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Abstract

In this work we are interested in standard and less standard structured linear systems
coming from applications in various �elds of computational mathematics and often mod-
eled by integral and/or di�erential equations. Starting from classical Toeplitz and Circulant
structures, we consider some extensions as g-Toeplitz and g-Circulants matrices appearing
in several contexts in numerical analysis and applications. Then we consider special matrices
arising from collocation methods for di�erential equations: also in this case, under suitable
assumptions we observe a Toeplitz structure. More in detail we �rst propose a detailed study
of singular values and eigenvalues of g-circulant matrices and then we provide an analysis of
distribution of g-Toeplitz sequences. Furthermore, when possible, we consider Krylov space
methods with special attention to the minimization of the computational work. When the
involved dimensions are large, the Preconditioned Conjugate Gradient (PCG) method is
recommended because of the much stronger robustness with respect to the propagation of
errors. In that case, crucial issues are the convergence speed of this iterative solver, the use of
special techniques (preconditioning, multilevel techniques) for accelerating the convergence,
and a careful study of the spectral properties of such matrices. Finally, the use of radial basis
functions allow of determining and studying the asymptotic behavior of the spectral radii of
collocation matrices approximating elliptic boundary value problems.

Key words: circulant matrices, Toeplitz sequences, spectral properties, approximations,
preconditioning, g-circulant matrices, g-Toeplitz sequences, singular values, eigenvalues, dis-
tribution, linear systems, Krylov space methods, multigrid methods, regularizing techniques,
collocation matrices, elliptic boundary value problems, RBFs, spectral radii, block Toeplitz
matrices with unbounded generating functions.
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Introduction

This Thesis is devoted to the Approximation and Spectral Analysis of Special Classes of
Large Structured Systems.

More speci�cally we consider structures of Toeplitz type and related generalizations. A
Toeplitz matrix Tn is characterized by the fact that its entries are constant along diagonals,
that is, (Tn)j,k = aj−k for some coe�cients {as}n−1

s=1−n with n being the size of the matrices.
An interesting variant consists in considering the shift with a stepsize di�erent from 1. If the
stepsize is g we encounter g-Toeplitz matrix. More explicitly Tn,g is a g-Toeplitz matrix of
size n if (Tn,g)j,k = aj−kg for suitable coe�cients and j, k = 0, 1, ..., n− 1.

g-Toeplitz matrices arises in wavelet analysis [50] and subdivision algorithm or, equiva-
lently, in the associated re�nement equations, see [58] and references therein. Systems of lin-
ear equations associated with a Toeplitz structure are encountered in many two-dimensional
digital signal processing applications, such as linear prediction and estimation [86], [97], [98],
image restoration [66], and the approximation by radial basis functions (RBFs) of constant-
coe�cients elliptic boundary value problems. Toeplitz matrices are also related to Multigrid
methods (see the interesting book by G. Strang [150] which gives a lot of useful insights about
this topic), and they appear in certain restriction/prolongation operators [61, 1, 78, 162] in
the context of discretization of di�erential and integral equations, spline functions, problems
and method in physics, mathematics, digital signal processing, such as linear prediction and
estimation [86, 97, 98], image restoration [66]. It is worth noticing that the use of di�erent
boundary conditions is quite natural when dealing with signal/image restoration problems
or di�erential equations, see [129], [126]. To approximate and study the spectral radii of
matrices Adn , where Adn are dn × dn collocation matrices approximating elliptic boundary
value problems, we �nd a sequence {Tdn}n of dn × dn symmetric block Toeplitz matrices
with symmetric Toeplitz blocks which is equally distributed and equally localized as the se-
quence {Adn}n. In order to solve the block Toeplitz system Tdnu = b, where Tdn is an dn×dn
matrix with dn × dn blocks, by direct methods, such as Levinson-type algorithms, requires
O(d3n× d2n) operations [8], [113], [169]. Recently, there has been active research on the appli-
cation of iterative methods such as the preconditioned conjugate gradient (PCG) method to
solution of Toeplitz systems. To accelerate the convergence rate, various preconditioners have
been proposed for symmetric positive de�nite (SPD) Toeplitz matrices [38], [83], [92]. The
proposed preconditioning techniques can be easily generalized to block Toeplitz matrices.
Simply speaking, we construct the preconditioners in special matrix algebras related to fast
transforms such as the circulant algebra, the Tau algebra [12] and the general trigonometric
matrix algebras. The key for choosing the preconditioner Pdn is that its spectral behavior
has to be as close as possible to that of Tdn . An important condition is that the sequence
{P−1

dn
Tdn}n is spectrally clustered at 1: in that case the related preconditioned Krylov meth-

ods are very fast. Since P−1
dn
u and Tdnu, where u denotes an arbitrary vector of length dn,

can be performed with O(dnlog dn) operations via two-dimensional fast Fourier transform,
the computational complexity per preconditioned Krylov iteration is O(dnlog dn) only. The
preconditioned Krylov method can be much more attractive than direct methods for solving
block Toeplitz systems if it converges fast.
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In this Thesis, we �rst study the problem of the spectral analysis of circulant and Toeplitz
matrix sequences. Then we consider the approximation and preconditioning problem by using
the Korovkin theory. Furthermore, we address the problem of characterizing the singular
values and eigenvalues of g-circulant matrices and of providing an asymptotic analysis of
the distribution results for the singular values of g-Toeplitz sequences, in the case where
the sequence of values {ak}k, de�ning the entries of the matrices, can be interpreted as
the sequence of the Fourier coe�cients of an integrable function f over the domain (−π, π).
Thirdly, we present powerful iterative methods for solving of large systems of linear equations
Ax = b in which A is a (real) nonsingular n×n matrix. More precisely, we restrict our study
on the Krylov space methods and present a general idea of Multigrid methods. In general,
one obtains such systems by using di�erence methods or �nite element methods for solving
boundary value problems in partial di�erential equations. The Krylov space methods start
with an initial vector x(0) and subsequently produce a sequence of vectors

x(0) → x(1) → x(2) → · · · → x(m) → · · ·

which converges toward the desired solution x = A−1b. The general characteristics of these
methods is that the methods, in exact arithmetic, terminate with the exact solution xm after
at most n steps, that is, m ≤ n. However, if the spectrum of the matrix has good localization
features or is clustered, the convergence, up to a �xed error, can be obtained with m much
smaller than n. If the original matrix A does not possess such good spectral properties, then
we can use preconditioning. More precisely we look for a matrix P such that

1) A linear system with matrix P is cheap to solve (at most the cost of a matrix vector
product with matrix A).

2) P−1A has a spectrum with good localization and/or clustering features (so that the
number m is much less than n).

In analogy with the well studied Toeplitz case, we consider the preconditioning problem
of g-Toplitz sequences via g-circulants. In particular, we consider the general case with g ≥ 2
and the interesting result is that the preconditioned sequence {Pn}n cannot be clustered at
1 so that the case of g = 1 is exceptional and, by the way, widely studied in the literature
(the clustering at 1 of the preconditioning sequence is referred as optimal preconditioning;
see e.g. [50, 59] for the one-level case, [141] for the multilevel case, and [150] for the multilevel
block case). However, while the optimal preconditioning cannot be achieved, the result has a
positive implication since there exist choices of g-circulant sequences which are regularizing
preconditioning sequence for the corresponding g-Toeplitz structures. Generalizations to the
block and multilevel case are also considered. Finally, we approximate the elliptic boundary
value problems by the linear systems of types Adnv = b. The shown method for approximat-
ing is based on the Radial Basis Functions. These types of approximations can be applied
for giving a numerical solution of certain PDEs. Under certain conditions, the convergence
is very fast (exponential in the number of grid points) when compared with Finite Di�er-
ences or Finite Elements. The price that is paid is often an extreme ill-conditioning of the
resulting structured matrices. In these methods, a radial function is core for approximation
space and this space is made by translating a standard radial function with zero as its center
(core), to all of the space particles. Here, we present an interesting method using the nodes
that most of them are selected out of real domain and the others, in the domain. One of
the advantages of meshless methods based on the RBFs is high decrease of computational
volume that arises when changing multi-dimensions to one dimension. Kansa, [88] is the �rst
researcher who applied an approximation by RBFs (Pseudo interpolation) to the PDEs. The
use of the globally supported RBFs leads to dense, poorly conditioned, large linear systems
as will be shown in the following. A RBFs must be selected experimentally suitable for the
model problem. The Thesis is organized as follows:

The chapters 1 and 2 deal with the spectral analysis of circulant and Toeplitz matrices.
In these chapters, we study spectral properties of circulant and Toeplitz matrices and we
provide an analysis of optimal approximation for the Toeplitz sequence by a Korovkin-type
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theory for �nite Toeplitz operators via matrix algebra.
In chapters 3 and 4, we address the problem of characterizing the singular values and

eigenvalues of g-circulant matrices and of providing an asymptotic analysis of the distribu-
tion results for the singular values of g-Toeplitz sequences, in the case where the sequence
of values {ak}k, de�ning the entries of the matrices, can be interpreted as the sequence of
Fourier coe�cients of an integrable function f over the domain (−π, π). As a byproduct,
we show interesting relations with the analysis of convergence of multigrid methods given,
e.g., in [141, 1] and we generalize the analysis to the block, multilevel case, amounting to
choose the symbol f multivariate, i.e., de�ned on the set (−π, π)d for some d > 1, and matrix
valued, i.e., such that f(x) is a matrix of given size p× q.

The powerful iterative methods, such as Krylov space methods and Multigrid methods,
for solving of large systems of linear equations Ax = b in which A is a (real) nonsingular
n × n matrix are presented in chapters 5 and 6. The Krylov space methods generate it-
erates xk that approximate the solution of linear equations Ax = b best among all vector
xj such that xj − x0 belong to Kk(r0, A), where Kk(r0, A) is the Krylov space belong-
ing to the matrix A and the starting vector r0 := b − Ax0 given by the residual of x0.
Kk(r0, A) := span[r0, Ar0, ..., A

k−1r0], k = 1, 2, .... Because of roundo� errors, these meth-
ods do not terminate with the desired solution after �nitely many steps. As in true iterative
methods, an in�nite number of steps needs to be carried out to speed of convergence of the
iterates xk. The amount of work per step x(k) → x(k+1) roughly equals that of multiply-
ing the matrix A by a vector. For this reason, these methods are especially advantageous
for sparse unstructured matrices A as they occur, e.g in network calculations. They can be
competitive with direct methods also for dense structured and nonstructured matrices or
for band matrices, if the convergence speed is good. In any case, iterative methods have to
be preferred from the point of view of the accuracy when the linear systems are of large
dimension. Among these methods, one can note:

i. The conjugate gradient (CG) method proposed by Hestness and Stiefel (1952, [80]) for
systems with a positive de�nite matrix.

ii. The generalized minimal residual (GMRES) method of Saad and Schultz (1986, [116])
(more expensive) but is de�ned for general linear systems with a nonsymmetric non-
singular matrix.

iii. The quasi-minimal residual method (QMR method) of Freud and Nachtigal (1991,
[65]), for solving arbitrary sparse linear systems of equations. This method is based
on the more e�cient (but numerically more sensitive) biorthogonalization algorithm
of Lanczos (1950, [95]), provides non-orthogonal bases v1, v2, ..., vk for the Krylov
spaces Kk(r0, A) of dimension k. Using these bases, one can compute iterates xk ∈
x0 +Kk(r0, A) with an approximately minimal residual.

iv. The biconjugate gradient algorithm (Bi-CG) due to Lanczos (1950, [95]) and thoroughly
studied by Fletcher (1976, [63]) is also a method for solving linear systems of equations
with an arbitrary matrix A. It is an inexpensive, natural generalization of the cg-
algorithm, and also generates iterates xk ∈ x0 +Kk(r0, A).

With regard to the applicability of Krylov space methods, the same remarks apply as for
the classical iterative methods [see Varga (2000), Young and Axelsson (1994, [4]), and Saad
(1996, [114])]. However, the very large systems of linear equations are related with the solu-
tion of boundary-value problems of partial di�erential equations by �nite element techniques
and are mainly solved by Multigrid methods; e.g, Hackbusch (1985, [98]), Braess (1997, [18]),
Bramble (1993, [19]), Quarteroni and Valli (1997).

Chapter 7 is reserved to new material which is collected as the manuscript entitled: A
note on preconditioning g-Toeplitz sequences via g-circulants. As already remarked, we con-
sider the preconditioned problems, and we focalize our concerns in the general case with
g ≥ 2. In this case, the main result is that the spectrum of the preconditioned sequence
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{Pn}n can not be clustered at 1. This result is di�erent from the widely studied case with
g = 1 (where the spectrum can be clustered at 1, [36, 38, 123, 124]) which cannot be general-
ized to g ≥ 2. However, although the clustering at unity cannot be achieved, the g-circulant
preconditioning tool is useful because it has good regularizing properties. Generalization to
the block multilevel cases are also considered in this chapter.

In chapter 8, we treat the problem of preconditioning of collocation matrices approxi-
mating elliptic boundary value problems. The shown method of approximation is based on
the RBFs. Here, we present an interesting method using the nodes that most of them are
selected out of real domain and the others, in the domain. We determine in any case (uni-
dimension and multi-dimensions) the preconditioners and study the condition numbers of
obtained matrices. However, we �nd a sequence {Tdn}n of symmetric Toeplitz matrices (re-
spectively, symmetric block Toeplitz matrices with symmetric Toeplitz blocks (SBTMSTB)
in the case of two-dimensions) which is equally distributed and equally localized as the se-
quence of collocation matrices {Adn}n approximating elliptic boundary value problems. We
determine the preconditioners in the Tau class for the Toeplitz (respectively, block Toeplitz)
matrices and study the asymptotic growth of their spectral radii. For this purpose and since
a RBFs must be selected experimentally suitable for the model problem, some of the most
commonly used RBFs are:

• Direct Multiquadric: ϕ(t) = (t2 + c2)
1
2 ,

• Inverse Multiquadric: ϕ(t) = (t2 + c2)−
1
2 ,

• Gaussian: ϕ(t) = e−
t2

c2 ,

where c is a shape parameter which determines the "accuracy" and the "stability".
In chapter 9, we apply the PCG algorithm for solving the systems of linear equations

Tdnv = f̃ , in the case where Tdn are dn×dn symmetric Toeplitz matrices (with bounded gen-
erating function) (respectively, symmetric block Toeplitz matrices with symmetric Toeplitz
blocks (with generating functions just integrable)) related to the collocation matrices de�ned
in chapter 8, and we present some numerical results for such systems.

We end the dissertation by drawing the general conclusions in chapter 10.
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Chapter One

Spectral Analysis of Toeplitz and
Circulant Matrix Sequences

1.1 Introduction
Throughout this chapter, we study the spectral properties of the circulant and Toeplitz
matrices. We put special attention to the case where the entries of the Toeplitz matrices
come from the Fourier coe�cients of a given function f , usually called as symbol, de�ned
on (−π, π). The circulant matrices will be chosen as optimal approximation, to Frobenius
distance, of the Toeplitz counterparts. In chapter 2 we will use the Korovkin theory to derive
clustering of the related preconditioned sequence, when the preconditioners are selected in
trigonometric matrix algebras such as Circulants, Tau, etc...

De�nition 1.1.1. A Toeplitz matrix is an n × n matrix Tn = [tk,j]
n−1
k,j=0 where tk,j = tk−j,

i.e., a matrix of the form

(1.1) Tn =


t0 t−1 . . . t−(n−2) t−(n−1)
t1 t0 t−1 . . . t−(n−2)
... t1

. . . . . .
...

...
...

. . . t0 t−1
tn−1 tn−2 . . . t1 t0


Such matrices arise in many applications. For examples, in solutions to di�erential and

integral equations, spline functions, and problems and methods in physics, mathematics,
statistics, and signal processing.

A common special case of Toeplitz matrices which will result in signi�cant simpli�cation
and play a fundamental role in developing more general results when every row of the matrix
is a right cyclic shift of the row above it so that tk = t−(n−k) = tk−n for k = 0, 1, ..., n− 1. In
this case, the picture takes the form

(1.2)


t0 t−1 . . . t−(n−2) t−(n−1)

t−(n−1) t0 t−1 . . . t−(n−2)

t−(n−2) t−(n−1)
. . . . . .

...
...

...
. . . t0 t−1

t−1 t−2 . . . t−(n−1) t0


De�nition 1.1.2. A circulant matrix Cn = [ck,j]

n−1
k,j=0 is a Toeplitz matrix de�ned by the

form given in (1.2). The structure can also be characterized by noting that the (k, j) entry
of Cn, ck,j is given by ck,j = c(k−j)modn.

Circulant matrices arise, for example, in applications involving the discrete Fourier trans-
form (DFT) and the study of cyclic codes for error correction.
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A great deal is known about the behavior of Toeplitz matrices, the most common and
complete references being Grenander and Szegö [77] and Widom [170]. A more recent text
devoted to the subject is Böttcher and Silbermann [16].

The most famous and arguably the most important result describing Toeplitz matrices
is Szegö theorem for sequences of Toeplitz matrices {Tn}n which deals with the behavior of
the eigenvalues as n goes to in�nity. Szegö theorem deals with the asymptotic behavior of
the eigenvalues of a sequence of Hermitian Toeplitz matrices Tn = [tk−j]

n−1
k,j=0. The theorem

requires that several technical conditions be satis�ed, including the existence of the Fourier
series with coe�cients tk related to each other by

(1.3) f(x) =
∞∑

k=−∞

tke
−îkx,

(1.4) tk =
1

2π

∫ π

−π

f(x)e−îkxdx.

Thus the sequence {tk}n determines the function f and vice-versa, hence the sequence of
matrices is often denoted as Tn = Tn(f).

1.2 Spectral properties of circulant matrices.

The following theorems summarize the properties regarding the eigenvalues and eigenvectors
of circulant matrices and provides some implications.

Theorem 1.2.1. [73] Every circulant matrix Cn has eigenvectors

y(m) =
1√
n
[1, e−2πîm/n, ..., e−2πîm(n−1)/n]T , m = 0, 1, 2, ..., n− 1

and the corresponding eigenvalues

ψm =
n−1∑
k=0

cke
−2πîkm/n

and can be expressed in the form Cn = UΨnU
⋆, where U has eigenvectors as columns in order

and Ψn is diag(ψj, j = 0, 1, ..., n − 1). In particular, all circulant matrices share the same
eigenvectors, the same unitary matrix U works for all circulant matrices, and any matrix of
the form C = UΨU⋆ is circulant.

Proof. The eigenvalues ψm and the eigenvectors y(m) of Cm are the solutions of

(1.5) Cmy = ψy

or equivalently, of the n di�erence equations

(1.6)
m−1∑
k=0

cn−m+kyk +
n−1∑
k=m

ck−myk = ψym; m = 0, 1, 2, ..., n− 1.

Changing the summation dummy variable results in

(1.7)
n−m−1∑
k=0

ckyk+m +
n−1∑

k=n−m

ckyk−(n−m) = ψym; m = 0, 1, 2, ..., n− 1.
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One can solve di�erence equations as one solves di�erential equations by guessing an intuitive
solution and then proving that it works. Since the equation is linear with constant coe�cients,
a reasonable guess is yk = ϕk (analogous to y(t) = est in linear time invariant di�erential
equations). Substitution into (1.7) and cancelation of ϕm yields

n−m−1∑
k=0

ckϕ
k + ϕ−n

n−1∑
k=n−m

ckϕ
k = ψ.

Thus, if we choose ϕ−n = 1, i.e., ϕ is one of the n distinct complex nth roots of unity, then
we have an eigenvalue

(1.8) ψ =
n−1∑
k=0

ckϕ
k

with corresponding eigenvector

(1.9) y = n−1/2(1, ϕ, ϕ2, ..., ϕn−1)T

where the normalization is chosen to give the eigenvector unit energy. Choosing ϕm =

e−2πîm/n, we have eigenvalue

(1.10) ψm =
n−1∑
k=0

cke
−2πîmk/n

and eigenvector

y(m) =
1√
n
[1, e−2πîm/n, e−4πîm/n, ..., e−2πîm(n−1)/n]T .

Thus, from the de�nition of eigenvalues and eigenvectors

(1.11) Cmy
(m) = ψmy

(m); m = 0, 1, 2, ..., n− 1.

Equation (1.10) should be familiar to those with standard engineering back grounds as
simply the discrete Fourier transform (DFT) of the sequence {ck}k. Thus we can recover the
sequence {ck}k from ψk by the Fourier inverse formula. In particular

(1.12)
1

n

n−1∑
m=0

ψme
2πîml/n =

1

n

n−1∑
m=0

n−1∑
k=0

(
cke

−2πîmk/n
)
e2πîml/n =

n−1∑
k=0

ck
1

n

n−1∑
m=0

e2πîm(l−k)/n = cl,

where we have used the orthogonality of the complex exponentials:

(1.13)
n−1∑
m=0

e2πîmk/n = nδk(modn) =
{
n if k(modn) = 0
0 otherwise

where δ is the Kronecker delta, i.e.,

δm =
{

1 if m = 0
0 otherwise

Thus the eigenvalues of a circulant matrix comprise the DFT of the �rst row of the circulant
matrix, and conversely �rst row of a circulant matrix is the inverse DFT of the eigenvalues.
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Equation (1.11) can be written as a single matrix equation

(1.14) CnU = UΨn

where

U = [y(0)|y(1)|...|y(n−1)] =
1√
n
[e−2πîmk/n]n−1

m,k=0

is the matrix composed of the eigenvectors as columns and Ψn = diag(ψk, k = 0, 1, ..., n−1)
is the diagonal matrix with diagonal elements ψ0, ψ1, ..., ψn−1. Furthermore, (1.13) implies
that U is unitary. By way of details, denote that the (k, j)-th element of UU⋆ by ak,j and ob-

serve that ak,j will be the product of the k-th row of U, which is 1√
n
[1, e−2πîk/n, ..., e−2πîk(n−1)/n],

times the j-th column of U⋆, which is 1√
n
[1, e2πîj/n, ..., e2πîj(n−1)/n]T , so that:

ak,j =
1

n

n−1∑
m=0

e2πîm(j−k)/n = δ(k−j)modn

and hence UU⋆ = I. Similarly, U⋆U = I. Thus (1.14) implies that

(1.15) Cn = UΨnU
⋆,

(1.16) Ψn = U⋆CnU.

Since Cn is unitary similar to a diagonal matrix, it is normal.

Theorem 1.2.2. [75] Let α and β be two complex numbers, and let Cn = [ck−j]
n−1
k,j=0 and

Bn = [bk−j]
n−1
k,j=0 be n× n circulant matrices with eigenvalues

ψm =
n−1∑
k=0

cke
−2πîmk/n; βm =

n−1∑
k=0

bke
−2πîmk/n, m = 0, 1, 2, ..., n− 1,

respectively. Then

(1) Cn and Bn commute and
CnBn = BnCn = UΓnU

⋆,

where Γn = diag(ψmβm; m = 0, 1, 2, ..., n− 1), and CnBn is also a circulant matrix.

(2) αCn + βBn is a circulant matrix and

αCn + βBn = UΩnU
⋆ where Ωn = diag(αψm + ββm; m = 0, 1, 2, ..., n− 1).

(3) If ψm ̸= 0 for all m = 0, 1, 2, ..., n− 1, then Cn is nonsingular and

C−1 = UΨ−1
n U⋆.

Proof. According to Theorem 1.2.1, we have Cn = UΨnU
⋆ and Bn = UΦnU

⋆ where Ψn =
diag(ψm; m = 0, 1, 2, ..., n− 1) and Φn = diag(βm; m = 0, 1, 2, ..., n− 1).

(1) CnBn = UΨnU
⋆UΦnU

⋆ = UΨnΦnU
⋆ = UΦnΨnU

⋆ = BnCn. Since ΨnΦn is diagonal,
the �rst part of the theorem implies that CnBn is circulant.

(2) αCn + βBn = αUΨnU
⋆ + βUΦnU

⋆ = U(αΨn + βΦn)U
⋆ = UΩnU

⋆ where Ωn =
αΨn+βΦn = diag(αψm+ββm; m = 0, 1, 2, ..., n−1). Then αCn+βBn is a circulant matrix.

(3) If Ψn is nonsingular, then

CUΨ−1
n U⋆ = UΨnU

⋆UΨ−1
n U⋆ = UU⋆ = I, also

UΨ−1
n U⋆C = UΨ−1

n U⋆UΨnU
⋆ = UU⋆ = I.

Then Cn is nonsingular and C−1
n = UΨ−1

n U⋆.
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In the following, we denote by A = {C ∈Mn(C)| C is a circulant matrix } the set of all
the n× n circulant matrices.

De�nition 1.2.1. A set A ⊂Mn(C) is a matrix algebra if for every complex number α and
for A,B ∈ A :

(i) A+B ∈ A,

(ii) αA ∈ A,

(iii) AB ∈ A.

Lemma 1.2.1. The set A is a matrix algebra of dimension n.

Proof. First of all, let us de�ne the circulant matrix

Π =


0 . . . . . . 0 1
1 0 0

0 1
. . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0


and the vector space Pn−1 = {p(Π)|p is a polynomial of degree at most equal to n − 1}.
Then Pn−1 is an algebra generated by Π. So Π has a minimal polynomial p of degree n− 1.
Now, let C ∈ A and (c0, c1, ..., cn−1)

T the �rst column of C. Since for k = 0, 1, 2, .., n− 1

Πk =


0 . . . 0 1 0
...

...
. . .

0 . . . 0 0 1
1 0 0 . . . 0

. . .
...

...
0 1 0 . . . 0


it is obvious that

C =
n−1∑
k=0

ckΠ
k ∈ Pn−1

so A ⊂ Pn−1.

Conversely, let r(Π) ∈ Pn−1, since for all k = 01, 2, ..., n− 1, Πk is a circulant matrix, it
follows from theorem 1.2.1 that r(Π) ∈ A, so Pn−1 ⊂ A. Because Pn−1 is a matrix algebra of
dimension n, one deduces that A is a matrix algebra of dimension n.

A detailed study of the optimal approximation of Toeplitz sequences {Tn(f)} sometimes
requires the knowledge of some properties of Toeplitz matrices Tn(f).

1.3 Spectral properties of Toeplitz matrices

This section deals with some properties of the Toeplitz matrices Tn(f) = [tk−j]
n−1
k,j=0 in the

case where {tk}k is the sequence of the Fourier coe�cients of an integrable function f over
the domain Q = (−π, π).

Lemma 1.3.1. Let f ∈ L1(Q). The Toeplitz matrix Tn(f) is Hermitian if and only if f is
real-valued.
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Proof. First of all, let us suppose that f is real-valued. For k = 0, 1, 2, ..., n− 1

tk−j =
1

2π

∫ π

−π

f(x)e−2πî(k−j)xdx,

then

t⋆k−j =
1

2π

∫ π

−π

f(x)e−2πî(k−j)xdx

=
1

2π

∫ π

−π

f(x)e−2πî(k−j)xdx

=
1

2π

∫ π

−π

f(x)e2πî(k−j)xdx

= t−(k−j),

then Tn(f)
⋆ = Tn(f).

Conversely, let us suppose that Tn(f)
⋆ = Tn(f), i.e., t

⋆
k−j = t−(k−j), then

f ⋆(x) =

(
∞∑

k=−∞

tke
îkx

)⋆

=
∞∑

k=−∞

t⋆ke
−îkx

=
(a)

∞∑
k=−∞

t−ke
−îkx =

∞∑
k=−∞

tke
îkx = f(x).

Whence, f is real-valued. (a) follows from the hypothesis.

Lemma 1.3.2. Let f ∈ L1(Q). The Toeplitz matrix Tn(f) is symmetric if and only if f is
real-valued and even.

Proof. Let us suppose that f is real-valued and even, i.e., f(x) = f(−x) ∈ R for all x ∈
(−π, π). Then

tk−j =
1

2π

∫ π

−π

f(x)e−2πî(k−j)xdx

= − 1

2π

∫ −π

π

f(−x)e2πî(k−j)xdx

=
1

2π

∫ π

−π

f(x)e−2πî(j−k)xdx

= tj−k,

then Tn(f) is symmetric.
Conversely, assuming that Tn(f) is symmetric, it follows from Lemma 1.3.1 that f is

real-valued. Now, let x ∈ (−π, π).

f(−x) =
∞∑

k=−∞

tke
−îkx =

∞∑
k=−∞

t−ke
îkx =

(b)

∞∑
k=−∞

tke
îkx = f(x),

(b) follows from t−k = tk. Then f is even.
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Lemma 1.3.3. Let f ∈ L1(Q). The Toeplitz matrix Tn(f) is Hermitian and positive de�nite
if f is nonnegative over the domain (−π, π).

Proof. Let us suppose that f is nonnegative over the domain (−π, π). Let y = (y0, y1, ..., yn−1)
T ∈

Cn − {0}, then

y⋆Tn(f)y = (ȳ0, ȳ1, ..., ȳn−1)

[
n−1∑
j=0

tk−jyj

]n−1

k=0

=
n−1∑
k=0

ȳk

n−1∑
j=0

tk−jyj

=
1

2π

∫ π

−π

f(x)
n−1∑
k=0

ȳk

n−1∑
j=0

e−2̂iπ(k−j)xyjdx

=
1

2π

∫ π

−π

f(x)

(
n−1∑
k=0

ȳke
−2̂iπkx

n−1∑
j=0

e2̂iπjxyj

)
dx

=
1

2π

∫ π

−π

f(x)

(
n−1∑
k=0

yke
2̂iπkx

)⋆(n−1∑
j=0

e2̂iπjxyj

)
dx

=
1

2π

∫ π

−π

f(x)

∣∣∣∣∣
n−1∑
k=0

yke
2̂iπkx

∣∣∣∣∣
2

dx > 0

since f ≥ 0 and y ̸= 0. indeed, for x ̸= 0, {e2̂iπkx; k = 0, 1, ..., n − 1} is a basis of Cn, so

y = (y0, y1, ..., yn−1)
T ̸= 0 implies

n−1∑
k=0

yke
2̂iπkx ̸= 0. Then, Tn(f) is Hermitian and positive

de�nite.

In the following, we state without proof some fundamental theorems of linear algebra.
These results are very important for the study of the bounds of eigenvalues of Hermitian
Toeplitz matrices Tn(f).

Theorem 1.3.1. (Minimax or Courant-Fischer Theorem, [173]). Let A be an n × n Her-
mitian matrix and let λ1 < λ2 < ... < λk = λmax (k ≤ n) be the distinct eigenvalues of A.
Setting Ui = {U ⊂ Cn|U a vector subspace of dimension i}, then for i = 1, 2, ..., k :

λi = min
U∈Ui

max
x∈U
x̸=0

x⋆Ax

x⋆x
.

In particular, U1 = { lines of Cn} and U ∈ U1 implies U = span < u >, with u ∈ Cn and
u ̸= 0. So,

λmin(A) = min
x∈Cn

x̸=0

x⋆Ax

x⋆x
, and λmax(A) = max

x∈Cn

x̸=0

x⋆Ax

x⋆x
.

Remark 1.3.1. Let A be an n× n Hermitian matrix and let x ∈ Cn, x ̸= 0. The quantity

R(x) =
x⋆Ax

x⋆x

is called the RAYLEIGH QUOTIENT of A.
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Theorem 1.3.2. (Cauchy interlace Theorem, [173]). Let A be an n × n Hermitian matrix
and let B be an (n− 1)× (n− 1) principale submatrix of A, i.e.,

A =
[
B y
xT z

]
where x, y ∈ Cn−1 and z ∈ C. Then

λ1(A) ≤ λ1(B) ≤ ... ≤ λn−1(A) ≤ λn−1(B) ≤ λn(A).

Theorem 1.3.3. (Monotonicity Theorem, [173]). Let B and C be two n × n Hermitian
matrices, with the eigenvalues λ1(B) ≤ λ2(B) ≤ ... ≤ λn(B) and λ1(C) ≤ λ2(C) ≤ ... ≤
λn(C) respectively. Setting A = B + C, then for i = 1, 2, ..., n:

λi(B) + λ1(C) ≤ λi(A) ≤ λi(B) + λn(C).

Theorem 1.3.4. [170, 117, 154] Let f ∈ L1(−π, π) be real-valued. Setting

mf := inf
x∈[−π,π]

f(x) and Mf := sup
x∈[−π,π]

f(x),

then
Λ(Tn(f)) ⊂ [mf ,Mf ].

where Λ(Tn(f)) is the spectrum of Tn(f).

Proof. Since f is real-valued, it follows from Lemma 1.3.1 that Tn(f) is Hermitian. According
to Theorem 1.3.1, one has

(1.17) λmin(Tn(f)) = min
x ̸=0

x⋆Tn(f)x

x⋆x
and λmax(Tn(f)) = max

x̸=0

x⋆Tn(f)x

x⋆x
.

Let x ∈ Cn, x ̸= 0, then

x⋆Tn(f)x = (x̄0, x̄1, ..., x̄n−1)

[
n−1∑
j=0

tk−jxj

]n−1

k=0

=
n−1∑
k=0

x̄k

n−1∑
j=0

tk−jxj

=
1

2π

∫ π

−π

f(t)
n−1∑
k=0

x̄k

n−1∑
j=0

e−2̂iπ(k−j)txjdt

=
1

2π

∫ π

−π

f(t)

(
n−1∑
k=0

x̄ke
−2̂iπkt

n−1∑
j=0

e2̂iπjtxj

)
dt

=
1

2π

∫ π

−π

f(t)

(
n−1∑
k=0

xke
2̂iπkt

)⋆(n−1∑
j=0

e2̂iπjtxj

)
dt

=
1

2π

∫ π

−π

f(t)

∣∣∣∣∣
n−1∑
k=0

xke
2̂iπkt

∣∣∣∣∣
2

dt
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then

(1.18) mf .min
x ̸=0

 1

2π

∫ π

−π

∣∣∣∣n−1∑
k=0

xke
2̂iπkt

∣∣∣∣2
|x|2

dt

 ≤ min
x ̸=0

x⋆Tn(f)x

x⋆x

and

(1.19) Mf .max
x ̸=0

 1

2π

∫ π

−π

∣∣∣∣n−1∑
k=0

xke
2̂iπkt

∣∣∣∣2
|x|2

dt

 ≥ max
x̸=0

x⋆Tn(f)x

x⋆x
.

Or ∫ π

−π

∣∣∣∣∣
n−1∑
k=0

xke
2̂iπkt

∣∣∣∣∣
2

dt =

∫ π

−π

n−1∑
k=0

x̄k

n−1∑
j=0

e−2̂iπ(k−j)txjdt

=
n−1∑
k=0

x̄k

n−1∑
j=0

xj

∫ π

−π

e−2̂iπ(k−j)tdt

=
(c)

2π
n−1∑
j=0

|xj|2 = 2π|x|2

(c) follows from ∫ π

−π

e−2̂iπ(k−j)tdt =
{

2π if j = k
0 otherwise

Then

(1.20) max
x ̸=0

 1

2π

∫ π

−π

∣∣∣∣n−1∑
k=0

xke
2̂iπkt

∣∣∣∣2
|x|2

dt

 = min
x̸=0

 1

2π

∫ π

−π

∣∣∣∣n−1∑
k=0

xke
2̂iπkt

∣∣∣∣2
|x|2

dt

 = 1.

It follows from (1.17)− (1.18)− (1.19)− (1.20) that

λmin ≥ mf and λmax ≤Mf .

Theorem 1.3.5. (Density Results, [170]). Let f ∈ L1(−π, π) be real-valued and Λ(Tn(f)) =

{λ(n)k ; k = 1, 2, ..., n} the spectrum of Tn(f). Setting

mf := inf
x∈[−π,π]

f(x) and Mf := sup
x∈[−π,π]

f(x),

where inf f and sup f denote the in�mum and the supremum of f , then

(i) lim
n→∞

λ
(n)
k (Tn(f)) = mf and lim

n→∞
λ
(n)
n−k(Tn(f)) =Mf .
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(ii)
∪
n∈N

{
λ
(n)
k (Tn(f))

}n

k=1
is dense in [mf ,Mf ].

Dealing with iterative methods for linear systems, an important parameter is the con-
vergence speed of the iterations towards the solution of the system. For instance, it is well
known that the convergence speed of the CG method depends on the condition number of the
system matrix. However, the condition number does not completely force the convergence
speed, which is also controlled by the global distribution of the singular values of the system
matrix. Basically, the convergence speed is good if the singular values of the system are well
clustered "close" to the unity.
In order to increase the convergence speed, it is often useful to replace the system to solve
with an equivalent one, in which the clustering of the eigenvalues is improved. This approach
leads to the preconditioning: the system Af = g is replaced by the following equivalent sys-
tem, called preconditioned system,

P−1Af = P−1g(1.21)

where the invertible matrix P is the system preconditioner. If the CGLR method is now
applied to the preconditioned system, then the convergence speed is then related to the dis-
tribution of the singular values of the preconditioned matrix.
For Toeplitz systems, we can introduce the following preconditioner, called natural precon-
ditioner.

De�nition 1.3.1. Let f ∈ L1(−π, π) be a real-valued even function, and let Tn(f) be the
symmetric Toeplitz matrix generated by f . The natural preconditioner of Tn(f) is de�ned as

Pn = Tn(f)−H(Tn(f))

where H(Tn(f)) is the Hankel matrix de�ned on the following form:

H(Tn(f)) =


t2 t3 . . . tn−1 0 0
t3 0 0
... tn−1

tn−1
...

0 0 t3
0 0 tn−1 . . . t3 t2

 when Tn(f) =

 t0 t1 . . . tn−1
t1 t0 tn−2
...

...
. . .

...
tn−1 tn−2 . . . t0



Lemma 1.3.4. Let f ∈ L1(−π, π) be an even function, and let Tn(f) be the symmetric
Toeplitz matrix generated by f . Setting Pn = Tn(f)−H(Tn(f)) and ∆n = Tn(f)− Pn, if Pn

is nonsingular, sup
n
∥P−1

n ∥2 ≤ c < ∞ (where c is a constant number independent of n) and

the eigenvalues {λ(∆n)}n are clustered around 0, then the eigenvalues {λ(P−1
n Tn(f))}n are

clustered around 1.

Proof. First of all, P−1
n Tn(f) = P−1

n ∆n + In implies λk(P
−1
n Tn(f)) = λk(P

−1
n ∆n) + 1. Since

(1.22) P−1
n ∆n = P−1/2

n (P−1/2
n ∆nP

−1/2
n )P 1/2

n ,

according to Theorem 1.3.1,

λk(P
−1/2
n ∆nP

−1/2
n ) = min

U∈Uk

max
x∈U
x̸=0

x⋆P
−1/2
n ∆nP

−1/2
n x

x⋆x
.

Setting y = P
−1/2
n x for x ∈ U , then Ũ := {y = P

−1/2
n x|x ∈ U} is a subspace of dimension k.

Then

λk(P
−1/2
n ∆nP

−1/2
n ) = min

Ũ∈Uk

max
y∈Ũ
y ̸=0

y⋆∆ny

y⋆Pny
≤ min

Ũ∈Uk

max
y∈Ũ
y ̸=0

y⋆∆ny

y⋆y

y⋆y

y⋆Pny
≤ min

Ũ∈Uk

max
y∈Ũ
y ̸=0

y⋆∆ny

y⋆y
· c,
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since y⋆Pny
y⋆y
≥ λmin(Pn) =

1
λmax(Pn)

≥ 1
c
, then

(1.23) λk(P
−1/2
n ∆nP

−1/2
n ) ≤ c · λk(∆n).

Because the eigenvalues {λk(∆n)}n are clustered around 0, one deduces from (1.23) that

the eigenvalues {λk(P−1/2
n ∆nP

−1/2
n )}n are clustered around 0. It follows from (1.22) that the

eigenvalues {λk(P−1
n ∆n)}n are clustered around 0. Hence the eigenvalues {λ(P−1

n Tn(f))}n
are clustered around 1.

Lemma 1.3.5. Let f ∈ L1(−π, π) be a complex-valued function and Tn(f) be the Toeplitz
matrix generated by f . Let U be an n × n unitary matrix. Then the optimal preconditioner
of Tn(f) is de�ned as follows:

PU(Tn(f)) = U · diag(U⋆Tn(f)U) · U⋆

Proof. Setting AU := {U∆U⋆| ∆ is diagonal matrix } and using the usual Frobenius norm
de�ned by

∥M∥2F =
n∑

k,j=1

|mkj|2

one has
PU(Tn(f)) = argmin

B∈AU

∥Tn(f)−B∥F

or

∥Tn(f)−B∥2F = ∥Tn(f)− U∆U⋆∥2F
= ∥U⋆(Tn(f)− U∆U⋆)U∥2F
= ∥U⋆Tn(f)U −∆∥2F

=
∑
k ̸=j

|(U⋆Tn(f)U)kj|2 +
n∑

j=1

|(U⋆Tn(f)U)jj −∆jj|2,

the optimum is obtained for ∆ = diag(U⋆Tn(f)U).
Then

PU(Tn(f)) = U.diag(U⋆Tn(f)U).U
⋆

Lemma 1.3.6. Let f ∈ L1(−π, π) be a real-valued function and Tn(f) be the Toeplitz ma-
trix generated by f. Let U be a unitary matrix. If f > 0, then the optimal preconditioner
PU(Tn(f)) of Tn(f) is nonsingular and sup

n
∥PU(Tn(f))

−1∥2 ≤ c < ∞, where c is a constant

number independent of n.

Proof. According to Lemma 1.3.5, λj(PU(Tn(f))) = (U⋆Tn(f)U)jj = U⋆
j Tn(f)Uj, (where Uj

is the j-th column of U, ∥Uj∥2 = 1). One deduces from Theorem 1.3.1 that λmin(Tn(f)) ≤
λj(PU(Tn(f))) ≤ λmax(Tn(f)). Using Theorem 1.3.5, it follows that mf ≤ λk(Tn(f)) ≤ Mf ,
for all k ≤ n; k, n ∈ N. So,

mf ≤ λmin(Tn(f)) ≤ λj(PU(Tn(f))) ≤ λmax(Tn(f)) ≤Mf

and because f > 0 over the compact set [−π, π], it follows that mf > 0. Hence, PU(Tn(f))
is nonsingular and sup

n
∥PU(Tn(f))

−1∥2 ≤ c <∞.
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Conclusion
In this chapter, we have furnished a detailed study of the spectral properties of circulants and
Toeplitz matrices. We will prove in Chapter 2 that suitably chosen sequences of circulant
matrices asymptotically approximate sequences of Toeplitz matrices. Further, we will use
the Korovkin Theory to derive clustering of the related preconditioned sequence when the
preconditioners are selected in trigonometric algebras such as Circulants, Tau, etc... This
new theory will mainly be based on the approximation of the Toeplitz sequences.
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Chapter Two

Preconditioning Toeplitz Sequences
via Circulants

2.1 Introduction
The purpose of this chapter is to present a detailed study of a Korovkin-type theory for �nite
Toeplitz operators via matrix algebra. We consider the approximation of �nite self-adjoint
Toeplitz operators Tn(·) by means of matrix algebra operators. Here the Hermitian Toeplitz
matrix Tn(f) is generated by a Lebesgue-integrable real-valued function f de�ned in [−π, π]
in the sense that the entries of Tn(f) along the k-th diagonal are given by the k-th Fourier
coe�cients ak of f. Denoting by A = {M(Un) = {A = Un∆U

⋆
n : ∆ diagonal }}n the se-

quence of the matrix algebra associated with the unitary transformations {Un}n and by U⋆
n

the complex conjugate of Un, we introduce the sequence of operators P = {PUn : Cn → Cn}n
so that each operator PUn associates with any n× n matrix A the matrix X̂ that minimizes
the functional FA(X) = ∥A − X∥F in the Frobenius norm over the whole algebra M(Un) :
in this way PUn(A) is the matrix where the above de�ned functional FA(X), for A = Tn(f),
attains its minimum value.

First, we study the asymptotic equivalence of the matrices sequences {Cn(f)}n and
{Tn(f)}n in the case where the generating function is chosen with some particular prop-
erties. Furthermore, we derive some general properties of the operator PUn , starting from
above considerations. Then we go on to consider the subset AT of all sequences {M(Un)}n
of algebras whose matrix-sequences {Un}n are related to trigonometric functions. More pre-
cisely, we focus our attention on the algebra M(Un) for which the adjoint of Un, that i.e., U

⋆
n,

is an n× n Vandermonde-like matrix [67] whose functions are linearly independent and be-
long to the space of the trigonometric polynomials Pn,2π(I) evaluated on a quasi-equispaced
set of points (the grid points) in a suitable interval I.

For {M(Un)}n ∈ AT , we will give two Weierstrass-Jackson type theorems which assure
the "approximation" of {Tn(f)}n by {PUn(Tn(f))}n under simple conditions on the matrices
{PUn(Tn(p))}n, p ranging among the trigonometric polynomials. In order words, this means
that the approximation of the Toeplitz matrices generated by polynomials guarantees that
{PUn(Tn(f))}n is an approximation process for {Tn(f)}n with f just continuous. It worth
mentioning that these two theorems cover, as special cases, the Theorems of R. Chan, Yeung
[43, 44], Jin [85] and Serra [122], respectively, regarding the circulant [52], Hartley [12] and
τ [10] matrix algebras. This research line is very important from a practical viewpoint since
preconditioners belonging to a new algebra (not necessary circulant) can be more suitable
for a certain class of applications: refer to [34] for the use of a "cosine" algebra in image
restoration, to [36] for the use of circulants in the preconditioning of elliptic boundary value
problems (BV Ps) with periodic boundary conditions and to [62] for the application of the
τ -class preconditioning when elliptic BVPs with Dirichlet conditions are considered.

Pursuing further, we notice that the eigenvalues of PUn(Tn(f)) can be viewed as the val-
ues of a trigonometric polynomial, which we denote as Ln[Un](f), taken on the grid points of
the interval I. We show that f → Ln[Un](f) is a linear positive operator (LPO) [90] so that
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its convergence to f is only dependent on the convergence at the functions 1, sinx, cosx
(or other equivalent test functions) as stated in the famous Korovkin Theorem [90]. In view
of this, by using the known trigonometric algebras, we derive both known and new linear
operators uniformly converging to the identity operator in the space of the continuous func-
tions equipped with the in�nity norm. In particular, the circulant class leads to the classical
Cesaro sum, the τ class to a mixed process involving a Cesaro sum and a correction in terms
of Chebyshev polynomials of second kind and so on (see also [54]).

Keenly aware of the mathematical elegance and power of the Korovkin Theorem, the
Frobenius operator PUn(·) is itself a linear positive operator (in the matrix sense) acting on
the space of the n × n complex valued matrices. By exploiting this and other properties
of PUn(·) and Ln[Un](·), two matrix-versions of the Korovkin Theorem are obtained: The
continuous functions f are replaced by the Toeplitz sequences {Tn(f)}n with continuous
f, the polynomials p are replaced by {Tn(p)}n and the approximation process is given by
{PUn(Tn(·))}n that is, by the sequence of Frobenius-optimal representatives of the sequences
{PUn(Tn(pi))}n converges "in a strong or weak sense" to {Tn(pi)}n, where the symbols pi
denote the usual three test functions, then a similar convergence holds for {PUn(Tn(f))}n to
{Tn(f)}n with f merely continuous. More speci�cally in section 2.6 we prove the following
results.

Theorem 2.1.1. Let f be a continuous periodic function. If Ln[Un](p) = p+ ϵn(p) for each
one of the three test functions p and with ϵn(p) going uniformly to zero, then {PUn(Tn(f))}n
converges to {Tn(f)}n in the weak sense.

Theorem 2.1.2. Under the same assumption of the previous theorem, if ϵn(p) = O(n−1)
for the three test functions p, and if the grid points of the algebra are uniformly distributed,
then the convergence of {PUn(Tn(f))}n and {Tn(f)}n is strong.

Besides the mathematical interest in itself, the above results have dramatic practical
implications. In fact, they provide a simple and powerful tool for analyzing the eigenvalue
distribution and clustering [43, 122] of the preconditioned matrices and to study the super-
linear (or sublinear) convergence of the preconditioned conjugate gradient (PCD) method
[6] applied to systems of the form Tn(f)x = b. See also [77, 76, 70, 42] for several speci�c
applications of these linear systems.

2.2 Asymptotic equivalence of the matrix sequences {Tn(f )}n
and {Cn(f )}n.

In this section, we consider the case where the generating function f is in the Wiener class,
i.e., the case where the sequence {tk}k of the Fourier coe�cients of the Toeplitz matrix
Tn(f) is absolutely summable. The basic approach is to �nd a sequence of circulant matrices
{Cn(f)}n that is asymptotically equivalent to the sequence of Toeplitz matrices {Tn(f)}n.
Obviously, the choice of an appropriate sequence of circulant matrices to approximate a
sequence of Toeplitz matrices is not unique, so we are free to choose a construction with
the most desirable properties. It will, in fact, prove useful to consider two slightly di�erent
circulant approximations.

De�nition 2.2.1. Let {An}n and {Bn}n be two matrix sequences of order n×n. {An}n and
{Bn}n are said to be asymptotically equivalent if

(i) {An}n and {Bn}n are uniformly bounded in strong norm, i.e.,

sup
n
∥An∥2, sup

n
∥Bn∥2 ≤M <∞,

where M is a constant number independent of n.
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(ii) ∥An −Bn∥F = o(
√
n).

Notation: {An}n ∼ {Bn}n means that the sequences {An}n and {Bn}n are asymptotically
equivalent.

Proposition 2.2.1. [75] Let Tn(f) = [tk−j]
n−1
k,j=0 be the Toeplitz matrix generated by a Wiener

function f ∈ L1(−π, π), i.e.,
∞∑

k=−∞

|tk| <∞,

and where

f(x) =
∞∑

k=−∞

tke
îkx, f̂n(x) =

n−1∑
k=−(n−1)

tke
îkx.

De�ne the circulant matrices Cn(f) and Cn(f̂n) as follows:

1. Cn(f) is the circulant matrix with top row (c
(n)
0 , c

(n)
1 , ..., c

(n)
n−1) where

c
(n)
k =

1

n

n−1∑
j=0

f(2πj/n)e2πîjk/n

2. Cn(f̂n) is the circulant matrix with top row (ĉ
(n)
0 , ĉ

(n)
1 , ..., ĉ

(n)
n−1) where

ĉ
(n)
k =

1

n

n−1∑
j=0

f̂n(2πj/n)e
2πîjk/n

=
n−1∑

l=−(n−1)

tlδ(k+l)modn

=
{
t0 if k = 0
t−k + tn−k for k = 1, 2, ..., n− 1.

Then,

(2.1) {Cn(f)}n ∼ {Cn(f̂n)}n ∼ {Tn(f)}n.

Proof. Since Cn(f) and Cn(f̂n) are circulant matrices with the same eigenvectors (cf. The-

orem 1.2.1), we have from part 2 of Theorem 1.2.1 and from ∥A∥F =

(
n−1∑
k=0

λk(A
⋆A)

)1/2

that

∥Cn(f)− Cn(f̂n)∥2F =
n−1∑
k=0

|f(2πk/n)− f̂n(2πk/n)|2.

Let ϵ > 0, since f(x) =
∞∑

k=−∞
tke

îkx, then there exists Nϵ ∈ N such that for n ≥ Nϵ,

(2.2)

∣∣∣∣∣f(x)−
n∑

k=−n

tke
îkx

∣∣∣∣∣ < ϵ, for all x ∈ [−π, π].
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It follows from (2.2) that {f̂n}n uniformly converges to f . So, for given ϵ > 0, there is an
integer Nϵ ∈ N such that for n ≥ Nϵ, one has

|f(2πk/n)− f̂n(2πk/n)|2 < ϵ, for k ≤ n− 1

and hence, for n ≥ Nϵ

∥Cn(f)− Cn(f̂n)∥2F <
n−1∑
k=0

ϵ = nϵ.

Since ϵ > 0 is arbitrary, one has

∥Cn(f)− Cn(f̂n)∥F = o(
√
n)

proving that

(2.3) {Cn(f)}n ∼ {Cn(f̂n)}n.

Because Cn(f̂n) is also a Toeplitz matrix, de�ne Cn(f̂n) = T
′
n = [t

′

k−j]
n−1
k,j=0 with

(2.4) t
′

k =


ĉ
(n)
−k = tk + tn+k if k = −(n− 1),−(n− 2), ...,−1
ĉ
(n)
0 = t0 if k = 0

ĉ
(n)
n−k = t−(n−k) + tk if k = 1, 2, ..., n− 1

then

(2.5) ∥T ′

n∥F =
n−1∑
k=0

n−1∑
j=0

|t′k−j|2 =
n−1∑

k=−(n−1)

(n− |k|)|tk|2.

According to (2.4) and (2.5), one obtains

∥Tn(f)− Cn(f̂n)∥2F =
n−1∑

k=−(n−1)

(n− |k|)|tk − t
′

k|2

=
−1∑

k=−(n−1)

(n+ k)|tn+k|2 +
n−1∑
k=1

(n− k)|t−(n−k)|2

= n

 −1∑
k=−(n−1)

|tn+k|2 +
n−1∑
k=1

|t−(n−k)|2
+

−1∑
k=−(n−1)

k|tn+k|2 −
n−1∑
k=1

k|t−(n−k)|2

= n

(
n−1∑
k=1

|tk|2 +
n−1∑
k=1

|t−(n−k)|2
)

+
n−1∑
k=1

(k − n)|tk|2 −
n−1∑
k=1

k|t−(n−k)|2

= n
n−1∑
k=1

|t−(n−k)|2 +
n−1∑
k=1

k|tk|2 −
n−1∑
k=1

k|t−(n−k)|2

= n
n−1∑
k=1

|t−k|2 +
n−1∑
k=1

k|tk|2 +
n−1∑
k=1

(k − n)|t−k|2

=
n−1∑
k=1

k|tk|2 +
n−1∑
k=1

k|t−k|2 =
n−1∑
k=1

k(|tk|2 + |t−k|2).
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then

(2.6) ∥Tn(f)− Cn(f̂n)∥2F =
n−1∑
k=1

k(|tk|2 + |t−k|2).

On the other side, one has

∞∑
k=−∞

|tk|2 ≤M
∞∑

k=−∞

|tk|

where M is a positive constant independent of k. Indeed: Since the series
∞∑

k=−∞
|tk| con-

verges, then the sequence {tk}k is uniformly bounded, so there exists a positive constant M0

independent of k such that sup
k
|tk| ≤M0. Further, lim

k→±∞
|tk| = 0, then there exists a positive

integer N such that for |k| > N , |tk| < 1, whence, for |k| > N, |tk|2 < |tk|. Let k ∈ Z,

∞∑
k=−∞

|tk|2 =
N∑

k=−N

|tk|2 +
−(N+1)∑
k=−∞

|tk|2 +
∞∑

k=N+1

|tk|2

≤ M0

N∑
k=−N

|tk|+
−(N+1)∑
k=−∞

|tk|+
∞∑

k=N+1

|tk|

≤ (1 +M0)
∞∑

k=−∞

|tk|

For M = 1+M0, one has the result. So, the sequence {|tk|2}k is summable. Hence, for given
ϵ > 0, there exists an integer Nϵ ∈ N su�ciently large so that

∞∑
k=Nϵ

(|tk|2 + |t−k|2) ≤ ϵ.

Then, for n > Nϵ + 1

n−1∑
k=1

k(|tk|2 + |t−k|2) =
Nϵ−1∑
k=1

k(|tk|2 + |t−k|2) +
n−1∑
k=Nϵ

k(|tk|2 + |t−k|2)

≤
Nϵ−1∑
k=1

k(|tk|2 + |t−k|2) + (n− 1)
n−1∑
k=Nϵ

(|tk|2 + |t−k|2)

≤
Nϵ−1∑
k=1

k(|tk|2 + |t−k|2) + (n− 1)ϵ.

It follows from this inequality and (2.6) that

lim
n→∞

1

n
∥Tn(f)− Cn(f̂n)∥2F ≤ lim

n→∞

1

n

Nϵ−1∑
k=1

k(|tk|2 + |t−k|2) + lim
n→∞

n− 1

n
ϵ = ϵ
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and because ϵ > 0 is arbitrary, one has

∥Tn(f)− Cn(f̂n)∥F = o(
√
n).

Hence

(2.7) {Tn(f)}n ∼ {Cn(f̂n)}n.

One deduces from (2.3) and (2.7) that

{Cn(f)}n ∼ {Tn(f)}n.

2.3 Matrix algebras and Frobenius-optimal approxima-
tion

Let Un be a unitary complex n × n matrix, then by M(Un) we denote the communicative
algebra of all the matrices simultaneously diagonalized by the Un transform, that is,

M(Un) = {A = Un∆U
⋆
n : ∆ diagonal }.

Here the symbol ⋆ means transpose and conjugate. The operator PUn(·) is de�ned on Cn×n

and takes values in M(Un) where both the spaces are equipped with the Frobenius norm

∥X∥2F =
n−1∑
i,j=0

|xi,j|2. In addition, the Frobenius norm is induced by the positive scalar product

(·, ·)F on Cn×n de�ned as (A,B)F = trace(A⋆ ·B). Therefore the existence and the uniqueness
of the minimum

PUn(A) = argmin
X∈M(Un)

∥A−X∥F

follows from the fact that the space (Cn×n, (·, ·)F ) is a Hilbert space and M(Un) is a closed
convex subset since it is a �nite dimensional vector space.

By means of simple algebraic arguments, we prove the following Lemma (see also [41] for
the circulant case).

Lemma 2.3.1. [55]. With A,B ∈ Cn×n and the previous de�nition of PUn(·), we have

1. PUn(A) = Unσ(U
⋆
nAUn)U

⋆
n, with σ(X) being the diagonal matrix having (X)ii as diagonal

elements,

2. PUn(αA+ βB) = αPUn(A) + βPUn(B) with α, β ∈ C,

3. PUn(A
⋆) = (PUn(A))

⋆,

4. trace(PUn(A)) = trace(A),

5. ∥PUn∥2 = 1,

6. ∥PUn∥F = 1,

7. ∥A− PUn(A)∥2F = ∥A∥2F − ∥PUn(A)∥2F .

Proof. 1. The proof of this point is done in Lemma 1.3.5 by replacing A and Un by Tn(f)
and U respectively.
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2. Let A,B ∈ Cn×n and α, β ∈ C.
PUn(αA+ βB) = Unσ (U

⋆
n(αA+ βB)Un)U

⋆
n

= Unσ (αU
⋆
nAUn + βU⋆

nBUn)U
⋆
n

= αUnσ (U
⋆
nAUn)U

⋆
n + βUnσ (U

⋆
nBUn)U

⋆
n

= αPUn(A) + βPUn(B).

3.

PUn(A
⋆) = Unσ(U

⋆
nA

⋆Un)U
⋆
n = Unσ ((U

⋆
nAUn)

⋆)U⋆
n

= Un (σ(U
⋆
nAUn))

⋆ U⋆
n since σ(X⋆) = (σ(X))⋆

= (Unσ(U
⋆
nAUn)U

⋆
n)

⋆

= PUn(A))
⋆.

4. trace(PUn(A)) = trace(σ(U⋆
nAUn)) = trace(U⋆

nAUn) = trace(A).

5. First of all, max
1≤i≤n

|(U⋆
nAUn)ii| ≤ ∥U⋆

nAUn∥2. Indeed: Let x0 = (0, ..., 0, 1, 0..., 0)T ∈ Cn.

x⋆0(U
⋆
nAUn)

⋆(U⋆
nAUn)x0 = (0, ..., 0, (U⋆

nAUn)ii, 0, ..., 0)(0, ..., 0, (U
⋆
nAUn)ii, 0, ..., 0)

T

= |(U⋆
nAUn)ii|2,

then ∥(U⋆
nAUn)x0∥2 = |(U⋆

nAUn)ii|, so
|(U⋆

nAUn)ii| ≤ sup
∥x∥2=1

∥(U⋆
nAUn)x∥2 = ∥U⋆

nAUn∥2 = ∥A∥2.

Now,

∥PUn∥2 = sup
A̸=0

∥PUn(A)∥2
∥A∥2

= sup
A̸=0

∥Unσ(U
⋆
nAUn)U

⋆
n∥2

∥A∥2
= sup

A̸=0

∥σ(U⋆
nAUn)∥2
∥A∥2

= sup
A̸=0

max
1≤i≤n

|(U⋆
nAUn)ii|

∥A∥2
≤ sup

A̸=0

∥U⋆
nAUn∥2
∥A∥2

= sup
A̸=0

∥A∥2
∥A∥2

= 1,

so ∥PUn∥2 ≤ 1.

On the other side,

∥PUn∥2 ≥
∥PUn(In)∥2
∥In∥2

=
∥Unσ(U

⋆
nInUn)U

⋆
n∥2

∥In∥2
=
∥σ(In)∥2
∥In∥2

= 1.

Whence, ∥PUn∥2 = 1.

6. The proof of this point is similar to the proof of point (5) by replacing ∥ · ∥2 by ∥ · ∥F .
7.

∥A− PUn(A)∥2F = ∥U⋆
nAUn − U⋆

nPUn(A)Un∥2F
= ∥U⋆

nAUn − σ(U⋆
nAUn)∥2F

=
∑
i ̸=j

|(U⋆
nAUn)ij|2

=
n−1∑
i,j=0

|(U⋆
nAUn)ij|2 −

n−1∑
j=0

|(U⋆
nAUn)jj|2

= ∥U⋆
nAUn∥2F − ∥σ(U⋆

nAUn)∥2F
= ∥A∥2F − ∥Unσ(U

⋆
nAUn)U

⋆
n∥2F

= ∥A∥2F − ∥PUn(A)∥2F .
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Also of interest is the following result which was proved and used for speci�c matrix
algebras [41, 43, 85, 122, 163], but extended in an abstract way in [55].

Lemma 2.3.2. [55]. If A is a Hermitian matrix (A = A⋆), then the eigenvalues of PUn(A)
are contained in the closed real interval [λ1(A), λn(A)] where λj(A) are the eigenvalues of
A ordered in a nondecreasing way. Moreover, when A is positive de�nite, PUn(A) is positive
de�nite as well.

Proof. According to Lemma 2.3.1, λj(PUn(A)) = (U⋆
nAUn)jj = (Un)

⋆
jA(Un)j, (where (Un)j

is the j-th column of Un, ∥(Un)j∥2 = 1). Since A is Hermitian, one deduces from Theorem
1.3.1 that λ1(A) ≤ λj(PU(A)) ≤ λn(A) for all j = 1, 2, ..., n.

Trigonometric matrix algebras

Here we de�ne a special subset of sequences of matrix algebras that we call trigonometric
matrix algebras and we denote it by AT . Let {vn}n∈N with vn = {vnj}n−1

j=0 , be a sequence of
trigonometric functions on an interval I. Let S = {Sn}n∈N be a sequence of grids of n points

on I, namely, Sn = {x(n)i , i = 0, 1, 2, ..., n− 1}.
Let us suppose that the generalized Vandermonde matrix

Vn =
(
vnj(x

(n)
i )
)n−1

i,j=0

is a unitary matrix. Then, an algebra of the formM(Un) is a trigonometric algebra if Un = V ⋆
n

with Vn a generalized trigonometric Vandermonde matrix. In addition, given a sequence
of unitary generalized trigonometric Vandermonde matrices {Un = V ⋆

n }n and the related
sequence of algebras {M(Un)}n belonging to AT , we will call it regular if the grid points
form a sequence of quasi-uniformly distributed grid sequences in I. For a formal de�nition
of quasi-uniform distribution, see the following.

De�nition 2.3.1. A sequence of grids {Sn = {x(n)i , i = 0, 1, 2, ..., n − 1}}n belonging to an
interval I is called quasi-uniform if

(2.8)
n−1∑
i=1

∣∣∣∣ |I|n − (x
(n)
i − x

(n)
i−1)

∣∣∣∣ = o(1), for n→∞

with |I| being the width of I. If the previous relation holds for o(1) = O(n−1), then the
mesh-sequence {Sn}n is called uniform.

Examples of trigonometric algebras are the circulant, the τ, the Hartley [12] for which
the matrix Un is

Un = Fn =

(
1√
n
eîjx

(n)
i

)
, i, j = 0, 1, ..., n− 1

Sn =

{
x
(n)
i =

2iπ

n
: i = 0, 1, ..., n− 1

}
⊂ I = [0, 2π],

Un = Sn =

(√
2

n+ 1
sin((j + 1)x

(n)
i )

)
, i, j = 0, 1, ..., n− 1

Sn =

{
x
(n)
i =

(i+ 1)π

n+ 1
: i = 0, 1, ..., n− 1

}
⊂ I = [0, π],
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Un = Hn =

(
1√
n
[sin(jx

(n)
i ) + cos(jx

(n)
i )]

)
, i, j = 0, 1, ..., n− 1

Sn =

{
x
(n)
i =

2iπ

n
: i = 0, 1, ..., n− 1

}
⊂ I = [0, 2π].

respectively.
Notice that all the associated sequences of algebras are trigonometric and regular with

uniform meshes. In addition, these algebras are characterized by a special kind of sequence
v of functions. In particular if n > m, then there exists a constant C(n,m) such that

(vni)[i=0,m−1] = C(n,m)vm.

This means that, up to a scaling factor, for any n, the functions related to vn can be viewed
as the �rst n functions of a unique sequence {vj}j∈N.

2.4 A Weierstrass-Jackson matrix theory

In order to properly state the "matrix approximation results", we require the following
de�nitions concerning the concept of "matrix convergence".

De�nition 2.4.1. Given a sequence of algebras {M(Un)}n with associated operators {PUn(·)}n,
we say that "{PUn(Tn(f))}n (strongly) converges to {Tn(f)}n" if, for any ϵ > 0, there exists
a nonnegative integer Nϵ such that, for n ≥ Nϵ, Tn(f)−PUn(Tn(f)) has eigenvalues in (−ϵ, ϵ)
except for Nϵ = o(1) outliers (proper clustering at zero [164]).

De�nition 2.4.2. Given a sequence of algebras {M(Un)}n with associated operators {PUn(·)}n,
we say that "{PUn(Tn(f))}n (weakly) converges to {Tn(f)}n" if, for any ϵ > 0, there exists a
nonnegative integer Nϵ such that, for n ≥ Nϵ, Tn(f)−PUn(Tn(f)) has eigenvalues in (−ϵ, ϵ)
except for Nϵ = o(n) outliers (general clustering at zero [164]).

We say that the convergence is also uniform, when the number Nϵ does not depend on ϵ.
In the case where there is strong convergence (strong or proper clustering in the terminology
used in [164]) and the function f is strictly positive, we have a superlinear convergence of the
related PCG methods having {PUn(Tn(f))}n as preconditioner, but we may have a sublinear
behavior when the weak convergence (weak or general clustering [164]) case occurs [151, 52].

Moreover, if the convergence is also uniform, that is, Nϵ does not depend on ϵ, the num-
ber of iterations decreases as the dimension n increases and, therefore, the associated PCG
method is comparable with the one devised in [119].

The following result due to Tyrtyshnikov provides a criterion to establish if convergence
occurs.

Lemma 2.4.1. [164] Let {An}n and {Bn}n be two sequences of n× n Hermitian matrices.
When ∥An −Bn∥2F = O(1), then we have convergence in the strong sense. If ∥An −Bn∥2F =
o(n), then the convergence is weak.

Theorem 2.4.1. Let f be a continuous periodic real-valued function. Then, {PUn(Tn(f))}n
strongly converges to {Tn(f)}n if {PUn(Tn(p))}n strongly converges to {Tn(p)}n for all the
trigonometric polynomials p.

Proof. Let pk be the polynomial having degree k of best approximation of f in the supremum
[84]. For any ϵ > 0, there exists an integer M such that ∥f − pM∥∞ < ϵ/3. Then, by using
the Szegö Theorem (see [77] at page 64) and Lemma 2.3.2 we have ∥Tn(f)−Tn(pM)∥2 < ϵ/3,
∥PUn(Tn(f))− PUn(Tn(pM))∥2 < ϵ/3. Therefore, from the identity

Tn(f)−PUn(Tn(f)) = Tn(f)−Tn(pM)−PUn(Tn(f))+PUn(Tn(pM))+Tn(pM)−PUn(Tn(pM))

35



we have that, except for a term of norm bounded by 2ϵ/3, the di�erence Tn(f)−PUn(Tn(f))
coincides with Tn(pM)−PUn(Tn(pM)). From the hypothesis of convergence, we may split the
Hermitian matrix Tn(pM)−PUn(Tn(pM)) into two parts. The �rst part has a norm bounded
by ϵ/3 and the second part has constant rank. Therefore, the claimed result is obtained, by
invoking the Cauchy interlace theorem (cf. Theorem 1.3.2).

Theorem 2.4.2. Let f be a continuous periodic real-valued function. Then, {PUn(Tn(f))}n
weakly converges to {Tn(f)}n if {PUn(Tn(p))}n weakly converges to {Tn(p)}n for all the
trigonometric polynomials p.

Proof. The proof is the same as the one of Theorem 2.4.1 with the exception of the last part
where we split {Tn(pM)− PUn(Tn(pM))}n into two sequences: the �rst has a norm bounded
by ϵ/3 and the second one has o(n) rank. The use of the Cauchy Interlace theorem completes
the proof.

The following corollaries are particularly useful for deriving and analyzing good precon-
ditioners for the conjugate gradient method.

Corollary 2.4.1. Under the assumption of Theorem 2.4.1, if f is positive then for any ϵ > 0,

for n large enough, the matrix PUn(Tn(f))
−1Tn(f) has eigenvalues in (1 − ϵ, 1 + ϵ) except

Nϵ = O(1) outliers, at most.

Corollary 2.4.2. With the hypotheses of Theorem 2.4.2, if f is positive then for any ϵ > 0,

for n large enough, the matrix PUn(Tn(f))
−1Tn(f) has eigenvalues in (1 − ϵ, 1 + ϵ) except

Nϵ = o(n) outliers, at most.

The proofs of the �rst corollary and Theorem 2.4.1 for speci�c algebras can be found in
[43], [85], [122]. However, in the cited papers, a bit di�erent de�nition of strong convergence
is used since the notion of convergence is replaced by the fact that {Tn(pM)−PUn(Tn(pM))}n
is viewed as the sum of a matrix with norm bounded by ϵ/3 and another of constant rank.
Therefore, we observe that the argument used in [43] proves in e�ect a more general and
abstract formulation.

It is interesting to notice that the main e�ort made in the aforementioned papers was
toward proving of the "matrix convergence" in the polynomial case. Therefore, in section
2.6, in Theorems 2.6.3 and 2.6.4 (cf. [123, 124, 134]) we have given very simple conditions for
verifying the "matrix convergence" in the polynomial cases.

Finally, observe that the two corollaries tell us something about the convergence of the
associated PCG methods [6], [43] : in particular, if the assumption of corollary 2.4.1 is
ful�lled, then we have a superlinear PCG method.

2.5 The LPO sequences related to {PUn(Tn(·))}n
The behavior of the eigenvalues of PUn(Tn(f)) is studied in this section. If Un is completely
generic not very much can be said, but under the assumption that M(Un) is a trigonometric
matrix algebra, a richer analysis can be carried out. Actually, in the light of the concepts
introduced in section 2.3, the j-th row of Un is a vector of trigonometric functions cal-

culated on the grid point x
(n)
j . Therefore, by exploiting the �rst part of Lemma 2.3.1, we

�nd that the j-th eigenvalue λj of PUn(Tn(f)) is σ(U
⋆
nTn(f)Un)jj. Consequently, λj is the

value that a trigonometric function takes on x = x
(n)
j . If f is a real valued function, then λi

is a Rayleigh quotient related to the Hermitian matrix Tn(f) and is a real-valued polynomial.

Now, let us consider the function [Ln[Un](f)](x) obtained by replacing x
(n)
j with x ∈ I in

the formal expression of λj = σ(U⋆
nTn(f)Un)jj. To formulate precisely this idea, let us de�ne
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C2π(I,R) as the space of the continuous real-valued 2π-periodic functions de�ned on I and
let us de�ne the sequence of operators {Ln[Un](·)}n

Ln[Un](·) : C2π(I,R)→ C2π(I,R)

as
Ln[Un](f) = v(·)Tn(f)v⋆(·) ∈ C2π(I,R).

Here f is a real valued function and v(x) is the generic row of U⋆
n, where the grid points have

been replaced by the continuous variable x. In other words, it can be seen that Ln[Un](f) is
nothing other than the continuous expressions of the diagonal elements of σ(U⋆

nTn(f)Un).
In order to analyze this sequence of operators, let us introduce the following de�nitions.

De�nition 2.5.1. Let G be a linear space of functions and Φ be an operator from G to G.
Let us suppose that

1. Φ(αf + βg) = αΦ(f) + βΦ(g) with f, g ∈ G and α, β ∈ C;

2. Φ(f) ≥ 0 for any nonnegative function f ∈ G.

Under the above mentioned assumptions, the operator Φ is said linear and positive operator
(LPO).

De�nition 2.5.2. Let G be a linear space of matrices and Φ be an operator from G to G. Let
us suppose that

1. Φ(αA+ βB) = αΦ(A) + βΦ(B) with A,B ∈ G and α, β ∈ C;

2. Φ(A) is self-adjoint and nonnegative de�nite whether the matrix A ∈ G is self-adjoint and
nonnegative de�nite.

Under the above mentioned assumptions, the operator Φ is said linear and positive (matrix)
operator (LPO).

Under the former notations, the following lemma holds.

Lemma 2.5.1. Ln[Un](·) is a linear positive operator. In addition PUn(·) is also a LPO in
the matrix sense.

Proof. The linearity follows from the linearity of PUn(·) (see Lemma 2.3.1). Fix f ≥ 0, then
Tn(f) is nonnegative de�nite (cf. Lemma 1.3.3) and therefore any Rayleigh quotient is non-
negative and particularly the one giving rise to Ln[Un](f).

The second part is straightforward if we notice that the nonnegative de�niteness of Tn(f)
implies the nonnegativity of the diagonal entries of U⋆

nTn(f)Un and therefore the nonnega-
tivity of all the eigenvalues of the Hermitian matrix PUn(Tn(f)) (see Lemma 2.3.2).

Now we resort to the well-known Korovkin theorem to establish whether the eigenval-

ues of {PUn(Tn(f))}n tend to {{f(x(n)j )}j}n for n going to in�nity. Observe that this also
implies that the spectra of PUn(Tn(f)) and Tn(f) are equally distributed in the sense of
Weyl-Tyrtyshnikov [77], [164].

So the convergence of the j-th eigenvalue of the Frobenius-optimal matrix {PUn(Tn(f))}n
to {f(x(n)j )}n would be trivially implied by the uniform convergence of {Ln[Un](f)}n to f.
On the other hand, this general result is implied by the convergence of {Ln[Un](pi)}n to pi
for three test functions as stated in the Korovkin Theorems.

We introduce the notion of Chebyshev set [102].
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De�nition 2.5.3. A �nite sequence of functions {bi}mi=1 de�ned on a set I is a Chebyshev
set if and only if for any choice of m distinct points {xi}mi=1 of I, the associated m × m
Vandermonde matrix {bi(xj)}mi,j=1 is nonsingular.

Theorem 2.5.1. [Korovkin [90]]. Let G be the linear space of the continuous (periodic) real
valued functions on a suitable interval I and let {Φn(·)}n be a sequence of linear positive
operators from G to G. If {Φn(pi)}n uniformly converges to pi, for i = 1, 2, 3 and n going
to in�nity, {pi}3i=1 being a Chebyshev set on I, then, for any function f ∈ G, {Φn(f)}n
uniformly converges to f. The same statement holds if the "uniform convergence" is replaced
by "pointwise convergence" or if the interval I is replaced by any subinterval J of I.

Observe that, in the case of 2π-periodic functions, the most classical choice of the three
test functions is given by 1, cos x, and sinx. In terms of Hermitian Toeplitz matrices, this
means that the Korovkin test should be performed only on the three tridiagonal Toeplitz
matrices I = Tn(1), C = Tn(cosx) and S = Tn(sinx) where I is the identity matrix. All this
is summarized in the following theorem.

Theorem 2.5.2. Let f be a continuous real valued periodic function and J be a subinterval
of I = [−π, π]. Then Ln[Un](f) converges uniformly to f on J if

v(x)Tn(p)v
⋆(x)− p(x)

converges uniformly to zero on J for any p being a test function. Here v(x) is given by the

formal expression of the j-th row of U⋆
n where the value x

(n)
j has been replaced by x.

In addition, the result due to Korovkin can be re�ned a bit. Let us suppose that the order
of the error max

i=1,2,3
∥Φn(pi)− pi∥∞ is O(θn) with θn going to zero as n tends to in�nity. Then

the same order of convergence holds for all trigonometric polynomials. This result, stated in
the following proposition, is crucial for the strong convergence obtained in Theorem 2.6.4.

Proposition 2.5.1. [123]. Let G be the linear space of the continuous (periodic) functions on
a suitable interval [−π, π] and let {Φn(·)}n be a sequence of linear positive operators from G to
G. Let ∥·∥∞,J be the usual in�nity norm on a set J ⊂ [−π, π]. If max

i=1,2,3
∥Φn(pi)−pi∥∞,J = O(θn)

for {pi}3i=1 being the Chebyshev set: 1, sinx and cos x (cf. [102]) on [−π, π], then, for any
trigonometric polynomial p of a �xed degree (independent of n) we �nd

∥Φn(p)− p∥∞,J = O(θn).

The same statement holds true if G is the linear space of the continuous even periodic func-
tions, if p is an even trigonometric polynomial (with a �nite cosine expansion) and if the
Chebyshev set {pi}3i=1 is given by 1, cosx and cos 2x over I = [0, π] with J ⊂ I.

2.5.1 Some special cases

We start with the operator associated with the circulant algebra. In this case, there is nothing
to check, since the eigenvalue function

Ln[Un](·)

is the Cesaro sum [Cn(·)](x) (for the details of this derivation see [45] and for a practical
application see [133]). Therefore, as it is well known, this operator converges uniformly to
the identity operator over C2π(I,R, ∥ · ∥∞) with I = [−π, π] and has a rate of convergence of
order n−1 on a class of functions (see [176] at pages 122−123) which contain the polynomials
(for a consequence of this property see Theorem 2.6.4).
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Now we consider the τ and Hartley classes which are the algebras of all the matrices
simultaneously diagonalized by the matrices Un = Sn and Un = Hn respectively, given in
section 2.3.

Before going on, we need an explicit expression of the eigenvalues of the Frobenius-optimal
approximation PUn(Tn(f)).

Theorem 2.5.3. [54]. Let f be the generating function of the Toeplitz matrix Tn(f). Then
the eigenvalues of PUn(Tn(f)) are given by the values taken on the grid

{
iπ
n+1

}
by the function

[Ln[Un](f)](x) de�ned as

[Ln[Un](f)](x) = [Kn(f)](x)−
2

n+ 1
h(x),

h(x) = s
′
(x)− s(x)cot(x),

where s(x) =
n−1∑
j=1

aj sin(jx). Here Kn(f) denotes the n-th Fourier sum of f.

Theorem 2.5.4. The operator Ln[Un](·) can be written as

[Ln[Un](f)](x) = [Cn(f)](x)−
cos(x)

n+ 1

n−2∑
j=0

aj+1Uj(cos(x))

where Uj denotes the j-th Chebyshev polynomial of second kind.

Concerning the representation of the eigenvalues of PUn(Tn(f)) in the τ class, the vector
v(x) has the form √

2

n+ 1
(sin(x), sin(2x), ..., sin(nx))

where each function acts on I = [0, π]. Consequently the operator Ln[Un](f) is a combination
of products of functions sin(jx) and so it is impossible to approximate the constant function
f ≡ 1 at x = 0 and x = π.

We directly analyze the behavior of Ln[Un](f) on the test functions in the light of the
Korovkin Theorem. Since the τ class is inherently symmetric, we have to consider symmetric
Toeplitz matrices. In terms of functions, this means that the generating functions have to
be even and so we consider the domain as the interval I = [0, π]. By direct calculation we
�nd that {Ln[Un](p)}n converges uniformly to p on each closed set [a, b] contained in (0, π)
while this convergence is pointwise on (0, π). As expected at x = 0 and x = π, there is
no convergence. Finally, we point out that the calculation of Ln[Un](p) on the grid points
of the algebra xi = iπ

n+1
leads to convergence to p(xi) : this is a little surprising since

the �rst points xi and the last points xn−i, for i �xed with respect to n and n going to
in�nity, tend to the critical points 0 and π, respectively. More precisely, the evaluation of
[Ln[Un](1)](x) = v(x)Iv⋆(x) leads to

[Ln[Un](1)](x) =
2

n+ 1

n∑
j=1

sin2(jx)

=
2

n+ 1

n∑
j=1

(
eîjx − e−îjx

2̂i

)2

=
2n

2(n+ 1)
− 2

4(n+ 1)

n∑
j=1

(e2̂ijx + e−2̂ijx)

= 1− 1

n+ 1
− 1

2(n+ 1)
H(x).
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Here

H(x) = e2̂ix
e2nîx − 1

e2̂ix − 1
+ e−2̂ix e

−2nîx − 1

e−2̂ix − 1
.

Then, for any closed interval in the open set (0, π), we �nd that H(x) is uniformly bounded
and therefore we have uniform convergence to the constant 1. The convergence is pointwise
in the open set (0, π). On the other hand, for x going to 0, the expression H(x) tends to
2n and, as expected, [Ln[Un](1)](0) = 0. In a similar way we calculate Ln[Un](cos(y)) which
is related to the tridiagonal Toeplitz matrix C and Ln[Un](cos(2y)) which is related to the
pentadiagonal Toeplitz matrix P having a2 = a−2 = 1 and ak = 0 elsewhere. By making
the same kind of check and by expanding the sin(jx) functions in terms of complex valued
exponentials, we obtain that

[Ln[Un](cos(y))](x) = cos(x) +O(n−1) +
1

n+ 1
G1(x)

and

[Ln[Un](cos(2y))](x) = cos(2x) +O(n−1) +
1

n+ 1
G2(x)

where Gi are uniformly bounded functions in any compact set contained in (0, π) and are
diverging as n if we evaluate them at x = 0 and x = π. Therefore, for any continuous f
de�ned on I, we �nd that

{Ln[Un](f)}n converges to f uniformly on [a, b] ⊂ (0, π),

{Ln[Un](f)}n converges to f pointwise on [0, π],

{Ln[Un](f)}n converges to f pointwise on the grid points.

Concerning the Hartley class, the vector of function which characterizes the algebra is
the following √

1

n
(sin(x) + cos(x), sin(2x) + cos(2x), ..., sin(nx) + cos(nx)) .

The eigenvalue function is also known [12, 52]

[Ln[Un](f)](x) = [Cn(f)](x)−
2

n+ 1

∑
k

ak sin(kx).

In the light of the Korovkin Theorem we directly analyze the behavior of Ln[Un](f) on the
test functions. Similar to the τ class, the Hartley one is intrinsically symmetric and so the
test functions are 1, cosx and cos 2x de�ned on I = [0, π]. By virtue of the same trivial checks
performed for the τ class, we �nd that {Ln[Un](p)}n converges uniformly to p on each closed
set [a, b] contained in (0, π) while this convergence is pointwise on I. Moreover, {Ln[Un](p)}n
is convergent to p on the grid points of the algebra xi =

2iπ
n
.

Therefore, for any continuous f de�ned on I, we obtain that

{Ln[Un](f)}n converges to f uniformly on [a, b] ⊂ (0, π),

{Ln[Un](f)}n converges to f pointwise on (0, π),

{Ln[Un](f)}n converges to f pointwise on the grid points.
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2.5.2 Some remarks

Concerning the new linear positive operators related to the Frobenius-optimal approximation
of Toeplitz matrices by trigonometric matrix algebras (τ class, Hartley class, etc...), it is
interesting to observe that in [135] these LPOs have been used in connection with Theorem
2.6.5 in order to solve some nontrivial approximation problems (e.g. rational approximation
of f/g with g ≥ 0 and f/g continuous, "construction" of the essential range of f/g with g ≥ 0
f, g ∈ L2, etc...) under the assumption that computable expressions of f and g are unknown
(only the Fourier coe�cients of f and g are known) and when the generating functions are
continuous or in L2. More precisely, see chapter 9.

2.6 A Korovkin-type matrix theory

In this part, we would like to reduce the matrix approximation problem analyzed in section
2.4 to the very concise problem of checking the approximation only on the Toeplitz matrices
generated by the test functions. This can be done with the help of the Lemma 2.4.1.

Before going on, it is useful to recall the theory about the distribution of the spectra of
Toeplitz matrices. This kind of results goes back to Szegö [77], but we have very recently
observed an impressive sequence of very interesting and enlightening papers on the subject
[171], [109], [172], [164], [153].

Theorem 2.6.1. [Szegö-Tyrtyshnikov [77, 164]]. Let f ∈ L2 and {λ(n)i }ni=1 be the eigenvalues
of Tn(f) (which are real since f is real valued and then the matrix Tn(f) is Hermitian).
Then, for any continuous function F with bounded support, we �nd the following asymptotic
formula (the Szegö relation)

(2.9) lim
n→∞

1

n

n∑
i=1

F (λ
(n)
i ) =

1

2π

∫ π

−π

F (f(x))dx.

In addition, mention has to be made of two very recent extensions accredited to Tilli
[153] and Tyrtyshnikov, Zamarashkin [167]. The �rst one seems to be the most general with
respect to the generality of the involved structures: actually this result is Theorem 2.6.1
modi�ed to deal with �nite dimensional Toeplitz operators generated by matrix-valued L2

functions, including also the non-Hermitian case and the nonsquared one. On the other
hand, in a complementary direction [167], the authors proved the classical Szegö formula for
f ranging in L1 space: of course, in the non-Hermitian case in formula (2.9), the eigenvalues
must be replaced by the singular values.

For our purpose, another needed result is a second-order one concerning the Szegö for-
mula. This re�nement is a little simpler to state in terms of the squares of the singular

values σ
(n)
i of Tn(f) (f is now complex valued) rather than the singular values themselves.

The restriction on f is due to the assumption that it belongs to the Krein algebra K [91]

(the Besov space B
1
2
2 ) of all the functions f that are essentially bounded and satisfy

∥f∥2K =
∞∑

k=−∞

|k||ak|2 <∞.

More precisely, this result is stated in the following theorem [172] (see also [121], [120]).

Theorem 2.6.2. Let {σ(n)
i } the singular values of Tn(f), t

(n)
i = (σ

(n)
i )2, f ∈ K and let G be

a function belonging to C3[m2
f ,M

2
f ]. Then

(2.10) lim
n→∞

{
n∑

i=1

G(t
(n)
i )− n

2π

∫ π

−π

G(|f(x)|2)dx

}
= c(f,G).
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Here c(f,G) is a known constant characterized in [172], Mf = ∥f∥∞ and mf is the distance
of the zero in the complex plane from the convex hull of the range of f. Indeed, if f is real

valued then mf is the minimum of |f | and {t(n)i } are the squares of the eigenvalues of Tn(f).

Moreover we need another technical lemma.

Lemma 2.6.1. Let {Sn}n be a sequence of quasi-uniformly distributed grid points x
(n)
i on I.

Then, for any bounded and Riemann integrable function g, we have

n−1∑
i=0

g(x
(n)
i ) =

n

2π

∫ π

−π

g + o(n).

If the distribution is uniform and if g is bounded and Lipschitz continuous except, at most,
for a �nite number of discontinuity points, then

n−1∑
i=0

g(x
(n)
i ) =

n

2π

∫ π

−π

g +O(1).

Proof. Since g is Riemann integrable, it follows that

n−1∑
i=0

g(x
(n)
i )(x

(n)
i − x

(n)
i−1) =

∫ π

−π

g + o(1),

and therefore, calling

S =

∣∣∣∣∣
n−1∑
i=0

g(x
(n)
i )− n

2π

∫ π

−π

g

∣∣∣∣∣ ,
it follows that

S ≤

∣∣∣∣∣
n−1∑
i=0

g(x
(n)
i )− n

2π

n−1∑
i=0

g(x
(n)
i )(x

(n)
i − x

(n)
i−1)

∣∣∣∣∣+ o(n)

=
n

2π

∣∣∣∣∣
n−1∑
i=0

g(x
(n)
i )

(
2π

n
− (x

(n)
i − x

(n)
i−1)

)∣∣∣∣∣+ o(n)

≤ n

2π
∥g∥∞

n−1∑
i=0

∣∣∣∣2πn − (x
(n)
i − x

(n)
i−1)

∣∣∣∣+ o(n)

≤ n

2π
∥g∥∞o(1) + o(n) = o(n).

In a very similar way, we prove the other part of the lemma.

Now we are ready to prove the matrix versions of the Korovkin result. In these theorems
the test functions are given by 1, sin x and cos x in the 2π-periodic case and by 1, cosx
and cos 2x in the case where the functions are also even (this situation typically occurs in
inherently symmetric problems [62], [34], [132] in which we use inherently symmetric algebras
as the τ class, the Hartley class or some cosine algebras). Moreover, the results are stated
for f being real-valued because we are interested in the Hermitian case. However a complete
generalization, requiring some technical tools and taking into account of the case where f is
complex valued or matrix/tensor valued, is made in [124].
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Theorem 2.6.3. [123, 124, 134]. Let f be a continuous periodic function and let p a test
function. If Ln[Un](p) = p + ϵn(p) with ϵn going uniformly to zero, then {PUn(Tn(f))}n
converges to {Tn(f)}n in the weak sense.

Proof. From identity 7 in Lemma 2.3.1, for any polynomial p we have

0 ≤ ∥Tn(p)− PUn(Tn(p))∥2F = ∥Tn(p)∥2F − ∥PUn(Tn(p))∥2F .

From the uniform convergence of {Ln[Un](p)}n to p on the test functions we obtain the same
convergence property for any polynomial of �xed degree. Therefore,

∥Tn(p)− PUn(Tn(p))∥2F = ∥Tn(p)∥2F −
∑
i

(
p(x

(n)
i ) + ϵn(p)(x

(n)
i )
)2
.

Now, from the de�nition of the Frobenius norm and since Tn(p) is Hermitian, we �nd that

∥Tn(p)∥2F =
n∑

i=1

λ2i (Tn(p)).

The preceding relation is very interesting because, after division by n, it coincides with the
sum appearing in the left-hand side of the famous Szegö relation (see Theorem 2.6.1). Then,
by applying the quoted result, we �nd

(2.11) ∥Tn(p)∥2F = n · 1

2π

∫ π

−π

p2 + o(n).

In addition, by exploiting the convergence of {Ln[Un](p)}n to p, we may conclude that

(2.12)
n−1∑
i=0

(
p(x

(n)
i ) + ϵn(p)(x

(n)
i )
)2

=
∑
i

p2(x
(n)
i ) + o(n).

So, by virtue of the quasi-uniform distribution of grid points {x(n)i }, we arrive at

(2.13)
n−1∑
i=0

(
p(x

(n)
i ) + ϵn(p)(x

(n)
i )
)2

= n · 1

2π

∫ π

−π

p2 + o(n).

The combination of equations (2.11) and (2.13), in the light of the powerful Lemma 2.4.1,
allows one to state the weak convergence of {PUn(Tn(p))}n to {Tn(p)}n. But, by noticing
that this is the assumption of the second Weierstrass-Jackson type Theorem 2.4.2, the proof
is proved.

Theorem 2.6.4. [123, 124, 134]. Under the same assumption of Theorem 2.6.3, if ϵn(p) =
o(n−1) for the three test functions p and if the grid points of the algebra are uniformly
distributed, then the convergence is strong.

Proof. We follow the same proof given in Theorem 2.6.3. In particular, in all the equations
(2.11), (2.12) and (2.13) the terms o(n) are replaced by terms of constant order. In equation
(2.11), we notice that all the polynomials are in the Krein algebra and then the second-
order result due to Widom [172] can be applied (see Theorem 2.6.2) with G(t) = t. For
the relation (2.12), the hypothesis on ϵn(p) with p test function and Lemma 2.5.1 are used
while, for equation (2.13), we need the uniform distribution instead of the quasi-uniform one.
Finally, Lemma 2.4.1 and the �rst Weierstrass-Jackson type Theorem are invoked.
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The L2 case

It is worthwhile observing that we have used the last part of Lemma 2.3.1 in all the Korovkin-
type Theorems. This is again the key for stating the following theorem which gives a criterion
for testing the weak convergence in the L2 case.

Theorem 2.6.5. Let f be a function in L2. If Szegö relation (2.9), referred to the eigenvalues
of {PUn(Tn(f))}n, holds only for F (t) = t2, then the convergence is weak.

Proof. We make use only of the last part of Lemma 2.3.1, of the ergodic relation stated in
the hypothesis and of Szegö-Tyrtyshnikov Theorem 2.6.1. The structure of the proof follows
the same steps as in Theorem 2.6.3.

It should be remarked that Tyrtyshnikov [164] uses Theorem 2.6.1 in order to prove the
weak clustering when circulant preconditioners are considered. Here, we �nd that for general
algebras also containing the circulants, a much less restrictive condition is required, i.e., the
validity of the Szegö relation only for F (t) = t2. Observe that this is a very natural request
because it can be viewed as the convergence of the discrete L2-norm of Ln[Un](f) on the grid
points of the algebra to the L2-norm of f :

(2.14) lim
n→∞

1

n

n∑
i=1

[Ln[Un](f)]
2(x

(n)
i ) =

1

2π

∫ π

−π

f 2(x)dx.

2.7 The multilevel case
By following the notations of Tyrtyshnikov, a multilevel Toeplitz matrix of level m and
dimension n1×n2× ...×nm is de�ned as the matrix generated by the Fourier coe�cients of
a multivariate Lebesgue integrable function f = f(x1, x2, ..., xm) according to the law given
in equation (6.1) at page 23 in [164]. Similarly, given the unitary matrix Un related to the
transform of a one-level algebra, a corresponding m-level algebra is de�ned as the set of
n1 × n2 × ... × nm matrices simultaneously diagonalized by means of the following tensor
product of matrices

(2.15) Un = Un1 ⊗ Un2 ⊗ ...⊗ Unm .

Now, since we are interested in extending the results proved in the preceding sections to
m dimensions, we analyze what is necessary to have and, especially, what is kept when we
switch from one dimension to m dimensions: for the �rst level we used the Weierstrass and
Korovkin theorems, the last part of Lemma 2.3.1 (see [55]), Lemma 2.4.1 (see [164]) and
the Szegö-Tyrtyshnikov theorem for one level Toeplitz matrices. Surprisingly enough, we
�nd that all these tools hold or have a version in m dimensions: for the Korovkin and the
Weierstrass theorems, the multidimensional extensions are classic results. Very recently, Tyr-
tyshnikov has proved the Szegö relation in any dimension [164] while Lemma 2.4.1 contains
a statement not depending on the structure of the matrices and part (7) of Lemma 2.3.1 is
valid for any algebra and so for multilevel algebras as well (recall that Un in (2.15) is unitary).

Therefore, we instantly deduce the validity in m dimensions of the main statements that
is Theorems 2.4.1, 2.4.2, 2.6.3, 2.6.4, 2.6.5. However, we remark that we have no examples in
which the strong convergence holds.

For instance, in the two-level circulant and τ cases, only the weak convergence has been
proved because the number of the outliers is, in both cases, equal to O(n1+n2) [40], [53] even
if the function f is a bivariate polynomial: more precisely, this means that the hypotheses of
Theorems 2.4.1 and 2.6.4, regarding the strong approximation in the polynomial case, are not
ful�lled by the two-level circulant and τ algebras and therefore strong convergence cannot
be proved in the general case (see also [124]). Very recently, in [143] and [144] it has been
proved that any sequence of preconditioners belonging to "partially Equimodular" algebras
[144] cannot be superlinear for sequence of multilevel Toeplitz matrices generated by simple
positive polynomials. Here, "partially Equimodular" refers to some very weak assumptions
on Un that are instantly ful�lled by all the known multilevel trigonometric algebras.
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Conclusion.
In this chapter, we have studied the asymptotic equivalence of circulant and Toeplitz se-
quences (in the case where the generating function f belongs to the Wiener class of func-
tions de�ned over the domain [−π, π]). Furthermore, a large part of works was consecrated
to a detailed study of the Frobenius-optimal preconditioners for Toeplitz matrices. We will
extend these notions in the following chapters for a spectral analysis and the singular value
distribution of the g-circulants and g-Toeplitz sequences.
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Chapter Three

Singular Values and Eigenvalues of
the g-Circulant Matrices

3.1 Introduction
For a given nonnegative integer g, a matrix An of size n is called g-circulant if An =
[a(r−gs)modn]

n−1
r,s=0. As example, if n = 7 and g = 4 we have

An ≡ Cn,g =


a0 a3 a6 a2 a5 a1 a4a1 a4 a0 a3 a6 a2 a5a2 a5 a1 a4 a0 a3 a6a3 a6 a2 a5 a1 a4 a0a4 a0 a3 a6 a2 a5 a1a5 a1 a4 a0 a3 a6 a2a6 a2 a5 a1 a4 a0 a3


Such kind of matrices arises in wavelet analysis [50] and subdivision algorithm or, equiv-

alently, in the associated re�nement equations, see [58] and references therein. Furthermore,
it is interesting to remind that Gilbert Strang [150] has shown rich connections between di-
lation equations in the wavelets context and multigrid methods [78, 162], when constructing
the restriction/prolongation operators [61, 1] with various boundary conditions. It is worth
noticing that the use of di�erent boundary conditions is quite natural when dealing with
signal/image restoration problems or di�erential equations, see [129, 126].

This work treats the problem of characterizing of singular values and eigenvalues of the
g-circulant matrices in the case where the sequence {ak(modn)} de�nes the entries of the ma-
trices and whose the values {ak}k can be interpreted as the sequence of Fourier coe�cients of
an integrable function f over the domain (−π, π). As special cases and observations, we will
show interesting relations with the analysis of convergence of multigrid methods given, e.g.,
in [141], [1]. Finally we generalized the analysis in a simple example to the block, multilevel
case, amounting to choose the symbol f multivariate, i.e., de�ned on the set G = (−π, π)d
for some d > 1, and matrix valued, i.e., such that f(x) is a matrix of given size p× q.

3.2 General tools

For any n× n matrix A with eigenvalues λj(A), j = 1, 2, ..., n, and for any m× n matrix B
with singular values σj(A), j = 1, 2, ..., l, l = min{m,n}, we set

Eig(A) = {λj(A) : j = 1, 2, ..., n}, Sval(B) = {σj(B) j = 1, 2, ..., l}.

The matrix B⋆B is positive semide�nite, since x⋆(B⋆B)x = ∥Bx∥22 ≥ 0 for all x ∈ Cn,
with ”⋆” denoting the transpose conjugate operator. Moreover, it is clear that the eigenvalues
λ1(B

⋆B) ≥ λ2(B
⋆B) ≥ ... ≥ λn(B

⋆B) ≥ 0 are nonnegative and can therefore be written in
the form

(3.1) λj(B
⋆B) = σ2

j ,

46



with σj ≥ 0, j = 1, 2, ..., n. The numbers σ1 ≥ σ2 ≥ ... ≥ σl ≥ 0, l = min{m,n} are called
"singular values of B", i.e., σj = σj(B) and if n > l then λj(B

⋆B) = 0, j = l + 1, ..., n. A
more general statement is contained in the singular value decomposition theorem (see e.g.
[72]).

Theorem 3.2.1. Let B be an arbitrary (complex) m× n matrix. Then:

(a) There exists a unitary m × m matrix U and a unitary n × n matrix V such that
U⋆AV = Σ is an m× n "diagonal matrix" of the following form:

Σ =
[
D 0
0 0

]
, D := diag(σ1, ..., σr). σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0.

Here σ1, ..., σr are the nonvanishing singular values of B, and r is the rank of B.

(b) The nonvanishing singular values of A⋆ are also precisely the number σ1, ..., σr.
The decomposition B = UΣV ⋆ is called "the singular value decomposition of B."

We are interested in explicit formulae for the singular values and eigenvalues of g-circulant
matrices. Following what is known in the standard case g = 1 (or g = e = (1, 1, ..., 1) in
the multilevel setting), we need to link the coe�cients of the g-circulant matrix to a certain
symbol.

Let f be a Lebesgue integrable function de�ned onG = (−π, π)d and taking values inMpq,
for given positive integers p and q. Then, for d-indices r = (r1, r2, ..., rd), j = (j1, j2, ..., jd),
n = (n1, n2, ..., nd), e = (1, 1, ..., 1), 0 = (0, 0, ..., 0), the circulant matrix Cn(f) of size pn̂×qn̂,
n̂ = n1.n2...nd, is de�ned as follows

Cn(f) = [f̃(r−j)modn]
n−e
r,j=0,

where f̃k are the Fourier coe�cients of f de�ned by equation

(3.2) f̃j = f̃(j1,...,jd) =
1

(2π)d

∫
[−π,π]d

f(t1, ..., td)e
−î(j1t1+...+jdtd)dt1...dtd, î2 = −1,

for integers jl such that −∞ < jl <∞ for 1 ≤ l ≤ d. Since f is a matrix-valued function of
d variables whose component functions are all integrable, then the (j1, j2, ..., jd)-th Fourier
coe�cient is considered to be the matrix whose (u, v)-th entry is the (j1, j2, ..., jd)-th Fourier
coe�cient of the function (f(t1, ..., td))u,v.

According to this multi-index block notation, we can de�ne general multi-level block g-
circulant matrices. Of course, in this multidimensional setting, g denotes a d-dimensional
vector of nonnegative integers that is, g = (g1, g2, ..., gd). In that case An = [a(r−g◦s)modn]

n−e
r,s=0

where the ◦ operation is the componentwise product Hadamard between vector or matrices
of the same size and where

(r − g ◦ s)modn = ((r1 − g1 · s1)modn1, (r2 − g2 · s2)modn2, ..., (rd − gd · sd)modnd) .

3.2.1 The extremal cases where g = 0 or g = e, and the intermediate
cases

We consider a d-level setting and we analyze in detail the case where 0 ≤ g ≤ e and with
” ≤ ” denoting the componentwise partial ordering between real vectors. When g has at least
a zero component, the analysis can be reduced to the positive one as studied in subsection
3.2.2.
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g = e

In the literature the only case deeply studied is the case of g = e (standard shift in every
level). Here for multilevel block circulants An = [a(r−g◦s)modn]

n−e
r,s=0 the singular values are

given by those of

σk(An) =
n−e∑
j=0

aje
î2π(j1k1/n1+j2k2/n2+...+jdkd/nd), k = (k1, k2, ..., kd),

for any kl such that 0 ≤ kl ≤ nl − 1; l = 1, 2, ..., d. Of course when the coe�cients aj comes

from the Fourier coe�cients of a given Lebesgue integrable function f , i.e., f̃j = aj modn,
j = −n/2, ..., n/2 (where n/2 = (n1/2, ..., nd/2)), the singular values are those of (n/2)-th
Fourier sum of f evaluated at the grid points

2πk/n = 2π(k1/n1, ..., kd/nd),

0 ≤ kj ≤ nj − 1; j = 1, 2, ..., d. Moreover the explicit Schur decomposition is known. For
d = p = q = 1, according to chapter 1 any standard circulant can be written in the form

(3.3) An ≡ Cn = FnDnF
⋆
n ,

where

(3.4) Dn = diag(
√
nF ⋆

na),

(3.5) Fn =
1√
n

[
e−î 2πjk

n

]n−1

j,k=0
, Fourier matrix,

(3.6) a = [a0, a1, ..., an−1]
T , �rst column of the matrix An.

Of course for general d, p, q the formula generalizes as

An = (Fn ⊗ Ip)Dn(F
⋆
n ⊗ Iq),

with Fn = Fn1 ⊗Fn2 ⊗ ...⊗Fnd
, Dn = diag(

√
n̂(F ⋆

n ⊗ Ip)a), where n̂ = n1n2...nd and a being
the �rst "column" of An whose entries aj, j = (j1, j2, ..., jd), ordered lexicographically, are
blocks of sizes p× q,

g = 0

The other extreme is represented by the case where g is the zero vector. Here the multilevel
block g-circulant is given by

An = [a(r−0◦s)modn]
n−e
r,s=0 = [armodn]

n−e
r,s=0 = [ar]

n−e
r,s=0 =

[
a0 . . . a0
...

...
an−e . . . an−e

]
.

A simple computation shows that all the singular values are zero except for few of them

given by
√
n̂σ, where n̂ = n1.n2...nd and σ is any singular value of the matrix

(
n−e∑
j=0

a⋆jaj

)1/2
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and in the case where p = q, all the eigenvalues are also equal to zero except few of them

which are the eigenvalues of the matrix
n−e∑
j=0

aj. In that case it is evident that

{An}n ∼σ (0, G) and {An}n ∼λ (0, G)

where G = (−π, π)d.
NB: the relation {An}n ∼σ (0, G) means that the matrix sequence {An}n distributes

in the sense of the singular values as the null function over the domain G. For more detail
about the distribution, see chapter 4.

3.2.2 When some of the entries of g vanish

The content of this subsection reduces to the following remark: the case of a nonnegative g
can be reduced to the case of a positive vector so that we are motivated to treat in detail
the latter in section 3.3. Let g be a d-dimensional vector of nonnegative integers and let
N ⊂ {1, ..., d} be the set of indices such that j ∈ N if and only if gj = 0. Assume that N is
nonempty, let t ≥ 1 be its cardinality and d+ = d− t. Then a simple calculation shows that
the singular values of the corresponding g-circulant matrix An = [a(r−g◦s)modn]

n−e
r,s=0 are zero

except for few of them given by
√
n̂[0]σ where

n̂[0] =
∏
j∈N

nj, n̂[0] = (nj1 , nj2 , ..., njt), N = {j1, ..., jt},

and σ is any singular value of the matrix

(3.7)

n̂[0]−e∑
j=0

C⋆
jCj

1/2

.

Also, the eigenvalues are equal to zero except few of them that are the eigenvalues of the
matrix

n̂[0]−e∑
j=0

Cj.

Here Cj is a d+-level g+-circulant matrix with g+ = (gk1 , gk2 , ..., gkd+ ) and of partial sizes

n[> 0] = (nk1 , nk2 , ..., nkd+
), NC = {k1, k2, ..., kd+}, and whose expression is

Cj = [a(r−g◦s)mod ]
n[>0]−e

r′ ,s′=0
,

where (r− g ◦ s)k = jk for gk = 0 and r
′
i = rki , s

′
i = ski , i = 1, ..., d+. Also in this case, since

most of the singular values are identically zero, we infer that

{An} ∼σ (0, G).

3.3 Singular values of g-circulant matrices

Of course the aim of this chapter is to give the general picture for any nonnegative vector
g. Since the notations can become quite heavy, for the sake of simplicity, we start with the
case d = p = q = 1. Several generalizations, including also the degenerate case in which g
has some zero entries is treated in section 3.5 via the observations in subsection 3.2.2, which
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imply that the general analysis can be reduced to the case where all the entries of g are
positive, that is gj > 0, j = 1, 2, ..., d.

In the following, we denote by (n, g) the greatest common divisor of n and g, i.e.,
(n, g)=gcd(n, g), by ng =

n
(n,g)

, by ǧ = g
(n,g)

, and by It the identity matrix of order t.

If we denote by Cn the classical circulant matrix (i.e. with g = 1) and by Cn,g the g-
circulant matrix generated by its elements, for generic n and g one immediately veri�es
that

Cn,g = CnZn,g,(3.8)

where

(3.9) Zn,g = [δr−gs]
n−1
r,s=0; δk =

{
1 if k ≡ 0(modn);
0 otherwise.

Lemma 3.3.1. Let n be an integer greater than 2 such that

Zn,g = [Z̃n,g|Z̃n,g|...|Z̃n,g︸ ︷︷ ︸
(n,g) times

](3.10)

where Zn,g is the matrix de�ned in (3.9) and Z̃n,g ∈ Cn×ng is the submatrix of Zn,g obtained
by considering only its �rst ng columns, that is

(3.11) Z̃n,g = Zn,g

[
Ing

0

]
.

Proof. Setting Z̃
(0)
n,g = Z̃n,g and denoting by Z̃

(j)
n,g ∈ Cn×ng the (j + 1)-th block-column of the

matrix Zn,g; for j = 1, ..., (n, g)− 1, we �nd

Zn,g =

Z̃(0)
n,g︸︷︷︸

n×ng

|Z̃(1)
n,g︸︷︷︸

n×ng

|...|Z̃((n,g)−1)
n,g︸ ︷︷ ︸
n×ng

 .
For r = 0, 1, ..., n− 1 and s = 0, 1, ..., ng − 1, we observe that

(Z̃(j)
n,g)r,s = (Zn,g)r,jng+s,

and

(Z̃(j)
n,g)r,jng+s = δr−g(jng+s)

= δr−j(n,g).n−gs

=
(a)

δr−gs

= (Z̃(0)
n,g)r,s = (Z̃n,g)r,s,

where (a) is a consequence of the fact that g
(n,g)

is an integer greater than zero and so jgng =

j g
(n,g)

n ≡ 0(modn). Thus we conclude that Z̃
(j)
n,g = Z̃

(0)
n,g = Z̃n,g for j = 0, 1, ..., (n, g)− 1.

Another useful fact is represented by the following equation

(3.12) Z̃n,g = Z̃n,(n,g)Zng ,ǧ,

where Zng ,ǧ is the matrix de�ned in (3.9) of dimension ng × ng. Therefore

(3.13) Zng ,ǧ =
[
δ̂r−ǧs

]ng−1

r,s=0
, δ̂k =

{
1 if k ≡ 0(modng),
0 otherwise.

Relation (3.12) will be used later.

50



Proof. (of relation (3.12)). For r = 0, 1, ..., n− 1 and s = 0, 1, ..., ng − 1, we �nd

(Z̃n,g)r,s = δr−gs

= δ(r−gs)modn,

and

(Z̃n,(n,g)Zng ,ǧ)r,s =

ng−1∑
l=0

(Z̃n,(n,g))r,l(Zng ,ǧ)l,s

=

ng−1∑
l=0

δr−(n,g)lδ̂l−ǧs

=
(a)

δr−(n,g)(ǧs)modng

= δr−(n,g)( g
(n,g)

s)modng

=
(b)

δr−(gs)modn

= δ(r−(gs)modn)modn

= δ(r−gs)modn,

where

(a) holds true since there exists a unique l ∈ {0, 1, ..., ng − 1} such that l− ǧs ≡ 0(modng),
that is, l ≡ ǧs(modng) and hence δr−(n,g)l = δr−(n,g)·(ǧs)modng ,

(b) is due to the following property: if we have three integer numbers ρ, θ and γ, then

ρ(θmod γ) = (ρθ)modργ.

Lemma 3.3.2. If g ≥ n then Zn,g = Zn,go where go is the unique integer which satis�es
g = tn+ go where 0 ≤ go < n and t ∈ N; Zn,g is de�ned in (3.9).

Remark 3.3.1. One can de�ne go as go := g modn.

Proof. From (3.9) we know that

Zn,g = [δr−gs]
n−1
r,s=0; δk =

{
1 if k ≡ 0(modn);
0 otherwise.

For r, s = 0, 1, ..., n− 1, one has

(Zn,g)r,s = δr−gs = δr−(tn+go)s = δr−gos = (Zn,go)r,s,

since tns ≡ 0(modn). Whence Zn,g = Zn,go .

The previous lemma tells us that, for g-circulant matrices, we can consider only the case
where 0 ≤ g < n. In fact, if g ≥ n, from (3.8) we infer that

Cn,g = CnZn,g = CnZn,go = Cn,go .

Finally, it is worth noticing that the use of (3.3) and (3.8) implies that

(3.14) Cn,g = FnDnF
⋆
nZn,g.

Formula (3.14) plays an important role for studying the singular values and the eigenvalues
of the g-circulant matrices.
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3.3.1 A characterization of Zn,g in terms of Fourier matrices

Lemma 3.3.3. Let Fn be the Fourier matrix of order n de�ned in (3.5) and Z̃n,g ∈ Cn×ng

be the matrix represented in (3.11). Then

FnZ̃n,g =
1√
(n, g)

In,gFngZng ,ǧ,(3.15)

where In,g ∈ Cn×ng and

In,g =


Ing

Ing

...
Ing


 (n, g) times

with Ing being the identity matrix of size ng and Zng ,ǧ as in (3.13).

Remark 3.3.2. n = ng × (n, g).

Proof. (of Lemma 3.3.3). Rewrite the Fourier matrix as

Fn =
1√
n
[f0|f1|f2|...|fn−1],

where fk, k = 0, 1, 2, ..., n− 1, is the k-th column of the Fourier matrix of order n:

(3.16) fk = [e−
2πîjk

n ]n−1
j=0 =


e−

2πîk.0
n

e−
2πîk.1

n

...

e−
2πîk(n−1)

n


From (3.12)

(3.17) FnZ̃n,g = FnZ̃n,(n,g)Zng ,ǧ =
1√
n
[f0|f1.(n,g)|f2.(n,g)|...|f(ng−1).(n,g)]Zng ,ǧ ∈ Cn×ng .

Indeed, For k = 0, 1, ..., ng − 1 and j = 0, 1, ..., n− 1, one has

(3.18) (FnZ̃n,(n,g))jk =
n−1∑
l=0

(Fn)jl(Z̃n,(n,g))lk =
n−1∑
l=0

δl−(n,g)ke
− 2πîkl

n ,

and since 0 ≤ (n, g)k ≤ n − (n, g), there exists a unique lk ∈ {0, 1, ..., n − 1} such that
lk − (n, g)k ≡ 0(modn), so lk = (n, g)k. Consequently relation (3.18) implies

(FnZ̃n,(n,g))jk = δlk−(n,g)ke
− 2πîjlk

n = e−
2πîj(n,g)k

n = (f(n,g)k)j,

for all 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ ng − 1, and hence

FnZ̃n,(n,g) =
1√
n
[f0|f1.(n,g)|f2.(n,g)|...|f(ng−1)·(n,g)].

For k = 0, 1, 2, ..., ng − 1, one has

f(n,g)k = [e−
2πîj(n,g)k

n ]n−1
j=0 = [e

− 2πîjk
ng ]n−1

j=0 ,

52



and then, taking into account the equalities n = (n, g) n
(n,g)

= (n, g)ng, we can write

(3.19) f(n,g)k =



[
e
− 2πîjk

ng

]ng−1

j=0[
e
− 2πîjk

ng

]2ng−1

j=ng

...[
e
− 2πîjk

ng

](n,g)ng−1

j=((n,g)−1)ng


,

where

(3.20)

[
e
− 2πîjk

ng

]ng−1

j=0

=


e
− 2πîk.0

ng

e
− 2πîk.1

ng

...

e
− 2πîk.(ng−1)

ng

 ,
According to formula (3.16), one observes that the vector in (3.20) is the k-th column of

the Fourier matrix Fng . Furthermore, for l = 0, 1, ..., (n, g)− 1, we �nd

(3.21)

[
e
− 2πîjk

ng

](l+1)ng−1

j=lng

=


e
− 2πîklng

ng

e
− 2πîk(lng+1)

ng

...

e
− 2πîk.((l+1)ng−1)

ng

 = e−2πîkl


e
− 2πîk.0

ng

e
− 2πîk.1

ng

...

e
− 2πîk.(ng−1)

ng

 =

[
e
− 2πîjk

ng

]ng−1

j=0

.

using (3.21), the expression of the vector in (3.20) becomes

(3.22) f(n,g)k =



[
e
− 2πîjk

ng

]ng−1

j=0[
e
− 2πîjk

ng

]ng−1

j=0
...[

e
− 2πîjk

ng

]ng−1

j=0




(n, g) times.

Setting f̃r =

[
e
− 2πîjr

ng

]ng−1

j=0

, for 0 ≤ r ≤ ng − 1, the Fourier matrix Fng of size ng takes the

form

(3.23) Fng =
1
√
ng

[f̃0|f̃1|f̃2|...|f̃ng−1]

From formula (3.20), the relation (3.22) can be expressed as

f(n,g)k =


f̃k
f̃k
...
f̃k


 (n, g) times.
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and, as a consequence, formula (3.17) can be rewritten as

FnZ̃n,g = FnZ̃n,(n,g)Zng ,ǧ =
1√
n


f̃0 f̃1 f̃2 . . . f̃ng−1

f̃0 f̃1 f̃2 . . . f̃ng−1
...

...
...

...
...

f̃0 f̃1 f̃2 . . . f̃ng−1

Zng ,ǧ

=
1√

(n, g)ng


√
ngFng√
ngFng

...√
ngFng

Zng ,ǧ

=
1√
(n, g)


Fng

Fng

...
Fng

Zng ,ǧ

=
1√
(n, g)


Ing

Ing

...
Ing

FngZng ,ǧ

=
1√
(n, g)

In,gFngZng ,ǧ.

In the subsequent subsection, we will exploit Lemma 3.3.3 in order to characterize the sin-
gular values of g-circulant matrices Cn,g. Here we conclude the subsection with the following
simple observations.

Remark 3.3.3. In Lemma 3.3.3, if (n, g) = g, we have ng = n
(n,g)

= n
g
and ǧ = g

(n,g)
= 1;

so the matrix Zng ,ǧ = Zng ,1, appearing in (3.15), is the identity matrix of dimension ng ×ng.
The relation (3.15) becomes

FnZ̃n,g = FnZ̃n,(n,g)Zng ,ǧ =
1
√
g
In,gFng .

The latter equation with g = 2 and even n appear (and is crucial) in the multigrid
literature; see [141], equation (3.2), page 59 and, in slightly di�erent form for the sine algebra
of type I, see [60], section 2.1.

Remark 3.3.4. If (n, g) = 1, Lemma 3.3.3 is trivial, because ng =
n

(n,g)
= n, ǧ = g

(n,g)
= g,

and so Z̃n,g = Zn,g. The relation (3.15) becomes

FnZ̃n,g = In,gFngZng ,ǧ

= FnZn,g,

since the matrix In,g reduces by its de�nition to the identity matrix of order n.

Remark 3.3.5. Lemma 3.3.3 is true also if, instead of Fn and Fng , we put F ⋆
n and F ⋆

ng
,

respectively, because F ⋆
n = F n. In fact there is no transposition, but only conjugation.
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3.3.2 Characterization of the singular values of the g-circulant ma-
trices

Now we link the singular values of g-circulant matrices with the eigenvalues of its circulant
counterpart Cn. This is nontrivial given the multiplicative relation Cn,g = CnZn,g.

Having in mind the de�nition of the diagonal matrix Dn given in (3.4), we start by setting

D⋆
nDn = diag(|Dn|2s,s; s=0,1,...,n-1) = diag(ds; s = 0, 1, ..., n− 1) =

(n,g)

⊕
l=1

∆l,

(3.24) J(n,g) ⊗ Ing = [In,g|In,g|...|In,g]︸ ︷︷ ︸
(n,g) times

=


Ing Ing . . . Ing

Ing Ing . . . Ing

...
...

...
...

Ing Ing . . . Ing


 (n, g) times,

where

(3.25) ds = |Dn|2s,s = (Dn)s,s(Dn)s,s, s = 0, 1, ..., n− 1,

∆l =


d(l−1)ng

d(l−1)ng+1

. . .
d(l−1)ng+ng−1

 ∈ Cng×ng ; l = 1, 2, ..., (n, g),

(3.26) J(n,g) =

1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1

  (n, g) times.

We now exploit relation (3.10) and Lemma 3.3.3, and we obtain that

FnZn,g = Fn

[
Z̃n,g|Z̃n,g|...|Z̃n,g

]
=

[
FnZ̃n,g|FnZ̃n,g|...|FnZ̃n,g

]
=

1√
(n, g)

[
In,gFngZng ,ǧ|In,gFngZng ,ǧ|...|In,gFngZng ,ǧ

]

=
1√
(n, g)

[In,g|In,g|...|In,g]

FngZng ,ǧ

FngZng ,ǧ

. . .
FngZng ,ǧ


 (n, g) times

=
1√
(n, g)

[In,g|In,g|...|In,g] (I(n,g) ⊗ FngZng ,ǧ),

so

(3.27) FnZn,g =
1√
(n, g)

[In,g|In,g|...|In,g] (I(n,g) ⊗ FngZng ,ǧ),

where I(n,g) is the identity matrix of order (n, g). Furthermore,

C⋆
n,gCn,g = (FnDnF

⋆
nZn,g)

⋆(FnDnF
⋆
nZn,g)

= Z⋆
n,gFnD

⋆
nF

⋆
nFnDnF

⋆
nZn,g

= Z⋆
n,gFnD

⋆
nDnF

⋆
nZn,g

= (F ⋆
nZn,g)

⋆D⋆
nDnF

⋆
nZn,g,
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so

(3.28) C⋆
n,gCn,g = (F ⋆

nZn,g)
⋆D⋆

nDnF
⋆
nZn,g.

From (3.27) and (3.24), we plainly infer the following relations

(F ⋆
nZn,g)

⋆ =

(
1√
(n, g)

[In,g|In,g|...|In,g] (I(n,g) ⊗ F ⋆
ng
Zng ,ǧ)

)⋆

=
1√
(n, g)

(
I(n,g) ⊗ F ⋆

ng
Zng ,ǧ

)⋆ (
J(n,g) ⊗ Ing

)
=

1√
(n, g)

(
I(n,g) ⊗ Z⋆

ng ,ǧFng

) (
J(n,g) ⊗ Ing

)

F ⋆
nZn,g =

1√
(n, g)

[In,g|In,g|...|In,g]
(
I(n,g) ⊗ F ⋆

ng
Zng ,ǧ

)
=

1√
(n, g)

(
J(n,g) ⊗ Ing

) (
I(n,g) ⊗ F ⋆

ng
Zng ,ǧ

)
.

Hence

C⋆
n,gCn,g =

(
I(n,g) ⊗ Z⋆

ng ,ǧFng

) (
J(n,g) ⊗ Ing

) 1

(n, g)
D⋆

nDn

(
J(n,g) ⊗ Ing

) (
I(n,g) ⊗ F ⋆

ng
Zng ,ǧ

)
.

Now using the properties of the tensorial product(
I(n,g) ⊗ Z⋆

ng ,ǧFng

)(
I(n,g) ⊗ F ⋆

ng
Zng ,ǧ

)
= I(n,g)I(n,g) ⊗ Z⋆

ng ,ǧFngF
⋆
ng
Zng ,ǧ

= I(n,g) ⊗ Z⋆
ng ,ǧZng ,ǧ

= I(n,g) ⊗ Ing = In,

and from a similarity argument, one deduces that the eigenvalues of C⋆
n,gCn,g are the eigen-

values of the matrix
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(
J(n,g) ⊗ Ing

)
1

(n,g)
D⋆

nDn

(
J(n,g) ⊗ Ing

)
=

1

(n, g)


Ing Ing . . . Ing

Ing Ing . . . Ing

...
...

...
...

Ing Ing . . . Ing


∆1

∆2
. . .

∆(n,g)



Ing Ing . . . Ing

Ing Ing . . . Ing

...
...

...
...

Ing Ing . . . Ing



=
1

(n, g)


Ing Ing . . . Ing

Ing Ing . . . Ing

...
...

...
...

Ing Ing . . . Ing


 ∆1 ∆1 . . . ∆1

∆2 ∆2 . . . ∆2
...

...
...

...
∆(n,g) ∆(n,g) . . . ∆(n,g)



=
1

(n, g)



(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l . . .
(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l . . .
(n,g)∑
l=1

∆l

...
...

...
...

(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l . . .
(n,g)∑
l=1

∆l


=

1

(n, g)

1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1


︸ ︷︷ ︸

(n,g) times

⊗

(n,g)∑
l=1

∆l

 .

Therefore, from (3.26), we infer that

(3.29) Eig(C⋆
n,gCn,g) =

1

(n, g)
Eig

J(n,g) ⊗ (n,g)∑
l=1

∆l

 ,

where

(3.30)
1

(n, g)
Eig

(
J(n,g)

)
= {0; 1}.

Here we must observe that 1
(n,g)

J(n,g) is a matrix of rank 1, so it has all eigenvalues equal to

zero except one eigenvalue equal to 1. In fact note that the trace of a matrix is, by de�nition,
the sum of its eigenvalues: in our case the trace is (n, g) · 1

(n,g)
= 1 and hence the only nonzero

eigenvalue is necessarily equal to 1. Moreover

(n,g)∑
l=1

∆l =

(n,g)∑
l=1

diag(d(l−1)ng+j : 0 ≤ j ≤ ng − 1)

= diag

(n,g)∑
l=1

d(l−1)ng+j : 0 ≤ j ≤ ng − 1

 .

Consequently, since
(n,g)∑
l=1

∆l is a diagonal matrix, we have

(3.31) Eig

(n,g)∑
l=1

∆l

 =


(n,g)∑
l=1

d(l−1)ng+j : 0 ≤ j ≤ ng − 1

 ,
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where dk are de�ned in (3.25).
Finally, by exploiting basic properties of the tensor product, we know that the eigenvalues

of a tensor product of two square matrices A ⊗ B are given by all possible products of
eigenvalues of A of order p and of eigenvalues of B of order q, that is λ(A⊗B) = λj(A)λk(B)
for j = 1, 2, ..., p and k = 1, 2, ..., q. Therefore, by taking into consideration (3.29), (3.30)
and (3.31) we �nd

λj(C
⋆
n,gCn,g) =

(n,g)∑
l=1

d(l−1)ng+j, 0 ≤ j ≤ ng − 1,(3.32)

λj(C
⋆
n,gCn,g) = 0, j = ng, ..., n− 1.(3.33)

From (3.32), (2.33) and (3.1), one obtains that the singular values of an g-circulant matrix
Cn,g are given by

σj(Cn,g) =

√√√√(n,g)∑
l=1

d(l−1)ng+j, 0 ≤ j ≤ ng − 1,(3.34)

σj(Cn,g) = 0, j = ng, ..., n− 1.(3.35)

where the values dk, k = 0, 1, ..., n− 1 are de�ned in (3.25).

3.3.3 Special cases and observations

In this subsection we consider some special cases and we furnish a further link between the
eigenvalues of circulant matrices and the singular values of g-circulants. In the case where
(n, g) = 1, we have ng =

n
(n,g)

= n. Hence the formula (3.34) becomes

σj(Cn,g) =
√
dj, 0 ≤ j ≤ n− 1.

In order words, the singular values of Cn,g coincide with those of Cn (this is excepted
since Zn,g is a permutation matrix) and in particular with the modulus of the eigenvalues of
Cn.

Concerning the eigenvalues of the circulant matrices it should be observed that formula
(3.4) can be interpreted in function terms as the evaluation of a polynomial at the grid points
given by the n-th roots of the unity. This is a standard observation because the Fourier ma-
trix is a special instance of the classical Vandermonde matrices when the knots are exactly
all the n-th roots of the unity.

Therefore, de�ning the polynomial p(t) =
n−1∑
k=1

ake
îkt, it is trivial to observe that the

eigenvalues of Cn = FnDnFn⋆ are given by

λj(Cn) = p

(
2πj

n

)
, 0 ≤ j ≤ n− 1.

The question that naturally arises is how to connect the expression in (3.34) of the
nontrivial singular values of Cn,g with the polynomial p. The answer is somehow intriguing
and can be resumed in the following formula which could be of interest in the multigrid
community (see section 4.4 in chapter 4)

(3.36) σj(Cn,g) =

√√√√(n,g)−1∑
l=0

|p|2
(
xj + 2πl

(n, g)

)
, xj =

2πj

ng

, j = 0, 1, ..., ng − 1.
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In addition if g is �xed and a sequence of integers n is chosen so that (n, g) > 1 for n
large enough, then {Cn,g}n ∼σ (0, G) for a proper set G. If the sequence of n is chosen so
that n and g are coprime for all n large enough, then the existence of the distribution is
related to the smoothness properties of a function f such that {ak}k can be interpreted as
the sequence of its Fourier coe�cients (see e.g. [131]). From the above reasoning it is clear
that, if n is allowed to be vary among all the positive integer numbers, then the sequence
{Cn,g}n does not possess a joint singular value distribution.

3.4 Eigenvalues of the g-circulant matrices

In perfect analogy with the singular values of the g-circulant matrix, we observe that Cn,g

can be written in the form: Cn,g = FnDnMn,gF
⋆
n , where Dn is the matrix de�ned in (3.4) and

Mn,g is a product of three matrices Fn, Zn,g, and F
⋆
n . Here Zn,g is the matrix de�ned in (3.9)

and Fn is the Fourier matrix. However, the study of the eigenvalues of the matrix Cn,g asks
additional di�culties with respect to those of singular values, because it is not possible to
�nd a direct method of determination of these eigenvalues. Despite all these di�culties, and
since Dn is a diagonal matrix andMn,g is a sparse matrix whose entries are 0 and 1, one of the

best techniques consists to construct a �nite sequence of matrices
{
M

(k−1)
ng(k−1)

,gk ·∆
(k−1)
ng(k−1)

}s

k=0

of decreasing size satisfying M
(−1)
ng(−1)

,g0 · ∆
(−1)
ng(−1)

= Mn,gDn. Find the eigenvalues of DnMn,g,

and because the matrices Cn,g and DnMn,g are similar, deduce those of Cn,g.

3.4.1 Some preliminary results

In the following we denote by Eig(A) the spectrum of a matrix A.

Lemma 3.4.1. Let a, b, k be three positive integers, then

(a mod k)(b mod k)mod k = ab mod k(3.37)

(3.38) (a mod k ± b mod k)mod k = (a± b)mod k

(3.39) amod k + b < k ⇔ amod k + b = (a+ b)mod k

Proof. Setting a = a0 + r1k, b = b0 + r2k with 0 ≤ a0, b0 < k. one has

(a mod k)(b mod k)modk = a0b0 modk and

ab mod k = a0b0 modk,

furthermore

(a mod k ± b mod k)modk = (a0 ± b0) modk and

(a± b) modk = (a0 ± b0) modk

�nally

a mod k + b = a0 + b and (a+ b) modk = (a0 + b) modk, hence

amod k + b < k ⇔ amod k + b = (a+ b)modk
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Proposition 3.4.1. (Euler-Fermat Theorem). Let a, b ∈ N⋆ (with a < b): If (a, b) = 1 then

aφ(b) ≡ 1 (mod b)

and

1. φ(b) = b− 1 if b is coprime,

2. φ(b)|b otherwise.

Lemma 3.4.2. If (n, g) = 1, then the map

l : {0, 1, ..., n− 1} → {0, 1, ..., n− 1}
k 7→ l(k) = lk = gkmodn

is a bijection and there exists φ(n) ∈ N∗ such that for j ∈ {0, 1, ..., n−1} �xed, and for every
q ∈ {0, 1, ..., φ(n)− 1} one has

lq(j) = jgqmodn(3.40)

where lq = l ◦ l ◦ ... ◦ l︸ ︷︷ ︸
q times

.

Proof. Hypothesis: (n, g) = 1
Injection. Let k1, k2 ∈ {0, 1, ..., n− 1} such that lk1 = lk2 then

gk1 − lk1 ≡ 0(modn) and gk2 − lk1 ≡ 0(modn)

then
g(k1 − k2) ≡ 0(modn)

then
k1 − k2 ≡ 0(modn) because (n, g) = 1

then
k1 = k2.

So, the map l is an injection. Since the number of elements of the set {0, 1, ..., n− 1} is
�nite one deduces that the map l is a bijection.
Furthermore, since (n, g) = 1 then for j ∈ {0, 1, ..., n−1} �xed, and for every q ∈ {0, 1, ..., φ(n)−
1} one has

lq(j) = jgqmodn and lφ(n)(j) = j modn(3.41)

Lemma 3.4.3. There exists an g-matrix Mn,g such that

Zn,g = FnMn,gF
⋆
n(3.42)

with
Mn,g = [δ

(0)
gi−j]

n−1
i,j=0 with δ

(0)
k =

{
1 if k ≡ 0(modn);
0 otherwise.
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Proof. For j, k = 0, 1, ..., n− 1; one has

(3.43) (F ⋆
nZn,g)jk =

n−1∑
l=0

(F ⋆
n)jl(Zn,g)lk =

n−1∑
l=0

δl−gk(F
⋆
n)jl = (F ⋆

n)jlk

because there exists a unique (qk, lk) ∈ Z2 with 0 ≤ lk < n such that lk−gk = qkn. According
to (3.43), it follows that

(Mn,g)ij = (F ⋆
nZn,gFn)ij =

n−1∑
k=0

(F ⋆
nZn,g)ik(Fn)kj =

n−1∑
k=0

(F ⋆
n)ilk(Fn)kj =

1

n

n−1∑
k=0

e
î2πi.lk

n e
−î2πk.j

n =

1

n

n−1∑
k=0

e
î2π(i.lk−k.j)

n =
1

n

n−1∑
k=0

e
î2π[i(g.k+nqk)−k.j]

n =
1

n

n−1∑
k=0

eî2πiqke
î2πk(gi−j)

n =

1

n

n−1∑
k=0

e
î2πk(gi−j)

n =
{

1 if gi− j ≡ 0(modn);
0 otherwise.

according to Lemma 3.4.2. So,

Mn,g = [δ
(0)
gi−j]

n−1
i,j=0

Remark 3.4.1. One deduces from (3.8), (3.3) and (3.42) that

Cn,g = FnDnF
⋆
nFnMn,gF

⋆
n

= FnDnMn,gF
⋆
n .

Therefore

Eig(Cn,g) = Eig(DnMn,g)(3.44)

3.4.2 Some preparatory tools

In the following we denote by δ0 = (n, g) the greater common divisor of n and g and by

Z̃n,g ∈ Cn×ng the matrix Zn,g de�ned in (3.9) by considering only the ng =
n
δ0

�rst columns.

Lemma 3.4.4. Let n and g be two integers such that 1 < g < n and Mn,g be the g-matrix
de�ned by

(3.45) Mn,g = [δ
(0)
gi−j]

n−1
i,j=0 with δ

(0)
k =

{
1 if k ≡ 0(modn);
0 otherwise.

Then

Mn,g =


M0 M1 ... Mδ0−1
M0 M1 ... Mδ0−1

...
...

...
...

M0 M1 ... Mδ0−1


 δ0 times

with for j = 0, 1, ..., δ0 − 1, Mj ∈Mng(C).
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Proof. According to (3.9) and (3.45), one has Mn,g = ZT
n,g. Or

ZT
n,g =


Z̃T

n,g

Z̃T
n,g
...
...

Z̃T
n,g

 and Z̃T
n,g = [M0|M1|...|Mδ0−1],

because Z̃T
n,g ∈Mng×n(C) and n = ng.δ

0, hence

Mn,g =


M0 M1 ... Mδ0−1
M0 M1 ... Mδ0−1

...
...

...
...

M0 M1 ... Mδ0−1


 δ0 times

with for j = 0, 1, ..., δ0 − 1, Mj ∈Mng(C).

Lemma 3.4.5.

Eig(Cn,g) = Eig

(
δ0−1∑
j=0

Mj∆j

)
∪ {0 : mult. = n− ng},

where Mj is a matrix of order ng and ∆j a diagonal matrix also of order ng.

Proof. According to Lemma 3.4.4, one has

Mn,gDn =


M0 M1 ... Mδ0−1
M0 M1 ... Mδ0−1
...

...
...

...
M0 M1 ... Mδ0−1



∆0

∆1
. . .

. . .
∆δ0−1


=


M0∆0 M1∆1 ... Mδ0−1∆δ0−1
M0∆0 M1∆1 ... Mδ0−1∆δ0−1

...
...

...
...

M0∆0 M1∆1 ... Mδ0−1∆δ0−1
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then

det(Mn,gDn − λIn) =

∣∣∣∣∣∣∣∣
M0∆0 − λIng M1∆1 ... Mδ0−1∆δ0−1

M0∆0 M1∆1 − λIng M2∆2 ... Mδ0−1∆δ0−1
...

...
...

...
M0∆0 M1∆1 ... Mδ0−1∆δ0−1 − λIng

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λIng +
δ0−1∑
j=0

Mj∆j M1∆1 ... Mδ0−1∆δ0−1

−λIng +
δ0−1∑
j=0

Mj∆j −λI +M1∆1 M2∆2 ... Mδ0−1∆δ0−1

...
...

...
...

−λIng +
δ0−1∑
j=0

Mj∆j M1∆1 ... −λI +Mδ0−1∆δ0−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

−λIng +
δ0−1∑
j=0

Mj∆j M1∆1 ... Mδ0−1∆δ0−1

0 −λIng 0 ... 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 . . . . . . 0 −λIng

∣∣∣∣∣∣∣∣∣∣∣∣
= (−λ)n−ng

∣∣∣∣∣−λIng +
δ0−1∑
j=0

Mj∆j

∣∣∣∣∣
where Ing is the identity matrix of dimension ng × ng, then

(3.46) Eig(Mn,gDn) = Eig

(
δ0−1∑
j=0

Mj∆j

)
∪ {0 : mult. = n− ng}

From (3.44) it follows that

Eig(Cn,g) = Eig(DnMn,g)

= Eig(Mn,gDn,g)

= Eig

(
δ0−1∑
j=0

Mj∆j

)
∪ {0 : mult. = n− ng}.

Lemma 3.4.6. Setting g1 = g (modng) and de�ning δ
(ng)
k =

{
1 if k ≡ 0 (modng),
0 otherwise.

then

the equality (3.47) holds true:

(3.47)
δ0−1∑
k=0

Mk∆k = ∆(0)
ng
M (0)

ng ,g1

where ∆
(0)
ng is a diagonal matrix of order ng, M

(0)
ng ,g1 is a matrix of order ng, and such that

for i, j = 0, 1, ..., ng − 1,

63



(3.48)
(
∆(0)

ng

)
jj
= dgj (modn) and

(
M (0)

ng ,g1

)
ij
= δ

(ng)
g1i−j

with dk := dkk = (Dn)k,k, Dn is the diagonal matrix de�ned in (3.4).

Proof. For k = 0, 1, ..., δ0 − 1; one has

Mk =
[
(Mn,g)kng+i,kng+j

]ng−1

i,j=0
and ∆k =

[
(Dn)kng+i,kng+j

]ng−1

i,j=0
,

for i, j = 0, 1, ..., ng − 1

(Mk∆k)i,j =

ng−1∑
p=0

(Mk)ip(∆k)pj

= (Mk)ij(∆k)jj

= δ
(n)
g(kng+i)−kng−jdkng+j,kng+j

= δ
(n)
gi−(kng+j)dkng+j

Since g = g̃ng + g1 then

gi = ngg̃i+ g1i = ng(qiδ
0 + ri) + g1i = qin+ ring + g1i, 0 ≤ ri < δ0.

Hence, ring = (g − g1)i modn and(
δ0−1∑
k=0

Mk∆k

)
i,j

=
δ0−1∑
k=0

δ
(n)
gi−kng−jdkng+j

=
δ0−1∑
k=0

δ
(n)
(ri−k)ng+g1i−jdkng+j

(a)
= δ

(n)
g1i−jdring+j

= δ
(n)
g1i−jd(g−g1)imodn+j

(b)
=

{
dgi modn if j = g1i modn
0 otherwise

(c)
=

{
dgi modn if j = g1i modng
0 otherwise

= δ
(ng)
g1i−jdgimodn

(d)
=

(
∆(0)

ng
M (0)

ng ,g1

)
ij

• (a) is due to the fact that there exists a unique ki ∈ {0, 1, ..., δ0 − 1} such that ki = ri
• (b) follows from Lemma 3.4.1
• (c) is due to the fact that j < ng

• (d) is a straightforward calculation of the entries of ∆
(0)
ngM

(0)
ng ,g1

Remark 3.4.2. If g1 ̸= 0 then (ng, g) = (ng, g1).

Armed with the above tools we can start the study of the eigenvalues of the g-circulant
matrices Cn,g.
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3.4.3 Characterization of eigenvalues

In this subsection, we start our study in the case where the positive integers n and g are
coprime. Furthermore, we reduce every time the size n of the matrix Cn,g and the parameter g
by discussing following the greater common divisor of the reduced quantities and we provide
an algorithm that computes of recursive way the eigenvalues of Cn,g. Finally, we use the
notation ds := dss = (Dn)s,s where Dn is the diagonal matrix de�ned in (3.4).

Lemma 3.4.7. If (n, g) = 1, then

(Mn,gDn)
φ(n) =


d0dl0 ...dlφ(n)−1

0

d1dl1 ...dlφ(n)−1
1

. . .
. . .

dn−1dln−1 ...dlφ(n)−1
n−1


where l : {0, 1, ..., n− 1} → {0, 1, ..., n− 1} is the bijection de�ned in Lemma 3.4.2 satisfying
lqj = lq(j), for 1 ≤ q ≤ φ(n)−1 and 0 ≤ j ≤ n−1 (φ(n) is the Euler indicator). Furthermore
l0 = lφ(n) = id.

Proof. First of all, gφ(n) ≡ 1modn. For i, k = 0, 1, ..., n− 1, one has

(3.49) (Mn,gDn)ik =
n−1∑
l=0

(Mn,g)il(Dn)lk =
n−1∑
l=0

dlkδ
(0)
gi−l = dlik

according to Lemma 3.4.2.
also

(Mn,gDnMn,gDn)ik =
n−1∑
p=0

(Mn,gDn)ip(Mn,gDn)pk

=
n−1∑
p=0

dlipdlpk

= dl2i kdlili

according to (3.49).
Let us suppose that for all q ∈ {2, 3, ..., φ(n)− 1},

(Mn,gDn)
q
ik = dlqi kdlili ...dlq−1

i lq−1
i

(3.50)

then

(Mn,gDn)
φ(n)
ik =

n−1∑
p=0

(Mn,gDn)
φ(n)−1
ip (Mn,gDn)pk

=
n−1∑
p=0

d
l
φ(n)−1
i p

dlili ...dlφ(n)−2
i l

φ(n)−2
i

dlpk

= d
l
φ(n)−1
i l

φ(n)−1
i

dlili ...dlφ(n)−2
i l

φ(n)−2
i

d
l
φ(n)
i k

= dikdlilidl2i l2i ...dlφ(n)−1
i l

φ(n)−1
i
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according to (3.50), (3.40) and Lemma 3.4.2.
Then

(Mn,gDn)
φ(n) = diag

φ(n)−1∏
p=0

dlpj l
p
j
: j = 0, 1, ..., n− 1

(3.51)

Lemma 3.4.8. If (n, g) = 1, then

Eig(Cn,g) = Eig(Mn,gDn) =

eî 2k(j)πφ(n)

φ(n)−1∏
m=0

flm
p(j)

; j = 0, 1, ..., n− 1


where

lmp(j) = gmp(j)modn and flm
p(j)

= L
1

φ(n)

lm
p(j)

eî
θlm
p(j)

φ(n)

with dk = (Dn)k,k = Lke
îθk , Dn is the diagonal matrix de�ned in (3.4).

Proof. Now, let us set Eig(Mn,gDn) = diag(β0, β1, ..., βn−1) then, there exists a unitary
matrix U such that

U⋆(Mn,gDn)U = R =


β0 ⋆ . . . ⋆

β1 ⋆ . . .
...

. . . ⋆
0 βn−1


then

(U⋆(Mn,gDn)U)
φ(n) = U⋆(Mn,gDn)

φ(n)U = Rφ(n) =


β
φ(n)
0 ⋆ . . . ⋆

β
φ(n)
1 ⋆ . . .

...
. . . ⋆

0 β
φ(n)
n−1

 .

So
Eig ((Mn,gDn)

φ(n)) = Eig(Rφ(n)),

so 
φ(n)−1∏
p=0

dlpj : j = 0, 1, ..., n− 1

 =
{
β
φ(n)
j : j = 0, 1, ..., n− 1

}
.

Then, for every j ∈ {0, 1, ...n− 1} there exists an element ij ∈ {0, 1, ..., n− 1} (ij = p(j)
where p is a map from {0, 1, ..., n− 1}) to {0, 1, ..., n− 1}) such that

β
φ(n)
j =

φ(n)−1∏
m=0

dlm
p(j)
.

Setting

βj = aje
îαj = [aj, αj], dt = Lte

îθt = [Lt, θt],
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one obtains

β
φ(n)
j =

φ(n)−1∏
m=0

dlm
p(j)

=

φ(n)−1∏
m=0

Llm
p(j)
e
îθlm

p(j)

then

[a
φ(n)
j , φ(n)αj] =

φ(n)−1∏
m=0

Llm
p(j)
,

φ(n)−1∑
m=0

θlm
p(j)


then

aj =

φ(n)−1∏
m=0

Llm
p(j)

 1
φ(n)

(3.52)

and

αj ∈

 1

φ(n)

2kπ +

φ(n)−1∑
m=0

θlm
p(j)

 : k = 0, 1, ..., φ(n)− 1

 .

Also, let us de�ne by kj = k(j) an element of the set {0, 1, ..., φ(n)−1} which corresponds
to index of αj, so

αj =
1

φ(n)

2k(j)π +

φ(n)−1∑
m=0

θlm
p(j)

(3.53)

It follows from (3.52) and (3.53) that

βj = eî
2k(j)π
φ(n)

φ(n)−1∏
m=0

L
1

φ(n)

lm
p(j)

eî
θlm
p(j)

φ(n) = eî
2k(j)π
φ(n)

φ(n)−1∏
m=0

flm
p(j)

(3.54)

where

lmp(j) = gmp(j)modn and flm
p(j)

= L
1

φ(n)

lm
p(j)

eî
θlm
p(j)

φ(n) .

Whence

Eig(Mn,gDn) =

eî 2k(j)πφ(n)

φ(n)−1∏
m=0

flm
p(j)

; j = 0, 1, ..., n− 1


Since

Eig(Mn,gDn) = Eig(DnMn,g)

it follows from (3.44) that

Eig(Cn,g) =

eî 2k(j)πφ(n)

φ(n)−1∏
m=0

flm
p(j)

; j = 0, 1, ..., n− 1

 .
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Lemma 3.4.9. If n = gp.n0 with p ≥ 1, n0 ≥ 1 and (n0, g) = 1. Then

Eig(Cn,g) =

eî 2k(j)πφ(n0)

φ(n0)−1∏
q=0

flp+q
v(j)

; j = 0, 1, ..., n0 − 1

 ∪ {0 : mult. = n− n0}

where l is the bijection de�ned in Lemma 3.4.2 and

lp+q
v(j) = gp+qv(j)modn , flp+q

v(j)
= L

1
φ(n0)

lp+q
v(j)

e
î

θ
l
p+q
v(j)

φ(n0)

with dj = Lje
îθj , v(j) belongs to the set {0, 1, ..., n0 − 1} and k(j) ∈ {0, 1, ..., φ(n0)− 1}.

Proof. Here δ0 = (n, g) = g. From (3.46)− (3.47) it follows that

Eig(Mn,gDn,g) = Eig

(
g−1∑
j=0

Mj∆j

)
∪ {0 : mult. = n− gp−1n0}.

= Eig
(
M

(0)

gp−1n0,g
∆

(0)

gp−1n0

)
∪ {0 : mult. = n− gp−1n0}

with

(∆
(0)

gp−1n0
)ii = dgimodn = dgi; (M

(0)

gp−1n0,g
)ij = δ

(gp−1n0)
gi−j ; i, j = 0, 1, ..., gp−1n0 − 1.

If p > 1, when working of similar way with the matrix M
(0)

gp−1n0,g
∆

(0)

gp−1n0
, one obtains

Eig(M
(0)

gp−1n0,g
∆

(0)

gp−1n0
) = Eig

(
g−1∑
j=0

Mj∆j

)
∪ {0 : mult. = gp−1n0 − gp−2n0}.

= Eig
(
M

(1)

gp−2n0,g
∆

(1)

gp−2n0

)
∪ {0 : mult. = gp−1n0 − gp−2n0}

where

(∆
(1)

gp−2n0
)ii = dg(gi)modn = dg2i; (M

(1)

gp−2n0,g
)ij = δ

(gp−2n0)
gi−j ; i, j = 0, 1, ..., gp−2n0 − 1.

So, one constructs by mathematical induction a �nite matrix sequence{
M

(k)

gp−k−1n0,g
∆

(k)

gp−k−1n0

}p−1

k=0
of decreasing order gp−k−1n0 such that for k = 1, 2, ..., p− 1

Eig
(
M

(k−1)

gp−kn0,g
∆

(k−1)

gp−kn0

)
= Eig

(
g−1∑
j=0

Mj∆j

)
∪ {0 : mult. = gp−kn0 − gp−k−1n0}.

= Eig
(
M

(k)

gp−k−1n0,g
∆

(k)

gp−k−1n0

)
∪ {0 : mult. = (gp−k − gp−k−1)n0}

then
(3.55)

Eig
(
M

(k−1)

gp−kn0,g
∆

(k−1)

gp−kn0

)
= Eig

(
M

(k)

gp−k−1n0,g
∆

(k)

gp−k−1n0

)
∪ {0 : mult. = (gp−k − gp−k−1)n0}

with

(∆
(k)

gp−k−1n0
)ii = dgk+1i; (M

(k)

gp−k−1n0,g
)ij = δ

(gp−k−1n0)
gi−j ; i, j = 0, 1, ..., gp−k−1n0 − 1.
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From (3.44) and (3.55) it follows that

Eig(Cn,g) = Eig(Mn,gDn)

= Eig
(
M

(0)

gp−1n0,g
∆

(0)

gp−1n0

)
∪ {0 : mult. = gpn0 − gp−1n0}

...
= Eig

(
M (p−1)

n0,g
∆(p−1)

n0

)
∪ {0 : mult. = gpn0 − n0}

= Eig
(
M (p−1)

n0,g1
∆(p−1)

n0

)
∪ {0 : mult. = gpn0 − n0}(3.56)

where g1 = g modn0. For i, j = 0, 1, ..., n0 − 1

(∆(p−1)
n0

)jj = dgpj modn = dgpj; (M (p−1)
n0,g1

)ij = δ
(n0)
g1i−j =

{
1 if j ≡ g1imodn0
0 otherwise.

• Determination of Eig
(
M

(p−1)
n0,g1 ∆

(p−1)
n0

)
Setting d̃j = dgpj, since (n0, g1) = 1 then g

φ(n0)
1 ≡ 1modn0. As in case (n, g) = 1, when

replacing in relation (3.51) n, g and φ(n) by n0, g1 and φ(n0), respectively, we obtain:

(
M (p−1)

n0,g1
∆(p−1)

n0

)φ(n0)
= diag


φ(n0)−1∏

q=0

d̃l̃qj
: j = 0, 1, ..., n0 − 1

(3.57)

where
l̃qj = gq1j modn0 = gqj modn0

and

l̃ : {0, 1, ..., n0 − 1} → {0, 1, ..., n0 − 1}
j 7→ l̃(j) = l̃j = g1j modn0

is a bijection (this is proved as in Lemma 3.4.2). Furthermore,

d̃l̃qj
= d̃gqj modn0

= d(gqj modn0)gp

= dgp+qj modn = dlq
gqj

= dlp+q
j

(3.58)

Always as in case (n, g) = 1 and according to (3.57) − (3.58), one deduces that the

eigenvalues βj of M
(p−1)
n0,g1 ∆

(p−1)
n0 are given by

βj = e
î
2k(j)π
φ(n0)

φ(n0)−1∏
m=0

L
1

φ(n0)

lp+m
v(j)

e
î

θ
l
p+m
v(j)

φ(n0) = e
î
2k(j)π
φ(n0)

φ(n0)−1∏
m=0

flp+m
v(j)

(3.59)

where

lp+m
v(j) = gp+mv(j)modn and flp+m

v(j)
= L

1
φ(n0)

lp+m
v(j)

e
î

θ
l
p+m
v(j)

φ(n0)

with dj = Lje
îθj , v(j) ∈ {0, 1, ..., n0 − 1} and k(j) ∈ {0, 1, ..., φ(n0)− 1}. So

Eig
(
M (p−1)

n0,g
∆(p−1)

n0

)
=

eî 2k(j)πφ(n0)

φ(n0)−1∏
m=0

flp+m
v(j)

: j = 0, 1, ..., n0 − 1
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from (3.56) we have that

Eig(Cn,g) =

eî 2k(j)πφ(n0)

φ(n0)−1∏
m=0

flp+m
v(j)

: j = 0, 1, ..., n0 − 1

 ∪ {0 : mult. = n− n0}

Lemma 3.4.10. If (ng, g1) = 1, then

Eig(Cn,g) =

eî 2k(j)πφ(ng)

φ(ng)∏
p=1

flp
v(j)

; j = 0, 1, ..., ng − 1

 ∪ {0 : mult. = n− ng}

where l is the bijection de�ned in Lemma 3.4.2 and

lpv(j) = gpv(j)modn and flp
v(j)

= L
1

φ(ng)

lp+m
v(j)

e
î

θ
l
p
v(j)

φ(ng)

with dj = (Dn)j,j = Lje
îθj , v(j) ∈ {0, 1, ..., ng − 1} and k(j) ∈ {0, 1, ..., φ(ng)− 1}.

Proof. According to Lemma 3.4.5 and relation (3.47),

Eig(Cn,g) = Eig(M (0)
ng ,g1

∆(0)
ng
) ∪ {0 : mult. = n− ng}

Since (ng, g1) = 1, there exists φ(ng) ∈ N∗ such that g
φ(ng)
1 ≡ 1modng.

Furthermore,

(M (0)
ng ,g1

∆(0)
ng
)2ij =

ng−1∑
l=0

(M (0)
ng ,g1

∆(0)
ng
)il(M

(0)
ng ,g1

∆(0)
ng
)lj

=

ng−1∑
l=0

δ
(ng)
g1i−ldgimodnδ

(ng)
g1l−jdglmodn

= dgimodnδ
(ng)

g(g1imodng)−jdg(g1imodng)modn

(γ)
= δ

(ng)

g(g1imodng)−jdgimodndg2imodn

(γ) follows from g(g1imodng)modn = (g2imod g̃n)modn = g2imodn, where g = g̃δ0.

Setting β(h)(j) = jgh1 modng, one shows by mathematical induction that

(M (0)
ng ,g1

∆(0)
ng
)
φ(ng)
ij = δ

(ng)

gβ(φ(ng)−1)(i)−j

φ(ng)∏
p=1

dgpimodn

It follows from (3.38)− (3.39) that(
gβ(φ(ng)−1)(i)− j

)
modng =

(
gβ(φ(ng)−1)(i)modng − j modng

)
modng

=
(
(g1β

(φ(ng)−1)(i)modng)modng − j
)
modng

=
(
(g1 · gφ(ng)−1

1 imodng)modng − j
)
modng

=
(
g
φ(ng)
1 imodng − j

)
modng

= (i− j)modng = 0⇔ i = j.
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(because g1 = g modng and g
φ(ng)
1 ≡ 1modng). Then

(M (0)
ng ,g1

∆(0)
ng
)
φ(ng)
ij =


φ(ng)∏
p=1

dgpimodn if j=i

0 otherwise.

Setting dt = Lte
îθt = [Lt, θt] (t ∈ N) then

(M (0)
ng ,g1

∆(0)
ng
)
φ(ng)
jj =

φ(ng)∏
p=1

Lgpj modn;

φ(ng)∑
p=1

θgpj modn


Let Eig(M

(0)
ng ,g1∆

(0)
ng ) = {λj : j = 0, 1, ..., ng − 1}. As in the case (n, g) = 1 we have that

λj = e
î
2k(j)π
φ(ng)

φ(ng)∏
p=1

L
1

φ(ng)

gpv(j)modne
î
θgpv(j)modn

φ(ng) = e
î
2k(j)π
φ(ng)

φ(ng)∏
p=1

fgpv(j)modn

where v(j) ∈ {0, 1, ..., ng − 1}, k(j) belongs to the set {0, 1, ..., φ(ng)− 1} and

fgpv(j)modn = L
1

φ(ng)

gpv(j)modne
î
θgpv(j)modn

φ(ng)

Therefore

Eig(Cn,g) =

eî 2k(j)πφ(ng)

φ(ng)∏
p=1

fgpv(j)modn : j = 0, 1, ..., ng − 1

 ∪ {0 : mult. = n− ng}

Moreover, we have the following fundamental lemmas.

Lemma 3.4.11. Setting δ(0) = (ng, g1) > 1, there exists a decreasing (componentwise) �nite

sequence
{
(gk+1, δ

(k), ng(k))
}

k
of elements of N3 satisfying

g0 = g; ng(0) = ng; g1 = g modng;

and for k ∈ N⋆

gk = gk−1 modng(k−1)
; δ(k−1) = (ng(k−1)

, gk); ng(k) =
ng(k−1)

δ(k−1)
;

and a decreasing matrix sequence
{
M

(k)
ng(k)

,gk+1∆
(k)
ng(k)

}
k
of order ng(k) (this sequence is �nite

since the matrix Mn,gDn is of order n) such that

a) M
(0)
ng(0)

,g1∆
(0)
ng(0)

=M
(0)
ng ,g1∆

(0)
ng ,

b) ∆
(k)
ng(k)

= diag
(
dgk+1j mod n) : j = 0, 1, ..., ng(k) − 1

)
,

c) M
(k)
ng(k)

,gk+1 =

[
δ
(ng(k)

)

gk+1i−j

]ng(k)
−1

i,j=0

; where δ
(ng(k)

)

q =
{

1 if q ≡ 0modng(k)
0 otherwise
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Proof. First of all, let us set:

g0 = g; ng(0) = ng; g1 = g modng; δ
(0) = (ng, g1); ng(1) =

ng

δ(0)
;

As it was shown in Lemmas 3.4.5− 3.4.6, one immediately veri�es that

Eig
(
M (0)

ng ,g1
∆(0)

ng

)
= Eig

δ(0)−1∑
k=0

M
(1)
k ∆

(1)
k

 ∪ {0 : mult. = ng − ng(1)}

where for k = 0, 1, ..., δ(0) − 1 and i, j = 0, 1, ..., ng(1) − 1(
M

(1)
k

)
ij
=
(
M (0)

ng ,g1

)
kng(1)

+i,kng(1)
+j

= δ
(ng)

g1(kng(1)
+i)−(kng(1)

+j)

(a)
= δ

(ng)

(g1i−j)−kng(1)

and (
∆

(1)
k

)
jj
=
(
∆(0)

ng

)
kng(1)

+j,kng(1)
+j

= dg(kng(1)
+j)modn

(a) follows from g1ng(1) = g1
δ(0)
δ(0)ng(1) = g1

δ(0)
ng ≡ 0modng. Furthermore, setting g2 =

g1modng(1) , for i, j = 0, 1, ..., ng(1) − 1

(M
(1)
k ∆

(1)
k )i,j =

ng(1)
−1∑

p=0

(M
(1)
k )ip(∆

(1)
k )pj

= (M
(1)
k )ij(∆

(1)
k )jj

= δ
(ng)

g1i−(kng(1)
+j)dg(kng(1)

+j)modn

Since g1 = g̃1ng(1) + g2 then

g1i = ng(1) g̃1i+ g2i = ng(1)(qiδ
(0) + ri) + g2i = qing + ring(1) + g2i, 0 ≤ ri < δ(0).

Because ring(1) = (g1 − g2)i modng, we have thatδ(0)−1∑
k=0

M
(1)
k ∆

(1)
k


i,j

=
δ(0)−1∑
k=0

δ
(ng)
g1i−kng(1)

−jdg(kng(1)
+j)modn

=
δ(0)−1∑
k=0

δ
(ng)

(ri−k)ng(1)
+g2i−jdg(kng(1)

+j)modn

(e)
= δ

(ng)
g2i−jdg(ring(1)

+j)modn

= δ
(ng)
g2i−jdg((g1−g2)imodng+j)modn

(f)
=

{
dg(g1imodng)modn if j ≡ g2i modng

0 otherwise
(h)
=

{
dg2imodn if j ≡ g2i modng(1)
0 otherwise

= δ
(ng(1)

)

g2i−j dg2imodn

(l)
=

(
∆(1)

ng(1)
M (1)

ng(1)
,g2

)
ij
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• (e) holds true because there exists a unique ki ∈ {0, 1, ..., δ(0) − 1} such that ki = ri,
• (f) follows from Lemma 3.4.1,
• (h) follows from j < ng(1) ,

• (l) is a straightforward calculation of the entries of ∆
(1)
ng(1)

M
(1)
ng(1)

,g2 . Here g2 can be equal to
zero.

Finally, for k ∈ N⋆, let us de�ne

(3.60) gk = gk−1modng(k−1)
; δ(k−1) = (ng(k−1)

, gk); ng(k) =
ng(k−1)

δ(k−1)
.

From (3.60) one constructs by mathematical induction a decreasing (componentwise) �nite

sequence
{
(gk+1, δ

(k), ng(k))
}

k∈N
of elements of N3 and a matrix sequence

{
M

(k)
ng(k)

,gk+1∆
(k)
ng(k)

}
k∈N

of decreasing order ng(k) such that for i, j = 0, 1, ..., ng(k) − 1,(
M (k)

ng(k)
,gk+1

)
ij

= δ
(ng(k)

)

gk+1i−j(
∆(k)

ng(k)

)
ii

= dg[g1(g2(...(gk−1(gkimodng(k−1)
)modng(k−2)

)...)modng(1)
)modng0 ]modn(3.61)

(β)
= dgk+1imodn

Indeed: for equality (β):

g[g1(...(gk−1(gkimodng(k−1)
)modng(k−2)

)...)modng(0) ]modn =

g[g1(g2(...(g
2
k−1imodng(k−2)

)...)modng(1))modng(0) ]modn =

g[g1(g2(...(g
3
k−2imodng(k−3)

)...)modng(1))modng(0) ]modn =

...
= g[gk1 imodng(0) ]modn

= gk+1imodn

since, for j = 1, ..., k, gj = gj−1 −mj.ng(j−1)
, mj ∈ Z.

Lemma 3.4.12. Let s ∈ N be the �rst index associated with the sequences constructed in
Lemma 3.4.11 such that δ(s) ∈ {1, ng(s)}. Then

1. If δ(s) = ng(s), then gs+1 = 0. Hence

Eig (Cn,g) = Eig
(
M

(s)
ng(s)

,0∆
(s)
ng(s)

)
∪ {0 : mult. = n− ng(s)}

= {d0, 0 : mult. = n− 1}

2. For δ(s) = 1, it holds

Eig (Cn,g) = Eig
(
M (s)

ng(s)
,gs+1

∆(s−1)
ng(s)

)
∪ {0 : mult. = n− ng(s)}

=

0, e
î

2k(j)π

φ(ng(s))
φ
(
ng(s)

)
−1∏

h=0

fghs+1ks(p(j))modn; j = 0, 1, ..., ng(s) − 1

 ,
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”0” is of multiplicity=n− ng(s). where ks(j) = gs+1j modn, p(j) ∈ {0, 1, ..., ng(s) − 1},
k(j) is an element of

{
0, 1, ..., φ

(
ng(s)

)
− 1
}
, and

fghs+1ks(p(j))modn = L

1

φ(ng(s))
ghs+1ks(p(j))modn

e
î

θ
ghs+1ks(p(j))modn

φ(ng(s))

with dj = (Dn)j,j = Lje
îθj .

Proof. Case 1: δ(s) = ng(s) .

Since δ(s) = ng(s) then gs+1 = 0, so

M
(s)
ng(s)

,0∆
(s)
ng(s)

=


d0 0 . . . 0

d0
...

...
...

...
...

d0 0 . . . 0


It follows from Lemmas 3.4.5-3.4.6 that

Eig (Cn,g) = Eig
(
M (0)

ng(0)
,g1
∆(0)

ng(0)

)
∪ {0 : mult. = n− ng}

= Eig
(
M (1)

ng(1)
,g2
∆(1)

ng(1)

)
∪ {0 : mult. = ng − ng(1)} ∪ {0 : mult. = n− ng}

= Eig
(
M (1)

ng(1)
,g2
∆(1)

ng(1)

)
∪ {0 : mult. = n− ng(1)}

...

= Eig
(
M (s)

ng(s)
,gs+1

∆(s)
ng(s)

)
∪ {0 : mult. : ng(s−1)

− ng(s)} ∪ {0 : n− ng(s−1)
}

= {d0, 0 : mult. = n− 1}

Case 2: δ(s) = 1.

There exists a positive integer φ(ng(s)) such that g
φ(ng(s)

)

s+1 = 1modng(s) . For i, j = 0, 1, ..., ng(s)−
1(

∆(s)
ng(s)

M (s)
ng(s)

,gs+1

)
ij

= δ
(ng(s)

)

gs+1i−jdg[g1(g2(...(gs−1(gsimodng(s−1)
)modng(s−2)

)...)modng(1)
)modng0 ]modn

= δ
(ng(s)

)

gs+1i−jdks(i).

where
ks(i) = gs+1imodn.

Then

Eig (Cn,g) = Eig
(
M (s)

ng(s)
,gs+1

∆(s)
ng(s)

)
∪ {0 : mult. = n− ng(s)}

Since (ng(s) , gs+1) = 1, according to Lemma 3.4.10, one deduces by replacing ng by ng(s) , g1
by gs+1, p(j) by ks(p(j)), and φ(ng) by φ(ng(s)) that

Eig(Cn,g) =

eî 2k(j)π
φ(ng(s)

)

φ(ng(s)
)−1∏

h=0

fghs+1ks(p(j))modn : j = 0, 1, ..., ng(s) − 1

∪{0 : mult. = n−ng(s)}
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with

fghs+1ks(p(j))modn = L

1
φ(ng(s)

)

ghs+1ks(p(j))modn
· e

î

θ
ghs+1ks(p(j))modn

φ(ng(s)
)

Furthermore, p(j) is an element of the set {0, 1, ..., ng(s) − 1} and k(j) belongs to the set
{0, 1, ..., φ(ng(s))− 1}.

In this way, we obtain a much simpli�ed iterative method to determine the eigenvalues
of the g-circulant matrices Cn,g.

Algorithm

Initialization: Given a positive integer g, the Fourier matrix Fn and the matrix Zn,g =
[δr−gs]

n−1
r,s=0, determine the matrix Mn,g = FnZn,gF

⋆
n := [δgr−s]

n−1
r,s=0. Set ng(−1)

:= n;

δ(−1) := gcd(n, g); g(0) = g0 := g; ng := ng(0) := n
δ(−1) ; M

(−1)
ng(−1)

,g0 := Mn,g; ∆
(−1)
ng(−1)

:=

Dn = diag(dj : j = 0, 1, 2, ..., n− 1); δ
(n)
s := δs. Put k := 0.

(1) If δ(k−1) = 1,

i. compute as in Lemma 3.4.7 the matrix

(
M (k−1)

ng(k−1)
,gk
·∆(k−1)

ng(k−1)

)φ(ng(k−1)

)
:= diag

φ
(
ng(k−1)

)
−1∏

p=0

dlpj , j = 0, 1, ..., ng(k−1)
− 1


where lpj := gpj modng(k−1)

,

ii. For �xed j ∈ {0, 1, ..., ng(k−1)
− 1}, solve the equation

z
φ
(
ng(k−1)

)
=

φ
(
ng(k−1)

)
−1∏

p=0

dlpj

iii. Then the spectrum of Cn,g is

Eig(Cn,g) := Eig
(
M (k−1)

ng(k−1)
,gk
·∆(k−1)

ng(k−1)

)
∪ {0}

:=

0, e
î

2k(j)π
φ(ng(k−1)

)

φ(ng(k−1)
)−1∏

h=0

fghkRk−1(p(j))modng(k−1)
: j = 0, 1, ..., ng(k−1)

− 1


”0” is of multiplicity= n− ng(k−1)

; Rk−1(j) := gkj modn; dj := Lje
îθj with |dj| =

Lj;

fghkRk−1(p(j))(modng(k−1)
) := L

1

φ(ng(k−1))
ghkRk−1(p(j))(modng(k−1)

)
· e

î

θ
gh
k
Rk−1(p(j))modng(k−1)

φ(ng(k−1))

where φ(a) denotes the Euler indicator associated with the positive integer a;

p(j) ∈ {0, 1, ..., ng(k−1)
− 1} and k(j) ∈

{
0, 1, ..., φ

(
ng(k−1)

)
− 1
}
; stop.
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Otherwise,

(2) If δ(k−1) := ng(k−1)
,

i. Compute:
gk := 0;

Eig
(
M

(k−1)
ng(k−1)

,0 ·∆(k−1)
ng(k−1)

)
:= {d0, 0 : mult. = ng(k−1)

− 1}

ii. Hence the spectrum of Cn,g is

Eig(Cn,g) := Eig
(
M

(k−1)
ng(k−1)

,0 ·∆(k−1)
ng(k−1)

)
∪ {0 : mult. = n− ng(k−1)

}

:= {d0, 0 : mult. = n− 1}

stop.

Otherwise,

(3) Put k := k + 1, compute:

ng(k−1)
:=

ng(k−2)

δ(k−2)
; gk := gk−1modng(k−1)

; δ(k−1) := gcd(ng(k−1)
, gk);

and
∆(k−1)

ng(k−1)
:= diag

(
dgkj modn : j = 0, 1, ..., ng(k−1)

− 1
)
;

M (k−1)
ng(k−1)

,gk
:=

[
δ
(ng(k−1)

)

gkr−s

]ng(k−1)
−1

r,s=0

, δ
(ng(k−1)

)

q :=
{

1 if q ≡ 0modng(k−1)

0 otherwise

Remark 3.4.3. The above algorithm determines of recursive way all the eigenvalues of the
g-circulant matrices Cn,g. It can stop in step (1) if the positive integers n and g are coprime,
in that we obtain the same values as those determined by William F. Trench in [161(1)]. Next,
the algorithm can stop in step (2) if g = 0.

In the following we present some examples of eigenvalues of the g-circulant matrices when
g ∈ Nd and some of the entries of g vanish.

3.5 Examples of g-circulant matrices when some of the
entries of g vanish

We begin this section with a brief digression on multilevel matrices. A d-level matrix A of
dimension n̂ × n̂ with n = (n1, n2, ..., nd) and n̂ = n1n2...nd can be viewed as a matrix of
dimension n1 × n1 in which each element is a block of dimension n2n3...nd × n2n3...nd; in
turn, each block of dimension n2n3...nd × n2n3...nd can be viewed as a matrix of dimension
n2 × n2 in which each element is a block of dimension n3n4...nd × n3n4...nd, and so on. So
we can say that n1 is the most "outer" dimension of the matrix A and nd is the "inner"
dimension. If we multiply by an appropriate permutation matrix P the d-level matrix A,
we can exchange the "order of dimensions" of A, namely P TAP becomes a matrix again
of dimension n̂ × n̂ but with n = (np(1), np(2), ..., np(d)) and n̂ = np(1)np(2)...np(d) = n1n2...nd

(where p is a permutation of d elements) and np(1) is the most "outer" dimension of the
matrix A and np(d) is the most "inner" dimension.

This trick helps us to understand what happens to the singular values of g-circulant d-level
matrices, especially when some of the entries of the vector g are zero; indeed: as we observed
in subsection 3.2.1, if g = 0, the d-level g-circulant matrix A is a block matrix with constant
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blocks on each row, so if we order the vector g (which has some components equal to zero) so
that the components equal to zero are in the top positions, g = (0, ..., 0, gk, ..., gd), the matrix
P TAP (where P is the permutation matrix associated with p) becomes a block matrix with
constant blocks on each row and with blocks of dimension nknk+1...nd × nknk+1...nd; with
this "new" structure, formula (3.7) is even more intuitively understandable, as we shall see
later in the examples.

Lemma 3.5.1. Let A be a 2-level circulant matrix of dimension n̂× n̂ with n = (n1, n2) and
n̂ = n1n2,

A =
[
[a(j1−k1,j2−k2)modn]

n2−1
j2,k2=0

]n1−1

j1,k1=0
.

There exists a permutation matrix P such that

P TAP =
[
[a(j1−k1,j2−k2)modn]

n1−1
j1,k1=0

]n2−1

j2,k2=0

Moreover, one has the following Corollary

Corollary 3.5.1. Let A be a d-level circulant matrix of dimension n̂×n̂ with n = (n1, n2, ..., nd)
and n̂ = n1n2...nd,

A =
[[
...[a(j1−k1,j2−k2,...,jd−kd)modn]

nd−1
jd,kd=0...

]n2−1

j2,k2=0

]n1−1

j1,k1=0
.

For every permutation p of d elements, there exists a permutation matrix P such that

P TAP =

[[
...[a(j1−k1,j2−k2,...,jd−kd)modn]

np(d)−1

jp(d),kp(d)=0...
]np(2)−1

jp(2),kp(2)=0

]np(1)−1

jp(1),kp(1)=0

.

Remark 3.5.1. Lemma 3.5.1 and Corollary 3.5.1 also apply to d-level g-circulant matrices.

Now, let g = (g1, g2, ...gd) be a d-dimensional vector of nonnegative integers and t =
♯{j : gj = 0} be the number of zero entries of g. If we take a permutation p of d elements
such that gp(1) = gp(2) = ... = gp(t) = 0, (that is, p is a permutation that moves all the zero
components of the vector g in the top positions), then it is easy to prove that formula (3.7)
remains the same for the matrix P TAP (where P is the permutation matrix associated with
p) but with n[0] = (np(1), np(2), ..., np(t)), and where Cj is a d

+-level g+-circulant matrix, with
g+ = (gp(t+1), gp(t+2), ..., gp(d)), of partial size n[> 0] = (np(t+1), np(t+2), ..., np(d)), and whose
expression is

Cj =

[[
...[a(r−g◦s)modn]

np(d)−1

rp(d),sp(d)=0...
]np(t+2)−1

rp(t+2),sp(t+2)=0

]np(t+1)−1

rp(t+1),sp(t+1)=0

,

with (rp(1), rp(2), ..., rp(t)) = j. Obviously Sval(A) = Sval(P TAP ).
We recall that if B is a matrix of size n × n positive semide�nite, that is B⋆ = B and

x⋆Bx ≥ 0 ∀x ̸= 0, then Eig(B) = Sval(B). Moreover, if B = UΣU⋆ is a SVD for B (which
coincides with the Schur decomposition of B) with Σ = diag

j=1,...,n
(σj), then

(3.62) B1/2 = UΣ1/2U⋆,

where Σ1/2 = diag
j=1,...,n

(
√
σj).

We proceed with a detailed example: a 3-level g-circulant matrix with g = (g1, g2, g3) =
(1, 2, 0) which helps us to understand what happens if the vector g is not strictly positive.
Finally we will propose the explicit calculation of the singular values of a d-level g-circulant
matrix in the particular case where the vector g has only one component di�erent from zero.
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Example 3.5.1. Consider a 3-level g-circulant matrix A where g = (g1, g2, g3) = (1, 2, 0)

A =
[[
[a((r1−1·s1)modn1,(r2−2·s2)modn2,(r3−0.s3)modn3)]

n3−1
r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

=
[[
[a(r1−s1)modn1,(r2−2s2)modn2,r3 ]

n3−1
r3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0
.

If we choose the permutation p of 3 elements such that

(p(1), p(2), p(3)) = (3, 2, 1),

(gp(1), gp(2), gp(3)) = (0, 2, 1),

(np(1), np(2), np(3)) = (n3, n2, n1),

and if we take the permutation matrix P related to p, then

P TAP ≡ Â =
[[
[a(r1−s1)modn1,(r2−2s2)modn2,r3 ]

n1−1
r1,s1=0

]n2−1

r2,s2=0

]n3−1

r3=0
.

Now, for r3 = 0, 1, ..., n3 − 1, let us set

Cr3 =
[
[a(r1−s1)modn1,(r2−2s2)modn2,r3 ]

n1−1
r1,s1=0

]n2−1

r2,s2=0
.

As a consequence, Cr3 is a 2-level g+-circulant matrix with g+ = (2, 1) and of partial sizes
n[> 0] = (n2, n1) and

Â =

 C0 C0 . . . C0
C1 C1 . . . C1
...

...
...

...
Cn3−1 Cn3−1 . . . Cn3−1

 .
and this is a block matrix with constant blocks on each row. From formula (3.1), the singular
values of A are the square root of the eigenvalues of A⋆A :

Â⋆
nÂn =


C⋆

0 C⋆
1 ... C⋆

n3−1
C⋆

0 C⋆
1 ... C⋆

n3−1
...

...
...

C⋆
0 C⋆

1 ... C⋆
n3−1


 C0 C0 ... C0

C1 C1 ... C1
:. :.

Cn3−1 Cn3−1 ... Cn3−1



=



n3−1∑
j=0

C⋆
jCj

n3−1∑
j=0

C⋆
jCj ...

n3−1∑
j=0

C⋆
jCj

n3−1∑
j=0

C⋆
jCj

n3−1∑
j=0

C⋆
jCj ...

n3−1∑
j=0

C⋆
jCj

:. :. :. :.
n3−1∑
j=0

C⋆
jCj

n3−1∑
j=0

C⋆
jCj ...

n3−1∑
j=0

C⋆
jCj


=

[
1 ... 1
:. :. :.
1 ... 1

]
⊗

n3−1∑
j=0

C⋆
jCj

= Jn3 ⊗
n3−1∑
j=0

C⋆
jCj.
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Therefore

(3.63) Eig(Â⋆Â) = Eig

(
Jn3 ⊗

n3−1∑
j=0

C⋆
jCj

)
,

where

(3.64) Eig(Jn3) = {0, n3},

because Jn3 is a matrix of rank 1, so it has all eigenvalues equal to zero except one eigenvalue
equal to trace(Jn3) = n3 (trace(Jn3) is the trace of the matrix Jn3). If we put

λk = λk

(
n3−1∑
j=0

C⋆
jCj

)
, k = 0, 1, ...., n2n1 − 1,

by exploiting basic properties of the tensor product and taking into consideration (3.63) and
(3.64) we �nd

(3.65) λk(Â
⋆Â) = n3λk, k = 0, 1, ...., n1n2 − 1,

(3.66) λk(Â
⋆Â) = 0, k = n1n2, n1n2 + 1, ...., n1n2n3 − 1.

From (3.65), (3.66) and (3.1), and recalling that Sval(Â) = Sval(A), one obtains that the
singular values of A are given by

σk(A) =
√
n3λk, k = 0, 1, ...., n1n2 − 1,

σk(A) = 0, k = n1n2, n1n2 + 1, ...., n3n2n1 − 1.

and, since
n3−1∑
j=0

C⋆
jCj is a positive semide�nite matrix, from (3.62) we can write

σk(A) =
√
n3σ̃k, k = 0, 1, ...., n1n2 − 1,

σk(A) = 0, k = n1n2, n1n2 + 1, ...., n3n2n1 − 1.

where σ̃k denotes the generic singular values of

(
n3−1∑
j=0

C⋆
jCj

)1/2

.

Example 3.5.2. Let us see what happens when the vector g has only one component di�erent
from zero. Let n = (n1, n2, ..., nd) and g = (0, ..., 0, gk, 0..., 0), gk > 0; in this case we can give
an explicit formula for the singular values of the d-level g-circulant matrix. For convenience
and without loss of generality we take g = (0, ..., 0, gd) (will all zero components in top
positions, otherwise we use permutation). From subsection 3.2.2, the singular values of An =

[a(r−g◦s)modn]
n−e
r,s=0 are zero except for few of them given by

√
n̂[0]σ where, in our case, n̂[0] =

n1n2...nd−1, n[0] = (n1, n2, ..., nd−1), and σ is any singular value of the matrixn[0]−e∑
j=0

C⋆
jCj

1/2

,
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where Cj is an gd-circulant matrix of dimension nd × nd whose expression is

Cj = [a(r−g◦s)modn]
nd−1
rd,sd=0 = [a(r1,r2,...,rd−1,(rd−gdsd)modnd)]

nd−1
rd,sd=0

= [a(j,(rd−gdsd)modnd)]
nd−1
rd,sd=0,

with j = (r1, r2, ..., rd−1). For j = 0, ..., n[0] − e, if C(j)
nd is the circulant matrix which has as

its �rst column the vector a(j) = [a(j,0), a(j,1), ..., a(j,nd−1)]
T (which is the �rst column of the

matrix Cj,) C
(j)
nd = [a(j,(r−s)modnd)]

nd−1
r,s=0 = Fnd

D
(j)
nd F

⋆
nd
, with D

(j)
nd = diag(

√
ndF

⋆
nd
a(j)), then,

from (3.28), (3.8) and (3.14), it is immediate to verify that

n[0]−e∑
j=0

C⋆
jCj =

n[0]−e∑
j=0

(Fnd
D(j)

nd
F ⋆
nd
Znd,gd)

⋆(Fnd
D(j)

nd
F ⋆
nd
Znd,gd)

=

n[0]−e∑
j=0

(F ⋆
nd
Znd,gd)

⋆(D(j)
nd
)⋆D(j)

nd
(F ⋆

nd
Znd,gd)

= (F ⋆
nd
Znd,gd)

⋆

n[0]−e∑
j=0

(D(j)
nd
)⋆D(j)

nd

 (F ⋆
nd
Znd,gd).

Now, if we put

nd,g =
nd

(nd,gd)
and q

(j)
s = |D(j)

nd |2s,s = (D
(j)
nd )s,s · (D

(j)
nd )s,s, s = 0, 1, ..., nd − 1,

∆l =



n[0]−e∑
j=0

q
(j)
(l−1)nd,g

n[0]−e∑
j=0

q
(j)
(l−1)nd,g+1

. . .
n[0]−e∑
j=0

q
(j)
(l−1)nd,g+nd,g−1


∈ Cnd,g×nd,g ,

for l = 1, 2, ..., (nd, gd), then, following the same reasoning employed for proving formula
(3.29), we infer

Eig

n[0]−e∑
j=0

C⋆
jCj

 =
1

(nd, gd)
Eig

J(nd,gd) ⊗
(nd,gd)∑
l=1

∆l

 ,

where

J(nd,gd) =

1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1


︸ ︷︷ ︸

(nd,gd) times

,

1

(nd, gd)
J(nd,gd) = {0; 1},
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and

(nd,gd)∑
l=1

∆l =

(nd,gd)∑
l=1

diag

n[0]−e∑
j=0

q
(j)
(l−1)nd,g+k : k = 0, 1, ..., nd,g − 1


= diag

(nd,gd)∑
l=1

n[0]−e∑
j=0

q
(j)
(l−1)nd,g+k : k = 0, 1, ..., nd,g − 1

 .

Consequently, since
(nd,gd)∑
l=1

∆l is a diagonal matrix, and by exploiting basic properties of the

tensor product, we �nd

λk

n[0]−e∑
j=0

C⋆
jCj

 =

(nd,gd)∑
l=1

n[0]−e∑
j=0

q
(j)
(l−1)nd,g+k, k = 0, 1, ..., nd,g − 1,

λk

n[0]−e∑
j=0

C⋆
jCj

 = 0, k = nd,g, ..., nd − 1.

Now, since
∑n[0]−e

j=0 C⋆
jCj is a positive semide�nite matrix, from (3.62) we �nally have

σk


n[0]−e∑

j=0

C⋆
jCj

1/2
 =

√√√√(nd,gd)∑
l=1

n[0]−e∑
j=0

q
(j)
(l−1)nd,g+k, k = 0, 1, ..., nd,g − 1,

σk


n[0]−e∑

j=0

C⋆
jCj

1/2
 = 0, k = nd,g, ..., nd − 1.

Conclusion
In this chapter We have studied in detail the singular values of g-circulant matrices and have
provided a powerful technique for determining the eigenvalues of these matrices. The gener-
alization to the multilevel block setting has been sketched in the case of singular values. The
next chapter will treat the asymptotic distribution result of g-Toeplitz sequences associated
with a given integrable symbol.
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Chapter Four

Singular Value Distribution of
g-Toeplitz Sequences

4.1 Introduction

A matrix An of size n is called g-Toeplitz if its entries obey the rule An = [ar−gs]
n−1
r,s=0, where

g is a nonnegative integer. As example, if n = 5 and g = 3 then

An ≡ Tn,g =

[a0 a−3 a−6 a−9 a−12
a1 a−2 a−5 a−8 a−11
a2 a−1 a−4 a−7 a−10
a3 a0 a−3 a−6 a−9
a4 a1 a−2 a−5 a−8

]

We recall that such kind of matrices arises in wavelet analysis [50] and in the re�nement
equations associated with the subdivision algorithm, see [58] and references therein. In ad-
dition, Gilbert Strang [150] has found interesting relationships between dilation equations
in the wavelets context and multigrid methods [78], [162], for the restriction/prolongation
operators [61], [1] with various boundary conditions. Moreover, boundary conditions analysis
naturally arises when dealing with signal/image restoration problems or di�erential equa-
tions, see [129], [126].

In this chapter we address the problem of characterizing an asymptotic analysis of the
distribution results for the singular values of g-Toeplitz sequences, in the case where the
sequence of values {ak}k, de�ning the entries of the matrices, can be interpreted as the
sequence of Fourier coe�cients of an integrable function f over the domain (−π, π). As a
byproduct, we will show interesting relations with the analysis of convergence of multigrid
methods given, e.g., in [141, 1]. Finally we generalized the analysis to the block, multilevel
case, amounting to choose the symbol f multivariate, i.e., de�ned on the set G = (−π, π)d
for some d > 1, and matrix valued, i.e., such that f(x) is a matrix of given size p× q.

4.2 General de�nitions and tools

For any n× n matrix A with eigenvalues λj(A), j = 1, 2, ..., n, and for any m× n matrix B
with singular values σj(A), j = 1, 2, ..., l, l = min{m,n}, we set

Eig(A) = {λj(A) : j = 1, 2, ..., n}, Sval(B) = {σj(B) j = 1, 2, ..., l}.

The matrix B⋆B is positive semide�nite, since x⋆(B⋆B)x = ∥Bx∥22 ≥ 0 for all x ∈ Cn,
with ”⋆” denoting the transpose conjugate operator. Moreover, it is clear that the eigenvalues
λ1(B

⋆B) ≥ λ2(B
⋆B) ≥ ... ≥ λn(B

⋆B) ≥ 0 are nonnegative and can therefore be written in
the form

(4.1) λj(B
⋆B) = σ2

j ,
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with σj ≥ 0, j = 1, 2, ..., n. The numbers σ1 ≥ σ2 ≥ ... ≥ σl ≥ 0, l = min{m,n} are called
"singular values of B", i.e., σj = σj(B) and if n > l then λj(B

⋆B) = 0, j = l + 1, ..., n. A
more general statement is contained in the singular value decomposition theorem (see e.g.
[11]).

For any function F de�ned on R+
0 and for any m × n matrix A, the symbol

∑
σ(F,A)

stands for the mean

(4.2)
∑

σ
(F,A) :=

1

min{m,n}

min{m,n}∑
j=1

F (σj(A)) =
1

min{m,n}
∑

σ∈Sval(A)

F (σ)

Throughout this chapter we speak also of matrix sequences {Ak}k where Ak is an n(k)×
m(k) matrix with min{n(k),m(k)} → ∞ as k → ∞. When n(k) = m(k) that is all the
involved matrices are square, and this will occur often in this chapter, we will not need the
extra parameter k and we will consider simply matrix sequences of the form {An}n.

Concerning the case of matrix-sequences an important notion is that of spectral distribu-
tion in eigenvalue or singular value sense, linking the collective behavior of the eigenvalues or
singular values of all the matrices in the sequence to a given function (or to a measure). The
notion goes back to Weyl and has been investigated by many authors in the Toeplitz and
Locally Toeplitz context (see the book by Böttcher and Silbermann [16] where many classical
results by the authors, Szegö, Avram, Parter, Widom Tyrtyshnikov, and many other can be
found, and more recent results in [71, 93, 146, 167, 156, 157]). Here we report the de�nition of
spectral distribution only in the singular value sense since our analysis is devoted to singular
values. The case of eigenvalues will be the subject of future investigations.

De�nition 4.2.1. Let C0(R+
0 ) be the set of continuous functions with bounded support de�ned

over the nonnegative real numbers, d a positive integer, and θ a complex-valued measurable
function de�ned on a set G ⊂ Rd of �nite and positive Lebesgue measure µ(G). Here G

will be often equal to (−π, π)d so that eiG = Td with T denoting the complex unit circle. A
matrix sequence {Ak}k is said to be distributed (in the sense of the singular values) as the
pair (θ,G) or to have the distribution function θ ({Ak}k ∼σ (θ,G)), if, ∀F ∈ C0(R+

0 ), the
following limit relation holds

(4.3) lim
k→∞

Σσ(F,Ak) =
1

µ(G)

∫
G

F (|θ(t)|)dt, t = (t1, . . . , td).

When considering θ taking values in Mpq, where Mpq is the space of p × q matrices with
complex entries and a function is considered to be measurable if and only if the component
functions are, we say that {Ak}k ∼σ (θ,G) when for every F ∈ C0(R+

0 ) we have

lim
k→∞

Σσ(F,Ak) =
1

µ(G)

∫
G

∑min{p,q}
j=1 F (σj(θ(t)))

min{p, q}
dt, t = (t1, . . . , td),

with σj(θ(t)) =
√
λj(θ(t)⋆θ(t)) = λj

√
θ(t)⋆θ(t). Finally we say that two sequences {Ak}k

and {Bk}k are equally distributed in the sense of singular values (σ) if, ∀F ∈ C0(R+
0 ), we

have
lim
k→∞

[∑
σ
(F,Bk)−

∑
σ
(F,Ak)

]
= 0.

Here we are interested in explicit formula of the distribution results for g-Toeplitz se-
quences. Following what is known in the standard case of g = 1 (or g = e in the multilevel
setting), we need to link the coe�cients of the g-Toeplitz sequence to a certain symbol.
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Let f be a Lebesgue integrable function de�ned on (−π, π)d and taking values in Mpq,
for given positive integers p and q. Then, for d-indices r = (r1, r2, ..., rd), j = (j1, j2, ..., jd),
n = (n1, n2, ..., nd), e = (1, 1, ..., 1), 0 = (0, 0, ..., 0), the Toeplitz matrix Tn(f) of size pn̂×qn̂,
n̂ = n1.n2...nd, is de�ned as follows

Tn(f) = [f̃r−j]
n−e
r,j=0,

where f̃k are the Fourier coe�cients of f de�ned by equation

(4.4) f̃j = f̃(j1,...,jd) =
1

(2π)d

∫
[−π,π]d

f(t1, ..., td)e
−î(j1t1+...+jdtd)dt1...dtd, î2 = −1,

for integers jl such that −∞ < jl <∞ for 1 ≤ l ≤ d. Since f is a matrix-valued function of
d variables whose component functions are all integrable, then the (j1, j2, ..., jd)-th Fourier
coe�cient is considered to be the matrix whose (u, v)-th entry is the (j1, j2, ..., jd)-th Fourier
coe�cient of the function (f(t1, ..., td))u,v.

According to this multi-index block notation, we can de�ne general multi-level block
g-Toeplitz matrices. Of course, in this multidimensional setting, g denotes a d-dimensional
vector of nonnegative integers that is, g = (g1, g2, ..., gd). In that case An = [ar−g◦s]

n−e
r,s=0 where

the ◦ operation is the componentwise Hadamard product between vector or matrices of the
same size.

4.2.1 The extremal cases where g = 0 or g = e, and the intermediate
cases

We consider a d-level setting and we analyze in detail the case where 0 ≤ g ≤ e and with
≤ denoting the componentwise partial ordering between real vectors. When g has at least a
zero component, the analysis can be reduced to the positive one as studied in section 4.6.

g = e

In the literature the only case deeply studied is the case of g = e (standard shift in every
level). For multilevel block Toeplitz sequences {Tn(f)} generated by an integrable d variate
and matrix valued symbol f the singular values are not explicitly known but we know the
distribution in the sense of De�nition 4.2.1; see [156]. More precisely we have

(4.5) {Tn(f)} ∼σ (f,Qd), Q = (−π, π).

g = 0

The other extreme is represented by the case where g is the zero vector. Here the multilevel
block g-Toeplitz is given by

An = [ar−0◦s]
n−e
r,s=0 = [ar]

n−e
r,s=0 =

[
a0 . . . a0
...

...
an−e . . . an−e

]
.

A simple computation shows that all the singular values are zero except for few of them

given by
√
n̂σ, where n̂ = n1.n2...nd and σ is any singular value of the matrix

(
n−e∑
j=0

a⋆jaj

)1/2

.

Of course, in the scalar case where p = q = 1 the choice of σ is unique and by the above
formula it coincides with the Euclidean norm of the �rst column a of the original matrix. In
that case it is evident that

{An} ∼σ (0, G),

for any domain satisfying the requirements of De�nition 4.2.1.
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4.2.2 When some of the entries of g vanish

The content of this subsection reduces to the following remark: the case of a nonnegative g
can be reduced to the case of a positive vector so that we are motivated to treat in detail
the latter in section 4.3. Let g be a d-dimensional vector of nonnegative integers and let
N ⊂ {1, ..., d} be the set of indices such that j ∈ N if and only if gj = 0. Assume that N
is nonempty, let t ≥ 1 be its cardinality and d+ = d − t. Then a simple calculation shows
that the singular values of the corresponding g-Toeplitz matrix An = [a(r−g◦s)]

n−e
r,s=0 are zero

except for few of them given by
√
n̂[0]σ where

n̂[0] =
∏
j∈N

nj, n̂[0] = (nj1 , nj2 , ..., njt), N = {j1, ..., jt},

and σ is any singular value of the matrix

(4.6)

n̂[0]−e∑
j=0

T ⋆
j Tj

1/2

.

Here Tj is a d+-level g+-Toeplitz matrix with g+ = (gk1 , gk2 , ..., gkd+ ) and of partial sizes

n[> 0] = (nk1 , nk2 , ..., nkd+
), NC = {k1, k2, ..., kd+}, and whose expression is

Tj = [a(r−g◦s)]
n[>0]−e

r′ ,s′=0
,

where (r− g ◦ s)k = jk for gk = 0 and r
′
i = rki , s

′
i = ski , i = 1, ..., d+. Also in this case, since

most of the singular values are identically zero, we infer that

{An} ∼σ (0, G),

for any domain satisfying the requirements of De�nition 4.2.1.

4.3 Singular values of g-Toeplitz matrices

For p = q = 1, we recall that the g-Toeplitz matrices of dimension n× n are de�ned as

(4.7) Tn,g = [ar−gc]
n−1
r,c=0,

where the quantities r − gs are not reduced modulus n. In analogy with the case g = 1, the
elements aj are the Fourier coe�cients of some function f in L1(Q), with Q = (−π, π), i.e.,
aj = f̃j as in (4.4) with d = 1. If we denote by Tn the classical Toeplitz matrix generated

by the function f ∈ L1(Q), Tn = [ar−c]
n−1
r,c=0, aj = f̃j de�ned as in (4.4), and by Tn,g the g-

Toeplitz matrix generated by the same function, one veri�es immediately for n and g generic
that

(4.8) Tn,g = [T̂n,g|Tn,g] = [TnẐn,g|Tn,g],

where T̂n,g ∈ Cn×µg (with µg = ⌈n
g
⌉) is the matrix Tn,g de�ned in (4.7) by considering only

the µg �rst columns, Tn,g ∈ Cn×(n−µg) is the matrix Tn,g de�ned in (4.7) by considering only

the n− µg last columns, and Ẑn,g ∈ Cn×µg is the matrix de�ned by
(4.9)

Ẑn,g = [δr−gs]; r = 0, 1, ..., n− 1, s = 0, 1, ..., µg − 1, where δk =
{

1 if k ≡ 0(modn);
0 otherwise.
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Proof. From relation (4.8). For r = 0, 1, ..., n− 1 and s = 0, 1, ..., µg − 1, one has

(T̂n,g)r,s = (Tn)r,gs,

(Ẑn,g)r,s = δr−gs,

and

(TnẐn,g)r,s =
n−1∑
l=0

(Tn)r,l(Ẑn,g)l,s

=
n−1∑
l=0

δl−gs(Tn)r,l

=
(a)

(Tn)r,gs

= (T̂n,g)r,s

where (a) follows from the fact that there exists a unique l0 ∈ {0, 1, ..., n − 1} such that
l0−gs ≡ 0(modn), that is, l0 ≡ gs(modn), and, since 0 ≤ gs ≤ n−1, we obtain l0 = gs.

If we take the matrix T̂n,g of size n × (µg + 1), the relation (4.8) is no longer true. In
reality, looking at the (µg + 1)-th column of the g-Toeplitz matrix we observe the Fourier
coe�cients with indices which are not present (less or equal to −n) in the Toeplitz matrix
Tn. More precisely,

(T̂n,g)0,µg = a0−gµg = a−gµg , and − gµg ≤ −n.

It follows that µg is the maximum number of columns for which relation (4.8) is true.

4.3.1 Some preparatory results

We begin with some preliminary notations and de�nitions

De�nition 4.3.1. Suppose a sequence of matrices {An}n of size dn is given. We say that
{{Bn,m}n : m ≥ 0}, Bn,m of size dn, m ∈ N, is an approximating class of sequences (a.c.s)
for {An}n if, for all su�ciently large m ∈ N, the following splitting holds:

(4.10) An = Bn,m +Rn,m +Nn,m for all n > nm,

with

(4.11) Rank(Rn,m) ≤ dnc(m), ∥Nn,m∥ ≤ ω(m),

with ∥ · ∥ is the spectral norm (largest singular value), nm, c(m) and ω(m) depend only on
m and, moreover,

(4.12) lim
m→∞

ω(m) = 0, lim
m→∞

c(m) = 0.

Proposition 4.3.1. [125]. Let {dn}n be an increasing sequence of natural numbers. Suppose
a sequence formed by matrices {An}n of size dn is given such that {{Bn,m}n : m ≥ 0},
m ∈ N̂ ⊂ N, ♯N̂ = ∞, is an a.c.s for {An}n in the sense of De�nition 4.3.1. Suppose that
{Bn,m}n ∼σ (θm, G) and that θm converges in measure to the measurable function θ over G.
Then necessarily

(4.13) {An}n ∼σ (θ,G),

(see De�nition 4.2.1).

86



Proposition 4.3.2. [125, 128]. If {An}n and {Bn}n are two sequences of matrices of strictly
increasing dimension, such that {An}n ∼σ (θ,G) and {Bn}n ∼σ (0, G), then

{An +Bn}n ∼σ (θ,G).

Proposition 4.3.3. [125]. Let f, g ∈ L1(Qd), Q = (−π, π), and let {Tn(f)}n and {Tn(g)}n
be two sequences of Toeplitz matrices generated by f and g, respectively. The following dis-
tribution result is true

{Tn(f)Tn(g)}n ∼σ (fg,Qd).

Lemma 4.3.1. Let f be a measurable complex-valued function on a set K, and consider the

measurable function
√
|f | : K → R+. Let {An,m}n,m; with An,m ∈ Cdn×d

′
n (d

′
n ≤ dn) be a

sequence of matrices of strictly increasing dimension: d
′
n < d

′
n+1, dn < dn+1. If the sequences

of matrices {A⋆
n,mAn,m}n,m, with A⋆

n,mAn,m ∈ Cd
′
n×d

′
n , is distributed in the singular value

sense as the function f over a suitable set G ⊂ K in the sense of De�nition 4.2.1, then the
sequence {An,m}n,m is distributed in the singular value sense as the function

√
|f | over the

same set G.

Proof. From the singular value decomposition (SV D), we can write An,m as

An,m = UΣV ⋆ = U


σ1 σ2

. . .
σd′n

0

V ⋆,

with U and V unitary matrices, U ∈ Cdn×dn , V ∈ Cd
′
n×d

′
n and Σ ∈ Rdn×d

′
n , σj ≥ 0; by

multiplying A⋆
n,mAn,m we obtain

(4.14) A⋆
n,mAn,m = V ΣTU⋆UΣV ⋆ = V ΣTΣV ⋆ = V Σ(2)V ⋆ = V


σ2
1
σ2
2

. . .
σ2
d
′
n

0

V ⋆,

with Σ(2) = ΣTΣ ∈ Cd
′
n×d

′
n . We observe that (4.14) is an SV D for A⋆

n,mAn,m, that is, the
singular values σj(A

⋆
n,mAn,m) of A

⋆
n,mAn,m are the square of singular values σj(An,m) of An,m.

Since {A⋆
n,mAn,m} ∼σ (f,G), by de�nition it holds that for every F ∈ C0(R+

0 )

(4.15) lim
n→∞

1

d′
n

d
′
n∑

i=1

F (σi(A
⋆
n,mAn,m)) =

1

µ(G)

∫
G

F (|f(t)|)dt = 1

µ(G)

∫
G

H
(√
|f(t)|

)
dt,

where H is such that F = H ◦ √., but, owing to σj(An,m) =
√
σj(A⋆

n,mAn,m) we obtain

(4.16) lim
n→∞

1

d′
n

d
′
n∑

i=1

F (σi(A
⋆
n,mAn,m)) = lim

n→∞

1

d′
n

d
′
n∑

i=1

F (σ2
i (An,m)) = lim

n→∞

1

d′
n

d
′
n∑

i=1

H(σi(An,m)).

From (4.15) and (4.16), one deduces that

(4.17) lim
n→∞

1

d′
n

d
′
n∑

i=1

H(σi(An,m)) =
1

µ(G)

∫
G

H
(√
|f(t)|

)
dt,

for every H ∈ C0(R+
0 ), so {An,m} ∼σ (

√
|f(t)|, G).
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Lemma 4.3.2. Let {An}n and {Qn}n be two sequences of matrices of strictly increasing
dimension (An, Qn ∈ Cdn×dn , dn < dn+1), where Qn are all unitary matrices (Q⋆

nQn = I). If
{An}n ∼σ (0, G) then {AnQn}n ∼σ (0, G) and {QnAn}n ∼σ (0, G).

Proof. Putting Bn = AnQn, assuming that

An = UnΣnVn,

is an SVD for An, and taking into account that the product of two unitary matrices is still
a unitary matrix, we deduce that the writing

Bn = AnQn = UnΣnVnQn = UnΣnV̂n,

is an SVD for Bn. The latter implies that An and Bn have exactly the same singular values,
so that the two sequences {An}n and {Bn}n are distributed in the same way.

Lemma 4.3.3. Let {An}n and {Qn}n be two sequences of matrices of strictly increasing
dimension (An, Qn ∈ Cdn×dn , dn < dn+1). If {An}n ∼σ (0, G) and ∥Qn∥ ≤ M for some
nonnegative constant M independent of n, then {AnQn}n ∼σ (0, G) and {QnAn}n ∼σ (0, G).

Proof. Since {An}n ∼σ (0, G), then {0n}n (sequence of null matrices) is an a.c.s for {An}n,
this means (by De�nition 4.3.1) that we can write, for every m su�ciently large, m ∈ N

(4.18) An = 0n +Rn,m +Nn,m for all n > nm,

with
Rank(Rn,m) ≤ dnc(m), ∥Nn,m∥ ≤ ω(m),

where nm, c(m) and ω(m) depend only on m and, moreover,

lim
m→∞

ω(m) = 0, lim
m→∞

c(m) = 0.

Now consider the matrix AnQn; from (4.18) we obtain

AnQn = 0n +Rn,mQn +Nn,mQn for all n > nm,

with

Rank(Rn,mQn) ≤ min{Rank(Rn,m), Rank(Qn)} ≤ Rank(Rn,m) ≤ dnc(m),

∥Nn,mQn∥ ≤ ∥Nn,m∥∥Qn∥ ≤Mω(m),

where
lim

m→∞
ω(m) = 0, lim

m→∞
c(m) = 0,

then {0n}n is an a.c.s for the sequence {AnQn}n and, by Proposition 4.3.1,
{AnQn}n ∼σ (0, G).

4.3.2 Singular value distribution for the g-Toeplitz sequences

As stated in formula (4.8), the matrix Tn,g can be written as

(4.19) Tn,g = [TnẐn,g|Tn,g] = [TnẐn,g|0] + [0|Tn,g].

To �nd the distribution in the singular value sense of the sequence {Tn,g}n, the idea is

to study separately the distribution of the two sequences {[TnẐn,g|0]}n and {[0|Tn,g]}n, to
prove {[0|Tn,g]}n ∼σ (0, G), and then to apply Proposition 4.3.2.
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Singular value distribution for the sequence {[TnẐn,g|0]}n

Since TnẐn,g ∈ Cn×µg and [TnẐn,g|0] ∈ Cn×n, the matrix [TnẐn,g|0] has n−µg singular values

equal to zero and the remaining µg equal to those of TnẐn,g; to study the distribution in the
singular value sense of this sequence of non-square matrices, we use Lemma 4.3.1 : consider
the g-Toeplitz matrix "truncated" T̂n = TnẐn,g, where the elements of the Toeplitz matrix
Tn(f) = [ar−c]

n−1
r,c=0 are the Fourier coe�cients of a function f in L1(Q), Q = (−π, π), then

we have

(4.20) T̂ ⋆
n,gT̂n,g = (Tn(f)Ẑn,g)

⋆Tn(f)Ẑn,g = Ẑ⋆
n,gTn(f)

⋆Tn(f)Ẑn,g = Ẑ⋆
n,gTn(f̄)Tn(f)Ẑn,g.

We provide in detail the analysis in the case where f ∈ L2(Q). The general setting in which
f ∈ L1(Q) can be obtained by approximation and density arguments as done in [125]. From
Proposition 4.3.3, if f ∈ L2(Q) ⊂ L1(Q) (that is, |f |2 ∈ L1(Q)), then {Tn(f̄)Tn(f)}n ∼σ

(|f |2, Q). Consequently, for every m su�ciently large, m ∈ N, the use of Proposition 4.3.1
implies

Tn(f̄)Tn(f) = Tn(|f |2) +Rn,m +Nn,m for all n > nm,

with
Rank(Rn,m) ≤ n · c(m), ∥Nn,m∥ ≤ ω(m),

where nm ≥ 0, c(m) and ω(m) depend only on m and, moreover,

lim
m→∞

ω(m) = 0, lim
m→∞

c(m) = 0.

Therefore (4.20) becomes

T̂ ⋆
n,gT̂n,g = Ẑ⋆

n,g(Tn(|f |2) +Rn,m +Nn,m)Ẑn,g

= Ẑ⋆
n,gTn(|f |2)Ẑn,g + Ẑ⋆

n,gRn,mẐn,g + Ẑ⋆
n,gNn,mẐn,g

= Ẑ⋆
n,gTn(|f |2)Ẑn,g + R̂n,m + N̂n,m,

that is,

T̂ ⋆
n,gT̂n,g = Ẑ⋆

n,gTn(|f |2)Ẑn,g + R̂n,m,g + N̂n,m,g(4.21)

(4.22) Rank(R̂n,m,g) ≤ min{Rank(Z̆n,m), Rank(Rn,m)} ≤ Rank(Rn,m,g) ≤ n.c(m),

(4.23) ∥N̂n,m,g∥ ≤ 2∥Z̆n,g∥∥Nn,m∥ ≤ 2ω(m),

and
lim

m→∞
c(m) = 0, lim

m→∞
ω(m) = 0,

where in (4.22) and (4.23), Z̆n,m = [Ẑn,m|0] ∈ Cn×n. In order words, Z̆n,m is the matrix

Ẑn,m supplemented by an appropriate number of zero columns in order to make it square.

Furthermore, it is worth noticing that ∥Ẑn,m∥ = ∥Ẑ⋆
n,m∥ = 1, because Ẑn,m is a submatrix of

the identity: we have used the latter relation in (4.23).

Now, consider the matrix Ẑ⋆
n,gTn(|f |2)Ẑn,g ∈ Cµg×µg , µg = ⌈n

g
⌉, f ∈ L2(Q) ⊂ L1(Q) (so

|f |2 ∈ L1(Q)). From (4.8), setting Tn = Tn(|f |2) = [ãr−c]
n−1
r,c=0, with ãj being the Fourier
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coe�cients of |f |2, and setting Tn,g the g-Toeplitz generated matrix by the same function
|f |2, it is immediate to observe

(4.24) TnẐn,g = T̂n,g ∈ Cn×µg , (T̂n,g)r,c = ãr−gc,

for r = 0, 1, ..., n− 1 and c = 0, 1, ..., µg − 1. If we compute Ẑ⋆
n,gT̂n,g ∈ Cµg×µg , where Ẑ⋆

n,g =

[δc−gr], r = 0, 1, ..., n− 1 and c = 0, 1, ..., µg − 1, (δk de�ned as in (4.9)) and Ẑ⋆
n,g ∈ Cµg×n is

the submatrix of Z⋆
n,g obtained by considering only the µg �rst rows. For r, c = 0, 1, ..., µg−1,

we obtain

(Ẑ⋆
n,gTn(|f |2)Ẑn,g)r,c = (Ẑ⋆

n,gT̂n,g)r,c

=
n−1∑
l=0

(Ẑ⋆
n,g)r,l(T̂n,g)l,c

=
(a)

(T̂n,g)gr,c

=
from (4.24)

ãgr−gc

where (a) follows from the existence of a unique l ∈ {0, 1, ..., n − 1} such that l − gr ≡
0(modn), that is l ≡ gr(modn), and, since 0 ≤ gr ≤ n− 1, we �nd l = gr. Therefore

Ẑ⋆
n,gTn(|f |2)Ẑn,g = [ãgr−gc]

n−1
r,c=0 = Tµg(|̂f |(2))

where |̂f |(2) ∈ L1(Q) is given by

(4.25) |̂f |(2)(x) = 1

g

g−1∑
j=0

|f |2
(
x+ 2jπ

g

)
,

(4.26) |f |2(x) =
∞∑

k=−∞

ãke
îkx.

Proof. (of relation (4.25)). We denote by aj the Fourier coe�cients of |̂f |(2)(x). We want to
show that for r, c = 0, 1, ..., µg−1, ar−c = ãgr−gc, where ãk are the Fourier coe�cients of |f |2.
From (3.2), (4.25) and (4.26), we have

ar−c =
1

2π

∫ π

−π

1

g

g−1∑
j=0

∞∑
k=−∞

ãke
îk(x+2πj

g
)e−î(r−c)xdx

=
1

2πg

∫ π

−π

∞∑
k=−∞

ãk

(
g−1∑
j=0

eî
2πkj
g

)
eî

kx
g e−î(r−c)xdx.

Some remarks are in order:

• if k is a multiple of g, i.e., k = gt for some value of t, then we have that

g−1∑
j=0

eî
2πkj
g =

g−1∑
j=0

eî
2πgtj

g =

g−1∑
j=0

eî2πtj =

g−1∑
j=0

1 = g,
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• if k is not a multiple of g, then e
î2πk
g ̸= 1 and therefore

g−1∑
j=0

eî
2πkj
g =

g−1∑
j=0

(
eî

2πk
g

)j
is a �nite

geometric series whose sum is given by

g−1∑
j=0

(
eî

2πk
g

)j
=

1− eî
2πgk

g

1− eî
2πk
g

= 0.

Finally, taking into account the latter statements and recalling that 1
2π

∫ π

−π
eîlxdx ={

1 if l = 0
0 otherwise , we �nd

ar−c =
1

2πg

∫ π

−π

∞∑
t=−∞

ãgtge
î gtx

g e−î(r−c)xdx

=
∞∑

t=−∞

ãgt
1

2π

∫ π

−π

eîx(t−(r−c))dx

= ãg(r−c)

In summary, from (4.21), one has

T̂ ∗
n,gT̂n,g = Tµg(|̂f |(2)) + R̂n,m,g + N̂n,m,g,

with {Tµg(|̂f |(2))}n ∼σ (|̂f |(2), Q). We recall that, owing (4.25), the relation |f |2 ∈ L1(Q) im-

plies |̂f |(2) ∈ L1(Q). Consequently Proposition 4.3.1 implies that {T̂ ⋆
n,gT̂n,g}n ∼σ (|̂f |(2), Q).

Clearly |̂f |(2) ∈ L1(Q) is equivalent to write

√
|̂f |(2) ∈ L2(Q) : therefore, from Lemma 4.3.1,

we infer {T̂n,g}n ∼σ (

√
|̂f |(2), Q).

Now, as mentioned at the beginning of this subsection, by De�nition 4.2.1, we have

lim
n→∞

1

n

n∑
j=1

F
(
σj([T̂n,g|0])

)
= lim

n→∞

1

n

µg∑
j=1

F
(
σj([T̂n,g|0])

)
+ lim

n→∞

1

n

n∑
j=µg+1

F (0)

= lim
n→∞

µg

n

µg∑
j=1

F
(
σj([T̂n,g|0])

)
µg

+ lim
n→∞

n− µg

n
F (0)

=
1

2πg

∫ π

−π

F

(√
|̂f |(2)(x)

)
dx+

(
1− 1

g

)
F (0),

which results to be equivalent to the following distribution formula

{[TnẐn,g|0]}n ∼σ (θ,Q× [0, 1]),(4.27)

where

θ(x, t) =

{ √
|̂f |(2)(x) for t ∈ [0, 1

g
]

0 for t ∈ (1
g
, 1].

(4.28)
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Singular value distribution for the sequence {[0|Tn,g]}n

In perfect analogy with the case of matrix [TnẐn,g|0], we can observe that Tn,g ∈ Cn×(n−µg)

and [0|Tn,g] ∈ Cn×n. Therefore the matrix [0|Tn,g] has µg singular values equal to zero and
the remaining n − µg equal to those of Tn,g. However, in this case we have additional dif-

�culties with respect to the matrix T̂n,g = TnẐn,g, because it is not always true that Tn,g

can be written as TnZn,g, where Zn,g is the matrix obtained by considering the n − µg last
columns of Zn,g. Indeed, in Tn,g there are Fourier coe�cients with index, in modulus, greater
than n : the Toeplitz matrix Tn = [ar−c]

n−1
r,c=0 has coe�cients aj with j ranging from 1− n to

n− 1, while the g-Toeplitz matrix Tn,g = [ar−gc]
n−1
r,c=0 has an−1 as coe�cient of maximum in-

dex and a−g(n−1) as coe�cient of minimum index, and, if g ≥ 2, we have −g(n−1) < −(n−1).
Even if we take the Toeplitz matrix Tn, which has as its �rst column the last column

of Tn,g and the other generated according to the rule (Tn)j,k = aj−k, it is not always true
that we can write Tn,g = TnP for a suitable submatrix P of a permutation matrix, indeed,
if, the matrix Tn = [βr−c]

n−1
r,c=0 has as �rst column the �rst column of Tn,g, we �nd that β0 =

(Tn,g)0,0 = (Tn,g)0,µg = a−gµg . As a consequence, Tn has β−(n−1) = a−(n−1)−gµg as coe�cient
of minimum index, while Tn,g has a−g(n−1) as coe�cient of minimum index. Therefore

−(n− 1)g − (−(n− 1)− gµg) = (1− g)(n− 1) + gµg; n ≤ gµg = g

⌈
n

g

⌉
≤ (n+ g − 1)

≤ (1− g)(n− 1) + n+ g − 1

= (1− g)(n− 1) + (n− 1) + g

= (2− g)(n− 1) + g < 0 for g > 2 and n > 4.

Thus, if g > 2 and n > 4 we have −(n − 1)g < −(n − 1) − gµg and the coe�cient of the
minimum index a−g(n−1) of Tn,g is not contained in the matrix Tn that has a−(n−1)−gµg as
coe�cient of minimum index.

Then we proceed in another way: in the �rst column of Tn,g ∈ Cn×(n−µg) (and consequently
throughout the matrix) there are only coe�cients with index< 0, indeed: coe�cient with the
largest index of Tn,g is (Tn,g)n−1,0 = (Tn,g)n−1,µg = an−1−gµg and n− 1− gµg ≤ n− 1− n < 0
and the coe�cient with smallest index is (Tn,g)0,n−µg−1 = (Tn,g)0,n−µg−1+µg = (Tn,g)0,n−1 =

a−g(n−1). Consider therefore a Toeplitz matrix Tdn,g of size dn,g with dn,g >
g(n−1)

2
+1, de�ned

in this way:

(4.29) Tdn,g =


a−dn,g+1 a−dn,g a−dn,g−1 . . . a−2dn,g+2

a−dn,g+2 a−dn,g+1
. . . . . . a−2dn,g+3

...
. . . . . . . . .

...

a−1 a−2
. . . . . . a−dn,g

a0 a−1 a−2 . . . a−dn,g+1

 = [ar−c−dn,g+1]
dn,g−1
r,c=0 .

Since the coe�cient with smallest index is a−2dn,g+2, we �nd

−2dn,g + 2 < −2
(
g(n− 1)

2
+ 1

)
+ 2 = −g(n− 1)− 2 + 2 = −g(n− 1).

As a consequence, we obtain that all the coe�cients of Tn,g are "contained" in the matrix
Tdn,g . In particular, if

dn,g > (g − 1)(n− 1) + 2,

(this condition ensures dn,g >
g(n−1)

2
+1, that all the subsequent inequalities are correct, and

that the size of all the matrices involved are non-negative), then it can be shown that
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Tn,g = [01|In|02]Tdn,gZdn,g ,g(4.30)

where Zdn,g ,g ∈ Cdn,g×(n−µg) is the matrix of Zdn,g ,g de�ned by considering only the n−µg

�rst columns and [01|In|02] ∈ Cn×dn,g is a block matrix with 01 ∈ Cn×(dn,g−gµg−1) and
02 ∈ Cn×(gµg−n+1).

Proof. (of relation (4.30)). First we observe that:

for r = 0, 1, ..., n− 1 and s = 0, 1, ..., n− µg − 1, we have:

(4.31) (Tn,g)r,s = (Tn,g)r,s+µg = ar−gs−gµg ;

for r = 0, 1, ..., n− 1 and s = 0, 1, ..., dn,g − 1, we have:

(4.32) ([01|In|02])r,s =
{

1 if s = r + dn,g − gµg − 1,
0 otherwise.

for r, s = 0, 1, ..., dn,g − 1 we have:

(Tdn,g)r,s = ar−s−dn,g+1;

for r = 0, 1, ..., dn,g − 1 and s = 0, 1, ..., n− µg − 1, we have:

(Zdn,g ,g)r,s = δr−gs.

Since Tdn,gZdn,g ,g ∈ Cdn,g×(n−µg), for r = 0, 1, ..., dn,g − 1 and s = 0, 1, ..., n − µg − 1, it
holds

(Tdn,gZdn,g ,g)r,s =

dn,g−1∑
l=0

(Tdn,g)r,l(Zdn,g ,g)l,s

=

dn,g−1∑
l=0

δl−gsar−l−dn,g+1

=
(a)

ar−gs−dn,g+1,

so,

(4.33) (Tdn,gZdn,g ,g)r,s = ar−gs−dn,g+1,

where (a) follows from the existence of a unique l ∈ {0, 1, ..., dn,g − 1} such that l − gs ≡
0(moddn,g), that is, l ≡ gs(moddn,g), and, since 0 ≤ gs ≤ dn,g − 1, we have l = gs. Since
[01|In|02]Tdn,gZdn,g ,g ∈ Cn×(n−µg), for r = 0, 1, ..., n− 1 and s = 0, 1, ..., n− µg − 1, we �nd

([01|In|02]Tdn,gZdn,g ,g)r,s =

dn,g−1∑
l=0

([01|In|02])r,l(Tdn,gZdn,g ,g)l,s

=
(d)

ar+dn,g−gµg−1−gs−dn,g+1

= ar−gµg−gs

=
from(4.31)

(Tn,g)r,s,

where (d) follows from (4.33), (Tdn,gZdn,g ,g)l,s = al−gs−dn,g+1, and from the following fact:
using (4.32), we �nd ([01|In|02])r,l = 1 if and only if l = r + dn,g − gµg − 1.
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We can now observe immediately that the matrix Tdn,g de�ned in (4.29) can be written
as

Tdn,g = J ·Hdn,g(4.34)

where J is the "�ip" permutation matrix of dimension dn,g × dn,g:

J =

[
1

1· · ·
1

]
,

that is, (J)s,t = 1 if and only if s + t = dn,g + 1, and Hdn,g is the Hankel matrix of
dimension dn,g × dn,g.

Hdn,g =


a0 a−1 a−2 . . . a−dn,g+1
a−1 a−2 . . . . . . a−dn,g

...
...

...
...

...
a−dn,g+2 a−dn,g+1 . . . . . . a−2dn,g+3
a−dn,g+1 a−dn,g a−dn,g−1 . . . a−2dn,g+2

 = [a−r−c]
dn,g−1
r,c=0 .

If f(x) ∈ L1(Q), Q = (−π, π), is the generating function of the Toeplitz matrix Tn =
Tn(f) = [ar−c]

n−1
r,c=0 in (4.8), where the k-th Fourier coe�cient of f is ak, then f(−x) ∈ L1(Q)

is the generating function of the Hankel matrix Hdn,g = [a−r−c]
dn,g−1
r,c=0 ; by invoking Theorem

6, page 161 of [59], the sequence of matrices {Hdn,g}n is distributed in the singular value
sense as the zero function: {Hdn,g}n ∼σ (0, Q). From Lemma 4.3.2, by (4.34), since J is a
unitary matrix, we have {Tdn,g}n ∼σ (0, Q). as well.

Consider the decomposition in (4.30) :

Tn,g = [01|In|02]Tdn,gZdn,g ,g = Qdn,gTdn,gZdn,g ,g.

If we complete the matrix Qdn,g ∈ Cn×dn,g and Zdn,g ,g ∈ Cdn,g×(n−µg) by adding an appropriate
number of zero rows and columns, respectively, in order to make it square

Qdn,g =
[
Qdn,g

0

]
∈ Cdn,g×dn,g ,

Zdn,g = [ Zdn,g 0 ] ∈ Cdn,g×dn,g ,

then it is immediately to note that

Qdn,gTdn,gZdn,g ,g =
[
Tn,g 0
0 0

]
:= Tdn,g ∈ Cdn,g×dn,g .

From Lemma 4.3.3, since ∥Qdn,g∥ = ∥Zdn,g∥ = 1 (indeed, there are both "incomplete"
permutation matrices), and since {Tdn,g}n ∼σ (0, Q), we infer that {Tdn,g}n ∼σ (0, Q).

Recall that Tdn,g ∈ Cdn,g×dn,g with dn,g > (g − 1)(n− 1) + 2; then we can always choose
dn,g such that gn = dn,g > (g − 1)(n− 1) + 2 (if n, g ≥ 2). Now, since {Tdn,g}n ∼σ (0, Q), it
holds that the sequence {Tdn,g}n is weakly clustered at zero in the singular value sense, i.e,
∀ϵ > 0,

(4.35) ♯{j : σj(Tdn,g) > ϵ} = o(dn,g) = o(gn) = o(n).

The matrix Tdn,g is a block matrix that can be written as

Tdn,g =
[
Tn,g 0
0 0

]
=
[
[Tn,g|0] 0

0 0

]
,
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where Tn,g ∈ Cn×(n−µg) and [Tn,g|0] ∈ Cn×n. By the singular value decomposition we obtain

Tdn,g =
[
[Tn,g|0] 0

0 0

]
=
[
U1Σ1V

⋆
1 0

0 U20V
⋆
2

]
=
[
U1 0
0 U2

] [
Σ1 0
0 0

] [
V1 0
0 V2

]⋆
,

that is, the singular values of Tdn,g that are di�erent from zero are the singular values of
[Tn,g|0] ∈ Cn×n. Thus, (4.35) can be written as follows: ∀ϵ > 0,

♯{j : σj([Tn,g|0]) > ϵ} = o(dn,g) = o(gn) = o(n).

The latter relation means that the sequence {[Tn,g|0]}n is weakly clustered at zero in the
singular value sense, and hence {[Tn,g|0]}n ∼σ (0, Q). If we consider the matrix

Ĝ =
[
0 In−µg

0 0

]
∈ Cn×n,

where In−µg is the identity matrix of dimension (n−µg)× (n−µg), then [Tn,g|0]Ĝ = [0|Tn,g],

and since ∥Ĝ∥ = 1 and {[Tn,g|0]}n ∼σ (0, Q), from Lemma 4.3.3 we �nd

{[0|Tn,g]}n ∼σ (0, Q).(4.36)

In conclusion, from (4.19), (4.27) and (4.36), using Proposition 4.3.2 with G = Q× [0, 1],
we obtain

{Tn,g}n ∼σ (θ,G),

where θ is de�ned in (4.28). Notice that for g = 1 the symbol θ(x, t) coincides with |f |(x) on
the extended domain Q × [0, 1]. Hence, the Szegö-Tilli-Tyrtyshnikov-Zamarashkin result is
found as a particular case. Indeed: θ(x, t) = |f |(x) does not depend on t and therefore this
additional variable can be suppressed i.e. {Tn,g}n ∼σ (f,Q) with Tn,g = Tn(f). The fact that
the distribution formula is not unique should not surprise since this phenomenon is inherent
to the measure theory because any measure-preserving exchange function is a distribution
function if one representative of the class is.

4.4 Some remarks on multigrid methods

In the design of multigrid methods for large positive de�nite linear systems one of the key
points is to maintain the structure (if any) of the origin matrix in the lower levels. This
means that at every recursion level the new projected linear system should retain the main
properties of the origin matrix (e.g bandedness, the same level of conditioning, the same
algebra/Toeplitz/graph structure etc...). Here for the sake of simplicity the example that
has to be considered is the one-level circulant case. Following [1, 141], if An = Cn is a
positive circulant matrix of size n with n power of 2, then the projected matrix Ak with
k = n/2 is de�ned as

(4.37) Ak = Z̃T
n,2P

⋆
nAnPnZ̃n,2,

where Pn is an additional circulant matrix. It is worth noticing that the structure is kept
since for every circulant Pn the matrix Ak is a circulant matrix of size k = n/2. The features
of the speci�c Pn have to be designed in such a way that the convergence speed of the
related multigrid is as high as possible (see [61, 1] for a general strategy). We observe that
the eigenvalues of Ak are given by

(4.38)
1

2

1∑
l=0

g

(
xj + 2πl

2

)
, xj =

2πj

k
, j = 0, 1, ..., k − 1, k = n/2,
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where g is the polynomial associated with the circulant matrix P ⋆
nAnPn in the sense of

subsection 3.3.3. Therefore the singular values of (P ⋆
nAnPn)

1/2Z̃n,2 are given by

(4.39)
1√
2

√√√√ 1∑
l=0

g

(
xj + 2πl

2

)
, xj =

2πj

k
, j = 0, 1, ..., k − 1, k = n/2.

Notice that the latter formula is a special instance of

(4.40) σj(Cn,g) =

√√√√(n,g)−1∑
l=0

|p|2
(
xj + 2πl

(n, g)

)
, xj =

2πj

ng

, j = 0, 1, ..., ng − 1

for |p|2 = g (g is necessarily nonnegative since it can be written as |q|2f where q is the
polynomial associated with Pn and f the nonnegative polynomial associated with An), for
g = 2 and n even number so that (n, 2) = 2. Therefore, according to (4.40), the numbers

in (4.39) identify the nontrivial singular values of the 2-circulant matrix (P ⋆
nAnPn)

1/2Z̃n,2

up to a scaling factor. In order words, g-circulant matrices arise naturally in the design of
fast multigrid solvers for circulant linear systems and, along the same line g-Toeplitz ma-
trices arise naturally in the design of fast multigrid solvers for Toeplitz linear systems; see
[61, 1, 126].

Conversely, we now can see clearly that formula (4.40) furnishes a wide generalization of
the spectral analysis of the projected matrices, by allowing a higher degree of freedom: we
can choose n divisible by g with g ̸= 2, we can choose n not divisible by g. Such a degree
of freedom is not just academic, but could be exploited for devising optimally convergence
multigrid solvers also in critical cases emphasized e.g. in [1, 126]. In particular, if x0 is an
isolated zero of f (the nonnegative polynomial related to An = Cn) and also π + x0 is a
zero for the same function, then due to special symmetries, the associated multigrid (or even
two-grid) method cannot be optimal. In other words, for reaching a preassigned accuracy, we
cannot expect a number of iterations independent of the order n. However these pathological
symmetries are due to the choice of g = 2, so that a choice of a projector as PnZ̃n,g for a
di�erent g ̸= 2 and a di�erent n could completely overcome the latter drawback.

4.5 Generalizations
First of all, we observe that the requirements that the symbol f is square integrable can be
removed. In [125] it is proven that the singular value distribution of {Tn(f)Tn(g)}n is given
by h = fg with f, g being just Lebesgue integrable and with h that is only measurable and
therefore may fail to be Lebesgue integrable. This fact is su�cient for extending the proof
of relation {Tn,g}n ∼σ (θ,Q× [0, 1]) to the case where θ(x, t) is de�ned as in (4.28) with the
original symbol f ∈ L1.

Now we consider the general multilevel case. When g is a positive vector, we have

(4.41) {Tn,g}n ∼σ (θ,Qd × [0, 1]d)

where

θ(x, t) =

{ √
|̂f |(2)(x) if t ∈ [0, 1/g],

0 for t ∈ (1/g, e],
(4.42)

with
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(4.43) |̂f |(2)(x) = 1

ĝ

g−e∑
j=0

|f |2
(
x+ 2πj

g

)
and where all the arguments are modulus 2π and all the operations are intended compo-
nentwise, that is t ∈ [0, 1

g
] means that tk ∈ [0, 1

gk
], k = 1, 2, ..., d and t ∈ (1

g
, e] means that

tk ∈ ( 1
gk
, 1], k = 1, 2, ..., d. The writing x+2πj

g
de�nes the d-dimensional vector whose k-th

component is
xj+2πjk

gk
, k = 1, 2, ..., d and ĝ = g1g2...gd.

4.6 Examples of g-Toeplitz matrices when some of the
entries of g vanish

We start this subsection with a brief digression on multilevel matrices. A d-level matrix A
of dimension n̂× n̂ with n = (n1, n2, ..., nd) and n̂ = n1n2...nd can be viewed as a matrix of
dimension n1 × n1 in which each element is a block of dimension n2n3...nd × n2n3...nd; in
turn, each block of dimension n2n3...nd × n2n3...nd can be viewed as a matrix of dimension
n2 × n2 in which each element is a block of dimension n3n4...nd × n3n4...nd, and so on. So
we can say that n1 is the most "outer" dimension of the matrix A and nd is the "inner"
dimension. If we multiply by an appropriate permutation matrix P the d-level matrix A,
we can exchange the "order of dimensions" of A, namely P TAP becomes a matrix again
of dimension n̂ × n̂ but with n = (np(1), np(2), ..., np(d)) and n̂ = np(1)np(2)...np(d) = n1n2...nd

(where p is a permutation of d elements) and np(1) is the most "outer" dimension of the
matrix A and np(d) is the most "inner" dimension.

This trick helps us to understand what happens to the singular values of g-Toeplitz d-level
matrices, especially when some of the entries of the vector g are zero; indeed: as we observed
in subsection 4.2.1, if g = 0, the d-level g-Toeplitz matrix A is a block matrix with constant
blocks on each row, so if we order the vector g (which has some components equal to zero) so
that the components equal to zero are in the top positions, g = (0, ..., 0, gk, ..., gd), the matrix
P TAP (where P is the permutation matrix associated with p) becomes a block matrix with
constant blocks on each row and with blocks of dimension nknk+1...nd × nknk+1...nd; with
this "new" structure, formula (4.6) is even more intuitively understandable, as we shall see
later in the examples.

Lemma 4.6.1. Let A be a 2-level Toeplitz matrix of dimension n̂× n̂ with n = (n1, n2) and
n̂ = n1n2,

A =
[
[a(j1−k1,j2−k2)]

n2−1
j2,k2=0

]n1−1

j1,k1=0
.

There exists a permutation matrix P such that

P TAP =
[
[a(j1−k1,j2−k2)]

n1−1
j1,k1=0

]n2−1

j2,k2=0
.

Example 4.6.1. Let (n1, n2) = (2, 3) and consider the 2-level Toeplitz matrix A of dimension
6× 6

A =


a(0,0) a(0,−1) a(0,−2)
a(0,1) a(0,0) a(0,−1)
a(0,2) a(0,1) a(0,0)

a(−1,0) a(−1,−1) a(−1,−2)
a(−1,1) a(−1,0) a(−1,−1)
a(−1,2) a(−1,1) a(−1,0)

a(1,0) a(1,−1) a(1,−2)
a(1,1) a(1,0) a(1,−1)
a(1,2) a(1,1) a(1,0)

a(0,0) a(0,−1) a(0,−2)
a(0,1) a(0,0) a(0,−1)
a(0,2) a(0,1) a(0,0)

 .
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This matrix can be viewed as a matrix of dimension 2 × 2 in which each element is a block
of dimension 3× 3. If we take the permutation matrix

P =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,
then it is plain to see that

P TAP =


a(0,0) a(−1,0)
a(1,0) a(0,0)

a(0,−1) a(−1,−1)
a(1,−1) a(0,−1)

a(0,−2) a(−1,−2)
a(1,−2) a(0,−2)

a(0,1) a(−1,1)
a(1,1) a(0,1)

a(0,0) a(−1,0)
a(1,0) a(0,0)

a(0,−1) a(−1,−1)
a(1,−1) a(0,−1)

a(0,2) a(−1,2)
a(1,2) a(0,2)

a(0,1) a(−1,1)
a(1,1) a(0,1)

a(0,0) a(−1,0)
a(1,0) a(0,0)

 ,
and now P TAP can be naturally viewed as a matrix of dimension 3×3 in which each element
is a block of dimension 2× 2.

Corollary 4.6.1. Let A be a d-level Toeplitz matrix of dimension n̂×n̂ with n = (n1, n2, ..., nd)
and n̂ = n1n2...nd,

A =
[[
...[a(j1−k1,j2−k2,...,jd−kd)]

nd−1
jd,kd=0...

]n2−1

j2,k2=0

]n1−1

j1,k1=0
.

For every permutation p of d elements, there exists a permutation matrix P such that

P TAP =

[[
...[a(j1−k1,j2−k2,...,jd−kd)]

np(d)−1

jp(d),kp(d)=0...
]np(2)−1

jp(2),kp(2)=0

]np(1)−1

jp(1),kp(1)=0

.

Remark 4.6.1. Lemma 4.6.1 and Corollary 4.6.1 also apply to d-level g-Toeplitz matrices.

Now, let g = (g1, g2, ...gd) be a d-dimensional vector of nonnegative integers and t =
♯{j : gj = 0} be the number of zero entries of g. If we take a permutation p of d elements
such that gp(1) = gp(2) = ... = gp(t) = 0, (that is, p is a permutation that moves all the zero
components of the vector g in the top positions), then it is easy to prove that formula (4.6)
remains the same for the matrix P TAP (where P is the permutation matrix associated with
p) but with n[0] = (np(1), np(2), ..., np(t)), and where Tj is a d

+-level g+-Toeplitz matrix, with
g+ = (gp(t+1), gp(t+2), ..., gp(d)), of partial size n[> 0] = (np(t+1), np(t+2), ..., np(d)), and whose
expression is

Tj =

[[
...[a(r−g◦s)]

np(d)−1

rp(d),sp(d)=0...
]np(t+2)−1

rp(t+2),sp(t+2)=0

]np(t+1)−1

rp(t+1),sp(t+1)=0

,

with (rp(1), rp(2), ..., rp(t)) = j. Obviously Sval(A) = Sval(P TAP ).
We recall that if B is a matrix of size n × n positive semide�nite, that is B⋆ = B and

x⋆Bx ≥ 0 ∀x ̸= 0, then Eig(B)=Sval(B). Moreover, if B = UΣU⋆ is a SVD for B (which
coincides with the Schur decomposition of B) with Σ = diag

j=1,...,n
(σj), then

(4.44) B1/2 = UΣ1/2U⋆,

where Σ1/2 = diag
j=1,...,n

(
√
σj).

We proceed with a detailed example: a 3-level g-Toeplitz matrix with g = (g1, g2, g3) =
(0, 1, 2) which helps us to understand what happens if the vector g is not strictly positive.
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Example 4.6.2. Consider a 3-level g-Toeplitz matrix A where g = (g1, g2, g3) = (0, 1, 2)

A =
[[
[a(r1−0·s1,r2−1·s2,r3−2s3)]

n3−1
r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

=
[[
[a(r1,r2−s2,r3−2s3)]

n3−1
r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1=0
.

The procedure is the same as the example 3.5.1 in chapter 3 for an g-circulant matrix, but
in this case we do not need to permute the vector g since the only component equal to zero
is already in �rst position. For r1 = 0, 1, ..., n1 − 1, let us set

Tr1 =
[
[a(r1,r2−s2,r3−2s3)]

n3−1
r3,s3=0

]n2−1

r2,s2=0
,

then Tr1 is a 2-level g+-Toeplitz matrix with g+ = (1, 2) and of partial sizes n[> 0] = (n2, n3)
and

A =

 T0 T0 . . . T0
T1 T1 . . . T1
...

...
...

...
Tn1−1 Tn1−1 . . . Tn1−1

 .
The latter is a block matrix with constant blocks on each row. From formula (4.1), the singular
values of A are the square root of the eigenvalues of A⋆A :

A⋆
nAn =


T ⋆
0 T ⋆

1 ... T ⋆
n1−1

T ⋆
0 T ⋆

1 ... T ⋆
n1−1

...
...

...
T ⋆
0 T ⋆

1 ... T ⋆
n1−1


 T0 T0 ... T0

T1 T1 ... T1
:. :.

Tn1−1 Tn1−1 ... Tn1−1



=



n1−1∑
j=0

T ⋆
j Tj

n1−1∑
j=0

T ⋆
j Tj ...

n1−1∑
j=0

T ⋆
j Tj

n1−1∑
j=0

T ⋆
j Tj

n1−1∑
j=0

T ⋆
j Tj ...

n1−1∑
j=0

T ⋆
j Tj

:. :. :. :.
n1−1∑
j=0

T ⋆
j Tj

n1−1∑
j=0

T ⋆
j Tj ...

n1−1∑
j=0

T ⋆
j Tj


=

[
1 ... 1
:. :. :.
1 ... 1

]
⊗

n1−1∑
j=0

T ⋆
j Tj

= Jn1 ⊗
n1−1∑
j=0

T ⋆
j Tj.

Therefore

(4.45) Eig(A⋆A) = Eig

(
Jn1 ⊗

n1−1∑
j=0

T ⋆
j Tj

)
,

where

(4.46) Eig(Jn1) = {0, n1},
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because Jn1 is a matrix of rank 1, so it has all eigenvalues equal to zero except one eigenvalue
equal to trace(Jn1) = n1. If we put

λk = λk

(
n1−1∑
j=0

T ⋆
j Tj

)
, k = 0, 1, ...., n3n2 − 1,

by exploiting basic properties of the tensor product and taking into consideration (4.45) and
(4.46) we �nd

(4.47) λk(A
⋆A) = n1λk, k = 0, 1, ...., n3n2 − 1,

(4.48) λk(A
⋆A) = 0, k = n3n2, n3n2 + 1, ...., n3n2n1 − 1.

From (4.47), (4.48) and (4.1), one obtains that the singular values of A are given by

(4.49) σk(A) =
√
n1λk, k = 0, 1, ...., n3n2 − 1,

(4.50) σk(A) = 0, k = n3n2, n3n2 + 1, ...., n3n2n1 − 1.

and, since
n1−1∑
j=0

T ⋆
j Tj is a positive semide�nite matrix, from (4.44) we can write

σk(A) =
√
n1σ̃k, k = 0, 1, ...., n3n2 − 1,

σk(A) = 0, k = n3n2, n3n2 + 1, ...., n3n2n1 − 1.

where σ̃k denotes the generic singular value of

(
n1−1∑
j=0

T ⋆
j Tj

)1/2

.

Regarding the distribution in the sense of singular values, let F ∈ C0(R+
0 ), continuous

over R+
0 with bounded support, then there exists a ∈ R+ such that

(4.51) |F (x)| ≤ a ∀x ∈ R+
0 .

From formula (4.2) we have

Σσ(F,An) =
1

n1n2n3

n1n2n3−1∑
j=0

F (
√
n1σ̃j)

=
n2n3(n1 − 1)F (0)

n1n2n3

+
1

n1n2n3

n2n3−1∑
j=0

F (
√
n1σ̃j)

=

(
1− 1

n1

)
F (0) +

1

n1n2n3

n2n3−1∑
j=0

F (
√
n1σ̃j)

According to (4.51), we �nd

−an2n3 ≤
n2n3−1∑
j=0

F (
√
n1σ̃j) ≤ an2n3.
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Therefore

−a
n1

≤ 1

n1n2n3

n2n3−1∑
j=0

F (
√
n1σ̃j) ≤

a

n1

,

so that (
1− 1

n1

)
F (0) +

−a
n1

≤ Σσ(F,An) ≤
(
1− 1

n1

)
F (0) +

a

n1

.

Now recalling that the writing lim
n→∞

min
1≤j≤3

nj =∞, we obtain

F (0) ≤ lim
ñ→∞

Σσ(F,An) ≤ F (0)

which implies
lim
ñ→∞

Σσ(F,An) = F (0)

Whence
{An} ∼σ (0, G)

for any domain G satisfying the requirements of De�nition 4.2.1.

Conclusion
In this chapter We have studied the distribution in the singular value sense of g-Toeplitz
sequences associated with a given integrable symbol. The generalization to the multilevel
block setting has been sketched together with some intriguing relationship with the design
of multigrid procedures for structured linear systems. In chapter 5, we will recall some
preliminary notions of construction of Krylov Space Methods and will study in Chapter 6
powerful methods of solving of large structured systems of linear equations. More precisely,
the Krylov Space Methods and a general idea of Multigrid Methods.
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Chapter Five

Preliminary Notions of
Construction of the Krylov Space

Methods

Throughout this chapter, we present general ideas on least-squares problems, by recalling
some results of analysis based on the Newton method for the convergence of minimization
problems. The Lanczos method (see [95]) for the reduction of a Hermitian matrix to the
Tridiagonal form, which are useful for the study of Krylov space methods ends the chapter.

5.1 General idea of least-squares problems

In the following ∥x∥2 denotes the Euclidian norm ∥x∥2 :=
√
xTx where x ∈ Rn.

5.1.1 Least square problems. The Normal equations

Let a real m× n matrix A and a vector y ∈ Rm be given, and let

∥y − Ax∥22 = (y − Ax)T (y − Ax)(5.1)

be minimized as a function of x. We want to show that x ∈ Rn is a solution of the normal
equations

ATAx = ATy(5.2)

if and only if x ∈ Rn is also a minimum point for (5.1). We have the following result:

Theorem 5.1.1. [27] The linear least-squares problem

min
x∈Rn
∥y − Ax∥2

has at least one minimum point x0. If x1 is another minimum point, then Ax0 = Ax1. The
residual r := y − Ax0 is uniquely determined and satis�es the normal equation AT r = 0.
Every minimum point x0 is also a solution of the normal equations (5.2) and conversely.

Proof. Let L ⊂ Rm be the linear subspace

L = {Ax|x ∈ Rn}

which is spanned by the columns of A, and let LT be the orthogonal complement

LT := {r ∈ Rm|rT z = 0 for all z ∈ L} = {r|rTA = 0}.

Because Rm = L⊕ LT , the vector y ∈ Rm can be written uniquely in the form
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(5.3) y = s+ r, s ∈ L, r ∈ LT ,

and there is at least one x0 ∈ Rn with Ax0 = s. Because AT r = 0, x0 satis�es

ATy = AT s = ATAx0,

that is, x0 is a solution of the normal equations. Further, each solution x0 of the normal
equations is a minimum point for the problem

min
x∈Rn
∥y − Ax∥2.

To see this, let x ∈ Rn be an arbitrary vector, and set

z = Ax− Ax0, r := y − Ax0.

Then, since rT z = 0,

∥y − Ax∥22 = ∥r − z∥22 = ∥r∥22 + ∥z∥22 ≥ ∥r∥22 = ∥y − Ax0∥22,

that is, x0 is a minimum point.

If the columns of A are linearly independent, that is, if x ̸= 0 implies Ax ̸= 0, then the
matrix ATA is nonsingular (and positive de�nite). If this were not the case, there would
exist an x ̸= 0 satisfying ATAx = 0, from which

0 = xTATAx = ∥Ax∥22

would yield a contradiction, since Ax ̸= 0. Therefore the normal equations

ATAx = ATy

have a unique solution x = (ATA)−1ATy, which can be computed using the Choleski factor-
ization of ATA.

5.1.2 The use of orthogonalization in solving linear least-squares
problems

The problem of determining an x ∈ Rn which minimizes

∥y − Ax∥2, (A ∈Mm×n, m ≥ n)

can be solved using the orthogonalization techniques (for instance: Gaussian Elimination,
Gauss-Jordan algorithm and Choleski Decomposition). Let the matrix A ≡: A(0) and the
vector y ≡: y(0) be transformed by a sequence of Householder transformations Pi: A

(i) =
PiA

(i−1), y(i) = Piy
(i−1), where Pi := I−2ωiω

⋆
i , with ω

⋆
i ωi = 1 and ωi ∈ Cn. The �nal matrix

A(n) has the form

(5.4) A(n) =
[
R
0

]
with R =

[
r11 . . . r1n

. . .
...

0 rnn

]
,

since m ≥ n. Let the vector h := y(n) be the partitioned correspondingly:
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(5.5) h =
[
h1
h2

]
, h1 ∈ Rn, h2 ∈ Rm−n.

The matrix P = PnPn−1...P1, being the product of unitary matrices, is unitary itself:

P ⋆P = P ⋆
1 ...P

⋆
nPn...P1 = I,

and satis�es
A(n) = PA, h = Py.

Unitary transformations leave the Euclidian norm ∥u∥2 of a vector u invariant (∥Pu∥22 =
u⋆P ⋆Pu = u⋆u = ∥u∥22), so

∥y − Ax∥2 = ∥P (y − Ax)∥2 = ∥y(n) − A(n)x∥2.

However, from (5.4) and (5.5), the vector y(n) − A(n)x has the structure

y(n) − A(n)x =
[
h1 −Rx
h2

]
.

Hence ∥y − Ax∥2 is minimized if x is chosen so that

(5.6) h1 = Rx.

The matrix R has an inverse R−1 if and only if the columns a1, a2, ..., an of A are linearly
independent. Az = 0 for z ̸= 0 is equivalent to

PAz = 0

and therefore to
Rz = 0.

If we assume that the columns of A are linearly independent, then

h1 = Rx,

which is a triangular system, can be solved uniquely for x. This x is, moreover, the unique
minimum point for the given least-squares problem. [If the columns of A, and with them of
R, are linearly dependent, then, although the value of min

x
∥y−Ax∥2 is uniquely determined,

there are many minimum points x].
The size ∥y − Ax∥2 of the residual of the minimum point is seen to be

(5.7) ∥y − Ax∥2 = ∥h2∥2.

We conclude by mentioning that instead of using unitary transformations, the Gram-Schmidt
technique with reorthogonalization can be used to obtain the solution, as should be evident.

5.1.3 The condition of the linear least-squares problem

In this part, we try to show how a minimum point x for the linear least-squares problem

(5.8) min
x
∥y − Ax∥2

changes if the matrix A and the vector y are perturbed. We assume that the columns of
A are linearly independent. If the matrix A is replaced by (A + ∆A), and y is replaced by
y +∆y, then the solution x = (ATA)−1ATy of (5.8) changes to

x+∆x = [(A+∆A)T (A+∆A)]−1(A+∆A)T (y +∆y).
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If ∆A is small relative to A, the [(A + ∆A)T (A + ∆A)]−1 exists and satis�es, to a �rst
approximation,

[(A+∆A)T (A+∆A)]−1 .
= (ATA(I + (ATA)−1[AT∆A+∆ATA]))−1

.
= (I − (ATA)−1[AT∆A+∆ATA])(ATA)−1.

[to a �rst approximation, (I + F )−1 .
= I − F if the matrix F is "small" relative to I]. Thus

it follows that

(5.9) x+∆x
.
= (ATA)−1ATy − (ATA)−1[AT∆A+∆ATA](ATA)−1ATy

+(ATA)−1∆ATy + (ATA)−1AT∆y.

Noting that
x = (ATA)−1ATy

and introducing the residual
r := y − Ax,

it follows immediately from (5.9) that

∆x
.
= −(ATA)−1AT∆Ax+ (ATA)−1∆AT r + (ATA)−1AT∆y.

Therefore, for the Euclidean norm ∥ · ∥2 and the associated matrix norm "lub",

(5.10) ∥∆x∥2≤̇lub((ATA)−1AT )lub(A)
lub(∆A)

lub(A)
∥x∥2 + lub((ATA)−1AT )×

lub(A)
∥y∥2
∥Ax∥2

∥∆y∥2
∥y∥2

∥x∥2 + lub((ATA)−1)lub(AT )lub(A)
lub(∆AT )

lub(AT )

∥r∥2
∥Ax∥2

∥x∥2.

This approximate bound can be simpli�ed. According to subsection 5.1.2, a unitary matrix
P and a upper triangular matrix R can be found such that

PA =
[
R
0

]
, A = P T

[
R
0

]
,

and it follows that
ATA = RTR,

(5.11) (ATA)−1 = R−1(RT )−1,

(ATA)−1AT = [R−1, 0]P.

If it is observed that

lub(CT ) = lub(C)

lub(PC) = lub(CP ) = lub(C),

holds for the Euclidean norm, where P is unitary, then (5.10) and (5.11) imply

∥∆x∥2
∥x∥2

≤̇cond(R) lub(∆A)
lub(A)

+ cond(R)2
∥r∥2
∥Ax∥2

lub(∆A)

lub(A)

+cond(R)
∥y∥2
∥Ax∥2

∥∆y∥2
∥y∥2

.
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If we de�ne the angle φ by

tanφ =
∥r∥2
∥Ax∥2

, 0 ≤ φ <
π

2
,

then ∥y∥2/∥Ax∥2 = (1 + tan2 φ)1/2 because of y = Ax+ r, r ⊥ Ax. Therefore

(5.12)
∥∆x∥2
∥x∥2

≤̇cond(R) lub(∆A)
lub(A)

+ cond(R)2 tanφ
lub(∆A)

lub(A)
+ cond(R)

√
1 + tan2 φ

∥∆y∥2
∥y∥2

.

Remark 5.1.1. According to (5.12), it follows that the condition of the least-squares problem
depends on cond(R) and the angle φ : If φ is small, say if cond(R) tanφ ≤ 1, then the
condition is measured by cond(R). With increasing φ ↑ π/2 the condition gets worse: it is
then measured by cond(R)2 tanφ.

Conclusion. The relation (5.12) shows that the use of the normal equations is not
numerically stable if the �rst term dominates in this relation. Another situation holds if the
second term dominates. If tanφ = ∥r∥2/∥Ax∥2 ≥ 1, for example, then the use of the normal
equations will be numerically stable and will yield results which are comparable to those
obtained through the use of orthogonal transformations.

5.1.4 The Moore-Penrose inverse of a matrix

For any arbitrary (complex) m × n matrix A there is an n × m matrix A+, the so-called
Moore-Penrose inverse, which generalizes in a particular way the classical inverse matrix.
It is associated with A in a natural fashion and agrees with the inverse A−1 of A in the case
m = n and A is nonsingular.

Consider the range space R(A) and the null space N(A) of A,

R(A) := {Ax ∈ Cm|x ∈ Cn},
N(A) := {x ∈ Cn|Ax = 0},

together with their orthogonal complement spaces R(A)⊥ ⊂ Cm, N(A)⊥ ⊂ Cn. Further,

let P be the n×n matrix which projects Cn onto N(A)⊥, and P̄ be the m×m matrix which
projects Cm onto R(A) :

Px = 0 ⇔ x ∈ N(A), P = P ⋆ = P 2,

P̄ y = y ⇔ y ∈ R(A), P̄ = P̄ ⋆ = P̄ 2.

For each y ∈ R(A) there is a uniquely determined x1 ∈ N(A)⊥ satisfying Ax1 = y, i.e.,
there is a well-de�ned mapping f : R(A)→ Cn with

Af(y) = y, f(y) ∈ N(A)⊥, for all y ∈ R(A).

For given y ∈ R(A), there is an x which satis�es y = Ax, hence

y = A (Px+ (I − P )x) = APx = Ax1, where x1 := Px ∈ N(A)⊥,

since (I − P )x ∈ N(A). Further, if x1, x2 ∈ N(A)⊥ with Ax1 = Ax2 = y, it follows that

x1 − x2 ∈ N(A) ∩N(A)⊥ = {0},

which implies that x1 = x2. f is obviously linear. The composite mapping

f ◦ P̄ : y ∈ Cm → f
(
P̄ y
)
∈ Cn

106



is well de�ned and linear, since P̄ y ∈ R(A), hence it is represented by an n × m matrix,
which is precisely A+, the Moore-Penrose inverse of A :

A+y = f
(
P̄ y
)

for all y ∈ Cm.

Moreover, one has the following Theorem

Theorem 5.1.2. [149, 100, 112] Let A be an m× n matrix. The Moore-Penrose inverse A+

is an n×m matrix satisfying

(1) A+A = P is the orthogonal projector P : Cn → N(A)⊥ and AA+ = P̄ is the orthogonal
projector P̄ : Cm → R(A).

(2) The following formulas holds:

(a) A+A = (A+A)⋆,

(b) AA+ = (AA+)⋆,

(c) AA+A = A,

(d) A+AA+ = A+,

Proof. According to the de�nition of A+,

A+Ax = f
(
P̄Ax

)
= f(Ax) = Px for all x,

so that A+A = P . Since P ⋆ = P, the point 2a) of Theorem 5.1.2 is satis�ed. Further, from
the de�nition of f ,

AA+y = A
(
f
(
P̄ y
))

= P̄ y for all y ∈ Cm,

hence AA+ = P̄ . Since P̄ ⋆ = P̄ , the point 2b) of Theorem 5.1.2 follows too. Finally, for all
x ∈ Cn

(AA+)Ax = P̄Ax = Ax, according to de�nition of P̄ ,

and for all y ∈ Cm,

A+AA+y = A+P̄ y = f
(
P̄ 2y

)
= f

(
P̄ y
)
= A+y,

hence, the points 2c), 2d) of Theorem 5.1.2 hold.

Remark 5.1.2. The properties (2 : a− d) of Theorem 5.1.2 uniquely characterize A+.

Furthermore, the following crucial result characterizes the Moore-Penrose inverse of a
matrix.

Theorem 5.1.3. [13] Let A be a matrix of dimension m× n. If Z is a matrix satisfying

a
′
) ZA = (ZA)⋆,

b
′
) AZ = (AZ)⋆,

c
′
) AZA = A,

d
′
) ZAZ = Z,

then the matrix Z is the Moore-Penrose inverse of the matrix A, i.e., Z = A+.
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Proof. From (a)−(d) of Theorem 5.1.2 and (a
′
)−(d′

) we have the following chain of equalities:

Z = ZAZ = Z(AA+A)A+(AA+A)Z from d
′
), c)

= (A⋆Z⋆A⋆A+⋆)A+(A+⋆A⋆Z⋆A⋆) from a), a
′
), b), b

′
)

= (A⋆A+⋆)A+(A+⋆A⋆) from c
′
)

= (A+A)A+(AA+) from a), b)

= A+AA+ = A+ from d))

It follows from Theorem 5.1.3 the following Corollary

Corollary 5.1.1. [13] For all matrices A,

A++ = A, (A+)⋆ = (A⋆)+.

Proof. This holds because Z := A [respectively Z := (A+)⋆] has the properties of (A+)+

[respectively (A⋆)+] in Theorem 5.1.3.

Exploiting these facts, an elegant representation of the solution to the least-squares prob-
lem

min
x
∥Ax− y∥2

can be given with the aid of the Moore-Penrose inverse A+:

Theorem 5.1.4. [96] The vector x̄ := A+y satis�es:

(a) ∥Ax− y∥2 ≥ ∥Ax̄− y∥2 for all x ∈ Cn.

(b) ∥Ax− y∥2 = ∥Ax̄− y∥2, and x ̸= x̄ imply ∥x∥2 > ∥x̄∥2.

In other words, x̄ = A+y is the minimum point of the least squares problem which has the
smallest Euclidean norm, in the event that the problem does not have a unique minimum
point.

Proof. From Theorem 5.1.2, AA+ is the orthogonal projector onto R(A), hence, for all
x ∈ Cn it follows that

Ax− y = u− v

u := A(x− A+y) ∈ R(A), v := (I − AA+)y = y − Ax̄ ∈ R(A)⊥.
Consequently, for all x ∈ Cn

∥Ax− y∥22 = ∥u∥22 + ∥v∥22 ≥ ∥v∥22 = ∥Ax̄− y∥22,

and ∥Ax− y∥2 = ∥Ax̄− y∥2 holds precisely if

Ax = AA+y.

Now, AA+ is the projector on N(A)⊥. Therefore, for all x such that Ax = AA+y,

x = u1 + v1, u1 =: A+Ax = A+AA+y = A+y = x̄ ∈ N(A)⊥,
v1 := x− u1 = x− x̄ ∈ N(A),

from which it follows that ∥x∥22 > ∥x̄∥22 for all x ∈ Cn satisfying x− x̄ ̸= 0 and
∥Ax− y∥2 = ∥Ax̄− y∥2.
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Remark 5.1.3. (important)[49]. If the m× n matrix A with m ≥ n has maximal rank, i.e.,
rank(A) = n, then there is an explicit formula for A+: it is easily veri�ed that the matrix
Z := (A⋆A)−1A⋆ has all properties given in Theorem 5.1.3 characterizing the Moore-Penrose
inverse A+ so that

A+ = (A⋆A)−1A⋆.

By means of the QR decomposition of A, i.e., A = QR where Q is a unitary matrix and R
is a upper triangular matrix, this formula for A+ is equivalent to

A+ = (R⋆Q⋆QR)−1R⋆Q⋆ = R−1Q⋆.

This allows a numerically more stable computation of the Moore-Penrose inverse, A+ =
R−1Q⋆.

If m < n and rank(A) = m, then because of (A+)⋆ = (A⋆)+, the Moore-Penrose inverse
A+ is given by

A+ = Q(R⋆)−1,

if the matrix A⋆ has the QR decomposition, A⋆ = QR.
For General m × n matrices A of arbitrary rank the Moore-Penrose inverse A+ can be

computed by means of the singular value decomposition of A.

5.2 On the convergence of the minimization methods

The purpose of this section is to recall some fundamental results on the minimization prob-
lems, which are important in the study of the conjugate gradient methods.

Let h : Rn → R be a function which has a continuous derivative Dh(x) for all x ∈ V (x̄)
in a neighborhood V (x̄) of x̄. We consider the set

(5.13) D(γ, x) := {s ∈ Rn| ∥s∥2 = 1 with Dh(x)s ≥ γ∥Dh(x)∥2}

of all directions s forming a not-too-large acute angle with the gradient ∇h(x),

∇h(x)T = Dh(x) =

(
∂h(x)

∂x1
, ...,

∂h(x)

∂xn

)
, where (x1, ..., xn)T ∈ Rn.

The following lemma shows, given x, under which conditions a scalar λ and an s ∈ Rn exist
such that h(x− µs) < h(x) for 0 < µ < λ :

Lemma 5.2.1. [23, 64, 148]. Let h : Rn → R be a function which has a continuous derivative
Dh(x) for all x ∈ V (x̄) in a neighborhood V (x̄) of x̄. Suppose further that Dh(x̄) ̸= 0, and
let 1 ≥ γ > 0. Then there is a neighborhood U(x̄) ⊂ V (x̄) of x̄ and a number λ > 0 such that

h(x− µs) ≤ h(x)− µγ

4
∥Dh(x̄)∥2

for all x ∈ U(x̄), s ∈ D(γ, x), and 0 ≤ µ ≤ λ.

Proof. The set

U1(x̄) := {x ∈ V (x̄)| ∥Dh(x)−Dh(x̄)∥2 ≤
γ

4
∥Dh(x̄)∥2}

is nonempty and a neighborhood of x̄, since ∥Dh(x̄)∥2 ̸= 0 and ∥Dh(x)∥2 is continuous on
V (x̄). Now, for x ∈ U1(x̄),

∥Dh(x)∥2 ≥ ∥Dh(x̄)∥2 −
1

4
γ∥Dh(x̄)∥2 ≥

3

4
∥Dh(x̄)∥2,
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so that for s ∈ D(γ, x)

Dh(x)s ≥ γ∥Dh(x)∥2 ≥
3

4
γ∥Dh(x̄)∥2.

Choose λ > 0 with
B2λ := {x| ∥x− x̄∥2 ≤ 2λ} ⊂ U1(x̄)

and de�ne
U(x̄) := Bλ = {x| ∥x− x̄∥2 ≤ λ}.

Then for all x ∈ U(x̄), 0 ≤ µ ≤ λ, and s ∈ D(γ, x) there is a 0 < θ < 1 with

h(x)− h(x− µs) = µDh(x− θµs)s
= µ([Dh(x− θµs)−Dh(x)]s+Dh(x)s).

Now, x ∈ U(x̄) = Bλ implies x, x− µs, x− θµs ∈ B2λ ⊂ U1, and therefore

[(Dh(x− θµs)−Dh(x̄)) + (Dh(x̄)−Dh(x))]s ≤ 1

2
γ∥Dh(x̄)∥2.

Using Dh(x)s ≥ 3
4
γ∥Dh(x̄)∥2, we obtain

h(x)− h(x− µs) ≥ −µγ
2
∥Dh(x̄)∥2 +

3µγ

4
∥Dh(x̄)∥2

=
µγ

4
∥Dh(x̄)∥2.

Let us consider the following method for minimizing a di�erentiable function h : Rn → R.

(5.14) Method

(a) Choose numbers γk ≤ 1, σk > 0, k = 0, 1, ..., with

inf
k
γk > 0, inf

k
σk > 0,

and choose a starting point x0 ∈ Rn.

(b) For all k = 0, 1, ..., choose an sk ∈ D(γk, xk) and set

xk+1 := xk − λksk

where λk ∈ [0, σk∥Dh(xk)∥2] is such that

h(xx+1) = min
µ
{h(xk − µsk)| 0 ≤ µ ≤ σk∥Dh(xk)∥2}.

The convergence properties of this method are given by the following theorem:

Theorem 5.2.1. [21, 23, 64]. Let h : Rn → R be a function, and let x0 ∈ Rn be chosen so
that

(a) K := {x|h(x) ≤ h(x0)} is compact, and

(b) h is continuously di�erentiable in some open sets containing K.
Then for any sequence {xk}k de�ned by a method of the type (5.14):
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(1) xk ∈ K for all k = 0, 1, ..., {xk}k has at least one accumulation point x̄ in K.

(2) Each accumulation point x̄ of {xk}k is a stationary point of h :

Dh(x̄) = 0.

Proof. (1) : From the de�nition of the sequence {xk}k it follows immediately that the se-
quence {h(xk)}k is monotone: h(x0) ≥ h(x1) ≥ .... Hence xk ∈ K for all k. K is compact,
therefore {xk}k has at least one accumulate point x̄ ∈ K.
(2) : Assume that x̄ is an accumulation point of {xk}k, but is not a stationary point of h:

(5.15) Dh(x̄) ̸= 0.

Without loss of generality, let lim
k→∞

xk = x̄. Let

γ := inf
k
γk > 0, σ := inf

k
σk > 0.

According to Lemma 5.2.1 there is a neighborhood U(x̄) of x̄ and a number λ > 0 satisfying

(5.16) h(x− µs) ≤ h(x)− µγ
4
∥Dh(x̄)∥2

for all x ∈ U(x̄), s ∈ D(γ, x), and 0 ≤ µ ≤ λ.
Since lim

k→∞
xk = x̄, the continuity of Dh(x) together with (5.15) imply the existence of a k0

such that for all k ≥ k0

(a) xk ∈ U(x̄),

(b) ∥Dh(xk)∥2 ≥ 1
2
∥Dh(x̄)∥2.

Let Λ := min{λ, 1
2
σ∥Dh(x̄)∥2}, ϵ := Λγ

4
∥Dh(x̄)∥2 > 0. Since σk ≥ σ, it follows that [0,Λ] ⊂

[0, σk∥Dh(xk)∥2] for all k ≥ k0. Therefore, from the de�nition of xk+1,

h(xk+1) ≤ min
µ
{h(xk − µsk)|0 ≤ µ ≤ Λ}.

Since Λ ≤ λ, xk ∈ U(x̄), sk ∈ D(γk, xk) ⊂ D(γ, xk), (5.16) implies that

h(xk+1) ≤ h(xk)−
Λγ

4
∥Dh(x̄)∥2 = h(xk)− ϵ

for all k ≥ k0. This means that lim
k→∞

h(xk) = −∞, which contradicts h(xk) ≥ h(xk+1) ≥ ... ≥
h(x̄). Hence, x̄ is a stationary point of h.

Remark 5.2.1. Step (b) of Method (5.14) is known as the line research. Even though the
method given by (5.14) is quite general, its practical application is limited by the fact that
the line research must be exact, i.e, it requires that the exact minimum point of the function

φ(µ) := h(xk − µsk)

be found on the interval [0, σk∥Dh(xk)∥2] in order to determine xk+1. Generally, a great deal
of e�ort is required to obtain even an approximate minimum point.
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The following variant of (5.14) has the virtue that in step (b) the exact minimization is
replaced by an inexact line research, in particular by a �nite search process ("Armijo line
search"): Armijo line search DF

(5.17) Armijo Method

(a) Choose numbers γk ≤ 1, σk, k = 0, 1, ..., so that

inf
k
γk > 0, inf

k
σk > 0.

Choose a starting point x0 ∈ Rn.

(b) For each k = 0, 1, ..., obtain xk+1 from xk as follows:

(α) select
sk ∈ D(γk, xk),

de�ne
ρk := σk∥Dh(xk)∥2, hk(µ) = h(xk − µsk),

and determine the smallest integer j ≥ 0 such that

hk(ρk2
−j) ≤ hk(0)− ρk2−j γk

4
∥Dh(xk)∥2.

(β) Determine ī ∈ {0, 1, ..., j}, such that hk(ρk2
−ī) is minimum and let λk := ρk2

−ī,
xk+1 := xk − λksk.

NB: h(xk+1) ≤ min
1≤i≤j

hk(ρk2
−i).

Theorem 5.2.2. Under the hypotheses of Theorem 5.2.1, each sequence {xk}k produced by
a method of the type (5.17) satis�es the conclusion of Theorem 5.2.1.

Proof. We assume as before that x̄ is an accumulation point of a sequence {xk}k de�ned in
(5.17), but not a stationary point, i.e.,

Dh(x̄) ̸= 0.

Again, without loss of generality, let lim
k→∞

xk = x̄. Also let σ := inf
k
σk > 0, γ := inf

k
γk > 0.

According to Lemma 5.2.1 there is a neighborhood U(x̄) and a number λ > 0 such that

(5.18) h(x− µs) ≤ h(x)− µγ
4
∥Dh(x̄)∥2

for all x ∈ U(x̄), s ∈ D(γ, x), 0 ≤ µ ≤ λ. Again, the fact that lim
k→∞

xk = x̄, that Dh(x) is

continuous, and that Dh(x̄) ̸= 0 imply the existence of a k0 such that

(5.19) xk ∈ U(x̄),

(5.20) ∥Dh(xk)∥2 ≥
1

2
∥Dh(x̄)∥2

for all k ≥ k0.
We need to show that there exists ϵ > 0 for which

h(xk+1) ≤ h(xk)− ϵ for all k ≥ k0.
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Note �rst that (5.19)− (5.20) and γk ≥ γ imply

γk∥Dh(xk)∥2 ≥
γ

2
∥Dh(x̄)∥2 for all k ≥ k0.

Consequently, according to the de�nition of xk+1 and for j ≥ 0

(5.21) h(xk+1) ≤ hk(ρk2
−j) ≤ h(xk)− ρk2−j γk

4
∥Dh(xk)∥2 ≤ h(xk)− ρk2−j γ

8
∥Dh(x̄)∥2.

Now, let j̄ ≥ 0 be the smallest integer satisfying

(5.22) hk(ρk2
−j̄) ≤ h(xk)− ρk2−j̄ γ

8
∥Dh(x̄)∥2.

According to (5.21), j̄ ≤ j, and the de�nition of xk+1, we have

(5.23) h(xk+1) ≤ hk(ρk2
−j̄).

There are two cases:
Case 1 : j̄ = 0. Note that ρk = σk∥Dh(xk)∥2 ≥ 1

2
σ∥Dh(x̄)∥2. Then (5.22) and (5.23) imply

h(xk+1) ≤ h(xk)− ρk
γ

8
∥Dh(x̄)∥2 ≤ h(xk)−

σγ

16
∥Dh(x̄)∥22 = h(xk)− ϵ1.

with ϵ1 > 0 independent of xk.
Case 2 : j̄ > 0. From the minimality of j̄, we have

hk(ρk2
−(j̄−1)) > h(xk)− ρk2−(j̄−1)γ

8
∥Dh(x̄)∥2 ≥ h(xk)− ρk2−(j̄−1)γk

4
∥Dh(xk)∥2.

Because xk ∈ U(x̄) and sk ∈ D(γk, xk) ⊂ D(γ, xk), it follows immediately from (5.16) that

ρk2
−(j̄−1) > λ.

Combining this with (5.22) and (5.23) yields

h(xk+1) ≤ hk(ρk2
−j̄) ≤ h(xk)−

λγ

16
∥Dh(x̄)∥2 = h(xk)− ϵ2

with ϵ2 > 0 independent of xk. Hence, for ϵ = min{ϵ1, ϵ2}
h(xk+1) ≤ h(xk)− ϵ

for all k ≥ k0, contradicting the fact that h(xk) ≥ h(x̄) for all k. Therefore x̄ is a stationary
point of h.

5.3 Techniques of construction of the Krylov spaces: The
method of Lanczos

In this section, we present the techniques of construction of Krylov spaces and recall the
procedure of reduction of a Hermitian matrix to the Tridiagonal form, all based on the
Lanczos method.
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5.3.1 Techniques of construction of Krylov spaces

Krylov sequences of vectors q, Aq,A2q, ... belonging to an n×n matrix and a starting vector
q ∈ Cn are used for the derivation of the Frobenius normal form of a general matrix. They
also play an important role in the Lanczos method (1950) (see [95]) for reducing a Hermitian
matrix to tridiagonal form. Closely related to such a sequence of vectors is a sequence of
subspaces of Cn

Ki(q, A) := span[q, Aq,A2q, ..., Ai−1q], i ≥ 1, K0(q, A) := {0},
called Krylov spaces: Ki(q, A) is the subspace spanned by the �rst i vectors of the sequence
{Ajq}j≥0. If we denote by m the largest index i for which q, Aq,A2q, ..., Ai−1q are still lin-
early independent, that is, dimKi(q, A) = i. Then m ≤ n, Amq ∈ Km(q, A), the vectors
q, Aq,A2q, ..., Am−1q form a basis of Km(q, A), and therefore AKm(q, A) ⊂ Km(q, A) : the
Krylov space Km(q, A) is A-invariant and the map x 7→ Φ(x) := Ax describes a linear map
of Km(q, A) into itself.

Theorem 5.3.1. [95, 108, 115] There exists polynomials pj ∈ Πj where
Πj := {p| p(x) = xj + a1x

j−1 + ...+ aj}, j = 0, 1, 2, ..., such that

(5.24) (pi, pk) = 0 for i ̸= k.

These polynomials are uniquely de�ned by the recursions

(5.25) p0(x) ≡ 1,

(5.26) pi+1(x) ≡ (x− δi+1)pi(x)− γ2i+1pi−1(x) for i ≥ 0,

where p−1(x) := 0 and

(5.27) δi+1 := (xpi, pi)/(pi, pi) for i ≥ 0,

(5.28) γ2i+1 :=
{

1 for i = 0
(pi, pi)/(pi−1, pi−1) for i ≥ 1.

Proof. The polynomials can be constructed recursively by a technique known as Gram-
Schmidt orthogonalization. Clearly p0(x) ≡ 1. Suppose then, as an induction hypothesis,
that all orthogonal polynomials pj with the above properties have been constructed for j ≤ i
and have been shown to be unique. We want to show that there exists a unique polynomial
pi+1 ∈ Πi+1 with

(5.29) (pi+1, pj) = 0 for j ≤ i,

and that this polynomial satis�es (5.26). Any polynomial pi+1 ∈ Πi+1 can be written uniquely
in the form

pi+1(x) ≡ (x− δi+1)pi(x) + ci−1pi−1(x) + ci−2pi−2(x) + ...+ c0p0(x),

because its leading coe�cient and those of the polynomials pj, j ≤ i, have value 1. Since
(pj, pk) = 0 for all j, k ≤ i with j ̸= k, (5.29) holds if and only if

(5.30) (pi+1, pi) = (xpi, pi)− δi+1(pi, pi) = 0,

(5.31) (pi+1, pj−1) = (xpj−1, pi) + cj−1(pj−1, pj−1) = 0, for j ≤ i.
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The condition (5.32) below

(5.32)
For polynomials s(x) which are nonnegative on [a, b],∫ b

a
ω(x)s(x)dx = 0 implies s(x) ≡ 0

(where ω(x) is a given nonnegative weight function on the interval [a, b]) with p2i and
p2j−1, respectively, in the role of the nonnegative polynomial s, rules out (pi, pi) = 0 and
(pj−1, pj−1) = 0 for 1 ≤ j ≤ i. Therefore, the equations (5.30) − (5.31) can be solved
uniquely. (5.30) gives (5.27). By the induction hypothesis,

pj(x) ≡ (x− δj)pj−1(x)− γ2j pj−2(x)

for j ≤ i. From this, by solving for xpj−1(x), we have (xpj−1, pi) = (pj, pi) for j ≤ i, so that

cj−1 = −
(pj, pi)

(pj−1, pj−1)
=
{ −γ2i+1 for j = i;

0 for j < i.

in view of (5.30)− (5.31). Thus (5.26) has been established for i+ 1.

The idea of the Lanczos method is closely related: Here, the map Φ is described with
respect to a special orthonormal basis q1, q2, ..., qm of Km(q, A), where the qj are chosen such
that for all i = 1, 2, ...,m, the vectors q1, q2, ..., qi form an orthonormal basis of Ki(q, A).
If A = A⋆ is a Hermitian n × n matrix, then such a basis is easily constructed for a given
starting vector q. We assume q ̸= 0 in order to exclude the trivial case and suppose in
addition that ∥q∥2 = 1. It follows from this the following result.

Proposition 5.3.1. [95, 108, 115]. There is a three-term recursion formula for the vectors
qi [similar recursions are known for orthogonal polynomials, cf. Theorem 5.3.1].

(5.33)
q1 := q, γ1q0 := 0,

Aqi = γiqi−1 + δiqi + γi+1qi+1 for i ≥ 1,

where

(5.34)

δi := q⋆iAqi,

γi+1 := ∥ri∥2 with ri := Aqi − δiqi − γiqi−1,

qi+1 := ri/γi+1, if γi+1 ̸= 0.

Here, all coe�cients γi, δi are real. The recursion breaks o� with the �rst index i := i0
with γi+1 = 0, and then the following holds

i0 = m = max
i
dimKi(q, A).

Proof. We show (5.33) − (5.34) by mathematical induction over i. Clearly, since ∥q∥2 = 1,
the vector q1 := q provides an orthonormal basis for K1(q, A). Assume now that for some
j ≥ 1, the vectors q1, q2, ..., qi are given, so that (5.33)− (5.34) and

span[q1, q2, ..., qi] = Ki(q, A)

hold for all i ≤ j, and that ri ̸= 0 in (5.34) for all i < j. We show �rst that these statements
are also true for j + 1, if rj ̸= 0. In fact, if rj ̸= 0 then γj+1 ̸= 0, δj and qj+1 are well de�ned
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by (5.34), and ∥qi+1∥2 = 1. The vector qj+1 is orthogonal to all qi with i ≤ j: This holds for
i = j, since γj+1 ̸= 0, because

Aqi = γiqi−1 + δiqi + γi+1qi+1

from the de�nition of δj, and using the induction hypothesis

γj+1q
⋆
j qj+1 = q⋆jAqj − δjq⋆j qj = 0.

For i = j − 1, the same reasoning and A = A⋆ �rst give

γj+1q
⋆
j−1qj+1 = q⋆j−1Aqj − γjq⋆j−1qj−1 = (Aqj−1)

⋆qj − γj.

The orthogonality of the qi for i ≤ j and Aqj−1 = γj−1qi−2 + δj−1qj−1 + γjqj then imply
(Aqj−1)

⋆qj = γ̄j = γj, and therefore q⋆j−1qj+1 = 0. For i < j − 1 we get the same result with
the aid of Aqi = γiqi−1 + δiqi + γi+1qi+1 :

γj+1q
⋆
i qj+1 = q⋆iAqj = (Aqi)

⋆qj = 0.

Finally, since span[q1, q2, ..., qi] = Ki(q, A) ⊂ Kj(q, A) for i ≤ j, we also have

Aqj ∈ Kj+1(q, A),

which implies by (5.34)

qj+1 ∈ span[qj−1, qj, Aqj] ⊂ Kj+1(q, A),

and therefore span[q1, q2, ..., qj+1] ⊂ Kj+1(q, A). Since the orthonormal vectors q1, q2, ..., qj+1

are linearly independent and dimKj+1(q, A) ≤ j + 1, we obtain

Kj+1(q, A) = span[q1, q2, ..., qj+1].

This also shows j + 1 ≤ m = max
i
dimKi(q, A), and i0 ≤ m for the break-o� index i0 of

(5.33)− (5.34). On the other hand, by the de�nition of i0

Aqi0 ∈ span[qi0−1, qi0 ] ⊂ span[q1, q2, ..., qi0 ] = Ki0(q, A),

so that, because

Aqi ∈ span[q1, q2, ..., qi+1] = Ki+1(q, A) ⊂ Ki0(q, A) for i < i0,

we get the A-invariance of Ki0(q, A), AKi0(q, A) ⊂ Ki0(q, A). Therefore i0 ≥ m, since
Km(q, A) is the �rst A-invariant subspace among the Ki(q, A). This �nally shows i0 = m,
and the proof is complete.

5.3.2 Reduction of a Hermitian matrix to Tridiagonal form

The recursion (5.33)− (5.34) can be written in terms of the matrices

Qi := [q1, q2, ..., qi], Ji :=


δ1 γ2 0

γ2 δ2
. . .

. . . . . . γi
0 γi δi

 , 1 ≤ i ≤ m,

as a matrix equation
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(5.35) AQi = QiJi + [0, ..., 0, γi+1qi+1] = QiJi + γi+1qi+1e
T
i , i = 1, 2, ...,m,

where ei = [0, ..., 0, 1]T ∈ Ri is the i-th axis vector of Ri. This equation is easily veri�ed
by comparing the j-th columns, j = 1, 2, ..., i, on both sides. Note that the n× i matrices Qi
have orthonormal columns, Q⋆

iQi = Ii and the Ji are real symmetric tridiagonal matrices.
Since i = m is the �rst index with γm+1 = 0, the matrix Jm is irreducible, and the matrix
equation (5.35) reduces to

AQm = QmJm

where Q⋆
mQm = Im. Any eigenvalue of Jm is also an eigenvalue of A, since Jmz = λz, z ̸= 0

implies x := Qmz ̸= 0 and

Ax = AQmz = QmJmz = λQmz = λx.

If m = n, i.e., if the method does not terminate prematurely with an m < n, then Qn is a
unitary matrix, and the tridiagonal matrix Jn = Q⋆

nAQn is similar to A.
Given any vector q =: q1 with ∥q∥2 = 1, the method of Lanczos consists of computing the

numbers γi, δi, i = 1, 2, ...m, γ1 = 0, and the tridiagonal matrix Jm by means of (5.33)−(5.34).
Subsequently, one may compute the eigenvalues and eigenvectors of Jm (and thereby those
of A). Concerning the implementation of the method, the following remarks are in order:

Remark 5.3.1. The number of operations can be reduced by introducing an auxiliary vector
de�ned by

ui := Aqi − γiqi−1.

Then ri = ui − δiqi, and the number

δi = q⋆iAqi = q⋆i ui

can also be computed from ui, since q
⋆
i qi−1 = 0.

Remark 5.3.2. It is not necessary to store the vectors qi if one is not interested in the
eigenvectors of A: In order to carry out (5.33)− (5.34) only two auxiliary vectors u, v ∈ Cn

are needed, where initially v := q is the given starting vector with ∥q∥2 = 1. Within the
following program, which implements the Lanczos algorithm for a given Hermitian n × n
matrix A = A⋆, vk and wk, k = 1, 2, ..., n, denote the components of v and w, respectively:

progam

w := 0; γ1 := 1; i := 1;

1: if γi ̸= 0 then

begin if i ̸= 1 then

for k := 1 step 1 until n do

begin t := vk; vk := wk/γi; wk := −γit end ;

w := Av + w; δi := v⋆w; w = w − δiv;

m:=i; i := i+ 1; γi :=
√
w⋆v;

goto 1;

end;
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Each step i → i + 1 requires about 5n scalar multiplications and one multiplication of
the matrix A with a vector. Therefore, the method is inexpensive if A is sparse, so that it is
particularly valuable for solving the eigenvalue problem for large sparse matrices A = A⋆.

Remark 5.3.3. In theory, the method is �nite: it stops with the �rst index i = m ≤ n
with γi+1 = 0. However, because of the in�uence of roundo�, one will rarely �nd a computed
γi+1 = 0 in practice. Yet, it is usually not necessary to perform many steps of the method
until one �nds a zero or a very small γi+1 : The reason is that, under weak assumptions,
the largest and smallest eigenvalues of Ji converge very rapidly with increasing i toward the
largest and smallest eigenvalues of A [Kaniel-Paige theory: see Kaniel (1966, [87]), Paige
(1975, [107]) and Saad (1980, [115, 116])]. Therefore, if one is only interested in the extreme
eigenvalues of A (which is quite frequently the case in applications), only relatively few steps
of Lanczos

′
method are necessary to �nd a Ji, i << n, with extreme eigenvalues that already

approximate the extreme eigenvalues of A to machine precision.

Remark 5.3.4. The method of Lanczos will generate orthogonal vectors qi only in theory:
In practice, due to roundo�, the vectors q̃i actually computed become less and less orthogonal
as i increases. This defect could be corrected by reorthogonalizing a newly computed vector
q̂i+1 with respect to all previous vectors q̃j, j ≤ i, that is, by replacing q̂i+1 by

q̃i+1 := q̂i+1 −
i∑

j=1

(q̃⋆j , q̂i+1)q̃j.

However, reorthogonalization is quite expensive: The vectors q̃i have to be stored, and step i
of the Lanczos method now requires O(i · n) operations instead of O(n) operations as before.
But it is possible to avoid a full reorthogonalization to some extent and still obtain very
good approximations for the eigenvalues of A in spite of the di�culties mentioned. Details
can be found in the following literature, which also contains a systematic investigation of the
interesting numerical properties of the Lanczos method: Paige (1971, [107]), Parlett and Scott
(1979, [108]) and Cullum and Willoughby (1985, [47]), where one can also �nd programs.

Conclusion
We have presented in this chapter some fundamental results in view of studying the Krylov
Space Methods. Section 5.2 is particularly exploited in the part on the conjugate gradient
(CG) method while the other sections �nd their use in the parts: generalized minimal residual
(GMRES) method, quasi-minimal residual (QMR) method, Bi-conjugate gradient (BCG)
method and Bi-conjugate gradient STAB (Bi-GCSTAB) algorithm. Finally, subsection 5.1.1
also �nds its utility in chapters 6 and 9.
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Chapter Six

Krylov Space Methods and General
Idea on Multigrid Methods

6.1 Introduction
We present in this chapter powerful Iterative methods for solving of large systems of linear
equations Ax = b in which A is an n× n (real) nonsingular matrix. In general, one obtains
such systems by using di�erence methods or �nite element methods for solving boundary
value problems in partial di�erential equations. The Krylov space methods start with an
initial vector x(0) and subsequently produce a sequence of vectors

x(0) → x(1) → x(2) → ...→ x(m) → ...

which converge toward the desired solution x = A−1b. The general characteristic of these
methods is that the methods, in exact arithmetic, terminate with the exact solution xm after
at most n steps, m ≤ n. The Krylov space methods generate iterates xk that approximate
the solution of linear equations Ax = b best among all vectors xj such that xj−x0 belong to
Kk(r0, A), where Kk(r0, A) is the Krylov space belonging to the matrix A and the starting
vector r0 := b−Ax0 given by the residual of x0. Because of roundo� errors, these methods do
not terminate with the desired solution after �nitely many steps. As in true iterative methods,
an in�nite number of steps needs to be carried out to speed of convergence of the iterates xk.
The amount of work per step x(k) → x(k+1) roughly equals to that of multiplying the matrix
A by a vector. For this reason, these methods are advantageous for sparse unstructured
matrices A as they occur, e.g: in network calculations, but are not recommended for dense
matrices or band matrices. Throughout this chapter, we restrict our study on the following
methods.

i. The conjugate gradient (CG) method proposed by Hestenes and Stiefel (1952, [80]) for
systems with a symmetric positive de�nite matrix.

ii. The generalized minimal residual (GMRES) method of Saad and Schultz (1986, [116])
(more expensive) but is de�ned for general linear systems with a nonsymmetric non-
singular matrix.

iii. The quasi-minimal residual method (QMR method) of Freud and Nachtigal (1991, [65]),
for solving arbitrary sparse linear systems of equations. This methods is based on
the more e�cient (but numerically more sensitive) biorthogonalization algorithm of
Lanczos (1950, [95]), provides non-orthogonal bases v1, v2, ..., vk for the Krylov spaces
Kk(r0, A) of dimension k. Using these bases, one can compute iterates xk ∈ x0 +
Kk(r0, A) with an approximately minimal residual.

iv. The biconjugate gradient (Bi-CG) algorithm due to Lanczos (1950, [95]) and thoroughly
studied by Fletcher (1976, [63]) is also a method for solving linear systems of equations
with an arbitrary matrix A. It is an inexpensive, natural generalization of the cg-
algorithm, and also generates iterates xk ∈ x0 +Kk(r0, A).
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With regard to the applicability of Krylov space methods, the same remarks apply as for
the true iterative methods [see Varga (2000), Young and Axelsson (1994), and Saad (1996,
[114])].
However, there exists other methods for solving certains special systems of linear equations

arising, for instance, with solution of so-called model problem ( the poisson problem on a
rectangle) which give the solution after �nitely many steps and are superior to most iterative
methods. Such methods are the algorithm of Buneman (1968), and the Fourier methods
that use the FFT-algorithm of trigonometric interpolation. For a detailed treatment, see cf.
J.Stoer and R.Bulirsch [149].
Nowadays, the very large systems of equations are related with the solution of boundary-
value problems of partial di�erential equations by �nite element techniques and are mainly
solved by Multigrid methods. We describe in section 6.6 only concepts of these important
iterative methods, using the context of a boundary value problem for ordinary di�erential
equations. For thorough treatments of multigrid methods, which are closely connected to the
numerics of partial di�erential equations, one can read the special literature of this subject,
e.g, Hackbusch (1985, [78]), Braess (1997, [18]), Bramble (1993, [19]), Quarteroni and Valli
(1997).

6.2 Conjugate gradient method (cg-method)

In this section, we only work with the matrices A, which are symmetric positive de�nite.
These matrices de�ne a vector norm ∥x∥A := (xTAx)1/2, and the cg-method generates a
vector sequence xk ∈ x0 +Kk(r0, A) with the minimality property

∥xk − x̄∥A = min
x∈x0+Kk(r0,A)

∥x− x̄∥A.

An important role in this method, is played by A-conjugate vectors pk ∈ Rn, k = 0, 1, 2, ...

pTi Apk = 0 for i ̸= k,

that span the Krylov spaces Kk(r0, A), i.e.,

span[p0, p1, ..., pk−1] = Kk(r0, A), k = 1, 2, ...

Now, let us consider a system of linear equations

(6.1) Ax = b

where b ∈ Rn and A is a real symmetric positive de�nite n×n matrix. Furthermore, de�ning
the quadratic functional h : Rn → R by:

h(x) =
1

2
(b− Ax)TA−1(b− Ax)

and developing the quantity 1
2
(b− Ax)TA−1(b− Ax), one obtains h(x) = 1

2
∥x− x̄∥2A, where

x̄ = A−1b. So, h is minimized by x̄ over Rn, i.e.,

0 = h(x̄) = min
x∈Rn

h(x).

This part suggests using the methods 5.14, 5.17 (studied in section 5.2), in which the sequence
x0 → x1 → x2 → ... → xk → ... is found by one-dimensional minimization of h in the
direction of the gradient, i.e., �nd xk+1 such that

h(xk+1) = min
u
h(xk + urk)
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with rk := −∇h(xk) = −Axk + b.

At the step xk → xk+1, a (k + 1)-dimensional minimization is carried out:

(6.2)

 xk+1 : h(xk+1) = min
u0,u1,...,uk

h

(
xk +

k∑
j=0

ujrj

)
rj := b− Axj for j ≤ k.

From (6.2), it follows that the vector xk+1 can be computed easily. The rj obtained are
orthogonal, as long as rk ̸= 0. Since Rn is of dimension n, one deduces in exact arithmetic
that there exists a �rst nonnegative integer m ≤ n such that rm = 0. So, the corresponding
xm is the desired solution of (6.2), (see section 5.2).

(6.3) Conjugate-gradient algorithm

Initialization: Choose x0 ∈ Rn, and put

p0 := r0 := b− Ax0

For k = 0, 1, 2, ...

i) If pk = 0, set m := k and stop: xk is the solution of Ax = b. Otherwise,

ii) compute:

ak :=
rTk rk
pTkApk

, xk+1 := xk + akpk,

rk+1 := rk − akApk, bk :=
rTk+1rk+1

rTk rk
,

pk+1 := rk+1 + bkpk.

Remark 6.2.1. In this method, only four vectors: xk, rk, pk, and Apk need to be stored. At
each iteration step, only one matrix multiplication: Apk is required, the remaining works
amounts to the calculation of six inner products in Rn. So, the total computation e�ort, for
sparse matrices is modest.

Theorem 6.2.1. Let A be a symmetric positive de�nite real n × n matrix and let b ∈ Rn.
Then for each initial vector x0 ∈ Rn, there is a smallest nonnegative integer m, m ≤ n,
such that pm = 0. The vectors xk, pk, rk, k ≤ m generated by the cg-method (6.3) have the
following properties:

(a) Axm = b (The method produces the exact solution of the equation: Ax = b after at most
n steps).

(b) rTj pi = 0 for 0 ≤ i < j ≤ m.

(c) rTi pi = rTi ri for i = 0, 1, 2, ...,m.

(d) pTi Apj = 0 for 0 ≤ i < j ≤ m, and pTj Apj > 0 for j = 0, 1, ...,m− 1.

(e) rTi rj = 0 for 0 ≤ i < j ≤ m, and rTj rj > 0 for j = 0, 1, ...,m− 1.

(f) ri = b− Axi for i = 0, 1, 2, ...,m.
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Proof. By mathematical induction on k, we show that the following statement (Ak) holds
for all K = 0, 1, ...m, where m is the �rst index with pm = 0.

(Ak)

(N1) rTj pi = 0 for 0 ≤ i < j ≤ k
(N2) rTi ri > 0 for 0 ≤ i < k, rTi pi = rTi ri for 0 ≤ i ≤ k
(N3) pTi Apj = 0 for 0 ≤ i < j ≤ k, pTi Api > 0 for 0 ≤ i < k
(N4) rTi rj = 0 for 0 ≤ i < j ≤ k
(N5) ri = b− Axi for i = 0, 1, 2, ..., k

(A0) is trivially true. We assume inductively that, (Ak) holds for some 0 ≤ k < m and we
show (Ak+1)(N1). Since pk ̸= 0 and A is symmetric positive de�nite, one has pTkApk > 0,
from (6.3) it follows that:

(6.4) rTk+1pk = (rk − akApk)Tpk = rTk pk − akpTkApk = rTk pk −
rTk rk
pTkApk

pTkApk

= rTk pk − rTk rk = 0

according to (Ak)(N2).

For j < k, rTk+1pj = rTk pj − akp
T
kApj = 0 because of (Ak)(N1)(N3). So, (Ak+1)(N1) is

proved.

(N2): We have rTk rk > 0, since otherwise rk = 0, and thus, in view of (6.3)

(6.5) pk =
{
r0 if k = 0;
bk−1pk−1 if k ̸= 0.

Since k < m, we must have k > 0, otherwise p0 = r0 = 0 and m = 0. For k > 0, in view of
pk ̸= 0 it follows from (6.5) and (Ak)(N3) the contradiction: 0 < pTkApk = bk−1p

T
kApk−1 = 0.

Then rTk rk > 0, so that bk and pk+1 are de�ned through (6.3). From (6.3) and (6.4), one
deduces that:

rTk+1pk+1 = rTk+1(rk+1 + bkpk) = rTk+1rk+1.

whence (Ak+1)(N2).

(N3) : From what was just proved, rk ̸= 0, so that a−1
j is well de�ned for j ≤ k. From

(6.3), we have for j ≤ k

pTk+1Apj = rTk+1Apj + bkp
T
kApj

= a−1
j rTk+1(rj − rj+1) + bkp

T
kApj

= a−1
j rTk+1(pj − bj−1pj−1 − pj+1 + bjpj) + bkp

T
kApj

= −a−1
j rTk+1pj+1 + bkp

T
kApj

=

{
0 if j < k because of (Ak)(N3) and (Ak)(N1);
0 for j = k by de�nition of ak, bk, and (Ak)(N1)(N2).

NB: When j = 0, the vector p−1 has to be interpreted as the zero vector, i.e, p−1 = 0. This
proves (Ak+1)(N3).

(N4) : From (6.3) and (Ak+1)(N1), one has for i ≤ k and (p−1 = 0)

rTi rk+1 = (pi − bi−1pi−1)
T rk+1 = pTi rk+1 − bi−1p

T
i−1rk+1 = 0.

(N5) : It follows from (6.3) and (Ak)(N5) that

b− Axk+1 = b− A(xk + akpk) = rk − akApk = rk+1,
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whence, (Ak+1) is checked in its entirely, and consequently, by induction, (Am) holds true.
Because of (Am)(N2)(N4), we have ri ̸= 0 for all i < m, and these vectors form an

orthogonal system in Rn. Consequently, m ≤ n. From pm = 0, it �nally follows, by virtue of
(Am)(N2), that r

T
mrm = rTmpm = 0, and thus rm = 0, so that xm is a solution of Ax = b. The

proof of Theorem 6.2.1 is complete.

Remark 6.2.2. It follows from Theorem 6.2.1 that the cg-method is well de�ned since rTk rk >
0, pTkApk > 0 for pk ̸= 0. Furthermore, property (d) states that the vectors pk are A-conjugate.

Proof. of relation (6.2).
According to (6.3) and for k < m, the vectors ri and pi, i ≤ k span the same subspace of
Rn, i.e,

Sk :=

{
k∑

j=0

ujrj, uj ∈ R

}
=

{
k∑

j=0

ρjpj, ρj ∈ R

}
.

For the function Φ(ρ0, ρ1, ..., ρk) = h(xk +
k∑

j=0

ρjpj), we have

∂Φ

∂ρj
(ρ0, ρ1, ..., ρk) = −rTpj,

where r = b− Ax, x := xk +
k∑

j=0

ρjpj. Choosing

ρj :=
{
ak for j = k;
0 for j < k.

We thus obtain, by (6.3), x = xk+1, r = rk+1 and by Theorem 6.2.1 (part (b)), −rTk+1pj = 0,
so that indeed

min
ρ0,ρ1,...,ρk

Φ(ρ0, ρ1, ..., ρk) = min
ρ0,ρ1,...,ρk

h

(
xk +

k∑
j=0

ρjpj

)
= h(xk+1).

Using the recursion (6.3) for the vectors rk and pk, it is readily veri�ed that:

pk ∈ span[r0, Ar0, ..., Akr0],

so that
Sk = span[p0, p1, ..., pk] = span[r0, Ar0, ..., A

kr0] = Kk+1(r0, A)

is the (k+1)-st Krylov space of A belonging to the vector r0. If one replaces k+1 by k and
uses (6.2) and h(x) = 1

2
∥x− x̄∥2A, one obtains

Sk−1 = Kk(r0, A), xk − x0 ∈ Kk(r0, A) and

(6.6) ∥x− x̄∥A = min{∥u− x̄∥A : u ∈ x0 +Kk(r0, A)}.

Remark 6.2.3. In exact arithmetic, we would have, at the latest rn = 0, and thus in xn the
desired solution of (6.1). Because of the e�ects of rounding errors, the value computed for rn
is, as a rule, di�erent from zero. In actual computation, the method is then simply continued
beyond the value k = n until an rk (or pk) is found which is su�ciently small. An algo
program for a variant of this algorithm can be found in Wilkinson, Reinsch (1971, [174]),
an extensive account of numerical experiments, in Reid (1971, [111]) and further results in
Axelsson (1976, [4]).
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6.2.1 Estimation of the speed of the cg-method

When introducing the error ej = xj − x̄ of xj and by r0 = −Ae0, any u ∈ x0 + Kk(r0, A)
satis�es

u− x̄ ∈ e0 + span[Ae0, A
2e0, ..., A

ke0],

that is, there exists a polynomial p(t) = 1 +
k∑

j=1

αjt
j with u− x̄ = p(A)e0. Then

∥ek∥A = min{∥p(A)e0∥A : p ∈ Πk},

where Πk denotes the set of all real polynomials of degree≤ k with p(0) = 1. Or, the positive
de�nite matrix A has n eigenvalues: λ1 ≥ λ2 ≥ ... ≥ λn > 0 and associated orthonormal

eigenvectors zi. Let us write e0 in the form e0 =
n∑

j=1

ρjzj, then

∥e0∥2A = eT0Ae0 =
n∑

j=1

λjρ
2
j ,

∥p(A)e0∥2A =
n∑

j=1

λjp(λj)
2ρ2j ≤ (max

j
p(λj)

2).∥e0∥2A

and therefore

(6.7)
∥ek∥A
∥e0∥A

≤ min
p∈Πk

max
j
|p(λj)| ≤ min

p∈Πk

max
λ∈[λn,λ1]

|p(λ)|.

Given in�nite �oating point precision, the number of iterations required to compute an
exact solution is at most the number of distinct eigenvalues. (There is one other possibil-
ity for early termination: x0 may already be A-orthogonal to some of the eigenvectors of
A. If eigenvectors are missing from the expansion of x0, their eigenvalues may be omitted
from consideration in Relation (6.7). Be forewarned, however, that these eigenvectors may
be reintroduced by �oating point roundo� error).

If we know something about the characteristics of the eigenvalues of A, it is sometimes
possible to suggest a polynomial that leads to a proof of a fast convergence. For the remainder
of this analysis, however, we shall assume the most general case: the eigenvalues are evenly
distributed between λmin and λmax, the number of distinct eigenvalues is large, and �oating
point roundo� occurs.

6.2.2 Application of (6.7) to Chebyshev polynomials

A useful approach is to minimize equation (6.7) over the range [λn, λ1] rather than a �nite
number of points. The polynomials that accomplish this are based on Chebyshev polynomials.
The Chebyshev polynomial of degree k is

Tk(x) = cos(k arccosx) := cos(kθ) if x = cos θ, k = 0, 1, 2, ...

Remark 6.2.4. The Chebyshev polynomials have the property that |Tk(x)| ≤ 1 (in fact,
they oscillate between 1 and −1) on the domain x ∈ [−1, 1], and |Tk(x)| is maximum on the
domain x /∈ [−1, 1] among all such polynomial. Loosely speaking, |Tk(x)| increases as quickly
as possible outside the boxes in the illustration.
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We can construct a polynomial of Πk := {p : polynomial of degree at most k | p(0) = 1}
with small max{|p(λ)| : λ ∈ [λn, λ1]} in the following way (in fact, we so obtain the optimal
polynomial): consider the mapping

x(·) : [λn, λ1] → [−1, 1]

λ 7→ x(λ) =
−2λ+ (λ1 + λn)

λ1 − λn
.

According to Remark 6.2.4, the Chebyshev polynomial λ 7→ Tk(x(λ)) is maximum outside
on the domain [λn, λ1]. In particular, it is maximum at λ0 = 0. So the polynomial

pk(λ) :=
Tk(x(λ))

Tk(x(0))

belongs to Πk and satis�es

(6.8) max
λ∈[λn,λ1]

|pk(λ)| = |Tk(x(0))|−1 max
λ∈[λn,λ1]

|Tk(x(λ))| = |Tk(x(0))|−1 =

∣∣∣∣Tk (c+ 1

c− 1

)∣∣∣∣−1

,

where c = λ1/λn is just the condition number of the matrix A with respect to the lub2(·)-
norm. On the other side

Tk(x) = cos(k arccosx) =
1

2

(
eîk arccosx + e−îk arccosx

)
=

1

2

(
(eî arccosx)k + (eî arccosx)−k

)
=

1

2

(
(x+ î

√
1− x2)k + (x+ î

√
1− x2)−k

)
and for x = x(0) = c+1

c−1
, one has

x+ î
√
1− x2 =

c+ 1

c− 1
+ î

√
1−

(
c+ 1

c− 1

)2

=
c+ 1

c− 1
+ î

√
(c− 1)2 − (c+ 1)2

(c− 1)2

=
c+ 1

c− 1
+ î

√
4̂i2c

(c− 1)2

=
c+ 1

c− 1
+ 2̂i2

√
c

(c− 1)2

=
c− 2

√
c+ 1

c− 1
=

(
√
c− 1)2

(
√
c− 1)(

√
c+ 1)

=

√
c− 1√
c+ 1

.

So, (6.8) becomes∣∣∣∣Tk (c+ 1

c− 1

)∣∣∣∣−1

= 2

((√
c− 1√
c+ 1

)k

+

(√
c− 1√
c+ 1

)−k
)−1

≤ 2

(√
c− 1√
c+ 1

)k

,

we �nally obtain the estimate
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(6.9)
∥ek∥A
∥e0∥A

≤
(
Tk

(
c+ 1

c− 1

))−1

≤ 2

(√
c− 1√
c+ 1

)k

.

In practice, CG usually converges faster than Equation (6.9) would suggest, because of
good eigenvalue distributions or good starting points. However, it is not necessarily true that
every iteration of CG enjoys faster convergence. The factor of 2 in Equation (6.9) allows CG
a little slack for these poor iterations.

Thus, the speed of convergence of the conjugate gradient method is determined by
√
c =√

λ1

λn
and increases if the condition number c of A decreases. This behavior is exploited by the

so-called preconditioning techniques in order to accelerate the conjugate gradient method.
One tries to approximate as well as possible the positive de�nite matrix A by another positive
de�nite matrix B, the preconditioner, so that B−1A is a good approximation of the unity
matrix. The positive de�nite matrix

A
′
= B1/2(B−1A)B−1/2 = B−1/2AB−1/2,

which is similar to B−1A, has a much smaller condition number than A, c
′
= cond(A

′
) <<

c = cond(A) (since for any positive de�nite matrix B, there exists a positive de�nite matrix
C := B1/2 with C2 = B). Moreover, the matrix B should be chosen such that linear system
Bq = r is easily solvable, which is the case, e.g., if B has a Choleski factor L. After having
chosen B, the vector x̄

′
:= B1/2x̄ solves the system

A
′
x

′
= b

′
; b

′
:= B−1/2b,

which is equivalent to Ax = b. We apply the cg-method (6.3) to solve the system A
′
x

′
= b

′
,

using x
′
0 := B1/2x0 as starting vector. Because of (6.13) and c

′
<< c, the sequence {x′

k} gen-
erated by the cg-method will converge very rapidly toward x̄

′
. But instead of computing the

matrix A
′
and the vectors x

′

k explicitly, we generate the sequence xk := B−1/2x
′

k associated
with directly as follows: using the transformation rules

A
′
= B−1/2AB−1/2, b

′
= B−1/2b

x
′

k = B1/2xk, r
′

k = b
′ − A′

x
′

k = B−1/2rk, p
′

k = B1/2pk,

we obtain from the recursions of (6.3) for the system A
′
x

′
= b

′
immediately the recursions

of the following method.

(6.10) Preconditioned conjugate gradient method

Initialization: Choose x0 ∈ Rn, compute r0 := b− Ax0, q0 := B−1r0 and put p0 := q0.

For k = 0, 1, 2, ...

(1) If pk = 0, set m := k and stop: xk is the solution of Ax = b. Otherwise,

(2) compute:

ak :=
rTk qk
pTkApk

, xk+1 := xk + akpk,

rk+1 := rk − akApk, qk+1 := B−1rk+1,

bk :=
rTk+1qk+1

rTk qk
, pk+1 := qk+1 + bkpk.
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Remark 6.2.5. The only di�erence, compared to (6.3), is that we have to solve at each step
an additional linear system Bq = r with the matrix B.

Now, the problem arises of �nding an appropriate preconditioning matrix B, a prob-
lem similar to the problem of �nding a suitable iterative method. When solving the linear
equations Ax = b arising from the discretization of boundary value problems for elliptic
equations, that is, the following model problem:{ −uxx − uyy = f 0 < x, y < 1,

u(x, y) = 0 for (x, y) ∈ ∂Ω.

(for the unit square Ω := {(x, y)|0 < x, y < 1} ⊂ R2 with boundary ∂Ω),
it turned out to be useful to choose B as the SSOR matrix de�ned by

(6.11) B :=
1

2− w

(
1

w
D − E

)(
1

w
D

)−1(
1

w
D − ET

)
with a suitable w ∈ (0, 2) [see Axelsson (1977, [4])]. Here, D and E are de�ned as in the
standard decomposition of A, i.e., A = D − E − ET .

Note that the factor L = 1
w
D − E of B is a lower triangular matrix that is as sparse as

the matrix A. Indeed, below the diagonal, it is nonzero at the same positions as A.
Another more general proposal is due to Meijerink and Van der Vorst (1977, [99]): They

proposed to determine the preconditioner B and its choleski decomposition by the so-called
incomplete Choleski factorization of A. Here, we consider the Choleski decompositions
of the form B = LDLT , where L is a lower triangular matrix with lii = 1 and D is a positive
de�nite diagonal matrix. With the incomplete Choleski decomposition it is even possible
to prescribe the sparsity structure of L: Given an arbitrary set G ⊂ {(i, j)|j ≤ i ≤ n} of
pairs of indices with (i, i) ∈ G for all i, it is possible to �nd an L with

li,j ̸= 0⇒ (i, j) ∈ G.

However, incomplete Choleski factorization gives a decent B approximation to A only
for positive de�nite matrices A, which are also M -matrices, that is, matrices A with aij ≤ 0
for i ̸= j and A−1 ≥ 0 [see Meijerink and Van der Vorst [99]].

Fortunately, M -matrices occur very frequently in applications and there are simple suf-
�cient criteria for A to be an M -matrix. For instance, any matrix A = AT with aii > 0,
aij ≤ 0 for i ̸= j that also satis�es the hypotheses of Weak row sum criterion (i.e., A is
irreducible and

|aii| ≥
∑
k ̸=i

|aik| for all i = 1, 2, ..., n

further, |ai0i0 | >
∑
k ̸=i0

|ai0k| for at least one i0) is an M -matrix (e.g: the matrix A of the model

problem). This is shown, by establishing the convergence of the Neumann series

A−1 = (I + J + J2 + ...)D−1 ≥ 0

for A = D(I − J), with ∥J∥2 < 1.
Given an index set G as earlier, the incomplete Choleski factorization of a positive def-

inite M -matrix A produces the factors D and L of a positive de�nite matrix B = LDLT

approximating A according to the following rules:

(6.12) Incomplete choleski factorization
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For i = 1, 2, ..., n :

di := aii −
i−1∑
k=1

dkl
2
ik

For j = i+ 1, ..., n :

dilji :=

{
aji −

i−1∑
k=1

dkljklik if (i, j) ∈ G
0 otherwise.

That is, the only di�erence, compared to the ordinary Choleski algorithm, is that lij = 0 is
set equal to zero at the "forbidden" places (i, j) ∈ G.

6.2.3 Application to the least-squares problems

The cg-method can also be used to solve the least-squares problems for over determined
systems

(6.13) min
x
∥Bx− c∥2,

where B is a sparse m × n matrix with m ≥ n and rank(B) = n. According to (5.1), the
optimal solution x̄ of (6.13) is also solution of the normal equations

Ax = b, A = BTB, b := BT c

where A is a positive de�nite matrix. Even if B is sparse, the matrix A = BTB can be dense.
This suggests the following variant of the conjugate-gradient method (6.3) for solution of
(6.13), and has proved useful in practice

(6.14) Algorithm

Initialization: Choose x0 ∈ Rn and compute s0 := c−Bx0, p0 := r0 := BT s0.

For k = 0, 1, 2, ...

(1) If pk = 0, stop: xk is the optimal solution of (6.13). Otherwise,

(2) compute:

qk := Bpk, ak :=
rTk rk
qTk qk

, xk+1 := xk + akpk,

sk+1 := sk − akqk, rk+1 := BT sk+1,

bk :=
rTk+1rk+1

rTk rk
, pk+1 := rk+1 + bkpk.

Clearly, the iterates {xk}k generated by this method satisfy

xk − x0 ∈ Kk(r0, B
TB),

∥xk − x̄∥BTB = min{∥u− x̄∥BTB : u ∈ x0 +Kk(r0, B
TB)}

Remark 6.2.6. Since the cond2(B
TB) = cond2(B)2, the convergence speed of this variant

of the Conjugate gradient method is slow if the condition number cond2(B) >> 1 of B is
large.

Conclusion: For a quadratic matrix, this algorithm could also be used to solve the linear
equation Bx = c even for a nonsymmetric matrix B. However, it is usually better to apply
one of the algorithms (GMRES, QMR, Bi-CGSTAB) which will be described in the following
for solving such linear equations.
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6.3 Generalized minimum residual (GMRES) algorithm

The generalized minimum residual (GMRES) method [Saad, Schulz (1986, [116]), Saad (1996,
[114])] is more expensive but it is de�ned also for general linear systems with a nonsymmetric
nonsingular matrix A. It generates vectors xk ∈ x0 + Kk(r0, A) with a minimal residual
b− Axk,

∥b− Axk∥2 = min
x∈x0+Kk(r0,A)

∥b− Ax∥2,

and uses, as main tool, orthonormal vectors v1, v2, ..., that provide an orthonormal basis for
the Krylov spaces Kk(r0, A) of dimension k,

span[v1, v2, ..., vk] = Kk(r0, A).

These vectors are given by the method of Arnoldi (6.17), (1951).
Let us consider the system of linear equations

Ax = b

with a general real nonsingular n × n matrix A which may be nonsymmetric, and solution
x̄ := A−1b. There were many e�orts to develop conjugate-gradient type algorithms for solving
such systems [see Saad (1996, [114])] for a comprehensive representation] that, among others,
lead to the generalized minimum residual (GMRES) method of Saad and Schult (1986, [116]).
It is a Krylov space method: starting with any approximate solution x0 ̸= x̄ with residual
r0 := b − Ax0 ̸= 0, it generates subsequence approximations xk to x0 with the following
properties:

(6.15)

{
xk ∈ x0 +Kk(r0, A)
∥xk − x̄∥2 = min{∥u− x̄∥2 : u ∈ x0 +Kk(r0, A)}.

As a tool, we use orthonormal bases of the Krylov spaces Kk(r0, A), k ≥ 1. In view of the
de�nition

Kk(r0, A) = span[r0, Ar0, A
2r0, ..., A

k−1r0],

and since r0 ̸= 0, then
1 ≤ dimKk(r0, A) ≤ k, k ≥ 1.

Thus, there is a largest index m with 1 ≤ m ≤ n so that

dimKk(r0, A) = k, for 1 ≤ k ≤ m.

The positive integer number m is the smallest integer for which the Krylov space Km(r0, A)
is A-invariant, that is,

(6.16) AKm(r0, A) := {Ax : x ∈ Km(r0, A)} ⊂ Km(r0, A).

Indeed: The A-invariance of Km(r0, A) is equivalent to

Amr0 ∈ Km(r0, A),

so that
dimKm+1(r0, A) = dimKm(r0, A) < m+ 1.

Remark 6.3.1. A main feature of the GMRES method is that it uses orthonormal vectors
vi ∈ Rn to span all the Krylov spaces Kk(r0, A), k ≤ m.

span[v1, v2, ..., vk] = Kk(r0, A), for 1 ≤ k ≤ m.

The vector v1 is determined, up to the sign:

v1 :=
r0
β
, β := ∥r0∥2

and the remaining vectors vj (j = 2, 3, ..., k) is computed by exploiting the Arnoldi algorithm
(1951, [3]); it generates the algorithm of Lanczos to nonsymmetric matrices A.
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(6.17) Arnoldi's orthonormalization method

Initialization: Given r0 ̸= 0, put β := ∥r0∥2, v1 := r0/β.

For k = 0, 1, 2, ...

(1) Compute u := Avk.

(2) For i = 1, 2, ..., k
Compute hik := vTi u.

(3) Compute wk := u−
k∑

i=1

hikvi and hk+1,k := ∥wk∥2.

(4) If hk+1,k = 0, set m := k and stop. Otherwise,

(5) Compute vk+1 := wk/hk+1,k.

In the algorithm (6.17), the hik are determined in step (2) such that

wk⊥vi, for i = 1, 2, ..., k.

Therefore, if ∥wk∥2 ̸= 0, step (5) determines a new vector vk+1 such that v1, v2, ..., vk+1

form an enlarged orthonormal system of k+1 vectors. It follows by induction that Arnoldi's
method generates vectors v1, v2, ..., vm such that

(6.18) span[v1, v2, ..., vk] = Kk(r0, A) = span[r0, Ar0, ..., A
k−1r0]

for k ≤ m. It follows from (6.18) the following Lemma

Lemma 6.3.1. Each vk, 1 ≤ k ≤ m, generated by the method (6.17) can be represented in
the form

(6.19) vk =
k∑

j=1

γjA
j−1r0 with γk ̸= 0.

Proof. This is true for k = 1 by de�nition of v1 = r0/β. If (6.19) holds for some k ≥ 1, then
by the induction hypothesis, vi ∈ Kk(r0, A) for i ≤ k and (6.19) implies

Avk =
k∑

j=1

γjA
jr0, γk ̸= 0

and

wk =
k∑

j=1

γjA
jr0 −

k∑
j=1

hjkvj.

By the induction hypothesis, each vj, 1 ≤ j ≤ k, has a representation

vj =

j∑
i=1

δiA
i−1r0.

Thus, wk has the form

wk =
k∑

j=1

ϵjA
jr0 with ϵk = γk ̸= 0.
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Hence, if hk+1,k = ∥wk∥2 ̸= 0, assertion (6.19) for k+1 follows, because of vk+1 = wk/hk+1,k.

If wk = 0 then Akr0 is a linear combination of the vectors Ajr0, j ≤ k − 1, that is the
break-o� index m = k of the Arnoldi's method is the same index introduced earlier:

m = max{k ≥ 1 : dimKk(r0, A) = k}.

Setting Vk = [v1, v2, ..., vk], k ≤ m, it follows from (6.18) that

(6.20) Kk(r0, A) = {Vky : y ∈ Rk}.

So, for all x ∈ x0 +Kk(r0, A), there is a unique y ∈ Rk such that

(6.21) x = x0 + Vky.

The Arnoldi's recursions may be formulated compactly in terms of the (k+1)×k Hessenberg
matrices

H̄k :=


h11 h12 . . . h1k
h21 h22 h2k

0
. . . . . .

...
...

. . . . . . hkk
0 . . . 0 hk+1,k

 , 1 ≤ k ≤ m,

and the k× k submatrices Hk obtained by deleting the last row of H̄. The formulae of steps
(3) and (5) of algorithm (6.17) imply for all 1 ≤ k < m

(6.22) Avk =
k+1∑
j=1

hjkvj =
k∑

j=1

hjkvj + wk

and

(6.23) Avm =
m∑
j=1

hjmvj, since wm = 0.

The relations (6.22)− (6.23) are equivalent to

(6.24) AVm = VmHm

and for 1 ≤ k < m, to

(6.25) AVk = VkHk + wke
T
k = Vk+1H̄k, ek := (0, ..., 0, 1)T ∈ Rk.

For 1 ≤ k ≤ m and because V T
k wk = 0, relations (6.24)− (6.25) imply:

(6.26) Hk = V T
k AVk.

Remark 6.3.2. The matrix Hm is nonsingular, and rank H̄k = k for k < m.
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Indeed: Looking the contradiction. If Remark 6.3.2 does not hold, there exists a vector
y ∈ Rm, y ̸= 0, with Hmy = 0. Or z := Vmy ̸= 0, and relation (6.24) implies

Az = AVmy = VmHmy = 0

contradiction with the fact that A is nonsingular. Also, the subdiagonal elements hj+1,j

j = 1, 2, ..., k of H̄k, k < m, are non zero: this establishes rank H̄k = k.

On the other side, the matrices H̄k, Hk and Vk allow a straightforward determination of
the solution xk of (6.15). Since r0 = βv1 = βVk+1ē1, ē1 = (1, 0, ..., 0)T ∈ Rk+1, V T

k+1Vk+1 = I,
and (6.21)-(6.25) for k < m, it follows for all x ∈ x0 +Kk(r0, A) that

∥b− Ax∥2 = ∥b− Ax0 − AVky∥2
= ∥r0 − Vk+1H̄ky∥2
= ∥Vk+1(βē1 − H̄ky)∥2
= ∥βē1 − H̄ky∥2.

So, the solution yk of the least-squares problem

(6.27) min
y∈Rk
∥βē1 − H̄ky∥2

thus provides the solution xk of (6.15),
xk = x0 + Vkyk.

In the case k = m, Relation (6.24) implies for x ∈ x0 +Km(r0, A) that

(6.28) ∥b− Ax∥2 = ∥r0 − AVmy∥2 = ∥Vm(βe1 −Hmy)∥2 = ∥βe1 −Hmy∥2.

where the vector e1 = (1, 0, ..., 0)T ∈ Rm.

Lemma 6.3.2. (Characterization of the break-o� index m of (6.17) in terms of xk : solution
of (6.15))
The vector xm solves the linear equations Ax = b, that is, xm = A−1b, and xk ̸= A−1b for all
k < m. The break-o� index m is the �rst index for which xk solves the linear system Ax = b.

Proof. From Remark 6.3.2, the matrix Hm ∈ Rm×m is nonsingular, then there is a unique
y ∈ Rm with Hmym = βe1. According to (6.28), the corresponding xm := x0 + Vmym solves
the linear system Ax = b.

For k < m, all the subdiagonal elements hj+1,j, j = 1, 2, ..., k, of the Hessenberg matrix
H̄k are nonzero. The linear equations

H̄ky =


h11 h12 . . . h1k
h21 h22 h2k

0
. . . . . .

...
...

. . . . . . hkk
0 . . . 0 hk+1,k

 y =


β
0
...
...
0

 = βē1

are not solvable. Indeed, the unique solution of k last equations is y = 0, since hj+1,j ̸= 0,
but y = 0 does not solve the �rst equation as β ̸= 0.
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Determination of an approximate solution of (6.15)

The least-squares problems (6.27) may be solved by the orthogonalization methods described
in section 5.1.2, taking advantage of the Hessenberg structure of matrices H̄k. The idea is to
consider the (k + 1)× (k + 1) given rotations Ωj = Ωj,j+1 for j = 1, 2, ..., k of the type:

Ωj,j+1 =



1
. . .

1
cj −sj
sj cj

1
. . .

1

 , c2j + s2j = 1.

The parameters cj, sj are chosen such that for each matrix in the sequence:

H̄k → Ω1H̄k → Ω2(Ω1H̄k)→ · · · → Ωk(Ωk−1Ωk−2 · · · Ω1H̄k) =: R̄k,

the �rst nonzero subdiagonal element is annihilated so that the sequence terminates with a
"upper triangular" (k + 1)× k matrix

R̄k =
[
Rk
0

]
, Rk =


x x . . . x

0 x
...

...
. . . . . . x

0 . . . 0 x

 .
The concurrent transformations of the vector ḡ0 := βē1 ∈ Rk+1,

ḡ0 → Ω1ḡ0 → Ω2(Ω1ḡ0)→ · · · → Ωk(Ωk−1Ωk−2 · · · Ω1ḡ0) =: ḡk,

lead to the vector

ḡk =
[
gk
γ̄k+1

]
, gk =

[γ1γ2
...
γk

]
∈ Rk.

Remark 6.3.3. The notation of its components is to indicate, that of the �rst k components
γ1, γ2, ..., γk of ḡk will no longer change in the subsequent steps k → k + 1 → · · ·, of the
algorithm.

Example 6.3.1. Case where k = 4.

B
Ω→ C stands for a left multiplication with the matrix Ω, that is, C := ΩB. ” ⋆ ” denotes

elements that have changed during the preceding transformation:

[H̄4|ḡ0] =

x x x x : x
x x x x : 0
0 x x x : 0
0 0 x x : 0
0 0 0 x : 0

 Ω1→

⋆ ⋆ ⋆ ⋆ : ⋆
0 ⋆ ⋆ ⋆ : ⋆
0 x x x : 0
0 0 x x : 0
0 0 0 x : 0

 Ω2→

x x x x : x
0 ⋆ ⋆ ⋆ : ⋆
0 0 ⋆ ⋆ : ⋆
0 0 x x : 0
0 0 0 x : 0


Ω3→

x x x x : x
0 x x x : x
0 0 ⋆ ⋆ : ⋆
0 0 0 ⋆ : ⋆
0 0 0 x : 0

 Ω4→

x x x x : x
0 x x x : x
0 0 x x : x
0 0 0 ⋆ : ⋆
0 0 0 0 : ⋆

 =
[
Rk g4
0 γ̄5

]
= [R̄4|ḡ4].

When setting Qk := ΩkΩk−1 · · · Ω1, then Qk is a unitary matrix, so

∥βē1 − H̄ky∥2 = ∥Qk(βē1 − H̄ky)∥2 = ∥ḡk − R̄ky∥2.

Then the solution yk of the least squares problem (6.27) is obtained as the solution of
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min
y∈Rk
∥ḡk − R̄ky∥2 = min

y∈Rk

∥∥∥( gk
γ̄k+1

)
−
[
Rk
0

]
y
∥∥∥
2
,

that is, as the solution yk := R−1
k gk of the linear equations

(6.29) gk = Rky.

(Rk is nonsingular, since for k < m, rank H̄k = k implies rank R̄k = rank(QkH̄k) = k).
Then

xk = x0 + Vkyk := x0 + VkR
−1
k gk

is the solution of (6.15).
NB: The size of the residual "b− Axk" is given by

(6.30) ∥b− Axk∥2 = ∥βē1 − H̄kyk∥2 = ∥ḡk − R̄kyk∥2 = |γ̄k+1|.

Now, we can save a major portion of the previous computations as we step from k − 1
to k. The reason is that the (k + 1)× k Hessenberg matrix H̄k di�ers from the k × (k − 1)
matrix H̄k−1 essentially only by a computational column,

H̄k =


h11 . . . h1,k−1 h1k

h21
. . .

...
...

0
. . . hk−1,k−1

...
...

. . . hk,k−1 hk,k
0 . . . 0 hk+1,k

 =

[
H̄k−1 hk
0 hk+1,k

]

namely by the last column

h̄k :=

 h1k
...
hkk
hk+1,k

 =
[
hk

hk+1,k

]
,

the components which are computed in steps (2) and (3) of algorithm (6.17). This can be
used for the matrix Qk−1H̄k, (where Qk−1 = Ωk−1Ωk−2 · · · Ω1) which has the form

Qk−1H̄k =

[
Rk−1 rk
0 ρ
0 σ

]
:= R̃k with

[rkρ
σ

]
:= Qk−1h̄k, rk ∈ Rk−1.

Therefore, we have to compute only the last column r̃k of R̃k, which amounts to forming the
product

(6.31) r̃k :=
[rkρ
σ

]
= Qk−1h̄k = Ωk−1Ωk−2 · · · Ω1h̄k.

Whence, R̃k is transformed by a given rotation Ωk of the type Ωk,k+1 (with parameters ck, sk)
to upper triangular form:

R̃k =

[
Rk−1 rk
0 ρ
0 σ

]
→ ΩkR̃k =: R̄k =

[
Rk
0

]
=

[
Rk−1 rk
0 rk,k
0 0

]
,

where the quantities ck and sk are given by

(6.32) ck :=
ρ√

ρ2 + σ2
and sk = −

σ√
σ2 + σ2

.
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The last column r̄k of R̄k, �nally is obtained as follows:

(6.33) r̄k =
[ rkrkk
0

]
=

[r1k
...
rkk
0

]
= Ωkr̃k, rkk =

√
ρ2 + σ2.

Example 6.3.2. Case k = 5.

R̃4 =

[x x x x x
x x x x

x x x
x x

ρ
σ

]
Ω5→

x x x x x
x x x x

x x x
x x

⋆
0

 := R̄5.

Since ē1 ∈ Rk+1 is the �rst axis vector in Rk+1, setting ḡ0 := βē1 one has:

Qk−1ḡ0 =
[
ḡk−1
0

]
, with ḡk−1 =

 γ1
...

γk−1
γ̄k

 =
[
gk−1
γ̄k

]
,

as ḡk−1 ∈ Rk. Hence ḡk := ΩkΩk−1...Ω1ḡ0 satis�es

ḡk =

 γ1
...
γk
γ̄k+1

 := Ωk

[
ḡk−1
0

]
= Ωk


γ1
...

γk−1
γ̄k
0

 ,
that is,

(6.34) γk = ckγ̄k, γ̄k+1 = skγ̄k.

Thus, because of (6.30)− (6.34), the size of the residual b−Axk can be computed recursively
∥b− Axk∥2 = |γ̄k+1| = |skγ̄k|,

so that
∥b− Axk∥2 = |γ̄k+1| = |sksk−1...s1|β.

Remark 6.3.4. In general, we need not solve the linear equations Rky = gk for yk and
compute xk = x0 + Vkyk in order to �nd ∥b − Axk∥2. This can be used in the GMRES
algorithm, if for a desired accuracy ϵ > 0, the solution xk of (6.15) is computed only when

|γ̄k+1| = |
k∏

j=1

sj|β ≤ ϵ and not before.

Lemma 6.3.3. Let ϵ > 0 be a given positive number such that |γ̄k+1| = |
k∏

j=1

sj|β ≤ ϵ. Then

the vectors xk can be computed recursively.

Proof. Introducing the matrices

Pk := VkR
−1
k = [p1, p2, ..., pk] with column pi.

Then
xk = x0 + Vkyk = x0 + VkR

−1
k gk =: x0 + Pkgk.

The equality

Rk =
[
Rk−1 rk
0 rkk

]
,

shows that Pk satis�es

Vk = [v1, v2, ..., vk] = PkRk = [Pk−1, pk]
[
Rk−1 rk
0 rkk

]
,
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if and only if vk = Pk−1rk + rkkpk. Thus, the vectors pk can be computed recursively by:

(6.35) pk =
1

rkk

(
vk −

k−1∑
j=1

rjkpj

)
.

This gives, because of

Pkgk = [Pk−1, pk]
[gk−1
γk
]
= Pk−1gk−1 + γkpk

the following recursion for the vectors xk :

(6.36) xk = x0 + Pkgk = xk−1 + γkpk.

where

γk = βck

k−1∏
j=1

sj

Remark 6.3.5. According to (6.36), a storage of the matrices Rk is not necessary. However,
this saving is more than o�set since one has to compute the vectors pk by (6.35), which
becomes, with increasing k, progressively expensive. So, in general, the use of relation (6.36)
is not recommendable. On the other side, this balance changes if the matrices H̄k are band
matrices of small bandwidth l, l << n.

Reorthogonalization technique

A weakness of the Arnoldi's method (6.17) is that, due to roundo� errors, the computed
vectors vi, i ≤ k become less and less orthogonal as k increases [this is a known defect
of Gram-Schmidt orthogonalization]. An expensive remedy is to use reorthogonalization
technique: A new computed vector ṽk+1 is orthogonalized against all already accepted vectors
v1, v2, ..., vk as follows

ṽk+1 → v̂k+1 := ṽk+1 −
k∑

j=1

(vTj ṽk+1)vj,

before accepting vk+1 := v̂k+1/∥v̂k+1∥2 as next vector. Here, the computing e�ort is double ,
but an improvement, at no extra expenses, of the orthogonality of the computed vi is already
obtained if one replaces steps (1) to (3) of the Arnoldi's method by

(1
′
) Compute w := Avk.

(2
′
) For i := 1, 2, .., k :

Compute hik := vTi w, w := w − hikvi.

(3
′
) Compute hk+1,k := ∥w∥2 and set wk := w.

Remark 6.3.6. In contrast to the Conjugate-gradient algorithm (6.3), a more serious disad-
vantage of the GMRES method is that the computational expenses of step k−1→ k increase
proportionally to k, since each vector Avk has to be orthogonalized with respect to all previous
vectors v1, v2, ..., vk in order to �nd vk+1.

A drastic remedy is to restart the GMRES method periodically, say every N -th step ,
where 1 < N << n (e.g., N = 10), according to the following scheme, which is denoted by
GMRES(N):

(6.37) Scheme
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(0) Given x0, compute r0 := b− Ax0.

(1) Compute xN by means of the GMRES method (more precisely, by relation (6.36)).

(2) Set x0 := xN and go to step (0).

NB: A drawback of this approach is that, after each restart, one loses all information con-
tained in the vectors v1, v2, ..., vN .

Incomplete Quasi-minimal GMRES (QGMRES) method.

Instead of using restarts, one could arti�cially limit the number of orthogonalizations in
step (2) of the Arnoldi's method (6.17) : one could �x an integer l with 1 ≤ l << n and
orthogonalize the vector Avk only against the last l vectors vk, vk−1, ..., vk−l+1. Then, only
the information contained in the old vectors vk−i with i ≥ l is not used anymore. This leads
to an incomplete GMRES method , where one replaces steps (1) to (3) in (6.17) by

(1
′
) Compute w := Avk.

(2
′
) For i := max{1, k − l + 1}, .., k :

Compute hik := vTi w, w := w − hikvi.

(3
′
) Compute hk+1,k := ∥w∥2 and set wk := w.

This method generates (k+ 1)× k Hessenberg matrices H̄k that are band matrices of band-
width l, and k × k upper triangular band matrices Rk of bandwidth l + 1.

Example 6.3.3. k = 8 and l = 3.

H̄8 =


x x x 0 0 0 0 0
x x x x 0 0 0 0
0 x x x x 0 0 0
0 0 x x x x 0 0
0 0 0 x x x x 0
0 0 0 0 x x x x
0 0 0 0 0 x x x
0 0 0 0 0 0 x x
0 0 0 0 0 0 0 x

 , R8 =


x x x x 0 0 0 0
0 x x x x 0 0 0
0 0 x x x x 0 0
0 0 0 x x x x 0
0 0 0 0 x x x x
0 0 0 0 0 x x x
0 0 0 0 0 0 x x
0 0 0 0 0 0 0 x


The relations (6.25) are still valid, but the columns of the matrices Vk = [v1, v2, ..., vk] are

no longer orthogonal. Yet, the vectors v1, v2, ..., vk remain linearly independent for k ≤ m ,
and they form a basis of Kk(r0, A) [cf. (6.18), the induction proof given there remains valid]
so that each x ∈ x0 +Kk(r0, A) has the form x = x0 + Vky with a unique y. But because of
the lacking orthogonality of the vi, we have for k < m

∥b− Ax∥2 = ∥b− Ax0 − AVky∥2
= ∥r0 − Vk+1H̄ky∥2
= ∥Vk+1(βē1 − H̄ky)∥2 ̸= ∥βē1 − H̄ky∥2

(since the columns of Vk+1 are no longer orthogonal), so that the minimization of ∥βē1−H̄ky∥2
is no longer equivalent with the minimization of ∥b−Ax∥2. Since, in general, the vectors vi
are approximately orthogonal, it is still meaningful to compute the optimal solution yk of

min
y∈Rk
∥βē1 − H̄ky∥2

and the associated vector xk := x0 + Vkyk : the vector xk will minimize ∥b − Ax∥2 on
x0 +Kk(r0, A) not exactly, but to a good approximation.

Since H̄k and the triangular matrix Rk now are band matrices of bandwidth l and l+ 1,
respectively, the use of the recursions (6.35) and (6.36) is advantageous. One then has to
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store only the l vectors vk, vk−1, ..., vk−l+1 and l additional vectors pk−1, ..., pk−l. A storage
of the full matrix Rk is no longer necessary, only the last column of Rk is needed. Formulae
(6.31) and (6.35) simplify, because of hik = 0 for i ≤ k − l, rik = 0 for i ≤ k − (l + 1), and
they read

r̃k = Ωk−1Ωk−2...Ω1h̄k

pk =
1

rkk

vk − k−1∑
i=max{1,k−l}

rikpi

 .

In sum, one obtains the following incomplete quasi-minimal GMRES method (QGMRES),
also denoted by QGMRES(l):

(6.38) QGMRES algorithm

Given ϵ > 0, l an integer with 2 ≤ l << n, and x0 with r0 := b− Ax0 ̸= 0.

(0) Put β := γ̄0 := ∥r0∥2, v1 := r0/β, k := 1.

(1) Compute w := Avk.

(2) For i = 1, 2, ..., k, compute

hik :=
{

0 if i ≤ k − l;
vTi w otherwise.

w := w − hikvi.

(3) Compute hk+1,k := ∥w∥2, and thus the vector h̄k = [h1k, h2k, ..., hk+1,k]
T .

(4) Compute r̃k := Ωk−1Ωk−2...Ω1h̄k, the rotation parameters ck, sk by (6.32),
γk, γ̄k+1 by (6.34) and the vector r̄k by (6.33) i.e.,

r̄k =

r1kr2k...
rkk
0

 := Ωkr̃k.

(5) Compute

pk :=
1

rkk

vk − k−1∑
i=max{1,k−l}

rikpi

 .

(6) Compute xk := xk−1 + γkpk.

(7) If |γ̄k+1| ≤ ϵ, stop. Otherwise, set vk+1 := w/hk+1,k, k := k + 1 and go to (1).

Remark 6.3.7. For symmetric, but inde�nite matrices A = AT , the method of Arnoldi is
identical with the Lanczos method (see Remark (5.3.2)). As in section 5.3, one can show that
all scalar products hik = vTi Avk = 0, 1 ≤ i ≤ k − 2, vanish in this case and

hk,k+1 = hk+1,k, k = 1, 2, ..., n.
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Then also the matrices

Hk :=


h11 h12 0 . . . 0

h21 h22 h23
. . .

...

0
. . . . . . . . . 0

...
. . . . . . hk−1,k−1 hk−1,k

0 . . . 0 hk,k−1 hkk


are symmetric tridiagonal matrices. Therefore, we have before us, without arti�cial trun-
cation, the case l = 2 of the incomplete GMRES method, and the method reduces to the
SYMMLQ method of Paige and Saunders (1975, [107]).

Preconditioned GMRES method.

Similarly as in the Conjugate-gradient algorithm [cf. (6.10)], it is possible to accelerate also
the convergence of the GMRES-method by preconditioning techniques. These techniques are
based on the choice of a preconditioning matrix B with the following properties:

(1) B is a good approximation of A so that B−1A respectively AB−1 are approximations of
the unity matrix.

(2) Equations of the form Bu = v are easy to solve, that is, it is simple to compute B−1v.

NB: Property (2) is satis�ed if one knows the LR decomposition of B = LR, where L and
R are sparse triangular matrices.

Having a preconditioner B, one has the choice between left preconditioning and right
preconditioning: with left preconditioning, the GMRES method is applied to the system

B−1Ax = B−1b,

and with right preconditioning, to the system

AB−1u = b

in the new variable u = Bx. Both systems are equivalent to Ax = b.
In this section, we only describe left preconditioning. We then have to modify the GMRES

method by replacing the matrix A by B−1A and the residual r0 = b−Ax0 by the new residual
q0 := B−1b−B−1Ax0 = B−1r0. We then obtain the following algorithm instead of (6.17).

(6.39) GMRES with left preconditioning (PGMRES)

Given ϵ > 0, x0 with r0 := b− Ax0 ̸= 0.

(0) Compute q0 := B−1r0, β := γ̄0 := ∥q0∥2, v1 := q0/β and set k := 1.

(1) Compute w := B−1Avk.

(2) For i = 1, 2, ..., k :
Compute hik := vTi w, w := w − hikvi.

(3) Compute hk+1,k := ∥w∥2 and γ̄k+1 [cf. (6.34)].

(4) If |γ̄k+1| > ϵ,
Compute vk+1 := w/hk+1,k, set k := k + 1 and go to (1). Otherwise,

(5) Compute the solution yk of (6.29) and xk := x0 + Vkyk,
set m := k and stop.
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Conclusion: The Krylov spaces Kk(q0, B
−1A), k = 1, 2, ..., k have the orthonormal bases

v1, v2, ..., vk and the method computes the �rst vector xm ∈ x0 +Km(q0, B
−1A) with

∥B−1(b− Axm)∥2 = min
u
{∥B−1(b− Au)∥2 : u ∈ x0 +Km(q0, B

−1A)} ≤ ϵ.

Clearly, there are similar preconditioned versions of the truncated [cf. GMRES(N), (6.37)]
and incomplete versions [see: QGMRES(l), (6.38)] of the GMRES algorithm.

6.4 Biorthogonalization method of Lanczos and the QMR
algorithm

There are additional Krylov space methods for solving linear equations Ax = b with arbitrary
real or complex nonsingular n × n matrices A. These methods work with pairs of Krylov
spaces:

Kk(v1, A) = span[v1, Av1, ..., A
k−1v1]

Kk(w1, A
T ) = span[w1, A

Tw1, ..., (A
T )k−1w1],

and not with single spaces, as the methods considered so far. Even though these methods
are applicable to systems with a complex matrix A, we still assume that A is real.

Again, let x0 be an initial approximate solution of Ax = b with r0 = b− Ax0 ̸= 0. Then
the following biorthogonalization algorithm of Lanczos (1950, [95]) starts with the vectors

v1 := r0/β, β := ∥r0∥2,

and an arbitrary additional vector w1 ∈ Rn with ∥w1∥2 = 1 (a common vector is w1 = v1).
The algorithm seeks to generate two, as long as possible, sequences {vi}i≥1 and {wi}i≥1 of
linearly independent vectors that are biorthogonal, that is,

wT
i vj =

{
δj for i ̸= j
0 otherwise.

and span Kylov spaces Kk(v1, A) and Kk(w1, A
T ), k ≥ 1, respectively,

span[v1, Av1, ..., A
k−1v1] = Kk(v1, A), span[w1, A

Tw1, ..., (A
T )k−1w1] = Kk(w1, A

T ).

(6.40) Biorthogonalization method of Lanczos

Given x0 ∈ Rn with r0 := b − Ax0 ̸= 0, set β := ∥r0∥2, v1 := r0/β, choose w1 ∈ Rn with
∥w1∥2 = 1, and let v0 := w0 := 0, k := 1.

(1) Compute δk := wT
k vk. If δk = 0, set m := k − 1 and stop. Otherwise,

(2) Compute αk := wT
kAvk/δk, β1 := ϵ1 := 0, and for k > 1,

βk :=
σkδk
δk−1

, ϵk :=
ρkδk
δk−1

,

and

ṽk+1 := Avk − αkvk − βkvk−1,

w̃k+1 := ATwk − αkwk − ϵkwk−1.
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(3) Compute ρk+1 := ∥ṽk+1∥2, σk+1 := ∥w̃k+1∥2.
If ρk+1 = 0 or σk+1 = 0, set m := k and stop. Otherwise,

(4) Compute vk+1 := ṽk+1/ρk+1, wk+1 := w̃k+1/σk+1.

(5) Set k := k + 1 and go to (1).

Theorem 6.4.1. Let m be the break-o� index of the algorithm (6.40). Then for all 1 ≤ k ≤
m,

(6.41) span[v1, v2, ..., vk] = Kk(v1, A),

span[w1, w2, ..., wk] = Kk(w1, A
T ).

and

(6.42) wT
k vj =

{
δj ̸= 0 for j = k
0 for j ̸= k j, k = 1, 2, ...,m.

The vectors v1, v2, ..., vm and also the vectors w1, w2, ..., wm are linearly independent.

Proof. Steps (2) to (4) of the algorithm (6.40) imply immediately (6.41). The biorthogonality
(6.42) is shown by mathematical induction. It is trivial true for m = 0, and if m ≥ 1 also for
k = 1. Assume inductively that for some k with 1 ≤ k < m the following holds [cf. (6.42)]

wT
i vj = 0, vTi wj = 0 1 ≤ i < j ≤ k.

Because of k < m, it follows that δj ̸= 0 for all j ≤ k, ρk+1 ̸= 0, σk+1 ̸= 0, and the vectors
vk+1 and wk+1 are well-de�ned. We wish to show that also the vectors v1, v2, ..., vk+1 and
w1, w2, ..., wk+1 are biorthogonal.

First, we show that wT
i vk+1 = 0 for i ≤ k. For i = k, this follows from the de�nition of

ṽk+1. the induction hypothesis, and the de�nition of αk, since

wT
k vk+1 =

1

ρk+1

[wT
kAvk − αkw

T
k vk − βkwT

k vk−1]

=
1

ρk+1

[wT
kAvk − αkw

T
k vk] = 0.

For i ≤ k − 1, the induction hypothesis and the de�nition of w̃k+1 give

wT
i vk+1 =

1

ρk+1

[wT
i Avk − αkw

T
i vk − βkwT

i vk−1]

=
1

ρk+1

[wT
i Avk − βkwT

i vk−1]

=
1

ρk+1

[vTk (w̃i+1 + αiwi + ϵiwi−1)− βkwT
i vk−1]

=
1

ρk+1

[σi+1v
T
k wi+1 + αiv

T
k wi + ϵiv

T
k wi−1 − βkwT

i vk−1] = 0.

Indeed, the induction hypothesis then implies wT
i+1vk = 0 for i < k − 1, and for i = k − 1,

by the de�nition of βk one has

σi+1w
T
i+1vk = βkδk−1 = βkw

T
i vk−1.

In the same way, one shows that vTi wk+1 = 0 for i ≤ k. Finally, in terms of the
matrices Vk := [v1, v2, ..., vk], Wk := [w1, w2, ..., wk], and the diagonal matrices Dk :=
diag(δ1, δ2, ..., δk), relation (6.42) is equivalent to the equation

W T
mVm = Dm.

The nonsingularity of Dm, and W
T
mVm = Dm then imply rank Vm = rankWm = m.
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(6.43) Transformation of recursion (6.40) in terms of matrices

Similarly to Arnoldi's method (6.17), the recursions (6.40) can be expressed in terms of the
matrices Vk, Wk, the tridiagonal Hessenberg matrices

(6.44) T̄k :=


α1 β2 0
ρ2 α2 β3

. . . . . . . . .
. . . . . . βk

. . . αk
0 ρk+1

 , S̄k :=


α1 ϵ2 0
σ2 α2 ϵ3

. . . . . . . . .
. . . . . . ϵk

. . . αk
0 σk+1

 ,

and their submatrices Tk and Sk of order k obtained by deleting the last row of T̄k and S̄k,
respectively: as in the proof of (6.24), (6.25), one shows for k < m

AVk = Vk+1T̄k = VkTk + ṽk+1e
T
k ,

ATWk = Wk+1S̄k = WkSk + w̃k+1e
T
k .

Because of W T
k Vk = Dk, W

T
k ṽk+1 = V T

k w̃k+1 = 0, this implies

W T
k AVk = DkTk, V T

k A
TWk = DkSk,

and, by W T
k AVk = (V T

k A
TWk)

T , also

ST
k = DkTkD

−1
k .

NB: The last identity can also be veri�ed by means of the de�nitions of βk and ϵk.

Remark 6.4.1. The break-o� behavior of the biorthogonalization algorithm (6.40) is more
complicated than that of the Arnoldi's method (6.17).
It can terminate in step (4) if ρk+1 = 0 and/or σk+1 = 0. Because of k = rank Vk =
dimKk(v1, A) = rankWk = dimKk(w1, A

T ), this is equivalent to

dimKk+1(v1, A) = k, respectively dimKk+1(w1, A
T ) = k,

that is, with the A-invariance of Kk(v1, A), respectively, the A
T -invariance of Kk(w1, A

T ).
The columns of Vk (respectively, Wk) then provide a basis of the invariant Krylov space
Kk(v1, A) (respectively, Kk(w1, A

T )). Therefore, the break-o� index m of (6.40) is at most
equal to n, m ≤ n.
Unfortunately, Lanczos' algorithm (6.40) can also stop in step (1) because of δk = wT

k vk = 0
even though, in this case, both vectors vk and wk are nonzero. Then the method terminates
"prematurely", that is, before invariant Krylov spaces have been found. This situation marks
a so-called "serious breakdown" of the method.

Remark 6.4.2. In �oating point calculations, already situations in which |δk| ≈ 0 becomes
too small ("numerical breakdown") may cause a serious loss of accuracy of the quantities
computed in (6.40). However, these dangerous situations can be (almost) always avoided by
employing "look ahead techniques", which weaken the biorthogonality requirements (6.42).
The QMR method of Freud and Nachtigal (1991, [65]) is such a variant of (6.40) which
avoid (almost) all numerical breakdowns, and still provides bases v1, v2, ..., vk of Kk(v1, A),
and bases w1, w2, ..., wk of Kk(w1, A

T ), without changing the simple structure of matrices
T̄k, S̄k [see, (6.44)] too much. In their method, these matrices will become block tridiagonal
matrices. Their block components αi, βi, ρi, ϵi, σi are no longer numbers but simple matrices
with a very small number of rows and columns. The dimension of these blocks are determined
in such a way that too small |δk| are avoided. Since the details of the QMR method are fairly
sophisticated, we refer the reader to Freud and Nachtigal (1991, [65]).

142



In the interest of simplicity, we restrict ourselves in this representation to describe the
QMR method in the basic situation when no numerical breakdown occurs. So, we assume
that (6.40) never terminates in step (1) but only in step (4). Then, δk ̸= 0 for all k ≤ m+1,
the columns of Vk provide a basis of Kk(v1, A) = Kk(r0, A), for k ≤ m, and

AVk = Vk+1T̄k = VkTk + ṽk+1e
T
k .

Each x ∈ x0 +Kk(r0, A) then has the form x = x0 + Vky with a unique vector y ∈ Rk, and,
as in section 6.3,

∥b− Ax∥2 = ∥b− Ax0 − AVky∥2
= ∥r0 − Vk+1T̄ky∥2
= ∥Vk+1(βē1 − T̄ky)∥2,

where ē1 := [1, 0, ..., 0]T ∈ Rk+1. Instead of minimizing ∥b − Ax∥2 over x0 +Kk(r0, A), one
determines xk as in quasi-minimal GMRES method (6.38): one computes the solution yk of
the least-squares problem

(6.45) min
y∈Rk
∥βē1 − T̄ky∥2

and sets xk = x0 + Vkyk.
The calculations are as in the incomplete quasi-minimal GMRES method (QGMRES

(6.38)), if we replace in (6.38) the Hessenberg matrix H̄k of bandwidth l by the tridiagonal
matrix T̄k (a band matrix of bandwidth l = 2) of this section: We only have to choose l = 2
in (6.38), and to replace the vector hk by

(6.46) tk =


t1k
...

tk−1,k
tk,k
tk+1,k

 :=


0
...
0
βkαkρk+1

 ,
the last column of T̄k.

In this way, we obtain a much simpli�ed version of the QMR method, which, however,
does not take the possibility of a serious or of a numerical breakdown (6.40) into account,
which one should in practice.

(6.47) QMR method

Given x0 ∈ Rn with r0 := b− Ax0 ̸= 0 and ϵ > 0.

Compute β := ∥r0∥2, v1 = w1 := r0/β and set k := 1.

(1) Use (6.40) and (6.46) to determine αk, βk, ϵk, ρk+1, σk+1, vk+1, wk+1 and the last column
tk of T̄k.

(2) Compute r̃k := Ωk−1Ωk−2tk (with Ω−1 = Ω0 := I), the rotation parameters ck, sk of Ωk

as in (6.32), and γk, γ̄k+1 as in (6.34).

(3) Compute the vectors

r̄k =

[r1k
...
rkk
0

]
:= Ωkr̃k

pk :=
1

rkk

(
vk −

k−1∑
i=k−2

rikpi

)
.

143



(4) Compute xk := xk−1 + γkpk.

(5) If |γ̄k+1| ≤ ϵ, then stop. Otherwise,
set k := k + 1 and go to (1).

Remark 6.4.3. As in the GMRES algorithm, it is possible to improve the e�ciency of the
QMR method by incorporing preconditioning techniques [see Freud and Nachtigal (1991, [65])
for details].

Remark 6.4.4. (QMR approach with preconditioning [65])
Let M be a given nonsingular n×n matrix which approximates in some sense the coe�cients
matrix A of the linear system (6.1), Ax = b. Moreover, assume that M is decomposed in the
form

(6.48) M =M1M2.

Instead of solving the original linear system (6.1), we apply the QMR algorithm to the equiv-
alent linear system

A
′
y = b

′
, where A

′
=M−1

1 AM−1
2 , b

′
=M−1

1 (b− Ax0), y =M2(x− x0).

Here x0 denotes some initial guess for the solution of (6.1).

• SSOR
The SSOR preconditioner is based on the decomposition of the matrix A into a nonsingu-

lar diagonal matrix D, a strictly lower triangular matrix L, and a strictly upper triangular
matrix U , such that A = D + L + U . D might have to be block diagonal to ensure it is
nonsingular. The preconditioner matrix M is given by

M = (D + L)D−1(D + U).

• ILUT(k)
The Incomplete LU decomposition is based on the LU decomposition of the coe�cient

matrix A into a unit lower triangular matrix L and an upper triangular matrix U. The full
LU decomposition of A would result in factors L and U which, in general, have far more
nonzero elements than A. The incomplete LU factorization aims to reduce this additional
�ll-in in the factors L and U .

In ILUT(k), we use a strategy due to Saad [115(1)] for dropping nonzero elements which
would �ll-in L and U . Each row of L and U is constructed subject to the restriction that only
a small amount of �ll-in, k more elements for each, is allowed beyond the number of elements
of A already present in that row (in the lower and upper part, respectively). Furthermore,
elements which are deemed to make only an insigni�cant contribution to the decomposition
are also dropped. For example, this means that if nmaxL is the maximum number of ele-
ments allowed for some row of L, nL is the actual number of elements of that row computed
by the elimination process, and ctol is the cuto� tolerance, then the algorithm orders the nL

elements in decreasing order of magnitude, and keeps only up to min(nL;nmaxL) elements,
or until the elements reach the level ctol, whichever cuto� comes �rst. The resulting matrices
L and U can be used either as M1 = L and M2 = U in (6.48), or in M2 = LU respectively
M1 = LU for right respectively left preconditioning.

The variant of ILU used is di�erent from the standard one. For a Hermitian matrix A, the
standard ILU preconditioner [99] preserves the sparsity structure of the matrix, i.e., for k = 0,
the preconditioner matrices have nonzero elements only in those locations where A itself has
nonzero elements. In [99] it is shown that this strategy does produce a good preconditioner,
provided that A is a Hermitian M-matrix. For a general non-Hermitian matrix, there is no
reason to preserve the sparsity structure of A. Instead, the ILUT(k) variant discards elements
subject only to the constraints of �ll-in and size, without regard to the sparsity structure of
A. However, this does mean that if A is Hermitian, we do not recover the standard ILU
preconditioner.
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6.5 Bi-CG and BI-CGSTAB algorithms

The biconjugate gradient (Bi-CG, also BCG) algorithm for solving a system Ax = b with a
nonsymmetric (real) n×n matrix A is a direct generalization of the classical cg-method (6.3)
of Hestenes and Stiefel (see [80]). It is related to the biorthogonalization algorithm (6.40)
and is due to Lanczos (1950, [95]) and Fletcher (1976, [63]).
In what follows, (v, w) and ∥v∥2 always denote the usual scalar product: (v, w) = vTw and
the Euclidian norm ∥v∥2 = (v, v)1/2, respectively.

(6.49) Bi-CG algorithm

Initialization: Given x0 ∈ Rn with r0 := b−Ax0 ̸= 0. Choose r̂0 ∈ Rn with (r̂0, r0) ̸= 0 and
set p0 := r0, p̂0 = r̂0.

For k = 1, 2, ... :
Compute

(1)
ak :=

(r̂k,rk)
(p̂k,Apk)

, xk+1 := xk + akpk,

rk+1 := rk − akApk, r̂k+1 := r̂k − akAT p̂k.

(2) bk :=
(r̂k+1,rk+1)

(r̂k,rk)
,

pk+1 := rk+1 + bkpk p̂k+1 := r̂k+1 + bkp̂k.

Remark 6.5.1. The algorithm is well-de�ned as long as (r̂k, rk) and (p̂k, Apk) remain
nonzero. Its theoretical properties are comparable to those of the cg-algorithm [cf. Theorem
6.2.1].

Theorem 6.5.1. Let A be any real nonsingular n × n matrix and b ∈ Rn. Then, to any
starting vectors x0 ∈ Rn, r̂0 with (r̂0, r0) ̸= 0, r0 := b − Ax0, the vectors xk, pk, p̂k, rk, r̂k
generated by (6.49) have the following properties:

There is a �rst index m ≤ n such that (r̂m, rm) = 0 or (p̂m, Apm) = 0, and all assertions
(1) to (6) of (Am) hold:

(Am):

(1) (p̂i, rj) = (r̂j, pi) = 0 for i < j ≤ m,

(2) (r̂i, ri) ̸= 0 for i ≤ m,
(r̂i, pi) = (r̂i, ri) = (p̂i, ri) ̸= 0 for i ≤ m,

(3) (p̂i, Apj) = (AT p̂j, pi) = 0 for i < j ≤ m,
(p̂i, Api) ̸= 0 for i < m,

(4) (r̂i, rj) = (r̂j, ri) = 0 for i < j ≤ m,

(5) ri = b− Axi for i ≤ m,

(6) For i ≤ m

span[r0, r1, ..., ri] = span[p0, p1, ..., pi] = Ki+1(r0, A),

span[r̂0, r̂1, ...r̂i] = span[p̂0, p̂1, ..., p̂i] = Ki+1(p̂0, A
T ).
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Proof. The proof is by mathematical induction and essentially the same as the proof of
Theorem 6.2.1: Property (A0) is trivially true, and for any k ≥ 0 the implication

(Ak), (p̂k, Apk) ̸= 0, (r̂k, rk) ̸= 0⇒ (Ak+1)

holds. Since (Ak)(2)(4) imply that the vectors ri, r̂i are nonzero for i < k and biorthogonal

(r̂i, rj) = (r̂j, ri) = 0 for i < j < k,

then the vectors ri, i = 0, 1, 2, ..., k−1, and r̂i, i = 0, 1, ..., k−1, must be linearly independent
vectors in Rn. Hence k ≤ n, so that there is a �rst index m ≤ n such that (r̂m, rm) = 0 or
(p̂m, Apm) = 0 holds.

The iterates xi exist for i = 0, 1, 2, ...,m, but there have no minimization property with
respect to the set x0 +Ki(r0, A), but only the Galerkin property

(w, b− Axi) = 0, for all w ∈ Ki−1(r̂0, A
T ).

This follows at once form (Am)(1)(6).
The break-o� behavior of the algorithm is related to but even more complicated than that

of the Lanczos biorthogonalization algorithm (6.49). First, the algorithm stops if (p̂m, Apm) =
0 but both p̂m and pm are nonzero: one can show that this happens exactly if there is
no xm+1 ∈ x0 + Km+1(r0, A) with the Galerkin property. But the algorithm stops also if
(r̂m, rm) = 0 even though the vectors r̂m and rm are nonzero: this happens exactly if the Lanc-
zos biorthogonalization algorithm (6.49), when started with v1 := r0/∥r0∥2, w1 := r̂0/∥r̂0∥2,
stops because of a "serious break-down" [see section 6.4].

A further drawback of the algorithm is that the sizes ∥ri∥2 of the residuals may behave
quite erratically as i increases: usually they �uctuate very much before settling down. More-
over, the accuracy of the computed vectors rk, r̂k, pk, p̂k and xk su�er badly due to round-o�
if a near break down occurs when some of the crucial quantities

(r̂k, rk)

∥rk∥2∥r̂k∥2
,

(p̂k, Apk)

∥Apk∥2∥p̂k∥2

become small.
However, the "convergence" of the residuals rk and their erratic behavior can be much

improved by using techniques proposed by Van der Vorst (1992, [168]) (on the basis of results
found by Sonneveld (1989, [147])) in his Bi-CGSTAB algorithm that stabilizes the Bi-CG
method. For a description of this method we need some further properties of the vectors
generated by the Bi-CG algorithm (6.49).

Proposition 6.5.1. There are polynomials Rk(µ), Pk(µ), k = 1, 2, ...,m, of degree k with
Rk(0) ≡ Pk(0) ≡ 1 satisfying

rk = Rk(A)r0, r̂k = Rk(A
T )r̂0

pk = Pk(A)r0, p̂k = Pk(A
T )r̂0

}
k = 0, 1, 2, ...,m,

and the recursions

(6.50) Rk+1(µ) = Rk(µ)− akµPk(µ)
Pk+1(µ) = Rk+1(µ) + bkµPk(µ)

}
k = 0, 1, 2, ...,m− 1.

As a consequence of these recursions, the highest order terms of these polynomials are
known for k = 0, 1, ...m:

(6.51) Rk(µ) = (−1)ka0a1...ak−1µ
k + lower order terms ,

Pk(µ) = (−1)ka0a1...ak−1µ
k + lower order terms .
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Moreover, property (Am)(4) of Theorem 6.5.1 implies the orthogonality relation

(6.52) (Ri(A
T )r̂0, Rj(A)r0) = (r̂0, Ri(A)Rj(A)r0) for i < j ≤ m.

We now introduce new vectors

r̄k := Qk(A)Rk(A)r0 = Qk(A)rk
p̄k := Qk(A)Pk(A)r0 = Qk(A)pk

, k = 0, 1, 2, ...,

de�ned by the choice of real polynomials Qk(µ) of degree k of the form

Qk(µ) = (1− w1µ)(1− w2µ)...(1− wkµ),

that satisfy the recursion

(6.53) Qk+1(µ) = (1− wk+1µ)Qk(µ).

It will turn out that the vectors r̄k and p̄k (and the associated vectors x̄k with residual
b − Ax̄k = r̄k) can be computed directly without using the vectors de�ned by the Bi-CG
algorithm. Moreover, the parameter wk of Qk can be chosen such that the size of the new
residual r̄k becomes as small as possible. To see this, we note �rst that the recursions (6.50)
and (6.53) lead to a recursion for r̄k, p̄k:

r̄k+1 = Qk+1(A)Rk+1(A)r0(6.54)

= (1− wk+1A)Qk(A)[Rk(A)− akAPk(A)]r0
= [Qk(A)Rk(A)− akAQk(A)Pk(A)]r0
− wk+1A[Qk(A)Rk(A)− akAQk(A)Pk(A)]r0
= r̄k − akAp̄k − wk+1A(r̄k − akAp̄k).

p̄k+1 = Qk+1(A)Pk+1(A)r0(6.55)

= Qk+1(A)[Rk+1(A) + bkPk(A)]r0
= r̄k+1 + (1− wk+1A)bkQk(A)Pk(A)r0
= r̄k+1 + bk(p̄k − wk+1Ap̄k).

Next, we show that the quantities ak and bk can be expressed in terms of the vectors r̄j and
p̄j. For this purpose, we introduce new quantities ρk and ρ̄k by:

(6.56)
ρk := (r̂k, rk),

ρ̄k := (r̂0, r̄k) = (r̂0, Qk(A)Rk(A)r0) = (Qk(A
T )r̂0, Rk(A)r0).

Now, the highest order term of Qk(µ) is

(−1)kw1w2 . . . wkµ
k

and, by (6.51), each power µi with i < k (≤ m) can be expressed as a linear combination of
the polynomials Rj(µ) with j < k. Therefore, the orthogonality relations (6.52) and (6.56)
give

ρ̄k = (−1)kw1w2...wk

(
(AT )kr̂0, Rk(A)r0

)
.

This implies, using the same orthogonality arguments and (6.51),
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ρk = (r̂k, rk)(6.57)

= (Rk(A
T )r̂0, Rk(A)r0)

= (−1)ka0 . . . ak−1

(
(AT )kr̂0, Rk(A)r0

)
= ρ̄k

a0
w1

· · · ak−1

wk

.

Therefore bk = (r̂k+1, rk+1)/(r̂k, rk) can also be computed as

(6.58) bk =
ρ̄k+1

ρ̄k
· ak
wk+1

.

We reexpress (p̂k, Apk) using (Am)(3), (6.49) and (6.51):

(p̂k, Apk) = (r̂k + bk−1p̂k−1, Apk)

= (r̂k, Apk) = (Rk(A
T )r̂0, APk(A)r0)

= (−1)ka0a1...ak−1((A
T )kr̂0, APk(A)r0).

On the other hand, again using (Am)(3),

(r̂0, Ap̄k) = (r̂0, AQk(A)Pk(A)r0)

= (Qk(A
T )r̂0, APk(A)r0)

= (−1)kw1w2...wk((A
T )kr̂0, APk(A)r0)

holds so that
(p̂k, Apk) =

a0
w1

· · · ak−1

wk

(r̂0, Ap̄k).

Together with (6.57), this gives an alternative formula for

ak = (r̂k, rk)/(p̂k, Apk),

namely

(6.59) ak =
(r̂0, r̄k)

(r̂0, Ap̄k)
=

ρ̄k
(r̂0, Ap̄k)

.

So far, the choice of wk+1 was left opened: since we wish to achieve the small residuals r̄i, it
is reasonable to choose wk+1 such that the norm ∥r̄k+1∥2 of [cf. (6.54)], that is,

r̄k+1 = sk − wk+1tk,

where
sk := r̄k − akAp̄k, tk := Ask,

becomes minimal. This leads to the choice

wk+1 :=
(sk, tk)

(tk, tk)
.

Finally, if r̄k = b− Ax̄k is the residual of x̄k, then (6.54) shows that r̄k+1 is the residual of

(6.60) x̄k+1 := x̄k + akp̄k + wk+1(r̄k − akAp̄k).

Combining the formulas (6.54), (6.55) and (6.60) lead to the Bi-CGSTAB algorithm:

(6.61) Bi-CGSTAB algorithm
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Initialization: Given x̄0 ∈ Rn with r̄0 := b − Ax̄0 ̸= 0. Choose r̂0 ∈ Rn so that (r̂0, r̄0) ̸= 0
and set p̄0 := r̄0.

For k = 0, 1, 2, ...:
Compute

(1)

v := Ap̄k; ak :=
(r̂0, r̄k)

(r̂0, v)
;

s := r̄k − akv; t := As.

(2)

wk+1 :=
(s, t)

(t, t)
;

x̄k+1 := x̄k + akp̄k + wk+1s; r̄k+1 := s− wk+1t.

Stop, if ∥r̄k+1∥2 is small enough. Otherwise,

(3)

bk :=
(r̂0, r̄k+1)

(r̂0, r̄k)

ak
wk+1

;

p̄k+1 := r̄k+1 + bk(p̄k − wk+1v).

Remark 6.5.2. In step k, (r̂0, r̄k) need not be determined, since it has already been com-
puted in step k − 1. An operation count shows that each iteration of Bi-CGSTAB requires
the computation of two matrix-vector products with the n×n matrix A, four inner products,
and 12n additional �oating point operations to update various vectors of length n.

Bi-CGSTAB is a powerful algorithm for solving even very large systems Ax = b with a
sparse nonsymmetric matrix A. It is possible to increase its e�ciency still further by precon-
ditioning techniques [see Van der Vorst (1992, [168])].

However, even though the stability of Bi-CGSTAB is much better than that of Bi-CG,
it will break down whenever the underlying Bi-CG method breaks down. Compared with the
QMR method, Bi-CGSTAB is much simpler but not so stable: unlike QMR, Bi-CGSTAB
takes no precautions against the danger of "serious" or "nearly serious" break-downs and is
also a�ected if the Galerkin condition de�nes some iterates only badly.

6.6 Multigrid methods

Multigrid methods belong to the most e�cient methods for the solution of those linear
equations that result from the discretization of di�erential equations. As these methods are
very �exible, there are many variants of them. Here we wish to explain only the basic ideas
behind these powerful methods, and do this in a rather simple situation, which however,
already reveals their typical properties. For a detailed treatment, we have to refer the reader
to the special literature, for instance Brandt (1977, [20]), Hackbusch and Trottenberg (1982,
[79]), and the monographs of Hackbusch (1985, [78]), Bramble (1993, [19]), and Braess (1997,
[18]). Our treatment follows the elementary exposition of Briggs (1987, [25]). Instead of
boundary value problems for partial di�erential equations, where multigrid methods have
their greatest impact, we only consider their application to the boundary value problem

(6.62)

{
−y′′

(x) = f(x) for x ∈ Ω := (0, π),
y(0) = y(π) = 0
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for an ordinary di�erential equation, which can be viewed as the one-dimensional analog of
the two-dimensional model problem (6.79). The standard discretization with the grid size
h = π/n leads to a one-dimensional grid Ωh = {xj = jh : j = 1, 2, ..., n − 1} ⊂ Ω and the
following set of linear equations for a vector uh = [uh,1, uh,2, ..., uh,n−1]

T of the approximations
uh,j ≈ y(xj) for the exact solution y on the grid Ωh:

(6.63) Ahuh = fh, Ah :=
1

h2

 2 −1 0

−1 2
. . .

. . . . . . −1
0 −1 2

 , fh :=

 f(x1)
f(x2)
...

f(xn−1)

 .
The index h also indicates that uh and fh can be viewed as functions on the grid Ωh.
Therefore, we will sometimes write the j-th component uh,j of uh as the value of a grid
function uh(x) for x = xj ∈ Ωh, uh,j = uh(xj). The matrix Ah is a matrix of order n− 1, for

which the eigenvalues λ
(k)
h and the eigenvectors z

(k)
h are known explicitly:

(6.64)
z
(k)
h := [sin kh, sin 2kh, ..., sin(n− 1)kh]T ,

λ
(k)
h := 1

h24 sin
2 kh

2
= 2

h2 (1− cos kh), k = 1, 2, ..., n− 1.

This is easily veri�ed by checking Ahz
(k)
h = λ

(k)
h z

(k)
h , k = 1, 2, ..., n− 1. The vectors z

(k)
h have

the Euclidean norm ∥z(k)h ∥ =
√
n/2 and are orthogonal to each other.

If we consider for �xed k the components sin jkh = sin(jkπ/n) of the eigenvector z
(k)
h

at the grid points xj of Ωh for j = 1, 2, ..., n − 1, we see that the grid function z(k) = z
(k)
h

describes a wave on Ωh with "frequency" k and "wavelength" 2π/k: the number k just gives
the number of half-waves on Ωh.

In order to simplify the notation, we omit the index h occasionally, if it is clear from the
context to which grid size h and grid points Ωh the vectors u = uh, f = fh and the matrix
A = Ah belong.

One motivation for multigrid methods is connected with the convergence behavior of the
standard iterative methods, the Jacobi method and the Gauss-seidel method, for solving
linear equations Au = f . We study this in more detail for the Jacobi method. The usual
decomposition

Ah = Dh(I − Jh), Dh =
2

h2
I,

of A = Ah leads to the matrix of order n− 1

J = Jh = I − h2

2
Ah =

1

2

0 1 0

1 0
. . .

. . . . . . 1
0 1 0


and the iteration of the Jacobi method

v(i+1) = Jv(i) +
h2

2
f.

The errors e(i) := v(i) − u of the iterates v(i) then satisfy the recursion

e(i+1) = Je(i) = J i+1e(0).

Clearly, the iteration matrix J = Jh = I − h2

2
Ah has the eigenvalues

µ(k) = µ
(k)
h = 1− h2

2
λ
(k)
h = cos kh, k = 1, ..., n− 1,
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but still the same eigenvectors z(k) = z
(k)
h as Ah. In order to analyze the behavior of the error

e under an iteration step e⇒ ē = Je, we write e as a linear combination of the eigenvectors

z(k) = z
(k)
h of J = Jh:

e =
n−1∑
j=1

ρjz
(j).

The weight measures the in�uence of frequency k in e. Because of

ē = Je =
n−1∑
j=1

ρjµ
(j)z(j)

and 1 > µ(1) > µ(2) > · · · > µ(n−1) = −µ(1) > −1, we see that all frequencies k = 1, 2, ..., n−1
are damped in ē, but to a di�erent extent. The central frequencies k ≈ n/2 are damped most,
the extreme frequencies k = 1 and k = n− 1 only slightly.

The damping of the large frequencies k with n/2 ≤ k ≤ n − 1 can be much improved
by introducing a suitable relaxation factor ω into the iteration matrix. To this end, we
consider a slightly more general decomposition of A de�ned by: A = Ah = B− (B−A) with
B := (1/ω)D, which leads to the damped Jacobi method with the iteration rule

(6.65) v(i+1) = J(ω)v(i) +
ω

2
h2f

in terms of the matrix Jh(ω) = J(ω) := (1 − ω)I + ωJ . The original Jacobi method cor-

responds to ω = 1, J(1) = J . Clearly, the eigenvalues µ(k)(ω) = µ
(k)
h (ω) of J(ω) are given

by

(6.66) µ
(k)
h (ω) = µ(k)(ω) := 1− ω + ωµ(k) = 1− 2ω sin2 kh

2
, k = 1, ..., n− 1,

and they belong to the same eigenvectors z(k) = z
(k)
h as before.

Now, an iteration step transforms the error as follows:

(6.67) e =
n−1∑
k=1

ρkz
(k) ⇒ ē = J(ω)e =

n−1∑
k=1

ρkµ
(k)(ω)z(k).

Since |µ(k)(ω)| < 1 for all 0 < ω ≤ 1, k = 1, 2, ..., n − 1, all frequencies k will be damped if
0 < ω ≤ 1. However, by a suitable choice of ω it is possible to damp the high frequencies
n/2 ≤ k ≤ n− 1 most heavily. In particular,

max
n/2≤k≤n−1

|µ(k)(ω)|

becomes minimal for the choice ω = ω0 := 2/3, and then |µ(k)(ω)| ≤ 1/3 for n/2 ≤ k ≤ n−1:
the method acts as a "smoother," as the high-frequency oscillations are smoothed out. Note
that the damping factor 1/3 for the high frequencies does not depend on h, but the overall
damping factor max

k
|µ(k)(ω)| = µ(1)(ω) = 1− 2ω sin2 h

2
= 1− O(h2) converges to 1 as h ↓ 0,

so that the convergence rate of the damped Jacobi method deteriorates as h tends to zero.
A drawback of the damped Jacobi method is that it depends on a parameter ω which

has to be chosen properly in order to ensure the damping property. In practice, one prefers
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parameter free damping methods. Such a method is the Gauss-seidel method that belongs
to the decomposition

Ah = Dh − Eh − Fh, Eh = F T
h :=

1

h2


0 0 . . . . . . 0

1
. . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0

 ,
of Ah. With this method, the new iterate v(i+1) is obtained from v(i) as the solution of the
linear equations

(Ah − Eh)v
(i+1) − Fhv

(i) = fh.

One can show that the Gauss-Seidel method has similar damping properties as the damped
Jacobi method. Since The damped Jacobi method is easier to analyze we restrict the further
discussion to this method.

After relatively few steps of the damped Jacobi method one �nds an iterate v(i) = v
(i)
h

with an error

e
(i)
h = v

(i)
h − uh =

n−1∑
j=1

ρ
(i)
j z

(j)
h

containing almost no high frequencies anymore:

max
n/2≤k≤n−1

|ρ(i)k | << max
1≤k<n/2

|ρ(i)k |.

Now, there is a new consideration that comes into play: the vector e
(i)
h is the exact

solution of the system Aheh = −r(i)h , where r
(i)
h = fh−Ahv

(i)
h is the residual of v

(i)
h ; hence the

decomposition of r
(i)
h = −

n−1∑
k=1

ρ
(i)
k λ

(k)
h z

(k)
h essentially contains only contributions of the lower

frequencies. But a long wave grid function gh on Ωh can be approximated quite well by a
grid function g2h on the coarser grid Ω2h = {j · 2h : j = 1, 2, ..., (n/2)− 1} (here we assume
that n is even) by means of a projection operator I2hh :

g2h := I2hh gh, I2hh :=
1

4

[1 2 1
1 2 1. . . . . .

1 2 1

]
.

Here, I2hh is an ((n/2)− 1)× (n− 1) matrix. The coarse-grid function g2h on Ω2h is obtained
from the �ne-grid function gh on Ωh by averaging:

g2h(j · 2h) =
1

4
gh((2j − 1) · h) + 2

4
gh(2j · h) +

1

4
gh((2j + 1) · h), j = 1, ...,

n

2
− 1.

Instead of forming averages, one could also use the simple restriction operator

I2hh :=

[0 1 0
0 1 0. . . . . .

0 1 0

]
for the projection. Then the function g2h = I2hh gh would be just the restriction of the function
gh on Ωh to Ω2h,

g2h(j · 2h) := gh(2j · h), j = 1, 2, ...,
n

2
− 1.
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We do not pursue this possibility further.

Conversely, interpolation operators Ih2h can be used to extend a grid function g2h on the
coarse grid Ω2h to a grid function gh = Ih2hg2h on the �ne grid Ωh, by de�ning,

Ih2h :=
1

2



1
2
1 1

2

1
...
... 1

2
1

 .

Here Ih2h is an (n − 1) × ((n/2) − 1) matrix, and the function gh is obtained from g2h by
interpolation (g2h(0) = g2h(π) := 0), that is, for j = 1, 2, ..., n− 1,

gh(jh) :=

{
g2h
(
j
2
· 2h
)

if j is even,
1
2
g2h
(
j−1
2
· 2h
)
+ 1

2
g2h
(
j+1
2
· 2h
)

otherwise

Now an elementary form of a multigrid method runs as follows: A given approximate

solution v
(i)
h of Ahuh = fh is �rst transformed by a �nite number of steps of the damped

Jacobi method (6.65) into a new approximate solution w
(i)
h of Ahuh = fh with error e

(i)
h and

residual r
(i)
h . Then the residual r

(i)
h is projected to the coarse grid Ω2h: r

(i)
h → r

(i)
2h := I2hh r

(i)
h ,

and the linear "coarse-grid equation"

A2he2h = −r(i)2h

is solved. Its solution e
(i)
2h is then extended to the �ne grid: e

(i)
2h → ẽ

(i)
h := Ih2he

(i)
2h by interpola-

tion. We expect that ẽ
(i)
h is a good approximation for the exact solution e

(i)
h of Aheh = −r(i)h ,

since e
(i)
h is a low-frequency grid function. Therefore, v

(i+1)
h := v

(i)
h − ẽ

(i)
h will presumably be

a much better approximation to uh than v
(i)
h .

In this way, we obtain the two-grid method, whose basic step v
(i)
h → v

(i+1)
h := TGM(v

(i)
h )

is de�ned by a mapping TGM according to the following rules.

(6.68) Two-Grid method

Let vh be a grid vector on Ωh.

(1) Perform υ steps of the damped Jacobi method (6.65), with ω = ω0 := 2/3 and the
starting vector vh, which results in the vector wh with the residual rh := fh − Ahwh

(smoothing step).

(2) Compute r2h := I2hh rh (projecting step).

(3) Solve A2he2h = −r2h (coarse-grid solution).

(4) Set TGM(vh) := wh − Ih2he2h (interpolation and �ne-grid correction step).

It is relatively easy to analyze the behavior of the error

eh := vh − uh → ēh := v̄h − uh
during one iteration step vh → v̄h := TGM(vh) of (6.68) in the case of our simple model
problem. Because of (6.67), after the υ smoothing steps, the error dh := wh − uh of wh

satis�es
dh = J(ω0)

υeh, rh = −Ahdh = −AhJ(ω0)
υeh.
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Further, by (6.68),

A2he2h = −r2h = −I2hh rh = I2hh Ahdh,

ēh = v̄h − uh = dh − Ih2he2h,

and we �nd the formula

(6.69) ēh =
(
I − Ih2hA−1

2h I
2h
h Ah

)
dh = Ch · J(ω0)

υeh

where Ch is the (n− 1)× (n− 1) matrix

Ch := I − Ih2hA−1
2h I

2h
h Ah.

In order to study the propagation of the frequencies contained in eh, we need explicit

formulas for the maps Chz
(k)
h of the eigenvectors z

(k)
h of Ah. Using the abbreviation ck :=

cos2(kh/2), sk := sin2(kh/2), and k
′
:= n− k, a short direct calculation shows

(6.70) I2hh z
(k)
h =

{
ckz

(k)
2h if k = 1, 2, ..., (n/2)− 1,

−sk′z
(k

′
)

2h for k = n/2, ..., n− 1.

Here, the vector z
(k)
2h , 1 ≤ k < n/2, are just the eigenvectors of A2h for the eigenvalues

λ
(k)
2h =

4

(2h)2
sin2 kh =

1

h2
sin2 kh

[see (6.64)], so that

A−1
2h z

(k)
2h =

1

λ
(k)
2h

z
(k)
2h , k = 1, 2, ...,

n

2
− 1.

Again, by a simple direct calculation one veri�es

(6.71) Ih2hz
(k)
2h = ckz

(k)
h − skz

(k
′
)

h , k = 1, 2, ...,
n

2
− 1.

Combining these results, one has for k = 1, 2, ..., n
2
− 1

Ih2hA
−1
2h I

2h
h Ahz

(k)
h = λ

(k)
h Ih2hA

−1
2h I

2h
h z

(k)
h

= λ
(k)
h ckI

h
2hA

−1
2h z

(k)
2h

=
λ
(k)
h

λ
(k)
2h

ckI
h
2hz

(k)
2h

=
λ
(k)
h

λ
(k)
2h

ck

(
ckz

(k)
h − skz

(k
′
)

h

)
.

Using that

λ
(k)
h

λ
(k)
2h

=
4
h2 sin

2(kh/2)
1
h2 sin

2(kh)
=

4sk
sin2(kh)

, cksk =
1

4
sin2(kh),

we �nally obtain for k = 1, 2, ..., n
2
− 1
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(6.72) Chz
(k)
h =

(
I − Ih2hA−1

2h I
2h
h Ah

)
z
(k)
h = skz

(k)
h + skz

(k
′
)

h .

Similarly, the maps of the high-frequency vectors z
(k

′
)

h are given by

(6.73) Chz
(k

′
)

h = ckz
(k)
h + ckz

(k
′
)

h , k = 1, 2, ...,
n

2
.

We are now able to show the following theorem.

Theorem 6.6.1. Let υ = 2, and ω0 = 2/3, and suppose that one step of the two-grid
method (6.68) transforms the vector vh into v̄h := TGM(vh). Then the errors eh := vh − uh,
ēh := v̄h − uh of vh and v̄h satisfy

∥ēh∥2 ≤ 0.782∥eh∥2.

Thus, the two-grid method generates a sequence v
(j+1)
h = TGM(v

(j)
h ), j = 1, 2, ..., whose

errors e
(j)
h = v

(j)
h − uh converges to zero with a linear rate of convergence that is independent

of h,

∥e(j)h ∥2 ≤ (0.782)j∥e(0)h ∥2.
This is quite remarkable: the convergence rate of the iterative method considered depends on
h and deteriorates as h ↓ 0.

Proof. We start with the decomposition of the error eh := vh − uh,

eh =
n−1∑
j=1

ρjz
(j)
h .

We have already seen, in (6.66), that the vectors z
(k)
h are also the eigenvectors of J(ω0)

belonging to the eigenvalues µ
(k)
h (ω0) = 1 − 2ω0sk, k = 1, 2, ..., n − 1. The choice of ω0

guarantees, for k = 1, 2, ..., n
2
, k

′
:= n− k, that

|µ(k)
h (ω0)| < 1, |µ(k

′
)

h (ω0)| ≤
1

3
.

Next, (6.67), (6.72) and (6.73) imply for k = 1, 2, ..., n
2

ChJ(ω0)
υz

(k)
h = (µ

(k)
h (ω0))

υ
(
skz

(k)
h + skz

(k
′
)

h

)
:= αk(z

(k)
h + z

(k
′
)

h ),

ChJ(ω0)
υz

(k
′
)

h = (µ
(k

′
)

h (ω0))
υ
(
ckz

(k)
h + ckz

(k
′
)

h

)
:= βk(z

(k)
h + z

(k
′
)

h ),

where the constants αk and βk are estimated by

|αk| < sk ≤
1

2
, |βk| ≤

1

3υ
for k = 1, 2, ...,

n

2
.

We thus obtain the following formula for the errors ēh:

ēh = ChJ(ω0)
υeh =

n/2∑
k=1

δk(ρkαk + ρk′βk)(z
(k)
h + z

(k
′
)

h ),
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where we have used the abbreviations δk := 1 for k < n/2 and δn/2 := 1/2. Finally, the

orthogonality of the vectors z
(k)
h and ∥z(k)h ∥2 = n/2 imply that

∥ēh∥22 = n

 n/2∑
k=1

δk(ρ
2
kα

2
k + ρ2

k′
β2
k + 2ρkρk′αkβk)


≤ n

 n/2∑
k=1

δk(ρ
2
kα

2
k + ρ2

k′
β2
k + (ρ2k + ρ2

k′
)|αkβk|)


≤ n

(
1

4
+

1

2 · 3υ

) n/2∑
k=1

δk(ρ
2
k + ρ2

k
′ )

=

(
1

2
+

1

3υ

)
∥eh∥22.

For υ = 2 we obtain the estimate of the theorem.

With the two-grid method there remains the problem of how to solve the linear equations
A2he2h = −r2h "on the coarse grid" Ω2h in step (3) of (6.68). Here, the idea suggests itself
to use the two-grid method again, thereby reducing this problem to the problem of solving
further linear equations on the coarser grid Ω4h, etc.... In this way, we obtain multigrid
methods proper. From among the many variants of these methods we only describe the so-
called multigrid V-cycle, which is an essential ingredient of all such methods. In order to
solve Ahuh = fh on the grid Ω, the multigrid V-cycle visits all grids

Ωh → Ω2h → · · · → Ω2jh → Ω2j−1h → · · · → Ωh

between the �nest grid Ωh and the coarsest grid Ω2jh in the indicated order: it �rst descends
from the �nest to the coarsest grid, and then ascends again to the �nest grid, which also
explains the name of the method. During one V-cycle, an approximate solution vh of the
�ne-grid equation Ahu = fh is replaced by a new approximate solution

vh ←MVh(vh, fh)

of the same equation, where the function MVh(vh, fh) is recursively de�ned by the following:

(6.74) Multigrid V-cycle.

Suppose vh, fh are given vectors on Ωh. Put H := h.

(1) By υ steps of the damped Jacobi method (6.65) with ω0 = 2/3, transform the approx-
imate solution vH of AHu = fH into another approximate solution, again denoted by
vH .

(2) If H = 2jh goto (4). Otherwise put

f2H := I2HH (fH − AHvH), v2H :=MV2H(0, f2H).

(3) Compute vH := vH + IH2Hv2H .

(4) Apply the damped Jacobi method (6.65) υ times with ω0 = 2/3 to transform the
approximate solution vH of AHu = fH into another approximate solution of these
equations, again denoted by vH .

156



Remark 6.6.1. The most e�cient of these methods require only O(N) operations to compute
an approximate solution vh of a system Ahuh = fh with N unknowns, which is su�ciently
accurate in the following sense. The error ∥vh−uh∥ = O(h2) has the same order of magnitude
as the truncation error max

x∈Ωh

∥y(x)− uh(x)∥ = τ(h) = O(h2) of the underlying discretization

method. Since the exact solution uh of the discretized equation Ahuh = fh di�ers from the
exact solution y(x) of the boundary value problem (6.62) by the truncation error τ(h) any-
way, it makes no sense to compute an approximation vh to uh with ∥vh − uh∥ << τ(h).

For the simple two-grid method (6.68), Theorem 6.6.1 implies only a weaker result: because
of N = n − 1 and h2 = π2/n2, this method requires j = O(lnN) iterations to compute an

approximate solution v
(j)
h of Ahuh = fh with ∥v(j)h − uh∥ = O(h2), if we start with v

(0)
h = 0.

Since the tridiagonal system in step (3) of (6.68) can be solved with O(N) operations, the
two-grid method requires altogether O(N lnN) operations in order to �nd an approximate
solution vh of acceptable accuracy.

6.7 Comparison of methods

In this section, we determine the respective computational e�orts required by the methods
discussed in this chapter when applied to the following boundary value problems for partial
di�erential equations:

(6.75)

{ −uxx − uyy + γxux + γyuy + δu = f ; δ, γ constants
u(x, y) = 0 for (x, y) ∈ ∂Ω
Ω := {(x, y) : 0 ≤ x, y ≤ 1}

on the unit square Ω of R2.

We approximate problem (6.75) by discretization. We choose a step size h = 1
N+1

, grid
points xi = ih, yj = jh with i, j = 0, 1, 2, ..., N + 1. We assume that the function u is four
times continuously di�erentiable on Ω, i.e., u ∈ C4(Ω). Then, by the Taylor expansion of

u(xi ± h, yj ± h) about (xi, yj), one obtains by setting: u
(k)
x (x, y) = ux...x︸︷︷︸

k+1

(x, y),

u
(k)
y (x, y) = uy...y︸︷︷︸

k+1

(x, y) and u(xl, yk) = ulk:

(1) u(xi+1, yj) = u(xi, yj)+hu
(0)
x (xi, yj)+

h2

2!
u(1)x (xi, yj)+

h3

3!
u(2)x (xi, yj)+

h4

4!
u(3)x (xi+θ

+
1 .h, yj)

(2) u(xi−1, yj) = u(xi, yj)−hu(0)x (xi, yj)+
h2

2!
u(1)x (xi, yj)−

h3

3!
u(2)x (xi, yj)+

h4

4!
u(3)x (xi+θ

−
1 .h, yj)

(3) u(xi, yj+1) = u(xi, yj)+hu
(0)
y (xi, yj)+

h2

2!
u(1)y (xi, yj)+

h3

3!
u(2)y (xi, yj)+

h4

4!
u(3)y (xi, yj+θ

+
2 .h)

(4) u(xi, yj−1) = u(xi, yj)−hu(0)y (xi, yj)+
h2

2!
u(1)y (xi, yj)−

h3

3!
u(2)y (xi, yj)+

h4

4!
u(3)y (xi, yj+θ

−
2 .h)

(5) u(xi+1, yj) = u(xi, yj) + hu(0)x (xi, yj) +
h2

2!
u(1)x (xi + θ+3 .h, yj)

(6) u(xi−1, yj) = u(xi, yj)− hu(0)x (xi, yj) +
h2

2!
u(1)x (xi + θ−3 .h, yj)

(7) u(xi, yj+1) = u(xi, yj) + hu(0)y (xi, yj) +
h2

2!
u(1)y (xi, yj + θ+4 .h)
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(8) u(xi, yj−1) = u(xi, yj)− hu(0)y (xi, yj) +
h2

2!
u(1)y (xi, yj + θ−4 .h)

with |θ±k | < 1.
It follows respectively from (1)− (2), (3)− (4), (5)− (6) and (7)− (8) that

−∆xxuij =
−ui+1,j + 2uij − ui−1,j

h2

−∆yyuij =
−ui,j+1 + 2uij − ui,j−1

h2

∆xuij =
ui+1,j − ui−1,j

2h

∆yuij =
ui,j+1 − ui,j−1

2h

When replacing the di�erential operators uxx, uyy, ux, uy at the grid points (xi, yj), i, j =
1, 2, ..., N by the corresponding di�erence quotients: ∆xxuij, ∆yyuij, ∆xuij, ∆yuij, one has:

−uxx(xi, yj)− uyy(xi, yj) ≈
−ui+1,j − ui,j+1 + 4uij − ui−1,j − ui,j−1

h2
(6.76)

(6.77) γxiux(xi, yj) + γyjuy(xi, yj) ≈
γxiui+1,j + γyjui,j+1 − γxiui−1,j − γyjui,j−1

2h

Since u ∈ C4(Ω), then u(4) is still continuous over Ω, it follows from this that the trun-
cation error is

τij(u) := uxx(xi, yj) + uyy(xi, yj)−∆xxuij −∆yyuij

=
h2

12
[u(3)x (xi + θ1.h, yj) + u(3)y (xi, yj + θ2.h)] for some |θk| < 1.

The scheme to three points de�ned by relations (6.76) − (6.77) produces a system of N2

linear equations

(6.78) Az = b

for the vector

z := [z1,1, z2,1, ..., zN,1, ..., z1,N−1, ..., zN,N−1, z1,N , ...zN,N ]
T

of N2 unknowns zij: i, j = 1, 2, ..., N , by which we approximate uij := u(xi, yj).
The matrix A depends on the choice of γ and δ. For γ = δ = 0, it is (up to factor h2) a

positive de�nite matrix A associated with the model problem:

(6.79)

{ −uxx − uyy = f
u(x, y) = 0 for (x, y) ∈ ∂Ω
Ω := {(x, y) : 0 ≤ x, y ≤ 1}

For γ = 0 and all δ, the matrix A is still symmetric, but it becomes inde�nite if δ is
decreased to su�ciently negative values. Finally, for γ ̸= 0, the matrix A is nonsymmetric.

For the group of tests, we use the linear equations (6.78) with a nonsymmetric matrix A
(corresponding to choices γ ̸= 0 and δ << 0) in order to compare the Krylov space methods
(GMRES, QMR, Bi-CGSTAB) that are able to handle general linear equations.

Next, we consider all the Krylov space methods studied in this chapter. The test results
for these methods were obtained with the help of MATLAB using, with the exception of
the incomplete QGMRES(l) method (6.38), theMATLAB functions PCG, GMRES, QMR
and BICGSTAB realizing the corresponding Krylov space methods.
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a) The matrices involved in the below tests are in general Toeplitz matrices or close to
Toeplitz matrices.

b) The associated preconditioners belong to the circulant algebra, Tau algebra or in a
Trigonometric algebra. In the case of circulant algebra, the preconditioners are op-
timal or natural.

c) The reason of the test is to show in general the behavior of preconditioning techniques
in the Krylov subspace methods

Since the conjugate gradient method (6.3) is only applicable to positive de�nite systems,
we used also here the linear equations (6.78) belonging to the model problem (γ = δ = 0) for
numerical tests. The vector b := Ae, e := [1, 1, ..., 1]T ∈ RN2

was chosen as right hand side
of (6.78), so that z = e is the exact solution of (6.78), and z(0) := 0 was chosen as starting
point. we describe the test results obtained for N = 50 [i.e., the number of unknowns in
(6.78) is N2 = 2500] in the form of a table which lists sizes.

(6.80) redi :=
∥Az(i) − b∥2
∥Az(0) − b∥2

of the relative residuals versus the iteration number i.
The slow convergence of the unpreconditioned conjugate gradient algorithm is explained

by the estimate (6.9) and the relatively large condition number

c = cond2(A)
.
=

4

π2
(N + 1)2 ≈ 1054

of the matrix A [see for instance chapter 9, section 9.3: case of Toeplitz or block Toeplitz
matrices]. This slow convergence is very much improved by preconditioning (see also chapter
9, subsection 9.7.2). On the other hand, one step of the preconditioned algorithm is more
expensive, but not much. The following small table compares the number of �oating point
operations (�ops) per iteration if one uses the SSOR preconditioner:

no preconditioning with preconditioning
�ops/iteration 34.5N2 47.5N2

The number of iterations (it) and of �oating point operations (�ops) needed to reduce
the size of the initial residual by a factor 10−7 is as follows:

(6.81)
no preconditioning with preconditioning

it 765 56
flops 26378N2 2662N2

In this context belongs a theoretical result of Axelsson (1977, [4]): he shown that the
conjugate-gradient method using the SSOR preconditioner (de�ned in (6.11)) requiresO(N2.5logN)
operations to �nd an approximate solution z̄ of the linear equations (6.78) for the model prob-
lem (6.79) that is su�ciently accurate, ∥z̄ − u∥2 = O(h2).

The behavior of the remaining three Krylov space methods GMRES, QMR, and Bi-
CGSTAB described in this chapter is illustrated by similar tables. Since these methods work
also for systems of linear equations with nonsymmetric matrices, they were tested using the
nonsymmetric system (6.78) resulting from problem (6.75) for the choice δ = −100, γ = 40,
N = 50, and the starting point z(0) = 0, but only for the preconditioned versions of these
algorithms [the SSOR-preconditioner (6.11) with w = 1 was used for left-preconditioning].

The arithmetical expenses for the restarted GMRES(25) method (6.37), the incomplete
QGMRES(30) method (6.38), the QMR method, and the Bi-CGSTAB method are described
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in Table 6.82, where it and flops denote the number of iterations and operations needed to
reduce the initial residual by a factor 10−9:

(6.82)

GMRES(25) QGMRES(30) QMR Bi-CGSTAB
it 202 179 73 101

flops 25199N2 37893N2 6843N2 4928N2

flops/it 124.7N2 211.7N2 93.7N2 48.8N2

Remark 6.7.1. The numerical results for the Krylov space methods show the following: The
QMR method and Bi-CGSTAB are clearly superior to both GMRES(restart), the restart
version (6.37) of GMRES, and the incomplete QGMRES(l) method (6.38). If the parameters
restart or l are small, each step of these methods is relatively inexpensive, but these methods
then are not able to reduce an initial residual substantially within a reasonable number of iter-
ations. For larger values of restart or l, the methods are able to compute accurate solutions,
but each iteration then becomes too expensive. In our tests, QMR needed about 40% more
operations but 30% fewer iterations to compute a high accuracy solution than Bi-CGSTAB.
The results also con�rm that the residuals of the iterates converge more smoothly with QMR
than with Bi-CGSTAB, where larger �uctuations are observed.

Remark 6.7.2. (Important for preconditioning studied in chapter 8)
• The test results and Remark 6.4.4 show the e�ciency of the QMR method for solving

the preconditioned collocation linear systems approximating elliptic boundary value problems.
• In fact, the collocation matrices are in general neither Toeplitz matrices and nor sym-

metric matrices (see chapter 8). According to Remark 6.4.4, for a Hermitian matrix A, the
standard Incomplete LU preconditioner [99] preserves the sparsity structure of the matrix,
that is, the preconditioner matrices have nonzero elements only in those locations where A
itself has nonzero elements. For a general non-Hermitian matrix, there is no reason to pre-
serve the sparsity structure of A. Instead, the ILUT(k) variant discards elements subject only
to the constraints of �ll-in and size, without regard to the sparsity structure of A. However,
this does mean that if A is Hermitian, we do not recover the standard Incomplete LU pre-
conditioner. As it is shown in chapter 8 the collocation matrices are not symmetric, so the
preconditioners can be symmetric. Hence, the above arguments allow us to conclude that the
QMR method is a powerful algorithm to solve the preconditioned collocation linear systems
(involved in chapter 8) with symmetric preconditioners which belong to the Tau algebra.

Remark 6.7.3. Some �nal remarks on the methods considered in this chapter are in order.
All Krylov space methods are general purpose methods that may, in principle, be applied
to the solution of sparse linear systems Ax = b of an arbitrary origin. By contrast, the
ADI methods, Buneman's algorithm and the Fourier methods are methods for solving only
special linear equations which result from the discretization of a restricted class of particular
boundary value problems for partial di�erential equations.

Remark 6.7.4. Compared to these specialized methods, the convergence of the classical
methods is too slow. Because of their particular damping properties, the latter, however,
are still being used as part of the "smoothing step" of modern multigrid methods. In general,
multigrid methods are the methods of choice if one wishes to solve boundary value problems
for partial di�erential equations by discretization techniques: in rather general situations,
multigrid methods will yield a su�ciently accurate solution of the resulting linear equations
with a number of operations that grows only linearly or almost linearly with the number
of unknowns. In this respect multigrid methods are comparable to the ADI methods and
Buneman's algorithm, but may be applied to much more general problems.

Remark 6.7.5. The natural realm of application of Krylov space methods is the solution of
general sparse linear systems Ax = b, in particular those which are not connected with the
discretization of partial di�erential equations. Such system arise e.g. with the treatment of
network problems. But Krylov space methods are also used within multigrid methods e.g. for
computing "coarse grid solutions". For the e�ciency of Krylov space methods, it is important
to know and use good preconditioners.
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Conclusion
In this Chapter, we have studied the Krylov space methods and we have provided a general
idea of Multigrid methods. The comparison of methods shows the practical importance of
Krylov space methods for solving the linear equations Ax = b even with matrices A of large
dimension. We didn't do a detailed study of Multigrid methods in this Thesis but, reserve
it for future investigations.
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Chapter Seven

Regularizing Preconditioning
g-Toeplitz Sequences via

g-Circulants

Abstract

For a given nonnegative integer g, a matrix An of size n is called g-Toeplitz if its entries
obey the rule An = [ar−gs]

n−1
r,s=0. Analogously, a matrix An again of size n is called g-circulant

if An =
[
a(r−gs)modn

]n−1

r,s=0
. In a recent work we studied the asymptotic properties, in term of

spectral distribution, of both g-circulant and g-Toeplitz sequences in the case where {ak}k
is the sequence of Fourier coe�cients of a function f ∈ L1(−π, π). Here we are interested in
the preconditioning problem which is well understood and widely studied in the last three
decades for g = 1. In particular, we consider the general case with g ≥ 2 and the nontrivial
result is that the preconditioned sequence {Pn}n = {P−1

n An}n, where {Pn}n is the sequence
of preconditioner, cannot be clustered at 1 so that the case of g = 1 is exceptional. However,
while a standard preconditioning cannot be achieved, the result has a positive implication
since there exist choices of g-circulant sequences which can be used as basic regularizing
preconditioning sequences for the corresponding g-Toeplitz structures. Generalizations to
the block and multilevel case are also considered, where g is a vector with nonnegative inte-
ger entries. Few numerical experiments, related to speci�c applications in signal and image
restoration, are presented and discussed.

Keywords: circulants, Toeplitz, g-circulants, g-Toeplitz, spectral distributions, cluster-
ing, preconditioning, multigrid methods.
AMS SC: 65F10, 15A18.

7.1 Introduction

A matrix An of size n is called g-Toeplitz if its entries obey the rules An = [ar−gs]
n−1
r,s=0,

where g is a given nonnegative integer. A matrix An of size n is called g-circulant if
An = [a(r−gs)modn]

n−1
r,s=0: for an introduction and for the algebraic properties of such ma-

trices refer to section 5.1 of the classical book by Davis [51], while new additional results
can be found in [161] and references therein. On the other hand, such structured matrices
are of interest in many �elds such as e.g. multigrid methods [78, 57], wavelet analysis [50],
and subdivision algorithms or, equivalently, in the associated re�nement equations, see [58]
and references therein. Furthermore, it is interesting to remind that Gilbert Strang [150] has
shown rich connections between dilation equations in the wavelets context and multigrid al-
gorithms [78, 162], when constructing the restriction/prolongation operators [1] with various
boundary conditions. It is worth noticing that the use of di�erent boundary conditions is
quite natural when dealing with signal/image restoration problems or di�erential equations,
see [129, 126].
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In a recent paper [104] we addressed the problem of characterizing the singular values of
g-circulants and of providing an asymptotic analysis of the distribution results for the sin-
gular values of g-Toeplitz sequences, in the case where the sequence of values {ak}k, de�ning
the entries of the matrices, can be interpreted as the sequence of Fourier coe�cients of an
integrable function f over the domain (−π, π). Such results were plainly generalized the
block, multilevel case, amounting to choosing the symbol f multivariate, i.e., de�ned on the
set (−π, π)d for some d > 1, and matrix valued, i.e., such that f(x) is a matrix of given size
p× q.

Here we consider the preconditioning problem. In particular, we consider the general case
with g ≥ 2 and the interesting result is that the preconditioned sequence {Pn}n cannot be
clustered at 1 so that the case of g = 1 is exceptional and, by the way, widely studied in the
literature (see e.g. [36, 38] for the one-level case, [123] for the multilevel case, and [124] for
the multilevel block case). However, while the optimal preconditioning cannot be achieved,
the result has a positive implication since there exists choices of g-circulant sequences which
are regularizing preconditioning sequences for the corresponding g-Toeplitz structures. Gen-
eralizations to the block and multilevel cases are also considered.

The paper is organized as follows. In section 7.2 we introduce useful de�nitions and well-
known results concerning the notion of spectral distribution, while section 7.3 is devoted to
some preparatory and general results on preconditioning and clustering. In section 7.4 we
report distribution results on g-circulants and g-Toeplitz sequences. Section 7.5 is devoted
to the preconditioning analysis both in the standard and regularizing senses, while in section
7.6 we discuss the generalization of the results when we deal with the multilevel block case.
The aim of section 7.7 is to draw conclusions and to indicate the future lines of research.

7.2 General de�nitions and tools from spectral distribu-
tion theory

For any function F de�ned on R+
0 and for any m×n matrix A, the symbol

∑
σ(F,A) stands

for the mean

(7.1)
∑

σ
(F,A) :=

1

min{m,n}

min{m,n}∑
j=1

F (σj(A)) =
1

min{m,n}
∑

σ∈Sval(A)

F (σ)

Throughout this chapter we speak also about matrix sequences {Ak}k where Ak is an
n(k) ×m(k) matrix with min{n(k),m(k)} → ∞ as k → ∞. When n(k) = m(k) that is all
the involved matrices are square, and this will occur often in the work, we will not need the
extra parameter k and we will consider simply matrix sequences of the form {An}n.

Concerning the case of matrix-sequences, an important notion is that of spectral distri-
bution in eigenvalue or singular value sense, linking the collective behavior of the eigenvalues
or singular values of all the matrices in the sequence to a given function (or to a measure).
The notion goes back to Weyl and has been investigated by many authors in the Toeplitz
and Locally Toeplitz context (see the book by Böttcher and Silbermann [16] where many
classical results by the authors, Szegö, Avram, Parter, Widom Tyrtyshnikov, and many other
can be found, and more recent results in [14, 15, 71, 93, 146, 167, 156, 157]). Here we treat the
notion of spectral distribution only in the singular value sense since our analysis is devoted
to singular values: regarding eigenvalues the analysis, both in the preconditioned and even
non-preconditioned case, is substantially trickier given the inherent non-normality of the
involved structures.

De�nition 7.2.1. Let C0(R+
0 ) be the set of continuous functions with bounded support de�ned

over the nonnegative real numbers, d a positive integer, and θ a complex-valued measurable
function de�ned on a set G ⊂ Rd of �nite and positive Lebesgue measure µ(G). Here G

will be often equal to (−π, π)d so that eiG = Td with T denoting the complex unit circle. A
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matrix sequence {Ak}k is said to be distributed (in the sense of the singular values) as the
pair (θ,G) or to have the distribution function θ ({Ak}k ∼σ (θ,G)), if, ∀F ∈ C0(R+

0 ), the
following limit relation holds

(7.2) lim
k→∞

Σσ(F,Ak) =
1

µ(G)

∫
G

F (|θ(t)|)dt, t = (t1, . . . , td).

When considering θ taking values in Mpq, where Mpq is the space of p × q matrices with
complex entries and a function is considered to be measurable if and only if the component
functions are, we say that {Ak}k ∼σ (θ,G) when for every F ∈ C0(R+

0 ) we have

lim
k→∞

Σσ(F,Ak) =
1

µ(G)

∫
G

∑min{p,q}
j=1 F (σj(θ(t)))

min{p, q}
dt, t = (t1, . . . , td),

with σj(θ(t)) =
√
λj(θ(t)⋆θ(t)) = λj

√
θ(t)⋆θ(t). Finally we say that two sequences {Ak}k

and {Bk}k are equally distributed in the sense of singular values (σ) if, ∀F ∈ C0(R+
0 ), we

have
lim
k→∞

[∑
σ
(F,Bk)−

∑
σ
(F,Ak)

]
= 0.

De�nition 7.2.2. [39]. Consider a matrix sequences {An}n, where An is of size dn, and a
set M in the nonnegative real line. Take ϵ > 0 and denote by Mϵ the ϵ-extension of M , i.e.,
the union of all real ϵ-balls encircling M ′s points. For any n, let γn(ϵ) be the number of those
singular values of An not belonging to Mϵ. Then M is called a general singular value cluster
if ∀ϵ > 0

lim
n→∞

γn(ϵ)

dn
= 0

and M is called a proper singular value cluster if ∀ϵ > 0

γn(ϵ) ≤ c(ϵ),

where c(ϵ) is independent of n. In the case where M = {p} then we simply say that {An}n
is clustered at p with respect to the singular values.

Proposition 7.2.1. [125, 128]. If {An}n, {Bn}n, and {Qn}n are sequences of matrices of
strictly increasing dimensions {dn}n, such that {An}n ∼σ (θ,G), {Bn}n ∼σ (0, G) and
∥Qn∥ ≤M for some nonnegative constant M independent of n, then

{An +Bn}n ∼σ (θ,G),

{AnQn}n ∼σ (0, G),

{QnAn}n ∼σ (0, G).

7.3 General de�nitions and tools from preconditioning
theory

When preconditioning is a spectrally bounded sequence it is compulsory to use a spectrally
bounded sequence of preconditioners; otherwise the preconditioned sequence will have nec-
essarily the minimal singular value tending to zero with the size and this is known to spoil
the convergence speed of any krylov like technique (see for instance the classical result of
Axelsson, Lindkog [6] in the context of the conjugate gradient). Therefore if we look at a
preconditioned sequence such that Pn − I is clustered at 0, then the di�erence between the
original sequence and the sequence of preconditioners should be clustered at zero too. The
latter tells us that if the original sequence has a given distribution then, necessarily, the
preconditioning sequence has to be chosen with the same distribution. Such key statements
and other theoretical tools are given and proven in subsection 7.3.1.

164



7.3.1 Tools and machineries

In this subsection, �rst we give some basic de�nitions and we introduce some general tools
for the spectral analysis of matrix sequences. as already mentioned in the previous section,
by {dn}n we denote an increasing sequence of natural numbers.

De�nition 7.3.1. A sequence of matrices {Xn}n, with Xn of size dn, is said to be sparsely
vanishing if there exists a nonnegative function x(s) with lim

s→0
x(s) = 0 so that ∀ϵ > 0 ∃Nϵ ∈ N

such that ∀n > Nϵ
1

dn
♯{i : σ(n)

i ≤ ϵ} ≤ x(ϵ),

where {σ(n)
i : i = 1, 2, ..., dn} denotes the complete set of the singular values of Xn.

Moreover {Xn}n is de�ned as sparsely unbounded if there exists a nonnegative function
x(s) with lim

s→0
x(s) = 0 so that ∀ϵ > 0 ∃Nϵ ∈ N such that ∀n > Nϵ

1

dn
♯

{
i : σ

(n)
i ≤ 1

ϵ

}
≤ x(ϵ).

It is worth stressing that the reason of the previous de�nition is due to the notion of
sparsely vanishing Lebesgue-measurable functions introduced by Tyrtyshnikov as those func-
tions whose set of zeros has zero Lebesgue measure. In fact, a sequence {Xn}n spectrally
distributed as a sparsely vanishing function is sparsely vanishing in the sense of De�nition
7.3.1 and a sequence of matrices {Xn}n spectrally distributed as a sparsely unbounded func-
tion is sparsely unbounded also in the sense of De�nition 7.3.1. In proposition 7.3.1 we prove
the above statements.

Proposition 7.3.1. Let {An}n, An ∈ Cn×n, be a sequence of matrices spectrally distributed
as a sparsely vanishing (sparsely unbounded) function f. Then the sequence {An}n is sparsely
vanishing (sparsely unbounded).

Proof. First, we consider the case of a sparsely vanishing function f. For any ϵ > 0 de�ne
the nonnegative test function

Gϵ(y) =


y
c
+ 1 for −c ≤ y ≤ 0,

1 for 0 ≤ y ≤ ϵ,
−y

ϵ
+ 2 for ϵ ≤ y ≤ 2ϵ,

0 otherwise.

Now, since

1

n

n∑
i=1

Gϵ

(
σ
(n)
i

)
=

1

n

 ∑
i∈{j:σ(n)

j ≤ϵ}

1 +
∑

i∈{j:ϵ<σ
(n)
j ≤2ϵ}

Gϵ

(
σ
(n)
i

)
it holds that

1

n
♯{i : σ(n)

i ≤ ϵ} ≤ 1

n

n∑
i=1

Gϵ

(
σ
(n)
i

)
Moreover,

lim
n→∞

1

n

n∑
i=1

Gϵ

(
σ
(n)
i

)
=

1

m{K}

∫
K

Gϵ(|f(t)|)dt

≤ 1

m{K}
m{x ∈ K : |f(x)| ≤ 2ϵ}.
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The thesis follows by recalling that the assumption f sparsely vanishing implies that

lim
η→0

m{x ∈ K : |f(x)| ≤ η} = 0.

Now, we consider the case of a sparsely unbounded function f. For any ϵ > 0 de�ne the
nonnegative test function

Fϵ(y) =


y
c
+ 1 for −c ≤ y ≤ 0,

1 for 0 ≤ y ≤ 1
2ϵ

−2ϵy + 2 for 1
2ϵ
≤ y ≤ 1

ϵ
,

0 otherwise.

Now, since

1

n

n∑
i=1

Fϵ

(
σ
(n)
i

)
=

1

n

 ∑
i∈{j:σ(n)

j ≤ 1
2ϵ

}

1 +
∑

i∈{j: 1
2ϵ

<σ
(n)
j ≤ 1

ϵ
}

Gϵ

(
σ
(n)
i

)
it holds that

1

n
♯

{
i : σ

(n)
i <

1

ϵ

}
≥ 1

n

n∑
i=1

Fϵ

(
σ
(n)
i

)
Moreover,

lim
n→∞

1

n

n∑
i=1

Fϵ

(
σ
(n)
i

)
=

1

m{K}

∫
K

Fϵ(|f(t)|)dt

≥ 1

m{K}
m

{
x ∈ K : |f(x)| ≤ 1

2ϵ

}
.

The thesis follows by recalling that

1

n
♯

{
i : σ

(n)
i ≥ 1

ϵ

}
= 1− 1

n
♯

{
i : σ

(n)
i <

1

ϵ

}
and that the assumption f sparsely unbounded implies that

lim
η→0

m

{
x ∈ K : |f(x)| ≥ 1

η

}
= 0.

It is worth noticing that essentially the same proof applies in the case of a sequence of
Hermitian matrices with a real-valued function f when considering the eigenvalues instead
of the singular values. The only change is in the de�nition of the test function Fϵ and Gϵ :
in fact it is enough to take new test functions T̂ϵ = T̂ϵ(y) that coincides with Tϵ(y) if the
argument y is nonnegative and coincides with Tϵ(−y) otherwise. Here the symbol ”T” means
”F” or ”G” according to the previous notations.

The following result is very useful in practical manipulations in order to give norm bounds
from above.

Lemma 7.3.1. Consider a sequence of matrices {Xn}n, Xn of size dn. The following are
equivalent.

• The sequence {Xn}n is sparsely unbounded.
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• There exists a nonnegative function x(s) with lim
s→0

x(s) = 0 so that ∀ϵ > 0 ∃Nϵ ∈ N such

that ∀n ≥ Nϵ it holds that Xn = Bn + Ln, where ∥Bn∥2 < 1
ϵ
and rank(Ln) ≤ x(ϵ)dn.

Proof. The result trivially follows by using the singular value decomposition properties of
the involved matrices and the singular values interlacing properties [72].

The following technical lemmas will be useful for performing the spectral analysis of
preconditioned matrices in section 7.5.

Lemma 7.3.2. Let {Xn}n and {Yn}n, Xn, Yn of size dn, be two sparsely unbounded matrix
sequences. Then {XnYn}n is sparsely unbounded.

Proof. Under these assumptions, we can consider the following splitting

Xn = B̂n + L̂n

Yn = B̃n + L̃n

where ∀δ̂ > 0, ∃Nδ̂ ∈ N such that ∀n ≥ Nδ̂, it holds ∥B̂n∥2 < 1

δ̂
and rank(L̂n) ≤ x̂(δ̂)dn

with lim
δ̂→0

x̂(δ̂) = 0 and where ∀δ̃ > 0, ∃Nδ̃ ∈ N such that ∀n ≥ Nδ̃, it holds ∥B̃n∥2 < 1
δ̃
and

rank(L̃n) ≤ x̃(δ̃)dn with lim
δ̃→0

x̃(δ̃) = 0. Therefore, the matrix XnYn can be written as

XnYn = Bn + Ln

with

Bn = B̃nB̂n

Ln = L̃n(B̂n + L̂n) + B̃nL̂n,

where, for n large enough, we �nd

∥Bn∥2 <
1

(δ̃δ̂)

rank(Ln) ≤ (x̃(δ̃) + x̂(δ̂))dn.

For the arbitrariness of δ̂ and δ̃ the claimed thesis follows by virtue of Lemma 7.3.1

Lemma 7.3.3. Let {Xn}n be a sequence of invertible matrices, with Xn of size dn. If the
sequence {Xn}n is sparsely vanishing then the sequence {X−1

n }n is sparsely unbounded and
vice versa.

Proof. The proof trivially follows by using the singular value decomposition properties of
the involved matrices.

Remark 7.3.1. The assumption of invertibility can be removed by considering the pseudo-
inverse of Moore-Penrose [100, 112] instead of the usual inverse matrix.

Lemma 7.3.4. Let {Xn}n and {Yn}n be two sparsely vanishing matrix sequences, with Xn,
Yn of size dn. Then {XnYn}n is sparsely vanishing. The same is true for sparsely unboundary
sequences. In addition, the notion sparsely unbounded sequence is also stable under linear
combinations: of course this is not true for the notion of sparsely vanishing sequence.

Proof. The �rst part trivially follows from Lemma 7.3.2 by recalling Lemma 7.3.3 and Re-
mark 7.3.1. The rest is a simple variation on the theme.
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Lemma 7.3.5. Let {Xn}n and {Yn}n be two matrix sequences, with Xn, Yn of size dn.
Suppose that the sequence {Xn}n is sparsely unbounded and the sequence {Yn}n is clustered
at 0. Then both the sequences {XnYn}n and {YnXn}n are clustered at 0.

Proof. Under these assumptions, we have that ∀ϵ̂ > 0 ∃Nϵ̂ ∈ N such that ∀n ≥ Nϵ̂ it holds
that

Xn = Bn + Ln

where ∥Bn∥2 < 1/ϵ̂ and rank(Ln) ≤ x(ϵ̂)dn with lim
s→0

x(s) = 0 and ∀ϵ > 0 ∃Nϵ ∈ N such that

∀n ≥ Nϵ we have
Yn = Nn +Rn

where ∥Nn∥2 ≤ ϵ and rank(Rn) ≤ y(ϵ)dn with lim
s→0

y(s) = 0. Now, by splitting the matrices
as

XnYn = Ñn + R̃n

with

Ñn = BnNn

R̃n = BnRn + Ln(Nn +Rn),

where

∥Ñn∥2 < ϵ/ϵ̂

rank(R̃n) = (x(ϵ̂) + y(ϵ))dn

and for the arbitrariness of ϵ̂ and ϵ, by choosing ϵ̂ =
√
ϵ, the desired result plainly follows.

The case {YnXn}n can be proved in the same manner.

Lemma 7.3.6. Consider a sequence {An}n, where An is of size dn. Then the following are
equivalent.

• There exists a sequence {Dn}n so that ∥An −Dn∥2F = o(dn) and rank(Dn) = o(dn).

• There exists a sequence {Dn}n so that ∀p ∈ [1,∞) it holds ∥An − Dn∥pS,p = o(dn),
rank(Dn) = o(dn).

• There exists a function x(s) such that lim
s→0

x(s) = 0 so that ∀ϵ > 0 ∃Nϵ ∈ N such that

∀n ≥ Nϵ it holds An = Nn +Rn, with ∥Nn∥2 ≤ ϵ and rank(Rn) ≤ x(ϵ)dn.

• The sequence {An}n is clustered at zero (refer De�nition 7.2.2).

• The sequence {An}n is spectrally distributed as the identically null function (refer to Def-
inition 7.2.1).

Proof. It is a direct check by making a clever use of the singular value decomposition [72].

Lemma 7.3.7. Consider two sequences {An}n and {Bn}n, where An, Bn are of size dn. If
there exists a sequence {Dn}n so that ∥An − Bn − Dn∥2F = o(dn) and rank(Dn) = o(dn),
then the sequence {An−Bn}n is spectrally distributed as the identically null function (in the
sense of De�nition 7.2.1) and the sequences {An}n and {Bn}n are equally distributed (in the
sense of De�nition 7.2.1). In addition, if one of the sequences is spectrally distributed as a
function then the other sequence possesses the same distribution.

Proof. By the equivalence Lemma 7.3.6 we get that {An−Bn}n ∼σ 0. The equal distribution
of the sequences {An}n and {Bn}n was proved by Tyrtyshnikov [164]. Lastly, if one of the
sequences is spectrally distributed as a function then, by de�nition of equal distribution, it
is easy to recognize that the other sequence possesses the same distribution.
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Theorem 7.3.1. Let {Xn}n and {Pn}n be two sequences of matrices, with Xn, Pn of size dn.
Let {In}n be the sequence of identity matrices of size dn. Suppose that the sequence {Xn}n
is sparsely unbounded, the matrices Pn are all invertible and the sequence {P−1

n Xn − In}n is
clustered at zero. Then {Xn − Pn}n ∼σ 0 and the sequences {Xn}n and {Pn}n are equally
distributed. In addition, if the sequence {Xn}n is distributed as a function then the sequence
{Pn}n has the same distribution.

Finally, if {Xn − Pn}n ∼σ 0 then {P−1
n Xn − In}n is clustered at 0, under the condition

that {P−1
n }n is sparsely unbounded that is {Pn}n is sparsely vanishing.

Proof. From the third assumption, by putting Yn = Xn − Pn, we have {P−1
n Xn − In}n =

{P−1
n Yn}n ∼σ 0. Therefore, by virtue of Lemma 7.3.6, there exists a function x̃(s) such that

lim
s→0

x̃(s) = 0 so that ∀ϵ > 0 ∃Nϵ ∈ N such that ∀n ≥ Nϵ we have P
−1
n Yn = Ñn + R̃n, with

∥Ñn∥2 ≤ ϵ/2 and rank(R̃n) ≤ x̃(ϵ)dn. Consequently an explicit computation implies

P−1
n Xn = In + Ñn + R̃n,

that is
Xn = Pn(In + Ñn) + PnR̃n

and �nally
Pn −Xn = XnNn +Rn,

with

Nn = (In + Ñn)
−1 − In,

Rn = −PnR̃n(In + Ñn)
−1

where (ϵ < 1)

∥Nn∥2 ≤ ϵ

rank(Rn) = x̃(ϵ)dn.

Since the sequence {Xn}n is sparsely unbounded we deduce that {XnNn}n ∼σ 0 by virtue
Lemma 7.3.5 and therefore, by Lemmas 7.3.6 and 7.3.7, we deduce that {Yn}n =
{Xn − Pn}n ∼σ 0 and that the sequences {Xn}n and {Pn}n are equally distributed. Now,
if the sequence {Xn}n is distributed as a function then the de�nition of equally distributed
implies that the sequence {Pn}n has the same distribution.

For the last part we just observe that P−1
n Xn− In = P−1

n (Xn−Pn) so that Lemma 7.3.5
implies {P−1

n Xn − In}n ∼σ 0 if {Xn − Pn}n ∼σ 0 and {P−1
n }n is sparsely unbounded (which

is the same as {Pn}n is sparsely vanishing given the invertibility of each Pn and thanks to
Lemma 7.3.3).

Remark 7.3.2. Lemma 7.3.4 tells us that the set of sparsely unbounded sequences forms an
algebra (that is closed under linear combinations and products). On the other side, Lemma
7.3.5 can be read by saying that the set of sequences which are clustered at zero forms a
two-sided ideal in the algebra of sparsely unbounded sequences.

Remark 7.3.3. Theorem 7.3.1 has a "philosophical" meaning. If we think to the matrices
Pn as preconditioners then Theorem 7.3.1 states that a good preconditioning sequence {Pn}n
inherits from the original sequence {Xn}n the distribution, if any. Moreover if the sequence
{Xn}n is sparsely unbounded (sparsely vanishing) then the same is true for the sequence
{Pn}n.
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Remark 7.3.4. The sparsely unboundedness assumption of {Xn}n is necessary and cannot
be removed as far as we are concerned with Theorem 7.3.1. For instance, take Xn = (n+1)In
and Pn = nIn. Then the sequence {P−1

n Xn − In}n∈N⋆ = { 1
n
In}n∈N⋆ is clustered at 0, but

{Xn − Pn}n = {In}n is not. However {Xn}n ∼σ {Pn}n since they are both distributed as the
constant function ∞.

Theorem 7.3.2. Let {Xn}n, {Yn}n and {Pn}n be three sequences of matrices, with Xn, Yn,
Pn of size dn and Pn invertible for any n. Let {In}n be the sequence of identity matrices of
of size dn. Suppose that

1. The sequence {Xn}n is sparsely vanishing,

2. the sequence {Xn − Yn}n is clustered at 0,

3. the sequence {P−1
n Xn − In}n is clustered at 0.

Then the sequence {P−1
n Yn − In}n is clustered at 0.

Proof. The matrices P−1
n Yn − In can clearly be split as

(7.3) P−1
n Yn − In = (P−1

n Xn − In) + P−1
n (Yn −Xn),

where the sequence {P−1
n Xn− In}n is clustered at 0 by virtue of the assumption 3. Moreover

the sequence {Pn}n is sparsely vanishing since the sequence {Xn}n is sparsely vanishing
(see Remark 7.3.3). Therefore the application of Lemmas 7.3.3 and 7.3.5 proves that the
sequence {P−1

n (Yn − Xn)}n is clustered at 0. As a �nal statement, by virtue of equation
(7.3), the sequence {P−1

n Yn − In}n is expressed as the sum of two matrix sequences that are
clustered at 0, so that the proof is concluded.

7.4 Singular value distribution of g-circulants and g-Toeplitz
sequences

Let f be a Lebesgue integrable function de�ned on (−π, π)d and taking values in Mpq, for
given positive integers p and q. Then, for d-indices r = (r1, r2, ..., rd), j = (j1, j2, ..., jd),
n = (n1, n2, ..., nd), e = (1, 1, ..., 1), 0 = (0, 0, ..., 0), the Toeplitz matrix Tn(f) of size pn̂×qn̂,
n̂ = n1.n2...nd, is de�ned as follows Tn(f) = [f̃r−j]

n−e
r,j=0, where f̃k are the Fourier coe�cients

of f de�ned by equation

(7.4) f̃k = f̃(k1,...,kd) =
1

(2π)d

∫
[−π,π]d

f(t1, ..., td)e
−î(k1t1+...+kdtd)dt1...dtd, î2 = −1,

for integers kl such that −∞ < kl <∞ for 1 ≤ l ≤ d. Since f is a matrix-valued function of
d variables whose component functions are all integrable, then the (k1, k2, ..., kd)-th Fourier
coe�cient is considered to be the matrix whose (u, v)-th entry is the (k1, k2, ..., kd)-th Fourier
coe�cient of the function (f(t1, ..., td))u,v.

According to this multi-index block notation we can de�ne general multi-level block
g-Toeplitz and g-circulants. Of course, in this multidimensional setting, g denotes a d-
dimensional vector of nonnegative integers that is, g = (g1, g2, ..., gd). In that case An =
[ar−g◦s]

n−e
r,s=0 where the ◦ operation is the componentwise Hadamard product between vec-

tor or matrices of the same size. A matrix An of size pn̂ × qn̂ is called g-circulant if
An = [a(r−g◦s)modn]

n−e
r,s=0, where

(r − g ◦ s)modn = ((r1 − g1 · s1)modn1, (r2 − g2 · s2)modn2, ..., (rd − gd · sd)modnd) .
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7.4.1 The singular value distribution result for g-Toeplitz sequences

We consider the general multilevel case, where f is allowed to be both Lebesgue integrable
over Qd and matrix-valued, Q = (−π, π). We have

(7.5) {Tn,g}n ∼σ (θf , Q
d × [0, 1]d)

where

θf (x, t) =

{ √
|̂f |(2)(x) if t ∈ [0, 1/g],

0 for t ∈ (1/g, e],
(7.6)

with

(7.7) |̂f |(2)(x) = 1

ĝ

g−e∑
j=0

|f |2
(
x+ 2πj

g

)
and where all the arguments are modulus 2π and all the operations are intended componen-

twise, that is t ∈ [0, 1
g
] means that tk ∈

[
0, 1

gk

]
, k = 1, 2, ..., d and t ∈

(
1
g
, e
]
means that

tk ∈
(

1
gk
, 1
]
, k = 1, 2, ..., d. The writing x+2πj

g
de�nes the d-dimensional vector whose k-th

component is xk+2πjk
gk

, k = 1, 2, ..., d and ĝ = g1g2...gd. Moreover, if the vector g is degenerate

namely there exists an index s ∈ {1, 2, ..., d} for which gs = 0 then the function

√
|̂f |(2)(x)

becomes identically zero so that
{Tn,g}n ∼σ (0, G)

for every admissible set G. For some concrete examples of g-circulant and g-Toeplitz se-
quences and related spectra, where some of the entries of g vanish, see [103]. Interestingly
enough, if g is the vector of all ones that is we are in standard Toeplitz multilevel context,

then Tn,g = Tn(f),

√
|̂f |(2)(x) reduces to |f(x)|, and the variable t ∈ [0, 1]d becomes useless

so that
{Tn(f)}n ∼σ (f,Qd × [0, 1]d)

which is the same as the classical Szegö-Tyrtyshnikov-Tilli result [167, 156]

{Tn(f)}n ∼σ (f,Qd).

We �nally mention that the technique for obtaining formula (7.5), as in Locally Toeplitz
setting [155, 130], strongly relies on the notion of approximating class of sequences [125]
which was aimed to develop a basic approximation theory, when the spectral distribution of
matrix sequences is considered.

7.4.2 The singular value distribution result for g-circulant sequences

Following the analysis in [104], for g �xed vector and n increasing sequence of vectors we do
not �nd a joint distribution. Assuming {Cn}n ∼σ (h,Qd) with {Cn}n standard sequence of
multilevel circulants (that is g-circulants where g is the vectors of all ones), and assuming
that the sequence is chosen so that γi = (ni, gi), i = 1, 2, ..., d, are d �xed numbers, we �nd

(7.8) {Cn,g}n ∼σ (ηh, Q
d × [0, 1]d)
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where

ηh(x, t) =


√
|̂h|(3)(x) if t ∈

[
0, 1

γ

]
,

0 for t ∈
(

1
γ
, e
]
,

(7.9)

with

(7.10) |̂h|(3)(x) = γ̂ |̂h|(2)(x) =
γ−e∑
j=0

|h|2
(
x+ 2πj

γ

)
and γ̂ = γ1γ2...γd.

7.5 Preconditioning of g-Toeplitz sequences via g-circulant
sequences

We start by analyzing the possibility of a standard preconditioning in the light of the distri-
bution results and of the analysis of section 7.3. Then we consider the preconditioning in a
regularizing context.

7.5.1 Consequences of the distribution results on preconditioning
of g-Toeplitz sequences

We study the possibility of a standard preconditioning in the light of the distribution results
and of the analysis of section 7.3.

First of all, Theorem 7.3.1 tells one that {Pn}n is a good preconditioning sequence for
{Xn}n (that is {P−1

n Xn − In}n ∼σ 0) if and only if {Xn − Pn}n ∼σ 0 and {Pn}n is sparsely
vanishing, with the matrices Pn all invertible. The consequences below are of paramount
importance:

• The vector g has to be strictly positive; otherwise the original problem Tn,gx = b is
substantially ill-posed since {Tn,g}n ∼σ 0 and in addition Cn,g is singular and indeed
{Cn,g}n ∼σ 0 which violates the crucial condition of Theorem 7.3.1 that {Pn}n is
sparsely vanishing with Pn = Cn,g.

• Even in the case that g is strictly positive, relations (7.5), (7.6) and (7.7) imply that {Xn}n
with Xn = Tn,g is sparsely vanishing if and only if f is sparsely vanishing and gi = 1
(or more generally gi = ±1), i = 1, 2, ..., d. In other words, again by Theorem 7.3.1,
a good preconditioning can be achieved only in standard case of multilevel Toeplitz
sequences and in fact the latter is a case widely studied in the literature [36, 38, 123]
(for d = 1 also with strong clustering when f is continuous [123], while for d > 1 the
clustering is necessary weak due to the computational barrier proven in [143]).

• In any case the condition required by Theorem 7.3.1 that the sequences {Xn}n and {Pn}n
with Xn = Tn,g, Pn = Cn,g, share the same distribution symbol is quite tricky. By
comparing (7.5), (7.6), (7.7) and (7.8), (7.9), (7.10) we have to choose h = f.

In conclusion, a good preconditioning can be reached only in the standard multilevel
Toeplitz setting. However, if we look at the preconditioning in a di�erent sense something
can be said.
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7.5.2 Regularizing preconditioning

Suppose that {Xn}n is a sequence of matrices and there exists a sequence of subspaces {Sn}n
of dimension rn = [cdn], c ∈ (0, 1) for which ∀ϵ > 0, ∃Nϵ and

∥Xnv∥ ≤ ∥v∥, ∀v ∈ Sn, ∀n ≥ Nϵ.

This situation naturally arises when {Xn}n ∼σ (θ,G) with θ vanishing on Ĝ ⊂ G with

m(Ĝ)/m(G) = c, m(·) being the Lebesgue measure and |θ| > 0 almost everywhere in the

complement G − Ĝ. Under such conditions we look for a preconditioning {Jn}n already in
inverse such that

∥JnXnv∥ ≤ ϵ∥v∥, ∀v ∈ Sn, ∀n ≥ Nϵ,

∥JnXnv − v∥ ≤ ϵ∥v∥, ∀v ∈ S⊥
n , ∀n ≥ Nϵ.

In other words JnXn when restricted to Sn is close to the null matrix, while it is close to the
identity matrix in the orthogonal complement. These conditions, amounting in writing that
JnXn is an ϵ-perturbation of [

Irn 0
0 0

]
,

will be veri�ed in the subsection 7.5.4.

7.5.3 Some preparatory tools

Since the notations can become quite heavy, for the sake of simplicity and at the beginning,
we start with the case d = p = q = 1. Several generalizations are given in section 7.6.
We observe that also the case of nonpositive g can be taken into consideration and can be
reduced to the case of a nonnegative g. In fact, the role of circulants will be played by (−1)-
circulant matrices (called also anti-circulants or skew-circulants), [51]: as for the circulants,
(−1)-circulants form a commutative algebra simultaneously diagonalized by another unitary
transform that can be written as the product of the Fourier matrix and a diagonal unitary
matrix.

In the following, we denote by (n, g) the greatest common divisor of n and g, i.e.,
(n, g) =gcd(n, g), and by It the identity matrix of order t, while the quantities ng and ǧ are
de�ned respectively as ng =

n
(n,g)

and ǧ = g
(n,g)

.

If we denote by Cn the classical circulant matrix (i.e. with g = 1) and by Cn,g the
g-circulant matrix generated by its elements, for generic n and g one immediately �nds
Cn,g = CnZn,g, where

(7.11) Zn,g = [δr−gs]
n−1
r,s=0, δk =

{
1 if k≡ 0(modn);
0 otherwise.

The following preparatory results are straightforward. The detailed proofs are reported in
[103]; see also [51].

Lemma 7.5.1. [103]. Let n be any integer greater than 2 such that

Zn,g = [Z̃n,g|Z̃n,g|...|Z̃n,g︸ ︷︷ ︸
(n,g) times

](7.12)

where Zn,g is the matrix de�ned in (7.11) and Z̃n,g ∈ Cn×ng is the submatrix of Zn,g obtained
by considering only its �rst ng columns, that is

(7.13) Z̃n,g = Zn,g

[
Ing

0

]
.
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Moreover

(7.14) Z̃n,g = Z̃n,(n,g)Zng ,ǧ,

where Zng ,ǧ is the matrix de�ned in (7.11) of dimension ng × ng. Therefore

(7.15) Zng ,ǧ =
[
δ̂r−ǧs

]ng−1

r,s=0
, δ̂k =

{
1 if k ≡ 0 (modng),
0 otherwise.

Finally, if g ≥ n then Zn,g = Zn,go , where g
o = g(modn) and Zn,g is de�ned in (7.11), so

that
Cn,g = CnZn,g = CnZn,go = Cn,go

and

(7.16) Cn,g = FnDnF
⋆
nZn,g,

(7.17) Dn = diag(
√
nF ⋆

na),

(7.18) Fn =
1√
n

[
e−î 2πjk

n

]n−1

j,k=0
, Fourier matrix,

a = [a0, a1, ..., an−1]
T , �rst column of the matrix An.

Lemma 7.5.2. [103]. Let Fn be the Fourier matrix of order n de�ned in (7.18) and Z̃n,g ∈
Cn×ng be the matrix represented in (7.13). Then

FnZ̃n,g =
1√
(n, g)

In,gFngZng ,ǧ,(7.19)

where In,g ∈ Cn×ng and

In,g =


Ing

Ing

...
Ing


 (n, g) times

with Ing being the identity matrix of size ng and Zng ,ǧ as in (7.15). Therefore Z̃T
n,gZ̃n,g = Ing .

Finally if Ẑn,g ∈ Cn×µg , µg = ⌈n
g
⌉, denotes the matrix Zn,g by considering only the µg �rst

columns, then 1 ≤ (n, g) ≤ g, µg ≤ ng ≤ n, and

(7.20) Z̃T
n,gẐn,g =

[
Iµg

0

]
.

Remark 7.5.1. In Lemma 7.5.2, if (n, g) = g, we have ng = n
(n,g)

= n
g
and ǧ = g

(n,g)
= 1;

so the matrix Zng ,ǧ = Zng ,1, appearing in (7.19), is the identity matrix of dimension ng ×ng.
The relation (7.19) becomes

FnZ̃n,g =
1
√
g
In,gFng .

Remark 7.5.2. If (n, g) = 1, Lemma 7.5.2 is trivial, because ng =
n

(n,g)
= n, ǧ = g

(n,g)
= g,

and so Z̃n,g = Zn,g. The relation (7.19) becomes

FnZ̃n,g = In,gFngZng ,ǧ

= FnZn,g,

since the matrix In,g reduces by its de�nition to the identity matrix of order n.

Remark 7.5.3. Lemma 7.5.2 is true also if, instead of Fn and Fng , we put F ⋆
n and F ⋆

ng
,

respectively, because F ⋆
n = F n. In fact there is no transposition, but only conjugation.
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7.5.4 The analysis of regularizing preconditioners when
p = q = d = 1 and n chosen s.t. (n, g) = 1

According to the very concise analysis in subsection 7.5.2, we will prove that a proper choice
of the matrix sequence {Cn,g}n leads to a satisfactory regularizing preconditioning for {Tn,g}n,
at least the entries of Tn,g comes from the Fourier coe�cients of a sparsely vanishing function
f .

Theorem 7.5.1. Let {Tn,g}n be a sequence of g-Toeplitz matrices generated by a sparsely
vanishing function f ∈ L1(Q) then the sequence {C−1

n,g}n, where {Cn,g}n = {CnZn,g}n, Cn is
the Frobenius distance minimizer of Tn(f) in the standard circulant algebra and Zn,g de�ned
as in (7.11), is a regularizing preconditioning for {Tn,g}n.

Proof. If we denote by Tn the classical Toeplitz matrix

Tn = [ar−c]
n−1
r,c=0,

where the elements aj are the Fourier coe�cients of some sparsely vanishing function f in
L1(Q), with Q = (−π, π) and by Tn,g the g-Toeplitz matrix generated by the same function

Tn,g = [ar−gc]
n−1
r,c=0,(7.21)

where the quantities r − gc are not reduced modulus n, one veri�es immediately for n and
g generic that

Tn,g =
[
T̂n,g|Tn,g

]
=

[
TnẐn,g|Tn,g

]
= Tn

[
Ẑn,g 0

]
+ [ 0 Tn,g ] ,(7.22)

where T̂n,g ∈ Cn×µg , µg = ⌈n
g
⌉, is the matrix Tn,g de�ned in (7.21) by considering only

the µg �rst columns, Tn,g ∈ Cn×(n−µg) is the matrix Tn,g de�ned in (7.21) by considering only

the n− µg last columns, and Ẑn,g ∈ Cn×µg is the matrix de�ned by
(7.23)

Ẑn,g = [δr−gs]; r = 0, 1, ..., n− 1; s = 0, 1, ..., µg − 1, where δk =
{

1 if k ≡ 0(modn),
0 otherwise.

(for the proof of relation (7.22) see [104] page 12). Regarding the second addend in (7.22),
in [104] section 4.2.2, it was shown that

{[0|Tn,g]}n ∼σ (0, Q).(7.24)

Now we consider the g-circulant matrix

(7.25) Cn,g = [a(r−gc)modn]
n−1
r,c=0 = CnZn,g,

where Cn is the classical circulant matrix generated from elements of the �rst column of Cn,g

and

(7.26) Zn,g = [δr−gs]
n−1
r,s=0; δk =

{
1 if k ≡ 0(modn),
0 otherwise.

(we observe that Ẑn,g in (7.23) is the matrix Zn,g de�ned in (7.26) by considering only the
µg �rst columns) and we suppose that Cn is nonsingular and (n, g) = gcd(n, g) = 1, so that
Zn,g is a permutation matrix (see Lemma 7.5.2). More in detail the last item in subsection
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7.5.1 prescribes that the symbol h should be chosen to be equal to f, the symbol of the stan-
dard Toeplitz sequence. For this reason we choose {Cn}n with Cn the Frobenius distance
minimizer of Tn(f) in the standard circulant algebra (the one proposed by Tony Chan in the
one-level setting [38]). By the analysis in [131], for f ∈ L1(Qd), we have {Cn}n ∼σ (f,Qd) so
that {Cn,g}n ∼σ (f,Qd) whenever (ni, gi) = 1, i = 1, 2, ..., d, because Zn,g is a permutation
matrix (here we are for the moment interested only in the case where d = 1). As also observed
in subsection 7.5.1, it is necessary to assume that f is sparsely vanishing: this condition is
essential for the general clustering results in section 7.3, but it will be also essential in the
rest of the proof.

If we consider the product C−1
n,gTn,g, from (7.22) and since ZT

n,gZn,g = In we have that

C−1
n,gTn,g = ZT

n,gC
−1
n Tn[Ẑn,g|0] + C−1

n,g[0|Tn,g],

and, if {C−1
n Tn}n ∼σ 1 or more precisely if {C−1

n Tn − In}n ∼σ 0, i.e.,

C−1
n Tn = In + En, with {En}n ∼σ 0,

we obtain

C−1
n,gTn,g = ZT

n,gC
−1
n Tn[Ẑn,g|0] + C−1

n,g[0|Tn,g]

= ZT
n,g[In + En][Ẑn,g|0] + C−1

n,g[0|Tn,g]

= ZT
n,g[Ẑn,g|0] + ZT

n,gEn[Ẑn,g|0] + C−1
n,g[0|Tn,g]

=
[
Iµg 0
0 0

]
+ ZT

n,gEn[Ẑn,g|0] + C−1
n,g[0|Tn,g].

Now, from Lemma 4.7 in [104], since ∥ZT
n,g∥ = 1 and ∥[Ẑn,g|0]∥ = 1 (indeed the �rst is a per-

mutation matrix and the second is an "incomplete" permutation matrix), and since {En}n ∼σ

0, we infer that {ZT
n,gEn[Ẑn,g|0]}n ∼σ 0. Finally, since {C−1

n,g}n is sparsely unbounded (in fact
{Cn}n, {Cn,g}n ∼σ (f,Q) with f sparsely vanishing), we deduce {C−1

n,g[0|Tn,g]}n ∼σ 0 and
the proof is concluded.

Remark 7.5.4. In Theorem 7.5.1 any preconditioning sequence {Cn} for which {C−1
n Tn −

In} ∼σ 0 will lead to a preconditioning sequence {Cn,g} with regularizing features. In other
words the choice of the Frobenius optimal preconditioners is just a possible example.

7.6 Generalizations
With all the constraints of subsection 7.5.4, we can allow to have d > 1 that is n =
(n1, n2, ..., nd) sequence of positive integer vectors with (ni, gi) = 1, i = 1, 2, ..., d, so that
Zn,g is still a permutation matrix. The proof reported in subsection 7.5.4 is identical with
the only observation that the cluster of {C−1

n,gTn,g − In}n is weak and not strong, due to the
computational barrier proven in [143].More precisely, under the assumption of positivity and
continuity of |f |, by using the Korovkin Theory [123] and the Tony Chan preconditioners,

we �nd that the number of outliers of {C−1
n,gTn,g − In}n grows asymptotically as n̂

(
d∑

j=1

nj

)
,

n̂ =
d∏

j=1

nj. Moreover the weak clustering can be achieved by using the mild assumption that

f is only Lebesgue integrable and sparsely vanishing (see [131]).
Furthermore, by following the approach in [124], nothing changes if we assume that the

multilevel setting is accompanied by the block setting, i.e., p + q ≥ 3 (somehow the only
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condition is the recourse to the Moore-Penrose inverse when p ̸= q).
A bit trickier is the case where the assumption (ni, gi) = 1, i = 1, 2, ..., d, is dropped. In

that case Cn,g = CnZn,g is inherently singular due to the singularity of Zn,g whose rank is
n̂g with µg ≤ ng < n, µg = ⌈ng ⌉ (see Lemma 7.5.2, where all the objets n, g, µg, ng, (n, g) are

d-dimensional vectors of positive integers and the inequalities are componentwise). In this
case a good preconditioner already in inverse form is

Jn = Zn,gC
−1
n

with Cn the usual Tony Chan preconditioner (refer subsection 7.5.2,). Since µg ≤ ng < n
(because 1 < (n, g) ≤ g) by Lemma 7.5.2 we �nd

Z̃T
n,gẐn,g =

[
Iµg

0

]
.

As a consequence the proof given in subsection 7.5.4 is the same and the �nal result is
identical: for the sake of completeness we only observe that the term C−1

n,g is always replaced

by Zn,gC
−1
n so that {C−1

n [0|Tn,g]}n ∼σ 0 because {Cn}n ∼σ (f,Qd) with f sparsely vanishing
and {[0|Tn,g]}n ∼σ 0 and �nally {ZT

n,gC
−1
n [0|Tn,g]}n ∼σ 0 because of Proposition 7.2.1, where

ZT
n,g plays the role of Qn and C−1

n [0|Tn,g] plays the role of An. Finally we observe that we
have emphasized the role of the Frobenius optimal preconditioner proposed by Tony Chan,
for which a very general and rich clustering analysis is available thanks to Korovkin Theory
(see chapter 2). However, any other alternative and successful preconditioner for standard
Toeplitz structures can be employed thanks to Theorem 7.3.2, which states a kind of useful
transitive property.

7.7 Conclusion
In this paper we have studied in detail the singular values of matrix sequences obtained
by preconditioning g-Toeplitz sequences associated with a given integrable symbol via g-
circulant sequences. The generalization to the multilevel block setting has been sketched. The
main point is that the standard preconditioning works only in the classical setting, namely
when gi = ±1, i = 1, . . . , d. However, when g (or |g|) is positive a basic preconditioner
for regularizing techniques can be obtained by a clever choice of the g-circulant sequence
{Cn,g}. In chapter 9, section 9.9, we have presented and discussed various numerical results,
also instructive for speci�c applications in image deblurring and denoising. In particular they
have con�rmed that the proposed preconditioners can be used as a basic tool for obtaining
regularizing features, by means of �ltering techniques which will be analyzed and discussed
in next works.
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Chapter Eight

Preconditioning of Collocation
Matrices Approximating Elliptic

Boundary Value Problems

Throughout this chapter, we study the preconditioning of collocation matrices approximating
elliptic boundary value problems and we provide an asymptotic analysis of spectral radii.
First, we present a general idea on the Perron-Frobenius theory and some results on the
Weyl-Tyrtyshnikov equal distribution.

8.1 De�nitions and results
The purpose of this section is to recall some de�nitions and main results of linear algebra
which are useful in the study of collocation matrices.

8.1.1 De�nitions and Perron Frobenius theory

Throughout this subsection, we recall the Perron-Frobenius theory.

De�nition 8.1.1. Let A = (ajk) and B = (bjk) be two n×r matrices. Then, A ≥ B (A > B)
if ajk ≥ bjk (ajk > bjk) for all j = 1, 2, ..., n and k = 1, 2, ..., r.

De�nition 8.1.2. A ∈ Rn×r is said to be nonnegative (positive) matrix if A ≥ 0 (A > 0).

De�nition 8.1.3. Let B = (bij) ∈ Cn×r, then |B| denotes the matrix with entries |bij|.

De�nition 8.1.4. A matrix A ∈ Rn×n is said to be reducible if there exists a permutation
matrix P such that

C = PAP T =
[
A11 A12
0 A22

]
where A11 ∈ Rr×r, A22 ∈ R(n−r)×(n−r) and A12 ∈ Rr×(n−r), 0 < r < n.

De�nition 8.1.5. A matrix A ∈ Rn×n is said to be irreducible if it is not reducible.

Theorem 8.1.1. [175]. For every matrix A ∈ Rn×n there exists a permutation matrix P ∈
Rn×n such that

C = PAP T =

A11 A12 . . . A1r
0 A22 . . . A2r
...

...
. . .

...
0 0 . . . Arr


where each block Aii is square matrix and either irreducible or 1× 1 null matrix.

Proof. The proof is given by considering the 2 × 2 block form of a reducible matrix. If A11
or A22 is reducible, we choose the associated permutation matrix to split it again to its 2× 2
block form, and so on. Obviously, if A is irreducible then r = 1. The Frobenius normal form
is unique, up to a permutation.
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Theorem 8.1.2. [9, 175]. Let A ≥ 0 be an irreducible n× n matrix. Then,

1. A has a positive real eigenvalue equal to its spectral radius ρ(A).

2. To ρ(A) there corresponds an eigenvector x > 0.

3. ρ(A) increases when any entry of A increases.

4. ρ(A) is a simple eigenvalue of A.

5. There is not other nonnegative eigenvector of A di�erent from x.

De�nition 8.1.6. The associated directed graph, G(A) of an n× n matrix A, consists of n
vertices (nodes) P1, P2, ..., Pn where an edge leads from Pi to Pj if and only if aij ̸= 0.

De�nition 8.1.7. A directed graph G is strongly connected if for any ordered pair (Pi, Pj) of
vertices of G, there exists a sequence of edges (a path), (Pi, Pl1), (Pl1 , Pl2), (Pl2 , Pl3), ..., (Plr−1 , Pj)
which leads from Pi to Pj. We shall say that such a path has length r.

Theorem 8.1.3. [9, 175]. An n × n matrix A is irreducible if and only if G(A) is strongly
connected.

Proof. Let A be an irreducible matrix. Looking for contradiction, suppose that G(A) is not
strongly connected. So there exists an ordered pair of nodes (Pi, Pj) for which there is not
connection from Pi to Pj. We denote by S1 the set of nodes that are connected to Pj and
by S2 the set of remaining nodes. Obviously, there is no connection from any node Pl ∈ S2
to any node of Pq ∈ S1, since otherwise Pl ∈ S1 by de�nition. Both sets are nonempty since
Pj ∈ S1 and Pi ∈ S2. Suppose that r and n−r are their cardinalities. Consider a permutation
transformation C = PAP T which reorders the nodes of G(A), such that P1, P2, ..., Pr ∈ S1

and Pr+1, Pr+2, ..., Pn ∈ S2. This means that ckl = 0 for all k = r + 1, r + 2, ..., n and
l = 1, 2, ..., r, which constitutes a contradiction since A is irreducible.
Conversely, suppose that A is reducible. Following the above proof in the reverse order we
prove that G(A) is not strongly connected.

Theorem 8.1.4. [9, 175]. Let A = [aij]
n
i,j=1 ≥ 0 be an irreducible n × n matrix, and B be

n× n complex matrix with |B| ≤ A. If β is any eigenvalue of B, then

|β| ≤ r = sup{rx : x ∈ Cn, x ≥ 0 and x ̸= 0},(8.1)

where

rx = min
xi>0


n∑

j=1

aijxj

xi

(8.2)

Moreover, equality is valid in (8.1), i.e, β = reîϕ, if and only if |B| = A, and where B has
the form

B = eîϕDAD−1,(8.3)

and D is a diagonal matrix with diagonal entries of modulus unity.
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Proof. If βy = By, y ̸= 0, then for all i = 1, 2, ..., n,

βyi =
n∑

j=1

bijyj ⇒ |β||yi| =

∣∣∣∣∣
n∑

j=1

bijyj

∣∣∣∣∣ ≤
n∑

j=1

|bij||yj| ≤
n∑

j=1

aij|yj|

this means that

(8.4) |β||y| ≤ |B||y| ≤ |A||y|,

which implies that |β| ≤ r|y| ≤ r, proving (8.1).
If |β| = r then |y| is an extremal vector and consequently it is a positive eigenvector of A
corresponding to the eigenvalue r. Thus,

(8.5) |β||y| = |B||y| = A|y|,

and since |y| > 0 and |B| ≤ A, we conclude that

(8.6) |B| = A

Theorem 8.1.5. [9, 175]. If A = [aij]
n
i,j=1 ≥ 0 is an irreducible matrix, then either

(8.7)
n∑

j=1

aij = ρ(A) ∀i = 1, 2, ..., n

or

(8.8) min
1≤i≤n

(
n∑

j=1

aij

)
< ρ(A) < max

1≤i≤n

(
n∑

j=1

aij

)
.

Proof. First suppose that all the row sums are equal. Then, the vector e of all ones is an

eigenvector of A : Ae =

(
n∑

j=1

aij

)
e. Since e > 0, from the Perron Frobenius theorem (see

Theorem 8.1.10), it follows that ρ(A) =
n∑

j=1

aij.

If all the row sums are not equal. then, we construct a nonnegative matrix B by decreasing
certain positive entries of A, so that for all k = 1, 2, ..., n,

n∑
j=1

bkj = min
1≤i≤n

(
n∑

j=1

aij

)
,

where 0 ≤ B ≤ A and B ̸= A. Then, from the Perron Frobenius theorem (see Theorem

8.1.11), we get ρ(B) = min
1≤i≤n

(
n∑

j=1

aij

)
< ρ(A). Similarly, we construct an irreducible matrix

C by increasing certain positive entries of A, so that for all k = 1, 2, ..., n,

n∑
j=1

ckj = max
1≤i≤n

(
n∑

j=1

aij

)
,

where 0 ≤ A ≤ C and C ̸= A. Then, from the Perron Frobenius theorem (Theorem 8.1.11),

we get ρ(C) = max
1≤i≤n

(
n∑

j=1

aij

)
> ρ(A).
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Theorem 8.1.6. [9; 39]. Let A ∈ Rn×n be a nonnegative matrix and B ∈ Cn×n be a complex
matrix such that 0 ≤ |B| ≤ A. Then

ρ(B) ≤ ρ(A)(8.9)

Proof. If A is irreducible then the result follows from Theorem 8.1.4. If A is reducible,
we apply the same permutation transformation P to A and B such that PAP T be the
Frobenius normal form of A. It is obvious that the inequality 0 ≤ |B| ≤ A is invariant under
permutation transformation. Then, apply Theorem 8.1.4 to submatrices |Bii| and Aii to
obtain the result.

De�nition 8.1.8. A matrix A ∈ Rn×n possesses the Perron-Frobenius property if its domi-
nant eigenvalue λ1 is positive and the corresponding eigenvector x(1) is nonnegative.

De�nition 8.1.9. A matrix A ∈ Rn×n possesses the strong Perron-Frobenius property if its
dominant eigenvalue λ1 is positive, simple (λ1 > |λj|, j = 2, 3, ..., n) and the corresponding
eigenvector x(1) is positive.

De�nition 8.1.10. A matrix A ∈ Rn×n is said to be eventually positive (eventually nonneg-
ative) if there exists a positive integer k0 such that Ak > 0 (Ak ≥ 0) for all k ≥ k0.

Theorem 8.1.7. [101, 105, 152]. For a symmetric matrix A ∈ Rn×n, the following properties
are equivalent:

(i) A possesses the strong Perron-Frobenius property.

(ii) A is an eventually positive matrix.

Proof. (i ⇒ ii) : λ1 = ρ(A) > |λ2| ≥ λ3| ≥ ... ≥ λn|, where λ1 is a simple eigenvalue with
the eigenvector x(1) ∈ Rn being positive. Choose the i-th column a(i) ∈ Rn of A.

Expand a(i): a(i) =
n∑

j=1

cjx
(j) (where {x(1), x(2), ..., x(n)} is an orthonormal basis of Rn).

cj = (a(i), x(j)), j = 1, 2, ..., n. So, c1 = (a(i), x(1)) = λ1x
(1)
i > 0. Apply power method:

lim
k→∞

Aka(i) > 0 ⇒ Aka(i) > 0 ∀k > m. Choose m0 = min{m : Aka(i) > 0 ∀k ≥ m}, then,
Ak > 0 ∀k ≥ k0 = m0 + 1. So, A is an eventually positive matrix.
(ii⇒ i): From the Perron-Frobenius theory of nonnegative matrices, the assumption Ak > 0
means that the dominant eigenvalue of Ak is positive and the only one in the circle while the
corresponding eigenvector is positive. It is well known that the matrix A has as eigenvalues
the k-th roots of those of Ak with the same eigenvectors. Since this happens ∀k ≥ k0, A
possesses the strong Perron-Frobenius property.

Theorem 8.1.8. [101, 105, 152]. For a matrix A ∈ Rn×n the following properties are equiv-
alent:

i. Both matrices A and AT possess the strong Perron-Frobenius property.

ii. A is an eventually positive matrix.

iii. AT is an eventually positive matrix.

Proof. (i⇒ ii) : Let A = XDX−1 be the Jordan canonical form of the matrix A.We assume
that the eigenvalue λ1 = ρ(A) is the �rst diagonal entry of D. So the Jacobi canonical form
can be written as

(8.10) A = [x(1)|Xn,n−1]
[
λ1 0
0 Dn−1,n−1

] [
y(1)

T

Yn−1,n

]
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where y(1)
T
and Yn−1,n are the �rst row and the matrix formed by the last n− 1 rows of

X−1, respectively. Since A possesses the strong Perron-Frobenius property, the eigenvector
x(1) is positive. From (8.10), the block form of AT is

(8.11) AT = [y(1)|Y T
n,n−1]

[
λ1 0
0 DT

n−1,n−1

] [
x(1)

T

XT
n−1,n

]
The matrix DT

n−1,n−1 is the block diagonal matrix formed by the transpose of the Jordan

blocks except λ1. It is obvious that there exists a permutation matrix P ∈ R(n−1)×(n−1) such
that the associated permutation transformation on the matrix DT

n−1,n−1 transposes all the
Jordan blocks.
Thus, Dn−1,n−1 = P TDT

n−1,n−1P and relation (8.11) takes the form:

AT = [y(1)|Y T
n,n−1]

[
1 0
0 P

] [
1 0
0 P T

] [
λ1 0
0 DT

n−1,n−1

] [
1 0
0 P

]
×

[
1 0
0 P T

] [
x(1)

T

XT
n−1,n

]
= [y(1)|Y ′T

n−1,n]
[
λ1 0
0 Dn−1,n−1

] [
x(1)

T

X
′T
n,n−1

]
where Y

′T
n−1,n = Y T

n,n−1P andX
′T
n,n−1 = P TXT

n−1,n. The last relation is the Jordan canonical

form of AT which means that y(1) is the eigenvector corresponding to the dominant eigenvalue
λ1. Since A

T possesses the strong Perron-Frobenius property, y(1) is a positive vector or a
negative one. Since y(1)

T
is the �rst row of X−1, we have that (y(1), x(1)) = 1 implying that

y(1) is a positive vector.
We return now to the Jordan canonical form (8.10) of A and form the power Ak.

Ak = [x(1)|Xn,n−1]

[
λk1 0
0 Dk

n−1,n−1

] [
y(1)

T

Yn−1,n

]
then

1

λk1
Ak = [x(1)|Xn,n−1]

[
1 0
0 1

λk
1
Dk

n−1,n−1

] [
y(1)

T

Yn−1,n

]
Since λ1 is the dominant eigenvalue, the only one of modulus λ1, we get that lim

k→∞
1
λk
1
Dk

n−1,n−1 =

0. Thus

lim
k→∞

1

λk1
Ak = x(1)y(1)

T

> 0.

The last relation means that there exists an integer k0 > 0 such that Ak > 0 for all k ≥ k0.
So, A is an eventually positive matrix and the �rst part of theorem is proved.
(ii⇔ iii) : Obvious from De�nition 8.1.10.
(ii⇒ i) : The proof is the same as that of Theorem 8.1.7, by considering that A and AT are
both eventually positive matrices.

Theorem 8.1.9. [29, 152]. Let A ∈ Rn×n be an eventually nonnegative matrix. Then, both
matrices A and AT possess the Perron-Frobenius property.

Proof. Analogous to the proof of the part (ii⇒ i) of Theorem 8.1.8.

Theorem 8.1.10. [101, 105, 152]. If AT ∈ Rn×n possesses the Perron-Frobenius property,
then either

n∑
j=1

aij = ρ(A) ∀i = 1, 2, ..., n,(8.12)
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or

min
1≤i≤n

(
n∑

j=1

aij

)
≤ ρ(A) ≤ max

1≤i≤n

(
n∑

j=1

aij

)
(8.13)

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(8.13) are strict.

Proof. Let (ρ(A), y) be the Perron-Frobenius eigenpair of the matrix AT and e be the vector
of ones. Then,

yTAe = yT



n∑
j=1

a1j

n∑
j=1

a2j

...
n∑

j=1

anj


=

n∑
i=1

(
yi

n∑
j=1

aij

)
≤ max

1≤i≤n

(
n∑

j=1

aij

)
n∑

i=1

yi,

yTAe =
n∑

i=1

(
yi

n∑
j=1

aij

)
≥ min

1≤i≤n

(
n∑

j=1

aij

)
n∑

i=1

yi.

On the other hand, we get

yTAe = eTATy = ρ(A)eTy = ρ(A)
n∑

j=1

yj.

Combining the relations above, we get our result. Obviously, equality holds if the row sums
are equal. If AT possesses the strong Perron-Frobenius property, then y > 0 and the inequal-
ities become strict.

Corollary 8.1.1. [101, 105, 152]. If A ∈ Rn×n possesses the Perron-Frobenius property, then
either

n∑
i=1

aij = ρ(A) ∀j = 1, 2, ..., n,(8.14)

or

min
1≤j≤n

(
n∑

i=1

aij

)
≤ ρ(A) ≤ max

1≤j≤n

(
n∑

i=1

aij

)
.(8.15)

Moreover, if A possesses the strong Perron-Frobenius property, then both inequalities in (8.15)
are strict.

Theorem 8.1.11. [101, 105, 152]. If the matrices A,B ∈ Rn×n are such that A ≤ B, and
both A and BT possess the Perron-Frobenius property (or both AT and B possess the Perron-
Frobenius property), then

ρ(A) ≤ ρ(B).(8.16)

Moreover, if the above matrices possess the strong Perron-Frobenius property and A ̸= B
then, the inequality (8.16) becomes strict.
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Proof. Let x, y ≥ 0 be the Perron right and left eigenvectors of A and B associated with the
dominant eigenvalues λA and λB, respectively. Then the following equalities hold

yTAx = λAy
Tx, yTBx = λBy

Tx.

Since A ≤ B, B = A+ C, where C ≥ 0. So,

λBy
Tx = yTBx = yT (A+ C)x = yTAx+ yTCx ≥ yTAx = λAy

Tx.

Assuming that yTx > 0, the above relations imply that λB ≥ λA. The case where y
Tx = 0 is

covered by using a continuity argument and perturbation technique. It is also obvious that
the inequality becomes strict in the case where the associated Perron-Frobenius properties
are strong.

8.1.2 The Weyl-Tyrtyshnikov equal distribution

This part recalls some de�nitions on the distribution of matrix sequences. Furthermore, some
tools to evaluate the strength of the equal distribution and equal localization that are based
upon estimes of the singular values and involve the Frobenius norm. We denote by Ms(C)
the linear space of all the square complex matrices of dimension s× s, and we equippe this
linear space by the Frobenius norm de�ned by:

∥A∥F =

[
s∑

j=1

σj(A)
2

] 1
2

=

[
s∑

i=1

s∑
j=1

|aij|2
] 1

2

where A = [aij]
s
i,j=1 ∈ Ms(C) and σj(A) denotes the j-th singular value of A. The �rst

motivation is "practical" in the sense that, in the approximation of matrix sequences of
increasing dimension in the simpler space of matrices, this is the only Shatten p-norm whose
calculation is computationally not expensive. The second motivation is theoretical: actually
the Frobenius norm is the only Shatten p-norm induced by an inner product which makes
the space Ms(C) into a Hilbert space. More speci�cally, setting < A,B >=trace(A⋆B), we

deduce that ∥A∥F =< A,A >
1
2 .

De�nition 8.1.11. Two real sequences {a(n)i }i≤dn , {b
(n)
i }i≤dn (dn < dn+1) are equally dis-

tributed (ED) if and only if, for any real-valued continuous function F with bounded support,
the following relation holds:

lim
n→∞

1

dn

dn∑
i=1

(
F (a

(n)
i )− F (b(n)i )

)
= 0.(8.17)

When the previous limit goes to zero as O(d−1
n ) and F is Lipschitz continuous, we say that

there is strong equal distribution (SED). The same de�nition applies to the case of se-

quences of matrices {An}n and {Bn}n of dimension dn × dn : in this case {a(n)i }i≤dn and

{b(n)i }i≤dn are the sets of their singular values (or eigenvalues if the involved matrices are
Hermitian).

Notation {An}n ≃D {Bn}n means that the matrix sequences {An}n and {Bn}n are
equally distributed.

De�nition 8.1.12. Two real sequences {a(n)i }i≤dn , {b
(n)
i }i≤dn (dn < dn+1) are equally local-

ized (EL) if and only if, for any nontrivial interval [α, β] (α < β), the following relation
holds:
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lim
n→∞

1

dn

(
card{i : a(n)i ∈ [α, β]} − card{i : b(n)i ∈ [α, β]}

)
= 0.(8.18)

When the previous limit goes to zero as O(d−1
n ), we say that there is strong equal localiza-

tion (SEL). The same de�nition applies to the case of matrix sequences {An}n and {Bn}n
of dimension dn × dn: in this case {a(n)i }i≤dn and {b(n)i }i≤dn are the sets of their singular
values (or eigenvalues if the involved matrices are Hermitian).

De�nition 8.1.13. Two real sequences {a(n)i }i≤dn , {b
(n)
i }i≤dn (dn < dn+1) are ϵ-equally lo-

calized (ϵ-EL) if and only if, for any ϵ > 0, the following relation holds:

lim
n→∞

1

dn

(
card{i : |a(n)i − b

(n)
i | > ϵ}

)
= 0.(8.19)

When the previous limit goes to zero as O(d−1
n ), we say that there is ϵ-strong equal localization

(ϵ-SEL). The same de�nition applies to the case of sequences of matrices {An}n and {Bn}n
of dimension dn × dn: in this case {a(n)i }i≤dn and {b(n)i }i≤dn are the ordered sets of their
singular values (or eigenvalues if the involved matrices are Hermitian).

De�nition 8.1.14. We say that the sequence {a(n)i }i≤dn is essentially bounded if there exists
an interval M = [α, β] so that M is a general cluster for it. If M is a proper cluster, then

we say that {a(n)i }i≤dn is properly bounded.

De�nition 8.1.15. Given a sequence {a(n)i }i≤dn , we say that p ∈ R is a sub-cluster point

for {a(n)i }i≤dn if and only if

lim
ϵ→0

1

dn
lim sup
n→∞

{
card{i : a(n)i ∈ (p− ϵ, p+ ϵ)}

}
= c > 0.(8.20)

A sequence {a(n)i }i≤dn without sub-cluster point is called regular.

Theorem 8.1.12. [136, 142, 145]. Let {a(n)i }i≤dn and {b(n)i }i≤dn (dn < dn+1) be two ordered
real sequences. The following facts hold true.

1. SED implies ED, SEL implies EL and ϵ-SEL implies ϵ-EL. These implications cannot be
reversed.

2. EL implies ED.

3. SEL does not imply SED.

4. SED does not imply EL.

5. ϵ-EL implies ED.

6. ϵ-SEL does not imply SED.

7. SED does not imply ϵ-EL.

8. ϵ-SEL does not imply EL.

9. SEL does not imply ϵ-EL.

Lemma 8.1.1. [136, 142, 145]. Let {An}n and {Bn}n be two sequences of dn × dn matrices.
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1. Assume that rank(An − Bn) = o(dn). Then the sequences {An}n and {Bn}n are equally
localized (EL) and equally distributed (ED).

2. If rank(An − Bn) = O(1). Then the sequences {An}n and {Bn}n are strongly equally
localized (SEL) and strongly equally distributed (SED).

Proof. 1. Let rn = rank(An − Bn). As a consequence of the Cauchy interlace theorem (cf.
Theorem 1.3.2) we have σi−2rn(Bn) ≥ σi(An) ≥ σi+2rn(Bn) for i = 2rn + 1, ..., dn − 2rn.
Therefore, for any interval [α, β] we have

card{i : σi(An) ∈ [α, β]} = card{i : σi(Bn) ∈ [α, β]}+ en |en| ≤ 4rn.(8.21)

Consequently rn = o(dn) and then the sequences {An}n and {Bn}n are equally localized
(EL). The use of part 2 of Theorem 8.1.12 leads to the equal distribution (ED).
2. If rn = O(1), then there is SEL by (8.21). For the proof of the last part, recall that
F is Lipschitz continuous with bounded support contained in M = [α, β]. Owing to its
Lipschitzness, F is of bounded variation (F ∈ BV ) too. Therefore it can be expressed as
the sum of two monotone functions. By linearity it is enough to focus our attention on
the monotone functions restricted to M. Let S(An) and S(Bn) be the sets of the singular
values ordered nonincreasingly. Let q be an integer number and let S(Bn, q) be such that
(S(Bn, q))i = (S(Bn))i+q, i = 1, 2, ..., dn, where (S(Bn))j = min{α, (S(Bn))dn} if j ≥ dn + 1
and (S(Bn))j = max{β, (S(Bn))1} if j ≤ 0. Now, supposing that rn = O(1) i.e, rn ≤ k
for some positive k, we �nd that S(Bn,−2k) ≥ S(Bn), S(An) ≥ S(Bn, 2k), where ” ≥ ” is
intended componentwise. Finally, by monotonicity we deduce that∣∣∣∣∣
dn∑
i=1

(F (σi(An))− F (σi(Bn)))

∣∣∣∣∣ ≤
∣∣∣∣∣
dn∑
i=1

(F (σi(S(Bn,−2k)))− F (σi(S(Bn, 2k))))

∣∣∣∣∣
=

∣∣∣∣∣ 1dn ∑
i=1−2k,...,2k,j=dn−2k+1,...,dn+2k

(F (σi(S(Bn)))− F (σj(Bn)))

∣∣∣∣∣
= O(d−1

n )

and the proof is complete.

Lemma 8.1.2. [136, 142, 145]. Let {An}n and {Bn}n be two sequences of dn × dn matrices.

1. If ∥An −Bn∥2F = o(dn) or ∥An −Bn∥∞ = o(1), then the sequences {An}n and {Bn}n are
ϵ-equally localized (ϵ-EL) and equally distributed (ED).

2. When ∥An − Bn∥F = O(1) or ∥An − Bn∥∞ = O(d−1
n ), then the matrix sequences {An}n

and {Bn}n are ϵ-strongly equally localized (ϵ-SEL).

3. If ∥An −Bn∥1 = O(1), then {An}n and {Bn}n are strongly equally distributed (SED).

Where ∥A∥1 = max
j

dn∑
i=1

|aij| and ∥A∥∞ = max
i

dn∑
j=1

|aij|, for any square complex matrix A =

[aij]
dn
i,j=1.

Proof. 1. we follow an idea indicated by Tyrtyshnikov in [164] for the case of the Frobenius
norm. Let ϵ be a positive arbitrary number and γn(ϵ) = card{i : |σi(An)− σi(Bn)| > ϵ}. Or
for any pair of matrices An, Bn ∈Mdn(C), we have
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[
dn∑
j=1

|σj(An)− σj(Bn)|2
] 1

2

≤ ∥An −Bn∥F(8.22)

then [
dn∑
j=1

|σj(An)− σj(Bn)|2
] 1

2

≤ o(dn).

By de�nition of γn(ϵ) we deduce that

o(dn) = ∥An −Bn∥2F ≥
dn∑
j=1

|σj(An)− σj(Bn)|2 ≥ γn(ϵ)ϵ
2

that is, γn(ϵ) = o(dn). The latter relationship is by de�nition equivalent to ϵ-EL. In the case
of the norm ∥.∥∞ the proof is trivial. Now by the part 5 of Theorem 8.1.12 we deduce the
ED property.
2.When ∥An−Bn∥F = O(1) or ∥An−Bn∥∞ = O(d−1

n ), then ϵ-SEL property is easily deduced
by using the same argument as in the preceding part.
3. Finally, if ∥An −Bn∥1 = O(1), then the sequences {An}n and {Bn}n are strongly equally
distributed by the last part of Lemma 8.1.1.

Theorem 8.1.13. [136, 142, 145]. Let {An}n and {Bn}n be two sequences of dn×dn matrices.

1. If ∥An−Bn−Dn∥2F = o(dn) and rank(Dn) = o(dn), then the sequences {An}n and {Bn}n
are equally distributed (ED).

2. When ∥An − Bn − Dn∥1 = O(1), with rank(Dn) = O(1), then {An}n and {Bn}n are
strongly equally distributed (SED).

Proof. 1. Let Xn = Bn + Dn. Then {An}n and {Xn}n ful�ll the assumptions of part 1 of
Lemma 8.1.2. Therefore {An}n and {Xn}n are equally distributed (ED). Moreover, {Bn}n
and {Xn}n ful�ll the assumptions of part 1 of Lemma 8.1.1 and consequently are equally
distributed (ED). Since the ED relation is an equivalence relation, the transitivity yields the
claimed result.
2. Let Xn = Bn+Dn. Then {An}n and {Xn}n are strongly equally distributed (SED) by part
3 of Lemma 8.1.2. Moreover, {Bn}n and {Xn}n ful�ll the assumptions of part 2 of Lemma
8.1.1 and consequently are strongly equally distributed (SED). Since the SED relation is an
equivalence relation, the proof is concluded by applying the transitivity.

We prove the following corollaries with similar tools. In particular, the essentials of the
proof of Corollary 8.1.2 can be found in [166].

Corollary 8.1.2. [136, 142, 145, 166]. Let {An}n and {Bn}n be two sequences of dn × dn
matrices.

1. Suppose that ∥An − Bn∥2F = o(dn). Then M is a cluster for the sequence {An}n if and
only if M is a cluster for the sequence {Bn}n.

2. When ∥An − Bn∥F = O(1). Then M is a proper cluster for {An}n if and only if M is a
proper cluster for {Bn}n.

187



Proof. 1. Let M be a cluster for {An}n. Then for any ϵ > 0 we have

γn(An,M, ϵ) = o(dn), γn(An,M, 2ϵ) = o(dn),

where the function γn(An,M, ϵ) measures the cardinality of In(An,M, ϵ) being the set of
indices j so that σj(An) /∈ Mϵ (Mϵ is the ϵ-extension of a set M in the nonnegative real
line). Now for any positive ϵ⋆, let Jn(An, Bn, ϵ

⋆) be the set of indices j such that |σj(An) −
σj(Bn)| > ϵ⋆. By Lemma 8.1.2, it holds that {An}n and {Bn}n are ϵ-EL and consequently
card(Jn(An, Bn, ϵ

⋆)) = o(dn) for arbitrary ϵ
⋆ > 0. For every i ∈ Un(ϵ, ϵ

⋆) ≡ J c
n(An, Bn, ϵ

⋆) ∩
In(An,M, ϵ) it simultaneously holds that:

σi(An) ∈Mϵ and |σi(An)− σi(Bn)| ≤ ϵ⋆.

If ϵ⋆ < ϵ and i ∈ Un(ϵ, ϵ
⋆), by triangle inequality, it follows that σi(Bn) ∈ M2ϵ. Finally,

recalling that card(Jc
n(An, Bn, ϵ

⋆)) = dn − o(dn), and card(Icn(An,M, ϵ)) = dn − o(dn), it is
transparent that

card(Un(ϵ, ϵ
⋆)) = dn − o(dn).

Since Un(ϵ, ϵ
⋆) ⊂ {j : σj(Bn) ∈ M2ϵ} and since ϵ is arbitrary it follows that M is a cluster

for {Bn}n and the proof of the �rst part is concluded.
2. When ∥An − Bn∥F = O(1), by following the same argument and by replacing each o(dn)
by O(1), we obtain the desired result.

Corollary 8.1.3. [136, 142, 145]. Let {An}n and {Bn}n be two sequences of dn×dn matrices
and let M be a set of the real line so that for any positive ϵ, the set Mϵ is made up of a �nite
union of intervals.

1. Suppose that ∥An−Bn−Dn∥2F = o(dn), and rank(Dn) = o(dn). Then M is a cluster for
{An}n if and only if it is a cluster for {Bn}n.

2. If ∥An − Bn − Dn∥F = O(1) with rank(Dn) = O(1). Then M is a proper cluster for
{An}n if and only if it is a proper cluster for {Bn}n.

Proof. 1. Let Xn = Bn +Dn. Then {An}n and {Xn}n have the same clusters by Corollary
8.1.2. But {Bn}n and {Xn}n ful�ll the hypotheses of Lemma 8.1.1 so that {An}n and {Bn}n
are equally localized (EL). Therefore, by de�nition of equal localization matrix sequences, it
follows that for any nontrivial interval [α, β] (α < β), we have

card{i : σi(An) ∈ [α, β]} = card{i : σi(Bn) ∈ [α, β]}+ o(dn).

Since Mϵ is (for any ϵ) a �nite union of nontrivial intervals, the proof is concluded.
2. When ∥An −Bn −Dn∥F = O(1) with rank(Dn) = O(1), by following the same argument
and by replacing each o(dn) by O(1), we obtain the desired result.

Equipped of above results, we can start the study on the preconditioning of collocation
matrices approximating elliptic bounded value problems.

8.2 Preconditioning and approximation

Let Ω be an opened domain of model problems (8.23) and (8.24), ∂Ω its boundary, Ω̂ = ∂Ω∪Ω
an arti�cial domain greater than real domain Ω and, {xj}n+1

j=0 and {(xi, yj)}n+1
i,j=0 be given or

selected points that are chosen out of the real domain Ω and are in the arti�cial domain.
The problems we are interested in, are the best approximations of elliptic boundary value
problems de�ned by:
Uni-dimensional problem
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{
u

′′
(x) = f(x), x ∈ Ω = (0, 1)

u(0) = a, u(1) = b
(8.23)

or Multi-dimensional problem{
∂2u
∂x2 (x, y) +

∂2u
∂y2

(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1)
u(x, y) = g(x, y), (x, y) ∈ ∂Ω

(8.24)

by the linear systems of the type: Ax = y. The shown method to approximate (8.23) and
(8.24) is based on the Radial Basis Functions. These types of approximations similar to
the others, can be applied for approximating PDEs. In these methods, a radial function is
core for approximation space and this space is made by translating a standard radial function
with zero as its center (core), to all of the space particles. Here, we present an interesting
method using the nodes that most of them are selected out of real domain and the others, in
the domain. We study in any case (uni-dimension and multi-dimensions) the preconditioners
and the condition numbers of the obtained matrices.
One of the advantages of meshless methods based on the RBFs with respect to another,
is high decrease of computational volume that arises when changing multi-dimensions to
one dimension. Kansa, [88] is the �rst researcher that applied an approximation by BRFs
(Pseudo interpolation) to the PDEs. The use of the globally supported RBFs, reaches to
the large linear systems, poorly condition number, full matrices as will be shown in the
following. A RBFs must be selected experimentally suitable for the model problem. Some of
the most commonly used RBFs are:

• Direct Multiquadric: ϕ(t) = (t2 + c2)
1
2 ,

• Inverse Multiquadric: ϕ(t) = (t2 + c2)−
1
2 ,

• Gaussian: ϕ(t) = e−
t2

c2 ,

where c is a shape parameter which determines the "accuracy" and the "stability".

8.2.1 Uni-dimensional problem

{
u

′′
(x) = f(x), x ∈ Ω = (0, 1)

u(0) = a, u(1) = b
(8.25)

Associated linear system

Let 0 = x0 < x1 < ... < xn < xn+1 = 1 be the subdivision of the interval (0, 1). The radial
function method consists to set v(x) =

n+1∑
j=0

vjϕ(x− xj), x ∈ Ω = (0, 1)

v(0) = a, v(1) = b

(8.26)

When di�erentiae, one obtains from (8.25)− (8.26)
n+1∑
j=0

vjϕ
′′
(x− xj) = f(x), x ∈ Ω = (0, 1)

v(0) = a, v(1) = b

(8.27)
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For all x = x0, x1, ..., xn+1; system (8.27) becomes
n+1∑
k=0

vkϕ
′′
(xj − xk) = f(xj), j = 1, ..., n

v(0) = a, v(1) = b
(8.28)

Setting

(8.29) ϕ
′′

j,k = ϕ
′′
(xj − xk), fj = f(xj);

It follows from (8.28) the linear system

Adnv = f̃dn(8.30)

where dn = n+ 2 and

Adn = [aij]
n+1
i,j=0, f̃dn = [a, f1, f2, ..., fn, b]

T and v = [v0, v1, ..., vn+1]
T ,

with {
a0,j = ϕ0,j, an+1,j = ϕn+1,j j = 0, 1, ..., n+ 1,
ai,j = ϕ

′′
i,j, i = 1, 2, ..., n, j = 0, 1, ..., n+ 1.(8.31)

So, (8.30) is equivalent to
ϕ0,0 ϕ0,1 . . . ϕ0,n ϕ0,n+1

ϕ
′′
1,0 ϕ

′′
1,1 . . . ϕ

′′
1,n ϕ

′′
1,n+1

...
... . . .

...
...

ϕ
′′
n,0 ϕ

′′
n,1 . . . ϕ

′′
n,n ϕ

′′
n,n+1

ϕn+1,0 ϕn+1,1 ϕn+1.n ϕn+1,n+1


 v0v1

...
vnvn+1

 =


a
f1
...
fn
b

 .(8.32)

Let us notice by Tn the submatrix of Adn obtained by deleting the �rst and the last rows
and columns, i.e., Tn = [ϕ

′′
i,j]

n
i,j=1. Since

ϕ
′′
(t) =


c2

(t2+c2)
3
2

Multiquadric (MQ)

2t2−c2

(t2+c2)
5
2

Inverse Multiquadric (IMQ)

2
c2
(2t

2

c2
− 1)e−

t2

c2 Gaussian

(8.33)

Then ϕ
′′
(t) is an even function. Setting h = (n+1)−1 and xj = jh for j = 0, 1, ..., n+1, one

deduces that Tn is a symmetric Toeplitz matrix. De�ning g = c
h
, it follows from (8.29) and

(8.33) that

ϕ
′′

j,k =


1
h

g2

((j−k)2+g2)
3
2

Multiquadric (MQ)

1
h2

(j−k)2−2g2

((j−k)2+g2)
5
2

Inverse Multiquadric (IMQ)

2
h2g2

(
2(j−k)2

g2
− 1
)
e
− (j−k)2

g2 Gaussian

(8.34)

One deduces from (8.34) that the generating function of the symmetric Toeplitz matrix Tn
is given by:
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s(x) =
∞∑

k=−∞

ϕ
′′

ke
îkπx x ∈ (0, 1)(8.35)

and developing (8.35), one obtains

s(x) = ϕ
′′

0 + 2
∞∑
k=1

ϕ
′′

k cos(2kπx) x ∈ (0, 1).(8.36)

Study of matrices Adn

1. Determination of the preconditioners of Adn

When setting ϕ
′′

j,k = ϕ
′′

j−k and ϕj,k = ϕj−k, it follows from (8.30)− (8.32) that the matrix
Adn is given by

Adn =


ϕ0 ϕ1 . . . ϕn ϕn+1

ϕ
′′
1 ϕ

′′
0 . . . ϕ

′′
n−1 ϕ

′′
n

...
... . . .

...
...

ϕ
′′
n ϕ

′′
n−1 . . . ϕ

′′
0 ϕ

′′
1

ϕn+1 ϕn ϕ1 ϕ0


Let us set: Adn = Tdn +∆dn where

Tdn =


ϕ

′′
0 ϕ

′′
1 . . . ϕ

′′
n ϕ

′′
n+1

...
... . . .

...
...

ϕ
′′
n ϕ

′′
n−1 . . . ϕ

′′
0 ϕ

′′
1

ϕ
′′
n+1 ϕ

′′
n . . . ϕ

′′
1 ϕ

′′
0

 and ∆dn =


ϕ0 − ϕ

′′
0 . . . ϕn+1 − ϕ

′′
n+1

0 . . . 0
... . . .

...
0 . . . 0

ϕn+1 − ϕ
′′
n+1 . . . ϕ0 − ϕ

′′
0


Since Tdn is a symmetric Toeplitz matrix, then Pdn = Tdn−H(Tdn) is a natural preconditioner
of Tdn where

H(Tdn) =



ϕ
′′
2 ϕ

′′
3 . . . ϕ

′′
n+1 0 0

ϕ
′′
3 0 0
... ϕ

′′
n+1

ϕ
′′
n+1

...
0 0 ϕ

′′
3

0 0 ϕ
′′
n+1 . . . ϕ

′′
3 ϕ

′′
2


is the Hankel matrix. Or rank(Adn − Tdn) = o(dn), it follows from Lemma 8.1.1 that the
matrix sequences {Adn}n and {Tdn)}n are equally localized and equally distributed. Then,
Pdn = Tdn −H(Tdn) are good preconditioners for Adn .

2. Study of the spectral radius of Adn
Since Adn = Tdn +∆dn , then

(8.37) ρ(Adn) = ∥Adn∥2 ≤ ∥Tdn∥2 + ∥∆dn∥2 = ρ(Tdn) + ρ(∆dn)

In the following we study the ϵ-equal localization and clustering properties of the matrix
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sequences {Adn}n and {Tdn}n. First of all, let us determine the eigenvalues of ∆dn :

|∆dn − λI| =

∣∣∣∣∣∣∣∣∣
ϕ0 − ϕ

′′
0 − λ ϕ1 − ϕ

′′
1 . . . ϕn+1 − ϕ

′′
n+1

0 −λ . . . 0
... . . .

...
0 . . . −λ 0

ϕn+1 − ϕ
′′
n+1 ϕn − ϕ

′′
n . . . ϕ0 − ϕ

′′
0 − λ

∣∣∣∣∣∣∣∣∣
= (ϕ0 − ϕ

′′

0 − λ)2(−1)nλn + (−1)n+3(ϕn+1 − ϕ
′′

n+1)

×

∣∣∣∣∣∣∣
ϕ1 − ϕ

′′
1 ϕ2 − ϕ

′′
2 . . . ϕn+1 − ϕ

′′
n+1

−λ 0 . . . 0
... . . .

...
0 . . . −λ 0

∣∣∣∣∣∣∣
= (ϕ0 − ϕ

′′

0 − λ)2(−1)nλn + (−1)n+1(ϕn+1 − ϕ
′′

n+1)

×

λ
∣∣∣∣∣∣∣
ϕ2 − ϕ

′′
2 ϕ3 − ϕ

′′
3 . . . ϕn+1 − ϕ

′′
n+1

−λ 0 . . . 0
... . . .

...
0 . . . −λ 0

∣∣∣∣∣∣∣


...

= (−1)n(ϕ0 − ϕ
′′

0 − λ)2λn + (−1)n+1λn−1(ϕn+1 − ϕ
′′

n+1)
∣∣∣ϕn − ϕ

′′
n ϕn+1 − ϕ

′′
n+1

−λ 0

∣∣∣
= (−1)n(ϕ0 − ϕ

′′

0 − λ)2λn + (−1)n+1λn(ϕn+1 − ϕ
′′

n+1)
2

= (−1)nλn[(ϕ0 − ϕ
′′

0 − λ)2 − (ϕn+1 − ϕ
′′

n+1)
2]

= (−1)nλn(ϕ0 − ϕ
′′

0 − λ− ϕn+1 + ϕ
′′

n+1)(ϕ0 − ϕ
′′

0 − λ+ ϕn+1 − ϕ
′′

n+1)

then

|∆dn − λIdn | = 0 ⇔

{
λ0 = 0, mult.=n
λ1 = −(ϕ

′′
0 − ϕ0) + ϕ

′′
n+1 − ϕn+1, mult.=1

λ2 = −(ϕ
′′
0 − ϕ0)− (ϕ

′′
n+1 − ϕn+1), mult.=1

Case 1: Multiquadric

In this case: ϕk = h
√
k2 + g2 and ϕ

′′

k = 1
h

g2

(g2+k2)
3
2
, for k = 0, 1, ..., n+ 1. or

ϕ0 = hg = c; ϕn+1 = h
√
(n+ 1)2 + g2 =

√
1 + c2;

ϕ
′′

0 =
g2

hg3
=

1

c
; ϕ

′′

n+1 =
1

h

g2

(g2 + (n+ 1)2)
3
2

=
c2

(1 + c2)
3
2

So, 
λ0 = 0 mult.=n;
λ1 =

c2−1
c

+ c2−(1+c2)2

(1+c2)
3
2

mult.=1

λ2 =
c2−1
c
− c2−(1+c2)2

(1+c2)
3
2

mult.=1

then

1

dn
∥∆dn∥2F =

1

dn

[
(
c2 − 1

c
− c2 − (1 + c2)2

(1 + c2)
3
2

)2 + (
c2 − 1

c
+
c2 − (1 + c2)2

(1 + c2)
3
2

)2

]

=
2

dn

[
(c2 − 1)2

c2
+

(1 + c2 + c4)2

(1 + c2)3

]
→

n→∞
0
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then

1√
dn
∥Adn − Tdn∥F →

n→∞
0(8.38)

According to (8.38), it follows from Lemma 8.1.2 and Corollary 8.1.2 that the sequences
{Adn}n and {Tdn}n are ϵ-equally localized and are clustered. So

ρ(Adn) ≈
n→∞

ρ(Tdn)(8.39)

Now, let us study the spectral radius of the Toeplitz matrix Tdn .
Since the coe�cients of Tdn are positive, then Tdn is a positive matrix. It follows from
Theorem 8.1.8 that both the matrices Tdn and T T

dn
possess the strong Perron- Frobenius

property, and according to Theorem 8.1.10, one deduces that

(8.40) min
0≤i≤n+1

n+1∑
j=0

ϕ
′′

i−j ≤ ρ(Tdn) ≤ max
0≤i≤n+1

n+1∑
j=0

ϕ
′′

i−j.

Or, ϕ
′′
i−j =

1
h

g2

(g2+(i−j)2)
3
2
, then min

0≤i≤n+1

n+1∑
j=0

ϕ
′′
i−j =

n+1∑
j=0

ϕ
′′
n+1−j =

1
h

n+1∑
j=0

g2

(g2+j2)
3
2
. Setting

fn(x) =
1
h

g2

(g2+x2)
3
2
∀x ∈ [0, n + 1], then f

′
(x) = 1

h
−3xg2(g2+x2)

1
2

(g2+x2)3
≤ 0, then the function f is

nonincreasing over the interval [0, n + 1]. So, f(n + 1) ≤ f(x) ∀x ∈ [0, n + 1], in particular

f(n+ 1) ≤ f(j) ∀j = 0, 1, ..., n+ 1. Or, f(n+ 1) = c2

(1+c2)
3
2
, then

(8.41)
c2

(1 + c2)
3
2

(n+ 2) ≤ 1

h

n+1∑
j=0

g2

(g2 + j2)
3
2

= min
0≤i≤n+1

n+1∑
j=0

ϕ
′′

i−j.

Conclusion: From (8.39)−(8.40)−(8.41), one deduces that the spectral radius of Adn grows
as dn = n+ 2 ∀c > 0. So, the matrix Adn is ill-conditioned.

Case 2: Inverse Multiquadric
In order to simplify the study, we only work in the case where c ≥ 1√

2
. Indeed this require-

ment imposes to the entries of Tdn to be nonpositive. Since,

ϕk =
1
h

1√
k2+g2

and ϕ
′′

k = 1
h2

k2−2g2

(g2+k2)
5
2
, for k = 0, 1, ..., n+ 1, then

ϕ0 =
1

c
; ϕn+1 =

1√
1 + c2

,

ϕ
′′

0 =
−2
gc2

; ϕ
′′

n+1 =
(1− 2c2)c

g(1 + c2)
5
2

.

So, 
λ0 = 0 mult.=n
λ1 =

1
c
+ 2

gc2
+ (1−2c2)c

g(1+c2)
5
2
− 1

(1+c2)
1
2
= αn(c) mult.=1

λ2 =
1
c
+ 2

gc2
− (1−2c2)c

g(1+c2)
5
2
+ 1

(1+c2)
1
2
= βn(c) mult.=1
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As αn(c) =
1
c
+ 2

c3(n+1)
+ (1−2c2)

(n+1)(1+c2)
5
2
− 1

(1+c2)
1
2
and βn(c) =

1
c
+ 2

c3(n+1)
− (1−2c2)

(n+1)(1+c2)
5
2
+ 1

(1+c2)
1
2
,

then

1

dn
∥∆dn∥2F =

1

dn
[|αn(c)|2 + |βn(c)|2] →

n→∞
0

then

1√
dn
∥Adn − Tdn∥F →

n→∞
0(8.42)

According to (8.42), it follows from Lemma 8.1.2 and Corollary 8.1.2 that the sequences
{Adn}n and {Tdn}n are ϵ-equally localized and are clustered. So

ρ(Adn) ≈
n→∞

ρ(Tdn).(8.43)

Now, let us study the spectral radius of the Toeplitz matrix Tdn .

Since c ≥ 1√
2
then the coe�cients ϕ

′′

k = 1
h2

k2−2g2

(g2+k2)
5
2
of Tdn are nonpositive, then T 2

dn
is a

nonnegative matrix, so −Tdn is an eventually nonnegative matrix. It follows from Theorem
8.1.9 that both the matrices −Tdn and (−Tdn)T possess the Perron- Frobenius property, and
according to Theorem 8.1.10, one deduces that

(8.44) min
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j) ≤ ρ(−Tdn) ≤ max
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j).

Because, −ϕ′′
i−j = 1

h2

2g2−(i−j)2

(g2+(i−j)2)
5
2
, setting gn(x) = 1

h2
2g2−x2

(g2+x2)
5
2
∀x ∈ [0, n + 1], then g

′
n(x) =

1
h2

3x(g2+x2)
3
2 (x2−4g2)

(g2+x2)5
≤ 0, then the function gn is nonincreasing over the interval [0, n+1], since

g
′
n(x) = 0⇔ x = 0, one deduces that gn is a decreasing function over [0, n+1]. Furthermore,
for j = 1, 2, ..., n

(8.45) −ϕ′′

(j−1)−j =
1

h2
2g2 − 1

(g2 + 1)
5
2

= −ϕ′′

(j+1)−j = −ϕ
′′

1

It follows from (8.45) that

min
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j) = min
0≤i≤n+1

n+1∑
j=0

gn(i− j) =
n+1∑
j=0

gn(n+ 1− j) =
n+1∑
j=0

gn(0− j).

Since gn ↘, then gn(n + 1) ≤ gn(j) ∀j = 0, 1, ..., n + 1 and as gn(n + 1) = 2c2−1

(n+1)(1+c2)
5
2
, one

has

(8.46)
2c2 − 1

(1 + c2)
5
2

n+ 2

n+ 1
≤ 1

h2

n+1∑
j=0

2g2 − j2

(g2 + j2)
5
2

= min
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j).

On the other hand, let us set c0 =
n+1∑
j=0

(−ϕ′′
j ) and ck =

k∑
j=0

(−ϕ′′
j ) +

n+1−k∑
j=0

(−ϕ′′
j ), for k =

1, 2, ..., [dn
2
]. Because the matrices Tdn , T

T
dn
, −Tdn and (−Tdn)T possess the Perron-Frobenius

property, it follows from Theorems 8.1.6 and 8.1.10 that
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ρ(Tdn) = ρ(−Tdn) ≤ max
1≤k≤[ dn

2
]
{c0, ck} = c[ dn

2
](8.47)

Or

c[ dn
2
] =

[ dn
2
]∑

j=1

(−ϕ′′

j ) +

n+1−[ dn
2
]∑

j=0

(−ϕ′′

j )

=


−ϕ′′

0 + 2
[ dn

2
]∑

j=1

(−ϕ′′
j ) if dn is odd

−ϕ′′
0 − ϕ

′′

[ dn
2
]
+ 2

[ dn
2
]−1∑

j=1

(−ϕ′′
j ) otherwise

and since for j ≥ 1, −ϕ′′
j = gn(j) ≤ gn(0) =

2
c3(n+1)

, one deduces that c[ dn
2
] ≤

2
c3

dn
n+1

. From

(8.43)− (8.44)− (8.46)− (8.47), one has

2c2 − 1

(1 + c2)
5
2

dn
n+ 1

. ρ(Adn) .
2

c3
dn

n+ 1

Then lim
n→∞

ρ(Adn) ∈
[

2c2−1

(1+c2)
5
2
, 2
c3

]
.

Conclusion: The condition number of Adn grows as |λmin(Adn)|−1.

Case 3: Gaussian
Also in this part, we study the problem in the case where c ≥

√
2. First of all, one has:

ϕk = e
− k2

g2 and ϕ
′′

k = 2
h2g2

(
2k2

g2
− 1
)
e
− k2

g2 . Then

ϕ0 = 1; ϕn+1 = e−
1
c2 ;

ϕ
′′

0 =
−2
c2

; ϕ
′′

n+1 =
2

c2

(
2

c2
− 1

)
e−

1
c2

So, 
λ0 = 0 mult.=n
λ1 = 1 + 2

c2
−
(
1 + 2

c2
− 4

c4

)
e−

1
c2 = α(c) mult.=1

λ2 = 1 + 2
c2
+
(
1 + 2

c2
− 4

c4

)
e−

1
c2 = β(c) mult.=1

then

1

dn
∥∆dn∥2F =

1

dn
[|α(c)|2 + |β(c)|2] →

n→∞
0

then

1√
dn
∥Adn − Tdn∥F →

n→∞
0(8.48)

According to (8.48), it follows from Lemma 8.1.2 and Corollary 8.1.2 that the sequences
{Adn}n and {Tdn}n are ϵ-equally localized and are clustered. So

195



ρ(Adn) ≈
n≫1

ρ(Tdn)(8.49)

Study of the spectral radius of Tdn .

Because c ≥
√
2, the entries ϕ

′′

k = 2
h2g2

(
2k2

g2
− 1
)
e
− k2

g2 of Tdn are nonpositive, then −Tdn is

an eventually nonnegative matrix. It follows from Theorem 8.1.9 that both the matrices
−Tdn and (−Tdn)T possess the Perron-Frobenius property, according to Theorem 8.1.10,
one deduces that

(8.50) min
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j) ≤ ρ(−Tdn) ≤ max
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j).

Setting gn(x) =
2

h2g2

(
1− 2x2

g2

)
e
−x2

g2 ∀x ∈ [0, n + 1], then g
′
n(x) =

4x
h2g4

(
−3 + 2x2

g2

)
e
−x2

g2 ≤ 0

∀x ∈ [0, n + 1], then the function gn is nonincreasing over the interval [0, n + 1], since
g

′
n(x) = 0⇔ x = 0, then gn is a decreasing function over the interval [0, n+1]. Furthermore,
for j = 1, 2, ..., n

(8.51) −ϕ′′

(j−1)−j =
2

h2g2

(
1− 2

g2

)
e
− 1

g2 = −ϕ′′

(j+1)−j = −ϕ
′′

1 .

According to (8.51) one has

(8.52) min
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j) = min
0≤i≤n+1

n+1∑
j=0

gn(i− j) =
n+1∑
j=0

gn(n+ 1− j) =
n+1∑
j=0

gn(0− j).

• Let us suppose that c >
√
2. Since gn ↘, then gn(n + 1) < gn(j) ∀j = 0, 1, ..., n. Or

gn(n+ 1) = 2
c2

(
1− 2

c2

)
e−

1
c2 , then

(8.53)
2e−

1
c2

c2

(
1− 2

c2

)
dn ≤

2

h2g2

n+1∑
j=0

2

h2g2

(
1− 2j2

g2

)
e
− j2

g2 = min
0≤i≤n+1

n+1∑
j=0

(−ϕ′′

i−j).

From (8.50)− (8.53), one deduces that

2e−
1
c2

c2

(
1− 2

c2

)
dn ≤ ρ(−Tdn)(8.54)

• If c =
√
2 : then, gn(n + 1) = 0, so gn(n) < gn(j) ∀j = 0, 1, ..., n − 1. Or gn(n) =(

1− n2

(n+1)2

)
e
− n2

(n+1)2 , then

(8.55)
n∑

j=0

gn(n) =
2n+ 1

n+ 1
e
− n2

(n+1)2 ∼
∞

2

e

It follows from (8.50)− (8.52)− (8.55) that

(8.56)
2

e
. ρ(−Tdn)
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On the other hand, setting c0 =
n+1∑
j=0

(−ϕ′′
j ) and ck =

k∑
j=0

(−ϕ′′
j ) +

n+1−k∑
j=0

(−ϕ′′
j ), for k =

1, 2, ..., [dn
2
]. Since both the matrices −Tdn and (−Tdn)T possess the Perron- Frobenius prop-

erty, according to Theorem 8.1.10, one deduces that

ρ(−Tdn) ≤ max
1≤k≤[ dn

2
]
{c0, ck} = c[ dn

2
](8.57)

Or it follows from (8.51) that

c[ dn
2
] =

[ dn
2
]∑

j=1

(−ϕ′′

j ) +

n+1−[ dn
2
]∑

j=0

(−ϕ′′

j )

=


−ϕ′′

0 + 2
[ dn

2
]∑

j=1

(−ϕ′′
j ) if dn is odd

−ϕ′′
0 − ϕ

′′

[ dn
2
]
+ 2

[ dn
2
]−1∑

j=1

(−ϕ′′
j ) otherwise

and since for j ≥ 1, −ϕ′′
j = gn(j) ≤ gn(0) = 1, one deduces that c[ dn

2
] ≤ dn. From (8.57), one

has

(8.58) ρ(−Tdn) ≤ dn

According to (8.56)− (8.58), one has

(8.59)
2

e
. ρ(−Tdn) ≤ dn

One concludes according to (8.49) − (8.54) − (8.59), and Theorem 8.1.6 that the spectral
radius of Adn grows as dn = n + 2 ∀c >

√
2 and least rapidly grows than dn = n + 2 for

c =
√
2. Then, the matrix Adn is ill-conditioned.

8.2.2 2D-dimensional problem

Let us consider the Poisson equation:

(8.60)

{
∂2u(x,y)

∂x2 + ∂2u(x,y)
∂y2

= f(x, y) for (x, y) ∈ Ω = (0, 1)2

u(x, y) = g(x, y) if (x, y) ∈ ∂Ω

2.1 Associated linear system and Preconditioners
Discretizing Ω with grid points zjk = (xj, yk) = (hj, hk) with j, k = 0, 1, ..., n + 1, and

h = 1
n+1

, one de�nes an approximated solution of (8.60) given by

(8.61) v(x, y) =
n+1∑
j=0

n+1∑
k=0

vjkϕ ((x, y)− (xj, yk))

where

(8.62) ϕ(x, y) =


√
x2 + y2 + c2 Multiquadric (MQ)

1√
x2+y2+c2

Inverse multiquadric (IMQ)

e−
x2+y2

c2 Gaussian
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The combination of (8.60) and (8.61) give

(8.63)



n+1∑
j=0

n+1∑
k=0

vjk

[
∂2ϕ
∂x2 +

∂2ϕ
∂y2

]
(x− xj, y − yk) = f(x, y) for (x, y) ∈ Ω

n+1∑
j=0

n+1∑
k=0

vjkϕ(−xj, y − yk) = g(0, y) if y ∈ [0, 1]

n+1∑
j=0

n+1∑
k=0

vjkϕ(1− xj, y − yk) = g(1, y) if y ∈ [0, 1]

n+1∑
j=0

n+1∑
k=0

vjkϕ(x− xj,−yk) = g(x, 0) if x ∈ (0, 1)

n+1∑
j=0

n+1∑
k=0

vjkϕ(x− xj, 1− yk) = g(x, 1) if x ∈ (0, 1)

By direct computations, one has:

∂ϕ

∂x
(x, y) =


x(x2 + y2 + c2)−

1
2

−x(x2 + y2 + c2)−
3
2

−2x
c2
e−

x2+y2

c2 ,

∂ϕ

∂y
(x, y) =


y(x2 + y2 + c2)−

1
2

−y(x2 + y2 + c2)−
3
2

−2y
c2
e−

x2+y2

c2

then

∂2ϕ

∂x2
(x, y) =


(x2 + y2 + c2)−

1
2 − x2(x2 + y2 + c2)−

3
2

−(x2 + y2 + c2)−
3
2 + 3x2(x2 + y2 + c2)−

5
2

−2
c2
e−

x2+y2

c2 + 4x2

c2
e−

x2+y2

c2

∂2ϕ

∂y2
(x, y) =


(x2 + y2 + c2)−

1
2 − y2(x2 + y2 + c2)−

3
2

−(x2 + y2 + c2)−
3
2 + 3y2(x2 + y2 + c2)−

5
2

−2
c2
e−

x2+y2

c2 + 4y2

c2
e−

x2+y2

c2

then

(8.64)
∂2ϕ

∂x2
(x, y) +

∂2ϕ

∂y2
(x, y) =


(x2 + y2 + 2c2)(x2 + y2 + c2)−

3
2 (MQ)

(x2 + y2 − 2c2)(x2 + y2 + c2)−
5
2 (IMQ)

4
c2
((x2 + y2)− c2)e−

x2+y2

c2 (Gaussian)

The linear system associated with (8.63) is de�ned as follows:

(8.65)



(a)
n+1∑
l,p=0

vlp

[
∂2ϕ
∂x2 +

∂2ϕ
∂y2

]
(xj − xl, yk − yp) = f(xj, yk) : j, k = 1, ..., n

(b)
n+1∑
l,p=0

vlpϕ(−xl, yj − yp) = g(0, yj) : j = 0, 1, ..., n+ 1

(c)
n+1∑
l,p=0

vlpϕ(1− xl, yj − yp) = g(1, yj) j = 0, 1, ..., n+ 1

(d)
n+1∑
l,p=0

vlpϕ(xj − xl,−yp) = g(xj, 0) : j = 1, ..., n

(e)
n+1∑
l,p=0

vlpϕ(xj − xl, 1− yp) = g(xj, 1) : j = 1, ..., n
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(a) implies for j, k = 1, 2, ..., n :
n+1∑
l,p=0

Cj−l
k−pvlp = fjk, i.e.

(8.66) [Cj−0
k−0, ..., C

j−0
k−(n+1)|C

j−1
k−0, ..., C

j−1
k−(n+1)|...|C

j−(n+1)
k−0 , ..., C

j−(n+1)
k−(n+1)]



v00
...

v0,n+1
v1,0
...

v1,n+1

...
vn+1,0
...

vn+1,n+1


= fjk

where

Cj−l
k−p =


1√

(xj−xl)2+(yk−yp)2+c2
+ c2

(xj−xl)2+(yk−yp)2+c2)
3
2

(MQ)

(xj−xl)
2+(yk−yp)2−2c2

((xj−xl)2+(yk−yp)2+c2)
5
2

(IMQ)

4
c2
((xj − xl)2 + (yk − yp)2 − c2)e−

(xj−xl)
2+(yk−yp)

2

c2 (Gaussian)

Setting g = c/h and since xj = jh, yj = jh, then

(8.67) Cj−l
k−p =


1
h

1√
(j−l)2+(k−p)2+g2

+ 1
h

g2

[(j−l)2+(k−p)2+g2]
3
2

(MQ)

1
h3

(j−l)2+(k−p)2−2g2

[(j−l)2+(k−p)2+g2]
5
2

(IMQ)

4
h2g4

[(j − l)2 + (k − p)2 − g2]e−
(j−l)2+(k−p)2

g2 (Gaussian)

(b) implies for j = 0, 1, ..., n+ 1 :
n+1∑
l,p=0

vlpϕ(−xl, yj − yp) = g(0, yj), i.e.

(8.68)

[ϕ0−0
j−0, ..., ϕ

0−0
j−(n+1)|ϕ

0−1
j−0, ..., ϕ

0−1
j−(n+1)|...|ϕ

0−(n+1)
j−0 , ..., ϕ

0−(n+1)
j−(n+1)]



v00
...

v0,n+1
v1,0
...

v1,n+1

...
vn+1,0
...

vn+1,n+1


= g0j = g(0, jh)

(c) implies for j = 0, 1, ..., n+ 1:
n+1∑
l,p=0

vlpϕ(1− xl, yj − yp) = g(1, yj), i.e.,

(8.69) [ϕ
(n+1)−0
j−0 , ..., ϕ

(n+1)−0
j−(n+1)|...|ϕ

(n+1)−(n+1)
j−0 , ..., ϕ

(n+1)−(n+1)
j−(n+1) ]



v00
...

v0,n+1
v1,0
...

v1,n+1

...
vn+1,0
...

vn+1,n+1


= g(1, jh)
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(d) implies for j = 1, ..., n :
n+1∑
l,p=0

vlpϕ(xj − xl,−yp) = g(xj, 0), i.e.

(8.70)

[ϕj−0
0−0, ..., ϕ

j−0
0−(n+1)|ϕ

j−1
0−0, ..., ϕ

j−1
0−(n+1)|...|ϕ

j−(n+1)
0−0 , ..., ϕ

j−(n+1)
0−(n+1)]



v00
...

v0,n+1
v1,0
...

v1,n+1

...
vn+1,0
...

vn+1,n+1


= gj0 = g(jh, 0)

(e) implies for j = 1, ..., n :
n+1∑
l,p=0

vlpϕ(xj − xl, 1− yp) = g(xj, 1), i.e.

(8.71) [ϕj−0
(n+1)−0, ..., ϕ

j−0
(n+1)−(n+1)|...|ϕ

j−(n+1)
(n+1)−0, ..., ϕ

j−(n+1)
(n+1)−(n+1)]



v00
...

v0,n+1
v1,0
...

v1,n+1

...
vn+1,0
...

vn+1,n+1


= g(jh, 1)

where ϕ(xj − xl, yk − yp) = ϕj−l
k−p and

(8.72) ϕj−l
k−p =


h[(j − l)2 + (k − p)2 + g2]

1
2 MQ

((j − l)2 + (k − p)2 + g2)−
1
2 IMQ

e
− (j−l)2+(k−p)2

g2 Gaussian

From (8.66) to (8.72), one deduces the following linear system:

(8.73)


A

(n+2)
0−0 A

(n+2)
0−1 . . . A

(n+2)
0−n A

(n+2)
0−(n+1)

A
(n+2)
1−0 A

(n+2)
1−1 . . . . . . A

(n+2)
1−(n+1)

...
...

. . .
...

...
A

(n+2)
n−0 A

(n+2)
n−1 . . . A

(n+2)
n−n A

(n+2)
n−(n+1)

A
(n+2)
(n+1)−0 A

(n+2)
(n+1)−1 . . . A

(n+2)
(n+1)−n A

(n+2)
(n+1)−(n+1)



v(0)

v(1)
...
v(n)

v(n+1)

 =


f (0)

f (1)

...
f (n)

f (n+1)


i.e,

Adnv = f̃

where dn = (n+ 2)2 and

Adn =


A

(n+2)
0−0 A

(n+2)
0−1 . . . A

(n+2)
0−n A

(n+2)
0−(n+1)

A
(n+2)
1−0 A

(n+2)
1−1 . . . . . . A

(n+2)
1−(n+1)

...
...

. . .
...

...
A

(n+2)
n−0 A

(n+2)
n−1 . . . A

(n+2)
n−n A

(n+2)
n−(n+1)

A
(n+2)
(n+1)−0 A

(n+2)
(n+1)−1 . . . A

(n+2)
(n+1)−n A

(n+2)
(n+1)−(n+1)

 ; v =


v(0)

v(1)
...
v(n)

v(n+1)

 ; f̃ =


f (0)

f (1)

...
f (n)

f (n+1)
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with for j = 0, 1, ..., n+ 1

(8.74) A
(n+2)
0−j = [ϕ0−j

l−p ]
n+1
l,p=0; A

(n+2)
(n+1)−j = [ϕ

(n+1)−j
l−p ]n+1

l,p=0,

for j = 1, 2, ..., n and l = 0, 1, ..., n+ 1,

(8.75) A
(n+2)
j−l =


ϕj−l
0−0 ϕj−l

0−1 . . . ϕj−l
0−n ϕj−l

0−(n+1)

Cj−l
1−0 Cj−l

1−1 . . . Cj−l
1−n Cj−l

1−(n+1)
...

...
. . .

...
...

Cj−l
n−0 Cj−l

n−1 . . . Cj−l
n−n Cj−l

n−(n+1)

ϕj−l
(n+1)−0 ϕj−l

(n+1)−1 . . . ϕj−l
(n+1)−n ϕj−l

(n+1)−(n+1)



=


ϕj−l
0 ϕj−l

1 . . . ϕj−l
n ϕj−l

(n+1)

Cj−l
1 Cj−l

0 . . . Cj−l
n−1 Cj−l

n
...

...
. . .

...
...

Cj−l
n Cj−l

n−1 . . . Cj−l
0 Cj−l

1

ϕj−l
n+1 ϕj−l

n . . . ϕj−l
1 ϕj−l

0

 ,
for k = 0, 1, ..., n+ 1,

v(k) = (vk,0, vk,1, ..., vk,n+1)
T ; f (0) = (g0,0, g0,1, ..., g0,n+1)

T ; f (n+1) = (gn+1,0, ..., gn+1,n+1)
T

and for p = 1, 2, ..., n,
f (p) = (gp,0, fp,1, ..., fp,n, gp,n+1)

T .

For l = 0, 1, ..., n + 1, it follows from (8.74) that the matrices A
(n+2)
0−l and A

(n+2)
(n+1)−l are

symmetric Toeplitz matrices. For l = 0, 1, ..., n+ 1, let us set

(8.76) ∆
(n+2)
0−l =

[
ϕ0−l
k−p − C

0−l
k−p

]n+1

k,p=0
and ∆

(n+2)
(n+1)−l =

[
ϕ
(n+1)−l
k−p − C(n+1)−l

k−p

]n+1

k,p=0
,

From (8.76) the matrices ∆
(n+2)
0−l and ∆

(n+2)
(n+1)−l are symmetric. Hence, it follows from

l = 0, 1, ..., n+ 1, the symmetric Toeplitz matrices

T
(n+2)
0−l = A

(n+2)
0−l −∆

(n+2)
0−l and T

(n+2)
(n+1)−l = A

(n+2)
(n+1)−l −∆

(n+2)
(n+1)−l.

Whence

(8.77) P
(n+2)
0−l = T

(n+2)
0−l −H(T

(n+2)
0−l ) and P

(n+2)
(n+1)−l = T

(n+2)
(n+1)−l −H(T

(n+2)
(n+1)−l)

are natural preconditioners for T
(n+2)
0−l and T

(n+2)
(n+1)−l respectively.

According to the study done in uni-dimension, for j = 1, 2, ..., n and l = 0, 1, ..., n + 1, one
has:

(8.78) A
(n+2)
j−l = T

(n+2)
j−l +∆

(n+2)
j−l

where

(8.79) ∆
(n+2)
j−l =


ϕj−l
0 − Cj−l

0 ϕj−l
1 − Cj−l

1 . . . ϕj−l
n+1 − C

j−l
n+1

0 . . . 0
...

...
0 . . . 0

ϕj−l
n+1 − C

j−l
n+1 ϕj−l

n − Cj−l
n . . . ϕj−l

0 − Cj−l
0

 and T
(n+2)
j−l = [Cj−l

k−p]
n+1
k,p=0
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and

(8.80)


λ0(∆

(n+2)
j−l ) = 0, mult.=n

λ1(∆
(n+2)
j−l ) = ϕj−l

0 − Cj−l
0 + Cj−l

n+1 − ϕ
j−l
n+1 mult.=1

λ2(∆
(n+2)
j−l ) = ϕj−l

0 − Cj−l
0 − Cj−l

n+1 + ϕj−l
n+1 mult.=1

with

(8.81) ϕj−l
0 =


h((j − l)2 + g2)

1
2 (MQ)

1
h
((j − l)2 + g2)−

1
2 (IMQ)

e
− (j−l)2

g2 (Gaussian).

(8.82) Cj−l
0 =


1
h
((j − l)2 + g2)−

1
2 + 1

h
g2((j − l)2 + g2)−

3
2 (MQ)

1
h3 ((j − l)2 − 2g2)((j − l)2 + g2)−

5
2 (IMQ)

4
h2g4

((j − l)2 − g2)e−
(j−l)2

g2 (Gaussian).

(8.83) ϕj−l
n+1 =


h((n+ 1)2 + (j − l)2 + g2)

1
2 (MQ)

1
h
((n+ 1)2 + (j − l)2 + g2)−

1
2 (IMQ)

e
− (n+1)2+(j−l)2

g2 (Gaussian).

(8.84)

Cj−l
n+1 =


1
h
((n+ 1)2 + (j − l)2 + g2)−

1
2 + 1

h
g2((n+ 1)2 + (j − l)2 + g2)−

3
2 (MQ)

1
h3 ((n+ 1)2 + (j − l)2 − 2g2)((n+ 1)2 + (j − l)2 + g2)−

5
2 (IMQ)

4
h2g4

((n+ 1)2 + (j − l)2 − g2)e−
(n+1)2+(j−l)2

g2 (Gaussian).

Since for j = 1, 2, ..., n and l = 0, 1, ..., n+ 1; T
(n+2)
j−l is a symmetric Toeplitz matrix, then

(8.85) P
(n+2)
j−l = T

(n+2)
j−l −H(T

(n+2)
j−l )

is a natural preconditioner for T
(n+2)
j−l . On the other side, ∆

(n+2)
j−l just has two rows non

identically null. One easily shows that the non null rows are linearly independent, then

rank(∆
(n+2)
j−l ) = 2 so, rank(A

(n+2)
j−l −T

(n+2)
j−l ) = o(n+2). It follows from Lemma 8.1.1 that the

matrix sequences {A(n+2)
j−l }n and {T

(n+2)
j−l }n are equally localized (EL) and equally distributed

(ED). i.e,

(8.86) {A(n+2)
j−l }n ≃L.D {T (n+2)

j−l }n

One deduces from (8.85)− (8.86) that P
(n+2)
j−l = T

(n+2)
j−l −H(T

(n+2)
j−l ) is an e�cient precondi-

tioner for A
(n+2)
j−l . Setting Tdn = [T

(n+2)
j−l ]n+1

j,l=0 then, Tdn is a symmetric block Toeplitz matrix
with symmetric Toeplitz blocks. Therefore

(8.87) Pdn = [P
(n+2)
j−l ]n+1

j,l=0

is a good preconditioner for Tdn (see, [92, 62, 40]). Furthermore, setting
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(8.88) ∆dn = Adn − Tdn = [∆
(n+2)
j−l ]

(n+2)
j,l=0

According to (8.76)− (8.78) one has

(8.89)

{
rank(∆

(n+2)
j−l ) ≤ n+ 2, l = 0, 1, ..., n+ 1 and j ∈ {0, n+ 1};

∆
(n+2)
j−l = A

(n+2)
j−l − T

(n+2)
j−l , l = 0, 1, ..., n+ 1 and j=1,2,...,n.

For j = 1, 2, ..., n and l = 0, 1, ..., n+ 1, one deduces from (8.79) that

(8.90) rank(∆
(n+2)
j−l ) = 2

Exploiting (8.88)− (8.89)− (8.90), one easily shows that rank(∆dn) ≤ 4n+ 4, then

(8.91) rank(Adn − Tdn) = o(dn).

It follows from (8.91) and Lemma 8.1.1 that the matrix sequences {Adn}n and {Tdn}n are
equally localized (EL) and equally distributed (ED). i.e,

(8.92) {Adn}n ≃L.D {Tdn}n

From (8.87) and (8.92), one deduces that Pdn is a good preconditioner for Adn .

2.2. Study of the spectral radius of Adn

Throughout this section we suppose that c ≥
√

1+
√
5

2
in Multiquadric case, c ≥ 1 in the In-

verse Multiquadric case and c ≥
√
2 in the Gaussian case. These requirements impose to the

Toeplitz matrix Tdn to be nonpositive and to the matrix ∆dn to be nonnegative. According
to (8.88), Adn = Tdn +∆dn then

(8.93) (Adn)
2 = (Tdn)

2 + Tdn∆dn +∆dnTdn + (∆dn)
2

or
Tdn = [T

(n+2)
j−l ]n+1

j,l=0 and ∆dn = [∆
(n+2)
j−l ]n+1

j,l=0

then

(Tdn)
2 =

[
n+1∑
s=0

T
(n+2)
j−s T

(n+2)
s−l

]n+1

j,l=0

; (∆dn)
2 =

[
n+1∑
s=0

∆
(n+2)
j−s ∆

(n+2)
s−l

]n+1

j,l=0

Tdn∆dn =

[
n+1∑
s=0

T
(n+2)
j−s ∆

(n+2)
s−l

]n+1

j,l=0

; ∆dnTdn =

[
n+1∑
s=0

∆
(n+2)
j−s T

(n+2)
s−l

]n+1

j,l=0

then

(8.94) (Adn)
2 =

[
n+1∑
s=0

{
T

(n+2)
j−s T

(n+2)
s−l + T

(n+2)
j−s ∆

(n+2)
s−l +∆

(n+2)
j−s T

(n+2)
s−l +∆

(n+2)
j−s ∆

(n+2)
s−l

}]n+1

j,l=0

For k, p = 0, 1, ..., n+ 1

(8.95) (T
(n+2)
j−s T

(n+2)
s−l )k,p =

n+1∑
q=0

(T
(n+2)
j−s )kq(T

(n+2)
s−l )qp =

n+1∑
q=0

Cj−s
k−qC

s−l
q−p,
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(8.96) (T
(n+2)
j−s ∆

(n+2)
s−l )k,p =

n+1∑
q=0

(T
(n+2)
j−s )kq(∆

(n+2)
s−l )qp =

n+1∑
q=0

Cj−s
k−q(ϕ

s−l
q−p − Cs−l

q−p),

(8.97) (∆
(n+2)
j−s T

(n+2)
s−l )k,p =

n+1∑
q=0

(∆
(n+2)
j−s )kq(T

(n+2)
s−l )qp =

n+1∑
q=0

(ϕj−s
k−q − C

j−s
k−q)C

s−l
q−p,

(8.98) (∆
(n+2)
j−s ∆

(n+2)
s−l )k,p =

n+1∑
q=0

(∆
(n+2)
j−s )kq(∆

(n+2)
s−l )qp =

n+1∑
q=0

(ϕj−s
k−q − C

j−s
k−q)(ϕ

s−l
q−p − Cs−l

q−p).

From (8.94) − (8.95) − (8.96) − (8.97) − (8.98), one deduces that (Adn)
2 =

[
[aj,lk,p]

n+1
k,p=0

]n+1

j,l=0

where for j, l = 0, 1, ..., n+ 1 and k, p = 0, 1, ..., n+ 1

aj,lk,p =
n+1∑
s=0

n+1∑
q=0

{Cj−s
k−qC

s−l
q−p + Cj−s

k−q(ϕ
s−l
q−p − Cs−l

q−p) + (ϕj−s
k−q − C

j−s
k−q)C

s−l
q−p

+ (ϕj−s
k−q − C

j−s
k−q)(ϕ

s−l
q−p − Cs−l

q−p)}

=
n+1∑
s=0

n+1∑
q=0

ϕj−s
k−qϕ

s−l
q−p > 0

since ϕi,r
n,m > 0 ∀i, n,m, r = 0, 1, ..., n+ 1. Then

(8.99) (Adn)
2 > 0.

On the other side, −Tdn =
[
[−Cj−l

k−p]
n+1
k,p=0

]n+1

j,l=0
≥ 0 since −Cj−l

k−p ≥ 0 (for Inverse Multiquadric

and Gaussian cases) ∀i, j, k, p = 0, 1, ..., n+ 1. Then (Tdn)
2 = (−Tdn)2 ≥ 0.

All the coe�cients of the matrices (Adn)
2 and (Tdn)

2 are nonnegative, then both (Adn)
2

and (Tdn)
2 are nonnegative matrices, so Adn and Tdn are eventually nonnegative matrices.

According to Theorem 8.1.9, the matrices Adn , A
T
dn
, Tdn and T

T
dn
possess the Perron-Frobenius

property. Since Adn − Tdn = ∆dn ≥ 0, it follows from Theorems 8.1.6− 8.1.11 that

(8.100) ρ(−Tdn) = ρ(Tdn) ≤ ρ(Adn)

and according to Theorem 8.1.10, one has

(8.101) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) ≤ ρ(−Tdn) ≤ max

0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p)

Case 4: Multiquadric

(
c ≥

√
1+

√
5

2

)
For j, l, p, k = 0, 1, ..., n + 1 : Cj−l

k−p = 1
h

1√
(j−l)2+(k−p)2+g2

+ 1
h

g2

[(j−l)2+(k−p)2+g2]
3
2
. Both Tdn and

Adn are eventually positive matrices. according to Theorem 8.1.8, the matrices Adn , A
T
dn
, Tdn
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and T T
dn

possess the strong Perron-Frobenius property. Since Adn − Tdn = ∆dn ≥ 0 (since

c ≥
√

1+
√
5

2
), it follows from Theorem 8.1.11 that

(8.102) ρ(Tdn) ≤ ρ(Adn)

and according to Theorem 8.1.10, one has

(8.103) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

Cj−l
k−p < ρ(Tdn) < max

0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

Cj−l
k−p

For j, k = 0, 1, ..., n+ 1,

(8.104)
n+1∑
l=0

n+1∑
p=0

Cj−l
k−p =

1

h

n+1∑
l=0

n+1∑
p=0

(
1√

(j − l)2 + (k − p)2 + g2
+

g2

[(j − l)2 + (k − p)2 + g2]
3
2

)

First of all, let us study the functions: fn(x) =
1

(g2+x2+(j−l)2)
1
2
and gn(x) =

g2

(g2+x2+(j−l)2)
3
2

over the domain [−n − 1, n + 1]. Since fn and gn are even functions, the study of these
functions reduces over the interval [0, n + 1]. Since f

′
n(x) =

−x

(g2+x2+(j−l)2)
3
2
< 0 and g

′
n(x) =

−3g2x

(g2+x2+(j−l)2)
5
2
< 0 for x > 0, then fn and gn are decreasing functions on [0,n+1]. One deduces

that,

(8.105) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

Cj−l
k−p =

1

h

n+1∑
l=0

n+1∑
p=0

(
1√

l2 + p2 + g2
+

g2

[l2 + p2 + g2]
3
2

)

since for l, p = 0, 1, ..., n+ 1,

1

n+ 1

1√
2 + c2

≤ 1√
l2 + p2 + g2

and
1

n+ 1

c2

(2 + c2)
3
2

≤ g2

(l2 + p2 + g2)
3
2

then

(8.106)

(
1√

2 + c2
+

c2

(2 + c2)
3
2

)
(n+ 2)2 ≤ 1

h

n+1∑
l=0

n+1∑
p=0

(
1√

l2 + p2 + g2
+

g2

[l2 + p2 + g2]
3
2

)

It follows from (8.102) − (8.103) − (8.105) − (8.106) that the spectral radius of the matrix
Adn grows as (n+ 2)2. Then the matrix Adn is ill-conditioned.

Case 5: Inverse Multiquadric (c ≥ 1)
For j, l, p, k = 0, 1, ..., n+ 1 :

(8.107) Cj−l
k−p =

1

h3
(j − l)2 + (k − p)2 − 2g2

[(j − l)2 + (k − p)2 + g2]
5
2

≤ 0 since c ≥ 1,

it follows from (8.99) and (8.107) that, both Tdn and Adn are eventually nonnegative matrices.
according to Theorem 8.1.8, the matrices Adn , A

T
dn
, Tdn and T

T
dn

possess the Perron-Frobenius

property. For j, l = 0, 1, ..., n + 1 �xed, and for k = 0, 1, ...n + 1, ϕj−l
k − Cj−l

k ≥ 0; Then

∆
(n+2)
j−l ≥ 0, so, Adn − Tdn = ∆dn ≥ 0, it follows from Theorem 8.1.11 that
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(8.108) ρ(Tdn) ≤ ρ(Adn)

Furthermore, (−Tdn)T possesses the Perron-Frobenius property. According to Theorem 8.1.10,
one has

(8.109) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) ≤ ρ(−Tdn) ≤ max

0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p)

For j, k = 0, 1, ..., n+ 1,

(8.110)
n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) =

1

h3

n+1∑
l=0

n+1∑
p=0

(
2g2 − (j − l)2 − (k − p)2

[(j − l)2 + (k − p)2 + g2]
5
2

)

Case: c > 1. Let us study the function: fn,j−l(x) = −x2−(j−l)2+2g2

[x2+(j−l)2+g2]
5
2
over the domain [−n −

1, n+1]. Since fn,j−l is an even function, the study of fn,j−l reduces on the interval [0, n+1].

Because f
′

n,j−l(x) =
−x(g2+x2+(j−l)2)

3
2 (12g2−3x2−3(j−l)2)

(g2+x2+(j−l)2)5
< 0 for x ̸= 0 (since c ≥ 1), then fn,j−l

is a decreasing function over [0,n+1]. So,

(8.111) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) = min

0≤j≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
p )

Also, the function gn,p(x) = −x2−p2+2g2

[x2+p2+g2]
5
2
is a decreasing function over the interval [0,n+1].

One deduces that

(8.112) min
0≤j≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
p ) =

n+1∑
l=0

n+1∑
p=0

(−C l
p)

According to (8.111)− 8.112), it follows that

(8.113) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) =

n+1∑
l=0

n+1∑
p=0

(−C l
p)

Since, min
l
{min

p
(−C l

p)} = 1
h3

2g2−2(n+1)2

(g2+2(n+1)2)
5
2
= 1

h3
2

(n+1)3
c2−1

(c2+2)
5
2
, then for l, p = 0, 1, ..., n+ 1,

1

h3
2

(n+ 1)3
c2 − 1

(c2 + 2)
5
2

≤ 1

h3
2g2 − l2 − p2

(g2 + l2 + p2)
5
2

= −C l
p

so,

(8.114) 2

(
c2 − 1

(c2 + 2)
5
2

)
(n+ 2)2 ≤ 1

h3

n+1∑
l=0

n+1∑
p=0

2g2 − l2 − p2

(g2 + l2 + p2)
5
2

=
n+1∑
l=0

n+1∑
p=0

(−C l
p)

It follows from (8.100) − (8.101) − (8.113) − (8.114) that the spectral radius of the matrix
Adn grows as (n+ 2)2 (if c > 1).
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Case: c = 1. One has:

(8.115)
n+1∑
l=0

n+1∑
p=0

(
2(n+ 1)2 − (j − l)2 − (k − p)2

[(n+ 1)2 + (j − l)2 + (k − p)2] 52

)
=

n+1∑
p=0

2(n+ 1)2 − (j − n− 1)2 − (k − p)2

[(n+ 1)2 + (j − n− 1)2 + (k − p)2] 52
+

n∑
l=0

n+1∑
p=0

2(n+ 1)2 − (j − l)2 − (k − p)2

[(n+ 1)2 + (j − l)2 + (k − p)2] 52

One shows as in the case c > 1 that

(8.116) min
0≤j,k≤n+1

n+1∑
p=0

(
2(n+ 1)2 − (j − n− 1)2 − (k − p)2

[(n+ 1)2 + (j − n− 1)2 + (k − p)2] 52

)
=

n+1∑
p=0

(n+ 1)2 − p2

[2(n+ 1)2 + p2]
5
2

and

(8.117) min
0≤j,k≤n+1

n∑
l=0

n+1∑
p=0

(
2(n+ 1)2 − (j − l)2 − (k − p)2

[(n+ 1)2 + (j − l)2 + (k − p)2] 52

)
=

n∑
l=0

n+1∑
p=0

(
2(n+ 1)2 − l2 − p2

[(n+ 1)2 + l2 + p2]
5
2

)
Also here, as in the studies done in case c > 1, one has

(8.118)
(n+ 1)2 − n2

[2(n+ 1)2 + n2]
5
2

≤ (n+ 1)2 − p2

[2(n+ 1)2 + p2]
5
2

∀p = 0, 1, ..., n

and

(8.119)
(n+ 1)2 − n2

[2(n+ 1)2 + n2]
5
2

≤ 2(n+ 1)2 − l2 − p2

[(n+ 1)2 + l2 + p2]
5
2

∀p = 0, 1, ..., n+ 1 and ∀l = 0, 1, ..., n

From (8.116)− (8.118),

(8.120)
(2n+ 1)(n+ 1)3

[2(n+ 1)2 + n2]
5
2

(n+ 2) ≤ min
0≤j,k≤n+1

1

h3

n+1∑
p=0

2(n+ 1)2 − (j − n− 1)2 − (k − p)2

[(n+ 1)2 + (j − n− 1)2 + (k − p)2] 52

and from (8.117)− (8.119),

(8.121)
(2n+ 1)(n+ 1)4

[2(n+ 1)2 + n2]
5
2

(n+ 2) ≤ min
0≤j,k≤n+1

1

h3

n∑
l=0

n+1∑
p=0

2(n+ 1)2 − (j − l)2 − (k − p)2

[(n+ 1)2 + (j − l)2 + (k − p)2] 52

since

(8.122)
(2n+ 1)(n+ 1)3

[2(n+ 1)2 + n2]
5
2

(n+2) ∼
n>>1

2

9
√
3
and

(2n+ 1)(n+ 1)4

[2(n+ 1)2 + n2]
5
2

(n+2) ∼
n>>1

2

9
√
3
(n+2)

one deduces from (8.115)− (8.120)− (8.121)− (8.122) that
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(8.123)
2

9
√
3
(n+ 3) . min

j,k

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p).

It follows from (8.100)− (8.101)− (8.123) that the spectral radius of Adn more rapidly grows
that n+ 3.

Conclusion: one deduces from the above studies that the spectral radius of Adn grows
as (n + 2)2 if c > 1 (respectively more rapidly than n + 3 if c = 1). Then, the condition
number of the matrix Adn more rapidly grows than (n + 2)2 if c > 1 (respectively n + 3 if
c = 1). So, the matrix Adn is ill-conditioned.

Case 5: Gaussian (c ≥
√
2)

For j, l, p, k = 0, 1, ..., n+ 1 :

(8.124) Cj−l
k−p =

4

h2g4
[(j − l)2 + (k − p)2 − g2]e−

(j−l)2+(k−p)2

g2 ≤ 0 since c ≥
√
2,

hence one shows as in the case of Inverse Multiquadric that

(8.125) ρ(Tdn) = ρ(−Tdn) ≤ ρ(Adn)

and

(8.126) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) ≤ ρ(−Tdn) ≤ max

0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p).

For j, k = 0, 1, ..., n+ 1,

(8.127)
n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) =

4

h2g4

n+1∑
l=0

n+1∑
p=0

(
[g2 − (j − l)2 − (k − p)2]e−

(j−l)2+(k−p)2

g2

)

Case: c >
√
2. Let us study the function: fn,j−l(x) = [g2 − (j − l)2 − x2]e−

(j−l)2+x2

g2 over the
domain [−n− 1, n + 1]. It is obvious that fn,j−l is an even function, whence study of fn,j−l

over [0, n + 1]. Because f
′

n,j−l(x) = −2x[1 + 1
g2
(g2 − (j − l)2 − x2)]e−

(j−l)2+x2

g2 < 0 for x ̸= 0

(since c >
√
2), then fn,j−l is decreasing over [0, n+ 1]. One deduces that,

(8.128) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) = min

0≤j≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
p )

Also here, the function gn,p(x) = [g2 − p2 − x2]e−
p2+x2

g2 is decreasing over [0, n+ 1], then

(8.129) min
0≤j≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
p ) =

n+1∑
l=0

n+1∑
p=0

(−C l
p)

According to (8.128)− (8.129), it follows that
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(8.130) min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p) =

n+1∑
l=0

n+1∑
p=0

(−C l
p)

On the other side, min
l
{min

p
(−C l

p)} = 1
h2g4

[g2− 2(n+1)2]e
− 2(n+1)2

g2 = 1
c4
(c2− 2)e−

2
c2 , then

for l, p = 0, 1, ..., n+ 1,

(c2 − 2)e−
2
c2

c4
≤ 1

h2g4
[g2 − l2 − p2]e−

l2+p2

g2 = −C l
p

so

(8.131)

(
(c2 − 2)e−

2
c2

c4

)
(n+ 2)2 ≤ 1

h2g4

n+1∑
l=0

n+1∑
p=0

[g2 − l2 − p2]e−
l2+p2

g2 =
n+1∑
l=0

n+1∑
p=0

(−C l
p)

It follows from (8.100)− (8.101)− (8.130)− (8.131) that the spectral radius of the matrix
Adn grows as (n+ 2)2 (if c >

√
2).

Case: c =
√
2. First of all, one has

(8.132)
n+1∑
l=0

n+1∑
p=0

(
[g2 − (j − l)2 − (k − p)2]e−

(j−l)2+(k−p)2

g2

)
=

n+1∑
p=0

[g2 − (j − n− 1)2

−(k − p)2]e−
(j−n−1)2+(k−p)2

g2 +
n∑

l=0

n+1∑
p=0

(
[g2 − (j − l)2 − (k − p)2]e−

(j−l)2+(k−p)2

g2

)
Furthermore, one shows as in Inverse Multiquadric case (case c > 1) that

(8.133) min
0≤j,k≤n+1

n+1∑
p=0

(
2(n+ 1)2 − (j − n− 1)2 − (k − p)2]e−

(j−n−1)2+(k−p)2

g2

)
=

n+1∑
p=0

(
[(n+ 1)2 − p2]e−

(n+1)2+p2

g2

)
and

(8.134) min
0≤j,k≤n+1

n∑
l=0

n+1∑
p=0

(
[g2 − (j − l)2 − (k − p)2]e−

(j−l)2+(k−p)2

g2

)
=

n∑
l=0

n+1∑
p=0

(
[g2 − l2 − p2]e−

l2+p2

g2

)
where g =

√
2(n+ 1). Also here, as in the studies done in case c >

√
2, one has

(8.135) [(n+ 1)2 − n2]e
− (n+1)2+n2

g2 ≤ [(n+ 1)2 − p2]e−
(n+1)2+p2

g2 ∀p = 0, 1, ..., n

and
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(8.136) [(n+1)2−n2]e
− (n+1)2+n2

g2 ≤ [g2−l2−p2]e−
l2+p2

g2 ∀p = 0, 1, ..., n+1 and ∀l = 0, 1, ..., n.

From (8.133)− (8.135),

(8.137) [(n+ 1)2 − n2]
n+ 2

4(n+ 1)2
e
− (n+1)2+n2

g2 ≤ min
j,k

1

h2g4

n+1∑
p=0

[g2 − (j − n− 1)2

−(k − p)2]e−
(j−n−1)2+(k−p)2

g2

and from (8.134)− (8.136),

(8.138) [(n+ 1)2 − n2]
n+ 2

4(n+ 1)
e
− (n+1)2+n2

g2 ≤ min
j,k

1

h2g4

n∑
l=0

n+1∑
p=0

[g2 − (j − l)2

−(k − p)2]e−
(j−l)2+(k−p)2

g2

Because

(8.139) [(n+ 1)2 − n2]
n+ 2

4(n+ 1)2
e
− (n+1)2+n2

g2 &
n>>1

1

2e

and

(8.140) [(n+ 1)2 − n2]
n+ 2

4(n+ 1)
e
− (n+1)2+n2

g2 &
n>>1

1

2e
(n+ 2)

One deduces from (8.132)− (8.137)− (8.138)− (8.139)− (8.140) that

(8.141)
1

2e
(n+ 3) . min

j,k

n+1∑
l=0

n+1∑
p=0

(−Cj−l
k−p).

It follows from (8.125)− (8.126)− (8.141) that the spectral radius of Adn more rapidly grows
than n+ 3.

Conclusion: According to the studies done in cases c >
√
2 and c =

√
2, the spectral

radius of Adn grows as (n+2)2 if c >
√
2 (respectively n+3 if c =

√
2). Then, the condition

number of the matrix Adn more rapidly grows than (n+ 2)2 if c >
√
2 (respectively n+ 3 if

c =
√
2). So, the matrix Adn is ill-conditioned.

Remark 8.2.1. It follows from the studies done in this section that the spectral radius of
the collocation matrices grows as the size of the matrices if c >

√
2.

Remark 8.2.2. The following property was fundamental in Inverse Multiquadric and
Gaussian cases: For two real functions f and g de�ned on the same interval I ⊂ R,

inf
x∈I
f(x) + inf

x∈I
g(x) ≤ inf

x∈I
(f(x) + g(x)).
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Conclusion
We have studied in detail the preconditioners and spectral radii of collocation matrices
Adn approximating the Elliptic Boundary Value Problems (8.23)− (8.24) by imposing some
constraints on the shape parameter ”c” �guring in the radial basis functions ϕ(t). Our future
researches will consist to delete these requirements and to look for another theory in order to
study the spectral radii of these collocation matrices. Furthermore, we exploit in chapter 9 the
sequence of symmetric bolck Toeplitz matrices with symmetric Toeplitz blocks (SBTMSTB)
{Tdn}n which is equally distributed and equally localized as the sequence of collocation
matrices {Adn}n in order to present an application (with some numerical results) of the
PCG method for the SBTMSTB with unbounded generating functions.
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Chapter Nine

Application of the PCG Method to
SBTMSTB with Unbounded

Generating Functions

In this chapter, we introduce and discuss the PCG method for the solution of linear systems
associated with ill-conditioned symmetric block Toeplitz matrices with symmetric Toeplitz
blocks (SBTMSTB) generated by unbounded functions. Furthermore, we perform some nu-
merical experiments which con�rm the theoretical results.

9.1 Introduction

The systems of linear equations associated with Toeplitz (block Toeplitz) matrices arise in
many one-dimensional (two-dimensional) digital signal processing applications, such as linear
prediction and estimation [86], [97], and [98], image restoration [46], and the discretization
of constant-coe�cient partial di�erential equations. In order to solve the system of linear
equations Adnx = b, where {Adn}n is the sequence of collocation matrices approximating
elliptic boundary value problems, it useful to �nd a sequence {Tdn(s)}n of dn × dn sym-
metric Toeplitz (block Toeplitz) matrices which is equally distrituted and equally localized
as the sequence {Adn}n. Hence, solve the Toeplitz (block Toeplitz) system Tdnx = b, by
direct methods, such as Levinson-type algorithms, requires O (d3nd

2
n) operations [8], [113],

[169]. The spectral properties of these matrices, which are related to the behavior of the
generating function s, have been well understood and deeply studied in this century (see
for instance [77, 110, 2, 170, 162, 167, 153]). More Recently, there has been active research on
the application of iterative methods such as the preconditioned conjugate gradient (PCG)
method to the solution of Toeplitz systems. The most successful preconditioners for the case
where s is strictly positive have been devised in the algebras of circulant, Hartley, and τ
matrices [37, 12, 11]. For the nonnegative case, under the assumption of zeros of even or-
ders, the only "optimal" preconditioners [7] are those chosen in the τ algebra [52] and in
the band Toeplitz class [31, 56, 42, 120]. In particular, this last preconditioning strategy has
been the most �exible and versatile in allowing one to treat also nonde�nite [118], the block
[120], and the non-Hermitian [35] cases and the case of zeros of any order [140]. This is
the reason for which we focus our attention on the Toeplitz preconditioning: therefore we
consider the positive de�nite matrix Tdn(g) generated by a nonnegative, nonzeros function g,
and then, on following a known strategy [56, 31], the preconditioned matrix takes the form
Tdn(g)

−1Tdn(s). The proposed preconditioning techniques can be easily generalized to block
Toeplitz matrices. Since both Tdn(g)

−1w and Tdn(s)w, where w denotes an arbitrary vector
of length dn, can be performed with O (dn log dn) operations via fast Fourier transform, the
computational complexity per PCG iteration is O (dn log dn) only. The PCG method can be
much more attractive than direct methods for solving Toeplitz systems if it converges fast.
Furthermore, it is important to recall that the PCG method is more appropriated for this
special type of preconditioned matrix (often when the generating function s of the Toeplitz
(block Toeplitz) matrix is unbounded) and it does not contradict the preconditioned ma-
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trix P−1
dn
Tdn(s) de�ned in chapter 8 which can be exploited by the symmetric quasi-minimal

residual (QMR) algorithm (see [26, 65, 107]) or the Bi-conjugate gradient (BCG) algorithm
(a direct generalization of the classical conjugate gradient method of Hestenes and Stiefel).
Indeed, a very simple no-look-ahead version of the coupled two-term QMR algorithm was
derived by Freud and Szeto in [66]. They have shown that the no-look-ahead QMR iterates
can be obtained from the classical biconjugate gradient (BCG) algorithm (see [94]) by per-
forming one additional vector update and a few scalar updates at each BCG iteration. The
resulting algorithm is called "QMR-from-BCG".

The convergence rate of the PCG method depends on the eigenvalue distribution of the
preconditioned matrix Tdn(g)

−1Tdn(s) [6]. Generally speaking, the PCG method converges
faster if Tdn(g)

−1Tdn(s) has eigenvalues clustered to 1 and/or small condition number. Chan
and Strang have proved that, for a Toeplitz matrix with a positive generating function in the
Wiener class, the spectrum of the preconditioned matrix has eigenvalues clustered around
unity except for a �nite number of outliers.

In this chapter, by collecting known results, we show that the function s/g describes
very precisely the spectrum of the family of matrices {Tdn(g)−1Tdn(s)}n and consequently
we introduce the concept of the generating function for such kind of preconditioned Toeplitz
(block Toeplitz) matrices.

Our main results can be summarized as follows. Let {Adn}n be the sequence of dn × dn
collocation matrices, �nd a sequence {Tdn(s)}n of dn×dn symmetric Toeplitz (block Toeplitz)
matrices such that the sequences {Adn}n and {Tdn(s)}n are equally distributed and equally
localized. Furthermore, �nd a preconditioner Tdn(g) generated by a nonnegative, nonzeros
function g of Tdn(s) and study the asymptotic growth of the spectral radius of Tdn(g)

−1Tdn(s)
by PCG method for positive de�nite Toeplitz (block Toeplitz) matrices. Finally, perform
some numerical experiments in order to give numerical evidence for the theoretical results.

9.2 Preliminary

In this section, we consider the Poisson equation (uni-dimension and two-dimensions cases)
de�ned in the chapter 8 by {

u
′′
(x) = f(x), x ∈ Ω = (0, 1)

u(0) = a, u(1) = b
(9.1)

and

(9.2)

{
∂2u(x,y)

∂x2 + ∂2u(x,y)
∂y2

= f(x, y) for (x, y) ∈ Ω = (0, 1)2

u(x, y) = g(x, y) if (x, y) ∈ ∂Ω

As it was shown in chapter 8, the associated linear system obtained by the method of radial
basis functions is de�ned as follows

(9.3) Adnv = f̃

where in uni-dimension case,

An+2 = [aij]
n+1
i,j=0, f̃n+2 = [a, f1, f2, ..., fn, b]

T and v = [v0, v1, ..., vn+1]
T ,

with {
a0,j = ϕ0,j, an+1,j = ϕn+1,j j = 0, 1, ..., n+ 1
ai,j = ϕ

′′
i,j, i = 1, 2, ..., n; j = 0, 1, ..., n+ 1.

Furthermore, setting Tn+2(s) = [cj−k]
n+1
j,k=0 where
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cj−k = ϕ
′′

jk =


1
h

g2

((j−k)2+g2)
3
2

Multiquadric (MQ)

1
h2

(j−k)2−2g2

((j−k)2+g2)
5
2

Inverse Multiquadric (IMQ)

2
h2g2

(
2(j−k)2

g2
− 1
)
e
− (j−k)2

g2 Gaussian

(9.4)

with g = c/h, it follows from (9.4) that the generating function of the symmetric Toeplitz
matrix Tn+2(s) is given by:

s(x) = c0 + 2
∞∑
k=1

ck cos(2kx) x ∈ (0, π).(9.5)

The Fourier coe�cients related to s(x) are given by

ck =
1

π

∫
Q

s(x)e−î(kx)dx, I = [0, π].

Remark 9.2.1. The matrix sequences {An+2}n and {Tn+2}n are equally distributed and
equally localized. (see chapter 8).

In two-dimensions case, dn = (n+ 2)2 and one has

Adn =


A

(n+2)
0−0 A

(n+2)
0−1 . . . A

(n+2)
0−n A

(n+2)
0−(n+1)

A
(n+2)
1−0 A

(n+2)
1−1 . . . . . . A

(n+2)
1−(n+1)

...
...

. . .
...

...
A

(n+2)
n−0 A

(n+2)
n−1 . . . A

(n+2)
n−n A

(n+2)
n−(n+1)

A
(n+2)
(n+1)−0 A

(n+2)
(n+1)−1 . . . A

(n+2)
(n+1)−n A

(n+2)
(n+1)−(n+1)

 ; v =


v(0)

v(1)
...
v(n)

v(n+1)

 ; f̃ =


f (0)

f (1)

...
f (n)

f (n+1)


for j = 0, 1, ..., n+ 1,

(9.6) A
(n+2)
0−j = [ϕ0−j

l−p ]
n+1
l,p=0; A

(n+2)
(n+1)−j = [ϕ

(n+1)−j
l−p ]n+1

l,p=0

for j = 1, 2, ..., n and l = 0, 1, ..., n+ 1,

(9.7) A
(n+2)
j−l =


ϕj−l
0−0 ϕj−l

0−1 . . . ϕj−l
0−n ϕj−l

0−(n+1)

Cj−l
1−0 Cj−l

1−1 . . . Cj−l
1−n Cj−l

1−(n+1)
...

...
. . .

...
...

Cj−l
n−0 Cj−l

n−1 . . . Cj−l
n−n Cj−l

n−(n+1)

ϕj−l
(n+1)−0 ϕj−l

(n+1)−1 . . . ϕj−l
(n+1)−n ϕj−l

(n+1)−(n+1)

 =


ϕj−l
0 ϕj−l

1 . . . ϕj−l
n ϕj−l

(n+1)

Cj−l
1 Cj−l

0 . . . Cj−l
n−1 Cj−l

n
...

...
. . .

...
...

Cj−l
n Cj−l

n−1 . . . Cj−l
0 Cj−l

1

ϕj−l
n+1 ϕj−l

n . . . ϕj−l
1 ϕj−l

0
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with for every k = 0, 1, ..., n+ 1

v(k) = (vk,0, vk,1, ..., vk,n+1)
T ; f (0) = (g0,0, g0,1, ..., g0,n+1)

T ; f (n+1) = (gn+1,0, ..., gn+1,n+1)
T

for p = 1, 2, ..., n,
f (p) = (gp,0, fp,1, ..., fp,n, gp,n+1)

T

for j = 1, 2, ..., n and l = 0, 1, ..., n+ 1,

(9.8) A
(n+2)
j−l = T

(n+2)
j−l +∆

(n+2)
j−l

where

(9.9) ∆
(n+2)
j−l =


ϕj−l
0 − Cj−l

0 ϕj−l
1 − Cj−l

1 . . . ϕj−l
n+1 − C

j−l
n+1

0 . . . 0
...

...
0 . . . 0

ϕj−l
n+1 − C

j−l
n+1 ϕj−l

n − Cj−l
n . . . ϕj−l

0 − Cj−l
0

 , T
(n+2)
j−l = [Cj−l

k−p]
n+1
k,p=0

On the other side, for j, k, l, p = 0, 1, ..., n + 1, let us de�ne the symmetric Toeplitz

matrices T
(n+2)
j−l and whose Fourier coe�cients are given by

(9.10) Cj−l
k−p =


1
h

1√
(j−l)2+(k−p)2+g2

+ 1
h

g2

[(j−l)2+(k−p)2+g2]
3
2

(MQ)

1
h3

(j−l)2+(k−p)2−2g2

[(j−l)2+(k−p)2+g2]
5
2

(IMQ)

4
h2g4

[(j − l)2 + (k − p)2 − g2]e−
(j−l)2+(k−p)2

g2 (Gaussian)

Setting Tdn = [T
(n+2)
j−l ]n+1

j,l=0, then Tdn is a symmetric block Toeplitz matrix with symmetric
Toeplitz blocks and whose the generating function is de�ned as

(9.11) s(x, y) = c0,0 + 2
∞∑
k=1

c0,k (cos(2kx) + cos(2ky)) + 4
∞∑
k=1

∞∑
j=1

ck,j cos(2kx) cos(2jy)

for all (x, y) ∈ (0, π)× (0, π). The Fourier coe�cients related to s(x, y) are given by

cj,k =
1

π2

∫
Q

s(x, y)e−î(jx+ky)dxdy, Q = [0, π]× [0, π]

and setting g = c/h, it follows from (9.10) that, for j, k = 0, 1, 2, ..., n+ 1,

(9.12) cj,k =


1
h

1√
j2+k2+g2

+ 1
h

g2

[j2+k2+g2]
3
2

(MQ)

1
h3

j2+k2−2g2

[j2+k2+g2]
5
2

(IMQ)

4
h2g4

[j2 + k2 − g2]e−
j2+k2

g2 (Gaussian)

Remark 9.2.2. When choosing the form parameter ”c >
√
2”, it follows from relations

(9.4) − (9.12) that the Fourier coe�cients of the integrable function s are all positive (in
Multiquadric case) and all negative (for Inverse Multiquadric and Gaussian cases). Because
in the literature, most of the globally de�ned RBFs are only conditionally positive de�nite,
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without loss of this generality, we suppose that the matrices Tdn are positive de�nite (in Mul-
tiquadric case) and negative de�nite (in Inverse Multiquadric and Gaussian cases: indeed,
the smallest eigenvalue of these symmetric matrices is negative) since the matrix sequences
{Adn}n and {Tdn}n are equally distributed and equally localized. Otherwise, consider a pos-
itive number α (respectively a negative number β) such that s + α is essentially positive in
Multiquadric case (respectively s+β is essentially negative in Inverse Multiquadric and Gaus-
sian cases). Therefore the Toeplitz matrices Tdn(s+α) are positive de�nite (in Multiquadric
case) and Tdn(s + β) are negative de�nite (in Inverse Multiquadric and Gaussian cases).
Furthermore, the eigenvalues of Tdn(s + α) (respectively Tdn(s + β)) are the eigenvalues of
Tdn(s) shifted according to the constant α (respectively β).

In the following we suppose that the shape parameter ”c” appearing in the radial basis
function ϕ(t) is strictly greater than

√
2.

Before starting the study of the asymptotical behavior of generating functions s(x) and
s(x, y) �rst, let us recall the following results due to Riemann (or Riemann-Lebesgue) for
the integrable functions.

Theorem 9.2.1. (Riemann or Riemann-Lebesgue). Let [a, b] be a bounded closed interval of
R. Then, any continuous function f : [a, b]→ R is Riemann-Lebesgue integrable on [a, b].

Theorem 9.2.2. (Riemann or Riemann-Lebesgue). One suppose that the real-valued func-
tion f : [a, b] → R is integrable over [a, b]. Let us consider the regular grid points a = x0 <
x1 < · · · < xn = b (n > 1) of step h = b−a

n
= xi − xi−1 (1 ≤ i ≤ n) and let us set

In =
n∑

i=1

f(a + xi)(xi − xi−1). Then the real sequence of general term In converges in R and

its limit, denoted
∫ b

a
f(x)dx is called de�nite integral of f over [a, b].

9.3 Asymptotical behavior of generating functions s(x)
and s(x, y)

The purpose of this section is to study the behavior of s(x) and s(x, y) over the domains I
and Q respectively.

9.3.1 Toeplitz case

In this subsection, we study the behavior of s(x) over the interval I = [−π, π].

Multiquadric and Gaussian

Lemma 9.3.1. The real-valued integrable function s(x) is even and unbounded over the
compact domain [−π, π].
Proof. First of all, for k = 0, 1, ..., n+ 1, let us recall that: xk =

k
n+1

, h = 1
n+1

and g = c/h.

• Case 1: Multiquadric (MQ).

ck =
1

h

g2

(k2 + g2)
3
2

=
g3

c(n+ 1)3
1((

k
n+1

)2
+ c2

) 3
2

=
c2

(c2 + x2k)
3
2

.

Since the function x 7→ c2

(c2+x2)
3
2
is positive and continuous over the domain [0, 1], it follows

from Theorem 9.2.1 that it is Riemann-Lebesgue integrable, so

0 <

∫ 1

0

c2

(c2 + x2)
3
2

dx = α0 <∞,
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and according to Theorem 9.2.2, one has

lim
n→∞

1

n+ 1

n+1∑
k=1

c2

(c2 + x2k)
3
2

=

∫ 1

0

c2

(c2 + x2)
3
2

dx = α0.

Then, for ϵ = α0/2, ∃Nϵ ∈ N such that

n > Nϵ ⇒

∣∣∣∣∣ 1

n+ 1

n+1∑
k=1

c2

(c2 + x2k)
3
2

− α0

∣∣∣∣∣ < α0

2

⇒ α0

2
(n+ 1) <

n+1∑
k=1

c2

(c2 + x2k)
3
2

<
3α0

2
(n+ 1)

⇒ α0

2
(n+ 1) <

n+1∑
k=1

ck <
3α0

2
(n+ 1).

Then,

(9.13)
n+1∑
k=1

ck ∼ (n+ 1).

From (9.13) and (9.5), one obtains

lim
x→±π,0

s(x) =∞.

Hence, s(x) is unbounded over I. Since the Toeplitz matrix Tdn(s) is symmetric, one
deduces from Lemma 1.3.2 that the function s(x) is even.
• Case 2: Gaussian.

ck =
2

h2g2

(
2k2

g2
− 1

)
e
− k2

g2 =
−4
c4

(
c2

2
−
(

k

n+ 1

)2
)
e−

1
c2
( k
n+1)

2

=
−4
c4

(
c2

2
− x2k

)
e−

1
c2

x2
k .

Since the function x 7→ −4
c4

(
c2

2
− x2

)
e−

1
c2

x2

is negative and continuous on the compact subset

[0, 1], according to Theorem 9.2.1 it is Riemann integrable so,∫ 1

0

−4
c4

(
c2

2
− x2

)
e−

1
c2

x2

dx = α1 < 0,

with |α1| <∞. Furthermore, it follows from Theorem 9.2.2 that

lim
n→∞

1

n+ 1

n+1∑
k=1

{
−4
c4

(
c2

2
− x2k

)
e−

1
c2

x2
k

}
=

∫ 1

0

−4
c4

(
c2

2
− x2

)
e−

1
c2

x2

dx = α1.

Then, for ϵ = |α1|/2, ∃Nϵ ∈ N such that

n > Nϵ ⇒

∣∣∣∣∣ 1

n+ 1

n+1∑
k=1

ck − α1

∣∣∣∣∣ < |α1|
2

⇒ 3α1

2
(n+ 1) <

n+1∑
k=1

ck <
α1

2︸︷︷︸
<0

(n+ 1)
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then

(9.14)
n+1∑
k=1

ck ∼ −(n+ 1).

From (9.14) and (9.5), one obtains

lim
x→±π,0

s(x) = −∞.

Hence, s(x) is even and unbounded over I.

Case 3: Inverse Multiquadric

Lemma 9.3.2. The real-valued integrable function s(x) is even and bounded over the compact
domain [−π, π].
Proof.

ck =
1

h2
k2 − 2g2

(k2 + g2)
5
2

=
−(n+ 1)4

(n+ 1)5
2c2 −

(
k

n+1

)2(
c2 +

(
k

n+1

)2) 5
2

=
1

(n+ 1)

−2c2 + x2k

(c2 + x2k)
5
2

.

Then, the function x 7→ −2c2+x2

(c2+x2)
5
2
is negative and continuous on the compact subset [0, 1],

according to Theorem 9.2.1 it is Riemann-Lebesgue integrable then,∫ 1

0

−2c2 + x2

(c2 + x2)
5
2

dx = α2 < 0,

with |α2| <∞. Furthermore, one deduces from Theorem 9.2.2 that

lim
n→∞

1

n+ 1

n+1∑
k=1

−2c2 + x2k

(c2 + x2k)
5
2

=

∫ 1

0

−2c2 + x2

(c2 + x2)
5
2

dx = α2.

that is

lim
n→∞

n+1∑
k=1

ck = α2.

Because the Fourier coe�cients ck of s(x) are all negative, one deduces that

∞∑
k=0

|ck| =

∣∣∣∣∣
∞∑
k=0

ck

∣∣∣∣∣ = |c0 + α2|.

So, s(x) belongs to the Wiener class of functions hence, s(x) ∈ L∞[0, π]. Since the Toeplitz
matrix Tdn(s) is symmetric, according to Lemma 1.3.2, it follows that s(x) is even over I

9.3.2 Block Toeplitz case

Throughout this subsection, we study the behavior of the function s(x, y) over the domain
Q = [−π, π]× [−π, π].
Lemma 9.3.3. The real-valued integrable function s(x, y) is even and unbounded over the
domain Q.

Proof. In this proof, we treat separately the cases: Multiquadric, Inverse Multiquadric and
Gaussian.
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Case 4: Multiquadric

cj,k =
1

h

1√
j2 + k2 + g2

+
1

h

g2

(j2 + k2 + g2)
3
2

= c
(1)
j,k + c

(2)
j,k .

Here, one deduces from case 1 above that

n+1∑
k=1

c
(2)
0,k ∼ n+ 1,

then

(9.15) lim
n→∞

n+1∑
k=1

c
(2)
0,k =∞.

Because the Fourier coe�cients cj,k of s(x, y) are all positive, then

(9.16)
n+1∑
k=1

c
(2)
0,k ≤ c0,0 + 4

(
n+1∑
k=1

c
(2)
0,k +

n+1∑
k=1

n+1∑
j=1

cj,k

)
.

From (9.11)− (9.15)− (9.16), it follows that
lim

(x,y)→(±π,±π)
s(x, y) =∞, lim

(x,y)→(0,±π)
s(x, y) =∞

and
lim

(x,y)→(±π,0)
s(x, y) =∞, lim

(x,y)→(0,0)
s(x, y) =∞.

Hence, s(x, y) is unbounded on the domain Q. On the other hand, because Tdn(s) is sym-
metric, it follows from Lemma 1.3.2 (a generalization) that s(x, y) when de�ned over the
domain Q is even, in the sense that for every (x, y) ∈ Q such that s is de�ned in (x, y),

s(−x,−y) = s(−x, y) = s(x,−y) = s(x, y).

Case 5: Inverse Multiquadric

cj,k =
1

h3
j2 + k2 − 2g2

(j2 + k2 + g2)
5
2

,

then

c0,k =
1

h3
k2 − 2g2

(k2 + g2)
5
2

=
(n+ 1)5

(n+ 1)5
−2c2 +

(
k

n+1

)2
(c2 +

(
k

n+1

)2
)
5
2

=
−2c2 + x2k

(c2 + x2k)
5
2

.

One shows as in case 2 that
n+1∑
k=1

c0,k ∼ −(n+ 1),

then

(9.17) lim
n→∞

n+1∑
k=1

c0,k = −∞.
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Since the Fourier coe�cients cj,k of s(x, y) are all negative, one has

(9.18) c0,0 + 4

(
n+1∑
k=1

c0,k +
n+1∑
k=1

n+1∑
j=1

cj,k

)
≤

n+1∑
k=1

c0,k.

From (9.11)− (9.17)− (9.18), it follows that
lim

(x,y)→(±π,±π)
s(x, y) = −∞, lim

(x,y)→(0,±π)
s(x, y) = −∞

and
lim

(x,y)→(±π,0)
s(x, y) = −∞, lim

(x,y)→(0,0)
s(x, y) = −∞

whence, s(x, y) is unbounded over the domain Q, and because Tdn(s) is symmetric, it follows
from Lemma 1.3.2 (a generalization) that s(x, y) when de�ned over the domain Q is even.

Case 6: Gaussian

cj,k =
4

h2g4
(j2 + k2 − g2)e−

j2+k2

g2 .

Whence,

c0,k =
4

h2g4
(k2−g2)e−

k2

g2 =
4(n+ 1)4

c4(n+ 1)4

(
−c2 +

(
k

n+ 1

)2
)
e−

1
c2
( k
n+1)

2

=
4

c4
(−c2+x2k)e

− 1
c2

x2
k .

The expression of c0,k is similar to that of ck obtained in case 2 so, one deduces from case
2 that

(9.19) lim
n→∞

n+1∑
k=1

c0,k = −∞.

Since the Fourier coe�cients cj,k of s(x, y) are all negative, it follows that

(9.20) c0,0 + 4

(
n+1∑
k=1

c0,k +
n+1∑
k=1

n+1∑
j=1

cj,k

)
≤

n+1∑
k=1

c0,k.

According to (9.11)− (9.19)− (9.20), we deduce that
lim

(x,y)→(±π,±π)
s(x, y) = −∞, lim

(x,y)→(0,±π)
s(x, y) = −∞

and
lim

(x,y)→(±π,0)
s(x, y) = −∞, lim

(x,y)→(0,0)
s(x, y) = −∞.

Therefore, s(x, y) is unbounded over the domain Q, and since Tdn(s) is symmetric, it follows
from Lemma 1.3.2 (a generalization) that s(x, y) is even.

Remark 9.3.1. The matrix sequences {Adn}n and {Tdn(s)}n are equally distributed and
equally localized (see chapter 8). The generating function s of the Toeplitz (respectively block
Toeplitz) matrix Tdn(s) extended over the domain [−π, π] (respectively [−π, π] × [−π, π]) is
real-valued and even.
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Remark 9.3.2. The solution of the system of linear equations T
dn
(s)v = f̃ provides an

approximate solution of the initial system Adnv = f̃ . This solution is also an approximate
solution of the Poisson problems (9.1)− (9.2).

As it was shown in chapter 8, the spectral radius of the matrices Tdn(s) is bounded in-
dependently of n in the Inverse Multiquadric case (for the Toeplitz case) and grows than
(n+ 2)2 for Block Toeplitz case) so, the matrices Tdn(s) are ill-conditioned for any value of
n. More precisely, the Euclidean condition number of Tdn(s), as a function of the dimensions,
is unbounded:

(9.21) lim
n→∞

k2(Tdn(s)) =∞.

Hence, unless some preconditioning are used, all classic iterative methods are very slow.

We end this section by recalling the following fundamental result

Proposition 9.3.1. Let f, g ∈ L1(−π, π) be two functions of constant signs such that

sign(f) = sign(g). Let λj (Tn(g)
−1Tn(f)) (1 ≤ j ≤ n) be the eigenvalues of Tn(g)

−1Tn(f).
If

0 < m ≤ f(θ)

g(θ)
≤M ∀θ ∈ [−π, π](9.22)

then for j = 1, 2, ..., n,

(9.23) λj
(
Tn(g)

−1Tn(g)
)
∈ (m,M).

Proof. Because f and g are of constant signs and sign(f) = sign(g) then, the Toeplitz
matrices Tn(g) and Tn(f) are positive (or negative) de�nite. By looking the contradiction,
let us suppose that there exists an eigenvalue λj0 of Tn(g)

−1Tn(f) such that λj0 ≤ m or
λj0 ≥ M. Without loss of generality, one can suppose that λj0 ≤ m. Then the matrix Bn =
Tn(f)−λj0Tn(g) = Tn(f−λj0g) is singular. Indeed: since Tn(g)−1Bn = Tn(g)

−1Tn(f)−λj0In
and λj0 is an eigenvalue of Tn(g)

−1Tn(f) then 0 is an eigenvalue of Tn(g)
−1Bn whence,

Tn(g)
−1Bn is singular. Because Tn(g) is nonsingular (since Tn(g) is positive (or negative)

de�nite) one deduce that Bn is singular.
On the other side, ∀θ ∈ [−π, π],

f(θ)− λj0g(θ) = g(θ)

[
f(θ)

g(θ)
− λj0

]
≥ 0 for g(θ) ≥ 0 ( or ≤ 0 if g(θ) ≤ 0).

Then Bn = Tn(f − λj0g) is positive (or negative) de�nite, contradiction.Therefore relation
(9.23) holds true.

In the following, we restrict our study on the Toeplitz matrices whose the generating
functions f(x) are Riemann-Lebesgue integrable over I = [−π, π] and on the block Toeplitz
matrices whose the generating functions f(x, y) are just integrable over Q = [−π, π]2. Fur-
thermore, we de�ne the numbers dn as the positive integer numbers such that dn < dn+1

∀n ∈ N.
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9.4 The Classical Szegö theory

This section deals with the main results of the Szegö theory on the spectral behavior of
symmetric or Hermitian Toeplitz matrices generated by a Lebesgue integrable function f.
Here and in the following we denote by ess inf f and ess sup f the essential in�mum and the
essential supremum of f [77], that is, inf f and sup f up to zero-measure sets; moreover, the
symbol m{A} denotes the Lebesgue measure of the set A, where A is a subset of NN , N > 0.
We denote I = [−π, π]. Certain of these results were stated in chapters 1 and 2.

Theorem 9.4.1. [77, 167]. Let λ
(dn)
i be the eigenvalues of Tdn(f) (which are real, since f

is (even) real-valued and the matrix Tdn(f) is (symmetric) Hermitian) ordered in a non-
decreasing way then, for any continuous function F ∈ C[mf ,Mf ] with mf = ess inf f,
Mf = ess sup f , the asymptotic formula

(9.24) lim
n→∞

1

dn

dn∑
i=1

F (λ
(dn)
i ) =

1

2π

∫ π

−π

F (f(x))dx

holds true.

As a direct consequence of the de�nition of the Fourier coe�cients ak of the function
f and in the light of the Theorem 9.24, it is possible to prove a localization result on the
spectrum

∑
dn
(f) of the matrices Tdn(f) and a �rst estimate of the asymptotic distribution

of
∑

dn
(f).

De�nition 9.4.1. We de�ne Eℜ(f), the essential range of f , as the closed set of the real
values y such that, ∀ϵ > 0, the Lebesgue measure, m{x ∈ I : f(x) ∈ (y − ϵ, y + ϵ)} is always
positive.

Theorem 9.4.2. [121]. Let f be a Lebesgue integrable (even) real-valued function not essen-
tially zero on I (mf < Mf). Then we have

1. λ
(dn)
i ∈ (mf ,Mf ) for any i ≤ dn and dn ∈ N⋆,

2. The topological closure of
∪

n∈N⋆

{λ(dn)i : i = 1, ..., dn} contains Eℜ(f),

3. If we �x an index i independently of n, then

lim
n→∞

λ
(dn)
i = mf and lim

n→∞
λ
(dn)
dn−i =Mf .

Of course, if mf =Mf then Tdn(f) = mf · I.

More recently, in [170] �ner relationships have been proved.

Theorem 9.4.3. [121]. If m{x ∈ I : f(x) = a} = m{x ∈ I : f(x) = b} = 0, then

lim
n→∞

♯{λ(dn)i ∈ [a, b]}
dn

=
m{x ∈ I : f(x) ∈ [a, b]}

2π
.

Therefore, if we denote by Xϵ the set

[mf ,Mf ]/B(Eℜ(f), ϵ),

where B(A, ϵ) is the union of the open balls centered in a ∈ A with radius equal to ϵ then,
roughly speaking, few eigenvalues of Tdn(f) belongs to Xϵ. More precisely, for any positive ϵ,
♯
{∑

dn
(f) ∩Xϵ

}
= o(dn), so that most of the spectrum of Tdn(f) must be contained in the

essential range of f . However, surprisingly enough, in [170] the following theorem is proved.
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Theorem 9.4.4.
∪

n∈N⋆

{
λ
(dn)
i : i = 1, ..., dn

}
is dense in [mf ,Mf ].

In the case where f is complex-valued, it is evident that the related matrices Tdn(f) are,
in general, not Hermitian. When considering the singular values in place of the eigenvalues,
an elegant version of the Szegö theory results.

Theorem 9.4.5. [121]. Let f be the complex-valued generating function of the matrix Tn(f)
and let F be a continuous function de�ned on the closed set [mf ,Mf ], whereMf = ess sup |f |
and mf is the Euclidean distance of zero from the convex hull of the essential range of f .
Then the relation

(9.25) lim
n→∞

1

dn

dn∑
i=1

F (σ
(dn)
i ) =

1

2π

∫ π

−π

F (|f(x)|)dx

is veri�ed, where the quantities σ
(dn)
i denote the singular values of the matrix Tdn(f).

This result, under some restriction assumptions, has been proved by Parter [110] by
exploiting linear-algebra tools, more general statements can be found in [2, 167]: there the
argument is mainly based on functional analysis and operator theory.

In addition, in [172], under some hypotheses about f , the author proves a second-order
result which can be used in order to give an asymptotic estimate about the number of the
few eigenvalues not belonging to Eℜ(f). This re�nement is a little simpler to state in terms

of the squares of σ
(dn)
i than in terms of the singular values themselves. The restriction about

f is due to the assumption that it belongs to the Krein algebra K [91] of all the functions f
such that f is essentially bounded and

∥f∥2K =
∞∑

k=−∞

|k||ak|2 <∞.

We remark that the Krein algebra contains the linear subspace of the C2 periodic functions.
More precisely, by means of classical estimates on the Fourier coe�cients of continuous
functions (see the chapter on the trigonometric interpolation in [149] and the Bible [176] on
trigonometric series), we can say that

1. K contains C1
⋆ = {f ∈ C1 : f

′
is absolutely continuous},

2. K contains Tα = {f ∈ C1 : f
′ ∈ Lipα}, α ∈ (0, 1],

3. K contains T⋆ = {f ∈ C1 : f
′
is in the Dini-Lipchitz class}.

More precisely, for the class C1
⋆ , we can conclude that the Fourier coe�cients ak are O(k

−2)
[149], while for the classes Tα and T⋆ we have ak = O(k−(1+α)) and ak = o ((k log k)−1)
respectively. Notice that all these spaces are subspaces of the C1 and, with the exception of
T⋆, are also subspaces of the well-known Wiener class [37, 48]. Concerning the functions in
the Krein algebra the second-order result of Widom is stated in the following theorem [172].

Theorem 9.4.6. Let t
(dn)
i =

(
σ
(dn)
i

)2
, let f ∈ K, and let G be a function belonging to

C3[m2
f ,M

2
f ]. Then

(9.26) lim
n→∞

(
dn∑
i=1

G(t
(dn)
i )− dn

2π

∫ π

−π

G(|f(x)|2)dx

)
= c,

where c is known constant characterized in [172].
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9.5 Fundamental results on the distribution of Toeplitz
spectra

In this section, by using the preceding limit relations (9.24)−(9.25)−(9.26), we want to ana-
lyze the asymptotic distribution of the eigenvalues and/or the singular values of the Toeplitz
matrix Tdn(f). We will show that the essential range of f or |f | plays a fundamental role in
understanding where "most" of the eigenvalues and/or the singular values of Tdn(f) tend to
concentrate.

In order to explain the technique used in the following, we start by proving in the following
proposition, a relation which is also a consequence of Theorem 9.4.3.

Proposition 9.5.1. For any positive number ϵ, let Xϵ be the set

[mf ,Mf ]/B(Eℜ(f), ϵ),

with f an (even) real-valued integrable function, mf = ess inf f, Mf = ess sup f. Then o(dn)
eigenvalues of Tdn(f) belong to Xϵ.

Proof. For any ϵ > 0, let us consider a continuous function Fϵ constructed in the following
way:

1. Fϵ is de�ned over the domain [mf ,Mf ], and 0 ≤ Fϵ ≤ 1,

2. Supp(Fϵ) ∩ Eℜ(f) is empty, and Fϵ ≡ 1 on Xϵ.

Since Fϵ is chosen continuous, we can apply Equation (9.24), obtaining

(9.27) lim
n→∞

1

dn

dn∑
i=1

Fϵ(λ
(dn)
i ) = 0

since Fϵ is nonzero only where f(x) does not belong to Eℜ(f). Therefore, as
∑dn

i=1Fϵ(λ
(dn)
i ) ≥

♯{λ(dn)i ∈ Xϵ} we have proved ♯{λ(dn)i ∈ Xϵ} = o(dn).

Analogously it is possible to prove a similar result for the singular values.

Proposition 9.5.2. For any positive number ϵ, let Xϵ be the set

[mf ,Mf ]/B(Eℜ(f), ϵ),

with f a complex-valued integrable function, Mf = ess sup f , and mf the distance of 0 from
the convex hull of the essential range of f (which is clearly less or equal to ess inf |f |). Then
o(dn) singular values of Tdn(f) belong to Xϵ.

Proof. It is enough to follow the same steps as in Proposition 9.5.1.

Now, with the help of the second-order result obtained by Widom (see Theorem 9.4.6), we
can obtain a �ner result about the asymptotic distribution of the singular values of Tdn(f).

Theorem 9.5.1. Let f ∈ K. Then, for any ϵ > 0, only O(1) singular values of Tdn(f) lie
in the set

Xϵ = [mf ,Mf ]/B(Eℜ(|f |), ϵ).
Here mf is the Euclidean distance of the convex hull of the essential range of f from zero,
while Mf is the supremum of |f |.
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Proof. For any ϵ > 0, we de�ne a three times continuously di�erentiable function Gϵ char-
acterized by the following properties:

1. Gϵ is de�ned on [m2
f ,M

2
f ] and 0 ≤ Gϵ ≤ 1,

2. Gϵ ≡ 0 on Eℜ(|f |2) and Gϵ ≡ 1 on

[m2
f ,M

2
f ]/B(Eℜ(|f |2), ϵ),

3. Gϵ ∈ C3[m2
f ,M

2
f ].

From the regularity features of Gϵ we may apply Theorem 9.4.6, obtaining that

(9.28)
1

dn

dn∑
i=1

Gϵ

(
(σ

(dn)
i )2

)
=

1

2π

∫ π

−π

Gϵ(|f(x)|2)dx+
cϵ
dn

+ o

(
1

dn

)
,

where cϵ is the constant c in Theorem 9.4.6. In the light of the de�nition of Gϵ we have

1

dn

dn∑
i=1

Gϵ

(
(σ

(dn)
i )2

)
=

1

dn
♯{σ(dn)

i ∈ Xϵ}+
θϵ
dn

+ o

(
1

dn

)
,

with θϵ > 0 and going to zero when ϵ→ 0. Since Gϵ(|f(x)|2) = 0 almost everywhere (a.e.) by

de�nition, it follows that ♯{σ(dn)
i ∈ Xϵ} is bounded by a constant depending only on ϵ.

Proposition 9.5.3. Let f ∈ K and f be an (even) real-valued function. Then, for any ϵ > 0,
only O(1) eigenvalues of Tdn(f) lie in the set

[mf ,Mf ]/B(Eℜ(f), ϵ).

Proof. It is enough to consider a positive number α such that f + α is essentially positive.
In this case the eigenvalues of Tdn(f + α) coincide with the singular values of Tdn(f + α).
Therefore we apply the former theorem by obtaining that O(1) eigenvalues of Tdn(f +α) lie
in the set

[mf + α,Mf + α]/B(Eℜ(f + α), ϵ).

Since the eigenvalues of Tdn(f + α) are the eigenvalues of Tdn(f) shifted according to the
constant α, the claim holds true.

9.6 Preconditioned Toeplitz matrices Pdn(f ; g)

The aim of this section is a brief exposition of recent results [56, 137, 138, 139, 140, 118, 117]
about the spectra of preconditioned Toeplitz matrices. In particular, we want to point out
the formal connection with the classical spectral theory of symmetric or Hermitian (non-
preconditioned) Toeplitz matrices. Here and in the following, by preconditioned Toeplitz
matrix we mean a matrix of the form Tdn(g)

−1Tdn(f) which is also indicated by the shorter
symbol Pdn(f ; g), where f and g belong to L1(I) are two (even) real-valued functions with g
is essentially nonnegative and nonzero. We observe that, from the assumptions, the matrices
Tdn(f) and Tdn(g) are well de�ned and Tdn(g) is (symmetric) positive de�nite (see the �rst
part of Theorem 9.4.2), therefore the preconditioned matrix Tdn(g)

−1Tdn(f) exists and is well
de�ned.

The �rst localization result is the version for the preconditioned Toeplitz matrices of the
�rst point of the classical Theorem 9.4.2.
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Theorem 9.6.1. Let {Tdn(g)}n and {Tdn(f)}n be two sequences of (symmetric) Hermitian
Toeplitz matrices generated by two (even) real-valued integrable functions g and f respec-
tively, where g is essentially nonnegative and nonzero. Then, for any positive integer n, the
preconditioned matrix Pdn(f ; g) has eigenvalues in the open set (r, R), where r = ess inf(f/g),
R = ess sup(f/g) with r < R. Otherwise, if r = R then the preconditioned matrix has the
form Pdn(f ; g) = r · Idn.

The next theorem gives indications about the asymptotic distribution of the spectrum of
Pdn(f ; g) in the closed set [r, R] that is in the convex hull of the essential range of f/g.

Theorem 9.6.2. [137, 140]. Let λ
(dn)
i be the eigenvalues of Pdn(f ; g) ordered in a nonde-

creasing way. Then the following relations hold true

(a) The topological closure of
∪

n∈N⋆

{λ(dn)i : i = 1, ..., dn} contains Eℜ(f/g),

(b) Pdn(f ; g) has eigenvalues in (r, R), and lim
n→∞

λ
(dn)
1 = r, lim

n→∞
λ
(dn)
dn

= R,

(c) If f/g ∼ |x− x0|ρ for some x0 ∈ I, then λ(dn)1 − r is asymptotic to d−ρ
n .

Now, we consider the PCG method proposed in [118] for the solution of inde�nite sym-
metric or Hermitian Toeplitz systems. By using Proposition 9.5.3, we re�ne the convergence
analysis previously performed [118].

Brief description of the method

In this subsection we give a concise description of the PCG method introduced in [118] in
order to deal with the nonde�nite case.

Let us assume that the entries of the Toeplitz matrix Tdn(f) are given and that the func-
tion (with nonde�nite sign) f(x) is known, say, by means of its formal expression. Here and
in hereafter we assume that f(x) has zeros x1, x2, ..., xm ∈ I.

The method is outlined by the following stages:
• Stage 1. Find g such that g(xi) = 0, g is positive elsewhere, and the closed set Eℜ(f/g)

is contained in [α−, β−]∪ [α+, β+], where α− ≤ β− < 0 < α+ ≤ β+, for instance, set g = |f |.

Remark 9.6.1. The hypotheses made in stage 1 are a generalization of Proposition 9.3.1.

• Stage 2. Compute the symmetric or Hermitian positive de�nite Toeplitz matric Tdn(g)
(see Theorems 1.3.2 and 1.3.3), and consider the equivalent non-Hermitian system

Pdn(f ; g)x = b̂

where b̂ = T−1
dn

(g)b.
• Stage 3. Consider the new equivalent system

[Pdn(f ; g)]
2 x = b̃

where the new coe�cient matrix is associated with a symmetrizable positive de�nite form
and b̃ = Pdn(f ; g)b̂. Solve it by means of the PCG method.

Actually, since [Pdn(f ; g)]
2 = T−1

dn
(g)Tdn(f)T

−1
dn

(g)Tdn(f), we can look at the coe�cient

matrix as the product of T−1
dn

(g), which is a symmetric or Hermitian positive de�nite matrix,

and Tdn = Tdn(f)T
−1
dn

(g)Tdn(f), which is a (symmetric) Hermitian positive de�nite matrix
if Tdn(g) is (symmetric) positive de�nite and Tdn(f) is nonsingular and is nonnegative (or
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nonpositive) de�nite otherwise.
Therefore, in stage 3, we may apply a PCG method in which Tdn is the coe�cients ma-

trix of a new equivalent system and Tdn(g) is a preconditioner. Of course, the convergence
features of the PCG method, that is, the number of iterations needed to reach the solution
within a �xed accuracy, are determined by the spectral properties of the matrix [Pdn(f ; g)]

2,
or equivalently by the spectral behavior of Pdn(f ; g).

Now, the main goal is to analyze the convergence speed of this procedure. Actually, by
applying the result [6] and the following theorems, we expect that the conjugate-gradient

method, applied to the system [Pdn(f ; g)]
2 x = b̃, converges to the solution with a preassigned

accuracy ϵ in at most k + q iterations, where

(9.29) k =

⌈
log(2/ϵ) + q log(c+/λ

(dn)
1 )

log(1/δ)

⌉
, δ =

√
c+ −

√
c−√

c+ +
√
c−
,

c+ = (max{|α−|, |β+|})2, c− = (max{|α+|, |β−|})2,
and q is a constant if f and g belong to the Krein algebra (see Theorem 9.6.4). In addition,

if ϵ is �xed and λ
(dn)
1 ≥ θ > 0 or goes to zero slowly, then the desired precision is practically

reached through a constant number of iterations.
From a practical point of view, in order to perform stage 1, we choose g(x) such that

g(xi) = 0, g is positive elsewhere and

(9.30) 0 < lim inf
x→xi

∣∣∣∣fg
∣∣∣∣ ≤ lim sup

x→xi

∣∣∣∣fg
∣∣∣∣ <∞.

In this case we have

(9.31) Eℜ
(
f

g

)
⊂ [α−, β−] ∪ [α+, β+]

where α− ≤ β− = sup
x∈I

{
f(x)
g(x)

< 0
}
< 0 < α+ = inf

x∈I

{
f(x)
g(x)

> 0
}
≤ β+.

The following result holds true.

Theorem 9.6.3. [118]. Let f and g be two continuous functions satisfying the conditions
(9.30) and (9.31). Then the following statements hold true

(a) For any η > 0, ♯{λ(Pdn(f ; g)) ∩ ([α−, β− + η] ∪ [α+ − η, β+])} = dn − o(dn),

(b) If f and g are even rational functions then, for any η > 0,

♯{λ(Pdn(f ; g)) ∩ ([α−, β− + η] ∪ [α+ − η, β+])} = dn − o(1).

Remark 9.6.2. It is worth noting that in that theorem we have demonstrated that the number
of "outliers" is constant only in the special case of f and g being trigonometric rational
symmetric functions. The next result is a strong generalization of the cited result, because we
extend this property to the whole Krein algebra, which contains all the spaces C1

⋆ [I] functions.

Theorem 9.6.4. Let f and g be two functions belonging to the Krein algebra and satisfying
the conditions (9.30) and (9.31). Then, for any η > 0,

♯{λ(Pdn(f ; g)) ∩ ([α−, β− + η] ∪ [α+ − η, β+])} = dn −O(1).
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Proof. Let us take α = (β++α+)/2, and let us de�ne ft(x) as f(x)− tg(x), it is evident that
the function ft(x) vanishes if and only if x ∈ {x1, x2, ..., xm}, for all t ∈ (β−, α+). Moreover,
when setting ϵ = (α+ − β−)/2 − η, ft(x) keeps the same sign for all t ∈ [α − ϵ, α + ϵ] (see
Lemma 2.1 in [118]), and it follows that

(9.32) m{x ∈ I : fα−ϵ(x) < 0} = m{x ∈ I : fα+ϵ(x) < 0}.

It is worth pointing out that, by the assumptions of Theorem 9.4.3, we can choose η = 0 if
m{x ∈ I : fα−ϵ(x) = 0} = 0 and m{x ∈ I : fα+ϵ(x) = 0} = 0, that is, if the sets Z1 and
Z2 for which f/g coincides with β− and α+ are zero-measure sets, otherwise, η has to be
positive but, it can be chosen as small as we like.

Therefore, by the results of Theorem 9.4.3, we obtain that the inertia of Tdn(f) − (α −
ϵ)Tdn(g) is almost the same as that of Tdn(f)− (α + ϵ)Tdn(g), that is,

(9.33) ♯ {λi (Tdn(f)− (α− ϵ)Tdn(g)) < 0, i = 1, 2, ..., dn}

= ♯ {λi (Tdn(f)− (α + ϵ)Tdn(g)) < 0, i = 1, 2, ..., dn}+ w,

where w = O(1) if f and g are symmetric rational functions (see Theorem 2.4 of [118])

or if f and g are in the Krein algebra (see Proposition 9.5.3). But T
−1/2
dn

(g) is (symmet-
ric) positive de�nite, and therefore the inertia of Tdn(f) − tTdn(g) coincides with that of

T
−1/2
dn

(g)Tdn(f)T
−1/2
dn

(g)−t·I for any t ∈ R, the latter matrix is similar to T−1
dn

(g)Tdn(f)−t·I,
and so, using (9.33), we have

sign {λi (Tdn(f)− (α− ϵ)Tdn(g))} = sign♯ {λi (Tdn(f)− (α + ϵ)Tdn(g))}

for all i ∈ J where ♯J = dn − w. Moreover,

λi
(
(T−1

dn
(g))[Tdn(f)− (α + ϵ)Tdn(g)]

)
= λi

(
(T−1

dn
(g))[Tdn(f)− (α− ϵ)Tdn(g)]

)
− 2ϵ,

and consequently, T−1
dn

(g)Tdn(f)−α·I has at most w eigenvalues in (−ϵ, ϵ), that is, T−1
dn

(g)Tdn(f)
has at most w eigenvalues in (α−ϵ, α+ϵ). Since (α−ϵ, α+ϵ) coincides with (β−+η, α+−η),
the theorem is proved, with η = 0 if Z1 and Z2 are zero-measure sets, and with η > 0 but as
small as we like otherwise.

Therefore, we can conclude that the PCG method devised in [118] has a good convergence
rate. Since the number of outliers is independent of n (under the assumption that f and g
belong to the Krein algebra K), the total number of iterations required to reach the solution
within a preassigned accuracy ϵ can grow, at most, logarithmically with the condition number
of the preconditioned matrix [Pdn(f ; g)]

2. Finally, we recall that, in the light of the numerical
experiments [118], it seems that the decrease to zero of the minimal eigenvalue of [Pdn(f ; g)]

2

is also very slow, and, consequently, the convergence speed of the related PCG method is
substantially constant and independent of the dimension dn of the problem.

In the following we extend our works to the Hermitian block Toelitz matrices with Her-
mitian Toeplitz bloks, Indeed: this generalizes the case of symmetric block Toeplitz matrices
with symmetric Toeplitz blocks.

9.7 Hermitian block Toeplitz matrices with Hermitian
Toeplitz blocks

We start by recalling that if f(x, y) is a Lebesgue integrable function de�ned over the domain
Q = [−π, π]× [−π, π] and extended periodically to R2 then, the Fourier coe�cients of f are
given by
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(9.34) ak,q =
1

4π2

∫
Q

f(x, y)e−î(kx+qy)dxdy, k, q ∈ Z.

By Tdn,dm(f) we denote the dn × dn block Toeplitz matrix with dm × dm Toeplitz blocks
de�ned according to relation (9.34). If the pair (j, k) indicates the position in the matrix
Tdn,dm(f) and the pair (p, q) the position of the entry in the block, then we have

(Tdn,dm(f))(j,k),(p,q) = ak−j,p−q

for j, k = 0, 1, ..., dn − 1 and p, q = 0, 1, ..., dm − 1. Of course, if f is (even) real-valued then
the matrix Tdn,dm(f) is (symmetric) Hermitian so that its spectrum is real. In addition we
have this characterizing result which relates the eigenvalues of Tdn,dm(f) and the analytic
behavior of the function f .

Theorem 9.7.1. [117, 154]. Let f : Q → R be a Lebesgue integrable function. Then all the
eigenvalues of Tdn,dm(f) lie in the open set (mf ,Mf ) in the case where mf = ess inf

(x,y)∈Q
f <

Mf = ess sup
(x,y)∈Q

f . Moreover, if we order the eigenvalues λ
(dn,dm)
j (Tdn,dm(f)) in a nondecreasing

way, then for any �xed k independent of n and m we �nd

lim
n,m→∞

λ
(dn,dm)
k (Tdn,dm(f)) = mf , lim

n→∞
λ
(dn,dm)
dndm−k(Tdn,dm(f)) =Mf .

Finally, if mf =Mf then Tdn,dm(f) = mf · Idn·dm

In addition we have [154] (for the whole ergodic theorem analogous to Theorem 9.4.1
holding in dm > 1 dimensions and for L1 functions see [167]).

Theorem 9.7.2. If m{(x, y) ∈ Q : f(x, y) = a} = m{(x, y) ∈ Q : f(x, y) = b} = 0, then

lim
n,m→∞

♯
{
λ
(dn,dm)
i ∈ [a, b]

}
dn · dm

=
m {(x, y) ∈ Q : f(x, y) ∈ [a, b]}

4π2
.

Now we recall a theorem about the localization of the spectrum of the considered block
Toeplitz matrices which is a direct generalization of the analogous Theorem 9.6.1 in the
scalar case.

Theorem 9.7.3. [137, 117]. Let {Tdn,dm(f)}n,m and {Tdn,dm(g)}n,m be two sequences of (sym-
metric) Hermitian block Toeplitz matrices generated by two (even) real-valued integrable func-
tions f and g respectively, with g essentially nonnegative and nonzero is shown such that f/g
is bounded over Q. Then the preconditioned matrix

Pdn,dm(f ; g) ≡ Tdn,dm(g)
−1Tdn,dm(f)

has eigenvalues in the open set (r,R) with

r = ess inf
(x,y)∈Q

f(x, y)

g(x, y)
< R = ess sup

(x,y)∈Q

f(x, y)

g(x, y)
.

If r = R, then the precoditioned matrix simply coincides with r · Idn
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9.7.1 Some consequences of Tyrtyshnikov and Zamarashkin's result

In this subsection we obtain a result of asymptotical distribution about the spectra of the
preconditioned matrices. As in the scalar case, the main tools are the properties of the
eigenvalues of the nonpreconditioned matrices, more speci�cally, the thesis of Theorem 9.7.2
will play a crucial role in the proof of the next result.

Theorem 9.7.4. Let λ
(dn,dm)
i be the eigenvalues of Pdn,dm(f ; g) ordered in a nondecreasing

way. Then the following relations hold true

(a) The topological closure of
∪

1≤n,m≤∞

{
λ
(dn,dm)
i : i = 1, ..., dn · dm

}
contains the essential

range Eℜ(f/g),

(b) Pdn,dm(f ; g) has eigenvalues in (r, R) and

lim
n,m→∞

λ
(dn,dm)
1 = r, lim

n,m→∞
λ
(dn,dm)
dn·dm = R.

Proof. We prove the general result under the sole hypothesis that g is essentially nonnegative
and m{(x, y) ∈ Q : g(x, y) = 0} = 0. Indeed, the thesis is equivalent to the following
statement

∀α ∈ Eℜ(f/g), ∀ϵ > 0, ∃n,m ∈ N, ∃λ ∈ Σdn,dm such that |λ− α| < ϵ.

Here, Σdn,dm denotes the eigenvalue sets of Pdn,dm(f ; g).
Let Hdn,dm,α = Tdn,dm(f) − αTdn,dm(g). If Hdn,dm,α is singular for some values of dn, dm,

then there exists λ ∈ Σdn,dm such that λ = α. Otherwise Hdn,dm,α is nonsingular for any pair
of positive integers (dn, dm). Moreover, Hdn,dm,α = Tdn,dm (cα(x, y)), where cα(x, y) is de�ned
as f(x, y)− γg(x, y), with γ a real parameter.

Now we consider mα
ϵ = m{(x, y) ∈ Q : f(x, y) − (α + ϵ)g(x, y) < 0} and mα

−ϵ =
m{(x, y) ∈ Q : f(x, y) − (α − ϵ)g(x, y) < 0}. Since g > 0 a.e, we have that ∀(x, y) ∈ Q
f(x, y)− (α+ ϵ)g(x, y) < f(x, y)− (α− ϵ)g(x, y) a.e, that is, f

g
− (α+ ϵ) < f

g
− (α− ϵ) a.e.

But α ∈ Eℜ(f/g) and therefore mα
ϵ > mα

−ϵ.
At this point we recall an asymptotic result about the distribution of the eigenvalues of

Toeplitz matrices due to Tilli [154] (it is also a simple consequence of the powerful result
of Tyrtyshnikov and Zamarashkin [167]): for all [a, b] and for any f ∈ L1(Q) such that
m{(x, y) ∈ Q : f(x, y) = a or f(x, y) = b} = 0, we have

lim
n,m→∞

♯
{
i : λ

(dn,dm)
i (Tdn,dm(f)) ∈ (a, b)

}
dn · dm

=
m {(x, y) ∈ Q : f(x, y) ∈ (a, b)}

4π2
.

Consequently

(9.35) ♯
{
i : λ

(dn,dm)
i (Tdn,dm(cα+ϵ)) < 0

}
= dn · dm

[
mα

ϵ

4π2
+ o(1)

]
,

(9.36) ♯
{
i : λ

(dn,dm)
i (Tdn,dm(cα−ϵ)) < 0

}
= dn · dm

[
mα

−ϵ

4π2
+ o(1)

]
.

When using the relation mα
ϵ > mα

−ϵ, it follows that, for dn, dm large enough, "many" eigen-
values of Tdn,dm(cγ) move from positive values to negative ones when the parameter γ con-
tinuously moves from α− ϵ to α+ ϵ. As a consequence, by using a continuity argument, we
�nd λ(dn, dm) ∈ (α− ϵ, α+ ϵ) such that the matrix Tdn,dm(cλ(dn,dm)(x, y)) is singular, that is,
λ(dn, dm) ∈ Σdn,dm . Therefore the theorem is proved.
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Remark 9.7.1. In the proof of the Theorem 9.7.4, in the equations (9.35), (9.36), we have
supposed that m{(x, y) ∈ Q : f(x, y)− (α + ϵ)g(x, y) = 0} +m{(x, y) ∈ Q : f(x, y)− (α −
ϵ)g(x, y) = 0} = 0. In the case where this assumption is not veri�ed we can obviously choose
ϵ⋆, 0 < ϵ⋆ < ϵ, such that

m{(x, y) ∈ Q : f(x, y)−(α+ϵ⋆)g(x, y) = 0} = m{(x, y) ∈ Q : f(x, y)−(α−ϵ⋆)g(x, y) = 0} = 0.

Moreover, if the thesis of the theorem is proved for ϵ⋆ such that 0 < ϵ⋆ < ϵ, then it holds for
ϵ.

9.7.2 Applications to the solution of block Toeplitz linear systems

In this subsection we want to stress the consequences of the last results on the convergence
analysis of the CG and PCG methods applied to this kind of symmetric block Toeplitz with
symmetric Toeplitz blocks systems. In [117], Serra Capizzano has proved that the minimal
eigenvalue of Tdn,dm(f) tends to mf as n,m tends to ∞, and according to Theorem 9.7.1,
the maximal eigenvalue of Tdn,dm(f) tends to Mf as n,m tends to ∞. This means that, if
mf = 0, or mf = −∞, or Mf = 0 or Mf = ∞, then the associated linear system becomes
ill-conditioned (for estimates on the magnitude of this ill-conditioning see [138]), but we are
not able to give precise results on the convergence rate of the CG method, because we have
no information about the distribution of the rest of the spectrum. On the other hand, by
virtue of Theorems 9.7.1 and 9.7.2, we know very well the asymptotical behavior of the whole
spectrum of Tdn,dm(f) and therefore, we can give a tight result on the convergence speed of
the CG method. More precisely, by means of Theorems 9.7.3 and 9.7.4, we can extend the
same remark to the case of preconditioned matrices. In particular we can conclude that the
asymptotic behavior of the CG and PCG methods is decided by the numbers Mf/mf and
R/r and by the sets Eℜ(f) and Eℜ(f/g).

For instance, let us consider the symmetric block Toeplitz with symmetric Toeplitz blocks

linear system Tdn,dn(s)v = f̃ with s(x, y) = −(x2+y2)
2π2−x2−y2

. s(x, y) is nonpositive, even, unbounded

and Lebesgue integrable over the domain Q. Indeed: it is obvious that s(x, y) is nonpositive
and even over Q. On the other side, lim

(x,y)→(±π,±π)
s(x, y) = −∞, then s(x, y) is unbounded

over Q. Now, let us show that s(x, y) is Lebesgue integrable on Q. First of all, the function
s(x, y) is even, then

∫
Q
s(x, y)dxdy = 2

∫ π

0

∫ π

0
s(x, y)dxdy. Furthermore:∫ π

0

∫ π

0

s(x, y)dxdy =

∫ π

0

∫ π

0

−x2 − y2

2π2 − x2 − y2
dxdy

=

∫ π

0

∫ π

0

(1− 2π2

2π2 − x2 − y2
)dxdy

= π2 − 2π2

∫ π

0

∫ π

0

1

2π2 − x2 − y2
dxdy

= π2 − 2π2

∫ π

0

1√
2π2 − y2

∫ π

0

d( x√
2π2−y2

)

1− ( x√
2π2−y2

)2
dy

= π2 − 2π2

∫ π

0

1√
2π2 − y2

∫ π√
2π2−y2

0

1

1− t2
dtdy

= π2 − 2π

∫ π

0

π√
2π2 − y2

arg th(
π√

2π2 − y2
)dy.

Since the function x 7→ arg th(x) is increasing on [0, 1) and 0 = arg th(0) < arg th( 1√
2
) ≤

arg th

(
π√

2π2−y2

)
∀y ∈ [0, π), then the function y 7→ arg th

(
π√

2π2−y2

)
is positive over [0, π).
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Furthermore the function y 7→ π√
2π2−y2

is continuous on [0, π], then it is bounded on this

subset. Now, let us show that the function y 7→ arg th

(
π√

2π2−y2

)
is Lebesgue integrable on

[0, π]. First of all, for |x| < 1, arg th(x) = 1
2
ln
(
1+x
1−x

)
. Indeed: setting f(x) = arg th(x) and

g(x) = ln
(
1+x
1−x

)
, one has g

′
(x) = 2f

′
(x) = 2

1−x2 , so g(x) = 2f(x) + c where c is a constant
number. Because f(0) = g(0) = 0, it follows that c = 0, hence g(x) = 2f(x). Hence,

arg th

(
π√

2π2−y2

)
= 1

2
ln

(
(π+
√

2π2−y2)2

π2−y2

)
= 1

2
ln

(
(π+
√

2π2−y2)2

π+y

)
− 1

2
ln(π − y). Because the

function y 7→ 1
2
ln

(
(π+
√

2π2−y2)2

π+y

)
is continuous on [0, π], it is Lebesgue integrable. On the

other side,
∫ π

0
ln(π − y)dy =

∫ π

0
ln(t)dt = lim

ϵ→0

∫ π

ϵ
ln(t)dt = lim

ϵ→0
[t ln(t)− t]πϵ = π ln π − π, with

the change of variable t = π − y. So, the function y 7→ ln(π − y) is Lebesgue integrable on

[0, π]. Whence, the function y 7→ arg th

(
π√

2π2−y2

)
is Lebesgue integrable on [0, π]. Therefore

the function y 7→ π√
2π2−y2

arg th

(
π√

2π2−y2

)
is Lebesgue integrable on [0, π], so s(x, y) is

Lebesgue integrable over Q. Considering the function g(x, y) = (|x|+|y|)2
2π2−x2−y2

, then g(x, y) is

real-valued, even, essentially nonnegative and nonzero, and has the same zero which is (0, 0)
of two-order as the function s(x, y) in the domain Q. Also, g(x, y) is Lebesgue integrable

over Q. Indeed: lim
(x,y)→(±π,±π)

s(x,y)
g(x,y)

= −1
2
, then s(x, y) ∼

(±π,±π)

−1
2
g(x, y). Because s(x, y) is

Lebesgue integrable at the neighborhood of (±π,±π), it follows that g(x, y) is also Lebesgue
integrable in this neighborhood. Hence, g(x, y) is Lebesgue integrable over Q. Furthermore,
s(x,y)
g(x,y)

is bounded in Q. In fact,

s(x, y)

g(x, y)
=
−(x2 + y2)

(|x|+ |y|)2
=
−(|x|+ |y|)2 + 2|xy|

(|x|+ |y|)2
= −1 + 2|xy|

(|x|+ |y|)2
.

Since ∀(x, y) ∈ (0, π] × (0, π], 2xy ≤ x2 + y2 then, ∀(x, y) ∈ (0, π] × (0, π], 2xy
(x+y)2

≤ 1/2.

So 0 ≤ lim
(x,y)→(0,0)

2xy
(x+y)2

≤ 1/2. Because lim
(x,y)→(0,0)

2xy
(x+y)2

=

{
1/2 if x = y
α < 1/2 otherwise , then

lim
(x,y)→(0,0)

s(x,y)
g(x,y)

= β ∈ [−1 + α,−1/2]. So s(x,y)
g(x,y)

is bounded on Q. Whence, Tdn,dn(g) is a

good preconditioner of Tdn,dn(s). From Theorems 9.7.3 (see also [117]) we can conclude that
the number of iterations of this PCG method [5], in order to reach the solution within a
�xed accuracy ϵ > 0, is

(9.37) Nϵ <
R

2r
log

(
1

ϵ

)
+ 1,

where R = sup
(x,y)∈Q

(s/g) = −1/2 and r = inf
(x,y)∈Q

(s/g) = −1.

When using the new Theorems 9.7.4, we observe that the eigenvalues of Pdn,dn(s; g) are
quite uniformly distributed on [r, R] = Eℜ(s/g). This implies that the estimate of (9.37)
is tight in the sense that we cannot expect a number Nϵ of PCG iterations much less that
(R/2r)log(1/ϵ) + 1. More precisely, see Figure 9.3 in section 9.8 for a graphic illustration.

In sections 9.8 and 9.9 we present some numerical results for preconditioning of ill-
conditioned block Toeplitz matrices and we give some numerical evidences of ill-conditioned
g-Toeplitz matrices and related g-circulant preconditioning.
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NB: The references are ordered as follows: [n], [n(1)], [n(2)], [n(3)], [n(4)], [n(5)], [n + 1],
and so on, for n ∈ N⋆.

9.8 Numerical results for ill-conditioned block Toeplitz
matrices

In this chapter we have proved some properties about the generating functions s(x) (re-
spectively s(x, y)) of the symmetric Toplitz matrices Tdn(s) (respectively symmetric block
Toeplitz matrices with symmetric Toeplitz blocks Tdn,dn(s)) which are equally distributed
and equally localized as the collocation matrices Adn (respectively Adn,dn) approximating
elliptic boundary value problems and we have recalled many fundamental results (due to
Serra Capizzano [121]) on the asymptotic distribution of the eigenvalues of preconditioned
matrices of the form Pdn(f ; g). These results allow one to improve the convergence analy-
sis of the PCG method de�ned in [118] for the iterative solution of symmetric nonde�nite
Toeplitz (respectively block Toeplitz with symmetric Toeplitz blocks) linear systems. More-
over, we have given a more precise description of the behavior of the PCG method devised
in [117] for the solution of positive (negative) de�nite block Toeplitz linear systems. Finally,
by combining this new spectral analysis with known properties [56, 137, 140] of the localiza-
tion and the extremes of the spectrum of Pdn(f ; g), we can conclude that the function f/g
describes the eigenvalues of Pdn(f ; g) as well as the the function f describes the eigenval-
ues of Tdn(f) [77]. In this way a concept of generating function is introduced even for this
class of preconditioned matrices. The reason is to avoid the zeros and/or the unboundedness.

In order to illustrate, we consider in the symmetric Toeplitz case, the generating function
having the same properties as the generating functions of Toeplitz matrices (obtained in the
Inverse Multiquadric case (see subsection 9.3.2)) and any unbounded integrable function for
the case of symmetric block Toeplitz matrices with symmetric Toeplitz blocks. In fact, let

us consider the following three examples: f(x) = −x2

π2+x2 , g(x) =
2(1−cosx)
π2+x2 ; f(x) = sign(x)·x2

1+|x| ,

g(x) = x2

1+|x| and f(x, y) =
−(x2+y2)
2π2−x2−y2

, g(x, y) = (|x|+|y|)2
2π2−x2−y2

.

Case: f(x) = −x2

π2+x2 and g(x) = 2(1−cosx)
π2+x2

First of all, f has one zero ”0” of order 2. Furthermore, f
g
(x) = −x2

2(1−cosx)
. Here, ”0” is not

a zero of f
g
, indeed: lim

x→0

f
g
(x) = −1. If we denote again by f

g
the continuation by continuity

of f
g
over [−π, π] then, the study of the function f

g
over I = [−π, π] provides the following

properties

1. f
g
is nonpositive, symmetric and bounded on I;

2. min
x∈[0,π]

f(x)
g(x)

= −π2

4
;

3. max
x∈[0,π]

f(x)
g(x)

= −1;

4. f
g
is a decreasing function on [0, π];

5. lim
x→0+

(
f(x)
g(x)

)′

= 0 (horizontal tangent at x = 0+);

6. lim
x→π−

(
f(x)
g(x)

)′

= −π
2
< 0 (tangent at x = π− directed upward).
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–2.4

–2.2

–2

–1.8

–1.6

–1.4

–1.2

–1

–3 –2 –1 0 1 2 3x

Figure 9.1: Eigenvalues of Pdn(f ; g), f(x) =
−x2

π2+x2 and g(x) = 2(1−cosx)
π2+x2 , dn = 999

Conclusion: Figure 9.1 shows that the eigenvalues of Pdn(f ; g), for dn = 999, plotted
with respect to a uniform grid points xk = kπ

1000
, k = 0, 1, 2, ..., 999, form a curve which has

the expected shape of f/g.

Case: f(x) = sign(x)·x2

1+|x| and g(x) = x2

1+|x|

Also in this case, ”0” is a zero of order 2 of f . Next, ∀x ∈ [−π, 0[∪]0, π], f
g
(x) = sign(x).

Let us denote again by f
g
the continuation by continuity of f

g
over the domain [−π, π] then,

Figure 9.2 shows perfect argument of the spectrum of the preconditioned matrix with the
behavior of the function f/g. More precisely, notice that all the eigenvalues belong to the
interval (−0.999; 0.999) (because Pdn(f ; g) = Tdn(f/g) + ∆dn where {∆n}n ∼λ 0) with the
only exception of a few outliers, and the ones closest to zero (±0.4) are not very close to
zero.
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–1

–0.5

0.5

1

–3 –2 –1 1 2 3x

Figure 9.2: Eigenvalues of Pdn(f ; g), f(x) =
sign(x)·x2

1+|x| , g(x) = x2

1+|x| and dn = 350.

Case: f(x, y) = −(x2+y2)
2π2−x2−y2

and g(x, y) = g(x, y) = (|x|+|y|)2
2π2−x2−y2

.

First of all, (0, 0) is a zero of order 2 of f(x, y). Furthermore, as it was proved in subsection
9.7.2, the functions f(x, y) and g(x, y) are unbounded over the domain Q but, are Lebesgue
integrable.

• Brief study of the function f
g
over Q

∀(x, y) ∈ [−π, π] × [−π, π] and (x, y) ̸= (±π,±π), f(x,y)
g(x,y)

= −(x2+y2)
(|x|+|y|)2 . Still by indicating by

f
g
the continuation by continuity of f

g
over the domain [−π, π] × [−π, π] then, f(x,y)

g(x,y)
is a

symmetric function, whence reduction of the study on [0, π]× [0, π]. Hence f(x,y)
g(x,y)

= −(x2+y2)
(x+y)2

.

Next, (0, 0) is not a zero of f
g
, indeed: lim

(x,y)→(0,0)

f
g
(x, y) = −1

2
. Setting h(x, y) = f(x,y)

g(x,y)
, a direct

computation gives

∂h

∂x
(x, y) = −2y(x− y)

(x+ y)3
,

∂h

∂y
(x, y) = −2x(y − x)

(x+ y)3
,

∂2h

∂x2
(x, y) =

4y(x− 2y)

(x+ y)4
,

∂2h

∂y2
(x, y) =

4x(y − 2x)

(x+ y)4
,

∂2h

∂x∂y
(x, y) =

∂2h

∂y∂x
(x, y) = −2(x2 + y2 − 4xy)

(x+ y)4

then the derivative function and the Hessian matrix of h are given by

D(h)(x, y)|(x0,y0) =

(
−2y0(x0−y0)

(x0+y0)3

−2x0(y0−x0)
(x0+y0)3

)
, H(h)(x0, y0) =

[
4y0(x0−2y0)
(x0+y0)4

−2(x2
0+y20−4x0y0)

(x0+y0)4

−2(x2
0+y20−4x0y0)

(x0+y0)4
4x0(y0−2x0)
(x0+y0)4

]
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Furthermore,

det (H(h)(x0, y0)− λI2) =

(
4y0(x0 − 2y0)

(x0 + y0)4
− λ
)(

4x0(y0 − 2x0)

(x0 + y0)4
− λ
)

− 4(x20 + y20 − 4x0y0)
2

(x0 + y0)8

= λ2 − λ
[
4y0(x0 − 2y0) + 4x0(y0 − 2x0)

(x0 + y0)4

]
+

16x0y0(x0 − 2y0)(y0 − 2x0)

(x0 + y0)8
− 4(x20 + y20 − 4x0y0)

2

(x0 + y0)8

= λ2 + 8
x20 − x0y0 + y20
(x0 + y0)4

λ− 4
x40 − 2x20y

2
0 + y40

(x0 + y0)8

= λ2 + 8
x20 − x0y0 + y20
(x0 + y0)4

λ− 4
(x20 − y20)2

(x0 + y0)8
.

If we denote by S = −8x2
0−x0y0+y20
(x0+y0)4

and P = −4 (x2
0−y20)

2

(x0+y0)8
the sum and the product of roots of

the polynomial det (H(h)(x0, y0)− λI2), since P ≤ 0, then these roots are of di�erent signs if
x0 ̸= y0, one deduces that the eigenvalues of the Hessian matrix H(h)(x0, y0) are of di�erent
signs if x0 ̸= y0. If x0 ≈ y0, then P ≈ 0 and at least one of the eigenvalues is close to zero.
More precisely, one can summarize the properties of the function f/g as follows

1. f
g
is nonpositive, symmetric and bounded on Q;

2. inf
(x,y)∈[0,π]2

f(x,y)
g(x,y)

= −1;

3. sup
(x,y)∈[0,π]2

f(x,y)
g(x,y)

= −1
2
;

4. If x0 ̸= y0 then, the Hessian matrix (H(f/g)(x0, y0)) of f
g
is nonpositive de�nite and

nonnegative de�nite so, the function f/g admits a saddle point (x1, y1) in [0, π]×[0, π],
that is: f

g
(x1, y1) = min

x∈[0,π],
max
y∈[0,π]

f
g
(x, y) = max

y∈[0,π],
min
x∈[0,π]

f
g
(x, y). If x0 ≈ y0, then P ≈ 0 and

at least one eigenvalue of (H(f/g)(x0, y0)) is close to zero;

5. lim
(x0,y0)→(0+,0+)

D
(

f
g

)
(x, y)|(x0,y0) = (∞,∞)T ;

6. lim
(x0,y0)→(π−,π−)

D
(

f
g

)
(x, y)|(x0,y0) = (0, 0)T .
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Figure 9.3: Eigenvalues of Pdn,dn(f ; g), f(x, y) =
−(x2+y2)
2π2−x2−y2

, g(x, y) = (|x|+|y|)2
2π2−x2−y2

and dn = 99.

Conclusion: Figure 9.3 shows that the eigenvalues of the preconditioned matrix Pdn,dn(f ; g)
for dn = 99, plotted with respect to a uniform grid points xjk = ( jπ

100
, kπ
100

), j, k = 0, 1, 2, ..., 99,
are concentrated in the interval [−1,−1

2
] except few of them which are outliers. Indeed, one

can write Pdn,dn(f ; g) = Tdn,dn(f/g) + ∆dn,dn where {∆dn,dn}n ∼λ 0. Because the spectrum
of Tdn,dn(f/g) forms a curve which has the expected shape of f/g. It follows that Figure 9.3
shows perfect argument of the spectrum of the preconditioned matrix Pdn,dn(f ; g) with the

behavior of the function f
g
.

9.9 Numerical evidences of g-Toeplitz matrices and re-
lated g-Circulant preconditioning

In chapter 7 we have studied by regularizing technique the singular values of matrix se-
quences obtained by preconditioning g-Toeplitz sequences associated with a given integrable
function via g-circulant sequences. In this section, we present some numerical evidences of
ill-conditioned g-Toeplitz matrices and related g-circulant preconditioning. In fact, we con-
sider an n × n linear system Af = g, where A is a g-Toeplitz matrix. Aimed of providing
numerical evidences to the theoretical results, we analyze

(i) the distribution of the singular values of g-Toeplitz matrices and related g-circulant
preconditioned matrices (subsection 9.9.1),

(ii) the e�ectiveness of the g-circulant preconditioning for the solution of the corresponding
g-Toeplitz linear system Ax = b (subsection 9.9.2), and

(iii) a possible real application related to a 2D inverse problem in imaging (subsection
9.9.3).

In particular, for the �rst two points (i) and (ii) we consider six well-known test cases,
most of them �rstly used in pioneer works by G. Strang, T. Chan and E. Tyrtyshnikov for
the classical Toeplitz preconditioning (i.e., g = 1). For each of any considered test, we report
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the elements of the �rst column Ak,1 for k = 1, . . . , n, and some basic properties of the
corresponding basic Toeplitz matrix (g = 1).

• Test 1 Ak,1 = k−1

Strictly positive non-Wiener generating function, Well-conditioned [150(1), 38]

• Test 2 Ak,1 = k−2

Strictly positive Wiener generating function, Well-conditioned [150(1), 38]

• Test 3 A:,1 = (2,−1, 0, . . . , 0)t
Sparsely vanishing trigonometric polynomial generating function f(x) = 2 − 2 cos x,
Ill-conditioned, Zero valued (order 2) at the origin [163]

• Test 4 A:,1 = (20,−15, 6,−1, 0, . . . , 0)t
Sparsely vanishing trigonometric polynomial generating function f(x) = (2− 2 cos x)3,
Ill-conditioned, Zero valued (order 6) at the origin

• Test 5 A:,1 = (π2/2,−2, 0,−2/9, 0,−2/25, 0, . . . , 0, −2/(k − 1)2, 0, . . .)t

Sparsely vanishing generating function f(x) = π|x|, Ill-conditioned, Zero valued (order
1) at the origin [58(4)]

• Test 6 A:,1 = (2, 0, 21
3
, 0,−2 1

15
, 0, 2 1

35
, 0, . . . , 0, (−1)(k+1)/2 2/((k − 1)2 − 1), 0, . . .)t

Sparsely vanishing generating function f(x) = π| cosx|, Ill-conditioned, Zero valued
(order 1) at π/2 [58(4)]

We notice that the generating function f is strictly positive in the two (well-conditioned)
test cases 1 and 2, and sparsely vanishing in the four (ill-conditioned) test cases 3,4,5 and 6.

According to section 7.5.2, for any g-Toeplitz test matrix we consider both (i) the Natural
g-circulant preconditioner and (ii) the Optimal g-circulant preconditioner (see [150(1), 38] for
the classical Toeplitz case g = 1). The numerical tests have been developed with MatLab,
and the singular value decomposition has been computed by the built-in Matlab function
svd().

9.9.1 The distribution of the singular values

First, we plot the distribution of the singular values of the n × n g-Toeplitz matrix A,
the corresponding g-circulant preconditioner P , and the preconditioned matrix P−1A, for
n = 1000 and g = 2, 3, 7 (n and g are co-prime for g = 3 and g = 7, and are not co-prime for
g = 2). In particular, we have:

I) Fig. 9.5 and Fig. 9.6 show the singular values of the g-Toeplitz matrices A, the Natu-
ral (top) and Optimal (bottom) g-circulant preconditioners P and the corresponding
preconditioned matrices P−1A in the coprime cases, respectively for g = 3 and g = 7;

II) Fig. 9.7 shows the singular values of the optimal preconditioning in the non-coprime
case g = 2, for two test examples (Test 1 and Test 5).

Before dealing with the preconditioned matrix P−1A, it is quite interesting to notice that
the plotted distribution of the singular values of the g-Toeplitz matrix A and its g-circulant
preconditioner P "exactly" agrees with the corresponding expected distributions 7.5-7.6-7.7
and 7.8-7.9-7.10. Indeed, for g > 1 and sparsely vanishing generating functions, we have:

(i) regarding the g-Toeplitz matrix A, the �rst n/g singular values are positive, and equals

to

√
|̂f |(2)(x), while the remaining n− n/g are null, as stated by 7.6 (see the blue line

in Fig. 9.5, 9.6 and 9.7);
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(ii) regarding the g-circulant preconditioner P , by introducing the positive integer value
γ = gcd(n, g), if γ = 1 then the singular values are bounded away from zero or
sparsely vanishing as well as the generating function is (see the green line in Fig. 9.5
and 9.6), and, if γ > 1, the �rst n/γ singular values are always bounded away from
zero (regardless the sparsely vanishing generating function is or is not bounded away

from zero), and equals to

√
|̂h|(3)(x), while the remaining n − n/γ are null, as stated

by 7.9 (see the green line in Figg. 9.7).

In particular, since n = 1000, then γ = 1 for g = 3, 7, and γ = 2 for g = 2: in Fig. 9.5 and
Fig. 9.6 the singular values of both the natural and optimal g-circulant preconditioners are
bounded away from zero in the well-conditioned test cases 1 and 2, and sparsely vanishing
in the ill- conditioned test cases 3, 4,5 and 6, while one half of the singular values are always
null in Fig. 9.7 (green lines).

It is now interesting to analyze the distribution of the preconditioned matrix. Any co-
prime case (Figg. 9.5 and 9.6, red line) gives rise to a good clustering at unity, in the �rst
n/g singular values, while the remaining ones are null. This is a result which was expected
in the light of Theorem 7.5.1: the preconditioned matrix P−1A guarantees a good cluster-
ing in a subspace which is the most large possible (remember that the rank of A is n/g,
so that the rank of P−1A is just no larger than n/g). This good clustering at unity of the
preconditioned matrix P−1A occurs in both the well-conditioned case (see, in Figg. 9.5 and
9.6. the cases Test1 and Test 2, where the preconditioners have no vanishing singular values)
and the ill-conditioned case (see, again in Figg. 9.5 and 9.6, the cases from Test 3 to Test
6, where the preconditioners have always a zero measure vanishing singular subspace). We
can also observe that the singular values' distributions of the natural preconditioned matrix
and the optimal preconditioned matrix are very similar. This agrees with the classical and
widely studied Toeplitz case (i.e., g = 1), where both the distributions tend to the gener-
ating function, as n grows. However, as expected, the optimal preconditioner, which is the
closest-to-A g-circulant matrix w.r.t. the Frobenius distance, gives a bit better clustering
than the natural one: as instance, see in particular the clustering at unity of Test 3 in the
optimal preconditioning (bottom) and in the natural preconditioning (top) in Figg. 9.5 and
9.6.

The situation is di�erent in the non-coprime case, as Fig. 9.7 shows. Before going on,
according to subsection 7.4.1, we mention that in this case instead of the inverse P−1 we have
to consider the Moore-Penrose generalized inverse P †, P being a singular matrix. Due to the
non-coprime circularity, now the g-circulant preconditioner has a lot of cyclically repeated,
hence linearly dependent, columns. Heuristically, the g-circulant preconditioner P "loose" a
lot of informations which were contained in the related g-Toeplitz matrix A, which means
that P becomes less correlate to A, and a good clustering is no more possible. This is well
explained by Fig. 9.7, red line, where just a couple of test examples are reported (all the
others behave similarly, so they are not reported). In particular, in the �rst two columns
we can see that the singular values of the preconditioned matrix P †A are not clustered
(moreover they tend to diverge, giving rise to high instability in real applications). To avoid
such an ampli�cation, instead of using P † for the preconditioned matrix, we can consider a
regularized version P †

α of P †, where the singular values of P smaller than a regularization
parameter α > 0 are not inverted. As very �rst attempt, we plot the singular values of the
preconditioned matrix P †

αA, being α = 10−12∥P∥. As we can notice, a good clustering is
found also for the non-coprime case.

9.9.2 The preconditioning e�ectiveness

In this subsection we give a �rst evaluation of the behavior of the optimal g-circulant pre-
conditioning for the solution of the g-Toeplitz linear system Ax = b, with g = 3 > 1. First of
all we mention that, since the square g-Toeplitz matrix A has no full rank (recall that here
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g > 1), we necessarily have to consider the least square solution A⋆Ax = A⋆b.
Accordingly, we consider the solution of the linear system by means of the (P)CGNR method,
that is, the (preconditioned) conjugate gradient method applied on the normal equations.

In order to evaluate the restoration errors, we choose the true data vector x, and then we
compute the known data b simply as b = Ax. In particular, we consider a true data vector
x whose i-th component, for i = 0, . . . , n − 1, is given by cos(gπi/n), so that the �rst n/g
values of the true data are a sampling on a uniform grid of an entire semi-period of the
cosine function.

Let xk be the k-th iteration of the (P)CGNR method. We compute the relative resid-
ual error RelRes = ∥A⋆Axk − A⋆b∥/∥A⋆b∥ and the relative error on the restored signal
RelErr = ∥xk − x†∥/∥x†∥, where x† is the projection on N(A)⊥ of the true data (which is
obviously the best possible restoration). Since n/g is the rank of A, to obtain x† we compute
x† = Ṽ Ṽ ⋆x, where Ṽ is the n× (n/g) matrix given by the �rst n/g columns of V , being V
the orthogonal matrix of the singular value decomposition A = UΣV ⋆.

By using the built-in Matlab function pcg() within the �rst 100 iterations, in Table 9.1
the numerical results related to three di�erent levels of noise on the data b are reported.
In particular, by denoting as bη = b + η the noisy data, where η is a white Gaussian noise,
we have the following test cases: in the left columns the data b is noiseless; in the central
columns the relative noise level ∥bη − b∥/∥b∥ = is 10−4%; in the central columns the relative
noise level ∥bη − b∥/∥b∥ = is 10−1%.

As we can observe, the optimal g-circulant preconditioned conjugate gradient method
does not allow to obtain better results than the classical (i.e., "unpreconditioned") method.
This fact has been already observed for the Toeplitz case (i.e., g = 1), and we can say that
now, for g-Toeplitz linear system with g > 1, this phenomenon is ampli�ed.

Indeed, most preconditioners for Toeplitz systems with high clustering of the singular
values such as the natural and optimal ones give rise to instability and noise ampli�cation.
In Fig. 9.8 we plot the �rst n/g values (i.e., the signi�cative ones) of the restored signals for
both the CGNR and PCGNR algorithms (g = 3, Test 4, 1% of data noise): As we can see,
here the noise ampli�cation of the preconditioned case is higher, and hence some oscillations
occur. However, to improve the results (that is, speed up the convergence, without amplify-
ing the instability due to noise or �oating point computation), a wide range of regularization
techniques can be added to the preconditioners (see [58(3)], for the classical Toeplitz case),
and future works will be devoted to this analysis.
In this direction, the g-circulant preconditioner can be considered as a basic tool for intro-
ducing regularization features, which could provide both speed-up and stability to the PCG
method.
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Noise level 0 (No noise) 0.0001% 1%
Preconditioning Prec. No prec. Prec. No prec. Prec. No prec.

Test 1
Iter. Number 92 48 94 77 96 92

Relative Residual 3.19e-007 6.05e-010 3.16e-007 1.64e-009 1.2376e-007 1.3158e-007
Relative Error 4.29e-006 1.20e-008 1.89e-005 1.88e-005 0.0183 0.0183

Test 2
Iter. Number 47 13 47 36 78 79

Relative Residual 2.87e-010 2.89e-010 3.48e-010 8.94e-010 9.0800e-009 7.4287e-009
Relative Error 4.64e-010 4.72e-010 8.75e-006 8.75e-006 0.0088 0.0088

Test 3
Iter. Number 100∗ 2 100∗ 2 100∗ 2

Relative Residual 0.0214 1.10e-016 0.0213 1.12e-016 0.0213 1.1900e-016
Relative Error 0.0181 1.19e-016 0.0181 2.98e-006 0.0183 0.0031

Test 4
Iter. Number 100∗ 14 100∗ 20 100∗ 20

Relative Residual 1.93e-005 3.78e-010 1.93e-005 8.39e-010 2.3375e-005 9.5010e-010
Relative Error 7.48e-006 2.40e-010 7.62e-006 2.20e-006 0.0021 0.0021

Test 5
Iter. Number 100∗ 8 100∗ 37 98 99

Relative Residual 6.08e-005 1.04e-010 5.97e-005 9.93e-010 8.9519e-005 1.3370e-008
Relative Error 3.22e-005 8.93e-011 3.17e-005 2.76e-006 0.0027 0.0027

Test 6
Iter. Number 77 4 75 10 76 72

Relative Residual 1.92e-004 2.64e-013 1.93e-004 6.14e-010 2.0942e-004 7.8879e-010
Relative Error 1.04e-004 2.65e-013 1.05e-004 7.57e-006 0.0076 0.0076

Table 9.1: g = 3: Best relative residual ∥A⋆Axk−A⋆bη∥/∥A⋆bη∥, with corresponding iteration
number k and relative restoration error ∥xk−x†∥/∥x†∥, with respect to di�erent noise levels
δ = ∥b− bη∥/∥b∥ of the CGNR and PCGNR with optimal g-circulant preconditioner.

9.9.3 Two dimensional g-Toeplitz matrices for structured shift-variant
image deblurring

We conclude the numerical section by introducing a real problem of image deblurring [9(1)]
which is related to g-Toeplitz matrices. Basically, a blurring model (i.e., the forward model)
involves a Fredholm linear operator of the �rst kind as follows. A blurred version g ∈ L2(R2)
of a true image f ∈ L2(R2) is given by

(9.38) g(x) =

∫
R2

h(x, u) f(u) du

where the integral kernel h ∈ L2(R2 × R2) is the known impulse response of the blurring
system, also called point spread function (PSF), being x = (x1, x2) and u = (u1, u2) the
system coordinates of the blurred image g and the true image f . Image deblurring is the
(inverse) problem of �nding (an approximation of) the true data f (i.e., the cause) by means
of the knowledge of the blurred data g (i.e., the e�ect).

The value h(x, u) represents the weight of the true image f at point u in the formation
of the blurred image g at point x. This way, g(x) is the average on R2 of the values of f with
respect to the weights h(x, ·). Among the proposed mathematical models, the simplest and
most common blurring operator (9.38) involves the so-called shift-invariant integral kernel,
in which the weight h(x, u) depends only on the relative position of u with respect to x, that
is, there exists a function hI ∈ L2(R), of one variable, such that

(9.39) h(x, u) = hI(x− u) .

In a shift-invariant blurring system like that, the impulse response does not change as the
object position is shifted, which means that exactly the same blur arises all over the image
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domain R2. In this case the blurring operator (9.38) becomes a simple convolution, and its
discretization gives rise to (classical) Toeplitz matrices. On the other hand, shift-invariant
mathematical models are often only basic approximations of real shift-variant imaging sys-
tems. Among all the shift-variant imaging systems, we are interested in the ones which are
intrinsically shift-invariant as follows: there exist two "coordinate transformations" b = b(x)
and c = c(u) such

h(x, u) = h̃I(b(x), c(u))

where h̃I(b, c) = hI(b−c) is a shift-invariant PSF. Indeed, in some cases the discretization
of these models leads to two-levels g-Toeplitz matrices. We have

(9.40) g(x) =

∫
U

h(x, u)f(u)du =

∫
U

hI(b(x)− c(u))f(u)du.

that is

(9.41) g̃(x̃) =

∫
c(U)

hI(x̃− ũ)f̃(ũ)dũ

where x̃ = b(x), ũ = c(u), g̃ = g ◦ b−1, f̃ = (c−1)′ · f ◦ c−1 . Here the symbols ◦ and · denote
respectively the composition and the point-wise function products. In practice, by using such
these two coordinate transformations b and c in both the blurred image g and true object
f , we obtain that the imaging system becomes explicitly shift-invariant, since it is modeled
by the shift-invariant PSF hI of (9.41). The main example is the rotational blur, generated
when a moving object rotates with respect to the imaging apparatus. In this case, although
the blur changes with respect to the object position (in particular, it is small close to and in-
creases far from the center of the rotation), the blurring is intrinsically shift-invariant. If the
coordinate systems are changed from Cartesian x = (x1, x2) and u = (u1, u2) to Polar system
(ρx, θx) and (ρu, θu), the PSF becomes explicitly shift-invariant. As instance, concerning a
blur of uniform circular motion, we have h(x, u) = h((ρx, θx), (ρu, θu)) = hI(ρx− ρu, θx− θu),
with hI(ρ, θ) = 1/σ for (ρ, θ) ∈ {0× [0, σ]} and 0 elsewhere, being σ the whole angle of the
considered rotation.
In the simplest case where the coordinate transformation are linear functions such as b(x) =
vx and c(u) = gu, with v and g two integer values. With a �xed discretization step d, we
have that

(9.42) Ai,j = h(id, jd) = hI(b(id)− c(jd)) = hI(ivd− jgd) .

50 100 150 200 250 300 350
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100
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250

Figure 9.4: Non-perpendicular imaging system geometry.
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If b(x) = x, then the PSF matrix A is a g-Toeplitz matrix. However, in general, we have
to consider (g, v)-Toeplitz matrices, that is, matrices which obey the rule An = [avr−gs]

n−1
r,s=0,

which are simple generations of g-Toeplitz matrices. By recalling that any 3D geometric pro-
jectivity is a linear transformation, we have that such (g, v)-Toeplitz matrices arise in many
imaging systems related to large scenes, where the projective geometry becomes important
due to perspective. As instance (g, v)-Toeplitz blur matrices arise when some objects are
moving with approximately the same speed in a plane which is not parallel to the image
plane of the imaging apparatus (this is usually called as "non-perpendicular imaging system
geometry", see Fig. 9.4). We remark that this is the classical scenario of high-way tra�c �ow
control systems.

A numerical simulation is shown in Fig. 9.9, where a structured shift-variant blurred
image related to a synthetic homography (i.e., a projectivity between two planes) has been
used (see the shift-invariant blur which corrupts the image on the left). Since a homography
is a linear transformation w.r.t. the homogeny coordinates, the discretization gives rise to
two-level (g, v)-Toeplitz matrices. By using the involved algebraic structure, the deblurring
process can be done within O(n2 log n) as in the classical convolutive (i.e. Toepliz) case.
In Fig. 9.9, center, we show the projectivity under which the blur becomes shift-invariant,
which is modeled by a linear transformation of coordinates (see that the same blur all over
the domain of the image on the center). By means of such a shift-invariant blurred projected
image, we can obtain the deblurred image (left image), by using O(n2 log n) computations.
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Natural g-circulant preconditioning
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Optimal g-circulant preconditioning
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Figure 9.5: g = 3 (coprime case) - Singular values of g-Toeplitz matrices A, Natural (top) and
Optimal (bottom) g-circulant preconditioners P and corresponding preconditioned matrices
P−1A.
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Optimal g-circulant preconditioning
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Figure 9.6: g = 7 (coprime case) - Singular values of g-Toeplitz matrices A, Natural (top) and
Optimal (bottom) g-circulant preconditioners P and corresponding preconditioned matrices
P−1A.
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Figure 9.7: g = 2 (non-coprime case) - Singular values of g-Toeplitz matrices A, optimal
g-circulant preconditioners P and corresponding preconditioned matrices P †A (left), zoom
on the small values (center), and analogous spectral distributions related to the regularized
preconditioners (right).
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Figure 9.8: Restored signal with (P)CG on the normal equations (1% of data noise, g = 3).
Left: without preconditioning. Right: with Optimal g-circulant preconditioning.
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Figure 9.9: Shift-variant blurred data, projected data (shift-invariant blur), deblurred data.
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Chapter Ten

General Conclusions

This dissertation has described a detailed study of preconditioning, approximation and spec-
tral analysis of special classes of large structured linear systems. The structured linear sys-
tems considered in this Thesis arise in many applications. For examples, in solutions to
di�erential and integral equations, spline functions, problems and method in physics, math-
ematics, digital signal processing, such as linear prediction and estimation [86, 97, 98], image
restoration [66], the approximation by radial basis functions (RBFs) of constant coe�cients
elliptic boundary value problems, in wavelet analysis [50] and subdivision algorithm or,
equivalently, in the associated re�nement equations, see [58] and references therein (cases
of Toeplitz, g-Toeplitz and g-circulant systems); in many applications involving the discrete
Fourier transform (DFT) and the study of cyclic codes for error correction (case of circulant
systems). The spectral analysis considered here can be viewed in the sense of singular val-
ues, eigenvalues and eigenvectors of such related matrices. The problem of preconditioning
and approximation approached in this Thesis concerns: the optimal approximation via the
Korovkin-type theory, the distribution results in the sense of the singular values and the
approximation in the sense of the Weyl-Tyrtyshnikov equal distribution.

Concerning the spectral analysis, we have determined the eigenvalues, singular values and
eigenvectors of circulant and g-circulant matrices, have done a detailed study of the optimal
approximation by the Korovkin-type theory for �nite Toeplitz operators via matrix algebra
in the case of Toeplitz sequences and we have provided the distribution result in the sense
of singular values for the g-Toeplitz sequences.

Our second solved problem is speci�cally based on the preconditioning g-Toeplitz se-
quences via g-circulants and that of collocation matrices approximating elliptic boundary
value problems. In the case of the approximation of g-Toeplitz sequences, we have studied
the singular values of matrix sequences obtaining by preconditioning. The main point was
that the standard preconditioning works only in the classical setting but, the surprise was
that when, the stepsize g is positive, a regularizing preconditioning can be obtained by a
clever choice of the g-circulant sequences. Furthermore, the results on the Weyl-Tyrtyshnikov
equal distribution and the Perron-Frobenius theory were fundamental for the determination
of preconditioners and a detailed study of the spectral radii of collocation matrices ap-
proximating elliptic boundary value problems. From this study, it followed that one of the
advantages of meshless methods based on the radial basis functions with respect to another,
is high decrease of computational volume that arises when changing multi-dimensions to one
dimension, further, the use of the globally supported radial basis functions, reaches to the
large linear systems, poorly condition number and full matrices.

An application of the preconditioned conjugate gradient method to symmetric block
Toeplitz matrices with symmetric Toeplitz blocks generated by unbounded functions, which
are equally distributed and equally localized as the collocation matrices, associated with
some numeric results are presented in chapter 9 of this dissertation.

Finally, the di�culties met during the study of the g-circulant matrices and collocation
matrices have obliged us to restrict our researches on the singular values and eigenvalues in
the case of g-circulant and to impose some requirements on the shape parameter ”c” �guring
in the radial basis functions for the collocation matrices. In the future works, we will delete
this constraint and then will try to look for another theory in order to study the spectral
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radii of such collocation matrices. The study of eigenvectors of the g-circulant matrices and
the distribution result in the sense of eigenvalues of the related g-Toeplitz sequences will also
be the subject of our researches.
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[1] A. Aricò, Marco Donatelli, S. Serra-Capizzano, "V-cycle optimal convergence for certain
(multilevel) structured linear systems", SIAM J. Matrix Anal. Appl., 26(2004), pp.
186− 214.

[2] F. Avram, "On bilinear forms on Gaussian random variables and Toeplitz matrices,
Probab. Th. Related Fields" 79(1988), 37− 45.

[3] W.E., Arnoldi, "The principe of minimized iteration in the solution of the matrix eigen-
value problem. Quart. Appl. Math. " 9(1951), pp. 17− 29.

[4] O. Axelsson, "Solution of linear systems of equations: Iterative methods". In Barker
(1977).

[5] O. Axelsson and V. Barker, "Finite Element Solution of Boundary Value Problems,
Theory and Computation", Academic, New York, 1984.

[6] O. Axelsson and G. Lindskog, "On the rate of convergence of the preconditioned conju-
gate gradient method", Numer. Math., 52(1986), PP. 499− 523.

[7] O. Axelsson and M. Neytcheva, "The algebraic multilevel iteration methods-theory and
applications ", in proceedings of the 2nd International Colloquiun on Numerical Anal-
ysis (D. Bainov, Ed.), Plovdiv, Bulgaria, Aug. 1993, PP. 13− 23.

[8] E.H. Bareiss, "Numerical solution of linear equations with Toeplitz system and vector
Toeplitz matrices", Numer. Math., 13(1969), pp. 404− 424.

[9] A. Berman and R.J. Plemons, "Nonnegative Matrices in the Mathematical Sciences".
Classics in Applied Mathematics. SIAM, Philadelphia, PA, 1994.

[9(1)] M. Bertero and P. Boccacci, "Introduction to Inverse Problems in Imaging", Institute
of Physics Publ., Bristol, 1998.

[10] D. Bini, M. Capovani, "Spectral and computational properties of band symmetric
Toeplitz matrices." Linear Algebra Appl., 52/53 1983, 99− 126.

[11] D. Bini, F. Di Benedetto, "A new preconditioner for the parallel solution of positive
de�nite Toeplitz linear systems." Proc. 2nd SPAA conf., Crete (Greece), 1990, pp.
220− 223.

[12] D. Bini, P. Favati, "On a matrix algebra related to the discrete Hartley transforms".
SIAM J. Math. Anal. Appl. 14(1993), 500− 507.
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