens) and aryl hydrocarbon receptors 

(dioxin-like activity) (Legler and Brouwer, 2003; Meerts et al., 2000; Meerts et al., 2001; Lilienthal et 

al., 2006; Chen et al., 2001; Peters et al., 2006). 

Despite of toxicological evidences and the increasing concentrations detected in both wildlife and 

humans, at present experimental data are available only for a limited number of BFRs, such as some 

PBDE congeners (e.g. BDE-47, BDE-99, BDE-100, BDE-183, BDE-209), TBBPA and HBCD. To fill the gap 

of experimental data, approaches based on quantitative structure-activity relationships (QSAR) can 

be applied to predict lacking information (e.g. for all 209 potential PBDE congeners, as well as 

hydroxylated and methoxylated PBDE metabolites, which are found to be ubiquitous in the 

environment and even more active than their parent compounds), as well as to screen and prioritize 

chemicals for experiments, with a consequent reduction of costs, time and of the number of tested 

animals.  

In this thesis, regression and classification models were developed for different endpoints related to 

endocrine disruption potency. Results of these studies have been published and a detailed 

description and discussion of the proposed models can be found in Publications I (regression models) 

and II (classification models). 
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3.2 Methods 

3.2.1 Modelled endpoints 

Experimental data, measured in vitro for several endpoints related to endocrine disruption, were 

collected from literature (Chen et al., 2001; Hamers et al., 2006; Hamers et al., 2008). The modelled 

endpoints were selected according to the number of experimental data available.  

In the regression study the following endpoints were considered: 

- AhR relative binding affinity (RBA), calculated as the ratio of EC50 measured for the reference 

compound TCDD and EC50 measured for the test compounds (Chen et al., 2001); 

- EROD (ethoxyresorufin-O-deethylase) induction potency (EC50ERODind μM) (Chen et al., 

2001); 

- AhR agonism (EC50DRag μM) (Hamers et al., 2006); 

- Estrogen receptor (ER) agonism (EC50ERag μM) (Hamers et al., 2006); 

- Progesterone receptor (PR) antagonism (IC50PRant μM) (Hamers et al., 2006); 

- Thyroxine-transthyretin (T4-TTR) relative competing potency (T4-REP), calculated as the ratio 

of IC50 measured for the reference compound (T4) μM and IC50 of the test compound μM 

(Hamers et al., 2006; Hamers et al., 2008); 

- Estradiol sulfotransferase (E2SULT) relative inhibition (E2SULT-REP), calculated as the IC50 

measured for the reference compound PCP (pentachlorophenol) μM and IC50 for the test 

compound μM (Hamers et al., 2006; Hamers et al., 2008).  

Only data with a specific value of EC50, IC50 or relative activity were used for QSAR modelling. All the 

responses were converted into logarithmic units and, to obtain increasing trends of toxicity, the 

experimental values for the responses EC50ERODind, EC50DRag, EC50ERag and IC50PRant were transformed 

into the logarithm of the inverse μM concentrations. 

Experimental data measured by Hamers and collaborators (Hamers et al., 2006 and Hamers et al., 

2008) were additionally used for the development of classification models. Models were developed 

for the following endpoints: 

- Aryl hydrocarbon (dioxin) Receptor agonism (DRag) and antagonism (DRant); 

- Estrogen Receptor agonism (ERag) and antagonism (ERant); 

- Androgen Receptor antagonism (ARant); 

- Progesterone Receptor antagonism (PRant); 

- T4-TTR Competing Potency (T4-TTRcomp); 

- E2SULT Inhibiting Potency (E2SULTinh).  
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E(I)C50 values were converted into specific classes of ED potency. In this case, the information 

included in results reported as “no response” could be used for model development since these data 

were assigned to the class of “no ED potency”.   

The definition of the classes of activity was based on the classification criteria proposed by Hamers 

and collaborators (Hamers et al., 2006) and are reported in Table 3.1.  

 

Table 3.1. Classification criteria for ED potency of BFRs (proposed by Hamers et al., 2006) and classes 

modelled for each end-point. 

Hamers class Criteria DRag, DRant, ERag, 

ERant, ARant, PRant 

T4-TTRcomp, E2SULTinh 

No potency Response <20% of control at 10 μM Inactive (Class 1) Inactive (Class 1) 

Low potency E(I)C50 >10 μM & response >20% of 

control 

Active (Class 2) Moderately active (Class 2) 

Moderate 

potency 

1.0 μM < E(I)C50 <10 μM Active (Class 2) Moderately active (Class 2) 

High potency 0.1 μM < E(I)C50 < 1.0 μM Active (Class 2) Very active (Class 3) 

Very high potency 0.01 μM < E(I)C50 < 0.1 μM Active (Class 2) Very active (Class 3) 

 

As can be observed in the table reported above, for the endpoints DRag, DRant, ERag, ERant, ARant and 

PRant, whose experimental data were available for 24 BFRs, chemicals were assigned into two classes 

of ED potency: Class 1 (“inactive”, i.e. no response was observed), and Class 2 (“active”, i.e. any 

evidence of ED potency, from low to very high, was measured). For these endpoints, binary 

classification models were developed. 

Three classes of ED potency were modelled for the endpoints T4-TTRcomp and E2SULTinh, for which a 

higher number of experimental data (nobj = 29) were available: Class 1 (“inactive”, i.e. no response 

was observed), Class 2 (“moderately active”, i.e. low or moderate ED potency), and Class 3 (“very 

active”, i.e. high to very high ED potency). 

3.2.2 Datasets 

The experimental datasets used for the development of the regression and classification models are 

the result of an extended literature search specifically focused on ED properties of PBDEs and BFRs. 

Taking into account the complexity of the endpoints considered in this study, it was decided to use 

only experimental data measured by one research group, in order to guarantee a better quality and 

homogeneity of the input data, which is a fundamental requirement for defining a robust structure-

activity relationship. It is known that the use of heterogeneous experimental data from different 

sources and laboratories can affect the quality of models, by increasing the noise in the modelled 

response. 

Experimental data were collected for several PBDE congeners, a few hydroxy-BDE (OH-PBDEs) and 

methoxy-BDE (CH3O-PBDEs) metabolites, tetrabromobisphenol-A (TBBPA), tetrabromobisphenol-A-
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bis(2,3)dibromopropyl ether (TBBPA-DBPE), 2,4,6-tribromophenol (246-TBP), and HBCD (Chen et al., 

2001; Hamers et al., 2006; Hamers et al., 2008).  

Different datasets were used to develop the models depending on the experimental data available 

for each specific endpoint (Appendix I - Table A-1).   

Hundreds of BFRs without experimental data were also considered in these studies for screening 

purposes. The complete studied dataset was finally composed of 243 chemicals, including all the 209 

PBDE congeners, several hydroxylated and methoxylated PBDE metabolites (OH-PBDEs and CH3O-

PBDEs), brominated phenols, brominated bisphenol A compounds (TBBPA analogs) and other BFRs 

on the market, including three compounds used as alternatives to decaBDE, i.e. 

decabromodiphenylethane (DBDE), ethylene bistetrabromo phthalimide (EBTPI), 1,2-bis(2,4,6-

tribromophenoxy) ethane (TBE).  

The list of 243 studied BFRs is reported in Appendix I (Table A-2).  

3.2.2.1 Training and Prediction sets 

In order to perform the external validation of the models, the original data sets were preliminarily 

split into training sets, which were used to develop the model, and prediction sets, whose data were 

not involved in any phase of model development and were used only later for the validation of 

models. Dataset splitting was performed only when a sufficient number of experimental data were 

available (nobj > 16). The splitting was carried out by random selection of prediction set objects 

(section 2.5.1). In particular: 

a)  regression models (quantitative responses): data were sorted in ascending order of activity and 1 

every 2 chemicals were included in the prediction set; 

b) classification models (qualitative data): 30% of prediction set chemicals were randomly sampled 

within each class of activity. 

3.2.3 Molecular structures and descriptors 

The 3D structures of 243 BFRs were drawn and minimized to their lowest energy conformation using 

the semi-empirical method AM1 in the HYPERCHEM program (ver. 7.03 for Windows, 2002), and 

were then used as input files for descriptor calculations. 

The theoretical molecular descriptors, which encode for the information on the mono-, bi- and tri-

dimensional structure of the chemicals, were computed by the software DRAGON (ver. 5.5). In a 

preliminary step, constant or near-constant values and descriptors with a high pair-wise correlation 

(>0.98) were excluded to reduce redundant and non useful information. At the end of this procedure 

a final set of nearly 700 molecular descriptors was used as input variables in the model development. 
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3.2.4 QSAR modelling and applicability domain 

3.2.4.1 Regression models 

Multiple linear regression models were developed by the ordinary least square (OLS) regression 

method using the software MOBY DIGS. All the possible combinations of variables (up to 2 molecular 

descriptors) were explored by applying the All Subset Selection method. A population consisting of 

the best 100 models was generated by maximising the cross-validated QLOO
2
. Several statistical 

parameters were used to compare and validate the models for their goodness-of-fit, robustness and 

external predictive ability (e.g. R
2
, Q

2
LOO, R

2
ys, Q

2
EXT-F1, RMSE). Details regarding QSAR development 

and validation are provided in Publication I. 

For the selection of the best models, the analysis of the applicability domain was also performed. 

This included the identification of response outliers (compounds with cross-validated standardized 

residuals greater than 2.5 std) and of chemicals that were structurally very influential in determining 

the parameters of the models (h > h*).  The structural domain defined by the hat cut-off value (h*) 

was used also to assess the reliability of predictions generated by the models for chemicals without 

experimental data. Predictions obtained for high leverage chemicals (h > h*) were considered as 

model extrapolations and assessed as not reliable. 

3.2.4.2 Classification models 

Classification models were built by applying the k-nearest neighbour (k-NN) method (Sharaf et al., 

1986;  Zheng and Tropsha, 2000). The k-NN method was applied to auto-scaled data, and the a priori 

probability of belonging to a class was set as proportional to the number of chemicals in the defined 

classes of ED potency. The predictive power of the model was checked for k values between 1 and 

10. 

Due to the small dimensions of the training sets, only models based on a maximum of two variables 

were considered. All the possible combinations of molecular descriptors were explored by 

maximizing the overall percentage of correct assignments (OA%) and the population of the best 100 

models was analysed for each modelled endpoint.  

Moreover, parameters sensitivity (Sn) and specificity (Sp) were calculated for all the studied 

endpoints. For the endpoints T4-TTRcomp and E2SULTinh, for which 3 classes of activity were defined 

according to Table 3.1, Sn was calculated after grouping into a single class of “active” chemicals 

belonging to Class 2 (moderately active) and 3 (very active). 

In a precautionary approach, it was preferred to select models that minimized the number of false 

negative (i.e. active compounds classified as inactive). 
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To define the applicability domain of the classification models two approaches were combined. The 

first approach was based on the range of modelling descriptors defined by the training set chemicals. 

The second method was based on the calculation of Euclidean distance (from the structural 

similarity) and was performed by the software ToxMatch (ver. 1.06). For each class, compounds 

having a Euclidean distance higher than the training set were considered as structural outliers 

(beyond the AD of the model). 

Predictions of compounds lying outside the structural domains of the proposed models were 

considered as model extrapolations. 

3.3 QSAR models for ED potency of BFRs  

Equations, modelling descriptors and statistical performance of the proposed models are 

summarised in Table A-3 (regression models) and Table A-4 (classification models) in Appendix I. 

Despite the limited amount of experimental data available (datasets composed of 8 up to 29 

chemicals), both regression and classification models developed in this study are characterized by 

high fitting power, internal robustness and external predictivity. As anticipated in section 3.2.2, all 

the models were applied to predict unknown activity of over 200 BFRs without experimental data for 

screening and prioritization purposes. The analysis of the applicability domain of the models, which is 

particularly relevant when dealing with small datasets, highlighted that the majority of the 

considered BFRs were included in the AD of the models, with a percentage of reliable predictions 

ranging from 75 to 100%. 

Specific comments and discussion concerning mechanistic interpretation of modelling descriptors 

and applicability domain of the proposed models (i.e. interpolated and extrapolated predictions) are 

reported in Publications I and II.  

Some general remarks resulting from the analysis of both regression and classification results are 

here reported.  

Higher binding affinity with and consequent activation of the dioxin receptor AhR was predicted for 

low and medium brominated PBDE congeners (mono-penta PBDEs) with few or without ortho 

substituents. The presence of bromine atoms in ortho positions is highly relevant in 3D conformation 

of the diphenylethers since they induce a rotation (~90°) of one phenyl ring around the C-O-C central 

plane (Zhao et al., 2008; Hu et al., 2005). Conversely, PBDEs without Br substituents at the ortho-

positions are more similar to dioxins and coplanar PCBs, for which high AhR binding affinity have 

been already demonstrated (Chen et al., 2001).   

Classification models developed for AR/PR antagonism highlighted a low to high activity for all BFRs, 

except those having all meta- and para-positions substituted (i.e. PBDEs with [3,3’,4,4’,5,5’] 

substitution pattern, TBBPA-derivates and deca-BDE alternatives). The fact that meta and para Br 
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substitutions are unfavorable for AR antagonism by PBDEs was also confirmed in the molecular 

docking study of Yang and co-workers (Yang et al., 2009). 

QSAR predictions for ER agonism and antagonisms are also in line with experimental observation 

(Meerts et al., 2001; Hamers et al., 2006). In particular, estrogenic activity through ER binding was 

predicted for lower-brominated PBDEs, while higher-brominated PBDEs were predicted as ER 

antagonists. Antiestrogenic activity was also predicted for OH-PBDEs. Similar results were obtained in 

vitro for OH-PCBs (Moore et al., 1997). In this thesis estrogenic activity of BFRs was also investigated 

by modelling E2SULT inhibiting potency. E2SULT inhibition comparable to the reference compound 

PCP (pentachlorophenol) was predicted for OH-PBDEs with hydroxyl groups in meta- and para-

positions, bromophenols and bisphenol-A analogues. These QSAR predictions are in fair agreement 

with experimental results from Kester et al. (2002), who suggested that E2SULT inhibition could be 

favoured by planar hydroxylated polyhalogenated derivatives of PCBs, polychlorinated 

dibenzodioxins and furans (PCDD/Fs), PBDEs, tetrabromo- and tetrachlorobisphenol-A.  Moderate 

E2SULT inhibiting potency have been predicted for the majority of PBDEs. In particular, a trend of 

increasing activity from higher to lower brominated congeners was found.  

Finally, the modelling of T4-TTR competing potency predicted an affinity toward TTR higher or 

comparable than the natural ligand T4 (IC50 = 0.055 μM (Hamers et al., 2006)) for all the BFRs 

containing an aromatic hydroxyl group (i.e. OH-PBDEs, brominated phenols and bisphenols A 

compounds). In particular, the regression model highlighted higher T4-TTR competing potency for 

OH-BDEs with hydroxyl groups in meta- and para-positions in comparison to ortho-OH-PBDEs. The 

structural resemblance of many BFRs, and in particular OH-PBDE metabolites, to thyroxin is evident 

(Figure 3.1).  

 

Figure 3.1. Structures of Thyroxine T4 (a) and 6-OH-BDE-47 (b). 
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This result is in agreement with experimental and in-silico observations reported in the literature 

(Hamers et al., 2008; Meerts et al., 2000; Harju et al., 2007) that the phenolic group is required to 

increase TTR binding affinity because the natural ligand T4 is also hydroxylated. 

QSAR predictions, AD information and values of modelling descriptors are available as supporting 

information in Publication I and II. 

3.4 Screening and prioritization of PBDEs 

As part of the CADASTER project activities, a prioritization of BFRs, and in particular of PBDEs, was 

required in order to optimize the experimental testing to perform within WP2.  

For this purpose, a characterization of the toxicological profile of BFRs was performed within this 

thesis and combined to structural similarity analysis. This activity was finalized to suggest a limited 

subset of potentially most hazardous BFRs that, at the same time, covered a broad variation in the 

structural chemical domain.   

The 243 BFRs considered in this study were screened for the potential hazard on the basis of the 

available information on their endocrine disruption potency, which included both experimental data 

and QSAR predictions generated by the here proposed regression and classification models. Only 

reliable predictions (i.e. prediction for chemicals included in the AD of all the models) were used for 

screening purposes. It is to note that all the proposed models were characterized by wide 

applicability domains, providing reliable (interpolated) predictions for over 85% of the studied BFRs 

for almost all the endpoints.  

As it was commented in the previous paragraph, the modelled endpoints covered a wide range of ED 

mechanisms, each involving specific interactions between chemicals and the target protein complex 

(receptor, transporter or enzyme), and this prevented us from performing a ranking of BFRs 

according to their “general” endocrine disrupting activity. However, an attempt to prioritize BFRs for 

ED potency was done by analysing separately two different types of ED responses: i) dioxin-like 

activity, which included the endpoints AhR RBA, EROD induction and AhR agonism, and ii) other ED 

pathways, considering ER agonism, PR antagonism, T4-TTR competing potency and E2SULT inhibition.  

Within the two groups of ED activity, chemicals were ordered according to increasing activity (or 

separated by classes of ED potency). Chemicals showing the highest potency for all the considered 

endpoints were selected as potentially more hazardous. 

Two separate lists of the most active BFRs for dioxin-like activity and for other ED pathways were 

then provided to the CADASTER partners responsible for the experimental testing (Table 3.2). 
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Table 3.2. Prioritized BFRs on the bases of potential ED potency (experimental and predicted by 

QSARs).  

Dioxin-like activity Other ED pathways 

BDE-002 BDE-037 BDE-082 BDE-170 BDE-196 BDE-001 BDE-049 BDE-140 BDE-200 

BDE-003 BDE-039 BDE-085 BDE-171 BDE-198 BDE-002 BDE-050 BDE-142 BDE-201 

BDE-011 BDE-041 BDE-096 BDE-173 BDE-199 BDE-004 BDE-084 BDE-145 BDE-203 

BDE-012 BDE-042 BDE-108 BDE-177 BDE-206 BDE-005 BDE-086 BDE-170 BDE-204 

BDE-013 BDE-054 BDE-119 BDE-178 4OH-BDE-42 BDE-008 BDE-088 BDE-171 BDE-207 

BDE-015 BDE-055 BDE-122 BDE-181 2’OH-BDE-66 BDE-009 BDE-089 BDE-172 6OH-BDE-47 

BDE-022 BDE-056 BDE-126 BDE-185 4-BP BDE-018 BDE-091 BDE-174 6OH-BDE-99 

BDE-028 BDE-060 BDE-127 BDE-190  BDE-040 BDE-102 BDE-180 6’OH-BDE-49 

BDE-033 BDE-066 BDE-134 BDE-192  BDE-041 BDE-104 BDE-190 6OH-BDE-90 

BDE-035 BDE-077 BDE-136 BDE-193  BDE-044 BDE-115 BDE-197  

BDE-036 BDE-079 BDE-142 BDE-195  BDE-048 BDE-133 BDE-198  

 

The prioritization based on potential hazard was then combined with a multivariate structural 

characterization, which was performed by the CADASTER Partner LnU.  

Principal component analysis (PCA) was applied to theoretical molecular descriptors calculated for 

209 PBDEs. In this case a subset of 30 PBDEs was first identified according to the environmental 

relevance (i.e., PBDE most commonly found in the environment, such as BDE-28, -47, -99, -100, -153, 

-154, -183, -209), and availability of chemicals for the experimental tests (as indicated by Partner PHI, 

responsible for testing). These chemicals are highlighted in red in Figure 3.2, which plots the first two 

principal components of the PCA analysis based on theoretical molecular descriptors. 

 
Figure 3.2. PCA analysis (plot of PC1 vs. PC2) of 209 PBDE congeners. 
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Among these compounds, the Partner LNU suggested 16 PBDE congeners characterized by a wider 

structural diversity, taking into account both the degree and the substitution pattern of bromine 

atoms (Table 3.3). 

Table 3.3. List of priority compounds, with eventually alternatives, based on structural similarity. 

No BDE No. Br No. ortho 

1 #17, #30 or #32 3 2 

2 #28 3 1 

3 #35 or #37 3 0 

4 #47 4 2 

5 #66 4 1 

6 #77 4 0 

7 #99 5 2 

8 #100 5 3 

9 #118 5 1 

10 #126 5 0 

11 #153 6 2 

12 #154 6 3 

13 #155 6 4 

14 #183 7 3 

15 #190 7 2 

16 #209 10 4 

17 #85 5 2 

18 #138 6 2 

 

After this experimental design based on toxicological and structural characterization, a final set of 12 

PBDE congeners (Table 3.4) was selected by the Partner PHI for testing bioconcentration (BCF) and 

bioaccumulation (BAF) potential in sediment for the species Tubifex tubifex.  

 

Table 3.4. PBDE congeners selected for experimental testing. 

No Selected PBDEs  

1 BDE-2  

2 BDE-26  

3 BDE-66 TBDE-71X 

4 BDE-77  

5 BDE-99  

6 BDE-119 TBDE-71X 

7 BDE-180 TBDE-79X 

8 BDE-197 TBDE-79X 

9 BDE-198  

10 BDE-203 TBDE-79X 

11 BDE-204  

12 BDE-207 TBDE-79X, TBDE-83RX 
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Section II. T4-TTR competing potency of BFRs and PFCs 

The second section of this chapter will be focused on the investigation of a specific mechanism 

through which some organic pollutants may interfere with the endocrine system, i.e. T4-TTR 

competing potency. As described in the previous section, T4-TTR competition consists in the ability of 

an exogenous chemical to compete with and displace the circulating thyroid hormone T4 from the 

binding sites of its transport protein transthyretin (TTR), with a consequent alteration of serum levels 

of T4.  

In the cerebrospinal fluid TTR is the primary carrier of T4, whose levels are of crucial importance 

especially during the development of the central nervous system. Alteration of T4 levels in the 

sensitive phases of gestation and early life stages may seriously affect foetal and neonatal 

development (de Escobar et al., 2004). Experimental evidences indicated that halogenated pollutants 

such as brominated flame retardants and perfluorinated compunds may compete with T4 for the 

binding to TTR (Weiss et al., 2009; Meerts et al., 2000; Hamers et al., 2006; Gutshall et al., 1989; Lau 

et al., 2007; Chang et al., 2008;  Ucán-Marin et al., 2010). TTR binding potency of these chemicals, in 

some cases even higher than the natural ligand T4, was explained by the structural resemblance of 

many BFRs (PBDEs and OH-BDEs in particular) to T4 (Hamers et al., 2006) and by the “polar-

hydrophobic” nature of PFCs, which determines high affinity for protein binding (Weiss et al., 2009; 

Biffinger et al., 2004).  

In order to investigate the structural features involved in TTR binding affinity of these two classes of 

emerging pollutants, quantitative structure-activity relationships were developed  specifically for 

BFRs and PFCs by applying different modelling approaches, i.e. regression and classification 

(Publications I, II and III). These “local” models were then  applied to predict T4-TTR competing 

potency of a big set of BFRs and PFCs without experimental data.  

Another interesting issue was to investigate whether structurally different chemicals like PFCs and 

BFRs could share the same mechanism of interaction with the carrier TTR. An experimental evidence 

of this assumption was found in a study by Peterson et al. (1998), where the authors analysed the 

interactions between TTR and the anti-inflammatory drug flufenamic acid (Flu) by X-ray 

crystallography. In Figure 3.3, the structure of Flu is reported and compared with the chemical 

structures of an hydroxy-PBDE (OH-BDE-47) and the perfluoroalkyl acid (PFOA). 
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Figure 3.3. Chemical structures of an hydroxylated PBDE (a), Flu (b) and PFOA (c). The common structural 

features probably implied in the binding with TTR are highlighted (Figure from Publication III). 

 

The study performed by Peterson and co-workers allowed to identify the specific binding sites 

between TTR and Flu responsible for the formation of the Flu-TTR binary complex (i.e. Flu interacts 

with residues of two adjacent TTR molecules). In particular, the molecular interaction involves the 

following structural fragments of Flu: i) the CF3 substituent, which occupies the innermost halogen-

binding pocket, interacting with Ser- 117, Thr-119, Leu-110, and Ala-108, ii) the biphenyl system, 

which interacts with a hydrophobic patch of the T4 binding site (between the residues Leu-17, Thr-

106, Ala-108, Thr-119, and Val-121), and iii) the carboxylate group, which is placed at the entrance of 

the funnel-shaped binding pocket, forming electrostatic interactions with the side chains of the Lys-

15 residues from opposing TTR subunits (Peterson et al., 1998). 

As can be observed in Figure 3.3, some of the structural features involved in Flu-TTR binding can be 

found both in BFRs (i.e. biphenyl system) and PFAAs (-CF3 and -COOH as opposite terminal groups). 

Therefore, the Flu-TTR mechanism of binding supports the idea of a similar interaction of PFCs and 

BFRs with TTR. It was then decided to explore the possibility of defining a quantitative relationship 

between the structures of BFRs and PFCs and their T4-TTR competing potency, and to develop a 

single “common” QSAR model for these two classes of halogenated chemicals (Publication IV).  
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3.5 Methods 

3.5.1 Datasets 

Training sets used for the development of the local models for BFRs are reported in Table A-1 and 

consists of 17 data of T4-TTR relative competition (T4-REP values), used for the regression model, 

and 29 data of T4-TTR competing potency, including 12 inactive, 9 moderately active and 8 very 

active chemicals (Hamers et al., 2006; Hamers et al., 2008), which were used for the classification 

model. 

Experimental data for T4-TTR competing potency of PFCs were collected from literature (Weiss et al., 

2009) and were used for the development of classification models. The experimental data set 

consisted of 24 PFCs with different carbon chain length, fluorination degree and functional groups, 

including several perfluorinated alkyl acids (PFAA), sulfonates (PFAS), sulfonamides and telomer 

alcohols (FTOH). The measured IC50 values were converted into two classes of T4-TTR competing 

potency according to the classification criteria proposed by Hamers and co-workers (Table 3.1), 

which were the same criteria used for the class assignment of BFRs. In particular, all the compounds 

showing any evidence of T4-TTR competing potency (from low to very high) were assigned to the 

class ‘1’ (active); the remaining inactive compounds were assigned to the class ‘2’. 

For modelling purposes, the five PFAS were converted into the respective sulfonic acids (PFAS(A)) 

and not included in the training set used to develop the QSAR models. The predictions obtained for 

these compounds in acidic form were then compared with the experimental data measured for the 

corresponding salts. 

Finally, experimental data available for BFRs and PFCs were combined in a common dataset used for 

the development of regression models (32 compounds, including 15 PFCs and 17 BFRs) and 

classification models (53 compounds, including 24 PFCs and 29 BFRs). The endpoint modelled by 

regression was the logarithm of the relative binding potency toward T4 (logT4-REP), while for 

classification purposes three classes of T4-TTR competing potency were considered, i.e. no activity 

(Class 1), moderate activity (Class 2) and high activity (Class 3), according to the same classification 

criteria previously used (Table 3.1). The five PFAS(A) were included in the common dataset, since the 

results obtained from the local model developed for PFCs suggested that the salt-to-acid conversion 

did not influence the modelling results. 

The different experimental datasets used in this study are reported in Table 3.5.  
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Table 3.5. Datasets used for the development of the local models for BFRs (regression and 

classification) and PFCs (classification), and for the common models (regression and classification).  

ID Name Name extended Log T4-REP Class T4-TTR 

19 BDE-019 2,2',6-triBDE  -- 1 

28 BDE-028 2,4,4'-triBDE  -- 1 

38 BDE-038 3,4,5-triBDE -2.66 2 

39 BDE-039 3,4',5-triBDE  -- 1 

47 BDE-047 2,2',4,4'-tetraBDE -2.66 2 

49 BDE-049 2,2',4,5'-tetraBDE -2.66 2 

79 BDE-079 3,3',4,5'-tetraBDE  -- 1 

99 BDE-099 2,2',4,4',5-pentaBDE  -- 1 

100 BDE-100 2,2',4,4',6-pentaBDE  -- 1 

127 BDE-127 3,3',4,5,5'-pentaBDE -2.6 2 

153 BDE-153 2,2',4,4',5,5'-hexaBDE  -- 1 

155 BDE-155 2,2',4,4',6,6'-hexaBDE  -- 1 

169 BDE-169 3,3',4,4',5,5'-hexaBDE -2.66 2 

181 BDE-181 2,2',3,4,4',5,6-heptaBDE -2.1 2 

183 BDE-183 2,2',3,4,4',5',6-heptaBDE  -- 1 

185 BDE-185 2,2',3,4,5,5',6-heptaBDE -2.13 2 

190 BDE-190 2,3,3',4,4',5,6-heptaBDE -2.21 2 

206 BDE-206 2,2',3,3',4,4',5,5',6-nonaBDE  -- 1 

209 BDE-209 2,2',3,3',4,4',5,5',6,6'-decaBDE  -- 1 

214 TBBPA 3,3',5,5'-tetrabromobisphenol-A 0.25 3 

215 246-TBP 2,4,6-tribromophenol 1.06 3 

216 6OH-BDE-47 6-OH-2,2',4,4'-tetraBDE -0.51 3 

221 HBCD hexabromocyclododecane γ  -- 1 

222 TBBPA-DBPE tetrabromobisphenol-A-bis(2,3)dibromopropyl ether -1.98 2 

224 4-OH-BDE-42 4-OH-2,2',3,4'-tetraBDE 0.54 3 

225 3-OH-BDE-47 3-OH-2,2',4,4'-tetraBDE 0.6 3 

226 5-OH-BDE-47 5-OH-2,2',4,4'-tetraBDE 0.48 3 

227 4'-OH-BDE-49 4'-OH-2,2',4,5'-tetraBDE 0.54 3 

228 2'-OH-BDE-66 2'-OH-2,3',4,4'-tetraBDE -0.19 3 

244 PFHxA Perfluorohexanoic acid -2.15 2 

245 PFDoA Perfluorododecanoic acid -3 2 

246 PFOA Perfluorooctanoic acid -1.19 3 

247 PFDcA Perfluorodecanoic acid -2.15 2 

248 PFHxS(A)* Perfluorohexane sulfonic acid -1.07 3 

249 PFBA Perfluorobutyric acid  -- 1 

250 PFBS(A)* Nonafluorobutane sulfonic acid -2.52 2 

251 PFHpA Perfluoroheptanoic acid -1.41 2 

252 PFNA Perfluorononanoic acid -1.66 2 

253 PFTdA Perfluorotetradecanoic acid -2.7 2 

254 FTOH(6:2) 2-Perfluorohexyl ethanol  -- 1 

255 FTOH(8:2) 2-Perfluorooctyl ethanol  -- 1 

256 FOSA Perfluorooctane sulfonamide -2 2 

257 7H-PFHpA 7H-Perfluoroheptanoic acid -2.15 2 

258 N-EtFOSE 2-(N-ethylperfluoro-1-octane sulfonamido) ethanol  -- 1 



Chapter 3                                                  QSAR Modeling of Endocrine Disrupting Potency: BFRs and PFCs 

 67 

ID Name Name extended Log T4-REP Class T4-TTR 

259 PFOS(A)* Perfluorooctane sulfonic acid -1.19 3 

260 PFUnA Perfluoroundecanoic acid -2.52 2 

261 N-EtFOSA N-ethyl perfluorooctane sulfonamide  -- 1 

262 N-MeFOSE 2-(N-methylperfluoro-1-octane sulfonamido) ethanol  -- 1 

263 N-MeFOSA N-methyl perfluorooctane sulfonamide  -- 1 

264 FTUA(6:2) 2H-Perfluoro-2-octenoic acid (6:2) -2.15 2 

265 N,N-Me2FOSA N,N-dimethyl perfluorooctane sulfonamide  -- 1 

266 L-PFDS(A)* Perfluorodecane sulfonic acid  -- 1 

267 L-PFOSi(A)* Perfluorooctane sulfinic acid -1.46 2 

  NTR (BFRs) 17 29 

  NTR (PFCs) 15 24 

  NTR (Tot) 32 53 

(*) Perfluoroalkylsulfonic acids (PFAS(A)) not included in the training set of the classification model for PFCs. 

 

An additional set of over 200 BFRs (Appendix I, Table A-2) and 33 PFCs (poly- and per-fluorinated 

compounds with different carbon chain lengths and functional groups, e.g. carboxylates, sulfonates, 

sulfonamides, alcohols, acrylates, etc. – Appendix I, Table A-5) of possible environmental concern 

with unknown T4-TTR competing potency was considered for screening purposes. Many of these 

chemicals are of interest for REACH Regulation and the evaluation of their potential toxicity has been 

one of the topics of the CADASTER Project.  

3.5.2 Molecular structures and descriptors 

The structures of the studied PFCs and BFRs were created and energetically optimized by the semi-

empirical method AM1 using the HYPERCHEM program. The software DRAGON was then used for the 

calculation of mono-, bi- and tri-dimensional molecular descriptors. Constant, near-constant and 

pair-wise correlated descriptors were excluded and the remaining descriptors were used as input 

variables for the further variable selection procedure, which was necessary to select the best QSAR 

models based on a limited amount of variables (up to 2 or 3 variables).  

3.5.3 QSAR modelling and applicability domain 

The modelling approach and methods used for the development of regression and classification 

models for T4-TTR competing potency was the same described in section 3.2.4. All the datasets were 

first split into training and prediction sets, and once verified the predictive ability of the selected 

variables (Split models), the models were recalibrated using all the available experimental data (Full 

models).  

The selection of the modelling variables for the local models of BFRs and PFCs was performed by 

applying the All Subset Selection method, which explores all the combination of molecular 

descriptors up to two variables. The availability of a larger training set for the development of the 
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common models for BFRs and PFCs (32 data for the regression model and 53 data for the 

classification model), allowed us to train the models up to three variables. The GA-based variable 

selection procedure was started after the All Subset Selection to explore the combinations of 

descriptors up to three variables in the models.  

The applicability domain of both regression and classification models was defined by the leverage 

approach. 

3.6 Local models for T4-TTR competing potency of BFRs 

The local QSAR models developed for BFRs have been already described in section 3.3. They consist 

in a multiple linear regression based on two variables, i.e. qpmax and MATS6v, and 17 BFRs in the 

training set, and a k-NN classification model developed on a training set of 29 BFRs and based on the 

molecular descriptors nArOH and DISPe. Equation and statistical performances of the two models are 

reported in Tables A-3 and A-4.  

Consistent predictions were found when the regression and classification models were applied to 

predict T4-TTR competing potency of 243 BFRs. Both QSARs identified as very active all the 

hydroxylated PBDE metabolites and hydroxylated BFRs, such as bromophenols and TBBPA analogs. 

The higher TTR binding affinity of hydroxylated BFRs, even exceeding that of the natural ligand T4, 

has already been documented in the literature (Meerts et al., 2000; Hamers et al., 2006; Hamers et 

al., 2008) and can be explained by their structural resemblance to the hormone T4. Moderate T4-TTR 

competing potency was predicted for most of PBDEs. However, different structural information was 

identified as relevant for increasing  T4-TTR competition by regression and classification models. In 

particular, the regression model predicted higher activity for tetra to octa-PBDEs with ortho-2,2’,6,6’- 

or 2,2’,6-bromines, mainly in absence of 3,3’ substitutions. The majority of PBDE congeners classified 

as moderately active by the k-NN model were characterized by an asymmetric distribution of Br 

substituents in the phenyl rings (information encoded by the modelling descriptor DISPe). 

3.7 Local models for T4-TTR competing potency of PFCs 

To predict T4-TTR competing potency of PFCs, four best classification models were identified and a 

prediction by consensus was proposed (Publication III). The four models were first developed on a 

training set of 10 chemicals (Split models) and externally validated on the remaining chemicals 

included in the prediction set (9 PFCs). Despite the limited dimension of the training set, the 

developed QSARs showed high classification accuracy for both training and prediction set chemicals 

(overall accuracy > 90%). Once the predictive ability of the models was verified, the four classification 

models were newly calibrated using all the 19 experimental data (Full models). Molecular descriptors 

and classification performance of Split and Full models are reported in Table 3.6, where can be 
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observed that the use of all the experimental information further improved classification accuracy 

(100% correct assignments for all the four full models). 

Table 3.6. Descriptors and parameters of the best four local classification models for PFCs. 

ID Descriptors k set n Sn Sp OA% 

M1 AMW, HATS6m 1 Training set 10 1 1 100 

   Prediction set 9 1 1 100 

   Full dataset 19 1 1 100 

M2 nH, HATS6m 1 Training set 10 1 0.75 90 

   Prediction set 9 1 1 100 

   Full dataset 19 1 1 100 

M3 nH, F06[C-O] 1 Training set 10 1 1 100 

   Prediction set 9 1 0.75 90 

   Full dataset 19 1 1 100 

M4 T(F..F), HATS6m 1 Training set 10 0.83 1 90 

   Prediction set 9 1 1 100 

   Full dataset 19 1 1 100 

 

In this case, the proposal to apply the consensus approach was not to improve the intrinsic statistical 

performances of the models, rather to cover a wider structural domain of applicability, provided by 

the five molecular descriptors AMW, HATS6m, nH, F06[C-O], and T(F..F), and possibly to guarantee 

predictivity toward new compounds, after a proper check of the AD. 

This assumption is supported by the fact that the five modelling descriptors encode for different 

structural features that have been experimentally identified to be relevant for the interaction with 

TTR (Weiss et al, 2009). In particular, AMW is a constitutional descriptors representing the average 

molecular weight and, therefore, is an index of the molecular dimension. The fingerprint F06[C-O] 

counts the frequency of C-O at topological distance 6 and is related to both the length of the carbon 

chain and to the number of oxygen atoms. nH counts the number of hydrogen atoms and, in the 

studied dataset, was able to discriminate poly- from per-fluorinated compounds as well as the 

chemicals with different terminal functional groups. More precisely, low nH values were calculated 

for PFAA and PFAS (nH = 1-2) and high values for FTOHs, sulfonamides and sulfonamido-etOH (nH = 

4-10). In the study performed by Weiss and co-workers, acidic PFAA and PFAS (pKa < 3), which were 

dissociated in the test system (pH = 8), showed a much higher TTR binding potency than non acidic 

PFCs, such as FTOHs and perfluoroalkyl sulfonamides (non dissociated in the test system). Therefore, 

the type of functional end group, which determines the anionic state of PFCs (i.e. COO
- 
and SO3

-
), is a 

relevant structural feature influencing the affinity to TTR. This stresses the importance of the 

theoretical descriptor nH in modelling T4-TTR competing potency.  
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Another simple, but relevant descriptor is T(F..F), which summarizes the topological distances 

between F atoms in the molecule; T(F..F) is related to the fluorination degree, which is another factor 

known to change the affinity to TTR.  

The only tri-dimensional descriptor selected by GA was HATS6m (leverage weighted autocorrelation 

of lag 6), a GETAWAY descriptor weighted by atomic masses (Consonni et al., 2002). Beyond the 

specific structural meaning of this 3D descriptor, a simple interpretation was provided by relating its 

values with molecular weight (MW) and carbon chain length (nC) of the studied compounds. In 

particular, a parabolic-like relationship was found for PFAA and PFAS between HATS6m and MW 

(Figure 1 of Publication III). For these two groups of PFCs, it was verified that HATS6m has the largest 

values for compounds with a MW in the range of 300–500 g/mol and an intermediate carbon chain 

length (i.e. 6<nC<11 for PFAA and 5<nC<8 for PFAS). Additionally, the comparison of HATS6m values 

with the degree of T4-TTR competing potency (Figure 3.4) highlighted that increasing values of the 

descriptor corresponded to an increase of T4-TTR competing potency. Therefore, also the structural 

information encoded by HATS6m is crucial for classifying active and inactive chemicals, and provide 

an additional information concerning the degree of TTR affinity.  

 

Figure 3.4. Relationship between HATS6m values and degree of T4-TTR competing potency. 

Overall, the modelling molecular descriptors, selected from among a large population of input 

descriptors, provide integrated information on the molecular carbon chain length, fluorination 

degree and type of functional end group of PFCs, thus encoding exactly the same structural features 

that were experimentally found to be relevant for TTR binding (Weiss et al., 2009).  

Consensus predictions based on the four Full models were generated for the five PFAS, whose 

activity was measured for the respective salts, and the 33 additional PFCs lacking experimental data. 

The class assignment by consensus was based on the predictions obtained by the majority of models 

(at least three models) or, in case of opposite predictions (i.e. 2 models predicting as ‘active’ and the 

other 2 predicting as ‘inactive’), the most precautionary prediction (i.e. ‘active’) was assigned. 
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All the PFAS were classified as active, probably overestimating the activity of L-PFDS(A), which is the 

perfluoroalkyl sulfonic acid with the longer carbon chain (nC=10), whose salt was measured as 

inactive. 

Among the 33 PFCs screened in this study for their T4-TTR competing potency, all the PFAA with a 

carbon chain from 6 to 15 atoms, all the PFAS, perfluoropentane- and perfluorohexanesulfonyl 

fluorides, perfluorooctanamide and 1,1,2,2-tetrahydroperfluorohexyl iodide were predicted as 

active. the fluorotelomer alcohols were classified as inactive, as it was also reported in literature 

(Weiss et al., 2009). While the presence of hydroxyl groups attached to an aromatic ring system play 

a key role in enhancing TTR affinity, as it is the case of the natural ligand T4 or other potent TTR-

binding compounds (e.g. OH-PBDEs and bromo-phenols), the hydroxyl group itself is not essential for 

binding to TTR (Weiss et al., 2009). Other compounds predicted as inactive were the perfluoroalkyl 

sulfonamides, polyfluorinated chemicals containing one or more aromatic rings and PFCs with 

terminal groups, such as cyano or acrylates. 

QSAR predictions and values of the five modelling descriptors for all the 57 studied PFCs are available 

as Supplementary Material of Publication III. 

3.8 Global models for T4-TTR competing potency of BFRs and PFCs 

Two different modelling approaches, i.e. MLR regression and classification by k-NN, have been 

applied for the development of QSAR models able to quantitatively define the structural features 

responsible for the interaction of BFRs and PFCs with TTR. 

The best models for the prediction of T4-TTR competing potency have been proposed in Publication 

IV and are reported in the following tables (Table 3.7 and Table 3.8). 

Table 3.7. Molecular descriptors and statistical performances of the classification model proposed 

for T4-TTR competing potency. 

Modelling Descriptors Model  set n k Sn% Sp% OA% 

nArOH, F03[Br-Br], HATS6m Split Model Training set 37 5 91 79 82 

  Prediction set 16 5 89 86 81 

 Full Model  Training set 53 5 94 86 87 
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Table 3.8. Molecular descriptors and statistical performances of the regression model proposed for 

T4-REP. 

Modelling Descriptors Model set n R
2
% Q

2
loo% RMSE Q

2
ext% CCC% 

R5u, F07[C-O], nArOH Split Model Training set 23 89 81 0.42 -- 94 

  Prediction set 9 -- -- 0.34 88-93 95 

 Full Model Training set 32 89 84 -- -- 94 

 

All the models were first developed on a reduced training set (Split Models) in order to verify the 

predictive ability of the modelling variables on the prediction set, and then calibrated using all the 

available experimental data (Full Models). As it can be observed in Tables 3.7-8, the statistical 

parameters calculated to verify internal robustness and external predictivity (i.e. classification 

accuracy, Sn and Sp for classification and R
2
 and Q

2
 criteria for regression) have values always higher 

than 80%, indices of stable and predictive models. Details regarding model validation, interpretation 

of descriptors and applicability domains, in addition to the proposed MLR regression equation, are 

reported in Publication IV. 

 It is important to highlight that some of the modelling variables selected by the genetic algorithm, 

among hundreds of molecular descriptors, encoded for the same structural features recognized in 

literature as relevant for the interaction with TTR (Hamers et al., 2008; Harju et al., 2007; Peterson et 

al., 1998). Among these:  

i) nArOH (selected both in the classification and regression model, and already included in the local 

model for BFRs), which counts the number of aromatic hydroxyl groups, that are known to increase 

the TTR-binding capacity of BFRs;  

ii) F07[C-O], which counts the frequencies of C-O at topological distance 7, and takes into account the 

presence of phenolic OH in BFRs as well as carboxylic and sulphonic acid groups attached to carbon 

chain at a specific distance (07), which characterises the most active PFCs;  

iii) HATS6m, which is a 3D descriptor (already selected as relevant in the local models for PFCs) 

encoding for atomic heterogeneity, molecular dimension and shape. As was already commented in 

the previous paragraph, HATS6m is able to recognize the most active PFCs, taking into account the 

presence of the -COOH/SO3H groups, the carbon chain length (i.e. 6<nC<11 for PFAA and 5<nC<8 for 

PFAS) and molecular weight (MW range 300-500 g/mol). 

Additionally, the 3D GATAWAY descriptor R5u was particularly important in modelling T4-REP 

(regression model) of BFRs and PFCs, since was able to distinguish among active and inactive PFCs 

and BFRs in the same region of MW (330-550 g/mol). 
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3.9 Conclusions 

In the present thesis, endocrine disruption potential of two classes of emerging halogenated 

pollutants, i.e. BFRs and PFCs, was investigated by quantitative structure-activity relationships.  

Simple MLR regression (Publications I) and k-NN classification models (Publications II) have been 

developed specifically for BFRs for several endpoints related to ED potency, including binding affinity 

with Ah receptor and induction of AhR-mediated pathway (i.e. “dioxin-like potential”), 

antiandrogenic and antiprogestagenic properties, estrogenic activity by interaction with ER and 

inhibition of E2 metabolism, and interference with T4 transport by binding with TTR. The analysis of 

modelling molecular descriptors was useful to highlight some structural features and important 

structural alerts that could increase ED activity, such as the presence of Br atoms in meta/para-

positions (with unoccupied ortho-positions), inducing dioxin-like activity, and the presence of 

aromatic hydroxyl groups, that greatly increased TTR affinity, E2SULT inhibition as well as 

antiestrogenic activity. The presence of aromatic OH- group is a known structural alert for ED 

potency (Liu et al., 2007; Roncaglioni et al., 2008; Li and Gramatica, 2010). All the proposed models 

were applied for the prediction of ED potential for over 200 BFRs (including three alternative 

compounds to the banned deca-BDE) without experimental data. The screening of BFRs allowed to 

prioritize the most hazardous chemicals (on the basis of ED potency profile), that have been 

suggested to other partners involved in the CADASTER Project in order to optimize the experimental 

testing.  

Particular attention was focused on the endpoint T4-TTR competing potency, for which experimental 

homogeneous data (i.e. measured by the same working group using the same in vitro assay) were 

available for both BFRs and PFCs. For this endpoint, local classification models were developed for 

PFCs and, also in this case, were applied to screen 33 PFCs without experimental data (Publication 

III). The best molecular descriptors selected for modelling this activity encode for the key structural 

features involved in TTR binding affinity: the simultaneous presence of an alkyl chain of specific 

length (between 6–10 atoms), and of a trifluoromethyl and a carboxylic (or sulfonic) opposite 

terminal groups. This finds confirmation in the experimental evidences reported in literature. 

Additionally, robust QSAR models (MLR regression and k-NN classification) were developed including 

BFRs and PFCs in the training set (Publication IV). The development of a single QSAR for two classes 

of structurally different chemicals was performed in order to explore the possibility to identify the 

common structural features responsible for the binding of PFCs and BFRs to the same target (TTR).  

The molecular descriptors selected in the proposed models by GA procedure were found to be 

consistent with those selected in the local models for BFRs and PFCs, and encoded for the structural 

features involved in TTR binding highlighted by experimental studies: i) the presence of phenolic OH 
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in BFRs, ii) the presence of carboxylic and sulphonic acid groups attached to a carbon chain of specific 

length, resembling the length of the diphenyl ether (between 6-9 atoms for the most active PFCs), iii) 

the molecular dimension (MW up to 550 g/mol for both PFCs and BFRs), and iv) degree of 

bromination of non hydroxylated PBDEs. 

All the proposed models were developed in agreement with the OECD principles for acceptability of 

QSAR predictions in regulation. Particular attention was paid to model validation and applicability 

domain, which are basic aspects that should be evaluated when proposing robust and valid QSARs, 

especially when models are based on limited amount of experimental data.    

The complete list of training set chemicals, molecular descriptors, regression equations (of MLR 

models) and k values (for classification models) are provided in the publications here mentioned. This 

information allows for a transparent and feasible application of the proposed models. QSAR 

predictions for chemicals lacking experimental data as well as the information on reliability of the 

provided prediction (i.e. interpolated and extrapolated predictions) are also made available in the 

publications. 

The present study demonstrates how the QSAR approach is able to extract useful information also 

from limited amount of experimental data. QSAR predictions were here used to screen many 

chemicals without experimental data, to identify those compounds with the highest concern for ED-

related activity, and to perform experimental design in an optimized testing strategy.  
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4.1 Introduction 

Under the current international regulatory system dealing with chemical substances (e.g., REACH, 

Biocides Regulation, Water Framework Directive, Cosmetics Directive), the assessment of aquatic 

toxicity is among the basic requirements for environmental risk assessments of chemicals.  

Aquatic toxicity can be defined as the potential harm of a substance to living organisms in the aquatic 

environment. Defining an acceptable level of protection of the aquatic ecosystem that guarantees 

the protection of all the species and the functioning of the ecosystem itself is highly complex. 

Because of the impossibility to identify and test all the most sensitive species for all chemicals, a 

simplification and standardization of toxicity testing is needed. For this reason, to assess the aquatic 

toxicity only a very limited number of species are tested, namely an algal species, a crustacean 

species and a fish. These organisms cover the three key trophic levels of the aquatic ecosystem and 

are considered as surrogate for all aquatic organisms.  

In routine toxicity testing, acute and chronic tests are performed, where the toxicity of a chemical is 

mainly measured through mortality, decreased growth rate and lowered reproductive capacity. In 

acute toxicity testing, test species are exposed to increasing concentration of a chemical for a 

relatively short period of time (in relation to the life cycle of the organism); the aim of these tests is 

to determine the concentration of the chemical that will elicit a specific response, such as mortality 

or any other measurable adverse effect. Mortality is expressed as the median lethal concentration 

(LC50), which is the estimated concentration of the test material that will kill 50% of the test 

organisms in a predetermined period of time. Similarly, median effect concentrations (EC50) can be 

calculated for any specified effect. In chronic toxicity tests, effects are studied over prolonged 

periods of exposure, often over entire life cycles and usually the endpoints are primarily sub-lethal 

(such as growth) or measurements of reproductive output. Sub-chronic studies are of longer duration 

than acute exposure but generally do not exceed a period equivalent to one-third of the time taken 

for a species to reach sexual maturity (van Leewuen and Vermeire, 2007). 

In order to find application in regulatory field, testing methods for aquatic toxicity have been 

harmonized by the Organisation for Economic Cooperation and Development (OECD), which 

provided specific guidelines for different endpoints. A brief survey of the testing methods most 

commonly used for the assessment of aquatic toxicity is following and it’s supported by Table 4.1 

summarising the relative OECD technical guidelines. 

The standard acute toxicity test in fish is 96-hour LC50 test (OECD 203), which is the median lethal 

concentration measured after a 96 hours exposure of the tested organisms. Test species are usually 

juveniles of various fish species, e.g. zebrafish (Brachydanio rerio), fathead minnow (Pimephales 

promelas) or rainbow trout (Oncorhynchus mykiss). Chronic fish tests are normally performed using 
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eggs, embryos, or juveniles and last from 7 to more than 200 days. Test endpoints include hatching 

success, growth, spawning success, and survival. 

Acute and chronic tests are also conducted using crustacean, such as Daphnia magna, Daphnia pulex 

or any other suitable Daphnia species less than 24 h old. Acute toxicity test is based on the endpoint 

48-hour EC50, that is the concentration causing an immobilization in 50% of the test organisms (OECD 

202). Longer term testing through maturation and reproduction is used to assess chronic toxic effects 

(OECD 202, OECD 211). The chronic testing endpoints include time to first brood, number of offspring 

produced per female, growth, and survival. 

Testing procedures studying the toxic effects of chemicals on aquatic plants has centred on 

unicellular green algae (e.g. Pseudokirchneriella subcapitata), diatoms (Navicula pelliculosa) or 

cyanobacteria (Anabaena flos-aque or Synechococcus leopoliensis). The endpoints generally 

measured in phytotoxicity studies are photosynthesis and population growth. Because of the short 

life cycles, both acute and chronic endpoints can be obtained from these kinds of tests.  A 

standardized test typically used to determine an acute EC50 is the algal growth inhibition test (OECD 

201).  

Table 4.1. List of some test methods, with relative OECD technical guidelines (TG), available for the 

assessment of aquatic toxicity. 

OECD TG Test 

OECD 201  Algae, Growth Inhibition Test 

OECD 202  Daphnia sp.,  Acute Immobilisation Test and Reproduction Test 

OECD 211  Daphnia magna, Reproduction Test 

OECD 203  Fish, Acute Toxicity Test 

OECD 204  Fish, Prolonged Toxicity Test: 14-Day Study 

OECD 210  Fish, Early-Life Stage Toxicity Test 

OECD 212  Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages 

OECD 215  Fish, Juvenile Growth Test 

 

In environmental risk assessment of chemicals, acute toxicity tests may have two main applications. 

The first application consists in providing the basic set of acute toxicity data for the three trophic 

levels (i.e. algae, daphnids and fish). By applying specific assessment factors, these data can be used 

for the estimation of PNECs of a specific chemical (Chapter 1, section 1.1.2). Under REACH regulation, 

for example, acute toxicity data for algae, daphnids and fish are among the basic information 

required for the chemical safety assessment (CSA) and, therefore, are essential for the registration of 

chemicals (Chapter 1, section 1.1.3). 



Chapter 4                                              QSAR Modeling of Aquatic Toxicity of Triazoles and Benzotriazoles 

 79 

The second important application is for toxicological screening and classification of chemicals. 

International classification criteria based on aquatic toxicity tests have been described in Annex VI of 

Directive 67/548/EEC
1
 (European Commission, 1991). These criteria, reported in Table 4.2, were 

applied to classify chemicals as dangerous for the aquatic environment and to assign specific risk 

phrases.  

Table 4.2. Criteria for classification of chemicals for aquatic environmental hazard (Annex VI – 

Directive 67/548/EEC). 

Indication of danger and risk phrases  Classification criteria  

Very toxic to aquatic organisms (R50) and May cause 

long-term adverse effects in the aquatic environment 

(R53) 

 E(L)C50
a
 < 1 mg/L and the substance is 

not readily degradable or logKow >3 

Very toxic to aquatic organisms (R50)  E(L)C50
a
 < 1 mg/L 

Toxic to aquatic organisms (R51) and May cause long-

term adverse effects in the aquatic environment (R53) 

 E(L)C50
a
 < 10 mg/L and the substance is 

not readily degradable or logKow >3 

Harmful to aquatic organisms (R52) and May cause 

long-term adverse effects in the aquatic environment 

(R53) 

 E(L)C50
a
 < 100 mg/L and the substance 

is not readily degradable  

a
 96h LC50 for fish, 48h EC50 for daphnids and 72h EC50 for algae. 

This Directive has been amended several times and will be definitively repealed by Regulation (EC) 

No 1272/2008 from 1
st
 June 2015, by introducing the Globally Harmonised System of Classification 

and Labelling of Chemicals (GHS). Under this regulation, acute and chronic aquatic toxicity data, in 

conjunction to information on bioaccumulation and degradation potential, are used for the 

classification of chemicals for aquatic environmental hazard. In particular, the new classification 

system consists of one acute classification category (“Acute Category 1”), which is defined  on the 

basis of acute aquatic toxicity data only (EC50 or LC50), and three chronic classification categories, 

whose criteria combine acute aquatic toxicity data and environmental fate data (degradability and 

bioaccumulation data). The system also introduces a “safety net” classification (“Chronic Category 

4”) for use when the data available do not allow classification under the formal criteria but there are 

nevertheless some grounds for concern. Classification categories are summarised in Table 4.3. 

 

 

                                                             

1
 Directive 67/548/EEC of 27 June 1967 on the approximation of laws, regulations and administrative provisions 

relating to the classification, packaging and labelling of dangerous substances.  
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Table 4.3. Criteria for classification of chemicals for aquatic environmental hazard (Regulation (EC) 

No 1272/2008). 

Category  Classification criteria 

Acute category 1  E(L)C50
 a
 < 1 mg/L  

Chronic category 1  E(L)C50
 a

 < 1 mg/L and the substance is not rapidly degradable and/or 

the experimentally determined BCF ≥ 500 (or, if absent, logKow≥4) 

Chronic category 2  1 < E(L)C50
 a

 ≤ 10 mg/L and the substance is not rapidly degradable 

and/or the experimentally determined BCF ≥ 500 (or, if absent, 

logKow≥4), unless NOECs > 1 mg/L 

Chronic category 3  10 < E(L)C50
 a

  ≤ 100 mg/L and the substance is not rapidly degradable 

and/or the experimentally determined BCF ≥ 500 (or, if absent, 

logKow≥4), unless NOECs > 1 mg/L 

Chronic category 4  Data do not allow classification under the above criteria, but there are 

some grounds for concern (e.g. poorly soluble substances for which no 

acute toxicity is recorded at levels up to the water solubility, and which 

are not rapidly degradable and have an exp. determined BCF ≥ 500 (or 

log Kow ≥ 4))  

a
 96h LC50 for fish, 48h EC50 for crustacea and 72h EC50 for algae. 

Always in the context of chemical screening and classification, under REACH legislation aquatic 

toxicity data are considered, in addition to other toxicological information (e.g. carcinogenicity, 

mutagenicity and toxicity for reproduction), to identify substances that fulfil the toxicity criterion (T) 

in PBT assessment (i.e. substances that are persistent, bioaccumulative and toxic).  

Despite determination of definitive criteria for T is normally based on chronic tests, in order to 

minimize animal testing (as expressly required by REACH), acute tests are considered at a screening 

level. In particular, a substance is considered to potentially meet the criteria for T when an acute 

E(L)C50 value from a standard acute toxicity test is less than 0.1 mg/l (Table 4.4). If the screening 

criterion is met, the substance is referred to definitive T testing and chronic studies are required. 

In addition to data from standard toxicity tests, or when toxicity data are not available, data obtained 

from alternative non-testing methods (e.g. QSARs) can be accepted at a screening level. In these 

cases, a complete and detailed documentation and assessment of their reliability, adequacy and 

relevance is required. If QSAR estimations indicate that the substance fulfils the screening criteria for 

T (i.e., EC50 or LC50 < 0.1 mg/l), long-term testing are necessary. However, if the predicted acute 

E(L)C50 is < 0.01 mg/l, it may be decided to avoid confirmatory chronic testing on fish. 
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Table 4.4. Use of acute experimental data and non-testing data for T (screening) assessment (ECHA, 

2008c). 

Endpoint Type of data Criterion Screening 

assignment* 

Definitive 

assignment 

Short-term 

aquatic toxicity 

acute tests or valid 

QSARs 

EC50 or LC50 ≥ 0.1 mg/L presumably not T 

 

- 

 

Short-term 

aquatic toxicity 

acute tests or valid 

QSARs 

EC50 or LC50 < 0.1 mg/L potentially T 

 

- 

Short-term 

aquatic toxicity 

acute tests EC50 or LC50 < 0.01 mg/L - T 

* The screening assignments should always be considered together for P, B and T to decide if the substance 

may be a potential PBT/ vPvB candidate. 

Due to the large number of chemicals produced worldwide lacking experimental data, industries, 

regulatory authorities and non-governmental organizations have a growing interest in the 

development of reliable QSAR models, which could facilitate the risk assessment procedure and 

support decision-making.  

Currently, the (Q)SARs for the prediction of aquatic toxicity with the widest diffusion and application 

is ECOSAR
2
. The Ecological Structure Activity Relationships (ECOSAR) Class Program is an easy-to-use 

and freely available computer program developed and routinely applied by the US EPA 

(Environmental Protection Agency) for predicting aquatic toxicity to fish, aquatic invertebrates 

(daphnids), and green algae. In the ECOSAR tool, acute and chronic toxicity for several aquatic 

species are predicted by equations dependent on the logarithm of octanol-water partition coefficient 

(logP), developed ad-hoc for 120 chemical classes. Prediction capability of ECOSAR models have been 

extensively evaluated in literature (Reuschenbach et al., 2008; Moore et al., 2003; Tunkel et al., 

2005) for large sets of industrial chemicals, with varying molecular structures. However, the (Q)SARs 

currently available in ECOSAR for some specific classes are based on very limited training sets 

(composed, in some cases, of 1 or 2 data only), are not statistically robust and the applicability 

domain is not clearly defined.  

In the present study, several QSAR models have been developed and proposed for the prediction of 

aquatic toxicity of a specific class of hazardous chemicals studied within the CADASTER Project, i.e. 

substituted triazoles and benzotriazoles (B-TAZs). The high water solubility, resistance to 

biodegradation and the occurrence of these emerging pollutants in water bodies (Wolschke et al., 

2011; Giger et al., 2006) raised concerns on the potential adverse effects toward the aquatic life. 

The developed QSARs aimed at predicting three key endpoints that are required in regulation for the 

assessment of aquatic toxicity of chemicals, i.e. the acute toxicity in algae, daphnids and fish. The 

                                                             

2
 http://www.epa.gov/oppt/newchems/tools/21ecosar.htm 
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main objective of the models was to directly predict the toxicity toward the three aquatic organisms, 

independently of a priori knowledge of the chemical mode of action (MoA), and to apply them for 

the screening of over 300 B-TAZs without experimental data. Many of these chemicals are included in 

the ECHA pre-registration list
3
 and might need registration under REACH. 

Part of this study was involved in a collaborative activity within the CADASTER Project. Different 

Partners, including LnU (Linnaeus University), HMGU (Helmholtz Zentrum Munchen), IDEA 

(Ideaconsult Ltd) and IVL (Swedish Environmental Research Institute), developed different QSAR 

models for the same endpoints (acute toxicity in algae, daphnids and fish) by applying different 

modelling approaches (MLR-OLS, PLSR, ANN) and theoretical molecular descriptors (DRAGON, PaDEL-

Descriptor and QSPR-THESAURUS web). As task of the CADASTER Project, a Consensus model should 

be proposed by integrating the predictions generated by the QSAR models developed by the various 

Partners.  

4.2 Methods 

4.2.1 Modelled endpoints 

In compliance with the first OECD Principle for QSAR validation, i.e. “a defined endpoint”, and to limit 

experimental variability, each QSAR was developed using only acute toxicity data measured in a 

single species. The three species, representative of the three key trophic levels of the aquatic 

ecosystem, were selected according to the quality and amount of experimental data available. 

QSAR models were developed for the following eco-toxicity endpoints: 

- EC50 in the green algae Pseudokirchneriella subcapitata (formely known as Scenedesmus 

capricornutum), measured as growth inhibition within 72 hours by the OECD 201 test 

protocol; 

- EC50 in the crustacean Daphnia magna, measured by the OECD 202 immobilization test 

(considering 48h of exposure); 

- LC50 in the fish Oncorhynchus mykiss, measured within 96h of exposure, according to the 

OECD 203 test. 

                                                             

3
 The first deadline of the REACH implementation process (30

th
 November 2008) implied the pre-registration of 

all substances manufactured/imported in quantities ≥ 1 ton/year and/or already on the market in EU (phase-in 

substances).  
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4.2.2 Data sets 

Experimental data for acute toxicity in Pseudokirchneriella subcapitata (EC50 72h), Daphnia magna 

(EC50 48h) and Oncorhynchus mykiss  (LC50 96h) were collected from the FOOTPRINT Pesticide 

Properties Database (PPDB), a database of physiochemical and (eco)toxicological data on pesticides 

developed in the context of the EU-FP6 research project (PPDB, 2009). In the database, each data 

point is associated to a score related to data quality which varies between 1 (worst quality data) and 

5 (best quality data). In particular, 1 stands for “estimated data with little or no verification”, 2 for 

“unverified data of unknown source”, 3 for “unverified data of known source”, 4 for “verified data”, 

and 5 for “verified data used for regulatory purposes”. Due to the fundamental relevance of the 

quality of the input data to the performance of QSAR models, only data corresponding to the highest 

quality-scores were used for QSAR modeling. In particular, data with the quality-score 4 and 5 were 

included in “daphnids” and “algae datasets”. Since limited amount of toxicity data were available in 

the FOOTPRINT database for the species Oncorhynchus mykiss, data of quality-score 3, 4 and 5 were 

included in the “fish dataset”. The different datasets were obtained by collecting data for all the 

compounds containing a triazole (TAZs) or benzo-triazole (BTAZs) ring. Given the limited number of 

toxicity data for B-TAZs (homogeneously determined on the same species using the same protocol) 

we also added other azo-aromatic compounds, including diazines, triazines and similar compounds, 

to enlarge the response and structural domain of the studied datasets. 

The final datasets used for model development were composed as following: 

- Algae dataset: 35 compounds, including 17 B-TAZs and 18 azo-aromatic compounds; 

- Daphnids dataset: 97 compounds, including 46 B-TAZs and 51 azo-aromatic compounds; 

- Fish dataset: 75 compounds, including 27 B-TAZs and 48 azo-aromatic compounds. 

In addition to B-TAZs included in the datasets, other compounds containing triazole or benzotriazole 

rings without experimental data (Bhhatarai and Gramatica, 2011; Roy et al., 2011) were considered 

in this study to be screened and predicted for their aquatic toxicity. A final complete dataset of 386 

B-TAZs (with or without experimental data) was thus studied (listed in Appendix II – Table A-1). 

4.2.2.1. Validation sets 

To verify the predictive capability of the models, the datasets were first split into a training set (~70% 

of compounds), used for model development, and a prediction set (~30% of compounds), used only 

later for the external validation. As described in Chapter 2 (section 2.5.1), two different splitting 

techniques were applied: by ordered response and by structural similarity using Kohonen Artificial 

Neural Networks (K-ANN).  
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The use of two different splittings for the external validation of the models avoids the possible bias 

given by only one kind of splitting (either on response or structure). 

In the context of the CADASTER Project, additional data for the three endpoints became available 

after the development of the models and were considered as “blind” evaluation set (“EV set”) for 

further external validation. In particular, 18 data for 96h LC50 in Onchorynchus mykiss were collected 

from the FOOTPRINT database, while new experimental data of acute toxicity in Pseudokirchneriella 

subcapitata (EC50 72h) and Daphnia magna (EC50 48h) were measured, respectively for 13 and 12 B-

TAZs, by two CADASTER Partners (PHI and RIVM) using the same OECD procedures applied in the 

modelled data (Durjava et al., submitted to ATLA). The chemicals tested for acute toxicity in algae 

and daphnids were specifically selected in a previous prioritization analysis (Paragraph 4.3.2).  

Table 4.5 summarizes the datasets (training, prediction and evaluation sets) used for the 

development and validation of the QSAR models for aquatic toxicity of B-TAZs.  

Table 4.5. Data sets used for modeling aquatic acute toxicity of B-TAZs. 

Endpoint Full dataset Split by response Split by K-ANN EV set 

  NTR NP NTR NP  

EC50-72h algae 35 24 11 22 13 13 

EC50-48h daphnids 97 65 32 65 32 12 

LC50-96h fish 75 53 23 53 23 18 

 

A preliminary analysis performed on the structural and response domains covered by the three EV 

sets highlighted that the EV sets for the endpoints “EC50 72h algae” and “EC50-48h daphnids” were 

characterized by a rather constricted range in responses, most notably for algae. Since the statistical 

parameters normally used to perform the external validation of QSARs (e.g. Q
2

EXT F1, F2, F3 and CCC) 

are highly sensitive to the distribution of the responses in the training and validation sets, it was not 

reasonable to apply such parameters and, therefore, to perform a statistical external validation of 

the two models on the EV sets. However, EC50 data measured for algae and daphnids were used for a 

“qualitative” validation of the QSARs developed for these two endpoints. For the qualitative external 

validation, experimental and predicted EC50 data were converted into classes of aquatic toxicity, and 

then it was verified the agreement between experimental and predicted classes. Four classes of 

aquatic toxicity were used taking into account the thresholds of E(L)C50 applied by EU for the 

categorization of chemicals hazardous to the aquatic environment (Directive 67/548/EEC – Table 4.3; 

Regulation (EC) No 1272/2008 – Table 4.4): 

(1) very toxic (EC(LC)50 ≤ 1 mg/L) 

(2) toxic (EC(LC)50 ≤ 10 mg/L) 

(3) harmful (EC(LC)50 ≤ 100 mg/L) 

(4) not harmful (EC(LC)50 > 100 mg/L). 
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4.2.3 Prioritization of B-TAZs for experimental tests 

A list of priority B-TAZs was suggested to the CADASTER Partners responsible for the experimental 

tests. The prioritization was performed on the basis of their toxicological profile and structural 

similarity.  

Principal component analysis (PCA), based on various theoretical molecular descriptors, was 

performed to explore the structural similarity of the 386 B-TAZs studied in this work. The final 

outcome of the experimental design consisted in a list of priority B-TAZs representative of the entire 

structural space. This selection included also chemicals with a structure similar to the more active B-

TAZs, on the basis of the available literature data on vertebrate and invertebrate toxicity (PPDB, 

2009), but with no or few experimental data available. Thereupon, a further selection was applied 

based upon the possibility of purchasing the chemicals to be tested (Durjava et al., submitted to 

ATLA).  

4.2.4. Molecular structures and descriptors 

Chemical structures for 386 B-TAZs and other azo-aromatic compounds were generated from SMILES 

notations and verified for their correctness. Structures were drawn and minimized to their lowest 

energy conformation using the semi-empirical AM1 method in HYPERCHEM software. Various 

different theoretical molecular descriptors (mono- and bi-dimensional) were then calculated using 

both commercial (DRAGON ver. 5.5) and freely-available software (PaDEL-Descriptor ver. 2.13, QSPR-

Thesaurus). To calculate PaDEL descriptors, a conversion of HYPERCHEM format (hin files) to MDL-

MOL format (the recommended format in PaDEL-Descriptor) was performed using Open Babel (ver. 

2.3.0). The SMILES notations (from PubChem
4
 or generated by Open Babel from hin files) were used 

to generate QSPR-THESAURUS descriptors. To minimize redundant structural information, constant, 

near-constant and pair-wised correlated (correlation > 0.95) descriptors were excluded from the 

original matrix of variables. A total of 308 DRAGON descriptors, 258 PaDEL descriptors and 253 QSPR-

Thesaurus descriptors were separately used as input variables for QSAR modeling.  

4.2.5 QSAR modelling and Applicability Domain 

The models were developed by Multiple Linear Regression (MLR) using the Ordinary Least Squares 

(OLS) method, and the Genetic Algorithm-Variable Subset Selection (GA-VSS) was applied for variable 

selection. For each endpoint, the modeling procedure for variable selection was applied to the 

training sets obtained from the two splittings (by ordered response and by K-ANN) separately, 

resulting in two parallel populations of models, based on various descriptor combinations. From each 

                                                             

4
 http://pubchem.ncbi.nlm.nih.gov/ 
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population, models were compared for their robustness, predictive performances (toward their 

respective prediction set chemicals) and applicability domain in order to select the most adequate 

for the prediction of the modeled endpoints, i.e. acute toxicity in algae, daphnids and fish.  

Different statistical parameters were used to validate the models for their goodness-of-fit, 

robustness and external predictive ability (e.g. R
2
, Q

2
LOO and Q

2
LMO, R

2
ys, Q

2
EXTF1-F2-F3 and CCC). 

Arbitrary cut-off values were used to accept models as externally predictive, in the case of small data 

sets: 0.7 for Q
2

EXT F1, F2 and F3, and 0.82 for CCC. In addition, RMSE was used to measure and 

compare prediction accuracy in the training (RMSETR) and in the prediction (RMSEP) sets.  

The Williams Plot was used to verify the presence of both response outliers and structural outliers in 

the training set. The leverage approach was also applied to evaluate the degree of extrapolation for 

the predictions obtained for compounds without experimental data. The Insubria Graph was used to 

visualize interpolated and extrapolated predictions. 

4.3 QSAR models for aquatic toxicity of B-TAZs 

The main aim of the present study was to develop QSAR models, based on theoretical molecular 

descriptors, for the prediction of the potential aquatic toxicity of B-TAZs and to propose them as 

supporting tools for classification and risk assessment of chemicals.  

The proposed approach is different than traditional QSARs for toxicity, which are typically based on 

the logarithm of the octanol/water partition coefficient (logP). LogP is an important parameter 

representing the hydrophobic properties of substances and is considered to be a model for the 

absorption of molecules into cellular membranes (which is relevant for, among others, narcosis). 

However, hydrophobicity is not the only factor involved in biological activity of chemicals, since also 

other electronic and steric effects play an important role, especially when dealing with specific acting 

compounds, such as B-TAZs.  

The efficiency of logP to model toxicity highly depends on the chemical’s mode of action (MoA) as 

well as on the variability of its experimental/estimated value. Many studies already highlighted the 

high variability (sometimes several orders of magnitude) of experimentally derived and estimated 

logP values when using different determination methods (Renner, 2002; Papa et al., 2005). As it is 

explained in detail in Publication VI, in this study we decided to develop global models, based only 

on theoretical molecular descriptors, and independent of the MoA of the studied chemicals for the 

following reasons: 

- Poor statistical performances were obtained using logP as a single descriptor in QSAR models 

(range of R
2
: 0.49-0.69, range of Q

2
: 0.47-0.67). 
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- large variations in R
2
 and Q

2
LOO values, up to 20%, were found among QSAR models based on 

different logP, i.e. “AlogPS_logP” (QSPR-Thesaurus database),“KOWWIN” (EPI Suite), 

“MLOGP” (DRAGON ver. 5.5) and “XlogP” (PaDEL-Descriptors ver 2.12) (Figure 4.1). 

- the dataset is composed of B-TAZs which can be associated to over 20 different mechanisms 

of toxic action, and the amount of experimental data available for each of these MoA is not 

sufficient to develop separate MoA-based QSAR models following the OECD principles. 

 

Figure 4.1. Variation in logP-based model performances (R
2
 and Q

2
LOO) for the prediction of Daphnia magna (a) 

and Onchorynchus mykiss (b) toxicity (Figure from Publication VI). 

 

Several MLR models, based on DRAGON, PaDEL and QSPR-Thesaurus descriptors, were developed for 

the three studied endpoints, i.e EC50 in Pseudokirchneriella subcapitata, EC50 in Daphnia magna, and 

LC50 in Onchorynchus mykiss. 

MLR equations and statistical parameters of the QSAR models selected, and proposed in Publications 

V and VI, are reported in Appendix II (Table A-7). Looking at the statistical parameters reported in 

the table, it can be observed that the proposed models, based on different molecular descriptors, 

show good and similar performances in terms of goodness-of-fit, internal robustness and external 

predictivity, as verified by various criteria. 

To support the evaluation of the predictive ability and of the applicability domain of the models, the 

plot of experimental versus predicted values and the Williams Plots were always analyzed. As an 

example, Figure 4.2 shows the plots of the model developed for EC50 in Daphnia magna.  
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Figure 4.2. Plot of experimental vs. predicted pEC50 values (a) and William plot (b) of the model for EC50 in 

Daphnia magna (Split Model based on random splitting). 

As was explained in section 4.2.2.1, a statistical external validation of the models developed for algae 

and daphnids using CADASTER experimental data as a validation set was not possible. However, we 

decided to assess the capability of the proposed QSARs to correctly classify the chemicals into 

defined categories of aquatic toxicity, as already applied in literature (Reuschenbach et al., 2008; 

Dom et al., 2010). For this purpose, EC50 values predicted for the 13 chemicals tested by PHI (algae EV 

set) and for the 12 chemicals tested by RIVM (daphnids EV set) were converted into the following 

toxicity classes: (1) very toxic (EC50 ≤ 1 mg/L), (2) toxic (EC50 ≤ 10 mg/L), (3) harmful (EC50 ≤ 100 mg/L), 

(4) not harmful (EC50 > 100 mg/L).  

Tables 4.6 and 4.7 show the experimental and predicted classes of the B-TAZs tested in the 

CADASTER project for acute toxicity in the algae Pseudokirchneriella subcapitata and in Daphnia 

magna, respectively.  

Table 4.6. Experimental and predicted toxicity classes of 13 B-TAZs tested by PHI for acute toxicity in 

the Pseudokirchneriella subcapitata. 

  Experimental Pred DRAGON Pred PaDEL Pred QSPR-THESAURUS 

Name CAS No pEC50 class pEC50 class pEC50 class pEC50 class 

Triazophos 024017-47-8 4.62 2 5.58 1 4.94 2 4.99 2 

Triadimefon 043121-43-3 4.59 2 4.74 2 4.86 2 4.85 2 

Propiconazole 060207-90-1 4.91 2 5.06 2 5.14 2 5.24 2 

Penconazole 066246-88-6 4.89 2 4.82 2 4.93 2 5.05 2 

Diclobutrazol 075736-33-3 4.87 2 5.13 2 5.23 2 5.25 2 

Paclobutrazol 076738-62-0 4.39 3 5.04 2 5.03 2 5.30 2 

Hexaconazole 079983-71-4 4.92 2 4.97 2 5.00 2 5.33 2 

Uniconazole-P 083657-17-4 4.63 2 4.91 2 5.05 2 5.08 2 
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  Experimental Pred DRAGON Pred PaDEL Pred QSPR-THESAURUS 

Name CAS No pEC50 class pEC50 class pEC50 class pEC50 class 

Diniconazole 083657-24-3 5.26 2 4.99 2 5.25 2 5.02 2 

Myclobutanil 088671-89-0 4.31 3 5.08 2 5.13 2 5.56 1 

Cyproconazole 094361-06-5 4.52 2 4.94 2 4.92 2 5.62 1 

Epoxiconazole 106325-08-0 4.58 2 5.18 2 5.25 2 5.13 2 

Difenoconazole 119446-68-3 5.45 2 5.92 1 5.73 1 5.48 2 

 

Table 4.7. Experimental and predicted toxicity classes of 12 B-TAZs tested by RIVM for acute toxicity 

in the Daphnia magna. 

  Experimental Pred DRAGON 

Name CAS No pEC50 class pEC50 class 

Benzotriazole 000095-14-7 2.88 4 3.63 3 

Guanazole 001455-77-2 4.38 2 3.14 3 

Ribavirin 036791-04-5 2.55 4 2.87 4 

Triadimefon 043121-43-3 4.00 3 4.13 3 

Diclobutrazol 075736-33-3 4.4 3 4.64 2 

Paclobutrazol 076738-62-0 3.81 3 4.59 2 

Hexaconazole 079983-71-4 4.81 2 4.55 2 

Flusilazole 085509-19-9 5.00 2 4.81 2 

Myclobutanil 088671-89-0 4.37 3 4.25 3 

Cyproconazole 094361-06-5 3.97 3 4.50 2 

Fenchlorazole-ethyl 103112-35-2 5.21 2 4.22 3 

Triticonazole 131983-72-7 4.52 2 4.69 2 

  

A detailed discussion on this qualitative evaluation of the models is provided in Publication VII 

(submitted to ATLA). Overall, good agreement was found between experimental classes and classes 

predicted by the model for EC50 in Pseudokirchneriella subcapitata, while several discrepancies were 

observed in the classification obtained by the model for EC50 in Daphnia magna. However, it is 

important to note that the models are more likely to overestimate, rather than underestimate, the 

toxicity. It can be concluded that the models provide conservative predictions. 

4.3.1 Interpretation of modeling descriptors 

A detailed description and interpretation of the modeling molecular descriptors is provided in 

Publications V (QSARs for algae toxicity) and VI (QSARs for daphnids and fish toxicity). As a general 

comment, the interpretation of the modeling descriptors suggests that B-TAZs’ acute toxicity to the 

three aquatic species is governed mainly by polarizability, size and branching of the compounds. 

Among the most important descriptors selected in different models, those encoding for electronic 

distribution and polar properties of the molecules (e.g. TPSA (NO), TPSA(tot), nHDon, SHBint2, Mp) 

were all negatively correlated to the toxicity; this indicates that more polar and soluble chemicals 
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(chemicals with a higher tendency to form hydrogen bonds with water) are less toxic. On the 

contrary, molecular descriptors related to molecular dimension and branching (e.g. AEigm, nCar, 

CIC1, VP-1, AeigZ, AMR, C-C) were found to positively correlate with toxicity. These factors are known 

to increase hydrophobic properties of molecules and, hence, their uptake and subsequent toxicity. 

It is interesting to note that the most important descriptors in each model or those singularly more 

correlated to the studied end-points are also inter-correlated (e.g., 86% correlation between 

TPSA(tot) and SHBint2, respectively DRAGON and PaDEL descriptors included in the fish model). This 

demonstrates that the applied variable selection procedure (GA) was able to select, from a highly 

different set of descriptors as input, molecular descriptors encoding for very similar structural 

information, even if represented by the various software in different way.  

4.3.2 Applicability Domain to a Large Set of B-TAZs  

The QSARs developed in this study have been applied to predict the acute toxicity of over 300 B-TAZs 

without experimental data. We considered as reliable only predictions for compounds falling into the 

structural AD of the model (h < h*) and borderline compounds. As an example, the Insubria Graph of 

the model developed for LC50 in Onchorynchus mykiss is reported in Figure 4.3.  

 

Figure 4.3. Insubria graph of the model for LC50 in Onchorynchus mykiss (Full Model). 

This analysis highlighted that more than 90% of the studied B-TAZs were included in the structural AD 

of all the QSARs. Therefore we can conclude that all the proposed models are able to provide 

interpolated, reliable, predictions for hundreds of B-TAZs without experimental data. 
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4.4 Consensus models for aquatic toxicity of B-TAZs  

In the context of the CADASTER Project, all the Partners involved in the development of models (i.e. 

LnU, HMGU, IDEA and IVL) developed additional QSARs for the prediction of aquatic toxicity of B-

TAZs, using the same datasets and endpoints, but applying different modelling approaches (e.g. PLSR, 

ANN) and theoretical molecular descriptors.  

A summary of the modeling approaches and molecular descriptors used by different Partners is 

provided in Table 4.8. 

Table 4.8. Modelling approaches applied by WP3 Partners for the QSAR models on aquatic toxicity of 

B-TAZs. 

 UI LnU IVL IDEA HMGU 

Modelled 

Endpoint 

EC50 algae 

EC50 Daphnia 

LC50 fish 

EC50 algae 

EC50 Daphnia 

LC50 fish 

EC50 algae 

EC50 Daphnia 

LC50 fish 

 

EC50 Daphnia 

LC50 fish 

EC50 algae 

EC50 Daphnia 

LC50 fish 

Input format of 

chemical 

structures 

HIN files for 

DRAGON, MOL 

for PaDEL, 

SMILES for 

CADASTER 

SMILES HIN files SMILES 3D SDF files 

prepared by 

Corina 

Molecular 

Descriptors 

0D-2D Dragon 

v.5.5, PaDEL, 

CADASTER 

0D-3D Dragon 

v.6 

0D-3D Dragon 

v.6 

0D-2D Dragon 

v.5.5 

0D-3D 

CADASTER 

Descriptor 

selection 

Genetic 

Algorithm in 

QSARINS [3] 

Latent variables Descriptors with 

VIP>1. 

Four latent 

variables 

Genetic 

Algorithm in 

MobyDigs 

Only highly 

cross-correlated 

(R>0.95) and 

almost constant 

descriptors (less 

than 3 unique 

values) were 

eliminated 

Algorithm Multiple 

Linear 

Regression 

(MLR) using 

ordinary-least-

squares (OLS) 

Partial least 

squares 

regression 

(PLSR) and 

Bayesian Lasso 

on PLS latent 

variables 

(BLASSO-PLS) 

Partial least 

squares 

regression 

(PLSR) 

Multiple Linear 

Regression 

(MLR) using 

ordinary-least-

squares (OLS) 

kNN, ASNN, 

FSMLR, PLS, 

MLRA, SVM 

Applicability 

Domain 

Leverage Leverage 

distance to the 

model on PLS 

latent variables 

DModX Leverage STD of ASNN 

UI= University of Insubria (this study); LnU=Linnaeus Uniersity; IVL= IVL Swedish Environmental Research 

Institute; IDEA= Ideaconsult Ltd; HMGU=Helmholtz Zentrum München.  

 

Predictions by consensus were obtained by combining predictions from different models and 

approaches, taking into account statistical performances and applicability domains of individual 

models. 
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For each endpoint, new QSAR models, slightly different from those discussed in section 4.3, were 

proposed (Publication VII). First, the new models proposed for the Consensus modeling are based on 

higher number of molecular descriptors (one or two descriptors more than the previously presented 

QSARs). The increase of modeling variables was needed in order to have statistical performances 

comparable to the other WP3 models (most of them based on hundreds of molecular descriptors) 

and it didn’t affect the quality of the models, since the occam’s razor principle was still respected. 

Secondly, in order to facilitate the upload of the Consensus models on the QSPR-Thesaurus database, 

it was decided that all the models developed by different WP3 Partners should be based on the same 

training sets. This decision implied a slight modification of the composition of our training sets, now 

composed of 31, 90 and 77 chemicals for algae, daphnids and fish endpoints respectively. 

Table 4.9 summarizes statistical performances of the individual models (developed by different 

Partners) and of the consensus models developed for the three endpoints. The table provides also 

the number of molecular descriptors included in each model (Ndesc) and information related to the 

model ADs, which were verified for the 386 B-TAZs (AD386). 

Table 4.9. Statistical performances of individual and consensus models developed for EC50 72h in 

Pseudokirchneriella subcapitata (“EC50 algae”), EC50 48h in Daphnia magna (“EC50 daphnids”) and EC50 

96h in Oncorhynchus mykiss (“LC50 fish”). 

Endpoint Model / Method / Descriptors NDesc R
2
 Q

2
 RMSETR RMSEEX Ext. Val.

b
  AD386  

UI - OLS DRAGON 5.5 4 0.85 0.78
a
 0.39   88% 

UI - OLS PaDEL-Descriptor 4 0.83 0.76
a
 0.41   93% 

IVL - PLS DRAGON 6.0 375 0.96 0.90
a
 0.21   86% 

LnU – BLASSO-PLS DRAGON 6.0 242 0.7  - 0.58   85% 

HMGU - ASNN ADRIANA.Code 118 0.7 0.7 0.53   96% 

EC50 

algae 

 

NTR = 31 

Consensus  -  0.88  -  0.36   66% 

UI - OLS DRAGON 5.5 6 0.79 0.75
a
 0.38   89% 

IVL - PLS DRAGON 6.0 245 0.8 0.74
a
 0.37   57% 

LnU – BLASSO-PLS DRAGON 6.0 243 0.59  - 0.53   77% 

HMGU - ASNN ADRIANA.Code 132 0.7 0.7 0.44   91% 

IDEA - OLS DRAGON 5.4 5 0.79 0.73
a
 0.38   88% 

EC50 

daphnids 

 

NTR = 90 

Consensus  -  0.82  -  0.36   48% 

UI - OLS DRAGON 5.5 5 0.82 0.79
a
 0.47 0.43 Q

2
ext>0.84 92% 

UI - OLS PaDEL-Descriptor 5 0.76 0.71
a
 0.55 0.4 Q

2
ext>0.86 97% 

IVL - PLS DRAGON 6.0 503 0.89 0.75
a
 0.37 0.43 Q

2
ext=0.85 73% 

LnU – BLASSO-PLS DRAGON 6.0 243 0.7  - 0.62 0.74 Q
2
ext>0.53 84% 

HMGU - ASNN ADRIANA.Code 123 0.6 0.6 0.73 0.62 Q
2
ext=0.7 76% 

IDEA - OLS DRAGON 5.4 6 0.84 0.76
a
 0.45 0.28 Q

2
ext>0.93 91% 

LC50 fish 

 

NTR = 77 

 

NEV = 18 

Consensus  -  0.85  -  0.44 0.37 Q
2
ext>0.88 53% 

a
 QLOO

2
; 

b
 Additional parameters are reported in Publication VII. 
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All the QSARs proposed by different WP3 Partners were checked for their goodness-of-fit, 

robustness, predictivity and applicability domain, in agreement with OECD principles for the 

validation of QSARs for regulatory purposes.  

The parameter RMSE was used for the comparison of predictive ability of different models. As can be 

observed in Table 4.9, RMSE values of the consensus models for the three endpoints are lower than 

the majority of the individual models. The fact that the application of the consensus approach often 

lead to better predictive performances is widely documented in literature (Zhu et al., 2008; 

Gramatica et al., 2004; Bhhatarai et al., 2011). 

Once verified the robustness and reliability of all the individual WP3 QSARs developed for the acute 

toxicity in algae (EC50 72h in Pseudokirchneriella subcapitata), daphnids (EC50 48h in Daphnia magna) 

and fish (EC50 96h in Oncorhynchus mykiss), these models were applied to the complete dataset of 

386 B-TAZs, with and without experimental data, for the prediction of the acute toxicity in the three 

aquatic species. Consensus predictions were derived by averaging (by arithmetic mean) the 

predictions obtained by individual models.  

Applicability domains of individual models toward the 386 B-TAZs were analyzed in order to assess 

the reliability of predictions. In particular, while the domains of our models as well as the models 

proposed by IVL, LnU and IDEA are based on the structural space covered by the modeling molecular 

descriptors, and thus can be considered as “structural domains”, the accuracy of predictions 

(estimated from the standard deviations of ensemble predictions) was used as ADs of the HMGU 

models, and can be considered as “response domains”. Only predictions for compounds included in 

the applicability domain of different models were considered reliable, i.e. 65.8% for algae model, 

48.2% for daphnids model and 53.1% for the fish model. The fact that different approaches were 

used also to define the reliability of predictions adds confidence to the conclusive assessment of the 

consensus predictions. 

The mean absolute deviation (MAD) was used to verify the agreement among predictions obtained 

by different models for single compounds. MAD was calculated as the arithmetic mean of the 

absolute difference between individual model prediction and consensus prediction: 

∑ −=

=

n

i
Ci yy

n
MAD

1

ˆˆ
1

 

where iŷ  is the prediction obtained by individual models (UI, LnU, IVL, IDEA, and HMGU), Cŷ  is the 

prediction obtained by consensus, and n is the number of individual models considered to generate 

consensus predictions. 

The higher the MAD value, the higher is the disagreement among model predictions.  Figure 4.4 

shows the trend of MAD over the 386 B-TAZs for the three modeled endpoints. MAD values 
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calculated for interpolated and extrapolated predictions, respectively “MAD (in)” and “MAD (out)” in 

the graphs, are differentiated with different colors.  

 

 

 

Figure 4.4. Median absolute deviations of predictions by individual models from the consensus predictions for 

the three modeled endpoints, i.e. 72h EC50 in Pseudokirchneriella subcapitata, 48h EC50 in Daphnia magna and 

96h LC50 in Oncorhynchus mykiss. 

 

As expected, the highest disagreement among predictions obtained by different models (MAD > 1 log 

unit) was found for compounds outside the AD of all the models. These QSAR predictions should be 

treated carefully since they are model’s extrapolations and could be not reliable. On the other hand, 
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when only B-TAZs included in the applicability domains of all the models were considered, good 

agreement among predictions was reached. This is evident in Figure 4.4, where MAD values ranging 

from 0 and 0.5 can be observed for interpolated predictions.  

This study highlights the importance of the consensus approach when dealing with chemicals without 

experimental data. The fact that different models, based on different modeling approaches and with 

different applicability domains, provide similar predictions increases the confidence in the QSAR 

estimations, both in terms of prediction accuracy and reliability. To rely on QSAR estimations is 

particularly important when these QSARs are proposed for their application in regulation or for 

screening purposes, as is the case of the here proposed models. 

4.5 Screening of B-TAZs for acute toxicity in the aquatic environment 

Consensus predictions of acute toxicity in Pseudokirchneriella subcapitata, Daphnia magna and 

Oncorhynchus mykiss obtained for the 386 B-TAZs were analyzed by PCA (Principal Component 

Analysis) in order to characterize the toxicological profile of B-TAZs and to identify the most active 

compounds in the aquatic environment. Only predictions for B-TAZs included in the AD of all the 

models, i.e. 128 compounds, were considered since these predictions were assessed as reliable.  

Figure 4.5 shows the plot of the first two principal components (PC1 and PC2), where the 128 B-TAZs 

(red dots) are distributed according to the weight of each variable, i.e. acute toxicity in algae, 

daphnids and fish (blue lines). In particular, in the right part of the graph it is possible to see the B-

TAZs that are characterized by an overall higher toxicity in the three organisms in the analyzed 

aquatic scenario (i.e. B-TAZs with higher acute toxicity for algae, daphnids and fish). On the opposite 

side of the plot, B-TAZs with relative lower acute toxicity for the three species are visualized.  
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Figure 4.5. PCA analysis (PC1 vs PC2) of reliable consensus predictions obtained for algae (pEC50 

Pseudokirchneriella subcapitata), daphnia (pEC50 Daphnia magna) and fish (pLC50 Onchorhynchus mykiss). 

Therefore, the first principal component, which explains almost 90% of the overall information, 

provides a trend of aquatic toxicity, since it separates B-TAZs predicted as globally “more toxic” from 

less hazardous ones. It is to note that the compounds most globally active are not necessarily the 

most active for all the three species.  

An arbitrary cut-off along the PC1 was defined and the most globally active B-TAZs (PC1 scores >1.5), 

among the numerous B-TAZs assessed in this study, were identified (Appendix II - Table A-8). For 

these chemicals, the following ranges of toxicity were predicted for the three organisms: 

• Pseudokirchneriella subcapitata: EC50(72h) 0.55 - 2.40 mg/L 

• Daphnia magna:  EC50(48h) 1.76-16.99 mg/L 

• Onchorhynchus mykiss: LC50(96h) 0.36-4.22 mg/L 

According to the classification criteria for aquatic toxicity, the prioritized B-TAZs can be classified as 

“very toxic” (EC(LC)50 ≤ 1 mg/L) or “toxic” (EC(LC)50 ≤ 10 mg/L) for the three species (or at least two), 

and are threfore highlighted for the necessary experimental tests.  

4.6 Conclusions 

In the present study, we have developed new QSARs for the prediction of the aquatic toxicity of a 

class of hazardous environmental pollutants, i.e. triazoles and benzo-triazoles (B-TAZs), toward three 

key species of the aquatic ecosystem: the algae Pseudokirchneriella subcapitata (Publication V), the 

crustacean Daphnia magna (Publication VI, submitted to J. Hazard Mater.), and the fish 

Onchorynchus mykiss (Publication VI, submitted to J. Hazard Mater). The selected endpoints are 

among the basic toxicological information that are required to perform risk assessment of chemicals.  
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The proposed models have been developed and validated on the basis of the OECD principles for 

QSAR acceptance in regulation (OECD, 2004), are characterized by high external predictivity and wide 

applicability domain.  

We have investigated the possibility to propose models which are more easily applicable by 

regulators. To this end, models have been developed using molecular descriptors calculated with 

both commercial (DRAGON) and freely available software (PadEL-Descriptor and QSPR-Thesaurus 

platform). For all the considered endpoints, valid models based on descriptors generated by the free 

tools (PaDEL-Descriptor and/ or QSPR-Thesaurus platform) have been proposed. Additionally, to 

guarantee an easier applicability of the models, they will be freely available, together with the 

relative documentation (QMRF), in the QSPR-Thesaurus on-line platform. 

As part of the CADASTER project, the here proposed QSARs and additional models developed by 

other Partners were applied to predict aquatic toxicity of over 300 B-TAZs without experimental data, 

paying particular attention to the applicability domains of the models. Consensus predictions were 

then proposed for the final assessment of the studied chemicals (Publication VII, submitted to ATLA). 

Comparable predictions were obtained when B-TAZs included in the AD of all the models were 

considered. The fact that different models, based on different descriptors and/or modeling 

approaches, led to similar predictions adds confidence and reliability to QSAR predictions obtained 

by Consensus approach.  

Considering that some of the screened B-TAZs are included in the ECHA pre-registration list, the here 

generated QSAR predictions (individual as well as consensus predictions) are very useful for both 

filling data gaps and prioritize the most dangerous compounds for further experimental testing. In 

particular, 20 B-TAZs, predicted as toxic (EC(LC)50 ≤ 10 mg/L) or very toxic (EC(LC)50 ≤ 1 mg/L) to algae, 

daphnids and fish, have been selected for inclusion into a priority list for environmental tests. 

Concluding, the predictions generated by the here proposed QSARs for all the studied chemicals can 

be used by regulators to support the use of Weight of Evidence- and non testing-based approaches 

for the classification and risk assessment of chemicals. In order to facilitate these procedures, the 

proposed models and predictions will be made available on-line in the QSPR-Thesaurus Database. 
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5.1 Introduction 

Environmental half-life of a chemical is a key element for assessing the potential exposure and risk that a 

chemical presents for humans and wildlife. Chemicals that persist in the environment may be subject to 

a wider dispersion and remain available to biota for long periods of time, increasing concerns for 

potential bioaccumulation and long-term adverse effects (Rücker and Kümmerer, 2012).    

Environmental half-life is the result of many abiotic processes, including hydrolysis, photolysis, oxidation, 

reaction of OH radicals, and sorption, as well as biological processes, such as microbial biodegradation, 

that can lead to the removal or transformation of a chemical substance in the environment.   

For the water, soil and sediment compartments, biodegradation is often the most important 

transformation process. Microbial degradation is also a fundamental process in sewage treatment plants 

(STP). In biodegradation processes, organic compounds are used by microorganisms as a source of 

energy and building blocks. In some cases a full mineralization occurs (ultimate biodegradation), where 

the chemical is completely degraded into carbon dioxide, sulphate, nitrate and new biomass. In the 

primary biodegradation, a structural change of the compound is performed by microorganisms resulting 

in new transformation products, not necessarily less persistent and/or toxic than the parental compound 

(ECHA, 2008b).  

In the context of REACH, information on the degradability of chemicals may be used for hazard 

assessment (e.g. for classification and labelling), risk assessment (for chemical safety assessment) and 

persistency assessments in the evaluation of PBT and vPvB chemicals (ECHA, 2008b).  

Biodegradation is among the basic information required for hazard and persistency assessments, in 

particular for the aquatic environment and STPs. Testing biodegradation is therefore a crucial step in the 

evaluation and registration of chemicals. In the last decades, all industrialized nations developed 

biodegradation tests which were harmonized by the Organization for Economic Co-operation and 

Development (OECD) and later in the European Union (EU), in order to guarantee standardized testing 

procedures and a mutual international acceptance of test results. These tests include simple screening 

tests of ultimate biodegradability (e.g. OCED 301 ready biodegradation and OECD 302 inherent 

biodegradation tests), aiming at identifying those chemicals for which more detailed, and costly, studies 

are needed, and relatively complex higher tiered simulation types of tests (e.g. the OECD 303 aerobic 

sewage treatment and the OECD 309 aerobic and anaerobic transformation in surface water).  

The potential for biodegradation is also basic information that needs to be incorporated in the design 

and development of new safer chemical products. This is in line with the Green Chemistry philosophy, 
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which encourages the design of chemicals and chemical processes that reduce or eliminate the use or 

generation of hazardous substances
1
 (Horváth and Anastas, 2007). 

In particular, one of the 12 Principles of Green Chemistry
2
 (Principle 10), originally published by Dr. Paul 

Anastas (ex EPA Assistant Administrator) and Dr. John Warner in Green Chemistry: Theory and Practice 

(Oxford University Press: New York, 1998), states that “chemical products should be designed so that at 

the end of their function they break down into innocuous products that do not persist in the 

environment” (Anastas and Eghbali, 2010).  

The “benign by design” concept requires the knowledge of the potential biodegradability to be available 

in the earliest phases of the chemical production processes, i.e. even before synthesis (Rücker and 

Kümmerer, 2012). Industrial research and development is increasingly applying this approach to 

optimize, in terms of costs and time, the long industrial processes involved in the commercialization of 

new chemicals.  

In this context, in silico approaches like (Q)SARs, which predict biodegradation potential on the basis of 

the chemical structure, is a powerful tool for a rational design of new chemicals (e.g. by comparing 

candidate substances during product development), and can be applied for screening and prioritization 

purposes, before making a decision on the necessity for testing.   

A wide collection of qualitative and quantitative structure-biodegradability relationships is currently 

available. In literature these models are commonly identified with the acronym (Q)SBRs, but they can be 

simply considered as (Q)SPRs. In the last years several reviews have been published summarizing the 

state of the art of (Q)SPRs for biodegradation available both in literature and/or implemented in 

commercial or freely-available software (e.g. EPI Suite, MultiCase , TOPKAT, Catabol, etc…) (Jaworska et 

al., 2003, Pavan and Worth, 2008; Rücher and Kümmerer, 2012). In a recent review published in Green 

Chemistry by Rücher and Kümmerer (2012), the authors critically assess various approaches to predict 

aquatic aerobic biodegradation, providing practical considerations regarding model’s availability, 

applicability domains, predictive performances and limitations. It is to note that the majority of the 

available (Q)SPR models for biodegradation estimation have been developed based on training set data 

consisting of results from ready biodegradability tests, in particular MITI-I data (see section 5.2). Because 

of the relatively low costs and simplicity of ready biodegradation tests, most of biodegradation data 

currently available for commercial chemicals are derived using one or more of these methods. A trend in 

                                                             
1
 The concept of hazardous substance include the evaluation of toxicity to organisms and ecosystems, persistence 

and bioaccumulation potential in organisms or environment, and safety with respect to handling and use 

(http://www.epa.gov/greenchemistry/pubs/about_gc.html). 
2
 http://www.epa.gov/sciencematters/june2011/principles.htm 
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the development of (Q)SPRs for biodegradation over the years is evident, with an evolution from 

chemical-class specific models, built on small sets of homologous compounds (Rücker and Kümmerer, 

2012 and references therein), to broadly applicable models, based on highly heterogeneous datasets 

(e.g. Cheng et al., 2012). Several modeling approaches have been proposed (linear and nonlinear 

regression models, partial least square regression, artificial neural networks, classification methods, 

expert systems, etc…) based on both theoretical molecular descriptors or substructures fragments, 

automatically selected by specific algorithms or defined by experts.  

According to the ECHA guidelines for chemical safety assessment under REACH, the use of (Q)SPR 

predictions is considered at the screening level for a preliminary identification of substances with a 

potential for persistency. Concerning the use of (Q)SPRs for the assessment of biodegradation potential, 

the ECHA guidelines suggest the combined use of results from different estimation models, such as the 

BioWIN models implemented in EPI suite, paying particular attention to both the validation status of any 

QSAR model and whether the substance is included in the applicability domain of the model.  

In this study the attention was focused on a specific class of substances studied within the CADASTER 

Project, i.e. fragrance materials, for which specific QSPR models have been developed for the prediction 

of ready biodegradability. Despite the large quantities used and the continuous exposure to these 

chemicals, limited information is actually available regarding their health effects and environmental fate. 

The need to fill data gaps for an ever-increasing number of fragrances and to find commercially and 

environmentally compatible safer alternatives highlights the importance and utility of in silico 

approaches, like QSAR. 

To the best of our knowledge, no QSPR models for ready biodegradability specifically developed for 

fragrance materials are currently available.  

5.2 Methods 

5.2.1 Modeled endpoint 

Ready biodegradability is an important endpoint that is used, and required in regulation, for the 

assessment of biodegradability of chemicals on a screening level.  

Ready biodegradability tests are stringent screening tests, conducted under aerobic conditions, in which 

substances are tested in high concentrations when compared to those normally found in the 

environment (but not inhibiting bacterial growth). Small amounts of a polyvalent inoculum, generally 

taken from a municipal STP, river water, and/or soil suspension (not artificially pre-adapted to the test 

substance), are used in order to represent a realistic spectrum of degrading organisms present in the 
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environment. The test substance is provided as the sole source of carbon for energy and growth and is 

incubated in the dark for 28 days under conditions favoring biodegradation with respect to pH-value, O2-

content, and temperature (ECHA, 2008b; Beek et al., 2001).  

Ultimate biodegradation can be indirectly determined by measuring parameters like Dissolved Organic 

Carbon (DOC) removal, Biochemical Oxygen Demand (BOD) and CO2 production. Specific “pass levels” 

have been  chosen for biodegradation test results. Substances are considered “completely” biodegraded 

or mineralized when > 60% of the ThOD (theoretical oxygen demand) or ThCO2 (theoretical carbon 

dioxide), or > 70% DOC removal is reached within a certain time span (normally 28 days). 

Table 5.1 gives an overview of the internationally standardized OECD 301 tests with relative pass levels 

for biodegradation.  

Table 5.1. Standardized screening tests for ready biodegradability with relative pass levels. 

Test Name Guideline  Endpoint Pass level  

 OECD [ref] EU [ref]  (threshold) 

DOC Die Away-Test 301 A C.4-A DOC removal 70% 

CO2 evolution-Test 301 B C.4-C ThCO2
a
 60% 

Modified MITI I-Test 301 C C.4-F ThOD
b
 60% 

Closed Bottle-Test 301 D C.4-E ThOD 60% 

Modified OECD 

Screening-Test (MOST) 

301 E C.4-B DOC removal 70% 

Manometric 

Respirometry-Test 

301 F C.4-D theoretical oxygen 

demand (ThOD) 

60% 

a
 ThCO2, theoretical carbon dioxide: the amount of CO2 that theoretically can be produced if the test substance is 

completely oxidized by microorganisms. 
b
 ThOD, Theoretical oxygen demand: the amount of oxygen that 

theoretically can be consumed if the test substance is completely oxidized by microorganisms. 

 

Ready biodegradability of tested chemicals is evaluated on the basis of degradation percentage after 28 

days and fulfilment of the 10 days-window criterion
3
. 

In particular, if ≥ 60% of ThOD or ≥ 60% of ThCO2 or ≥ 70% DOC removal occurs within the 10 day-

window, than the chemical will be assessed as “readily biodegradable”. 

If the pass levels are not met within the 10-day window, the substance is classified as “not readily 

biodegradable”.  

A positive result in a test for ready biodegradability can be considered as indicative of rapid and ultimate 

degradation in most environments. In such cases, no further investigation of the biodegradability of the 

                                                             
3
 The pass levels have to be reached in a 10-day window within the 28-day period of the test. The 10-day window 

begins when the degree of biodegradation has reached 10% DOC removal, ThOD or ThCO2 and must end before or 

at day 28 of the test. 
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chemical, or of the possible environmental effects of transformation products, is normally required. If a 

substance is evaluated as ready biodegradable, than it doesn't meet the P-criterion which is important 

for PBT assessment. 

The stringent test conditions may sometimes lead to conflicting tests results obtained by different 

methods. In some cases, these differences could for instance be due to the origin of the inoculum used in 

the tests, which may differ in the adaptation to the test substance.  

However, a negative result in a test for ready biodegradability does not necessarily mean that the 

chemical will not be degraded under realistic environmental conditions.  

Rücher and Kümmerer (2012) stated that, even if standardized methods are used, biodegradation data 

derived from screening tests are intrinsically highly variable and poorly reproducible. According to them, 

the stringent, and not realistic, conditions of different tests as well as the diversity of microorganisms 

used as inoculum are the main sources of variability, since they can be the determining factor in 

assessing a chemical as ready or not ready biodegradable. To overcome this problem, two approaches 

can be suggested: i) compare data within a set of compounds only if obtained in the same test and using 

the same inoculum (Rücher and Kümmerer, 2012), or ii) compare data obtained by different testing 

methods and use only data where consistent positive or negative results are observed, as performed in 

this study. 

5.2.2 Data set 

5.2.2.1 Training set 

Ready biodegradability data used for the development of QSAR models were mainly collected from the 

Japanese MITI (Ministry of International Trade and Industry) database and publicly available ECHA 

dossiers. Data were collected by one of the CADASTER Partners involved in WP3 (IDEA group) and 

provided to the other Partners as an SDF-file. The molecular structures of chemicals were provided in the 

form of SMILES notations and MOL-files. The provided SDF-file included ready biodegradability data for 

nearly 1800 heterogeneous organic chemicals. For each compound, information related to chemical 

identity (i.e. Name, SMILES string, CAS number, InChI code and EC number), ready biodegradation 

percentages obtained by one or more testing methods (i.e. OECD 301A, B, C, D, E, F), as well as an overall 

assessment of ready biodegradability (i.e. “RB” if ready biodegradable and “NRB” if not ready 

biodegradable) were provided. The IDEA Partner performed a preliminary cleaning of the dataset by 

removing duplicates, salts and chemicals with inconsistent biodegradation results among different 

testing methods, thus reducing the size of the dataset to 1250 chemicals.  
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Since the primary objective of the present study was to propose QSAR models for the classification of 

biodegradability of fragrances, an intensive filtering of the dataset was needed in order to remove any 

redundant and not useful structural information (section 5.2.4). The final dataset was composed of 136 

chemicals (70 RB and 66 NRB), including only fragrance materials and fragrance-like chemicals (i.e. 

compounds structurally similar to fragrances). Starting from the MOL-files provided by IDEA, mono- and 

bi-dimensional descriptors were generated by using the commercial software DRAGON (ver 5.5) and the 

open source software PaDEL-Descriptor (ver 2.12). 

5.2.2.2 Validation set 

In the context of the CADASTER Project, additional data of ready biodegradation became available 

specifically for fragrance materials. In particular:  

- Experimental data for 64 substituted musks/fragrances, derived from different testing methods 

(OECD 301 B, C, D, F) were provided by Dr. Dan Salvito from RIFM (Research Institute for Fragrance 

Materials). A preliminary analysis of the dataset allowed us to clean the dataset from duplicates, 

chemicals with no OECD 301 data and chemicals with inconsistent biodegradation results among 

different methods. Additionally, six fragrances having biodegradation percentages in the range of 40-

70% (close to the cut-off values of different methods) and/or with chemical structures more similar to 

chemicals in the opposite class were removed from the dataset. This was done in order to minimize the 

experimental uncertainty deriving from erroneous structural and/or response information included in 

the dataset. The final “RIFM dataset” consisted of 35 chemicals belonging to different chemical classes 

(assigned by RIFM), i.e. Aldehydes/Cyclic, Esters/Salicylates, Heterocycles/Oxygen Containing/Pyrans, 

Ketals/Cyclic and Phenols/Alkoxy. According to the biodegradation percentage and the testing method 

used, each chemical was assigned to the class “ready biodegradable” (RB) or “not ready biodegradable” 

(NRB).  

- Ready biodegradability percentages were measured for 11 fragrance materials by the CADASTER 

Partner PHI (Public Health Institute Maribor) by using the OECD 301D test. These chemicals were 

previously selected by our Research Unit as priority compounds on the basis of the available information 

on potential toxicity (cyto-toxicity and mammalian toxicity) and structural representativeness (Papa et 

al., 2009). The tested fragrances were separated into ready and not ready biodegradable according to 

the biodegradation percentage, i.e. “RB” if biodegradation > 60% (pass level for OECD 301D test) and 

“NRB” if biodegradation < 60%.  
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The two datasets of fragrances (RIVM and PHI datasets) were compared, and one overlapping compound 

(ID 6259-76-3, RB for both the datasets) was removed from the “RIFM dataset”. A final dataset of 45 

fragrances was defined and used for the external validation of the developed classification models.   

The chemical structures of the 45 fragrances were drawn, verified for their correctness and minimized to 

their lowest energy conformation by the semiempirical AM1 method using the HYPERCHEM software. 3D 

structures (*.hin files) were then converted into SMILES notations and MOL files by the software Open 

Babel 2.3.0.  

As was done for the training set chemicals, mono- and bi-dimensional molecular descriptors were 

calculated using the software DRAGON 5.5 (starting from HIN-files) and PaDEL-Descriptors 2.12 (starting 

from MOL-files). 

5.2.3 QSAR modelling and Applicability Domain 

For each pool of descriptors (calculated using DRAGON and PaDEL-Descriptor software), separate k-NN 

classification models were developed on the same training set (136 chemicals), and will further be 

referred to as “DRAGON Models” and “PaDEL Models”. The k-NN method was applied to auto scaled 

data, and the a priori probability to belong to a class was set as proportional to the number of chemicals 

in the two classes of ready biodegradability; the predictive power of the model was checked for k values 

between 1 and 10. 

As explained in chapter 2 (section 2.4.2), performances of classification models are normally evaluated 

on the basis of the confusion matrix (Table 5.2), which can be generated both for training and validation 

set chemicals. In this case, the confusion matrix was used to calculate the percentages of RB and NRB 

chemicals correctly classified as well as the overall accuracy (OA %).  

Table 5.2. Confusion matrix for the classification of ready biodegradability. 

 Assigned Class   

Real Class RB NRB Accuracy  

RB a b RB % (a/a+b)*100 

NRB c d NRB % (d/c+d)*100 

   OA % [(a+d)/a+b+c+d]*100 

 

In order to verify the ability of the proposed models to generate reliable predictions, also for new 

chemicals, the applicability domain (AD) was assessed taking into account the theoretical structural 
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space defined by the descriptors used in the models. Two approaches were used, one based on the 

range of descriptors selected in each model, the other one based on the leverage approach.  

In accordance with the first method, chemicals with descriptor values within the range of those of the 

training set compounds were considered as being inside the AD of the model. Compounds falling outside 

the descriptors’ space were considered as structural outliers and thus outside the AD of the model. 

According to the second method, the limit of model domain was quantitatively defined by the leverage 

cut-off (h*) set as 3(p+1)/n; leverage values greater than h* mean that the query compound is outside of 

the structural model AD.  

Predictions of compounds lying outside the ADs of the proposed models were considered as 

extrapolations, thus less reliable. 

5.2.4 Dataset cleaning and balancing 

Definition of the training set chemicals is one of the most important phases in QSAR modelling. The 

selection of a representative dataset, in terms of both structure and response, is a requirement for the 

development of a robust structure-activity relationship.  

In this case study, the composition of the dataset provided by IDEA (1250 chemicals) was structurally 

highly heterogeneous and just a small portion of the structural domain was covered by fragrances.  

A first modelling attempt was made using a training set composed of 146 chemicals measured with the 

OECD 301D test (Closed Bottle Test). This decision was taken in order to limit the experimental variability 

derived by different testing methods and assuming that chemicals tested with the same method should 

share similar structural and/or physico-chemical properties. The selection of the OECD 301D test was 

based on the fact that this specific method was used by the CADASTER Partner PHI for the measurement 

of ready biodegradability of fragrances, whose data were included in the validation set.  

Despite these assumptions, the selected training set included many chemicals highly different from the 

most common structural classes characterising fragrance materials. Several internally robust QSARs were 

developed using this training set (OA=75-80%). However the structural information encoded in the 

modelling descriptors was not able to correctly classify ready biodegradability of fragrances included in 

the validation set (RB<25%, NRB=80-90%).  

For this reason, further analysis and cleaning of the MITI dataset was performed in order i) to remove 

structural information not representative for fragrance materials and ii) to extend the training set to all 

the fragrances included in the big dataset collected by IDEA. In a step-by-step approach, where each step 

involved QSAR development and validation, many chemicals were excluded from the original dataset and 
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a final “fragrance dataset” of 187 chemicals, including 100 fragrances and 87 “fragrance-like” chemicals, 

was defined. 

A preliminary SAR (structure-activity relationship) analysis of the dataset was performed in order to 

characterize the composition of the selected dataset as well as identify any particular structural feature 

characterizing RB or NRB compounds.  

As it is shown in Figure 5.1, it was possible to recognize specific functional groups and sub-fragments 

most frequently included either in RB chemicals (e.g. alcohols, aldeydes, ketons, esters, amino-groups, 

etc..) or in NRB chemicals (e.g. aromatic rings, nitro-groups, quaternary carbons, etc..). However, it is 

known that interactions with other fragments present in the molecule can also play an important role in 

ready biodegradability (Loonen et al., 1999). In our dataset, for example, chemicals containing ethers or 

phenols groups were more likely to be RB or NRB according to the type of additional fragments included 

in the molecules (e.g., concurrent presence of alcohol groups enhanced RB potential, while the presence 

of quaternary/tertiary carbons or aromatic rings characterized NRB chemical).  

All the above observations find a confirmation in literature (Loonen et al., 1999; Boethling et al., 2007; 

Boethling, 2011; Cheng et al., 2012) and suggest that we have selected a meaningful and representative 

training set from both a structural and response points of view. 

 

 

Figure 5.1. Graphical representation of ready biodegradability of 187 chemicals in the dataset. Functional 

groups/sub-fragments most frequent in RB chemicals are labelled in green, those most frequent in NRB chemicals 

are labelled in red. 

  



Chapter 5                                                      QSAR Modeling of Ready Biodegradability of Fragrance materials 

 

 

110 

In this dataset, a problem was identified concerning the response distribution. In fact, the number of RB 

chemicals was much larger than that of NRB compounds (i.e. 121 RB vs 66 NRB).  

This problem of unbalanced datasets has been widely discussed in literature. Many studies have shown 

that unbalanced class distributions result in poor classification performances from standard classification 

algorithms, which assume a relatively balanced class distribution and equal misclassification costs (Sun et 

al., 2007; Maloof, 2003; Zhang and Mani, 2003). Classification rules that predict the small class tend to 

be fewer and weaker than those that predict the prevalent class, often leading to a high misclassification 

of test samples belonging to the small class.  

A method commonly used to deal with the problem of unbalanced data consists of under-sampling the 

majority class (Kubat & Matwin, 1997). Therefore, before model development, it was decided to pre-

process the dataset by reducing the dimension of the most representative class, i.e. RB. 

The sampling of the chemicals to remove from the RB class was performed by applying the factorial 

analysis (FA) (section 2.3.2). The factorial analysis was performed on the first four principal components 

(derived by a PCA based on 1D and 2D DRAGON descriptors), thus generating 16 groups of structural 

similarity (Table 5.3). According to the dimension of each group, 1 to 5 chemicals were sampled as 

representative compounds of the group and included in the final training set. This procedure allowed to 

reduce the number of RB chemicals (from 121 to 70) by conserving a structural representation of the RB 

class. 

Table 5.3. Data set balancing performed by applying factorial analysis. 

FA Gruop N Ndeleted Nsampled 

a 7 2 5 

b 4  4 

c 6 2 4 

d 4  4 

e 12 8 4 

f 1  1 

g 10 5 5 

h 8 4 4 

i 15 6 9 

j 5  5 

k 4  4 

l 9 4 5 

m 4  4 

n 3  3 

o 16 11 5 
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FA Gruop N Ndeleted Nsampled 

p 13 9 4 

 121 51 70 

 

The dataset used for QSAR development was finally composed of 136 chemicals, 70 RB and 66 NRB. 

DRAGON (ver. 5.5) and PaDEL (ver 2.12) descriptors were recalculated for the 136 training chemicals 

(from MOL-files). Constant, near-constant and pair-correlated descriptors (pair-wise correlation > 0.98) 

were excluded from the pool of descriptors used for QSAR modelling. Additionally, DRAGON descriptors 

no longer supported or having different values in the last updated version of DRAGON (ver. 6.0) were 

deleted
4
. At the end of this procedure a final set of 222 Dragon descriptors and 241 PaDEL descriptors 

were separately used as input variables in the model development.  

Before modelling, a preliminary analysis of the dataset was performed by principal component analysis 

on the bases of the calculated 1D and 2D Dragon descriptors (Figure 5.2). Despite the low information 

explained by the first two components (C.E.V. 33%), this analysis highlighted that: 

i) fragrances included in the validation set shared a similar structural space of the training set, thus 

indicating that they could be reasonably used for model validation, and 

ii) no linear separation surfaces could be defined between RB and NRB chemicals. This highlighted the 

complexity of the studied dataset (despite the pre-processing procedures performed) and supported the 

classification algorithm selected, i.e. k-NN. 

                                                             
4
 Changes between Dragon 5.5 and Dragon 6.0, available at: 

http://www.talete.mi.it/help/dragon_help/index.html?changes_dragon_5_5_6.htm 
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Figure 5.2. Principal Component Analysis (PC1 vs PC2) of training and validation sets based on 1D-2D DRAGON 

descriptors. RB and NRB chemicals included in training and validation sets are marked with different labels. 

5.3 QSAR models for ready biodegradation of fragrances  

Using an in-house software, models up to 5 variables were explored by maximizing the overall 

percentage of correct assignments (OA%). In this procedure, all the models based on one or two 

variables, obtained calculating all the possible pair-wise combinations of the molecular descriptors (All 

Subset variable selection method), were first explored. The genetic algorithm was then applied to select 

the best combination of modelling descriptors (maximum model dimension set as 5 variables). Finally, 

two independent populations of models, one based on DRAGON descriptors and the other one based on 

PaDEL descriptors, were generated, each consisting of the best 100 models, ordered by OA%.  

The two populations were analysed taking into account the following criteria: 

i) Model accuracy in classifying training set chemicals. This implied the analysis of fitting and cross-

validated RB%, NRB% and OA% of the developed models, which are indices of the goodness-of-

fit and robustness.  

ii) Model accuracy in classifying validation set chemicals. RB%, NRB% and OA% were calculated 

from the confusion matrix obtained for the validation set, and were used to evaluate predictive 

ability of the models.  
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iii) Interpretability of modelling descriptors. Particular attention was paid to the possible 

mechanistic interpretation of the molecular descriptors selected by GA as relevant for classifying 

RB and NRB chemicals. 

5.3.1 Classification models based on DRAGON descriptors  

According to the selection criteria explained above, three “best” models based on different combinations 

of DRAGON descriptors, each combination encoding for different structural information, were identified. 

Classification performances and modelling descriptors of the three DRAGON Models are reported in 

Table 5.4. 

Table 5.4. Modelling descriptors and classification performances of the three best Dragon Models for 

ready biodegradability of fragrances. 

   Training set (N=136)  Validation set (N=45) 

Model ID Descriptors k RB% NRB% OA%  RB% NRB% OA% 

M1 nCIC, X0A, nR=Ct, F01[C-O] 5 86 74 80  73 61 67 

M2 TI1, Vindex, nCq, H-052, B06[C-O] 4 83 73 78  68 61 64 

M3 Sv, Qindex, MAXDP, GGI5, nCq 6 87 77 82  73 70 71 

 

As can be observed in Table 5.4, the three proposed models are able to correctly classify both RB and 

NRB chemicals, with an average OA over 80% for training set chemicals. However, a higher specificity of 

the proposed models for the classification of RB chemicals was noted. This can be due to a higher 

structural heterogeneity among the NRB chemicals which is not exhaustively explained by the molecular 

descriptors included in the models.  

Lower classification accuracy was observed for the validation set, where M3 was the best model with a 

classification accuracy of 73% and 70% for RB and NRB respectively. For further application of the 

proposed models to new chemicals, predictions obtained in a consensus approach are here suggested. It 

is known that the consensus approach, by combining different models, often enhances predictive power 

and reduce misclassification errors (Boethling, 2004). As can be observed in Table 5.5, improvement in 

classification performances was observed if consensus predictions, i.e. class assignments obtained in 

agreement with at least two models, were considered. Class assignments of individual models and 

consensus model are provided in Appendix III (Tables A-9, A-10). 
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Table 5.5. Classification performances of the Consensus Model for ready biodegradability of fragrances. 

  Training set (N=136)  Validation set (N=45) 

Model ID k RB% NRB% OA%  RB% NRB% OA% 

M1 5 86 74 80  73 61 67 

M2 4 83 73 78  68 61 64 

M3 6 87 77 82  73 70 71 

Consensus  94 80 88  73 74 73 

 

As commented in the previous chapter (section 4.4), consensus modelling, which averages predictions 

obtained from various models based on different descriptors and/or different approaches, often lead to 

significant improvement of predictive performances. In our case, in a population of 100 models, many 

possible “best” models, based on different molecular descriptors, are included, each representing 

different views to describe the structural features that are related to the studied endpoint. In this sense, 

the Consensus approach can help to combine the structural information encoded by different models 

and to complement the deficiencies of individual models with the support of the other. 

5.3.2 Classification models based on PaDEL descriptors  

In the population of 100 models based on PaDEL descriptors, one “best” model was selected and is 

reported in Table 5.6. 

Table 5.6. Modelling descriptors and classification performances of the best PaDEL Model for ready 

biodegradability of fragrances. 

   Training set (N=136)  Validation set (N=45) 

Model ID Descriptors k RB% NRB% OA%  RB% NRB% OA% 

M4 
maxHBa, maxHssNH, maxssssC, 

WTPT-2 
7 81 79 80  73 70 71 

 

The model based on PaDEL descriptors, proposed as an alternative to DRAGON models, shows high 

classification performances, since it is able to correctly classify around 80% of the training set chemicals 

and 70% of the fragrances included in the validation set. In this case, comparable accuracy in classifying 

both RB and NRB chemicals can be observed.    

Differently than observed for the DRAGON models, consensus modelling, obtained by combining 

different good models included in the population of PaDEL models, didn’t lead to a significant 

improvement of the classification performances. This can be explained by the similar structural domains 
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covered by the molecular descriptors included in different PaDEL models, implying similar predictions 

and, hence, classification errors for the same molecules. Therefore, in order to provide a simpler 

applicability of the model, only one model based on the freely calculable PaDEL descriptors was 

proposed. 

Class assignments of the proposed model are provided in Appendix III (Tables A-9, A-10). 

5.3.3 Interpretation of modeling descriptors  

The selection of the “best” models was also based on the interpretability of modelling descriptors.  

As can be observed in Tables 5.4 and 5.6, all the proposed models are based on a limited number (4 or 5) 

of mono- and bi-dimensional theoretical descriptors, encoding for various structural features that have 

been automatically selected by GA as relevant for classifying RB and NRB chemicals in the studied 

dataset. To help the understanding of the selected descriptors, a list of the descriptors with the 

corresponding definitions (as provided by DRAGON and PaDEL-Descriptor supporting information) is 

reported in Table 5.7.   

Table 5.7. Modelling molecular descriptors and corresponding definitions.  

Descriptor Descriptor type Definition Model 

nCIC Constitutional descriptors number of rings M1 (Dragon) 

X0A Connectivity indeces average connectivity index chi-0 M1 (Dragon) 

nR=Ct Functional group counts number of aliphatic tertiary carbons M1 (Dragon) 

F01[C-O] 2D frequency fingerprints frequency of C-O at topological 

distance 01 

M1 (Dragon) 

TI1 Topological descriptor First Mohar index M2 (Dragon) 

Vindex Information indices Balaban V index M2 (Dragon) 

nCq Functional group counts number of total quaternary Carbons M2, M3 (Dragon) 

H-052 Atom centred fragments number of H atteched to C0 (sp3) 

with 1X attached to the next C  

M2 (Dragon) 

B06[C-O] 2D binary fingerprints presence/absence of C-O at 

topological distance 06 

M2 (Dragon) 

Sv Constitutional descriptors sum of atomic van der Waals 

volumes, scaled on Carbon atoms 

M3 (Dragon) 

Qindex Topological descriptors Quadratic index M3 (Dragon) 

MAXDP Topological index maximal electrotopological positive 

variation 

M3 (Dragon) 

GGI5 Topological charge 

indices 

topological charge index of order 5 M3 (Dragon) 

maxHBa E-State descriptors
a
 Maximum E-States for (strong) 

Hydrogen Bond acceptors 

M4 (PaDEL) 

maxHssNH E-State descriptors
a
 Maximum atom-type H E-State: -NH- M4 (PaDEL) 

maxssssC E-State descriptors
a
 Maximum atom-type E-State: >C< M4 (PaDEL) 

WTPT-2 Weighted Path descriptor Molecular ID / number of atoms M4 (PaDEL) 
a
 Atom type electrotopological state descriptors. 
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As a general comment, we observed that the majority of molecular descriptors selected by GA encoded 

for structural information already highlighted (also in literature) as important for characterising 

compounds as ready or not ready biodegradable. Among the descriptors that can be easily interpreted 

nCIC, which counts the number of rings (including aromatic rings) in the molecule, is a known fragment 

increasing resistance to ready biodegradation. The importance of this descriptor for discriminating 

between RB and NRB chemicals was already stressed by Cheng et al. (2012), who found a high significant 

difference between the mean number of rings of RB and NRB substances. Cheng et al. conclude that 

“higher number of rings is unfavourable for chemical biodegradability”. In the present dataset, nCIC was 

found to be highly correlated with descriptors TI1 (corr.=70%), Qindex (corr.=87%) and WTP-2 

(corr.=83%), which were selected as modelling variables in models M2, M3 and M4 respectively. 

Other important descriptors highly related to NRB potential are nR=Ct (included in M1) and nCq 

(included in both M2 and M3), which count the number of tertiary and quaternary carbons, respectively 

and which are also known structural alerts for NRB chemicals. Similar information is encoded by the 

PaDEL descriptor maxssssC, which is an E-state descriptor identifying the presence of carbon atoms 

bonded to four other carbon atoms with single bonds (>C<), i.e. quaternary carbons. 

Two important descriptors, i.e. F01[C-O] and B06[C-O], relevant for RB potential were selected, which 

identify the presence of functional groups containing oxygen (such as alcohol groups, aldehydes, 

ketones, carboxylic acids and esters). As has been reported before, chemicals including these groups are 

more easily degraded by oxidation, hydrolysis or conjugation reactions (Loonen et al., 1999; Boethling, 

2007; Chen et al., 2012). 

An additional PaDEL descriptor of easy interpretation selected by GA was maxHBa, an E-State descriptor  

for (strong) hydrogen bond acceptors. The fact that hydrogen binding ability is relevant for classifying RB 

and NRB chemicals is in contrast with what was found in the publication by Chen et al. (2012), where the 

authors state that “hydrogen binding ability is not a key factor for chemical biodegradation”. However, it 

is well known that biodegradation is a complex process that depends on many factors, including physico-

chemical and structural features of the chemicals but also environmental conditions. Differences found 

between our findings and literature could be due to the different experimental information used to 

develop the models (Jawroska et al., 2003; Rücher and Kümmerer, 2012). 

5.3.4 AD analysis: structural and response domain 

The here proposed classification models were analyzed both for their structural and response 

applicability domains, the first for the identification of compounds structurally most diverse from the 

training set, the latter for the detection of misclassified chemicals.   
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To define the structural domain of the models, two different approaches were used:  

i) the leverage approach, with h* set at 0.11 for M1/M4 and 0.13 for M2/M3;  

ii) the range of modelling descriptors within training set chemicals (Table 5.8).  

Table 5.8. Range of molecular descriptors (minimum and maximum values) selected in the four proposed 

models (M1, M2, M3 Dragon models and M4 PaDEL model). 

Model Descriptor min max 

M1 nCIC 0 3 

 X0A 0.67 0.902 

 nR=Ct 0 3 

 F01[C-O] 0 12 

M2 TI1 -87.084 40.11 

 Vindex 0.276 2.042 

 nCq 0 2 

 H-052 0 30 

 B06[C-O] 0 1 

M3 Sv 4.31 35 

 Qindex 0 17 

 MAXDP 0 5.165 

 GGI5 0 1.618 

 nCq 0 2 

M4 maxHBa 0 12.23918 

 maxHssNH 0 0.607986 

 maxssssC 0 0.606481 

 WTPT-2 1.638071 2.10786 

 

The leverage approach was applied for the training set in order to highlight chemicals which are very 

influential in selecting modelling variables and, for the validation set to identify chemicals outside the 

model domain. The AD determined by the range of descriptors was based on training set chemicals and 

applied for the validation set.   

A good agreement was found among the structural outlier chemicals identified by different models and 

by applying the two methods to define structural AD. However, none of the identified chemicals were 

particularly far from the structural domains of the models. It is to note that the leverage approach 

turned out to be more restrictive in comparison to the domain defined by the range of descriptors. 
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On the basis of the leverage approach, we highlight seven chemicals included in the training set 

characterized by the highest h values in different models. These chemicals were therefore particularly 

influential in selecting molecular descriptors in the respective models. Chemical structures of the 

highlighted chemicals, with respective h values, are shown in Figure 5.3.  

  
 

ID 34 – CAS 115-07-1 (NRB) 

h=0.22 (M2) 

ID 35 – CAS 115-10-6 (NRB) 

h=0.22 (M2) 

ID 54 - CAS 142-22-3 (RB) 

h=0.22 (M1) 

   

ID 69 – CAS 25155-25-3 (NRB) 

h=0.41 (M2) 

ID 93 – CAS 586-62-9 (RB) 

h=0.24 (M1) 

ID 115 – CAS 81-15-2 (NRB) 

h=0.46 (M3) 

 

  

ID 122 – CAS 924-42-5 (NRB) 

h=0.56 (M4) 

  

Figure 5.3. High leverage chemicals within the training set. 

Combining the two approaches and taking into account the structural AD defined by different models, 

three fragrances included in the validation set were recognized as outliers for all the models (Figure 5.4). 

This is mainly related to high number of rings included in the molecules. However, despite these 

chemicals are not covered by the structural domains of the proposed models, two of them (ID 27 and ID 

44) are correctly classified by all the models (except M2 that misclassifies ID27 as RB).  
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ID 1 - CAS 56-54-2 (RB) ID 27 – CAS 32388-55-9 (NRB) ID 44 – CAS 154171-77-4 (NRB) 

Figure 5.4. Structural outliers fragrances included in the validation set. 

 

The analysis of misclassified chemicals was also performed. Figures 5.5 and 5.6 show the chemical 

structures of training and validation set compounds, respectively, misclassified by both Dragon 

Consensus and PaDEL models.  
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RB chemicals classified as NRB 

   
ID 47 - 127-91-3 ID 59 - 15356-60-2 ID 95 - 598-56-1 

 

  

ID 108 - 78-59-1   

NRB chemicals classified as RB 

   
ID 26 - CAS 111-81-9 ID 50 - CAS 140-88-5 ID 51 - CAS 141-32-2 

 
  

ID 56 – CAS - 1490-04-6 ID 84 - CAS 504-02-9 ID 113 - CAS 79-46-9 

   

ID 125 - CAS 94-04-2   

Figure 5.5. Training set chemicals misclassified by both Dragon Consensus and PaDEL models. 
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RB chemicals classified as NRB 

   
ID 1 - CAS 000056-54-2 ID 2 - CAS 000083-66-9 ID 8 - CAS 000103-41-3 

   

ID 12 - CAS 000120-51-4 ID 14 - CAS 000470-82-6 ID 26 - CAS 025485-88-5 

 

NRB chemicals classified as RB 

   

ID 16 - CAS 001335-66-6 ID 21 - CAS 006290-17-1 ID 22 - CAS 006413-10-1 

 

  

ID 28 - CAS 037677-14-8   

Figure 5.6. Validation set chemicals misclassified by both Dragon Consensus and PaDEL models. 

A possible explanation of the misclassifications generated by the proposed models can be provided, also 

taking into account the interpretation of modeling descriptors discussed in the previous paragraph 

(section 5.3.3). 

Looking at the chemical structures reported in figures 5.5 and 5.6, it is evident that all the RB chemicals 

classified as NRB present structural features and fragments that could be mainly associated to NRB 

chemicals, such as the presence of one or more tertiary and quaternary carbons, aromatic rings and nitro 

groups. It is particularly surprising how the nitro-musk included in the validation set (ID 2) was measured 

to be 100% ready biodegradable. In fact, it is well known from literature that nitro-musks, like the one 
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here studied, actually incorporate a series of structural features (e.g. tert-butyl group, multiple nitro 

groups, high degree of ring substitution) that make them particularly resistant to aerobic biodegradation 

(Boethling et al., 2007). Therefore, in this case we are more likely to support the QSAR prediction rather 

than the experimental data.  

Concerning the misclassification of NRB compounds, the main explanation is related to the presence in 

their structure of aliphatic chains, multiple oxygen atoms and ester groups, which are structural 

elements that are commonly known to enhance ready biodegradability.  

5.4 BIOWIN Tool 

A comparison of the here proposed models, developed ad hoc for fragrances, and the widely used 

BIOWIN Tool is here presented.  

The Biodegradation Probability Program for Windows (BIOWIN, ver. 4.10) is a freely available tool 

implemented in the EPI Suite Software that calculates the probability of rapid aerobic and anaerobic 

biodegradation with mixed cultures of microorganisms. BIOWIN contains seven separate models, whose 

main features are summarized in Table 5.9. Five of these models, i.e. Biowin 1, 2, 3, 5 and 6, are intended 

to be used for the prediction of ready biodegradability. 

Table 5.9. Summary of biodegradation models available in BIOWIN. 

BIOWIN Model Brief Description Result interpretation 

Biowin1  =  linear probability 

model 

Biowin2 =  nonlinear probability 

model 

General indication of biodegradation 

under aerobic condition 

Probability ≥0.5: 

Biodegrades Fast 

Probability <0.5: Does NOT 

Biodegrade Fast 

Biowin3  =  expert survey 

ultimate biodegradation model 

Biowin4  =  expert survey 

primary biodegradation model 

Estimates for the time required to 

achieve complete ultimate (3) and 

primary (4) biodegradation in a typical 

or "evaluative" aquatic environment 

5.00 = hours; 4.00 = days;   

3.00 = weeks; 2.00 =months; 

1.00 = longer 

Biowin5  =  MITI linear model 

Biowin6  =  MITI nonlinear 

model 

Predictive models for assessing a 

compound’s biodegradability in the 

Japanese MITI ready biodegradation 

test; i.e. OECD 301C. 

Probability ≥0.5: Readily 

Degradable 

Probability <0.5 : NOT 

Readily Degradable 

Biowin7  =  anaerobic 

biodegradation model 

Predicts probability of rapid 

degradation in the "serum bottle" 

anaerobic biodegradation screening 

test.  This endpoint is assumed to be 

predictive of degradation in a typical 

anaerobic digester. 

Probability ≥0.5: 

Biodegrades Fast 

Probability <0.5: Does NOT 

Biodegrade Fast 
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Biodegradability estimates generated by BIOWIN models are based upon fragment constants that were 

developed using multiple linear or non-linear regression analyses, depending on the model. Biowin1, 

Biowin2, Biowin5 and Biowin6 estimate the likelihood of rapid biodegradation; in particular, Biowin1 and 

Biowin2 are based on a dataset of weight-of-evidence biodegradability evaluations for 264 chemicals, 

while Biowin5 and Biowin6 are based on a set of MITI data for 884 compounds. Biowin3 provides semi-

quantitative estimates of rates of ultimate biodegradation on the basis of an evaluation of several US-

EPA experts who analysed 200 substances. All the BIOWIN models are based on a set of preselected 

substructures (the same set of 36 fragments is used in Biowin 1, Biowin2 and Biowin3, and a slightly 

different set of 42 substructures is used in Biowin5 and Biowin6) and molecular weight as independent 

variables.  

Finally, the BIOWIN software provides an overall YES or NO prediction, derived by a combination of 

Biowin3 and Biowin5 estimations. More in detail, if Biowin3 result is “weeks” or faster (i.e. ≥2.75) and 

Biowin5 estimate is “readily degradable” (i.e. ≥0.5), then the prediction is YES (readily biodegradable). If 

these conditions are not satisfied contemporarily, the prediction is NO (not readily biodegradable). 

Classification accuracy of Biowin6 toward a selected group of fragrances, i.e. musks, was already 

evaluated in literature (Boethling, 2011). In that study, the author applied a threshold of 0.3 for 

classifying RB and NRB chemicals (instead of the criterion set by Biowin6 at 0.5 - Table 5.9) and was able 

to correctly classify ready biodegradability of more than 90% of chemicals (36/39 correct classifications). 

In the present work, it was decided to evaluate the predictive ability of the BIOWIN tool toward the 

fragrances considered in our study. In particular, estimations generated by Biowin6 (using the same 

threshold of 0.3, as applied by Boethling in the before mentioned study) and results obtained using a 

BIOWIN combined approach (Biowin3 and Biowin5), as recommended in literature (Boethling et al., 

2004) were used. 

A comparison of classification performances among the models developed in this study, i.e. Consensus 

model based on Dragon descriptors and the model based on PaDEL descriptors (M4), and BIOWIN, i.e. 

Biowin6 and BioWIN WoE (combined approach of Biowin3 and Biowin5) are reported in Table 5.10. 

Table 5.10. Classification performances of the here proposed models and BIOWIN. 

 Training set (N=136)  Validation set (N=45) 

Model ID RB% NRB% OA%  RB% NRB% OA% 

Consensus (Dragon) 94.3 80.3 87.5  72.7 73.9 73.3 

M4 (PaDEL) 81.4 78.8 80.1  72.7 69.6 71.1 

Biowin6 (0.3) 88.6 15.2 52.9  77.3 34.8 55.6 

BioWIN WoE 72.8 62.1 67.6  63.6 78.3 71.1 
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Despite the very good predictive performances showed in the publication by Boethling (Boethling, 2011), 

it is evident that Biowin6 is not adequate for the prediction of the chemicals considered in this study. 

The general overestimation of ready biodegradability of chemicals included in our two datasets leaded to 

a very low overall classification accuracy (OA%=15-35%). On the contrary, the combined approach of 

Biowin3 and Biowin5 seems to be more appropriate for the fragrances here studied, correctly classifying 

~68-70% of chemicals. The good performances of this approach can be explained by the wider structural 

and response information obtained by combining two different models and again highlights the 

importance of consensus modelling. 

It is also important to note that the development of new QSARs ad hoc for a specific group of chemicals, 

in this case fragrances, significantly improved the classification performances (OA% of the here proposed 

models increased 10-20% when compared with the OA% of BIOWIN).  

Nevertheless, a higher specificity toward NRB chemicals of the validation set was found for the Biowin 

WoE approach, which is able to correctly classify 78% of NRB fragrances (74% of correct assignments 

performed by our proposed models). The lower performances of our models can be due to a lack of 

specific structural information on NRB fragrances included in the modelling descriptors; this information 

is probably covered by the large set of sub-fragments included in the BIOWIN models. However, the 

overall classification accuracy of BIOWIN toward the validation set is lowered by the worse ability to 

recognize RB chemicals (RB% = 63.4%). The higher specificity of BIOWIN toward NRB chemicals in respect 

to RB compounds was already recognised in various validation studies of BIOWIN (ECHA, 2008b). 

5.5 Conclusions 

In this study, robust and externally predictive classification models have been developed for the 

prediction of ready biodegradability of fragrance materials. Ready biodegradation is among the basic 

information required for risk assessment for the evaluation of environmental fate and persistence of 

chemicals.  

Two alternative QSPR models, characterized by good and comparable classification performances, have 

been proposed:  

- a Consensus model, derived by integrating the predictions generated by the best three QSPRs 

based on DRAGON descriptors, and 

- a QSPR model based on molecular descriptors that can be calculated with the freely available 

software PaDEL-Descriptor. 
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The proposal of the PaDEL model was done in order to allow a wider and feasible application of the 

model by any user, bearing in mind the potential use of the proposed models as support tools for risk 

assessment and decision-making.  

It is important to stress that the use of the genetic algorithm for the automatic selection of variables 

allowed for the selection, among hundreds of theoretical descriptors, of descriptors really relevant for 

the classification of chemicals according to their biodegradation potential. In fact, the selected molecular 

descriptors encoded for important structural features known to enhance the biodegradability of 

chemicals, such as the presence of alcohol groups, ketones, carboxylic acids and ester, or, conversely, to 

increase the resistance to ready biodegradation, such as the presence of rings, tertiary and quaternary 

carbons. 

It was confirmed that the combination of multiple models allows, in the majority of cases, to  improve 

classification performances. The use of the consensus approach is therefore promoted in order to 

enhance predictive power of QSARs and reduce misclassifications. 

Concluding, the here proposed QSPRs represent useful tools to be applied, in combination with already 

existing and accepted models (e.g. BIOWIN), for the hazard and risk assessment of chemicals; more in 

detail, they are particularly suitable for fragrance materials. Additionally, in line with the Green 

Chemistry philosophy, they could be used a priori to design new alternative compounds, which are 

potentially less persistent in the environment.  
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Under the European REACH regulation there is an urgent need to acquire, by the next few years, a 

large amount of information necessary to assess and manage the potential risk of thousands of 

industrial chemicals. Meanwhile, in order to reduce costs and experimental time, and to ensure good 

animal welfare, REACH aims at reducing animal testing by promoting the intelligent and integrated 

use of alternative methods, such as in vitro testing and in silico techniques. Among these methods, 

models based on quantitative structure-activity relationships (QSAR) are useful tools to fill data gaps 

and to support the hazard and risk assessment of chemicals.  

The present thesis was performed in the context of the CADASTER Project, which aims at providing a 

practical guidance for the integration of in-silico models in risk assessment procedures. The main 

topic of this thesis was the development of QSAR/QSPR models for the characterization of the (eco-

)toxicological profile and environmental behaviour of four classes of emerging pollutants studied 

within the CADASTER Project (i.e. brominated flame retardants (BFRs), fragrances, perfluorinated 

compounds (PFCs) and (benzo)-triazoles (B-TAZs)), for which limited experimental information is 

currently available to perform a complete risk assessment.  

The major outcomes of this thesis can be summarised as following.  

• Several QSAR/QSPR models have been proposed to predict endpoints that are relevant, 

under the REACH regulation, for the evaluation of the environmental and/or human 

toxicological hazard (i.e. aquatic toxicity and endocrine disrupting potential), and for the 

estimation of the environmental persistence (i.e. ready biodegradability). In particular, data 

for acute toxicity in the aquatic species as well as information on ready biodegradability 

potential, are key endpoints required in regulation to perform the hazard assessment and to 

identify substances that fulfil the toxicity (T) and persistence (P) criteria in the PBT 

assessment. No clear guidance are currently available for the assessment of endocrine 

disrupting chemicals; however the evaluation of ED properties is important for the 

assessment of SVHCs.  

• The here presented QSARs have been developed on the basis of the OECD principles for 

QSAR acceptability for regulatory purposes. Particular attention has been paid to the 

external validation procedure and to the statistical definition of the applicability domain of 

the models. The relevance of QSAR models  to screen and rank chemicals without 

experimental data has also been highlighted. 

• A strong effort was made in order to propose QSAR models that could be easily applied and 

reproducible by future users (e.g. expert users from industry and regulation). To reach this 

purpose, in addition to the models based on molecular descriptors generated by the widely 

used commercial software DRAGON, “alternative” QSARs have been proposed, which were 
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based on descriptors calculated with the freely available software PaDEL-Descriptors. 

Moreover, models for the prediction of aquatic toxicity of B-TAZs have been implemented in 

the QSPR-Thesaurus database, which is the web-platform developed within the CADASTER 

Project that will allow for a wide distribution and easy free application of the QSARs 

developed in this thesis.  

• It was demonstrated, in all the presented case-studies (Chapters 3-5), that higher prediction 

accuracy is obtained when models based on different molecular descriptors are combined 

and, possibly, calculated by different modelling approaches. This confirms the validity of the 

consensus approach.   

• The models developed in this thesis have been used in the CADASTER project  to screen large 

amount of chemicals (in particular, 243 BFRs, 54 PFCs and 386 B-TAZs). These  screening have 

been performed to prioritise few chemicals, which have been predicted as the most 

hazardous (in relation to the modelled endpoint), and which have been suggested for further 

experimental tests (Durjava et al., submitted to ATLA). The application of this screening 

procedure demonstrated how the QSAR approach can be applied to extract useful 

information, also when starting from limited amount of data.   

• An important output of this thesis within the CADASTER Project consisted in the integration 

of the developed QSAR models in hazard and risk assessment procedures (Golsteijn et al., 

submitted to Environmental Science & Technology; Iqbal  et al., in press). As an example, 

QSAR predictions generated for aquatic toxicity of B-TAZs were used as input data for the 

assessment of the potential ecotoxicological impact (i.e., Comparative Toxicity Potentials 

(CTPs)) of triazoles. This case-study highlighted that the uncertainty in QSAR predictions had 

low impact in the CTP assessment of triazoles. This issue has not been discussed in this 

thesis, but demonstrated the potential application of QSAR predictions within risk 

assessment procedures.  

Concluding, the QSAR models developed within this thesis are useful tools to support hazard and risk 

assessment of specific classes of emerging pollutants, and show how non-testing information can be 

used for regulatory decisions, thus minimizing costs, time and saving animal lives.  

Beyond their use for regulatory purposes, the here proposed QSARs can find application in the 

rational design of new safer compounds that are potentially less hazardous for human health and 

environment.  
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Table A-1. Datasets used for the development of regression and classification models (Note: pE(I)C50 = Log1/E(I)C50). 

ID MolID LogRBA 
pEC50 

ERODind 

pEC50 

DRag 

pEC50 

ERag 

pIC50 

PRant 

Log 

T4REP 

Log 

E2SULTREP 
T4-TTR E2SULT DRag DRant ARant PRant ERag ERant 

3 BDE-003 -3.89 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

15 BDE-015 -3.42 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

17 BDE-017 -3.64 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

19 BDE-019 -- -- -- -0.38 0.10 -- -1.26 1 2 1 1 2 2 2 1 

28 BDE-028 -2.92 -- -- -1.18 -1.18 -- -1.82 1 2 1 2 2 2 2 1 

38 BDE-038 -- -- 0.30 -0.79 -1.18 -2.66 -- 2 1 2 1 2 2 2 1 

39 BDE-039 -- -- -- -- -1.18 -- -- 1 1 1 2 2 2 1 1 

47 BDE-047 -3.25 -- -- -1.08 -1.18 -2.66 -0.73 2 3 1 2 2 2 2 1 

49 BDE-049 -4.17 -- -1.18 -0.96 -0.79 -2.66 -0.94 2 2 2 2 2 2 2 1 

66 BDE-066 -2.70 0.36 -- -- -- -- -- -- -- -- -- -- -- -- -- 

71 BDE-071 -3.87 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

75 BDE-075 -3.40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

77 BDE-077 -2.66 1.21 -- -- -- -- -- -- -- -- -- -- -- -- -- 

79 BDE-079 -- -- -0.15 -1.18 -1.18 -- -- 1 1 2 1 2 2 2 2 

85 BDE-085 -1.72 -0.15 -- -- -- -- -- -- -- -- -- -- -- -- -- 

99 BDE-099 -3.85 -- -1.18 -- -1.18 -- -- 1 1 2 2 2 2 1 1 

100 BDE-100 -4.11 -0.02 -- -0.85 -0.53 -- -2.00 1 2 1 2 2 2 2 1 

119 BDE-119 -2.96 0.86 -- -- -- -- -- -- -- -- -- -- -- -- -- 

126 BDE-126 -2.57 1.47 -- -- -- -- -- -- -- -- -- -- -- -- -- 

127 BDE-127 -- -- -- -- -1.18 -2.60 -1.82 2 2 1 2 2 2 1 1 

153 BDE-153 -4.60 -0.62 -- -- -0.76 -- -- 1 1 2 1 2 2 1 1 

154 BDE-154 -4.64 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

155 BDE-155 -- -- -- -0.91 -0.58 -- -2.00 1 2 1 1 2 2 2 1 

169 BDE-169 -- -- -- -- -- -2.66 -1.82 2 2 1 2 1 1 1 1 

181 BDE-181 -- -- -0.65 -- -0.56 -2.10 -- 2 1 2 1 2 2 1 2 

183 BDE-183 -3.60 -0.55 -0.30 -- -0.42 -- -1.82 1 2 2 1 2 2 1 2 

185 BDE-185 -- -- -- -- -0.56 -2.13 -- 2 1 1 1 2 2 1 2 

190 BDE-190 -- -- -0.08 -- -0.68 -2.21 -1.40 2 2 2 1 2 2 1 2 



ID MolID LogRBA 
pEC50 

ERODind 

pEC50 

DRag 

pEC50 

ERag 

pIC50 

PRant 

Log 

T4REP 

Log 

E2SULTREP 
T4-TTR E2SULT DRag DRant ARant PRant ERag ERant 

206 BDE-206 -- -- -- -- -- -- -1.82 1 2 1 1 1 1 1 1 

209 BDE-209 -- -- -- -- -- -- -1.82 1 2 1 1 1 1 1 1 

214 TBBPA -- -- -- -- -- 0.25 0.97 3 3 1 1 1 1 1 1 

215 BDE-215 -- -- -- -- -1.18 1.06 -0.26 3 3 1 1 2 2 1 2 

216 246-TBP -- -- -0.11 -- -0.70 -0.51 -0.97 3 3 2 1 2 2 1 2 

221 6OH-BDE-47 -- -- -- -- -0.15 -- -- 1 1 1 2 2 2 1 2 

222 TBBPA-DBPE -- -- -- -- -- -1.98 -0.26 2 3 1 1 1 1 1 1 

224 4OH-BDE-42 -- -- -- -- -- 0.54 0.81 3 3 -- -- -- -- -- -- 

225 3OH-BDE-47 -- -- -- -- -- 0.60 0.81 3 3 -- -- -- -- -- -- 

226 5OH-BDE-47 -- -- -- -- -- 0.48 0.15 3 3 -- -- -- -- -- -- 

227 4'OH-BDE-49 -- -- -- -- -- 0.54 0.92 3 3 -- -- -- -- -- -- 

228 2'OH-BDE-66 -- -- -- -- -- -0.19 -1.08 3 2 -- -- -- -- -- -- 

                   

 Ntot 18 8 8 8 19 17 21 29 29 24 24 24 24 24 24 

 



Table A-2. List of 243 Brominated Flame Retardants (BFRs) studied within this thesis. 

ID Abbreviation Name CAS  ID Abbreviation Name CAS 

1 BDE-001 2-monoBDE 036563-47-0  123 BDE-123 2,3',4,4',5'-pentaBDE   

2 BDE-002 3-monoBDE 006876-00-2  124 BDE-124 2,3',4',5,5'-pentaBDE   

3 BDE-003 4-monoBDE 000101-55-3  125 BDE-125 2,3',4',5',6-pentaBDE   

4 BDE-004 2,2'-diBDE 051452-87-0  126 BDE-126 3,3',4,4',5-pentaBDE 366791-32-4 

5 BDE-005 2,3-diBDE 053563-56-7  127 BDE-127 3,3',4,5,5'-pentaBDE   

6 BDE-006 2,3'-diBDE 147217-72-9  128 BDE-128 2,2',3,3',4,4'-hexaBDE   

7 BDE-007 2,4-diBDE 171977-44-9  129 BDE-129 2,2',3,3',4,5-hexaBDE   

8 BDE-008 2,4'-diBDE 147217-71-8  130 BDE-130 2,2',3,3',4,5'-hexaBDE   

9 BDE-009 2,5-diBDE    131 BDE-131 2,2',3,3',4,6-hexaBDE   

10 BDE-010 2,6-diBDE    132 BDE-132 2,2',3,3',4,6'-hexaBDE   

11 BDE-011 3,3'-biBDE 006903-63-5  133 BDE-133 2,2',3,3',5,5'-hexaBDE   

12 BDE-012 3,4-diBDE 189084-59-1  134 BDE-134 2,2',3,3',5,6-hexaBDE   

13 BDE-013 3,4'-diBDE 083694-71-7  135 BDE-135 2,2',3,3',5,6'-hexaBDE   

14 BDE-014 3,5-diBDE    136 BDE-136 2,2',3,3',6,6'-hexaBDE   

15 BDE-015 4,4'-diBDE 002050-47-7  137 BDE-137 2,2',3,4,4',5-hexaBDE 446254-95-1 

16 BDE-016 2,2',3-triBDE    138 BDE-138 2,2',3,4,4',5'-hexaBDE 182677-30-1 

17 BDE-017 2,2',4-triBDE 147217-75-2  139 BDE-139 2,2',3,4,4',6-hexaBDE   

18 BDE-018 2,2',5-triBDE    140 BDE-140 2,2',3,4,4',6'-hexaBDE 243982-83-4 

19 BDE-019 2,2',6-triBDE    141 BDE-141 2,2',3,4,5,5'-hexaBDE   

20 BDE-020 2,3,3'-triBDE    142 BDE-142 2,2',3,4,5,6-hexaBDE   

21 BDE-021 2,3,4-triBDE    143 BDE-143 2,2',3,4,5,6'-hexaBDE   

22 BDE-022 2,3,4'-triBDE    144 BDE-144 2,2',3,4,5',6-hexaBDE   

23 BDE-023 2,3,5-triBDE    145 BDE-145 2,2',3,4,6,6'-hexaBDE   

24 BDE-024 2,3,6-triBDE    146 BDE-146 2,2',3,4',5,5'-hexaBDE   

25 BDE-025 2,3',4-triBDE 147217-77-4  147 BDE-147 2,2',3,4',5,6-hexaBDE   

26 BDE-026 2,3',5-triBDE    148 BDE-148 2,2',3,4',5,6'-hexaBDE   

27 BDE-027 2,3',6-triBDE    149 BDE-149 2,2',3,4',5',6-hexaBDE   

28 BDE-028 2,4,4'-triBDE 041318-75-6  150 BDE-150 2,2',3,4',6,6'-hexaBDE   

29 BDE-029 2,4,5-triBDE    151 BDE-151 2,2',3,5,5',6-hexaBDE   

30 BDE-030 2,4,6-triBDE 155999-95-4  152 BDE-152 2,2',3,5,6,6'-hexaBDE   

31 BDE-031 2,4',5-triBDE    153 BDE-153 2,2',4,4',5,5'-hexaBDE 068631-49-2 

32 BDE-032 2,4',6-triBDE 189084-60-4  154 BDE-154 2,2',4,4',5,6'-hexaBDE 207122-15-4 

33 BDE-033 2,3',4'-triBDE 147217-78-5  155 BDE-155 2,2',4,4',6,6'-hexaBDE 035854-94-5 



ID Abbreviation Name CAS  ID Abbreviation Name CAS 

34 BDE-034 2,3',5'-triBDE    156 BDE-156 2,3,3',4,4',5-hexaBDE   

35 BDE-035 3,3',4-triBDE 147217-80-9  157 BDE-157 2,3,3',4,4',5'-hexaBDE   

36 BDE-036 2,3',5-triBDE    158 BDE-158 2,3,3',4,4',6-hexaBDE   

37 BDE-037 3,4,4'-triBDE 147217-81-0  159 BDE-159 2,3,3',4,5,5'-hexaBDE   

38 BDE-038 3,4,5-triBDE    160 BDE-160 2,3,3',4,5,6-hexaBDE   

39 BDE-039 3,4',5-triBDE    161 BDE-161 2,3,3',4,5',6-hexaBDE   

40 BDE-040 2,2',3,3'-tetraBDE    162 BDE-162 2,3,3',4',5,5'-hexaBDE   

41 BDE-041 2,2',3,4-tetraBDE    163 BDE-163 2,3,3',4',5,6-hexaBDE   

42 BDE-042 2,2',3,4'-tetraBDE    164 BDE-164 2,3,3',4',5',6-hexaBDE   

43 BDE-043 2,2',3,5-tetraBDE    165 BDE-165 2,3,3',5,5',6-hexaBDE   

44 BDE-044 2,2',3,5'-tetraBDE    166 BDE-166 2,3,4,4',5,6-hexaBDE 189084-58-0 

45 BDE-045 2,2',3,6-tetraBDE    167 BDE-167 2,3',4,4',5,5'-hexaBDE   

46 BDE-046 2,2',3,6'-tetraBDE    168 BDE-168 2,3',4,4',5',6-hexaBDE   

47 BDE-047 2,2',4,4'-tetraBDE 005436-43-1  169 BDE-169 3,3',4,4',5,5'-hexaBDE   

48 BDE-048 2,2',4,5-tetraBDE    170 BDE-170 2,2',3,3',4,4',5-heptaBDE 327185-13-7 

49 BDE-049 2,2',4,5'-tetraBDE 243982-82-3  171 BDE-171 2,2',3,3',4,4',6-heptaBDE   

50 BDE-050 2,2',4,6-tetraBDE    172 BDE-172 2,2',3,3',4,5,5'-heptaBDE   

51 BDE-051 2,2',4,6'-tetraBDE    173 BDE-173 2,2',3,3',4,5,6-heptaBDE   

52 BDE-052 2,2',5,5'-tetraBDE    174 BDE-174 2,2',3,3',4,5,6'-heptaBDE   

53 BDE-053 2,2',5,6'-tetraBDE    175 BDE-175 2,2',3,3',4,5',6-heptaBDE   

54 BDE-054 2,2',6,6'-tetraBDE    176 BDE-176 2,2',3,3',4,6,6'-heptaBDE   

55 BDE-055 2,3,3',4-tetraBDE    177 BDE-177 2,2',3,3',4,5',6'-heptaBDE   

56 BDE-056 2,3,3',4'-tetraBDE    178 BDE-178 2,2',3,3',5,5',6-heptaBDE   

57 BDE-057 2,3,3',5-tetraBDE    179 BDE-179 2,2',3,3',5,6,6'-heptaBDE   

58 BDE-058 2,3,3',5'-tetraBDE    180 BDE-180 2,2',3,4,4',5,5'-heptaBDE   

59 BDE-059 2,3,3',6-tetraBDE    181 BDE-181 2,2',3,4,4',5,6-heptaBDE 189084-67-1 

60 BDE-060 2,3,4,4'-tetraBDE    182 BDE-182 2,2',3,4,4',5,6'-heptaBDE   

61 BDE-061 2,3,4,5-tetraBDE    183 BDE-183 2,2',3,4,4',5',6-heptaBDE 207122-16-5 

62 BDE-062 2,3,4,6-tetraBDE    184 BDE-184 2,2',3,4,4',6,6'-heptaBDE   

63 BDE-063 2,3,4',5-tetraBDE    185 BDE-185 2,2',3,4,5,5',6-heptaBDE   

64 BDE-064 2,3,4',6-tetraBDE    186 BDE-186 2,2',3,4,5,6,6'-heptaBDE   

65 BDE-065 2,3,5,6-tetraBDE    187 BDE-187 2,2',3,4',5,5',6-heptaBDE   

66 BDE-066 2,3',4,4'-tetraBDE 189084-61-5  188 BDE-188 2,2',3,4',5,6,6'-heptaBDE   

67 BDE-067 2,3',4,5-tetraBDE    189 BDE-189 2,3,3',4,4',5,5'-heptaBDE   

68 BDE-068 2,3',4,5'-tetraBDE    190 BDE-190 2,3,3',4,4',5,6-heptaBDE 189084-68-2 



ID Abbreviation Name CAS  ID Abbreviation Name CAS 

69 BDE-069 2,3',4,6-tetraBDE 327185-09-1  191 BDE-191 2,3,3',4,4',5',6-heptaBDE   

70 BDE-070 2,3',4',5-tetraBDE    192 BDE-192 2,3,3',4,5,5',6-heptaBDE   

71 BDE-071 2,3',4',6-tetraBDE 189084-62-6  193 BDE-193 2,3,3',4',5,5',6-heptaBDE   

72 BDE-072 2,3',5,5'-tetraBDE    194 BDE-194 2,2',3,3',4,4',5,5'-octaBDE 085446-17-9 

73 BDE-073 2,3',5',6-tetraBDE    195 BDE-195 2,2',3,3',4,4',5,6-octaBDE   

74 BDE-074 2,4,4',5-tetraBDE    196 BDE-196 2,2',3,3',4,4',5,6'-octaBDE   

75 BDE-075 2,4,4',6-tetraBDE 189084-63-7  197 BDE-197 2,2',3,3',4,4',6,6'-octaBDE   

76 BDE-076 2,3',4',5'-tetraBDE    198 BDE-198 2,2',3,3',4,5,5',6-octaBDE   

77 BDE-077 3,3',4,4'-tetraBDE 093703-48-1  199 BDE-199 2,2',3,3',4,5,5',6'-octaBDE   

78 BDE-078 3,3',4,5-tetraBDE    200 BDE-200 2,2',3,3',4,5,6,6'-octaBDE   

79 BDE-079 3,3',4,5'-tetraBDE    201 BDE-201 2,2',3,3',4,5',6,6'-octaBDE   

80 BDE-080 3,3',5,5'-tetraBDE    202 BDE-202 2,2',3,3',5,5',6,6'-octaBDE   

81 BDE-081 3,4,4',5-tetraBDE    203 BDE-203 2,2',3,4,4',5,5',6-octaBDE   

82 BDE-082 2,2',3,3',4-pentaBDE    204 BDE-204 2,2',3,4,4',5,6,6'-octaBDE 446255-54-5 

83 BDE-083 2,2',3,3',5-pentaBDE    205 BDE-205 2,3,3',4,4',5,5',6-octaBDE   

84 BDE-084 2,2',3,3',6-pentaBDE    206 BDE-206 2,2',3,3',4,4',5,5',6-nonaBDE   

85 BDE-085 2,2',3,4,4'-pentaBDE 182346-21-0  207 BDE-207 2,2',3,3',4,4',5,6,6'-nonaBDE   

86 BDE-086 2,2',3,4,5-pentaBDE    208 BDE-208 2,2',3,3',4,5,5',6,6'-nonaBDE 876310-29-1 

87 BDE-087 2,2',3,4,5'-pentaBDE    209 BDE-209 2,2',3,3',4,4',5,5',6,6'-decaBDE 001163-19-5 

88 BDE-088 2,2',3,4,6-pentaBDE    210 BPA bisphenol-A 000080-05-7 

89 BDE-089 2,2',3,4,6'-pentaBDE    211 MBBPA 3-monobromobisphenol-A 006073-11-6 

90 BDE-090 2,2',3,4',5-pentaBDE    212 DiBBPA 3,3-dibromobisphenol-A 029426-78-6 

91 BDE-091 2,2',3,4',6-pentaBDE    213 TriBBPA 3,3,5-tribromobisphenol-A 006386-73-8 

92 BDE-092 2,2',3,5,5'-pentaBDE    214 TBBPA 3,5,3,5-tetrabromobisphenol-A 000079-94-7 

93 BDE-093 2,2',3,5,6-pentaBDE    215 246-TBP 2,4,6-tribromophenol 000118-79-6 

94 BDE-094 2,2',3,5,6'-pentaBDE    216 6OH-BDE-47 6-OH-2,2',4,4'-tetrabromodiphenyl ether 079755-43-4 

95 BDE-095 2,2',3,5',6-pentaBDE    217 4-phenoxyphenol 4-phenoxyphenol 000831-82-3 

96 BDE-096 2,2',3,6,6'-pentaBDE    218 4'-HO-BDE-30 4'-HO-BDE-30   

97 BDE-097 2,2',3,4',5'-pentaBDE    219 4'-HO-BDE-69 4'-HO-BDE-69   

98 BDE-098 2,2',3,4',6'-pentaBDE    220 4'-HO-BDE-121 4'-HO-BDE-121   

99 BDE-099 2,2',4,4',5-pentaBDE 060348-60-9  221 HBCD γ hexabromocyclododecane γ 003194-55-6 

100 BDE-100 2,2',4,4',6-pentaBDE 189084-64-8  222 TBBPA-DBPE tetrabromobisphenol-A-bis(2,3)dibromopropyl ether 021850-44-2 

101 BDE-101 2,2',4,5,5'-pentaBDE    223 HBB hexabromobenzene 000087-82-1 

102 BDE-102 2,2',4,5,6'-pentaBDE    224 4-OH-BDE-42 4-OH-2,2',3,4'-tetrabromodiphenyl ether   

103 BDE-103 2,2',4,5',6-pentaBDE    225 3-OH-BDE-47 3-OH-2,2',4,4'-tetrabromodiphenyl ether   



ID Abbreviation Name CAS  ID Abbreviation Name CAS 

104 BDE-104 2,2',4,6,6'-pentaBDE    226 5-OH-BDE-47 5-OH-2,2',4,4'-tetrabromodiphenyl ether   

105 BDE-105 2,3,3',4,4'-pentaBDE 373594-78-6  227 4'-OH-BDE-49 4'-OH-2,2',4,5'-tetrabromodiphenyl ether   

106 BDE-106 2,3,3',4,5-pentaBDE    228 2'-OH-BDE-66 2'-OH-2,3',4,4'-tetrabromodiphenyl ether   

107 BDE-107 2,3,3',4',5-pentaBDE    229 2-OH-BDE-28 2'-OH-2,4,4'-triBDE   

108 BDE-108 2,3,3',4,5'-pentaBDE    230 6-OH-BDE-99 6-OH-2,2',4,4',5-pentaBDE   

109 BDE-109 2,3,3',4,6-pentaBDE    231 6-CH3O-BDE-47 6-CH3O-2,2',4,4'-tetrabromodiphenyl ether   

110 BDE-110 2,3,3',4',6-pentaBDE    232 4-BP 4-bromophenol 106-41-2 

111 BDE-111 2,3,3',5,5'-pentaBDE    233 2,4,6-TBA 2,4,6-tribromoanisole 607-99-8 

112 BDE-112 2,3,3',5,6-pentaBDE    234 4'-CH3O-BDE-49 4'-CH3O-2,2',4,5'-tetrabromodiphenyl ether   

113 BDE-113 2,3,3',5',6-pentaBDE    235 4'-OH-BDE-17 4'-OH-2,2',4-tribromodiphenyl ether   

114 BDE-114 2,3,4,4',5-pentaBDE    236 2'-OH-BDE-68 2'-OH-2,3',4,5'-tetrabromodiphenyl ether   

115 BDE-115 2,3,4,4',6-pentaBDE    237 6'-OH-BDE-49 6'-OH-2,2',4,5'-tetrabromodiphenyl ether   

116 BDE-116 2,3,4,5,6-pentaBDE 189084-65-9  238 6-OH-BDE-90 6-OH-2,2',3,4',5-pentabromodiphenyl ether   

117 BDE-117 2,3,4',5,6-pentaBDE    239 PBP pentabromophenol 608-71-9 

118 BDE-118 2,3',4,4',5-pentaBDE    240 TBBPA-DE tetrabromobisphenol-A-diallyl ether 25327-89-3 

119 BDE-119 2,3',4,4',6-pentaBDE 189084-66-0  241 DBDE Decabromo Dipheyl Ethane 84852-53-9 

120 BDE-120 2,3',4,5,5'-pentaBDE 417727-71-0  242 EBTPI ethylene bistetrabromo phthalimide 32588-76-4 

121 BDE-121 2,3',4,5',6-pentaBDE    243 TBPE bis(tribromophenoxy) ethane 37853-59-1 

122 BDE-122 2,3,3',4',5'-pentaBDE        

 



Table A-3. Equations and performances of the MLR-OLS models developed for the prediction of ED potency of BFRs. 

Endpoint NTR Equations R
2
 Q

2
LOO Q

2
EXT  RMSETR RMSEP 

LogRBA 18 Y = -10.31(±0.92) + 0.79(±0.10) L1v + 8.89(±1.54) Mor22u 0.82 0.73 0.76* 0.31 0.42* 

Log1/IC50PRant 19 Y = -3.67(±0.51) + 0.01(±0.001) RDF045m + 2.69(±0.54) GATS4m 0.87 0.82 0.86* 0.14 0.15* 

LogT4REP 17 Y = -8.60 (±0.62) + 38.23(±3.03) qpmax + 2.89 (±0.80) MATS6v 0.94 0.91 0.90* 0.35 0.47* 

LogE2SULTREP 21 Y = -0.61 (±0.23) + 2.11(±0.19) B08[C-O] - 2.53 (±0.63) GGI7 0.88 0.84 0.88* 0.36 0.36* 

Log1/EC50ERODind 8 Y = 11.17 (±1.84) - 0.12 (±0.02) piID 0.85 0.75 -- 0.29 -- 

Log1/EC50DRag 8 Y = -0.27(±0.06) - 2.74(±0.35) Mor08e 0.91 0.85 -- 0.15 -- 

Log1/EC50ERag 8 Y = 0.99(±0.19) - 0.50(±0.05) RGyr 0.95 0.88 -- 0.06 -- 

* Parameters calculated for the Split Models 

Table A-4. Modelling descriptors and classification accuracy of k-NN models developed for the prediction of ED potency of BFRs. 

Assigned class 
Endpoint Descriptors k Real class NTR 

1 2 3 

NERclass% NER%  Sn Sp 

DR agonism F04[O-Br]  RDF055v 4 1 15 14 1  93.3 95.8 1 0.93 
   2 9 0 9  100    

            
DR antagonism Jhetm  BEHm7 1 1 15 13 2  86.7 91.7 1 0.87 

   2 9 0 9  100    

            
ER agonism Ms  BEHv7 1 1 16 15 1  93.7 95.8 1 0.94 

   2 8 0 8  100    

            
ER antagonism QW  nArOH 1 1 16 15 1  93.7 95.8 1 0.94 

   2 8 0 8  100    

            
AR/PR GGI8 1 1 5 5 0  100 100 1 1 

   2 19 0 19  100    

            
T4-TTR DISPe  nArOH 3 1 12 10 2 0 83.3 89.6 0.94 0.83 

   2 9 1 8 0 88.9    

   3 8 0 0 8 100    

            
E2SULT inhibition Mor21v  qnmax 1 1 8 8 0 0 100 89.6 0.95 1 

   2 12 1 10 1 83.3    

   3 9 0 1 8 88.9    

 



Table A-5. List of 57 Perfluorinated compounds (PFCs) studied within this thesis. 

ID MolID Abbreviation Name SET 

1 000307-24-4 PFHxA Perfluorohexanoic acid Training 

2 000307-55-1 PFDoA Perfluorododecanoic acid Training 

3 000335-67-1 PFOA Perfluorooctanoic acid Training 

4 000335-76-2 PFDcA Perfluorodecanoic acid Training 

5 000355-46-4 PFHxS(A) Perfluorohexane sulfonic acid Training/Validation 

6 000375-22-4 PFBA Perfluorobutyric acid Training 

7 000375-73-5 PFBS(A) Nonafluorobutane sulfonic acid Training/Validation 

8 000375-85-9 PFHpA Perfluoroheptanoic acid Training 

9 000375-95-1 PFNA Perfluorononanoic acid Training 

10 000376-06-7 PFTdA Perfluorotetradecanoic acid Training 

11 000647-42-7 FTOH (6:2) 2-Perfluorohexyl ethanol Training 

12 000678-39-7 FTOH (8:2) 2-Perfluorooctyl ethanol Training 

13 000754-91-6 FOSA Perfluorooctane sulfonamide Training 

14 001546-95-8 7H-PFHpA 7H-Perfluoroheptanoic acid Training 

15 001691-99-2 N-EtFOSE 2-(N-ethylperfluoro-1-octane sulfonamido) ethanol Training 

16 001763-23-1 PFOS(A) Perfluorooctane sulfonic acid Training/Validation 

17 002058-94-8 PFUnA Perfluoroundecanoic acid Training 

18 004151-50-2 N-EtFOSA N-ethyl perfluorooctane sulfonamide Training 

19 024448-09-7 N-MeFOSE 2-(N-methylperfluoro-1-octane sulfonamido) ethanol Training 

20 031506-32-8 N-MeFOSA N-methyl perfluorooctane sulfonamide Training 

21 FTUA FTUA (6:2) 2H-Perfluoro-2-octenoic acid (6:2) Training 

22 Me2FOSA N,N-Me2FOSA N,N-dimethyl perfluorooctane sulfonamide Training 

23 PFDS-A L-PFDS(A) Perfluorodecane sulfonic acid Training/Validation 

24 PFOSi-A L-PFOSi(A) Perfluorooctane sulfinic acid Training/Validation 

25 000076-21-1   Hexadecafluoro-nonanoic acid Unknown 

26 000336-08-3   Hexanedioic acid, 2,2,3,3,4,4,5,5-octafluoro- Unknown 

27 000355-80-6 FTOH(4:1) 1-Pentanol, 2,2,3,3,4,4,5,5-octafluoro- Unknown 

28 000356-27-4   Butanoic acid, heptafluoro-, ethyl ester Unknown 

29 000375-81-5   Perfluoropentane-1-sulphonyl fluoride Unknown 

30 000375-92-8 PFHpS  Pentadecafluoro-1-heptanesulfonic acid Unknown 

31 000376-53-4   Adiponitrile, perfluoro Unknown 

32 000376-72-7   Octafluoropentanoic acid Unknown 

33 000376-89-6   Hexafluoroglutaronitrile Unknown 



ID MolID Abbreviation Name SET 

34 000377-38-8   Perfluorosuccinic acid Unknown 

35 000423-50-7   Perfluorohexanesulphonyl fluoride Unknown 

36 000423-54-1   Perfluorooctanamide Unknown 

37 000559-11-5   1,1-Dihydroperfluoroheptyl acrylate Unknown 

38 000756-91-2   3-Penten-1,5-diol, 3-methyl-1,1,5,5-tetrakis(trifluoromethyl)- Unknown 

39 000865-86-1 10:2 FTOH 1,1,2,2-Tetrahydroperfluoro dodecanol Unknown 

40 000918-21-8   Perfluoropinacol Unknown 

41 001478-61-1   Hexafluoroacetone bisphenol A Unknown 

42 001765-48-6   11-Eicosafluoroundecanoic acid Unknown 

43 002043-55-2   Hexane, 1,1,1,2,2,3,3,4,4-nonafluoro-6-iodo- Unknown 

44 002706-90-3 PFPeA  Perfluoropentanoic acid Unknown 

45 002706-91-4 PFPeS  Perfluoropentanesulfonic acid Unknown 

46 013695-31-3   Heptafluorobutyl methacrylate Unknown 

47 017527-29-6   1,1,2,2-Tetrahydroperfluorooctyl acrylate Unknown 

48 034449-89-3   1-Butanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,4-nonafluoro-N-(2-hydroxyethyl)- Unknown 

49 039239-77-5 12:2 FTOH  1,1,2,2-Tetrahydroperfluoro-1-tetradecanol  Unknown 

50 057729-98-3   Benzenamine, N-(2,4-difluorophenyl)-2,4-dinitro-6-(trifluoromethyl)- Unknown 

51 065592-51-0   Benzenamine, N-methyl-2,4-dinitro-6-(trifluoromethyl)-N-(3-(trifluoromethyl)phenyl)- Unknown 

52 067939-33-7   2-Propenoic acid, 2-methyl-, 2- ethyl (nonafluorobutyl)sulfonyl amino ethyl ester) Unknown 

53 068259-12-1 PFNS Nonadecafluoro-1-nonanesulfonic acid Unknown 

54 107350-42-5   Cyclohexanecarboxamide, 1,2,2,3,3,4,4,5,5,6,6-undecafluoro-N-(2,3,4,5-tetrachlorophenyl)- Unknown 

55 XXX001 PFTriA Perfluorotridecanoic acid Unknown 

56 XXX002 PFPA Perfluoropentadecanoic acid Unknown 

57 002043-47-2 FTOH(4:2) 2-Perfluorobutylyl ethanol Unknown 
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APPENDIX II 

Table A-6. List of 386 triazoles and benzotriazoles (B-TAZs) studied within this thesis. 

ID CAS Name  ID CAS Name 

1 000061-82-5 Amitrole  194 075020-35-8 (1)Benzopyrano(2,3-d)-1,2,3-triazol-9(1H)-one, 6,7-
dimethyl- 

2 000094-97-3 1H-Benzotriazole, 6-chloro-  195 075736-33-3 Diclobutrazol 

3 000095-14-7 Benzotriazole  196 076608-88-3 triapenthenol (Ref: NTN 811) 

4 000130-34-7 2-(p-nitrophenyl)-2H-naphtho[1,2-d]triazole-6,8-
disulphonic acid 

 197 076674-21-0 Flutriafol 

5 000131-43-1 EINECS 205-022-6  198 076738-62-0 Paclobutrazol 

6 000134-58-7 8-Azaguanine  199 077314-77-3 3-Amino-5-(2-(ethylamino)-4-pyridyl)-1,2,4-triazole 

7 000136-85-6 6-methylbenzotriazole  200 078149-96-9 Phosphonic amide, (5-amino-3-pentyl-1H-1,2,4-triazol-1-
yl)-N,N-dimethyl-, propyl ester 

8 000273-40-5 8-Azapurine  201 078150-00-2 Phosphonic diamide, (5-amino-3-benzyl-1H-1,2,4-triazol-1-
yl)-N,N'-dimethyl 

9 000288-36-8 1H-1,2,3-Triazole  202 078150-02-4 WP 254 

10 000288-88-0 1,2,4-Triazole  203 078218-51-6 Phosphonic diamide, (5-amino-3-p-chlorophenyl-1H-1,2,4-
triazol-1-yl)-N,N,N',N'-tetramethyl 

11 000584-13-4 4H-1,2,4-Triazole, 4-amino-  204 078218-52-7 Phosphonic diamide, (5-amino-3-ethyl-1H-1,2,4-triazol-1-
yl)-N,N,N',N'-tetramethyl 

12 000932-64-9 5-Nitro-1,2,4-triazol-3-one  205 078218-53-8 Phosphonic diamide, (5-amino-3-heptyl-1H-1,2,4-triazol-1-
yl)-N,N,N',N'-tetramethyl 

13 000938-56-7 1H-Benzotriazole-1-ethanol  206 078218-54-9 Phosphonic diamide, (5-amino-3-isopropyl-1H-1,2,4-
triazol-1-yl)-N,N,N',N'-tetramethyl 

14 000939-07-1 4H-1,2,4-Triazol-5-ol, 2-phenyl-  207 078218-55-0 Phosphonic diamide, (5-amino-3-p-methoxyphenyl-1H-
1,2,4-triazol-1-yl)-N,N,N',N'-tetramethyl 

15 000939-08-2 Pyridine, 4-(3-hydroxy-4H-1,2,4-triazol-5-yl)-  208 078218-56-1 Phosphonic diamide, (5-amino-3-methylbenzylidene-1H-
1,2,4-triazol-1-yl)-N,N,N',N'-tetramethyl 

16 000944-91-2 3H-1,2,4-Triazol-3-one, 2,4-dihydro-2,4-dimethyl-5-
phenyl- 

 209 078218-57-2 Phosphonic diamide, (5-amino-3-methyl-1H-1,2,4-triazol-1-
yl)-N,N,N',N'-tetramethyl 

17 000947-85-3 3H-1,2,4-Triazol-3-one, 2,4-dihydro-4-ethyl-2-methyl-
5-phenyl- 

 210 078218-58-3 Phosphonic diamide, (5-amino-3-phenyl-1H-1,2,4-triazol-1-
yl)N,N'-dimethyl 

18 000974-29-8 Stannane, (1H-1,2,4-triazol-1-yl)triphenyl-  211 078218-59-4 Phosphonic diamide, (5-amino-3-propyl-1H-1,2,4-triazol-1-
yl)-N,N,N',N'-tetramethyl 

19 001028-08-6 Phosphonic diamide, (5-amino-3-pentyl-1H-1,2,4-
triazol-1-yl)-N,N,N',N'-tetramethyl 

 212 078218-60-7 Phosphonic diamide, (5-amino-1H-1,2,4-triazol-1-yl)-
N,N,N',N'-tetraethyl 



ID CAS Name  ID CAS Name 

20 001031-47-6 Triamiphos  213 078218-61-8 Phosphonic diamide, (5-amino-3-undecyl-1H-1,2,4-triazol-
1-yl)-N,N,N',N'-tetramethyl 

21 001123-54-2 8-Azaadenine  214 078218-65-2 Phosphonothioic diamide, (5-amino-3-methyl-1H-1,2,4-
triazol-1-yl)-N,N,N',N'-tetramethyl 

22 001325-58-2 (1,2-ethenediyl)bis[5-nitrobenzenesulfonic acid], 
reduced 

 215 078218-66-3 Phosphonothioic diamide, (5-amino-1H-1,2,4-triazol-1-yl)-
N,N,N',N'-tetramethyl 

23 001326-66-5 C.I. Sulphur Yellow 2  216 078324-76-2 1H-anthra[2,3-d]triazole-5,10-dione 

24 001455-77-2 Guanazole  217 078371-72-9 1H-1,2,4-Triazole-3-carboxylic acid, 5-amino-1-(N,N,N',N'-
tetramethyldiaminophosphinyl), ethyl ester 

25 001468-26-4 8-Azaxanthine  218 078371-73-0 1H-1,2,4-Triazole-3-carboxylic acid, 5-amino-1-(N,N,N',N'-
tetramethyldiaminophosphinyl), pentyl ester 

26 001600-61-9 delta(sup 2)-1,2,4-Triazolin-5-one, 1-methyl-3-(5-
nitro-2-furyl)- 

 219 078371-74-1 1H-1,2,4-Triazole-3-carboxylic acid, 5-amino-1-(N,N,N',N'-
tetramethyldiaminophosphinyl), propyl ester 

27 001680-44-0 1H-1,2,3-Triazole, 4-phenyl-  220 078592-90-2 Phosphonic diamide, (5-amino-3-isobutyl-1H-1,2,4-triazol-
1-yl)-N,N,N',N'-tetramethyl 

28 001704-66-1 Acetamide, N-(3-(5-nitro-2-furyl)-s-triazol-5-yl)-  221 079983-71-4 Hexaconazole [BSI:ISO] 

29 002338-12-7 1H-Benzotriazole, 6-nitro-  222 080301-64-0 1H-Benzotriazole-1-methanamine, N,N-bis(2-ethylhexyl)- 

30 002440-22-4 Drometrizole  223 080584-88-9 -[[(5-methyl-1H-benzotriazol-1-yl)methyl]imino]bisethanol 

31 002592-95-2 1-Hydroxybenzotriazole  224 080584-89-0 -[[(4-methyl-1H-benzotriazol-1-yl)methyl]imino]bisethanol 

32 002683-90-1 8-Azahypoxanthine  225 080584-90-3 N,N-bis(2-ethylhexyl)-4-methyl-1H-benzotriazole-1-
methylamine 

33 003142-42-5 2-(2H-benzotriazol-2-yl)-4-dodecylphenol  226 080595-74-0 N,N-bis(2-ethylhexyl)-5-methyl-1H-benzotriazole-1-
methylamine 

34 003147-75-9 Octrizole [USAN:INN]  227 081518-26-5   

35 003147-76-0 Phenol, 2-(2H-benzotriazol-2-yl)-4-(1,1-
dimethylethyl)- 

 228 081518-27-6   

36 003232-84-6 Urazole  229 081518-28-7   

37 003310-68-7 N-phenyl-1H-1,2,4-triazole-3,5-diamine  230 081518-29-8   

38 003333-62-8 7-(2H-naphtho[1,2-d]triazol-2-yl)-3-phenyl-2-
benzopyrone 

 231 081518-31-2   

39 003357-42-4 1H-1,2,4-Triazole, 5-phenyl-  232 081518-32-3   

40 003641-10-9 3-Cyano-1,2,4-triazole  233 081518-37-8 Phenol, 2-(5-(butylthio)-4-phenyl-4H-1,2,4-triazol-3-yl)- 

41 003652-22-0 Pyridine, 4-(3-ethylthio-5-(4H-1,2,4-triazolyl))-  234 081518-41-4 Phenol, 2-(4-(4-bromophenyl)-5-(propylthio)-4H-1,2,4-
triazol-3-yl)- 

42 003652-23-1 Pyridine, 4-(3-propylthio-5-(4H-1,2,4-triazolyl))-  235 082200-72-4 1H-1,2,4-Triazole-1-ethanol, beta-(4-chlorophenoxy)-
alpha-(1,1-dimethyl)-,(alphaR,betaR)-rel- 

43 003652-25-3 Pyridine, 4-(3-allylthio-5-(4H-1,2,4-triazolyl))-  236 083044-89-7 octyl 3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-
2-yl)phenyl]propionate 



ID CAS Name  ID CAS Name 

44 003652-27-5 Pyridine, 4-(3-(2-pyridylmercapto)-5-(4H-1,2,4-
triazolyl))- 

 237 083044-90-0 2-ethylhexyl 3-[3-tert-butyl-4-hydroxy-5-(5-chloro-
2Hbenzotriazol- 
2-yl)phenyl]propionate 

45 003652-31-1 Pyridine, 3-(3-mercapto-4-methyl-5-(4H-1,2,4-
triazolyl))- 

 238 083044-91-1 methyl 3-[3-tert-butyl-4-hydroxy-5-(5-chloro-
2Hbenzotriazol-2-yl)phenyl]propionate 

46 003652-32-2 Pyridine, 4-(3-mercapto-4-methyl-5-(4H-1,2,4-
triazolyl))- 

 239 083366-66-9 Nefazodone [INN:BAN] 

47 003663-24-9 Butylbenzotriazole  240 083657-17-4 Uniconazole-P [ISO] 

48 003683-95-2 1,2,4(H)-Triazole, 3-mercapto-5-(4-bromo-3-
methylisothiazol-5-yl)- 

 241 083657-24-3 Diniconazole [ISO] 

49 003770-47-6 Pyridine, 4-(3-(methylthio)-5(4H)-1,2,4-triazol-5-yl)-  242 085509-19-9 Flusilazole [ISO] 

50 003846-71-7 2-benzotriazol-2-yl-4,6-di-tert-butylphenol  243 085634-51-1 1H-Benzotriazole, 1-(cyclohexylcarbonyl)-5-(1,4,5,6-
tetrahydro-4-methyl-6-oxo-3-pyridazinyl)- 

51 003864-99-1 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol  244 086386-73-4 Fluconazole 

52 003896-11-5 Bumetrizole [USAN:INN]  245 086598-92-7 Imibenconazole 

53 004184-79-6 5,6-dimethyl-1H-benzotriazole  246 088671-89-0 Myclobutanil [ANSI:BSI:ISO] 

54 004314-22-1 1H-1,2,4-triazol-1-ylacetic acid (Ref: CGA 142856)  247 089482-17-7 Triadimenol A 

55 004343-73-1 ethyl 5-methyl-1H-1,2,3-triazole-4-carboxylate  248 089786-04-9 Tazobactam [USAN:INN:BAN] 

56 004368-68-7 1-Benzyl-1,2,3-triazole  249 094270-86-7 1H-Benzotriazole-1-methanamine, N,N-bis(2-ethylhexyl)-
ar-methyl- 

57 004928-87-4 1,2,4-triazole-5-carboxylic acid  250 094361-06-5 Cyproconazole 

58 004928-88-5 1,2,4-Triazole-3-Carboxylic Acid Methylester  251 094667-47-7 1H-benzotriazolesulphonic acid 

59 005302-27-2 A 10749  252 097232-75-2 (R)-glycolic acid, compound with (S)-1,2,3,4,5,6,7,8-
octahydro-1-[(4-methoxyphenyl)methyl]isoquinoline (1:1) 

60 005369-84-6 4H-1,2,4-Triazole, 3-amino-4-(2-(2,6-xylyloxy)ethyl)-  253 098518-95-7   

61 005472-71-9 1-(4-morpholinomethyl)-1H-benzotriazole  254 098518-96-8   

62 005516-20-1 2-[2-(4-chlorophenyl)vinyl]-5-(2H-naphtho[1,2-
d]triazol-2-yl)benzonitrile 

 255 098518-99-1   

63 005873-30-3 C.I. Direct Violet 72  256 098519-00-7   

64 006054-53-1 6-[(2-chloro-4-nitrophenyl)azo]-1,2,3,4-
tetrahydrobenzo[h]quinoline-3,7-diol 

 257 098519-01-8   

65 006085-94-5 1H-1,2,4-Triazole, 1-benzyl-  258 098519-02-9   

66 006299-39-4 4-Nitro-1H-benzotriazole  259 098519-04-1   

67 006789-99-7 4,5,6,7-tetrahydro-1H-benzotriazole  260 098519-05-2   

68 006818-99-1 3-chloro-1H-1,2,4-triazole  261 098519-06-3   

69 006994-51-0 phenyl 4-(2H-naphtho[1,2-d]triazol-2-yl)stilbene-2-
sulphonate 

 262 098519-07-4   



ID CAS Name  ID CAS Name 

70 007170-01-6 1H-1,2,4-Triazole, 5-methyl  263 098519-24-5   

71 007411-23-6 s-Triazole, 3,5-dibromo-  264 098519-25-6   

72 007532-52-7 s-Triazole, 5-amino-3-(5-nitro-2-furyl)-  265 098519-26-7   

73 010109-05-4 1,2,4-triazolyl-3-alanine  266 098519-28-9   

74 010187-79-8 Acetamide, N-(1-methyl-3-(5-nitro-2-furyl)-s-triazol-5-
yl)- 

 267 098519-29-0   

75 010187-84-5 s-Triazole, 5-methylamino-3-(5-nitro-2-furyl)-  268 098519-30-3   

76 010187-86-7 s-Triazole, 3-amino-4-methyl-5-(5-nitro-2-furyl)-  269 098519-31-4   

77 010187-89-0 s-Triazole, 5-ethylamino-3-(5-nitro-2-furyl)-  270 098519-32-5   

78 013091-80-0 6-chloro-4-nitro-1H-benzotriazole  271 098519-33-6   

79 013257-88-0 1-(trimethylsilyl)-1H-1,2,3-triazole  272 098519-34-7   

80 013351-73-0 1H-Benzotriazole, 1-methyl-  273 098519-35-8   

81 014803-99-7 1H-1,2,4-Triazole, 5-(4-pyridyl)-  274 098519-37-0   

82 015421-84-8 Trapidil  275 098519-39-2   

83 015497-45-7 N,N-Dibutyl-1H-benzotriazole-1-methylamine  276 098519-41-6   

84 015805-10-4 1H-Benzotriazole, 6,6'-methylenebis-  277 098519-43-8   

85 016515-58-5 7-(5-butoxy-6-methyl-2H-benzotriazol-2-yl)-3-phenyl-
2-benzopyrone 

 278 098519-49-4   

86 016584-05-7 1H-Benzotriazole, 1-ethyl-  279 098532-64-0   

87 018076-61-4 1H-benzotriazol-4-amine  280 098532-65-1   

88 018811-70-6 1-(1H-benzotriazol-5-yl)-3-phenylurea  281 098532-66-2   

89 019683-09-1 2H-1-Benzopyran-2-one, 7-(4-methyl-5-phenyl-2H-
1,2,3-triazol-2-yl)-3-phenyl- 

 282 098532-67-3   

90 019794-93-5 Trazodone  283 098532-68-4   

91 021050-95-3 1-Chloro-benzotriazole  284 098532-69-5   

92 021532-04-7 4H-1,2,4-Triazole, 4-amino-3,5-dimethylthio-  285 098532-70-8   

93 023633-05-8 s-Triazole, 3-(hydroxymethylamino)-4-methyl-5-(5-
nitro-2-furyl)- 

 286 098532-71-9   

94 023711-34-4    287 098532-72-0   

95 024017-47-8 Triazophos [BSI:ISO]  288 098532-73-1   

96 024054-57-7 s-Triazole, 5-(hydroxymethylamino)-1-methyl-3-(5-
nitro-2-furyl)- 

 289 098532-74-2   

97 025973-55-1 Phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1,1-
dimethylpropyl)- 

 290 098532-75-3   

98 026621-45-4 1-Methyl-3-nitro-1,2,4-triazole  291 098532-77-5   

99 027022-50-0 Abbott 40060  292 098532-80-0   



ID CAS Name  ID CAS Name 

100 027210-18-0 1,2,4-Triazolo(3,4-a)isoquinoline, 8,9-dimethoxy-  293 098532-81-1   

101 027799-91-3 5-methoxy-1H-benzotriazole  294 098532-82-2   

102 028401-89-0 1,2,4-Triazolo(3,4-a)isoquinoline, 8,9-dimethoxy-3-
methyl- 

 295 098532-83-3   

103 028911-01-5 Triazolam  296 098532-85-5   

104 028981-97-7 Alprazolam  297 098967-40-9 Flumetsulam [ANSI] 

105 029440-31-1 Phosphonic diamide, (5-amino-1H-1,2,4-triazol-1-yl)-
N,N,N',N'-tetramethyl 

 298 099793-38-1 1H-1,2,4-Triazole, 1,5-bis(4-chlorophenyl)-3-(methylthio)- 

106 029878-31-7 1H-Benzotriazole, 4-methyl-  299 099793-75-6 1H-1,2,4-Triazole, 1-(4-chlorophenyl)-5-(4-fluorophenyl)-3-
(methylsulfonyl)- 

107 029975-16-4 Estazolam  300 103112-35-2 Fenchlorazole-ethyl 

108 031251-03-3 fluotrimazole  301 103112-36-3 Fenchlorazole 

109 031409-18-4 4H-1,2,4-Triazole, 3-(4-chlorophenyl)-4-ethyl-5-
(methylthio)- 

 302 103597-45-1 Bisoctrizole 

110 031701-42-5 1,4-Benzenediol, 2-(2H-benzotriazol-2-yl)-  303 103922-48-1 1H-1,2,4-Triazole-3,5-diamine, 1-methyl-N(sup 5)-(4-((4-
(1-piperidinylmethyl)-2-pyridinyl)oxy)-2-butenyl)-, (Z)- 

111 032362-89-3 1H-1,2,4-Triazole-3-thiol, 5-(2-pyridyl)-  304 104958-85-2 RB 6110 

112 032723-50-5 1,2,4-Triazolo(4,3-b)pyridazine, 3,8-dimethyl-6-
phenyl- 

 305 106325-08-0 Epoxiconazole 

113 034771-66-9 2H-1-Benzopyran-2-one, 3-(4-chloro-1H-pyrazol-1-
yl)-7-(4-methyl-5-phenyl-2H-1,2,3-triazol-2-yl) 

 306 107534-96-3 Tebuconazole 

114 035515-45-8 1,2,4-Triazolo(3,4-a)isoquinoline, 5,6-dihydro-3-
(trifluoromethyl)- 

 307 112143-82-5 Triazamate [ISO:BSI] 

115 036325-69-6 N-(2-(2-Hydroxyphenyl)-2H-benzotriazol-5-
yl)methacrylamide 

 308 112281-77-3 Tetraconazole [ISO] 

116 036411-52-6 3-(N-Salicyloyl)amino-1,2,4-triazole  309 113518-46-0   

117 036437-37-3 Phenol, 2-(2H-benzotriazol-2-yl)-4-(1,1-
dimethylethyl)-6-(1-methylpropyl) 

 310 114369-43-6 Fenbuconazole [ISO] 

118 036791-04-5 Ribavirin [USAN:INN]  311 116255-48-2 Bromuconazole 

119 037160-06-8 1,2,4-Triazolo(4,3-b)(1,2,4)triazine, 6,7-diphenyl-  312 119126-15-7 Flupoxam [ISO:BSI] 

120 038942-51-7 4H-1,2,4-Triazole-3-thiol, 4-methyl-5-phenyl-  313 119446-68-3 Difenoconazole [ISO] 

121 039968-33-7 3H-1,2,3-Triazolo[4,5-b]pyridine, 3-hydroxy-  314 122836-35-5 Sulfentrazone [ISO] 

122 040054-69-1 Etizolam  315 125116-23-6 Metconazole [ISO] 

123 041083-11-8 Azocyclotin  316 125225-28-7 Ipconazole [ISO] 

124 041735-28-8 s-Triazole, 5-(N-methyl-N-nitroso)amino-3-(5-nitro-2-
furyl)- 

 317 125304-04-3 Benzotriazolyl dodecyl p-cresol 

125 041735-29-9 s-Triazole, 5-(N-ethyl-N-nitroso)amino-3-(5-nitro-2-
furyl)- 

 318 125306-83-4 Cafenstrole [ISO] 



ID CAS Name  ID CAS Name 

126 041735-30-2 s-Triazole, 5-(N-ethyl-N-nitro)amino-3-(5-nitro-2-
furyl)- 

 319 127519-17-9 Benzenepropanoic acid, 3-(2H-benzotriazol-2yl)-5- (1,1-
dimethylethyl)-4-hydroxy-, C7-9-branched and linear alkyl 
esters 

127 041735-38-0 Acetamide, N-(1-methyl-3-(5-nitro-2-furyl)-s-triazol-5-
yl)di- 

 320 128625-52-5 PYBOP hexafluorophosphate 

128 041735-41-5 s-Triazole, 1-methyl-5-methylamino-3-(5-nitro-2-
furyl)- 

 321 128639-02-1 Carfentrazone-ethyl [ISO:BSI] 

129 041735-42-6 s-Triazole, 3-amino-1-methyl-5-(5-nitro-2-furyl)-  322 129586-32-9 Ssf 109 

130 041735-44-8 Acetamide, N-(1-methyl-5-(5-nitro-2-furyl)-s-triazol-3-
yl)di- 

 323 129909-90-6 amicarbazone (Ref: BAY MKH 3586) 

131 041735-45-9 s-Triazole, 1-methyl-3-methylamino-5-(5-nitro-2-
furyl)- 

 324 131983-72-7 Triticonazole [ISO] 

132 041735-50-6 Acetamide, N-(4-methyl-5-(5-nitro-2-furyl)-s-triazol-3-
yl)di- 

 325 136426-54-5 Fluquinconazole [ISO] 

133 041735-51-7 s-Triazole, 4-methyl-3-nitramino-5-(5-nitro-2-furyl)-  326 139158-24-0 3H-1,2,4-Triazole-3-thione, 2,4-dihydro-4-methyl-5-
tricyclo(3.3.1.1(sup 3,7))dec-1-yl- 

134 041735-54-0 s-Triazole, 3-chloro-5-(5-nitro-2-furyl)-  327 139158-25-1 3H-1,2,4-Triazole-3-thione, 2,4-dihydro-4-ethyl-5-
tricyclo(3.3.1.1(sup 3,7))dec-1-yl- 

135 041735-55-1 s-Triazole, 4-methyl-3-methylthio-5-(5-nitro-2-furyl)-  328 139158-26-2 3H-1,2,4-Triazole-3-thione, 2,4-dihydro-4-(phenylmethyl)-
5-tricyclo(3.3.1.1(sup 3,7))dec-yl- 

136 041735-56-2 s-Triazole, 4-methyl-3-methylsulfonyl-5-(5-nitro-2-
furyl)- 

 329 139528-85-1 Metosulam [ISO] 

137 041735-57-3 s-Triazole, 4-methyl-3-methoxy-5-(5-nitro-2-furyl)-  330 141078-91-3   

138 041814-78-2 Tricyclazole  331 141078-92-4   

139 041834-21-3 s-Triazole, 4-methyl-3-methylsulfinyl-5-(5-nitro-2-
furyl)- 

 332 141078-93-5   

140 042509-80-8 Isazofos  333 141078-94-6   

141 043029-44-3 1,2,4-Triazolo(3,4-b)(1,3,4)thiadiazole, 3,6-diphenyl-  334 141078-95-7   

142 043121-43-3 Triadimefon  335 141078-99-1   

143 051627-14-6 Cefatrizine [USAN:INN:BAN]  336 141079-00-7   

144 053817-16-6  1H-1,2,3-Triazole-4,5-dicarbonitrile  337 141079-01-8   

145 054028-81-8 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-9-chloro-4-methyl-1-phenyl- 

 338 141079-02-9   

146 054028-83-0 4H-(1,2,4)Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-9-chloro-1-(2-methoxyphenyl)-4-methyl- 

 339 141079-03-0   

147 054028-84-1 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-9-chloro-4-methyl-1-(2-naphthalenyl)- 

 340 141079-06-3   

148 054028-85-2 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-  341 141079-07-4   



ID CAS Name  ID CAS Name 

dihydro-9-chloro-4-methyl-1-(2-thienyl)- 

149 054028-86-3 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-9-chloro-1-(2-furyl)-4-methyl- 

 342 141079-08-5   

150 054028-89-6 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-8-chloro-4-methyl-1-phenyl- 

 343 141079-12-1   

151 054028-90-9 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-8-chloro-1-(p-methoxyphenyl)-4-methyl- 

 344 141079-13-2   

152 054028-91-0 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-4-methyl-1-phenyl- 

 345 141079-14-3   

153 054028-92-1 4H-(1,2,4)Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-1-(2-methoxyphenyl)-4-methyl- 

 346 141079-15-4   

154 054028-93-2 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-1-(p-methoxyphenyl)-4-methyl- 

 347 141079-16-5   

155 054028-94-3 4H-s-Triazolo(4,3-a)(1,5)benzodiazepine, 5,6-
dihydro-1-phenyl- 

 348 141079-17-6   

156 054028-95-4    349 141079-18-7   

157 054123-06-7 6H-Thieno(3,2-f)(1,2,4)triazolo(4,3-a)(1,4)diazepine, 
2-chloro-4-(2-chlorophenyl)-9-methyl- 

 350 141079-19-8   

158 055179-31-2 Bitertanol  351 141079-20-1   

159 055219-65-3 Triadimenol  352 145026-81-9 propoxycarbazone 

160 055375-40-1 1H-1,2,4-Triazol-3-ol, 5-(2-butenylthio)-1-methyl-, 
methanesulfonate (ester) 

 353 145701-21-9 diclosulam (Ref: XDE 564) 

161 055425-38-2 2-phenyl-3-(1H-1,2,4-triazol-5-ylazo)-1H-indole  354 145701-23-1 florasulam (Ref: DE 570)  

162 056383-06-3 1,2,4-Triazolo(4,3-b)pyridazine, 8-methyl-6-(4-
morpholinyl)- 

 355 147150-35-4 Cloransulam-methyl [ISO] 

163 056383-11-0 1,2,4-Triazolo(4,3-b)pyridazine, 3-methyl-6-(4-
morpholinyl)- 

 356 147993-59-7 Guerbetalkoholethoxylatbutylether 

164 056396-43-1 4H-1,2,4-Triazole-3,4-diamine, 5-(4-chlorophenyl)-
N(sup 4)-((4-chlorophenyl)methylene)- 

 357 149508-90-7 simeconazole  

165 056881-36-8 s-Triazolo(4,3-c)pyrimidin-5-ol, 7-methyl-  358 173980-17-1 bencarbazone (Ref: TM-435) 

166 057801-81-7 Brotizolam  359 178928-70-6 Prothioconazole [ISO:BSI] 

167 057801-94-2 6H-Thieno(3,2-f)(1,2,4)triazolo(4,3-a)(1,4)diazepine, 
2-bromo-4-(2-bromophenyl)-9-methyl- 

 360 212201-70-2 ipfencarbazone  

168 059026-08-3 Epronaz  361 219714-96-2 penoxsulam (Ref: XDE 638) 

169 059338-86-2 Methyl 6-methoxy-1H-benzotriazole-5-carboxylate  362 317815-83-1 thiencarbazone-methyl (Ref: BYH 18636 )  

170 059338-92-0 6-Methoxy-1H-benzotriazole-5-carboxylic acid  363 348635-87-0 amisulbrom 

171 059338-93-1 Alizapride [INN]  364 422556-08-9 pyroxsulam (Ref: XDE 742) 

172 060207-31-0 Azaconazole  365 865318-97-4 ametoctradin (Ref: BAS 650F) 



ID CAS Name  ID CAS Name 

173 060207-90-1 Propiconazole [BSI:ISO]  366 XXX002 2-(2,2-difluoroethoxy)-N-(5-hydroxy-8-
methoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-6-
(trifluoromethyl)benzenesulfonamide 

174 060207-93-4 Etaconazole [BSI:ISO]  367 XXX003 (2-hydroxy-3,3-dimethyl-2-[1,2,4]triazol-1-ylmethyl-
cyclopentyl)-(4-chlorophenyl)-methanone (Ref: CL 382389) 

175 060932-58-3 1H-Benzotriazolecarboxylic acid  368 XXX004 3-({[2-(2,2-difluoroethoxy)-6-
(trifluoromethyl)phenyl]sulfonyl}amino)-1H-1,2,4-triazole-5-
carboxylic acid 

176 061691-97-2 Ethanol, 2,2'-((1H-benzotriazol-1-ylmethyl)imino)bis-  369 XXX006 2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-ol 
(Ref: M14360-alcohol) 

177 063216-86-4 2-[4-[2-(4-amino-2-sulphophenyl)vinyl]-3-
sulphophenyl]-2H-naphtho[1,2-d]triazole-5-sulphonic 
acid 

 370 XXX007 4-[2-hydroxy-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butoxy]-
benzoic acid (Ref: BUE 2684) 

178 063251-40-1 2H-Naphtho(1,2-d)triazole-6,8-disulfonic acid, 2-(4-
aminophenyl)- 

 371 XXX008 2-(1-chlorocyclopropyl)-1-(2-chlorophenyl)-3-[5-
(methylthio)-1H-1,2,4-triazol-1-yl]propan-2-ol 

179 063870-37-1 1H-naphtho[1,2-d]triazole-6-sulphonic acid  372 XXX009 2-(1-chlorocyclopropyl)-1-(2-chlorophenyl)-3-(3H-1,2,4-
triazol-3-yl)propan-2-ol 

180 064057-50-7 Acetamide, 2-chloro-N-(4-methyl-5-(5-nitro-2-furyl)-5-
triazol-3-yl)- 

 373 XXX010 2-chloro-3-{2-chloro-5-[4-(difluoromethyl)-3-methyl-5-oxo-
4,5-dihydro-1H-1,2,4-triazol-1-yl]-4-fluorophenyl}propanoic 
acid  

181 064082-38-8 Acetamide, 2,2-dichloro-N-(3-(5-nitro-2-furyl)-5-
triazol-5-yl)- 

 374 XXX011 (1R,2E,3S,4R,5R)-2-(4-chlorobenzylidene)-4,5-dimethyl-1-
(1H-1,2,4-triazol-1-ylmethyl)cyclopentane-1,3-diol 

182 066104-34-5 2H-1,2,3-Triazolo(4,5-b)pyridin-5-amine, 2-(4-
methoxyphenyl)- 

 375 XXX012 (E)-2-(4-chlorobenzylidene)-5,5-dimethyl-1-((1H)-1,2,4-
triazol-1-ylmethyl)-cyclopentan-1,3-diol (Ref: RPA 
404766)  

183 066104-44-7 2H-1,2,3-Triazolo(4,5-b)pyridin-5-amine, 2-(3,4-
dimethylphenyl)- 

 376 XXX013 1-[2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-1H-
[1,2,4]triazol-yl]-ethanol (Ref: CGA 205375) 

184 066246-88-6 Penconazole  377 XXX014 N-(2,6-difluorophenyl)-8-fluoro-5-hydroxy[1,2,4]triazolo[1,5-
c]pyrimidine-2-sulfonamide 

185 066492-64-6 1H-1,2,4-Triazole, 1-acetyl-3-(p-chlorophenyl)-5-
methyl- 

 378 XXX015 N-(2,6-difluorophenyl)-5-aminosulfonyl-1H-1,2,4-triazole-3-
carboxylic acid 

186 066535-86-2  Lotrifen [INN]  379 XXX016 5-(aminosulfonyl)-1H-1,2,4-triazole-3-carboxylic acid  

187 066975-54-0 diethyl [[[3-(4,7-dihydro-7-oxo-1H-1,2,3-triazolo[4,5-
d]pyrimidin-5-yl)-4-
propoxyphenyl]amino]methylene]malonate 

 380 XXX017 trans-5-(4-chlorophenyl)-dihydro-3-phenyl-3- (1H-1,2,4-
triazole-1-ylmethyl)-2-3H-furanone (Ref: RH-9130)  

188 067465-03-6 Pyridine, 4-(3-acetonylthio)-5-(4H-(1,2,4-triazolyl))-  381 XXX018 4-(4-chlorophenyl)-2-(methyl-1H-1,2,4-triazole)-4-oxo-2-
phenylbutanenitrile (Ref: RH-6467) 

189 067465-05-8 Pyridine, 4-(3-(2-dimethylaminoethyl)-5-(4H-1,2,4-
triazolyl))- 

 382 XXX019 5-amino-N-(2,6-dichloro-3-methylphenyl)-1H-1,2,4-triazole-
3-sulfonamide 



ID CAS Name  ID CAS Name 

190 068049-83-2 Azafenidin [ISO]  383 XXX020 3-(2-((1H-1,2,4-triazol-1-yl)methyl)-2-(2,4-dichlorophenyl)-
1,3-dioxolan-4-yl)propan-1-ol (Ref: CGA 118245)  

191 069141-50-0  3-Octanone, 6-hydroxy-2,2,7,7-tetramethyl-5-(1H-
1,2,4-triazol-1-yl)-,(5R,6R)-rel- 

 384 XXX021 cis-5-(4-chlorophenyl)-dihydro-3-phenyl-3-(1H-1,2,4-
triazole-1-ylmethyl)-2-3H-furanone (Ref: RH-9129) 

192 070292-10-3 1H-1,2,3-Triazole-4-carboxylic acid, 5-methyl-1-(1-
naphthalenyl)- 

 385 XXX022 N-(2,6-dichloro-3-methylphenyl)-5-methoxy-7-hydroxy-
1,2,4-triazolo[1,5-alpha]pyrimidine-2-sulfonamide 

193 070321-86-7 Phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-
phenylethyl)- 

 386 XXX023 (2RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-
1-yl)pentan-3-one (Ref: CGA 149907) 

 

Table A-7. QSAR models for the prediction of EC50 in Pseudokirchneriella subcapitata, EC50 in Daphnia magna, and LC50 in Onchorynchus mykiss of B-TAZs. 

Endpoint Model Full Model Equation NTr R
2
 Q

2
LOO Q

2
ext

a
 CCCext RMSETr RMSEp R

2
ys 

DRAGON pEC50=3.448 + 0.014 AeigZ + 0.090 T(N..S) + 0.150 

Seigv 

35 0.82 0.77 0.72-0.84
b
 0.86-0.87

 b
 0.41 0.43-0.47

 b
 0.09 

PaDEL-Descriptor pEC50=1.505 + 0.027 AMR + 0.432 MDEN-22 + 

0.472 maxwHBa 

35 0.82 0.76 0.67-0.89
b
 0.82-0.91

b
 0.42 0.35-0.51

b
 0.08 

pEC50-72h 

P. subcapitata 

QSPR-Thesaurus pEC50= 3.096 + 0.006 p1p4_5N + 0.227 C-C  - 

0.103 p5BE 

35 0.80 0.73 0.71-0.83
b
 0.86-0.87

b
 0.44 0.44

b
 0.09 

pEC50-48h 

D.magna 

DRAGON pEC50 = 3.725 - 0.019 TPSA(NO)  + 0.009 Aeigm + 

0.048 nCar + 0.192 nHDon + 0.027 H-052 

97 0.77 0.74 0.69-0.83
b
 0.85-0.89

b
 0.39 0.34-0.44

b
 0.05 

DRAGON pLC50 = -6.705 + 1.579 CIC1 + 13.251 Mp + 0.135 

H-052 - 0.005  TPSA (Tot) 

75 0.79 0.76 0.85
c
 0.92

c
 0.48 0.41

c
 0.05 pLC50-96h 

O.mykiss 

PaDEL-Descriptor pLC50 = 2.325 + 0.392 VP-1 – 0.049 SHBint2 – 

0.335 maxHaaCH 

75 0.76 0.73 0.71-0.72
c
 0.82

c
 0.51 0.57

c
 0.04 

a  
Range of Q

2
ext-F1, Q

2
ext-F2 and Q

2
ext-F3. 

b 
Range of the external parameters of the Split models (by response and by structure). 

c 
Range of the external parameters calculated for 

the EV set.  

 

 

 

 

 



Table A-8. List of prioritized B-TAZs derived from the analysis of Consensus predictions (into AD) for acute toxicity in algae, daphnids and fish. Experimental and 

predicted E(L)C50 values are reported in mg/L. 

ID PCA  CAS P.subcapitata D.magna O.mykiss 

  Exp.EC50 Pred.EC50  Class Exp.EC50 Pred.EC50 Class Exp.LC50 Pred.LC50  Class 

40 055179-31-2 1.38 0.77 Very Toxic 4.46 3.22 Toxic 2.14 1.99 Toxic 

44 056396-43-1  -  1.83 Toxic  -  3.25 Toxic  -  1.48 Toxic 

61 081518-29-8  -  2.40 Toxic  -  2.95 Toxic  -  0.43 Very Toxic 

62 081518-41-4  -  1.59 Toxic  -  2.30 Toxic  -  0.73 Very Toxic 

74 098519-02-9  -  0.73 Very Toxic  -  10.60 Harmful  -  1.53 Toxic 

86 098519-33-6  -  1.24 Toxic  -  10.08 Harmful  -  2.15 Toxic 

98 098532-73-1  -  1.02 Toxic  -  16.99 Harmful  -  2.04 Toxic 

101 098532-77-5  -  1.45 Toxic  -  10.77 Harmful  -  2.25 Toxic 

102 098532-81-1  -  1.33 Toxic  -  10.55 Harmful  -  2.01 Toxic 

105 099793-38-1  -  2.12 Toxic  -  1.76 Toxic  -  0.36 Very Toxic 

107 106325-08-0 1.19 2.13 Toxic 8.69 5.35 Toxic 3.14 1.85 Toxic 

110 114369-43-6 0.33 0.89 Very Toxic 2.3 2.28 Toxic 1.5 1.28 Toxic 

112 119446-68-3 0.032 0.55 Very Toxic 0.77 3.08 Toxic 1.1 0.71 Very Toxic 

113 125116-23-6  -  1.76 Toxic 4.2 5.07 Toxic 2.1 3.67 Toxic 

114 125225-28-7  -  1.30 Toxic 1.7 4.50 Toxic >0.76 2.16 Toxic 

116 128639-02-1  -  1.88 Toxic >9.8 7.68 Toxic 1.6 4.22 Toxic 

121 xxx008 3.77 2.26 Toxic 2.8 8.40 Toxic 1.8 1.75 Toxic 

125 xxx017  -  0.81 Very Toxic  -  3.88 Toxic  -  1.73 Toxic 

126 xxx018  -  0.80 Very Toxic  -  4.84 Toxic  -  2.99 Toxic 

127 xxx021  -  0.81 Very Toxic  -  3.97 Toxic  -  1.73 Toxic 
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APPENDIX III 

Table A-9. List of training set chemicals, experimental and predicted classes of ready biodegradability 

(1=RB, 2=NRB). 

 
ID CAS / InChIKey Exp CLA DRAGON Models PaDEL model 

   M1 M2 M3 Consensus M4 

1 CAS_101-72-4 2 2 2 2 2 2 

2 CAS_101-80-4 2 2 2 2 2 2 

3 CAS_101-84-8 2 2 2 2 2 2 

4 CAS_102-09-0 2 2 2 2 2 2 

5 CAS_10233-13-3 1 2 1 1 1 1 

6 CAS_103-09-3 1 2 1 1 1 1 

7 CAS_103-64-0 2 2 1 2 2 2 

8 CAS_104-87-0 1 1 1 1 1 1 

9 CAS_104-93-8 2 1 1 2 2 1 

10 CAS_105-45-3 1 1 2 1 1 2 

11 CAS_106-24-1 1 1 1 1 1 1 

12 CAS_106-50-3 2 2 2 2 2 2 

13 CAS_106-65-0 1 1 1 1 1 1 

14 CAS_106-92-3 2 1 1 2 1 2 

15 CAS_106-99-0 2 2 1 2 2 2 

16 CAS_107-45-9 2 1 2 2 2 2 

17 CAS_108-11-2 1 2 1 1 1 1 

18 CAS_108-18-9 2 2 2 2 2 2 

19 CAS_108-20-3 2 2 2 2 2 2 

20 CAS_108-22-5 1 1 1 1 1 1 

21 CAS_108-39-4 1 1 2 1 1 1 

22 CAS_108-59-8 1 1 2 1 1 1 

23 CAS_108-93-0 1 1 1 1 1 1 

24 CAS_110-05-4 2 2 2 2 2 2 

25 CAS_111-03-5 1 1 1 1 1 1 

26 CAS_111-81-9 2 1 1 1 1 1 

27 CAS_111-84-2 1 1 1 1 1 1 

28 CAS_1120-24-7 1 1 1 2 1 1 

29 CAS_112-05-0 1 2 1 1 1 1 

30 CAS_112-27-6 1 1 1 1 1 1 

31 CAS_112-34-5 1 1 1 1 1 1 

32 CAS_112-62-9 1 1 1 1 1 1 

33 CAS_112-72-1 1 2 1 1 1 2 

34 CAS_115-07-1 2 2 2 2 2 2 

35 CAS_115-10-6 2 2 2 2 2 2 

36 CAS_115-95-7 1 1 1 1 1 1 

37 CAS_116-02-9 2 2 2 2 2 2 

38 CAS_119-36-8 1 1 1 1 1 1 

39 CAS_119-64-2 2 2 2 2 2 2 



ID CAS / InChIKey Exp CLA DRAGON Models PaDEL model 

   M1 M2 M3 Consensus M4 

40 CAS_120-14-9 1 1 1 1 1 1 

41 CAS_120-92-3 1 1 2 1 1 1 

42 CAS_122-03-2 1 1 1 1 1 1 

43 CAS_122-40-7 1 1 1 1 1 1 

44 CAS_123-35-3 1 1 1 1 1 1 

45 CAS_124-09-4 1 1 1 1 1 2 

46 CAS_124-28-7 1 1 1 1 1 1 

47 CAS_127-91-3 1 2 2 2 2 2 

48 CAS_131-11-3 1 1 1 1 1 1 

49 CAS_140-11-4 1 1 2 1 1 1 

50 CAS_140-88-5 2 1 1 1 1 1 

51 CAS_141-32-2 2 2 1 1 1 1 

52 CAS_141-78-6 1 1 1 2 1 2 

53 CAS_142-19-8 1 1 1 1 1 1 

54 CAS_142-22-3 1 1 1 1 1 1 

55 CAS_143-28-2 1 1 1 1 1 1 

56 CAS_1490-04-6 2 1 1 1 1 1 

57 CAS_1502-22-3 2 2 2 2 2 2 

58 CAS_150-78-7 1 1 1 2 1 2 

59 CAS_15356-60-2 1 2 2 2 2 2 

60 CAS_1634-04-4 2 1 2 2 2 2 

61 CAS_1724-39-6 1 1 1 1 1 1 

62 CAS_17796-82-6 2 2 2 1 2 2 

63 CAS_2049-95-8 2 1 2 2 2 2 

64 CAS_2146-71-6 1 1 1 1 1 1 

65 CAS_2173-57-1 2 2 2 2 2 2 

66 CAS_2409-55-4 2 2 2 2 2 2 

67 CAS_2416-94-6 2 2 2 2 2 2 

68 CAS_2436-90-0 1 1 1 1 1 1 

69 CAS_25155-25-3 2 1 2 2 2 2 

70 CAS_25265-71-8 1 1 1 1 1 1 

71 CAS_25340-17-4 2 2 2 1 2 2 

72 CAS_25377-72-4 2 2 2 2 2 2 

73 CAS_26780-96-1 2 2 2 2 2 2 

74 CAS_26896-20-8 2 2 2 2 2 2 

75 CAS_26896-48-0 2 2 1 2 2 2 

76 CAS_27776-01-8 2 2 2 2 2 2 

77 CAS_28219-61-6 2 1 2 2 2 2 

78 CAS_294-62-2 2 2 2 2 2 2 

79 CAS_3006-82-4 2 2 1 1 1 1 

80 CAS_31906-04-4 1 1 1 1 1 1 

81 CAS_32539-83-6 2 2 1 2 2 2 

82 CAS_3452-97-9 2 1 2 2 2 2 

83 CAS_4904-61-4 2 2 2 2 2 2 



ID CAS / InChIKey Exp CLA DRAGON Models PaDEL model 

   M1 M2 M3 Consensus M4 

84 CAS_504-02-9 2 1 1 1 1 1 

85 CAS_507-70-0 1 1 1 1 1 2 

86 CAS_51000-52-3 2 2 2 2 2 2 

87 CAS_513-35-9 2 1 1 1 1 2 

88 CAS_5333-42-6 2 1 1 1 1 2 

89 CAS_54549-24-5 1 1 1 1 1 1 

90 CAS_54839-24-6 1 1 1 1 1 1 

91 CAS_563-80-4 1 1 1 1 1 1 

92 CAS_576-26-1 2 2 2 2 2 2 

93 CAS_586-62-9 1 1 1 1 1 1 

94 CAS_590-86-3 2 2 2 2 2 1 

95 CAS_598-56-1 1 2 1 2 2 2 

96 CAS_599-64-4 2 2 2 2 2 1 

97 CAS_60-12-8 1 1 1 1 1 1 

98 CAS_620-17-7 1 1 2 1 1 1 

99 CAS_66063-15-8 2 2 2 2 2 2 

100 CAS_66-25-1 1 1 1 2 1 1 

101 CAS_68479-98-1 2 2 2 2 2 2 

102 CAS_68956-55-8 2 2 2 2 2 2 

103 CAS_693-23-2 1 1 1 1 1 1 

104 CAS_71-41-0 1 1 1 1 1 1 

105 CAS_75-91-2 2 1 2 2 2 1 

106 CAS_76-22-2 1 1 1 1 1 2 

107 CAS_763-32-6 1 1 1 1 1 1 

108 CAS_78-59-1 1 1 2 2 2 2 

109 CAS_78-69-3 1 1 1 1 1 1 

110 CAS_79-06-1 1 1 2 1 1 1 

111 CAS_79-20-9 1 1 2 1 1 1 

112 CAS_79-41-4 1 1 1 2 1 1 

113 CAS_79-46-9 2 2 1 1 1 1 

114 CAS_79-92-5 2 1 2 1 1 2 

115 CAS_81-15-2 2 2 2 2 2 2 

116 CAS_84-74-2 1 1 1 1 1 1 

117 CAS_868-77-9 1 1 1 1 1 1 

118 CAS_873-94-9 2 2 1 1 1 2 

119 CAS_90-02-8 1 2 1 1 1 1 

120 CAS_90-05-1 1 1 1 1 1 1 

121 CAS_90-72-2 2 2 2 1 2 1 

122 CAS_924-42-5 2 2 2 2 2 2 

123 CAS_92-84-2 2 2 2 2 2 2 

124 CAS_93-15-2 1 1 1 1 1 2 

125 CAS_94-04-2 2 1 1 1 1 1 

126 CAS_95-87-4 2 2 2 2 2 2 

127 CAS_96-17-3 2 2 1 2 2 1 



ID CAS / InChIKey Exp CLA DRAGON Models PaDEL model 

   M1 M2 M3 Consensus M4 

128 CAS_96-26-4 1 1 2 1 1 2 

129 CAS_97-99-4 1 1 1 1 1 1 

130 CAS_98-51-1 2 2 2 2 2 2 

131 CAS_99-85-4 1 1 1 1 1 1 

132 CAS_99-87-6 1 2 1 1 1 1 

133 CAS_99-96-7 1 1 1 1 1 1 

134 EC_415-450-7 2 2 2 2 2 2 

135 KFRVYYGHSPLXSZUHFFFAOYSAN 2 2 2 2 2 2 

136 MFCLOAFNUWAGGBUHFFFAOYSAN 2 2 2 2 2 2 

 
Table A-10. List of validation set chemicals, experimental and predicted classes of ready biodegradability 

(1=RB, 2=NRB). 

 
ID CAS Exp CLA DRAGON PaDEL 

   M1 M2 M3 Consensus M4 

1 000056-54-2 1 2 2 2 2 2 

2 000083-66-9 1 2 2 2 2 2 

3 000093-51-6 1 1 1 1 1 1 

4 000097-53-0 1 1 1 1 1 1 

5 000097-54-1 1 1 1 1 1 1 

6 000101-85-9 1 1 1 1 1 1 

7 000101-86-0 1 1 1 1 1 1 

8 000103-41-3 1 2 2 2 2 2 

9 000106-02-5 1 1 1 1 1 1 

10 000118-61-6 1 1 1 1 1 1 

11 000119-36-8 1 1 1 1 1 1 

12 000120-51-4 1 2 2 2 2 2 

13 000122-48-5 1 1 1 1 1 1 

14 000470-82-6 1 2 2 2 2 2 

15 001222-05-5 2 2 2 2 2 2 

16 001335-66-6 2 1 1 1 1 1 

17 002050-08-0 1 1 1 1 1 1 

18 003209-13-0 1 1 2 1 1 1 

19 005595-79-9 1 1 1 1 1 1 

20 006259-76-3 1 1 1 1 1 1 

21 006290-17-1 2 1 1 2 1 1 

22 006413-10-1 2 1 1 1 1 1 

23 007392-19-0 2 2 2 2 2 2 

24 018871-14-2 1 1 1 1 1 1 

25 024851-98-7 1 1 1 1 1 1 

26 025485-88-5 1 2 2 2 2 2 

27 032388-55-9 2 2 2 2 2 2 

28 037677-14-8 2 1 1 1 1 1 

29 039067-39-5 2 2 2 2 2 2 



ID CAS Exp CLA DRAGON PaDEL 

   M1 M2 M3 Consensus M4 

30 052475-86-2 2 2 2 2 2 1 

31 062406-73-9 2 2 2 2 2 2 

32 063500-71-0 2 1 1 1 1 2 

33 065405-77-8 1 1 1 1 1 1 

34 066327-54-6 2 1 2 2 2 1 

35 067845-30-1 2 2 2 1 2 2 

36 068039-49-6 2 1 1 1 1 2 

37 068738-94-3 2 2 2 2 2 1 

38 068738-96-5 2 2 2 2 2 2 

39 068991-97-9 2 2 2 2 2 2 

40 121251-67-0 2 2 1 2 2 2 

41 121251-68-1 2 2 1 2 2 2 

42 128489-04-3 2 2 2 1 2 2 

43 131812-52-7 2 1 2 2 2 2 

44 154171-77-4 2 2 1 2 2 2 

45 166301-22-0 2 1 2 2 2 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 


